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Abstract 

Confinement of Colloidal Suspensions in Cylindrical Geometries and the Decoupling of 

Rotational and Translational Diffusion in a 2D Granular Experiment 

 

By Nabiha Saklayen 

We study binary colloidal suspensions confined within a glass microcapillary to model the glass 
transition in confined cylindrical geometries. We use high speed three-dimensional confocal 
microscopy to observe particle dynamics. The use of a slightly tapered microcapillary enables us to 
probe a range of local volumes for a single colloidal sample. We observe that confinement of the 
sample slows down particles. In addition, the particles form layers against the capillary walls; these 
layers also influence particle mobility. We split the mobility into three components and see that all 
components slow down close to the boundary. As the microcapillary is made smaller, all three 
components of mobility start to show large fluctuations due to the closely packed layers that form 
in tight spaces. We found that when the volume fraction is increased, the “bulk” mobility of the 
system decreases.  

We also experimentally study the rotation and diffusion of granular clusters in a 2D binary granular 
system. Our apparatus vibrates a 2D system of densely packed granular bidisperse disks (to avoid 
crystallization) containing a trackable 3-particle cluster. We use this system to mimic hard-sphere 
fluids and the clusters probe the system's local translational and rotational dynamics. As the area 
fraction of the bidisperse disks is increased, diffusion within the sample becomes slower, and above 
a critical area fraction, the sample behaves as a granular glass. We analyze the rotational and 
translational motions of the clusters to determine whether they decouple with changing area 
fraction of the system. As we approach the glass transition, we observe a decoupling between the 
two motions. 
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Chapter 1 

 

Introduction 

 

1.1 Jamming and the Glass Transition 

Our ideas about what it means to be a solid, liquid, or gas are completely challenged when we 

encounter everyday materials like toothpaste or peanut butter. These substances are a mixture 

of solids and liquids and we use the phrase “soft materials” to describe them. Soft materials act 

as solids at a macroscopic level and have random particle arrangements at a microscopic level.  

So why are we interested in studying these materials? If you look around you at any given 

moment, you will see that everything from your computer screen to bottom of your shoe is 

made of some type of glassy material. Glassy materials are abundant in the natural, industrial, 

and technological worlds, and we still do not understand why these amorphous materials are 

solid. The field of soft condensed matter tries to gain a better understanding of these systems, 
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and glass is one such system that we study. Even though itself glass is a widely used material, 

we still do not have a full understanding of why this solid is amorphous and not crystalline.   

There is no doubt that glass, say in the form of window glass, is a solid in terms of its 

macroscopic properties. However, the minute you zoom in close to see the underlying atomic 

structure, you will see that the atoms are completely disordered. Glass has an amorphous solid 

state with randomly packed atoms, and other similar materials include sand, cotton candy and 

polystyrene, to name a few examples. We think that understanding the mysterious nature of 

the glass transition is important because something interesting must be happening that allows 

solid glass to remain amorphous 

The phase of the material, whether it is a glass, liquid, or crystal, is dependent on the complex 

interactions between the particles. We are interested in knowing what causes the different 

phases to arise. Perhaps the key to understanding these structural properties lies in studying 

how glassy solids are formed because the formation process will determine many properties of 

the glass (Debenedetti and Stillinger 2001). The best way to form a glass is to rapidly cool a 

viscous liquid (supercooling) and override the crystallization phase. We are interested in what 

exactly happens during the supercooling process that allows glass to remain amorphous in the 

glassy state. 

One popular approach has been to think of the process in terms of “jamming,” a term 

popularized in this field by Liu and Nagel (1998). A jammed system can be compared to say a 

traffic jam or a clogged pipe, where the particles get more and more tightly packed together 

and slows down the system.  Eventually the particles get stuck and form a solid structure. 

Jammed materials are amorphous, meaning that they are structurally disordered and possess a 

yield stress, which is the pressure that the substance can tolerate without deforming (Weeks 



   5 
 

2007). It is speculated that there could exist a universal jammed state that explains the 

behavior of all amorphous materials that we know of, such as foams, glasses, and emulsions.  

The glass transition occurs when the temperature of the glass is lowered so that that the 

material turns from a liquid to a solid while retaining its microscopically disordered structure. 

Another way to make a sample undergo a glass transition would be to increase pressure on the 

system. The viscosity of a fluid is a measure of a fluid’s resistance to flow, which is low for hot 

liquid glass as it flows very easily. When the liquid is cooled towards the glass transition, a 

change in temperature of just a few tens of degrees causes a remarkably dramatic rise in its 

viscosity by 10 or more orders of magnitude (Weeks 2007). Eventually the viscosity becomes so 

large that the molecular motion comes to a complete halt and the glassy state becomes 

“jammed.” 

This thesis looks to specifically explore our understanding of the glass transition in two different 

ways, and I use two different hard-sphere models to study the glass transition. One is a 

colloidal suspension and the other is a granular two-dimensional disk system. Hard-sphere 

models help us increase our understanding of liquids. A hard-sphere model can be defined as a 

collection of perfect spheres that interact with zero potential unless they overlap, in which case 

the potential becomes infinitely large. The key point is that the particles cannot overlap under 

any circumstances and their behavior is similar to that of a collection of hard marbles. Particles 

in colloidal suspensions and granular systems act just like hard spheres, which makes them 

desirable model systems to study the glass transition in more depth.  

1.2 Confinement of Colloids 

The first experiment uses colloids to study the glass transition. Colloids have evolved to become 

a very popular model system to study the glass transition, and they can be used in a variety of 
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different ways to probe glassy systems. They are a simple yet effective model system because 

the particles are large enough to be imaged using microscopy techniques, yet small enough to 

perform random Brownian motion. The biggest advantage is that particle behavior can be 

investigated in great detail using advanced microscopy techniques, such as the 3D confocal 

microscopy technique that I use in this thesis. The particle size allows us to track the particles 

easily due to their significantly lower mobility than an atom or a molecule. Instead of changing 

the temperature or pressure to achieve the glass transition in a colloid, we change the volume 

fraction for the same effect. The volume fraction is a measure of how densely the particles are 

packed together, and is calculated by dividing the total volume of particles by the total volume 

of the system. The only thing that needs to be changed to alter the system’s glassiness is the 

number of particles in the system, in other words the volume fraction, which is done fairly easily 

by centrifugation. We centrifuge our samples to sediment the particles and then remove or add 

solvent to change the total volume fraction of the sample.  

Even though we have an increased understanding of how different factors contribute to the 

glass transition, we still unfortunately do not have a complete understanding of this 

phenomenon. The glass transition becomes even more interesting when materials are restricted 

to uncomfortably small spaces. When glassy materials are confined in small spaces, they begin 

to exhibit properties different from their bulk properties. Glassy materials have been confined in 

nanopores and ultrathin polymer films (Alcoutlabi and McKenna 2005; Kim et al. 2008) and 

these various experiments have seen contrasting results, namely, both increased and decreased 

amounts of glassiness. The disparities in experimental results make clear that the glass 

transition is heavily dependent on the specific experimental details used at that instant. This 

realization has inspired soft condensed matter physicists to devise new experiments that 

expand our understanding of confined glassy materials in new and exciting directions. 
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The confinement effect on glass transition can be studied in different materials and systems, 

and I study the colloidal glass transition in confinement in this thesis. Colloidal suspensions are 

our model of choice and we confine them in restricted spaces of different geometries. Colloids 

have been previously confined in one dimension between parallel plates (Nugent et al. 2007) to 

give interesting results. Colloidal suspensions of constant density were confined between plates 

of varying width, and the particles were seen to slow down as they were confined to narrower 

channels. These experiments have also suggested that the boundary conditions, which would 

be the walls of the parallel plates in this case, play an important role in triggering the glass 

transition (Edmond et al. 2010).  These results show that colloidal particles exhibit different 

properties depending on the amount of space they have and the nature of the nearest 

boundaries. There seem to be several aspects of the story that we do not understand, and we 

want to increase our understanding of the confinement effect by confining samples inside 

spaces of different geometries.  

In the first part of this thesis, I study colloidal suspensions confined within cylinders, and this 

experiment models a two-dimensional confinement effect that has not been studied previously. 

The goal for this experiment is to add another dimension to the one-dimensional confinement 

effect studied previously (Nugent et al. 2007), and study how that influences particle mobility in 

the system.  

1.3 Decoupling of Rotational and Translational Diffusion 

 The second part of the thesis studies another aspect of the glass transition by using a different, 

and much larger, model system. When you consider a molecule or particle diffusing through 

space, you see that the particle is translating through space (moving from one point to another) 

and also rotating around its center. Since these two motions are happening at the same time 
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and due to the same physical parameters, it is natural to expect that they would be similar for 

the same particle. However, it turns out that this is not universally true for all systems, and 

glassy materials are an exception to the rule. 

When molecules are energized at high temperatures, their rotational and translational diffusion 

coefficients are inversely proportional to the viscosity η of the material. If the two components 

of diffusion are coupled, they rotate and translate at the same rate. It turns out that when you 

cool a glassy material to approach Tg, the glass transition temperature, these supercooled 

liquids show a decoupling of the translational and rotational diffusion (Debenedetti and 

Stillinger, 2001; Cicerone and Ediger 1996). This means that the rotation slows down more than 

the translation or, in other words, the particles translate more per individual rotation. The 

decoupling is perhaps attributed to spatially heterogeneous dynamics in the system, which 

means that different parts of the sample, even though they are relatively close by, are 

translating at different rates (Ediger 2000). 

The following relationship is important motivation for the experiment: 

  

  
         .           (1.1) 

In equation (1.1), DT is the measure of translational motion a particle is undergoing, which 

simply measures how much the particle is moving around on average. DR is a measure of how 

much the particle is spinning around its central axis. For a Newtonian fluid, such as water, DT 

/DR changes in a simple manner when either temperature T or viscosity η are changed. 

Interestingly enough, the ratio in Eqn. 1.1 always turns out to be a constant value for any given 

shape being studied in a fluid. For example, for a dramatic drop in viscosity, both types of 

mobility in the form of DT and DR will increase in a similar fashion.  
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Even though this equation holds true for many fluids, supercooled fluids close to the glass 

transition do not have a constant DT /DR value. Even though both translation and rotation are a 

result of similar physical parameters, they respond very differently when approaching the glass 

transition. This discrepancy suggests that we cannot think of supercooled liquids as simple 

Newtonian fluids, and that perhaps supercooled particles or molecules have intrinsically 

different diffusion traits. Most previous studies on this topic have found that molecules tend to 

translate faster than they rotate on approaching the glass transition (Chang et al. 1994; 

Debenedetti and Stillinger 2001) even though some have seen the opposite effect (Holz et al. 

1996).  

The second part of the thesis studies this behavior in a new hard sphere model system. I built a 

granular shaker experiment to see how small three-disk clusters (disks~0.5cm in diameter) 

translate and rotate through a sea of particles at different area fractions (densities) of particles. 

The rotation of the trimer slows down more than the translation. This is described as a 

decoupling of the rotational and translational diffusions in this system, which is similar to what 

has been seen in previous studies (Chang et al. 1994; Debenedetti and Stillinger 2001).  

1.4 Particle Tracking 

Image analysis is a useful tool that allows us to study the underlying dynamics of the system by 

tracking the motion of individual particles in a colloid (Habdas and Weeks 2002) or a granular 

system of particles. I used IDL (interactive data language) to analyze the raw data for both of 

my experiments. The beauty of IDL particle tracking is that it allows us to track the motion of 

hundreds of particles at the same time (Crocker and Grier 1996). The particle centers are found 

by computing the brightness-weighted centroid of individual particles and their position can 

then be determined quite accurately. There are limitations of this technique, such as noise in 
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the original data or the number of pixels of particles, but the optical resolution of the 

microscopes are impressive, at about 200 nm for a 100x objective that we would use to study 

colloids (Habdas and Weeks 2002).  

Particle tracking allows us to extract useful information and find patterns in the mobility of 

particles in the system. We calculate the mean square displacement (MSD) of the particles to 

obtain an average mobility of the particle over some elapsed time. 

         [ (    )   ( )]             (1.2) 

Equation 1.2 shows the definition for the MSD, which we then plot on a log-log plot and vs. lag 

time. The slope of a log-log plot should be 1 for diffusive behavior. We can then extract the 

diffusion coefficient for a sample from the slope of a lin-lin plot (linear axes). This slope on a 

lin-lin plot is equal to 2nD, where n is the number of dimensions (2 or 3) of the data. 

Since we had a binary mixture of particles in our colloids, tracking the smaller 1μm particles  

accurately for our data analysis was diffcult because they were diffusing really fast. However, 

the data we obtained by tracking the large particles provides us with interesting confinement 

results.  
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Chapter 2 

 

Confinement of Colloidal 

Suspensions in Cylindrical 

Geometries  

 

2.1 Experimental Details 

Colloids have proven to be effective models that mimic real hard-sphere systems, such as the 

packing of atoms. A hard-sphere system means that the particles in colloids do not interact with 

one another beyond their radius and are infinitely repulsive at contact [Alder et al. 1970; 

Woodcock 1981; Speedy 1998]. Colloidal particles can arrange themselves in different ways to 

form liquids, glasses and crystals, which make them an ideal system to study phase transitions 

(Habdas and Weeks 2002). These particles are designed to be small enough to still undergo 

random Brownian motion and exhibit diffusive behavior like atoms and molecules. However, 
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they are still large enough to be imaged using video microscopy, which allows us to extract 

valuable information about the particle dynamics underlying the system (Prasad et al. 2007).  

The single parameter that affects phase behavior in colloids is the volume fraction φ, as shown 

in Eq. 2.1, which is a non-dimensional number related to the number density n (n=N/V with N 

as the number of particles and V as the total volume). When φ is close to zero, the dilute 

system will behave like a gas and as you increase φ, the system begins to behave like a liquid 

and/or glass.  

  
 

 
   

 

 
                (   ) 

The colloids used in this experiment consisted of poly(methyl methacrylate) (PMMA) spheres 

coated with a polymer brush layer that sterically stabilizes the particles, preventing them from 

aggregating (Antl et al. 1986).  We use a binary colloidal suspension with particles of two 

different radii, 1.08 µm and 0.532 µm, to avoid crystallization in the sample, as that would 

hinder the random Brownian motion we are interested in studying. The particles are usually 

made of long polymer chains that form tight coils in an immiscible liquid and are fluorescently 

dyed during or after synthesis using rhodamine, which emits light of a different wavelength 

after absorbing light of a particular wavelength.  

It is important to remove the effects of gravity in a colloidal suspension by density matching the 

colloid with the surrounding fluid. The particles float in a 15% cyclohexyl bromide and 85% 

decahydronaphthalene (decalin) mixture by percentage weight to achieve the desired density 

matching. The benefit of this particle solvent mixture is that it allows for density matching, 

which means that gravity does not affect the mobility of particles. The solvent is also refractive 
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index matched, which allows us to use light microscopy to observe the particles in motion 

without distorting the image. 

The goal of the experiment was to confine the colloidal suspension inside a cylindrical 

geometry, as shown in Fig. 2.1(b), and we achieved this by filling the narrowest end of a glass 

capillary tube as shown in Fig 2.1(a). The capillary tip has slight slope of 1%, and the slight 

taper does not seem to affect our overall results.  

 

 

Figure 2.1: Schematic diagram of experimental confinement geometry (a) Image of a narrow 
capillary glass tip used for the confinement experiment. (b) Colloid confined in a cylindrical 
geometry. (c) Cross-section of the capillary tip containing colloid.  

The capillary tip was made using an automated pipette puller. The end of the capillary tip was 

cut off by making a slight incision using a scoring tile and then snapping off the large end, while 

ensuring not to break the thin end of the capillary tube. The shortened capillary tube was then 

dipped into a vial of binary colloidal suspension for 20 seconds or so, quickly transferred to a 

microscope slide and glued on by flowing glue over the narrow end of the tube so the open-end 

tip would be sealed with a thin layer of glue. The colloid travels up the capillary tip due to the 

(a) 

(b) (c) 

1mm 

Microscope slide  

UV Glue  

Glass boundary  
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capillary force. We use quick drying UV glue to glue the tip to the slide and a schematic cross-

section in Fig. 2.1 (c) shows a thin layer of glue covering the tip all around. 

 Microscopy is a popular way of imaging colloids because it is easy to use and cost efficient 

(Prasad et al. 2007). We wish to overcome the difficulties posed by multiple scattering or low 

contrast images from various other forms of microscopy and use laser scanning confocal 

microscopy (LSCM) to obtain clean data. Confocal microscopy illuminates individual points in the 

sample and rejects the out of focus light. Laser light hits a fluorescent sample, excites the 

fluorophores to emit a different color light, passes through a pinhole to remove the out-of-focus 

light and then is measured by a detector, such as a photomultiplier tube as shown in Fig. 2.2. 

Individual pixels of data are recorded through the sample and then reconstructed to form 2D 

slices cutting through the sample. All the 2D slices are merged to form a 3D image of the 

sample chamber. Being able to create 3D images makes confocal microscopy a powerful tool for 

studying particle dynamics in the system.  
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Figure 2.2: Schematic diagram of a conventional confocal microscope.  

I imaged different portions of the capillary tube filled with a sample of constant volume fraction 

φ. I also prepared different tubes with different colloidal suspensions to obtain a range of φ’s. 

The goal was to obtain data from as many samples of different φ’s as possible and capture data 

from a various diameters of the capillary tube for a particular φ.    

Confocal microscopy allows us to capture individual images like the one shown in Fig. 2.3 and 

then render three-dimensional images of the sample. Fig. 2.3 shows an image of a binary 

mixture with particles of two different diameters confined in a capillary tip, and all the data 
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analyzed in this thesis looked just like this data shown.

 

Figure 2.3: Confocal image of a confined binary colloidal suspension inside a capillary tip. The 
scale bar is 10µm.  

As the confocal microscope scans through the sample chamber, it takes snapshots at different 

heights of the sample, which leads to creation of a 3D image of the entire sample chamber 

(Prasad et al. 2007). In order to illustrate what a 3D image would look like, a 3D rendered 

image made using Pixar imaging software of the dataset is shown in Fig. 2.4.  
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Figure 2.4: 3D rendering of a confocal stack of images shows the cylindrical confinement of the 
sample. 

Each scan takes about 2-3 seconds, and I use the confocal to record 400 of these individual 3D 

stacks to create essentially a 3D movie of the data for an extended period of time. The 

advantage of this imaging technique is that each particle can be observed in 3D over short time 

scales, which allows us to accurately track the location of the particles over time.  
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2.2 Results 

 

Figure 2.5: Range of datasets used in this thesis with radius of tubes plotted as a function of 
volume fraction φ, the colors represent the average mean square displacement, which will be 
discussed later.  

Figure 2.5 shows the range of data obtained from this experiment and discussed in this thesis. 

The y axis plots the radii of the cylinders in µm and the volume fraction φ is plotted along the x 

axis. The colors on the plots represented average mobility for the particles, which I will describe 

in more depth shortly. Figure 2.5 simply shows that our data contains a range of volume 

fractions and radii, and the goal is to find trends in particle behavior is this diverse collection of 

data. Since the motivation behind the experiment is to observe how particles act in confined 

places, looking at how far all the particles move over the same timescale becomes important 

information for us. We know from previous studies that confinement can cause particles to slow 
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down significantly (Nugent et al. 2007), and we want to see if this happens in my 2D 

confinement system, which is a cylinder in this experiment. All the data analysis is done using 

IDL software, which is a powerful tool that allows us to analyze the mobility of every single 

particle in our images.  

Since we want to study Brownian motion in mote depth, consider studying a diffusing particle’s 

motion in the x-direction; since the particle has an equal probability of moving to the left or 

right, the mean displacement of the particle will be zero (Weeks 2010). This will be true for all 

the particles in the sample, which makes <x>, the mean displacement for all particles, zero as 

well. However, the mean square displacement (MSD) for the particles will not be zero, and is 

defined by equation 1.2 in chapter 1. In dilute suspensions, the mean square distance is as 

follows: 

〈   〉               (   ) 

In Equation 2.1, D is the diffusion constant, given by the Stokes-Einstein-Sutherland formula for 

a sphere of radius  : 

  
   

    
     (2.2) 

where η is the liquid viscosity (Einstein 1905; Sutherland 1905). When D is larger, the motion of 

particles is faster. We use MSD curves to analyze particle mobility and they give us valuable 

insight into what the dynamics are at the molecular scale. Such a MSD plot is shown in Fig. 2.6, 

where the MSD for three different datasets of similar radii and different ϕ are plotted on the 

same axes to allow for easier comparison. The green line represents data from least dense 

cylinder, and the blue and purple lines represent data from denser cylinders. The green line is 

further up than the others, which means that the MSD plotted on the y-axis is larger for the 
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green line, and the particles are moving faster in that sample than they are in any other 

samples. These MSD’s are saying that the particles are moving slower as the ϕ increases and 

the sample becomes denser.  

  

Figure 2.6: Mean square displacement plotted as a function of lag time. The dashed line is there 
to guide the eye and has a slope of 1, which signifies regular diffusion in a liquid. The ϕ’s and 
radii of the tubes are as follows: green- ϕ =22.6% and radius=11.85μm, blue- ϕ =55.3% and 
radius=9.88μm, green- ϕ =64.1% and radius=12.08μm. 

MSD curves are really useful for data analysis, and we will see more of them throughout the 

thesis. We can go ahead and extract other useful values from the MSD curves. To get a better 

sense of what the average mobility is like, we can use IDL to calculate the average mobility of 

the particles after 30 seconds from an MSD curve (or any amount of time we want) and then 

plot that against different parameters. Figure 2.7 is plotting the average mobility of particles as 

a function of volume fraction they are in. The points on the plot show a downward trend 

Φ = 22.6%, radius = 11.85 µm 

Φ = 55.3%, radius = 9.88 µm 

 

Φ = 64.1%, radius = 12.08 µm 
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towards the right, suggesting that as the volume fraction is increased, the particles slow down 

on average. The colors on the plot represent the size of the tube, and the dark blue points 

represent the smallest tubes. The dark blue points are relatively lower than the other data 

points, hinting that perhaps the particles are slower in smaller spaces. 

 

Figure 2.7: Average mobility plotted as a function of volume fraction. The colors represent the 
tube radius. 

We can then go ahead and plot the average mobility as a function of tube size in µm as shown 

in Fig. 2.8, where the colors represent the volume fractions of the samples. There is a 

downward trend of the data towards the left, suggesting that particles move slower when inside 

a smaller tube. The blue points are very low volume fractions, and have a much higher overall 

mobility compared to the other denser samples. The important point to note here is that even 

though the volume fraction is slightly different for these samples, there is a clear downward 

trend in the data points. 
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Figure 2.8: Average mobility plotted as a function of tube radius. The colors represent volume 
fraction.  

Even though samples are showing an overall slowing down in mobility, thus reaffirming that 

approaching the glass transition slows down the average mobility of particles, we want to delve 

deeper because what we are really interested in is how the dimensions of the system affects 

mobility. Since we have a cylindrical geometry, we want to see what our specific cylindrical 

geometry does to mobility. We therefore split up the MSD into three different components, as 

shown in Fig. 2.9, and we plot these as a function of distance from the boundary of 

confinement, because we suspect that the components are affected differently based on how 

far away the particles are from the wall.   

The red arrow in Fig. 2.9 shows the axial mobility<Δrz
2> of the particles, which is the mobility 

up and down the tube. The green line indicates the radial mobility <ΔrS
2>, which means the 

particles are moving away from and towards the boundary of confinement. The blue curved 
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arrow is for angular mobility <Δrθ
2>, which measures how much particles are moving along the 

curved direction of the cylinder. 

 

Figure 2.9: Schematic diagram of all the MSD components in a cylindrical geometry. Red is the 
AXIAL MSD: <Δrz

2>, Green is the RADIAL MSD: <ΔrS
2>, Blue is the ANGULAR MSD: <Δrθ

2>. 

Now that we have definitions for three different components of mobility, we can begin to look 

at those different components. Figure 2.10(b) shows a plot of number density n(r) as a function 

of distance from the confinement boundary for a tube of radius 19.8µm and ϕ=51.4%. Close to 

the center of the tube, the interior number density is constant at around 0.85µm-3, which is 

towards the right side on Fig. 2.10(b). When s is about 0.5 μm, there is a small peak in the 

number density, and moving further away from the wall causes the peaks to get smaller. There 

are 4 evenly spread out peaks or bumps, suggesting four layers of particles having formed on 

approaching the boundary. The distance between the local minima of the number density is 

about 2.3 µm, which suggests that the particles are residing in monolayers, as the larger 

particles in the binary sample are 2 µm in diameter. The three components of the mean-square 

displacement of particles for that same tube are plotted in Figure 2.10(a) as a function of 

distance from the wall of confinement to the center of the tube, and you can see that they all 
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Figure 2.10: (a) Radial (rs), angular(rθ), and axial(rz) components of mean square displacement 
(MSD) plotted as a function of distance from the center of the tube to the boundary of 
confinement; The radius of the tube is 19.8µm and ϕ= 51.4%. (b) Number density, n(r), 
plotted as a function of distance from the center of the tube to the boundary of confinement. 
The vertical lines correspond to the local minima of the number density, and the spacing 
between the vertical lines is about 2.3µm. 

increase in a similar fashion as you move away the wall of confinement. The green and blue 

lines represent the radial and angular components of MSD respectively, and they both line up 

well. There are no significant peaks or dips in these forms of mobility, which means that the 

particles are able to easily move away from and towards the boundary and with a layer of 
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particle in the angular direction inside a large tube as this. The red line represents the axial 

MSD and is slower than the other two components and also shows more distinct jumps than the 

other two components. This means that the particles are moving slower when they are moving 

within and along a layer of particles inside the cylinder. 

This reduced axial mobility is more pronounced and shows clear dips the closer you get to the 

walls and is a result of the layering of particles in that region. It is interesting to note that the 

peaks in n(r) in figure 2.10(b) suggest layers of particles that correspond directly to dips in axial 

mobility for the particles in figure 2.10(a). As you move closer to the boundary, the layers 

become more distinct with the n(r) showing sharper peaks, and the particles show a marked 

increase in mobility at those peaks. When you look at this phenomenon from a particle’s point 

of view, a particle is moving along the wall and suddenly finds itself within a layer. The particle 

is content and does not have the desire to leave the comforts of residing in a layer. This is what 

causes a drop in axial mobility for the particles because they like to move within layers.  

Figure 2.11 shows the cross-section of the cylinder, and the particles are seen to reside in 

distinct layers. The layers are especially prominent closer to the walls and become less clear as 

you move closer to the center of the tube, which is confirming the ideas about reduced mobility 

due to layering near the boundary.  
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Figure 2.11: Cross-section of tube, layering of particles inside the tube along the walls. The 
radius of the tube is 19.8µm and ϕ= 51.4%. 

Fig. 2.12 is a replica of Fig. 2.10, but the data is from a much smaller tube of radius 7.09 µm. 

Figure 2.12 (a) plots the MSD components of colloidal particles in the smaller tube, and they all 

speed up as you move away from the boundary, but unlike in the previous plot, there are 

distinct fluctuations in the mobility of particles in the cylinder for all MSD components as you 

their distance from the wall. The radial mobility is slower than the other two components, and 

the jumps in the green line for radial mobility are more pronounced than in the other lines, 

which suggest that the particles find it difficult to move away from and towards the wall. The 

10 µm 
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visible fluctuations in the axial and radial components suggest that the smaller radius of the 

tube causes mobility both within the layers and between layers to become challenging as 

between layers because they like to stay in layers for the most part. 

 

Figure 2.12: (a) Radial (rs), angular(rθ), and axial(rz) components of mean square displacement 

(MSD) plotted as a function of distance from the center of the tube to the boundary of 

confinement. The radius of the tube is 7.09µm and ϕ= 43%. (b) Number density, n(s), plotted 

as a function of distance from the center of the tube to the boundary of confinement.  
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The layering of particles is much more pronounced in a smaller tube, as shown in Fig. 2.13, and 

this shows that a smaller confined cylinder makes it much harder for the particles to move 

overall. Perhaps the size of the tube influences the curvature of the walls, and the increased 

curvature affects how the particles are moving. 

 

Figure: 2.13: Cross-section of tube, layering of particles inside the tube along the walls. The 
radius of the tube is 7.09µm and ϕ= 43%. 

2 µm 
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Figure 2.14: Mobility gradients from five different data sets with similar tube radii (R = 
16.4±1.0μm). The y axis plots the average mobility for a 30 second lag time. The volume 
fractions from top to bottom are 0.25, 0.46, 0.49, 0.50, and 0.39.  

So we can now move on to looking at the average mobility of different samples on the same 

plot in more depth and with respect to the distance from the wall. Fig. 2.14 is plotting the 

average mobility as a function of distance from the wall in order to understand better how the 

overall mobility changes with density of the sample. The data shown in Fig. 2.14 comes from a 

series of datasets with a much lower density and as you move from the top to the bottom in the 

series of lines in Fig. 2.14, the ϕ of the samples is increasing except for the very bottom curve 

with ϕ of 0.39. As you move along the lines from top to bottom, the curves are showing 

reduced mobility as the volume fraction increases each time. We can say that the plateau value 

is decreasing with increasing volume fraction ϕ and a constant radius. What this means is that 

as you confine the samples at higher volume fractions in the same radius, the particles are 
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slowing down correspondingly. However, the bottom line of ϕ= 0.39 shows that the experiment 

is not perfect, even though we are seeing strong trends in the data.   

The volume fraction for the samples is calculated by counting the number of large particles in 

the cylinder, and it is likely that there is a large number of small particles in the φ= 0.39 data, 

and so the effective volume fraction is actually much larger than the calculated volume fraction. 

Also, different samples prepared from the same binary colloid may fill tubes differently 

depending on strain rates and other factors, meaning that even though the exact same colloids 

are used for an experiment, the volume fraction may be significantly different.  

Figure 2.15: Mobility gradients from four different data sets with similar volume fractions (Φ = 
0.396±0.020). The R values are 13.4μm, 7.5μm, 17.1μm and 7.8μm and their Φ’s are 0.42, 
0.38, 0.39, and 0.40 respectively. 

We then want to see how the average mobility changes when you change the size of the 

cylinder. In Fig. 2.15, the four lines plot data with similar ϕ values and different tube radii. The 
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most striking feature of this figure is that there is no clear trend in the data at all. The data 

from the tubes of radii 7.5μm and 7.8μm have volume fractions of 0.38 and 0.40 respectively, 

so we would not expect the mobility to be too different, but in reality they are quite different. 

Also, the largest tube of 17.1μm has a slower mobility than the 7.5μm, which does not give us 

a clear picture of what confinement is doing to the particles.  

Now that we have seen how moblity changes with layers, density and components in different 

samples, this is a good time to take a step back and think about why we are studying this one 

more time. The big picture question this thesis is trying to answer is “what does confinement 

do?” We want to know how the confinement effect actually changes what is happening inside 

the cylindrical geometry. The figures shown until this point paint an interesting yet unclear 

picture of the confinement effect, and we want to understand those ideas much better. We do 

this by fitting our data to a functional form to shed more light on the behavior of the data. 

Studies have used functions to fit relaxation time (Scheidler, 2002), but we are interested in 

how mobility affects our system, and we are going to use mobilty as the the core of our 

argument. We want to understand the mobilty of the particles in three different ways, and we 

do so by using a function that has three fitting parameters that we can use for our data. We 

use the following function for this purpose: 

    [      ( 
 

 
)  ]     (   ) 

In equation above, s represents the distance from the boundary of confinement. The other 

parameters in the fuction explain different aspects of mobility. λ is a length scale and  tells us 

how close you have to be from the confinement boundary for the particle to feel the effects of 

the boundary. C shows how fast particles are moving far away from the boundary, which is the 

bulk-like mobility for the sample. I will explain later how C seems to change with the radius of 
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the tube, which is why we can think of C as a plateau. β is a measure of how important of a 

role the confinement boundary plays in influencing mobility and has no units.  

  

Figure 2.16: Exponential fit to mobility.This data corresponds to a cylinder of radius 20.91μm 
and ϕ of 0.51. Here the mobility has been subtracted from the plateau value C, and plotted lin-
lin (main plot) and log-lin (inset). The circles are the mobility, the line is the fit using 
C=1.08μm, A=1.036μm, λ = 2.16μm. 

We want to be able to fit the mobility of the particles as function of s using the formula in Eq. 

2.3. Figure 2.16 simply shows that the mobility of the particles can be fitted to an exponential 

function on a lin-lin plot. Here the mobility has been subtracted from the plateau value C, and 

plotted on a lin-lin plot. We then replot the data on a log-lin plot as shown in the inset of Fig 

2.16 and we can see that the fit seems to be working well, and the data looks like it has an 

exponental form. The decay length λ of 2.16 µm tells us how far away you have to go before 

the particles forget that there is a boundary nearby. Figure 2.1 6is simply trying to understand if 
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we can use the function in Eqn. 2.3 to fit our data, and the function seems to fit our data to suit 

our needs. 

 

Figure 2.17: Plateau value C minus the mobilty plotted as a function of distance from the 
boundary of confinement for different values of phi as indicated in the legend. 

Even though the function seems to be appropriate, more analysis is needed to draw significant 

conclusions from the data. Fig. 2.17 replots the data from Fig. 2.14 to show a different aspect 

of the information. Here the mobility has been subtracted from the plateau value C, and plotted 

on a semilog plot, so these should be straight lines if we are seeing exponential decay. For 

comparison, the black circles represent the exponential decay with a length of 2.3μm and was 

chosen to be close to the decay lengths determined by individual fits of the data. What this 

means is that we are seeing reasonably good fits to our data, even though it is not perfect by 

any measure. 
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Figure 2.18: Values of the fitting constants plotted as a function of ϕ. The size of each circle is 
proportional to the tube radius, so the bigger circles represent bigger tubes.  

Since we know that we can fit our data to Eqn. 2.3, we want to go ahead and plot the different 

parameters in the equation to see how they behave in our data. We do that in Figure 2.18 and 
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the circles’ radii indicate the width of the tube the colloids are in, and the larger the circles on 

the plot, the bigger the tubes are. Fig. 2.18 at the top is plotting the plateau C as a function of 

volume fraction of large particles in the sample. As the volume fraction grows, the plateau C 

decreases, so that means that the particles are moving much slower even though they are far 

away from the boundary. C decreases with ϕ as we expect since C relates to the bulk MSD, 

which should get smaller as the tube gets smaller. In the middle plot of Fig. 2.18, β is 

somewhat decreasing with an increasing ϕ, which means that as the ϕ grows, the influence of 

the boundary on particle mobility decreases, which is a rather intriguing find. The length scale λ 

is at about 2.5μm, with perhaps a slight upturn as volume fraction is increased.  

Fig. 2.19 plots the same parameters as Fig. 2.18, but plots them as a function of the tube 

radius to see if we can see something interesting happening. The size of the circles represent 

the volume fraction of the colloids, where a bigger circle represents a larger volume fraction. C 

is is not constant as fuction of tube radius and shows fluctions and a small upward trend. This 

behavior is unexpected, because C is supposed to measure the mobilty of particles far away 

from the boundary in a bulk sample, and should not depend on the tube radius at all. Since C 

changes as a function of tube radius, C can be best described as a plateau that is not really 

exhibiting bulk-like behavior. β increases slightly with the tube radius, so as the tube gets 

larger, the boundary might have larger influence on mobility of particles. λ decreases as the 

tube gets larger, so you have to be closer to the boundary for the particles to feel the effects of 

the boundary with larger tubes. However, all of these trends in the data are still up for 

discussion as we have yet to fully understand what all of this means. 
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Figure 2.19: Values of the fitting constants, as a functio of R. The size of each circle is 
proportional to ϕ, so the bigger the size of the circle, the larger the  ϕ value.  
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2.3 Conclusion 

This experiment provided us with interesting ideas that we have not seen in previous studies on 

confinement. When we separated the MSD curves of different datasets into three components, 

all three components slowed down dramatically on getting closer to the boundary. In larger 

tubes, the radial and angular components line up well and the axial component was visibly 

slower overall and shows pronouced dips closer to the wall. The dips related to particles 

forming layers along the boundary, which also happened in smaller tubes. However, in the 

smaller tube, we saw the layers forming closer to the center of the tube, which greatly affected 

all three components of the MSD; in order for a particle to move a small step in any direction, 

many particles must reorganize within and between the closely packed layers, causing larger 

fluctuations in their MSD components, especially when the particles are moving between layers. 

This proves that confinement truly does change how glassy materials behave in interesting 

ways. 

We then used an exponential fit to further characterize the mobility of the particles. We found 

that when the volume fraction grows, the “bulk” mobility decreases, the boundary becomes less 

important in affecting mobility, but the particles further away from the boundary feel the effects 

of confinement more. Examining how these parameters change with volume fraction revealed 

hints of trends: when we increased the volume fraction of the samples, the plateau value 

increased, the boundary had a more pronounced effect on the mobilty and the particles far 

away were feeling the effects of the boundary more.  As the tube radius grows, the boundary 

becomes more important in affecting the overall mobility of particles and the particles must be 

closer to the boundary to feel its effects. However, the bulk mobility increases with the tube 
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radius, which was not expected, so we began to think of this parameter as a plateau instead of 

as the bulk.  

This experiment did come with its fair share of challenges along the way. It was very difficult 

for us to confine samples of higher densities in small tubes, so we resorted to using lower 

volume fractions, which did eventually produce interesting results. The results from this 

cylindrical confinement experiment shed light on the complexities of the glass transition and 

make clear that understanding the behavior of glassy materials is not as simple as black or 

white, but there is plenty of gray in the story. We discovered that density of the confined 

samples, distance of the particles from the boundary and the radius of the confinement 

geometry all play important roles in determining glassiness in a system. All in all, we were 

successfully able to show that the dimensions of confinenment definitely affect how the 

particles behave in these spaces, which was the question we were trying to answer from the 

beginning.  
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Chapter 3 

 

Decoupling of Rotational and 

Translational Diffusion in a 2D 

Granular Experiment 

 

3.1 Experimental Details 

Figure 3.1 shows the basic idea behind this experiment. I wanted to two-dimensionally study a 

cluster of three particles (also known as a trimer) in a sea of surrounding particles where the 

density of the neighboring particles could be altered at will. The choice of the tracer shape was 
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rather arbitrary, and mainly because we realized that this shape would be easier to track using 

IDL initially than other more complicated shapes such as hexamers, etc.  

 

Figure 3.1: Diagram of the basic experimental idea.  

This experiment is a 2D granular experiment that consists of macroscopic particles that are 

much larger than 1μm (so they are not affected by thermal fluctuations) and undergo a loss of 

energy when the particles collide. Granular systems are a good model system for us because 

we can induce a glass transition without having to change the temperature. A granular system 

can undergo a glass transition by simply changing the density of the system, like was done for 

colloids in the last chapter, and the amount of energy entering the system.  

In this experiment, I used a shaker to input energy into a bed of particles and made them 

perform random motion in a 2D plane. The trimers I made for the system consisted of three 

delrin disks (made by McMaster-Carr) glued together as shown in figure 3.2. The black dots on 

the particles are for particle tracking purposes; as the particles are all white, the black dots 

contrast the background and can be identified by the software. 

re 
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Figure 3.2: Image of a cluster of three delrin disks of diameter 0.64cm, as indicated by the red 
arrow, glued together to form a trimer. The trimer is surrounded by a bed of delrin disks of 
diameter 0.64cm and 0.56cm.  

The trimer was place in a 15 cm-wide petri dish containing about 500 particles of two different 

sizes (0.64 cm and 0.56 cm). There are several steps that were taken to minimize the effects of 

crystallization because that would not accurately mimic the glass transition. This two-particle 

size system (also known as a binary system) and a size ratio of close to 1.5 (1.33 in this 

experiment) reduces the chances of the particles crystallizing (Desmond et al. 2009). The 

number ratio of small to large particles is also at 1.5, so at the highest area fraction of the 

system, there are 300 small particles and 200 large particles. This binary system is similar to 

the system used in the previous experiment in chapter 2.    
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Figure 3.3: Overhead view of large petri dish containing the trimer and surrounding particles. 
The dish is 15 cm wide.  

I used a 14-inch loudspeaker to act as the shaker and had it connected to a function generator. 

The input was a regular sine wave from a function generator (Agilent 33220A 20 MHz Function/ 

Arbitrary Waveform Generator) and the maximum acceleration of the setup was 2g, with g 

being the acceleration due to gravity. The shaker was mounted on a three-legged platform, 

which enabled me to level the dish on the loudspeaker with a digital level as accurately as 

possible. It was important to level the dish to allow the particles to be spread out evenly across 

the dish and allow for more even shaking. 

The dish was attached to the loudspeaker by a cork ring about 10 cm in diameter, with silly 

putty providing the adhesion between the cork ring and loudspeaker at the bottom and the cork 

ring and dish at the top. Silly putty was used because it had a sticky yet stable texture to it and 

was readily available. Other adhesive materials would have worked well for this purpose too.  
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Figure 3.4: The experimental setup. The dish of particles is attached to the loudspeaker with a 
cork ring and silly putty. The loudspeaker is mounted on a custom made platform with 3 
support stands to enable leveling of the system. 

Data was acquired by mounting a camera (Panasonic Digital System Camera 5100) with a 60 

mm lens (AF MICRO NIKKOR, 1:2.8 D) to a beam above the shaker system and the image 

series were saved as tiffstacks to a computer using Open Box software. Most datasets 

contained 2000 or 4000 images in a movie, and were taken at 3.3 frames per second, which 
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was fast enough that the particles could be tracked relatively easily using IDL and at the same 

time still allowed me to capture datasets over extended periods of time. The tiff datasets were 

then tracked using IDL tracking software with customized code to track particle clusters to 

extract their rotation and translation. 

Figure 3.5: Images of datasets at four different area fractions φ. 

The volume fractions used in Chapter 3 are accurate to a great extent because we control the 

exact number of particles that go into the dish for every experiment. However, since the dish is 

not being shaken uniformly throughout the entire region, the lower area fractions calculated are 

not exactly accurate, as there are pockets of more dense and less dense regions through the 

dish. Immobile particles tend to form a ring around the edge of the dish for lower area fractions 

starting at the calculated area fractions of around 58% or so. I looked at these individual 
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datasets and counted the number of particles in a small (5cm by 5cm) region area directly 

surrounding the cluster to check for the effective area fraction that is affecting the cluster. The 

effective area fraction directly surrounding the cluster at the lower range of calculated area 

fractions is quite different. A calculated area fraction of 57% seems to have an effective area 

fraction of about 38%, for example. However, since we have not yet started tracking all the 

particles surrounding a cluster, we cannot accurately determine the area fraction of particles 

directly influencing the cluster’s mobility. But since this is a proof of principle experiment, I think 

we can allow for the area fraction to be a reasonable estimate. We are using the area fraction 

as an indicator of how many particles are in the dish to see how densly packed they are, so that 

will be enough information for us for our current purposes. However, in the future, every 

particle should be tracked in the dish and only the mobile particles surrounding a cluster should 

be used to calculate area fraction of the dish. The Table 3.1 shows some area fractions I 

counted the particles for in a 5cm by 5cm region around a cluster.  

Table 3.1: Calculated and effective area fractions for datasets. 

Data name Calculated area fraction Effective area fraction 

13_2 
0.57 0.38 

13_3 
0.57 0.34 

13_4 
0.57 0.34 

11_1 
0.60 0.44 

11_2 
0.60 0.50 

11_3 
0.60 0.45 

11_4 
0.60 0.47 

10_1 
0.61 0.46 

10_2 
0.61 0.44 
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3.2 Results 

 

Figure 3.6: Trajectories of the center of mass for trimer at different area fractions showing cage 
breaks.   
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Each trimer’s center of mass can be tracked to produce trajectories as the ones shown in Fig. 

3.6, which shows the particle trajectory for the trimer diffusing in three different area fractions. 

The densest sample (φ = 68%) shows the most limited mobility as the particle seems to be 

restricted to moving around in a small region. When you look more closely at the trimer 

trajectory, you see that the trajectory maps out into two distinct clumps. This phenomenon can 

be described as “cage breaking” (Hunter and Weeks 2012). The cluster is initially trapped in a 

local cage and then jumps to a new spot due to cage rearrangements.   

The cluster becomes “caged” (Schwiezer and Saltzman 2003; Weeks and Weitz 2002) as it gets 

trapped in a small area due to the surrounding particles. Often the wall of particles trapping a 

cluster starts moving a little bit and the cage-breaking particle moves with the wall.  Then the 

wall starts moving because the particles around it start moving, and in order to move at all, all 

the particles have to move cooperatively. The cluster is able to make a jump to a neighboring 

open spot, which is called cage breaking. This idea can be thought of in terms of an energy 

landscape, where the cluster is caging around a local minimum and then relaxing over an 

energy barrier, leading to a cage break (Hunter and Weeks 2012).  

The other two trimer trajectories in Fig. 3.6 are from a datasets with a lower area fraction, and 

the trimer is translating a greater distance in both cases. Close observation reveals the 

existence of cage breaks in these data sets as well, but perhaps not as pronounced as in really 

dense systems. As the area fraction of the system is decreased, the cage breaks become less 

obvious. 
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Figure 3.7: Angular trajectories of the clusters for trimer at different area fractions showing 
angular cage breaks. Dotted boxes indicate cage breaking.  

We then wanted to look at whether or not a system is performing angular cage breaks or not. 

Fig. 3.7 plots the angular cage breaks in the system. The dark blue line shows the densest data 

set and you see one distinct cage jump in the indicated spot. The other two data sets are less 

dense and show angular cage jumps too. 
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Figure 3.8: Mean-square displacement of a trimer in different φ’s over lag time. Φ increases 
when going from red to blue in this order: 0.572, 0.581, 0.595, 0.614, 0.628, 0.636, 0.661, 
0.680, 0.694, 0.713, and 0.727. The dotted line represents diffusive behavior. 

The mean square displacement (MSD) curve plots the mobility of the trimer vs. lag time on a 

log-log plot. When an MSD has a slope of 1, as represented by the dotted line on Fig. 3.8, the 

particles are fully diffusive. Plots with a slope of less than 1 have subdiffusive particles. In Fig. 

3.8, the red datasets have the lowest area fractions of 57% and the dark blue line has an area 

fraction of 73%. The area fraction φ is determined by dividing the total surface area of all the 

particles in the dish by the total area of the dish.  It is clear the slope of the lines decreases 

dramatically as you go from the low area fractions (red) to higher area fractions (blue). The 

particles are undergoing somewhat of a glass transition as there is dramatic slowing down of 

particles are they become more closely packed together.  
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Figure 3.9: Mean-square angular displacement (MSAD) of a trimer in different φ’s over lag time. 
Φ increases when going from red to blue in this order: 0.572, 0.581, 0.595, 0.605, 0.614, 
0.628, 0.636, 0.646, 0.661, 0.680, 0.694, 0.713, and 0.727. The dotted line represents diffusive 
behavior. 

The mean-square angular displacements (MSADs) plotted in Fig. 3.9 show a very similar trend 

to the MSDs, where a higher φ on approaching the glass transition reduces the angular mobility 

of the trimer. Now that we are able to extract the MSDs and MSADs from our data, the next 

step is to obtain the diffusion coefficients from the data and calculate the ratios of the 

translational and rotational diffusion. 

I obtained the diffusion coefficient by fitting a line of slope 1 (which indicates regular Brownian 

motion) to a portion of the MSD or MSAD curve that looks like it has a slope of one. Once this 

fitted line is obtained, the point of intersection with the y axis of the straight fitted line is 

divided by 4 to obtain the translational diffusion coefficient Dt, and the same process applies for 
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the rotational diffusion coefficient DR, but this value is divided by 2 instead of 4. The 48 fitting 

plots for both the MSDs and MSADs are show over the next several pages. 

 

Figure 3.10: Fits made on the MSD plots with φ= 0.68. 
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Figure 3.11: Fits made on the MSD plots with φ= 0.66. 
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Figure 3.12: Fits made on the MSD plots with φ= 0.64. 
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Figure 3.13: Fits made on the MSD plots with φ= 0.61. 
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 Figure 3.14: Fits made on the MSD plots with φ= 0.60. 
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Figure 3.15: Fits made on the MSD plots with φ= 0.57. 
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Figure 3.16: Fits made on the MSAD plots with φ= 0.68. 
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Figure 3.17: Fits made on the MSAD plots with φ= 0.66. 
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Figure 3.18: Fits made on the MSAD plots with φ= 0.64. 
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Figure 3.19: Fits made on the MSAD plots with φ= 0.61. 
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Figure 3.20: Fits made on the MSAD plots with φ= 0.60. 
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Figure 3.21: Fits made on the MSAD plots with φ= 0.57. 

Once the fittings are complete and we obtain the desired DT’s and DR’s, we can then plot the 

ratio of these values to see whether or not the two motions decouple. Figure 3.22 plots the 

ratio of the diffusion coefficients as a function of volume fraction for 24 data sets. Overall, the 

points seem to show a slight upward trend as you move towards the right, which suggests that 

the clusters are exhibiting decoupled motion. If this system were coupled, all the points would 

fall along the red dashed line on Fig. 3.22. 

To see what happens if I were to average the values, I calculated the average ratio for data 

points from the same calculated φ and plotted them in Fig. 3.23. Here, the upward trend seems 
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to be more convincing, but I think we need more data to confirm that the system is fully 

decoupled. The upward trend in these results is promising, because it goes to show that if we 

were able to physically increase the area fraction, which is difficult because more particles do 

not fit on the dish, we could see a more pronounced upward trend in the data.  

 

Figure 3.22: DT/DR for 24 datasets. The red dotted indicates what DT/DR would look like if the 
system were coupling. 



   64 
 

 

Figure 3.23: Averaged for each group of volume fraction. 

 

3.3 Conclusion 

In this experiment, I was successfully able to build a granular shaker system from scratch to 

study the two-dimensional rotational and translational diffusion of granular trimers in a sea of 

binary disks. The goal for this experiment was to see how different the translational and 

rotational components of diffusion changed with the area fraction of the system. I collected 

data in tiff format and used IDL to track and analyze the motions of the diffusing trimers in 

different area fractions. The trimers were undergoing translational cage breaking motion in the 

system and the cage breaks became more obvious as more particles were added to the system 

to increase the area fraction. The trimers were also found to go through cage breaks in their 
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angular motion. The mean square displacement (MSD) and mean square angular displacement 

(MSAD) of the trimers showed a dramatic fall as the area fraction was increased, similar to what 

can be seen in glassy systems approaching the glass transition. The ratio of DT of DR grew as 

area fraction of the system was increased, implying that the particles were translating faster 

than they were rotating, which is an interesting behavior known as decoupling. However, more 

data is needed to fully confirm this idea because noise could be influencing the behavior of the 

cluster. 

Even though this experiment achieved the initial goal we had in mind, we did face some 

experimental difficulties that need to be improved upon. One of the biggest hurdles was 

obtaining a dish of uniformly diffusing particles on the loudspeaker. If you look back at Fig. 3.5, 

you will see a ring of stuck particles on around the edge of the dish with smallest area fraction. 

This was happening because the energy from the shaker was not transmitting uniformly to all 

the particles outside a central ring of particles, with about a 10 cm diameter from the center of 

the dish, which means that the trimer’s diffusion was influenced by its location within the dish. 

This means that none of the area fractions I used above are fully accurate because we do not 

know the effective area fraction immediately surrounding a cluster. Another bigger question to 

consider is whether or not these kinds of experiments are worth doing at all, considering that it 

is nearly impossible to rule out all external sources of noise and error in the system, such as the 

stuck particles in my experiment and the non-uniform distribution of forces through the plate. 

Perhaps the best way to test these hypotheses is by using computer simulations because we 

can actually get our system to be as perfect as possible.  

This experiment was designed to be a “proof of principle” experiment to test whether or not 

rotational and translational diffusions decouple in a very simple system. This experiment 

essentially used a loudspeaker to shake a dish of particles and see hints of the decoupling 



   66 
 

effect, which was an exciting find for us because we were able to replicate the effect with a 

very basic model. This means that we can diversify this experiment to study other particle 

shapes diffusing while surrounded by a variety of different particle types in the future. This 

experiment taught me that interesting phenomena can be repeated in the simplest of 

experiments, and that it is important for us as scientists to take a step back and remove the 

extra fluff surrounding our experiments to prove very fundamental ideas.   
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Chapter 4 

 

Conclusion 

Even though we use “jammed” materials such as glass, plastic or Styrofoam on an everyday 

basis, it is fascinating to realize that we still do not really understand why these materials get 

jammed. Our goal is to understand the jamming transition better, and I did two experiments to 

stretch our understanding of different features of the jamming transition. For the first 

experiment I studied how tiny, micro-sized beads can feel the effects of being confined within a 

never-before-studied cylindrical geometry. Different features of the system such as the number 

density, distance from the boundary and size of the cylinder all intricately weave together to 

affect how the particles move around. For my second experiment, I used a system about 

10,000 times larger than my colloids to study how clusters of particles translate faster than they 

rotate at higher volume fractions. The beauty of this experiment was that it was able to show 

this fascinating decoupling effect in as simple model system of disks being shaken by a speaker. 

Even though the jamming transition is rich in all of its complexity, we can still find new and 

exciting ways to push the envelope on what we know and what we do not know about 

jamming, and both of these experiments are examples of that. 

The confinement experiment had interesting results that are new additions to the landscape of 

confinement studies done with colloids. I saw that confinement sllows down the mobility of 
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particles significantly in my mobility vs. radius plot, and the 2D geometry gives us new 

knowledge about the dynamics underlying confined samples. The layering of particles play an 

important role in controlling the dynamics of the sample, and the size of the tube plays a very 

important role in every experiment.The three different MSD three components slow down 

dramatically on getting closer to the boundary. The axial component is the slowest and peaks 

and dips the most in large tubes, and the fluctuations are closely related to the layers forming 

in the tube. In the smaller tube, the layers form from the center to the wall of the tube, which 

greatly affects all three components of the MSD, especially the radial, meaning that moving 

between layers is most difficult for the particles. All these results show that confinement truly 

does change how glassy materials behave in interesting ways. 

In order to further analyze the data, we used an exponential fit and three new parameters to 

understand the mobility of the particles. These plots showed that ss the tube radius grows, the 

boundary becomes more important in affecting the overall mobility of particles and the particles 

must be closer to the boundary to feel its effects.  Examining how these parameters change 

with volume fraction revealed interesting trends: when volume fraction is increased, the plateau 

value increases, the boundary had a more pronounced effect on the mobilty and the particles 

far away feel the effects of the boundary more.  However, the bulk mobility increases with the 

tube radius, which was not expected, so this parameter is really a plateau instead of a bulk 

value.   

In the second experiment, I built a granular shaker system from scratch to study the two-

dimensional rotational and translational diffusion of granular trimers in a sea of binary disks. 

This experiment was a “proof of principle” experiment to see whether or not rotational and 

translational diffusions decouple in the most simple system we could think of. The trimers were 

undergoing translational and angular cage breaking motion and the translational cage breaks 
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became more visible as the volume fraction was increased. The mean square displacement 

(MSD) and mean square angular displacement (MSAD) of the trimers slowed down greatly with 

a growing area fraction, just like it does in glassy systems. The ratio of DT of DR appeared to 

increase at higher area fractions, implying slower rotation than translation, which is the 

decoupling effect we were looking for. However, more data is needed to fully confirm this idea 

because noise could be influencing the behavior of the cluster. 
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