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Abstract

Potential Energy Surfaces and the Applications to Reaction
Dynamics and Molecular Vibrations

By Chen Qu

The importance of potential energy surface cannot be overemphasized due to the role it
plays in theoretical chemistry. With the potential, the kinetics and dynamics of chemical
reactions can be modeled, and molecular eigenenergies and eigenstates can be calculated,
which could be used to explain molecular spectroscopy.

In this work, the analytical representations of potential energy surfaces for molecules
and clusters such as H +

7 , CH3OH, and formic acid dimer were constructed by fitting to
tens of thousands of scattered ab initio energies. These potential energy surfaces were em-
ployed in subsequent studies of dynamics or spectroscopy. The potential energy surfaces
for hydrogen and methane clathrate hydrates were obtained by many-body expansion
strategy, and the binding energies of (H2)n(H2O)20 and (H2)n(H2O)24 and barrier height
of H2 diffusion in clathrates has been investigated using the many-body potential. The
invariance of potential when permuting the like atoms is incorporated in the analytical
expressions, following the method developed by Braams, Bowman, and co-workers.

Molecular vibrational properties of H +
7 , formic acid dimer and CH4 confined in

clathrate cages have been investigated. Diffusion Monte Carlo calculations were applied
to characterize the vibrational ground state properties, while the vibrational eigenener-
gies and eigenstates were calculated using the vibrational self-consistent and virtual-state
configuration interaction method. The treatment of the large amplitude motion and the
reduction of dimensionality are highlighted in these calculations.

The analytical potential energies were also used in studies of the dynamics of chemical
reactions. Molecular dynamics calculations was performed to simulate the unimolecular
decomposition of methanol to estimate the branching ratio of different product channels.
Similar simulations have been carried out to model the dissociation of vinyl chloride
that produces cold vinylidene, however, using direct “on-the-fly” potential. In addition
to these applications, the use of adiabatic switching method to prepare initial condition
in quasi-classical trajectories has been investigated.
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Chapter 1

Introduction

In chemistry, systems we are interested in all consist of electrons and nuclei. The motions

of electrons and nuclei are governed by the Schrödinger equation, except in extreme

cases. In principle, if we are able to solve the Schrödinger equation exactly, we solve

the mysteries in any chemical processes. Unfortunately, however, even with the rapidly

growing power in computers, solving the Schrödinger equation exactly for systems only

consist of a couple of atoms is still almost impossible. Therefore, various approximations

have to be made to simplify the equation.

The most important approximation made is the Born-Oppenheimer approximation,

which is based on the fact that the mass of an electron is much smaller than that of a

nucleus. Because of the great difference in mass, the fast electrons can almost instanta-

neously adapt to the slow displacement of the nuclei. Therefore, instead of solving the

Schrödinger equation simultaneously for all the electrons and nuclei, we can apply a two-

step approach. The first step is to solve the Schrödinger equation for the electrons at

a set of instantaneous nuclear configurations. This allows us to construct the potential

energy curve of a diatomic molecule, and in general, a potential energy surface (PES)

1



Chapter 1. Introduction 2

for any polyatomic species. The second step is to solve the Schrödinger equation of the

nuclei, using the PES obtained in the first step. In most cases, the Born-Oppenheimer

approximation is exceptionally good, and the research presented in this dissertation is

based on this approximation.

Even with the separation of the electronic and nuclear Schrödinger equation, solving

either one of them is still very challenging. To solve the electronic part, a popular approach

starts from the Hartree-Fock approximation, in which any one electron is assumed to

move in an “average” potential due to all the other electrons. More accurate methods

such as Møllet-Plesset perturbation (MPn), coupled-cluster, and configuration interaction

are all based on the Hartree-Fock theory. Another popular method worth mentioning is

the density functional theory, in which functionals of electron density is used instead

of the traditional wavefunction. These methods for the electronic structure problem are

available in most of the quantum chemistry packages.

Next we consider the Schrödinger equation of the nuclei. When the Born-Oppenheimer

approximation still holds, in principle, the dynamics of any molecule can be revealed if

the time-dependent nuclear Schrödinger equation is solved, and the molecular eigenstates

and eigenenergies can be obtained if the time-independent Schrödinger equation is solved.

The computational cost of solving these problems increases exponentially with increasing

degrees of freedom, and this is the “curse of dimensionality”. (Note that the electronic

problem in fact also suffers from this “curse”.) Many efforts have been made to tackle the

dimensionality problem: in dynamics simulations, the nuclei are often treated as classical

particles that are governed by Newton’s equation of motion, when the nuclear quantum

effect is not significant, and thus greatly reduces the computational cost; in calculations

of the molecular eigenstates, reduced-dimensional models have been proposed.

The research presented in this work basically follows the procedure described above.
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I first perform electronic structure calculations to construct the PES, and then study the

dynamics and molecular vibrations using the PES. This dissertation is structured into

four parts. The first part describes the theories and computational methods I applied in

all my simulations. In Chapter 2, the Born-Oppenheimer approximation is explained in

details, and the method to construct the analytical representation of the PES is presented.

The algorithms and methods used in vibrational calculations and dynamics simulations

are described in Chapter 3 and 4, respectively. The second part emphasizes on the con-

struction of analytical PESs for complex systems. In Chapter 5, I describe the strategy

and the procedures to construct PESs for clathrate hydrates and Chapter 6 focuses on

the application of the clathrate PES to determine energetics such as the binding energy of

H2 molecules with water cages, and the barrier of H2 diffusion in clathrates. In the third

part I present my work on molecular vibrations, with particular emphasis on “floppy”

molecules and reduced-dimensional models. Chapter 7 focuses on the molecular ion H +
7 .

In this study, the vibrational ground state properties and proton exchange were inves-

tigated, and the infrared spectra of H +
7 and D +

7 were calculated. Chapter 8 involves

the calculations of the ground state tunneling splitting and the anharmonic fundamental

frequencies of formic acid dimer, using reduced-dimensionality approaches. In Chapter 9,

I present the calculations of frequency shifts when a methane molecule is confined in dif-

ferent clathrate cages. The last part covers my study on dynamics of gas-phase molecules.

Chapter 10 and 11 describe the unimolecular dissociation of methanol and vinyl chloride

respectively. While in Chapter 12, I investigated the application of adiabatic switching

method for preparing the initial conditions in quasiclassical trajectory calculations.



Part I

Theories and Methods
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Chapter 2

Potential Energy Surface

2.1 Born-Oppenheimer Approximation

In atomic units, the nonrelativistic Hamiltonian for a molecule is:

Ĥ = −1

2

∑
i

∇2
i −

∑
A

1

2MA

∇2
A −

∑
i,A

ZA
riA

+
∑
A<B

ZAZB
rAB

+
∑
i<j

1

rij
, (2.1)

where A,B refer to the nuclei and i, j refer to the electrons; MA and ZA are the mass

and charge of nucleus A. In a more compact notation, the Hamiltonian can be written as

Ĥ = T̂N(R) + T̂e(r) + V̂eN(r,R) + V̂ee(r) + V̂NN(R), (2.2)

where R denotes the set of nuclear coordinates and r is the set of electronic coordinates;

T̂ and V̂ are the kinetic energy and potential operators, respectively.

First we neglect the kinetic energy operator of the nuclei, T̂N(r), because it is more

than three orders of magnitude smaller than T̂e(r). Then according to Born-Oppenheimer

approximation, the electrons can almost instantaneously respond to the nuclei motion,

5
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and we make the term V̂eN(r,R) parametrically depend on R. That is, we can fix the R

at a certain value R0, and solve for the electronic wavefunction Ψ(r;R0):

ĤelΨ(r;R0) = EelΨ(r;R0), (2.3)

where

Ĥel = T̂e(r) + V̂eN(r;R0) + V̂ee(r) + V̂NN(R0). (2.4)

When we repeat this for a set of R0, we obtain the potential energy surface (PES) of the

molecule.

Suppose we have already solved Eq. 2.3 and obtained a set of eigenfunctions Ψn(r;R)

and eigenvalues En(R), i.e.

ĤelΨn(r;R) = En(R)Ψn(r;R). (2.5)

The exact solution of the original Hamiltonian in Eq. 2.2 can always be written in an

infinite expansion

Φ(r,R) =
∑
k

Ψk(r;R)χk(R). (2.6)

Insert this expansion into the original Schrödinger equation, multiply by Ψn(r;R)∗, and

integrate over the electronic coordinates r, we obtain

[
T̂N(R) + En(R)

]
χn(R)−

∑
k

∑
A

[
1

MA

dAnk(R) · ∇A −
1

2MA

DA
nk(R)

]
χk(R) = Eχn(R),

(2.7)

where dAnk(R) = 〈Ψn(r;R)|∇A|Ψk(r;R)〉 and DA
nk(R) = 〈Ψn(r;R)|∇2

A|Ψk(r;R)〉 are

called nonadiabatic couplings. In most cases, the couplings are very small and can be
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safely neglected, and we obtain the following equation for the nuclear wavefunction:

[
T̂N(R) + En(R)

]
χnv(R) = Envχnv(R). (2.8)

The En(R) is the PES and it is a hyper-dimensional function of the nuclear configuration

for polyatomic molecules. With the PES, Eq. 2.8 could then be solved.

2.2 Permutationally Invariant Potential Energy Sur-

face

In principle, we can always solve the electronic Schrödinger Eq. 2.3 “on the fly” at the

desired nuclear configurations when necessary, for example, in ab initio molecular dy-

namics simulations, but these calculations are extremely intensive and would not be

feasible even if a low-level ab initio method were to be applied. A more practical ap-

proach is to obtain the functional representation of the PES. This is still a challenging

problems because the exact analytical function form of the PES is unknown. The PES

can be constructed using interpolation, i.e., the analytical potential agrees with ab initio

energy exactly on any point in the database.1–6 For systems with moderate size, this

becomes more challenging, because the dimensionality of the problem increase so that

simple functions are not able to provide accurate representation. The best strategy we

can apply is that we select a well-behaved mathematical function f(R;C) with a set

of adjustable parameters C to represent the PES. The optimal parameters C can be

determined via least-square process. A set of electronic energies on different configura-

tions {Ri, Vi} (i = 1, · · · , N) is first calculated, and then the parameters are those that

minimize the residual
∑

i(f(Ri;C)− Vi)2. There is extensive literature about obtaining
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the functional representation of the PES (e.g., see Ref. 7 and references therein).

Several function forms of f(R;C) are available, e.g., neural network,8–16 and a polyno-

mial form which is adopted in this work.17–20 The variables in the polynomial are “Morse

variables” yij, which is obtained from the internuclear distances rij via yij = exp(rij/a),

where a is in principle also an adjustable parameter but usually fixed at 2.0 Bohr. The use

of Morse variables instead of simply internuclear distances guarantees that the potential

does not diverge when the molecule dissociates. Therefore, the mathematical function is

f(Ri;C) =
M∑
m=0

Cb

[
N∏
i<j

y
bij
ij

] (
m =

∑
bij

)
, (2.9)

where M is the maximum polynomial order, b stands for the ordered collection of the

exponents bij, Cb are the linear coefficients need to be determined, and N is the number

of atoms.

The use of Morse variables transformed from the internuclear distances ensures that

the potential is invariant with respect to translations and rotations of the molecule. Yet

another symmetry has to be satisfied, that is, the potential has to be invariant with re-

spect to permutations of like atoms. A straightforward way to achieve this permutational

invariance is to replicate the electronic energies to all the equivalent configurations and

fit the polynomial to this expanded dataset. However, a more elegant approach is to use

a mathematical function with the invariance built in. Two techniques developed in our

group will be discussed here. In addition to these two techniques, progresses have been

made recently to incorporate the permutational invariance into neural-network poten-

tials.21,22
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Figure 2.1: Permutation of the two identical H atoms in Ar−H2.

2.2.1 Monomial symmetrization

The general polynomial form is shown in Eq. 2.9, which is not permutationally invariant,

but this is the starting point of monomial symmetrization. Here I just use a simple

triatomic system as an example to illustrate the concept of this method, and then this

method could be generalized to arbitrary molecules.

To begin with, consider the system Ar−H2. For this triatomic system, the expression

of the potential is simply:

V (y) =
M∑

a+b+c=0

Cabcy
a
12y

b
13y

c
23. (2.10)

This expression in general is not permutationally invariant, and to show this, we just

look at the sum of two particular terms C123y12y
2
13y

3
23 + C132y12y

3
13y

2
23, without loss of

generality. Figure 2.1 shows the labels of each atom and all the internuclear distances

(and thus the Morse variables) before and after the permutation. The permutation maps

y13 to y23 and y23 to y13. Therefore the value of the sum after the permutation becomes

C123y
′
12y
′2
13y
′3
23 + C132y

′
12y
′3
13y
′2
23 = C123y12y

2
23y

3
13 + C132y12y

3
23y

2
13. Comparing this with the

original value of the sum before permutation (C123y12y
2
13y

3
23+C132y12y

3
13y

2
23), it’s clear that

they are not equal unless the coefficients C123 and C132 have the same value. Replicating
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and enlarging the dataset can enforce these two coefficients to be equal; however, we can

also use one single coefficient for the two terms and the permutational invariance is built

into the polynomial:

V (y) =
M∑

a+b+c=0

Cabc
[
ya12y

b
13y

c
23 + ya12y

c
13y

b
23

]
. (2.11)

For a general polyatomic molecule, we can find the mappings of all the possible

permutations, and use one coefficient to all the permutationally equivalent monomials.

A general expression of the symmetrized monomials is

V (y) =
M∑
m=0

CbS

[
N∏
i<j

y
bij
ij

] (
m =

∑
bij

)
, (2.12)

where S is the operator that symmetrizes the monomials. When the number of possi-

ble permutations gets larger, finding the equivalent monomials becomes more difficult.

Therefore this approach was implemented and programmed by Xie and Bowman18 in

2010.

2.2.2 Invariant polynomials

A more efficient way to find the invariant polynomials is based on the invariant polynomial

theory. The rigorous mathematical derivation and proof of the theory is provided in Ref.

23. The details are beyond the scope of this work, and are skipped here. According to

the theory, the potential can be expressed as

V (y) =
M∑
d=0

Cabha (p(y)) qb(y), (2.13)
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where p(y) is the vector formed by the primary invariant polynomials and ha is a poly-

nomial of the primary invariants; qb(y) are secondary invariant polynomials, and d is the

polynomial order whose maximum is set to M . For a molecule consists of N atoms, there

are N(N − 1)/2 primary invariant polynomials. The software MAGMA24 is used to find

these primary and secondary invariant polynomials, and they have been implemented in

a fitting library by Braams and Bowman.17

The polynomials generated by the two methods mentioned are numerically equivalent,

but the mathematical expressions are different. Compared to the monomial symmetriza-

tion method, invariant polynomials are generally more efficient to evaluate because of

the factorization, but at the cost of less accessibility of the fitting basis functions. For

example, in some cases we would like to only include selected terms from the complete

polynomial basis, and this can be easily achieved if the polynomial is formed by sym-

metrized monomials, but this could be very difficult if the polynomial is factorized as

the products of primary and secondary invariant polynomials. This will be discussed in

details in the next section. In addition, obtaining the analytically first derivatives from

the unfactorized, monomial symmetrized function is trivial, but the factorization in the

invariant polynomial approach makes the derivation of the analytical first derivatives

very difficult.

2.2.3 Purified fitting basis

The single, global expression Eq. 2.12 or 2.13 is not rigorously separable in fragment

coordinates. Here H2 + CO is used as an example to illustrate this. For simplicity, y1

and y2 are used to represent the Morse variable of the C–O and H–H bond lengths, and

consider the maximum polynomial order of 2. When the distance of the two fragments
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is sufficiently large, all the Morse variables of the intermolecular distances become zero

and vanish, and only the intramolecular Morse variables survive. The potential then can

be expressed as:

V (y1, y2) = 1 + y1 + y2 + y1y2 + y2
1 + y2

2. (2.14)

Consider the energy difference between the fragments with arbitrary configurations and

the fragments at equilibrium, V (y1, y2)− V (y1,e, y2,e), where e means equilibrium. Since

the fragments are separated at large distance, this energy difference should be the same

as the sum of the difference for each individual fragment, i.e., V (y1, y2)− V (y1,e, y2,e) =

V (y1, y2,e) − V (y1,e, y2,e) + V (y1,e, y2) − V (y1,e, y2,e). By inserting Eq. 2.14 in, we can

see that this requires y1y2 = y1y2,e + y1,ey2 − y1,ey2,e, but this is not guaranteed for

arbitrary y1 and y2. In real applications, if we include sufficient fragment configurations

in the dataset, this artificial dependency is very small. However, a more elegant way is

to remove non-separable terms in the polynomial basis. Of course we still need to make

sure that the permutational invariance is not spoiled. If the monomial symmetrization

expression is used, each polynomial is invariant under permutations so it could be safely

removed; however, in primary and secondary invariant polynomial approach, since all

the terms are well factorized into products and the expression is much more compact

than the monomial symmetrization, removing such terms is not trivial. Truhlar and co-

workers implemented this fitting basis purification in their application of the monomial

symmetrization for N4, following the suggestion by Xie and Bowman.25 This approach

was also employed used in a recent potential describing the Ar-HOCO interaction.26
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2.3 Many-body Expansion

For complex systems with large degrees of freedom, the single expression for the potential

becomes so complicated and is almost inapplicable. However, for molecular clusters con-

sist of weakly interacting small molecules, a strategy called many-body expansion could

be applied to construct the PES. This method has been adopted recently to build the

PESs for water, HCl, and mixed HCl-water clusters.27–31

In a molecular cluster, we define the “monomer” as a single molecule, and “dimer” as

the subsystem that consists of two monomers, and so on. The total energy of the cluster

can be decomposed into the sum of one-body, intrinsic two-body, three-body energies,

etc:

V =
∑
i

V
(1)
i +

∑
i<j

V
(2)
i,j +

∑
i<j<k

V
(3)
i,j,k + · · · , (2.15)

where

V
(1)
i = Vi,

V
(2)
i,j = Vi,j − V (1)

i − V (1)
j ,

V
(3)
i,j,k = Vi,j,k − V (2)

i,j − V
(2)
i,k − V

(2)
j,k − V

(1)
i − V (1)

j − V (1)
k

(2.16)

are the one-body, intrinsic two-body and three-body energies, and Vi, Vi,j, Vi,j,k are the

energies of the monomer, dimer, and trimer, respectively. For the system consists of p

monomers, this expansion is rigorous if the summation is up to the intrinsic p-body terms.

However, for weakly interacting monomers, this series decays fast, and convergence can

be achieved with only the first a few terms. For example, the one, two, and three-body

contribute to more than 98% of the total energy in water clusters, so the four-body and

higher-order terms in this expansion usually can be neglected. The monomer, dimer, and

trimer are relatively small systems and single polynomial expressions for these potentials
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are feasible. In this way, the potential of a cluster with arbitrary number of monomers

can be obtained.

2.4 Dipole Moment Surface

In addition to the PES, the same approach can be used to fit the dipole moment surface

(DMS). The dipole moment is a three-dimensional vector, and the expression

~µ(R) =
∑
i

qi(R)~xi (2.17)

is used to represent the dipole, where R denotes the configuration, wi is the effective

charge on the i-th nucleus, and ~xi is the position vector of the i-th nucleus. The effective

charge is a scalar quantity, which can be expressed in the polynomials that are similar

to those used for PESs.

The dipole moment should be invariant under permutations of identical atoms, and to

guarantee this invariance, the charges transform like a covariant: if we exchange identical

nuclei i and j (the configuration transforms from R to R′), the effective charges on these

two nuclei have to satisfy

(qj(R
′), qi(R

′)) = (qi(R), qj(R)) , (2.18)

and the charges on unique atoms are still invariant. Therefore, the same permutationally

invariant polynomials for potentials can be used to represent the effective charge on

unique atoms. On the other hand, the polynomials for identical atoms are different; it

turns out that the permutationally invariant polynomials of a reduced symmetry could

be used here. Consider an AmBnC molecule, the effective charge on atom C is represented
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in polynomial that are invariant with respect to all the m!n! permutations; the charges on

A atoms are expressed using the invariant polynomials for the Am−1BnCD molecule, and

the charges on B atoms use polynomials for AmBn−1CD. The coefficients are obtained,

similar to the potential fitting, via the least-squares procedure.

In addition to the covariant charges under permutations, the sum of the effective

charges has to be the net charge of the molecule. Ideally this property should be built

in the fitting basis, but in reality, we simply impose this as an additional constraint in

the least-squares problem. Therefore, this condition is not strictly satisfied. This causes a

drawback of the dipole fitting approach when we consider the dipole moment under trans-

lations. Let Z be the total charge of the molecule, and we apply a uniform displacement

~r to all the atoms. It must be ~µ(R + ~r) = ~µ(R) + Z~r, but in the fitted dipole, the total

charge is not exactly satisfied, and thus this property of the dipole under translations is

not strictly satisfied as well.

2.5 Procedures

Depending on the purpose of the PES, the procedures may vary slightly, and here I

describe the general procedures to construct a PES. The details of each individual PES

will be discussed in the following chapters and can also be found in the corresponding

references.

The first step is sampling the configuration space. A straightforward way is the direct-

product grid. However, this could only apply for very small molecules. If 10 points were to

be selected, the total number of configurations would be 103N−6 for nonlinear polyatomic

molecules, where N is the number of atoms. Even for N = 4, the number of configurations

becomes too large. Another way of sampling the configuration space is ab initio molecular
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dynamics (AIMD), using low-level electronic structure method such as DFT and MP2

with small basis sets. The AIMD simulations are carried out at each stationary point

(global or local minima, and saddle points), at several total energies, to make sure that a

large range in the configuration space could be sampled. The initial dataset is extracted

from the AIMD trajectories.

Once the geometries are collected, high-level ab initio calculations are performed

on these configurations. First, test calculations are carried out for the accuracy and

time of a certain method/basis combination. Usually CCSD(T)-F12 method32,33 with

Dunning basis set (aug-)cc-pVXZ (X=D, T, . . . )34 provides good accuracy and efficiency.

When bond-breaking is involved, the single-reference coupled-cluster method fails, and

multireference method is used. After all the ab initio energies are obtained, a linear

least-squares fit is performed to determine the coefficients of the initial PES.

The next step is to improve the initial fit. First the stationary points can be located

on the fitted potential and the geometries and harmonic frequencies are compared with

ab initio results. If the agreement is not satisfactory, additional geometries are sampled

by adding random displacements to those stationary configurations. The energies of the

additional geometries are calculated and added to the dataset. Furthermore, molecular

dynamics and diffusion Monte Carlo simulations are used to detect regions with unphys-

ically low energy (lower than the global minimum), and additional configurations are

added. This iteration goes on until we are satisfied with the PES.



Chapter 3

Molecular Vibrations

In this chapter I’ll present the methods to study the molecular vibrations. The first ap-

proach involves a series of hierarchical methods to solve the nuclear Schrödinger equation

rigorously. It starts with the harmonic approximation, which assumes that the potential

is harmonic. The anharmonicity and mode-coupling are neglected here. Then the re-

sults could be systematically improved when vibrational self-consistent field (VSCF) and

virtual-state configuration interaction (VCI) methods are used. These methods have been

implemented in the code MULTIMODE. In addition to VSCF+VCI approach, diffusion

Monte Carlo (DMC) is another strategy to solve the vibrational ground state properties

and it is also described here.

3.1 Normal Mode Analysis

We start with the classical Hamiltonian of a molecule

H =
3N∑
i=1

1

2
miẋi

2 + V (x1, x2, · · · , x3N), (3.1)

17
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where ẋi and xi are velocities and positions, and mi are masses. The subscript i runs

from 1 to 3N , where N is the number of atoms. Here i = 1, 2, 3 refers to the x, y, and z

coordinates of the first atom, i = 4, 5, 6 refers to the x, y, and z of the second atom, etc.

V is the potential and it is a function of the positions of all the atoms.

As an approximation, we can expand the potential about the minimum {x(0)
i } in a

Taylor series up to second-order terms:

V = V ({x(0)
i })+

∑
i

V ′i ({x
(0)
i })(xi−x

(0)
i )+

1

2

∑
i

∑
j

V ′′ij ({x
(0)
i })(xi−x

(0)
i )(xj−x(0)

j ), (3.2)

where V ({x(0)
i }) is the potential at the minimum, which could be an arbitrary value and

it is set to zero here for simplicity. V ′i ({x
(0)
i }) are the first derivatives of the potential

with respect to the coordinates. These first derivatives are zero because the potential is

expanded about the minimum. The only terms that survive are the second derivatives:

V ′′ij ({x
(0)
i }) =

∂2V

∂xi∂xj

∣∣∣∣
{x(0)i }

. (3.3)

This Hamiltonian is non-separable due to the coupling in second-order terms. How-

ever, for a potential truncated at the second-order level, a coordinate system Q exists

such that in this new coordinate, the Hamiltonian is separable: H =
∑3N

i=1 [Ti + Vi(Qi)].

This coordinate is the normal mode and it can be found using normal mode analysis.

First we define the mass-scaled Cartesian displacements qi as qi ≡
√
mi(xi − x

(0)
i ).

Thus, the classical Hamiltonian becomes

H =
1

2

3N∑
i=1

q̇i
2 +

1

2

∑
i

∑
j

qiFijqj, (3.4)
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where Fij are mass-scaled force constants:

Fij ≡
∂2V

∂qi∂qj

∣∣∣∣
{0}
. (3.5)

In matrix notation, q = [q1 q2 · · · q3N ]>, and the Hamiltonian is written as

H =
1

2
q̇>q̇ +

1

2
q>Fq. (3.6)

F is the mass-scaled Hessian, which is a symmetric matrix. We know that for a symmetric

matrix, an orthogonal matrix L exists that can diagonalize F : L>FL = Λ, where Λ =

diag(λ1, · · · , λ3N). Let q = LQ, and thus

H =
1

2
Q̇>Q̇ +

1

2
Q>ΛQ (3.7)

=
3N∑
i=1

[
1

2
Q̇i

2
+

1

2
λiQ

2
i

]
(3.8)

=
3N∑
i=1

[
1

2
Q̇i

2
+

1

2
ω2
iQ

2
i

]
, (3.9)

where ωi =
√
λi.

Therefore, we’ve found the new coordinate Q in which the Hamiltonian can be writ-

ten as the sum of individual Hamiltonians for each normal mode Qi. The system now

looks like 3N uncoupled harmonic oscillators, with the harmonic frequencies ωi =
√
λi.

Among the 3N normal modes, there are six zero-frequency ones, corresponding to three

translations and three rotations of the molecule.
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Under the harmonic approximation, the quantum Hamiltonian is simply

Ĥ =
3N−6∑
i=1

[
−1

2

∂2

∂Q2
i

+
1

2
ω2
iQ

2
i

]
. (3.10)

The eigenfunctions are just the direct products of 3N − 6 harmonic-oscillator wavefunc-

tions, and the eigenvalues are the sums of harmonic-oscillator eigenenergies:

ψn1···n3N−6
=

3N−6∏
i=1

χni
(Qi); (3.11)

En1···n3N−6
=

3N−6∑
i=1

~ωi(ni +
1

2
), (3.12)

where χni
(Qi) and ni are the harmonic-oscillator eigenfunction and the quantum number

of the i-th normal mode.

However, in this harmonic approximation, higher-order terms in the potential ex-

pansion are neglected. In many applications, those non-harmonic terms are also very

important and should be considered. The non-harmonic terms can be treated as a pertur-

bation, and this leads to the vibrational second-order perturbation (VPT2) theory.35,36.

In this work, I employ a more rigorous method, VSCF+VCI, which is very similar to

Hartree-Fock and post-Hartree methods in electronic structure theory.37
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3.2 Vibrational Self-Consistent Field and Configura-

tion Interaction

Here we write the molecular Hamiltonian in normal mode coordinates:

Ĥ =
3N−6∑
i=1

T̂i + V (Q), (3.13)

where Q = [Q1 · · · Q3N−6] and T̂i is the kinetic-energy operator of the i-th normal mode.

The potential here is the full potential.

We use the variational method to solve this problem, and the trial wavefunction is a

direct product of one-mode wavefunctions:

ψ(Q) =
3N−6∏
i=1

φi(Qi). (3.14)

The goal is to find a set of optimal one-mode functions {φi(Qi)} (i = 1, · · · , 3N−6) that

minimizes the energy functional

E[{φi}] = 〈ψ|Ĥ|ψ〉 (3.15)

under the restriction 〈φi|φi〉 = 1, i.e., φi are normalized. This problem could be solved

using Lagrange multiplier method, and we construct the Lagrangian

L[{φi}, ε1, · · · , ε3N−6] = 〈ψ|Ĥ|ψ〉 −
3N−6∑
i=1

εi (〈φi|φi〉 − 1) . (3.16)

By setting

δL
δφi

=
δL
δεi

= 0, (3.17)
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a set of 3N − 6 coupled equations (i = 1, 2, · · · , 3N − 6)

[
T̂i +

〈
3N−6∏
k 6=i

φk(Qk)

∣∣∣∣∣V (Q)

∣∣∣∣∣
3N−6∏
k 6=i

φk(Qk)

〉]
φi(Qi) = εiφi(Qi) (3.18)

are obtained. These coupled equations are solved iteratively until self-consistency is

reached. This VSCF method is similar to the Hartree-Fock in electronic structure theory.

It is a one-mode method, and the coupling between one mode and the others is taken

into account in an “averaged” manner.

Like the electronic structure problem, the result of the VSCF calculation can be

improved with a further configuration interaction calculation. For each mode, we solve

the VSCF equations to obtain a set of eigenfunctions φ
(vi)
i (Qi) with different quantum

number vi. Therefore, a series of total wavefunctions can be constructed:

ψVSCF
v (Q) =

3N−6∏
i=1

φ
(vi)
i (Qi). (vi = 0, 1, 2, · · · ; and i = 1, · · · , 3N − 6) (3.19)

One of them is the VSCF ground state, and the others are virtual states. In the virtual-

state configuration interaction (VCI) calculation, we expand the total wavefunction using

the VSCF ground and virtual states:

Ψ(Q) =
∑
v

Cvψ
VSCF
v (Q), (3.20)

and the coefficients Cv are obtained by diagonalizing the Hamiltonian matrix.
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3.3 The Code “MULTIMODE”

The VSCF and VCI methods are implemented in the code “MULTIMODE”.38,39 For real

applications, there are also practical issues. In VSCF, integrals

〈∏
k

φk(Qk)

∣∣∣∣∣V (Q)

∣∣∣∣∣∏
k

φk(Qk)

〉
(3.21)

have to be evaluated, and this multi-dimensional integration could be very expensive

computationally, when the number of modes is large. In addition, in the VCI calculation,

the Hamiltonian matrix could be very large without any restriction in the expansion in

Eq. 3.20. The strategies in MULTIMODE to settle these issues will be presented below.

3.3.1 Hamiltonian

In the derivation of VSCF and VCI, the rotation-vibration coupling is neglected in the

Hamiltonian. However, in MULTIMODE, the rigorous Watson Hamiltonian is used.40

For any non-linear molecule, the Watson Hamiltonian is

Ĥ =
1

2

∑
α,β

(
Ĵα − π̂α

)
µαβ

(
Ĵβ − π̂β

)
− 1

2

3N−6∑
k=1

∂2

∂Q2
k

− 1

8

∑
α

µαα + V (Q1, · · · , Q3N−6),

(3.22)

where α, β = x, y, z; Ĵα and π̂α are the total and vibrational angular momenta, respec-

tively; µαβ is the inverse of the effective moment of inertia tensor. The vibrational angular

momenta are given by

π̂α = −i
∑
k,l

ζαk,lQk
∂

∂Ql

, (3.23)
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where ζαk,l are Coriolis coupling constants, and these vibrational angular momentum terms

usually cannot be neglected. In most cases, we solve the J = 0 Schrödinger equations.

This Hamiltonian works for semi-rigid molecules; however, for molecules with one

large-amplitude motion, the reaction path version of MULTIMODE should be used,

which is based on the reaction path Hamiltonian.41 This has been applied to molecules

with internal rotation, such as CH3OH and H2O2.42,43 This reaction path MULTIMODE

is not used in this work, so it will not be described here. The theory and details are given

in Ref. 41 and 44.

3.3.2 Potential representation

In MULTIMODE, the potential is written as a hierarchical n-mode representation (nMR):

V (Q1, Q2, · · · , Qm) =
∑
i

V
(1)
i (Qi) +

∑
i<j

V
(2)
ij (Qi, Qj) +

∑
i<j<k

V
(3)
ijk (Qi, Qj, Qk)+

∑
i<j<k<l

V
(4)
ijkl(Qi, Qj, Qk, Ql) + · · · ,

(3.24)

where

V
(1)
i = V (Qi, Ql 6=i = 0), (3.25)

V
(2)
ij = V (Qi, Qj, Ql 6=i,j = 0)− V (1)

i (Qi)− V (1)
j (Qj), (3.26)

V
(3)
ijk = V (Qi, Qj, Qk, Ql 6=i,j,k = 0)− V (2)

ij − V
(2)
ik − V

(2)
jk − V

(1)
i − V (1)

j − V (1)
k . (3.27)

In MULTIMODE, this expansion is truncated, and the maximum number of modes al-

lowed is six. Therefore, numerical quadratures with maximum dimensionality of six are

needed, instead of 3N − 6, and this could greatly reduce the computational cost. In
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addition, efficient Gauss-Hermite quadrature is used in MULTIMODE for numerical in-

tegration.

3.3.3 VCI excitation space and matrix pruning

Without any constraint, the full-CI matrix size would be the direct product of the number

of basis for each mode, and it could be enormous when the molecule is large. Similar to

the truncated CI in electronic structure theory (for example, CISD only includes terms

with single and double excitation), constraints are imposed in MULTIMODE. We use

an “m-mode basis” to restrict the excitation space to a maximum of m modes excited

simultaneously. For each mode, we specify a maximum value of the quanta of excitation

(called MAXBAS in MULTIMODE), and in addition, the sum of quanta is limited by

a user-specified value (called MAXSUM in MULTIMODE). With all these restrictions,

the size of the CI matrix is greatly reduced.

However, sometimes the matrix size is still too large for a direct diagonalization, so

we utilize other strategies to diagonalize the matrix. First, symmetry of the molecule

could be exploited so that the final CI matrix is block diagonal and we only need to

diagonalize each block instead of the full matrix. In addition, we only need the lowest

a few hundred or thousand eigenstates so that more efficient iterative method can be

used for diagonalization. In MULTIMODE, the iterative block-Davidson method is im-

plemented. Furthermore, rows and columns of the CI matrix can be eliminated, based

on a perturbation test. This was initially implemented in MULTIMODE by Handy and

Carter,45 and have been optimized recently in a vibrational calculation of CH3NO2.46
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3.3.4 Infrared intensity

The intensities of vibrational transitions in MULTIMODE are calculated using the “dump-

restart” procedure.47 In the “dump” step, the VCI wavefunctions are written to a file on

the disk, and in the “restart” step, the transition elements are calculated according to

Rαif =

∫
Ψi(Q)µα(Q)Ψf (Q)dQ, (3.28)

where Q is the set of normal coordinates and µα(Q) is the α component (α = x, y, z) of

the dipole moment. Ψi and Ψf are the initial and final state of the transition.

The infrared intensity of the i→ f transition is evaluated using the expression

Iif =
8π3NA

3hc(4πε0)
ν
∑
α

|Rαif |2(Ni −Nf ), (3.29)

where NA is the Avogadro’s number, ν is the wavenumber of the transition, and Ni is

the number of the molecules in state i. If we only consider the transition originated from

the vibrational ground state, Ni −Nf is 1.

3.4 Local Monomer Model

The vibrational calculations for large clusters or condensed phase matters can be very

intensive. Various approximations have been made to reduce the dimensionality of the

calculations. When the cluster consists of weakly bounded molecules and the intramolec-

ular vibrations are of interest, the local-monomer model48 is a very good approximation.

The local-monomer model has been applied in the calculation of the anharmonic vibra-

tions and infrared spectra of water clusters,49 ice and liquid water,50,51 HCl clusters,52
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and mixed HCl-water clusters,30,53 as well as vibrational relaxation of HOD in hexagonal

ice.54

In the local-monomer model, one monomer is treated at a time, but it is assumed to

be interacting with all the other monomers, which are held fixed. The theory of local-

monomer also starts from the harmonic level. A local-monomer normal-mode analysis is

performed for each monomer. Thus, for each monomer, a 3Nm-dimensional mass-weighted

Hessian matrix is calculated, where Nm is the number of atoms in the monomer. Diag-

onalization of this local-monomer Hessian leads to 3Nm-6 intramolecular modes and 6

nonzero-frequency frustrated rotations and translations. After the local-monomer normal

modes are obtained, we solve the Schrödinger equation of the embedded monomer m,

given by [
T̂m + Vm(Qm)

]
ψm(Qm) = Eψm(Qm), (3.30)

where Qm is the set of intramolecular local normal modes. T̂m is the kinetic energy

operator with vibrational angular momentum included, and Vm(Qm) is the full potential

of the monomer, perturbed by other monomers, which depends dynamically on the local

modes of the monomer, with all the other monomers frozen.

3.5 Diffusion Monte Carlo

The DMC method can be used to solve the nuclear Schrödinger equation for the vibra-

tional ground state energy and wavefunction.55–59 Here the basic theory and a practical

algorithm of DMC are described.
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3.5.1 Theory

Consider a one-dimensional time-dependent Schrödinger equation

i~
∂ψ

∂t
= Ĥψ = − ~2

2m

∂2ψ

∂x2
+ V (x)ψ, (3.31)

and the solution can be expressed as

ψ(x, t) =
∑
n

cnφn exp

[
−iEnt

~

]
, (3.32)

where φn and En are the eigenstates and eigenvalues of the Hamiltonian Ĥ. If we perform

an shift in energy by ER and replace the time t with the imaginary time τ = it, the

Schrödinger equation becomes

∂ψ

∂τ
= − ~

2m

∂2ψ

∂x2
+
V (x)− ER

~
ψ, (3.33)

and the solution becomes

ψ(x, τ) =
∑
n

cnφn exp

[
(En − ER)τ

~

]
. (3.34)

If ER > E0, ψ(x, τ) diverges when τ approaches ∞; if ER < E0, ψ(x, τ) decays to zero;

only if ER = E0, ψ(x, τ) converges to φ0. That means, if we choose the ER to be the

ground state energy E0 and propagate the system to large imaginary time values, ψ(x, τ)

converges to the ground state of the Hamiltonian Ĥ. Of course E0 is unknown in advance,

and its value could be determined by diffusion Monte Carlo method.

The DMC method is based on the similarity between Eq. 3.33 and the diffusion
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equation with a first-order rate term

∂C

∂t
= D

∂2C

∂x2
− kC. (3.35)

The “diffusion coefficient” of the imaginary-time Schrödinger equation is D =
√
~/2m.

The second derivative part can be modeled with a random walker process with large

number of walkers, and the first-order term can be viewed as a source or sink of the

walkers.

At sufficiently short times, the solution of Eq. 3.35 can be approximated as

C(x, t) ≈ U(x, t)C(x, 0) exp (−kt) , (3.36)

where

U(x, t) =
1√

4πDt
exp

[
−(x− x0)2

4Dt

]
(3.37)

is the solution to the diffusion problem without the first-order term, using δ-function

as the initial condition. Therefore, in the simulations, each time increment consists of

two steps: in the first step the walkers are assigned a random displacement based on the

distribution specified by Eq. 3.37, and in the second step, the walkers are removed or

replicated based on the probability density exp(−kt) from Eq. 3.36. A practical algorithm

is given next.

3.5.2 Algorithm

Initially all the walkers are at the reference geometry, so that the initial condition can

be viewed as a δ-function. At each step, a random displacement ∆x is assigned to each



Chapter 3. Molecular Vibrations 30

walker. This displacement is selected from a Gaussian distribution

P (∆x) =
1√

4πD∆τ
exp

[
− (∆x)2

4D∆τ

]
, (3.38)

with D =
√

~/2m and ∆τ is the step size in the simulation. After the displacement, the

potential of each walker is calculated and the corresponding weight function

W = exp [−(V (x)− ER)∆τ ] (3.39)

is computed. For each walker, if W < 1, it will be removed with probability 1 −W ; if

W > 1, int(W ) new walkers with the same configuration will first be added, and then an

additional one may be added with probability W − int(W ), where int(W ) is the largest

integer that does not exceed W . When these are done for all the walkers, the reference

energy is calculated as

ER(τ) = 〈V (τ)〉 − αN(τ)−N(0)

N(0)
, (3.40)

where 〈V (τ)〉 is the average potential over all walkers, and N(τ) is the number of live

walkers at imaginary time τ . Here α is a feed-back parameter that controls the fluctu-

ations of the number of the walkers and the reference energy. After equilibration, the

average of the reference energy over the imaginary time gives an estimate of the zero-

point energy, and the distribution of the walkers, when properly normalized, represents

the ground-state wavefunction.
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Dynamics Simulations

In principle, even with Born-Oppenheimer approximation, we have to solve the time-

dependent nuclear Schrödinger equation for the motion of nuclei. However, this is also

very challenging, and rigorous quantum calculations were seldom used for systems with

more than four atoms.

In many cases where the nuclear quantum effects can be neglected, the motions of the

nuclei can be described sufficiently well by classical mechanics. The motions of the nuclei

follow the Hamilton’s equations (also equivalent to Newton’s and Lagrange’s equations):

dqi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H
∂qi

, (4.1)

where qi and pi are the position and momentum, respectively. H is the classical Hamilto-

nian, which is the sum of the kinetic and potential energy. In molecular dynamics (MD)

simulations, the classical equations of motion in Eq. 4.1 are integrated numerically if the

potential is known. Note that our potential energy surfaces (PESs) allow very efficient

integration, compared to “on-the-fly” ab initio molecular dynamics. The MD simulation

31
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is the method used in this work to model chemical reaction dynamics.

4.1 Initial Conditions

The MD simulation is deterministic, i.e., the motion of each nucleus is completely de-

termined by the initial momentum and position (when the numerical error is neglected).

Therefore, a good sampling of the initial conditions is crucial in MD simulations. Next I

describe the methods used in my research that sample the initial condition.60

Microcanonical sampling samples the phase space with a constrained total energy

E. One of the implementation is simple and straightforward. The molecular configura-

tion is fixed, and the velocity of each atom is selected from a uniform distribution in

(−0.5, 0.5). Then the velocities are scaled so that the total kinetic energy equals to the

constraint. However, this simple implementation fails to describe the zero-point motion

of the molecule, and the total energy E could even be lower than the zero-point energy

(ZPE) of the molecule. The ZPE of a polyatomic molecule could be a large amount of

energy (tens of kcal/mol), so the lack of it could lead to poor estimate of reaction barriers.

In addition, the simple microcanonical sampling is not able to model mode-specific reac-

tions where one or more normal modes are excited. Therefore, the normal mode sampling

is introduced.

Normal mode sampling is also a microcanonical sampling, with the total energy E

equals to the energy of a particular vibrational states. It is done in normal mode coor-

dinates: the normal mode coordinates Q and momenta P are obtained, and then are

transformed back to Cartesian coordinates q and p. So first normal mode analysis is

performed to determine the frequencies ω and normal mode vectors L. Random values
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for Qi and Pi are chosen by assigning a random phase to each mode:

Qi =

√
2Ei
ωi

cos(2πri); (4.2)

Pi = −
√

2Ei sin(2πri), (4.3)

where ri is a random number from a uniformed distribution in (0, 1), and Ei is the energy

one would like to put in the i-th mode. Typically Ei is the harmonic zero-point energy

(ZPE) of that mode, and in mode-specific dynamics, it could be the energy of a certain

excited state. Then the Q and P are transformed to Cartesian coordinates and momenta

using

q = q0 + M−1/2LQ (4.4)

p = M 1/2LQ, (4.5)

where q0 is the coordinates of the equilibrium configuration, and M is a diagonal matrix

whose elements are masses of the nuclei.

A spurious angular momentum js could be generated from the procedures above, and

this spurious angular momentum can be calculated by

js =
∑
i

ri ×miṙi, (4.6)

where ri is the position of the i-th nucleus. Assume that the desired angular momentum

is j0 so j = j0 − js is the amount that should be added to the system. Therefore the

velocity (I−1j)× ri is added to each atom, where I is the moment of inertia tensor.

Finally the internal energy E after the two steps mentioned above usually slight
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deviates from the desired total internal energy E0. So the Cartesian coordinates and

momenta are scaled according to

q′i = qi,0 + (qi − qi,0)
√
E0/E (4.7)

p′i = pi
√
E0/E. (4.8)

The possible spurious translation is removed and loops back to the angular momentum

procedure until the actual internal energy agrees with the desired internal energy.

4.2 Final Conditions

In dynamics simulations, properties of the products such as the translational energy

release, the rotational and vibrational energy distribution are of interest. These can be

calculated from the coordinates and velocities of the nuclei at the termination of a classical

trajectory. The procedures of final condition analysis are described here.61

4.2.1 Translations and Rotations

A reaction may have several products and here we just focus on one fragment that is of

interest. Upper case letters are used for the center-of-mass positions and velocities of the

product, and lower case letters for each individual atom. The center-of-mass velocity of

the fragment can be calculated by

V =

∑
imivi
M

, (4.9)
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where the sum is over all the atoms in the fragment and M is the total mass of this

fragment. Therefore the translational energy of this fragment is simply Etrans = 1
2
M |V |2.

Then this translational motion is removed from the fragment v′i = vi−V , and the internal

energy of the fragment is

Eint = T + V =
∑
i

1

2
mi |v′i|

2
+ V, (4.10)

where V is the potential energy relative to the equilibrium structure.

This internal energy consists of vibrational energy and rotational energy. The rota-

tional angular momentum can be calculated by j =
∑

imir
′
i × v′i, where r′i and v′i are

the position and velocity of atom i in center-of-mass frame. Then the rotational energy

is given by

Erot =
1

2
j>I−1j, (4.11)

where I is the moment of inertial tensor of the fragment. For diatomic molecules, the

rotational quantum number J can be determined using |j| =
√
J(J + 1)~ and rounded

to the nearest integer.

4.2.2 Vibration and Zero-point Energy Constraint

The vibrational energy is determined by

Evib = Eint − Erot. (4.12)

For diatomic molecules, the vibrational quantum number n can be determined by

(
n+

1

2

)
~ω = Evib, (4.13)
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where ω is the harmonic frequency.

One common problem of the classical simulation is ZPE violation. The vibrational

energy of the product could be lower than the ZPE, which is not allowed in quantum

mechanics. If these trajectories were included in the analysis, the rotational and transla-

tional energy would be overestimated. A straightforward ZPE constraint could be applied

to avoid this. If the total vibrational energy of the products is smaller than the sum of

ZPEs of each individual product, the trajectory is discarded and will not be considered

in the final condition analysis, or if the vibrational energy of any fragment is smaller than

its ZPE, the trajectory is discarded. The former is the soft ZPE constraint and the latter

is hard ZPE constraint.
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Chapter 5

Many-body Potentials for Clathrate

Hydrates

5.1 Overview

Clathrate hydrates are crystalline inclusion compounds in which small gas molecules such

as CH4, H2, CO2 are trapped in hydrogen-bonded water cages.62,63 The clathrates are

of widespread interest owing to their role in energy storage. The methane hydrate is a

potential source of hydrocarbon fuel in the future. On the other hand, the formation

of methane hydrate may be responsible for the flow reduction in gas pipeline. Another

example is the hydrogen clathrate, which is potentially an environmentally friendly and

efficient material for hydrogen storage.64,65

Three typical crystal structures of clathrate hydrates have been observed: a cubic

structure I (sI), a cubic structure II (sII) and a hexagonal structure H (sH). In a unit cell of

sI, 46 water molecules form two pentagonal dodecahedral (512) and six tetrakaidecahedral

(51262) cages. A sII unit cell consists of 136 water molecules that form sixteen 512 and

38
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eight hexakaidecahedral (51264) cages. A unit cell of sH is made of 34 water molecules

and they form three 512, two irregular dodecahedral (435663) and one icosahedral (51268)

cages. Simple methane or CO2 hydrate crystallize in sI, while the H2 clathrate is sII. The

cooperation of two guest molecules (one large and one small) could lead to sH clathrate

hydrates, for example, the H2-tetrahydrofuran clathrate.

Due to the important role these clathrate hydrates play in energy-related area, their

properties such as structure, stability and storage capacity,66–95 Raman and infrared spec-

troscopy,96–111 nucleation, formation and dissociation dynamics,70,112–126 and diffusion of

the guest molecule127–138 have been investigated extensively using both experiment and

computational modeling. They are also good models to study the dynamics of confined

molecules. When small gas molecules such as CH4 and H2 are trapped in the cages, they

have coupled anharmonic translational oscillations (rattling) and almost free rotation,

and the dynamics is highly quantum mechanical. Experimentally, inelastic neutron scat-

tering has been applied to probe the translation-rotation motions of confined H2 and

CH4.139–147 The rotation-translation eigenstates of confined molecules have been com-

puted by means of full-dimensional quantum calculation.148–157

In theoretical modeling of the clathrate hydrate, the potential energy surface (PES)

plays an important role. In general three types of potentials were used in these studies.

The first type is empirical model potential/force field that is parametrized to agree with

experimental measurements on certain properties. Such potentials are efficient to evaluate

so they can be applied to large-scale simulations. However, they are not reliable for

properties that are not used in the parametrization. Another type is the “on-the-fly”

potential: the potential is calculated when needed in the simulation directly. This type

avoids the potential parametrization so that it’s more generic for different properties,

but the computational cost is so high that high-level ab initio theories are prohibited.
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Finally, there are ab initio-based potentials by fitting to tens of thousands of ab initio

energies. Similar to “on-the-fly” potentials, these ab initio potentials are generic. In

addition, they have several advantages over the “on-the-fly” one: they are much faster to

evaluate (though still slower than the empirical potentials/force fields), and higher level

ab initio method can be used. The challenge here comes from the high dimensionality.

The number of geometries is huge in order to sample a sufficiently large portion of the

molecular configuration space, and each ab initio calculation is very expansive when the

dimensionality is high. In addition, the function that represents the potential becomes

complicated.

Fortunately, the clathrate hydrates consist of weakly bounded molecules, so the many-

body expansion introduced in Chapter 2 is applicable to build the PESs. In the many-

body expansion, the total potential is decomposed into the sum of lower-dimensional

intrinsic potentials. These lower-dimensional potentials are described in this chapter,

together with tests of fidelity for each of them. Finally the potentials of the clathrates

and preliminary applications of the potentials are presented.

5.2 Fitting of Non-covalent Interactions

In many-body expansion, the intrinsic p-body potential vanishes when a single monomer

is separated from the other p − 1 monomers. However, as mentioned in Chapter 2, the

single expression of the permutationally invariant polynomial is not rigorously separable

in fragment coordinates. When fitting intrinsic p-body potential, the energy is not zero

when the two molecules are separated. Therefore, in addition to the full fitting bases, the

purified ones are also used here.
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The original expression of monomial symmetrization (given in Chapter 2) is

V (y) =
M∑
m=0

CbS

[
N∏
i<j

y
bij
ij

] (
m =

∑
bij

)
, (5.1)

and these polynomial bases are referred to as full (F) bases. Then certain terms in the

full bases are removed, leading to what we call the purified (P) bases. A practical way for

purification is described as follows. First, a set of cluster configurations is generated where

each monomer (one at a time) is set far away from the others. For each configuration,

inter-monomer Morse variables involving atoms of the isolated monomer are set equal

to zero, while the remaining Morse variables are given different, non-zero values. All the

polynomials in the F basis are then evaluated and those returning a value different from

zero are discarded. The final outcome is a smaller polynomial basis able to ensure the

correct zero-interaction limit. This procedure can be undertaken independently from the

permutational symmetry employed.

The purification technique, which reduces the size of the fitting basis, can be fur-

ther advanced by restricting the P basis to polynomials dependent exclusively on inter-

monomer variables. In practice, only intra-monomer Morse variables are set to zero and

then all the polynomials in the P basis are evaluated. Only polynomials returning a value

different from zero are maintained. The final outcome of the technique is a very compact

fitting basis, that we term a pruned purified (PP) basis.

Since the purified and pruned purified bases reduce the number of polynomials, they

are expected to be fast to evaluate, and this substantially speeds up potential calls.

This is an additional advantage because in large clusters there are a large number of

intrinsic potentials to evaluate (e.g., 190 terms of 3-body CH4−H2O−H2O potential in

CH4(H2O)20). Each individual potential has to be efficient; otherwise the total poten-
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tial becomes too expensive. Of course the correct asymptotic energy and the speed are

achieved by sacrificing the fitting accuracy slightly because the number of adjustable

parameters is reduced.

In this chapter, the intrinsic potentials are represented by the notation “B-xyz/M”.

“B” stands for “basis”, and it could be F, P, and PP; “xyz” indicates the permutational

symmetry of the molecule; M is the maximum polynomial order.

5.3 CH4−H2O Potential

The methane-water interaction has been examined with various ab initio methods, and

several analytical forms of the PES for rigid monomers have been presented. The earli-

est studies (for example see Ref. 158–161) either fail to correctly identify the minimum

structure or do not explore the full configuration space, due to low-level ab initio meth-

ods. Szczȩsńiak et al. 162 and Rovira et al. 163 successfully identified two minima in the

PES, but the electronic binding energy of the global minimum was underestimated. Two

six-dimensional PESs with rigid monomers have been reported.164,165 In the work of

Akin-Ojo and Szalewicz 165 the electronic binding energy was given as 361 cm−1 by ex-

trapolating CCSD(T)/aug-cc-pVQZ and aug-cc-pV5Z results to the complete basis set

(CBS) limit. More recently, Copeland and Tschumper 166 characterized the energetics of

the dimer PES with high-level CCSD(T)-F12b/VTZ-F12 calculations, and reported the

binding energy of 339 cm−1 with counterpoise (CP) correction and 353 cm−1 without

the correction for the global minimum, and a binding energy of 224 or 231 cm−1 for the

higher energy minimum with or without CP correction. However, none of the analytical

PESs mentioned159,160,162,164,165 is full-dimensional and so cannot be used to investigate

observables that depend on the monomer vibrational motion. So I construct such a PES
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here. In addition, an intrinsic dipole moment surface is constructed.

5.3.1 Ab initio calculation and potential fitting

The database of 36930 configurations and energies was obtained as follows. Seven C-O

distances were picked in the range from 3.0 to 10.0 Å, and at each distance, 3200 monomer

geometries were chosen with different orientations. 4932 additional configurations of the

dimer were generated using ab initio molecular dynamics at the DFT (B3LYP) level of

theory. An initial fit then was performed based on the 27332 points described above.

The remaining 9598 points were calculated to provide better coverage of the initial PES,

based primarily on running DMC calculations of the dimer zero-point energy and also to

improve the harmonic frequencies at the two minima.

The CCSD(T)-F12b method32,33 with haTZ (aug-cc-pVTZ for C and O, and cc-pVTZ

for H) basis set was employed to calculate the energies, using MOLPRO 2010.167 For

each dimer configuration, the energies of the dimer and the isolated monomers at that

configuration were calculated, and the intrinsic two-body energy was obtained according

to

V
(2)

CH4−H2O = VCH4−H2O − VCH4
− VH2O, (5.2)

without CP correction. Overall the computational cost of calculating the 36930 energies

in the database can be converted to roughly 16 days of CPU time on a 16-core computer.

The dipole moments of the 36930 dimer configurations were calculated at MP2 level

of theory with haTZ basis set. The dipole moments of the isolated monomers were also

calculated at the same level of theory in order to obtain the intrinsic two-body dipole

given by:

~µ2b = ~µdimer − ~µCH4
− ~µH2O. (5.3)
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Two fitting bases were applied for the intrinsic CH4−H2O potential: the F and PP

bases. The permutation group “4211” was used, which means the hydrogen atoms belong-

ing to different monomers do not permute. This is reasonable because the intermolecular

hydrogen exchange is not feasible for the interactions of interest. The maximum poly-

nomial order is five. The intrinsic dipole moment surface (DMS) was also fitted in F

basis with maximum polynomial order of five, using the standard procedures described

in Chapter 2.

The number of coefficients, root-mean-square (rms) fitting error, and the time to

evaluate the potential are listed in Table 5.1. F-4211/5, as expected, is the most accurate.

PP-4211/5 removes all the terms containing intramolecular distances, so the number of

coefficients is decreased by an order of magnitude. The effect is that potential calls are

much faster, and only 8% of the time for F-4211/5 is necessary. PP-4211/5 is globally

less accurate with a higher but still acceptable rms fitting error.

Table 5.1: Number of coefficients, rms fitting error for different energy regions (cm−1),
and computational times (arbitrary units) for the two fitted two-body potentials. The
computational time for F-4211/5 is arbitrarily set equal to 100 to facilitate the comparison

F-4211/5 PP-4211/5

N. coeff. 10,220 841
rms (E<0) 3.4 39.8
rms (0<E<1,500) 3.5 95.0
rms (E>1,500) 3.5 162.6
rms (total) 3.5 64.1
t 100.0 8.0

Figure 5.1 shows the energy distribution of the database and the cumulative rms

error of the F-4211/5 PES. Many points were sampled in the attractive region to ensure
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Figure 5.1: Energy distribution of the points and cumulative rms error of F-4211/5.

a good description near the potential minima. In addition, more than 10000 energies are

in the range from -50 to 50 cm−1. Most of the corresponding geometries have a large C-O

distance, so the interaction is very weak. This set of points forces F-4211/5 towards the

correct zero value of the intrinsic two-body energy at large monomer separation.

5.3.2 Test of the potential

The full PES and DMS are the sum of the intrinsic two-body terms, described above,

and the methane and water monomer PESs and DMSs. The methane monomer PES

and DMS are taken from previous global ab initio ones using the invariant polynomial

approach by Warmbier et al.168. This PES dissociates to fragments CH3+H and so is

suitable for use in studies of energy transfer involving highly excited methane. The water

monomer PES is due to Partridge-Schwenke,169 which is spectroscopically accurate, while
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for convenience the monomer dipole of H2O is extracted from the WHBB water dipole

moment.28 The full CH4-H2O potentials using the two fits for the intrinsic potential are

denoted, using obvious notation, PES-F and PES-PP. Other monomer PESs and DMSs

are available, such as the methane monomer potential by Yurchenko et al170 and the H2O

monomer dipole by Lodi et al.171.

Figure 5.2: Structures of the two stationary points on the PES: (a) global minimum; (b)
secondary minimum

Two minima are located on the PESs. Both PES-F and PES-PP reproduce the cor-

rect geometries indicated in Figure 5.2. In the lower energy one the water monomer is a

hydrogen bond donor, while it becomes an acceptor in the higher-energy minimum. The

energies of the minima on the PESs as well as the ab initio results with and without

CP correction are listed in Table 5.2. The CP correction for the global and secondary

minima is about 20 cm −1, which is not large. The binding energy of the global minimum

without CP correction agree very well with the CCSD(T)/CBS result,165 presumably by

cancellation of errors due to basis set superposition and basis incompleteness. Because

of the fortuitously close agreement with the benchmark, the intrinsic two-body poten-

tials were fitted using electronic energies without the CP correction. Our binding energy

for the secondary minimum is slightly larger than the value reported by Copeland and

Tschumper 166 .
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Table 5.2: Interaction energies (cm−1) of the global and secondary minima

Global minimum Secondary mimimum

ab initio with CP 330 223
ab initio without CP 356 243
PES-PI 357 243
PES-CSM 366 243

Figure 5.3: Two unrelaxed one-dimensional cuts from F-4211/5, PP-4211/5 and ab initio
calculations: intrinsic two-body energy as a function of C-O distance at (a) the global
minimum orientation, and at (b) the secondary minimum orientation.
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Figure 5.3 shows two unrelaxed one-dimensional cuts as a function of the C-O distance

and calculated with F-4211/5 and PP-4211/5, as well as ab initio energies along these

cuts, at global minimum and secondary minimum orientations. F-4211/5 agrees very well

with ab initio points, as anticipated by the small rms fitting error. Generally, PP-4211/5

is also excellent, except between 3.5 and 5.0 Å at the global minimum orientation. The

energies of both fitted two-body potentials go to zero when the distance becomes large,

but due to different reasons. PP-4211/5 is by construction zero at large C-O distances,

while F-4211/5 is zero because I sampled a large number of data in that region.

To go a step further from the electronic binding energy to the measurable dissociation

energy, I rigorously calculated the zero-point energy (ZPE) of the bound dimer and

isolated fragments using DMC. The simple unbiased algorithm described in Chapter 3 is

adopted. Ten simulations were performed for the bound dimer and the fragments; in each

simulation, 20000 walkers were propagated for 25000 steps, with a step size of 5.0 au. The

walkers were first equilibrated for 5000 steps and the energies of the remaining 20000 steps

were collected to compute the reference energy. The ZPE of the dimer is 14510±5 cm−1,

when using the PES-F, and the sum of the ZPEs of the isolated fragments is 14663±4

cm−1 relative to the global minimum. Thus, I determine the dissociation energy D0 of

the dimer is 153±11 cm−1. The statistical error in the ZPE of the dimer (5 cm−1) and

sum of ZPEs of the isolated fragments (4 cm−1) leads to a statistical error of 6.4 cm−1 for

D0. a conservative estimate of the uncertainty is given as the sum of the statistical error

(6.4 cm−1) and the systematic error of our De compared to the CCSD(T)/CBS value (4

cm−1). DMC simulations were also performed on PES-PP, and the ZPE of the bound

dimer is 14514± 6 cm−1, which agrees very well with the ZPE value from PES-F, and

remarkably predicts a D0 value (149 cm−1) within the uncertainty range of PES-F.

The vibrational ground-state wavefunction was also obtained from DMC calculation.
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Figure 5.4: Vibrational ground state wavefunction of CH4-H2O dimer. The isovalue is
50% of the maximum wavefunction amplitude in (a), and 25% in (b).

It is represented by an isosurface. Each walker was optimally aligned into a reference

frame. The space was divided into volume elements and a statistical analysis was per-

formed for each volume element to obtain the wave function amplitude in that volume.

The vibrational ground state wavefunction obtained from a DMC simulation that em-

ploys the PES-F potential is shown in Figure 5.4. As expected, the motions of heavy

atoms (C and O) are more localized than the H atom. When the isovalue is 50% of the

maximum, the hydrogen wave function is still somewhat localized, while at 25% of the

maximum amplitude, the wave function is spherical. This indicates that the monomers are

undergoing large-amplitude internal rotation in the bound dimer, which agrees with ex-

perimental findings.172,173 The experimental microwave and far infrared spectra obtained

in these experiments are in fact reproduced reasonably well by simulations employing an

internal-rotation model. In the two experiments, the authors reported a average distance

of 3.70 Å bewteen CH4 and H2O centers of mass, based on their analysis using a model

Hamiltonian. This distance lies between our global minimum (3.44 Å) and the secondary

minimum (3.77 Å). This also agrees with our DMC result that the ground vibrational

state of the CH4−H2O dimer samples the two minima. Our estimate of this distance

using DMC walkers is 3.78 Å.
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Table 5.3: Harmonic frequencies (cm−1) of the global minimum from indicated sources.
(I) indicates the intermolecular modes; (M) and (W) the intramolecular modes of methane
and water, respectively

mode ab initio a PES-F PES-PP LMon b Frag. c

1 (I) 49 26 47
2 (I) 74 75 41
3 (I) 80 86 87
4 (I) 87 92 75
5 (I) 111 113 113
6 (I) 170 172 215
7 (M) 1347 1342 1349 1342 1346
8 (M) 1349 1344 1355 1344 1346
9 (M) 1351 1353 1347 1353 1346
10 (M) 1573 1556 1559 1556 1555
11 (M) 1576 1561 1556 1563 1555
12 (W) 1651 1653 1650 1651 1649
13 (M) 3029 3027 3031 3027 3032
14 (M) 3148 3148 3156 3148 3156
15 (M) 3151 3149 3157 3149 3156
16 (M) 3159 3154 3160 3154 3156
17 (W) 3832 3829 3831 3829 3833
18 (W) 3940 3939 3941 3939 3944

a CCSD(T)-F12b/haTZ.
b Performed on PES-F.
c Frequencies from the monomer PESs in Ref. 168 and 169.
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The harmonic frequencies of the complex at the global minimum from CCSD(T)-

F12b/haTZ calculations, PES-F and PES-PP are listed in Table 5.3. In addition, in-

tramolecular harmonic frequencies from the local-monomer (LMon) calculations using

PES-F and the frequencies of the isolated monomers are given. First, as seen, the re-

sults using PES-F and PES-PP are in good agreement with each other and also with the

direct ab initio results. Note, that even with a “perfect” fit of the intrinsic two-body in-

teraction, perfect agreement with the CCSD(T)-F12b/haTZ frequencies is not expected

because the monomer potentials used in the PESs are calculated at a different level of

theory. The frequencies from the LMon and full normal mode analysis using PES-PI are

virtually identical, indicating, as expected, that LMon is a very good approximation for

this weakly bound dimer. Finally, if we compare the frequencies of the intramolecular

modes in the dimer with those of the isolated monomers, as a consequence of symme-

try breaking, the degeneracy of the frequencies of methane split in the dimer and the

magnitude of the splitting is certainly large enough to be detected experimentally. I also

did the same analysis for the higher energy minimum and find that the intramolecular

frequencies differ from those of the global minimum by less than 5 cm−1. This is not

surprising given the weak binding of the monomers and the highly delocalized nature of

the ground vibrational state wave function.

To obtain the anharmonic eigenstates for high-frequency intramolecular vibrations

of the CH4−H2O dimer, vibrational self-consistent field and virtual-state configuration

interaction calculations (VSCF/VCI) with total angular momentum J = 0 were per-

formed using the code MULTIMODE. Two approaches were taken. In the first, a stan-

dard normal-mode analysis is performed at the global minimum structure and selected

the twelve intramolecular modes in subsequent VSCF/VCI calculations. Specifically, a
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twelve-dimensional Schrödinger equation

Ĥ(Q)Ψ(Q) = EΨ(Q) (5.4)

was solved, where Ĥ is the Watson Hamiltonian,40 and Q = [Q1, Q2, · · · , Q12] denotes the

twelve intramolecular modes. The remaining intermolecular modes were fixed at zero. In

the second approach, I employed the local-monomer model described in Chapter 3 for the

two monomers. The potential term in the Hamiltonian was represented in a hierarchical

n-mode representation truncated at 4-mode representation (4MR). The truncation at

4-mode representation is adequate to produce well-converged results, as demonstrated

for methane.174 I employed seven harmonic oscillator wavefunctions for each mode as

basis to expand the VSCF states. The VSCF ground and virtual states were then used

to expand the CI states in the VCI calculation. In the VCI calculation, simultaneous

excitation of up to four modes were done (4-mode basis); the maximum excitation of a

single mode (MAXBAS) was 7, 6, 5 and 4 respectively in 1-, 2-, 3- and 4-mode basis, and

the sum of quanta of excitation (MAXSUM) was 7. In addition, the Cs symmetry of the

dimer is exploited, which allowed to separate the Hamiltonian matrix into two symmetry

blocks of sizes 15374 and 11122.

The anharmonic intramolecular fundamental energies at the global minimum with

the indicated approaches are listed in Table 5.4, and the corresponding IR spectra are

presented in Figure 5.5. Both the spectra in Figure 5.5 panel (a) and (b) are from PES-

F. The LMon frequencies and spectrum agree well with the calculation using the twelve

intramolecular modes, with difference of no more than 10 cm−1. The good agreement is

expected, since the interaction between water and methane is weak and the normal modes

of the dimer are localized in the monomer. In addition, the same LMon calculations were
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Figure 5.5: IR spectra of global minimum (a) in the twelve-mode calculation using PES-
F; (b) in LMon calculation using PES-F; (c) in LMon calculation using PES-PP.
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Table 5.4: Anharmonic intramolecular fundamental energies (cm−1) of the global min-
imum, using the indicated method and PES. (M) and (W) indicates the intramolecular
modes of methane and water

mode 12-mode/PES-F LMon/PES-F LMon/PES-PP

7 (M) 1300 1306 1313
8 (M) 1298 1308 1319
9 (M) 1309 1315 1311
10 (M) 1521 1525 1527
11 (M) 1521 1529 1533
12 (W) 1587 1596 1595
13 (M) 2894 2894 2903
14 (M) 2993 2997 3004
15 (M) 2994 3000 3007
16 (M) 2992 3003 3008
17 (W) 3657 3653 3655
18 (W) 3741 3750 3753

performed using PES-PP and the spectrum, shown in Figure 5.5-(c), are in very good

agreement with those from the benchmark PES-F. Finally, there are significant shifts in

the energies shown in these panels compared to the harmonic ones. The results in this

figure are the ones predicted to guide experiments. We stress that these spectra are not

intended to be of “line-list” quality. Clearly, such quality would require a more accurate

DMS and exact ro-vibrational calculations of the transition moment.

In combustion chemistry, energy transfer and dissociation of methane is of inter-

est.175,176 In future work, we intend to investigate collisions of methane with water using

the two PESs reported here. To test the suitability of these PESs for scattering calcu-

lations, we investigated the impact-parameter (b) dependence of the average trajectory

time and average energy transfer, and determined the maximum impact parameter (bmax)

in preliminary simulations of methane-water collisions. In these simulations the collisional

energy was set to 1 kcal/mol. The initial internal energies were set to 10000 cm−1 and
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5000 cm−1 for methane and water respectively. Starting internal energies were distributed

by means of a microcanonical sampling. For every PES available, small batches of 100

collisional trajectories were evolved for each chosen value of the impact parameter. As

already pointed out in a previous work,177 the average trajectory time is expected to peak

before the bmax value is reached. After that, the average trajectory time drops steeply

while approaching and finally exceeding bmax. On the other hand, the b-dependent av-

erage energy transfer (〈∆E〉(b)) is expected to approach zero at bmax and larger impact

parameter values, since interaction and energy transfer become negligible. We identified

bmax as the smallest impact parameter for which the two previous conditions are met,

considering the condition 〈∆E〉(b) ≈ 0 satisfied when |∆E| (b) < 0.2 cm−1. Figure 5.6

shows that bmax values for PES-F (12.5 au) and PES-PP (13.0 au) are in very good

agreement. Furthermore, all the two average trajectory times peak at about 2.7 ps for

impact parameter b = 9 au. As expected, collisional energy transfer simulations are less

sensitive to the potential adopted than energetics and spectroscopy calculations.

5.3.3 Summary

For CH4−H2O, I have constructed two fitted two-body potentials. The most elaborated

fit is very accurate with rms error of 3.5 cm−1. It can reproduce the ab initio attractive

well depth and harmonic frequencies of the dimer very well. DMC calculations indicate

a weak binding of the dimer, with dissociation energy of 153±11 cm−1, while the two

monomers undergo near free internal rotation. The anharmonic vibrational frequencies

and the intensity of the transitions were predicted by VSCF/VCI calculations. The pre-

liminary simulations of methane-water collisional energy transfer also show that dynamics

simulations can be readily performed using our PESs. By comparing the well depth, the
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Figure 5.6: Evaluation of maximum impact parameter in CH4−H2O scattering simula-
tions using PES-F and PES-PP potentials.

harmonic and anharmonic frequencies, as well as maximum impact parameter with our

best PES, we conclude that the CH4−H2O two-body PES using pruned-purified basis

is also quite accurate. The purified fitting bases are able to speed up calculations by a

factor of about ten.

5.4 CH4(H2O)2 Potential

To construct the potential for methane hydrate, in addition to the CH4−H2O intrinsic

two-body, the potential for CH4−H2O−H2O (MWW) three-body was also constructed.
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5.4.1 Ab initio calculation and fitting

The intrinsic three-body energy was calculated from ab initio data as

V
(3)

MWW = VMWW − VMW1 − VMW2 − VWW + VM + VW1 + VW2 , (5.5)

where the methane is labeled as M and two water monomers are labeled as W1 and W2

when only one of the two is involved. Eq. 5.5 is a rearrangement of the three-body term

in Eq. 2.16. All electronic energies were obtained using MP2-F12/haTZ theory computed

with MOLPRO 2010.167 In total, 22592 CH4−H2O−H2O configurations were obtained

as follows. A first set of 3226 points was obtained as follows: 2000 points were chosen to

cover various O-C-O angles and C-O distances; 380 points were selected from molecular

dynamics simulations of CH4−H2O−H2O employing preliminary PES fits; 846 points

were sampled from CH4(H2O)20 and CH4(H2O)24 geometries (methane trapped in cages)

for future application of this intrinsic potential to methane clathrates. The monomers

were kept almost rigid in these 3226 points. Finally, the remaining 19366 points were

randomly sampled around the 3226 points to cover the distortion of monomers.

Figure 5.7 reports the distribution of energies in the database. Most of them are in

the range -100 cm−1 to 100 cm−1. This small range in energies is mainly a consequence

of the weak three-body interaction, but a reasonable fraction of energies is sampled at

short monomer distances.

The full and purified fitting bases were adopted to fit the intrinsic potentials, and

different permutational group were used in this work because inter-monomer atom ex-

change does not occur. However, when two or more monomers are of the same kind,

we require an additional permutational invariance with respect to this monomer inter-

change. This particular symmetry is of course included in full permutational groups, but
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it must be added to low-order groups. In the case where this is done, our notation is to

label the group with an additional ∗ symbol. Operationally, since a modification of the

existing software to include the star symmetry into low-order symmetry groups is not

straightforward, we incorporate it by duplicating the database of energies upon collective

permutation of atoms of like monomers. For the intrinsic three-body CH4−H2O−H2O

potential the database needs only to be doubled.
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Figure 5.7: Distribution of the 22592 MP2-F12/haTZ energies in the database. Bin width
is 10 cm−1. The most populated bin is truncated to better appreciate the population in
the high-energy bins. Bins labeled as 200 and -200 contain also all populations from
energies above and below those values.

This database of intrinsic three-body energies was fitted by nine PESs. These are

given along with a variety of performance metrics in Table 5.5. As seen, and as expected,

the number of coefficients increases with the maximum polynomial order M for the given

basis type. Furthermore, and also as expected, there are fewer coefficients for PESs of

higher permutational order. The purified potentials have a substantially lower number of
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Table 5.5: Number of coefficients, fitting rms error in cm−1, computational times, and
intrinsic three-body energy in cm−1 of the trimer for different analytical CH4−H2O−H2O
potentials. Time is arbitrarily set equal to 100 for PP-422111*/4. The ab initio value has
been calculated with MP2-F12/haTZ.

Potential No. Coeff. rms time (arb. units) V
(3)

MWW

F-821/4 716 15.9 1944.6 -62.7
F-821/3 153 23.0 83.1 -11.3
F-4421/4 4698 5.1 927.8 -134.8
F-4421/3 654 13.8 49.5 -102.8
P-422111∗/4 15551 2.2 301.0 -131.7
PP-422111∗/4 5809 4.6 100.0 -133.5
F-422111∗/3 2553 7.9 33.4 -137.1
P-422111∗/3 1245 8.8 27.8 -130.9
PP-422111∗/3 729 10.5 13.6 -135.1
ab initio -130.7

polynomials than the corresponding full ones. The impact of this reduction increases with

the maximum polynomial order within a group. The rms errors are small, partially due to

the fact that three-body interactions are themselves small. However, the variation of the

fitting error is significant. Within a given permutational group, the fit precision increases

with the number of polynomials, as expected. A more complicated dependence concerns

computational time. We have averaged over batches of ten repetitions the time needed by

the different potentials in evaluating 50000 potential calls. For comparison purposes, we

have set equal to 100.0 the time required by PP-422111*/4. We note that within the same

permutational group the computational effort grows with the number of polynomials to

evaluate, of course. However, this is no longer true when comparing between different

groups. For instance, PP-422111*/4 with 5809 terms is more than 9 times faster than F-

4421/4 with 4698 terms. The reason is that monomial symmetrization requires evaluation

of a much larger number of monomials for groups of higher permutational order. In other
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words, the fewer polynomials in the F basis with high symmetry are more expensive to

evaluate because they contain more monomials. For example, F-4421/4 with 4698 terms

requires calculation of about 121 K monomials against the 16 K required by PP-422111*/4

with 5809 terms.

5.4.2 Test of the potential

Fitting errors do not necessarily translate into accuracy of the potentials in energy cal-

culations. To investigate this, I have employed the potentials to evaluate the intrinsic

three-body contribution to the energy of the CH4−H2O−H2O trimer. The trimer equi-

librium configuration has been optimized at CCSD(T)-F12a/haDZ level of theory to

best evaluate the ab initio binding energy. The last row of Table 5.5 reports the ab ini-

tio intrinsic three-body energy calculated with MP2-F12/haTZ, the same level of theory

employed for the database, thus allowing for a direct comparison to the results of our

potentials. The last column of Table 5.5 presents the intrinsic three-body contribution

of the potentials to the CH4−H2O−H2O trimer energy. F-821/3, F-821/4, and F-4421/3

are far off the ab initio value and will not be further considered. As for the remaining six

potentials, those with maximum polynomial order M = 4 provide excellent approxima-

tions, while F-422111*/3 is less accurate but still acceptable. Remarkably, the two very

fast purified potentials with M = 3 (P-422111*/3 and PP-422111*/3) yield much better

energies than the corresponding F potential even if based on a lower number of polyno-

mials. We will employ all six potentials in the final and more complex energy calculations

before drawing our conclusions about the accuracy of the fitted potentials.

By summing up the pre-existing potentials (including water monomer,169 intrinsic

two-body (H2O)2,178,179 and the methane intramolecular potentials168) and the intrinsic
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two-body CH4−H2O and the present three-body CH4−H2O−H2O potentials, we obtain

the PES for the CH4−H2O−H2O trimer. By employing the same optimized geometry for

the CH4−H2O−H2O trimer as before, high-level CCSD(T)-F12b/haTZ ab initio calcu-

lations were performed to evaluate each term of one-, two- and three-body interactions.

For comparison, the same calculations were performed with the analytical PES using

P-422111*/3, the potential that better approximates the intrinsic three-body ab initio

value for the trimer geometry. The zero of energy was set for the three isolated monomers

in their equilibrium configurations. The energy of each term in the many-body represen-

tation is listed in Table 5.6. As seen, the two-body energy from F-4211/5 potential is

almost exact if compared to the ab initio value, and the estimate of PP-4211/5 two-

body potential is also very accurate. Our most reliable estimate of De for the trimer

is 2371.3 cm−1. It is obtained by using F-4211/5 for the intrinsic two-body CH4−H2O

interactions. Our value agrees well with the ab initio result of 2403.3 cm−1. The dif-

ference is mainly due to the intrinsic two-body H2O−H2O term, the error of which is

partially compensated by the overestimation of the three-body contribution. The main

reason for these discrepancies lies in the different levels of electronic theory adopted. In

fact, the two-body H2O−H2O PES is fitted to CCSD(T)/aVTZ energies, P-422111*/3

to MP2-F12/haTZ energies, while ab initio calculations in this test were performed with

CCSD(T)-F12b/haTZ. The three-body interaction is shown to have a non-negligible im-

pact, accounting for about 5% of the dissociation energy.

To further point out the accuracy of our three-body potentials, we present in Fig-

ure 5.8 three 1-d cuts for the three potentials with lowest fitting error. Starting from the

optimized equilibrium geometry of the trimer, the cuts describe the change in three-body

interaction energy against variation of the distance between the methane carbon atom

and the oxygen atom of one of the two water monomers. In the cuts reported, all monomer
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Table 5.6: Energy of each term in the many-body representation of the CH4−H2O−H2O
trimer. Energies are in cm−1. Ab initio calculations employ CCSD(T)-F12b/haTZ.

ab initio PES

CH4 1-body 16.4 12.3
H2O(1) 1-body 16.8 18.4
H2O(2) 1-body 5.1 5.8
CH4−H2O(1) 2-body -232.9 -233.9 a, -252.6 b

CH4−H2O(2) 2-body -330.0 -330.5 a, -331.7 b

H2O−H2O 2-body -1756.3 -1712.5
CH4(H2O)2 3-body -122.4 -130.9 c

CH4(H2O)2 De -2403.3 -2371.3 a,c

a F-4211/5 for CH4−H2O;
b PP-4211/5 for CH4−H2O;
c P-422111*/3 for CH4−H2O−H2O.

internal geometries are frozen along the cut and the C-O distance is modified in one case

moving the methane (upper panel) and in the other case shifting the water monomer

(lower panel). The second water monomer is held at its initial position. The three po-

tentials show excellent accuracy down to C-O distances of about 3 Å, a short distance

where two-body repulsive interactions start to be increasingly predominant. The upper

panel clearly points out that purified potentials rigorously ensure the zero-interaction

asymptotic limit.

5.4.3 Summary

I have constructed several fits to represent the CH4−H2O−H2O three-body interaction,

with different symmetry group, polynomial order, and fitting bases. These three-body po-

tentials have been employed for calculations involving the methane-water-water trimer.

Results are excellent from the point of view of both accuracy and reduction of computa-
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Figure 5.8: 1-D cuts for the intrinsic CH4−H2O−H2O three-body potential (V
(3)

MWW).

tional overheads. For instance, with the maximum polynomial order of 4, the P-422111*/4

potential is about three times faster than the one with full fitting bases (F-4421/4), and

another speed up of three times is achieved by using the pruned-purified fitting bases.

As for accuracy, the three-body contribution to the binding energy of the trimer is re-

produced with errors of just a handful of wavenumbers.

5.5 H2−H2O Potential

The interaction between H2 and H2O has also drawn considerable attention experimen-

tally and theoretically.180–185 In the H2−H2O dimer, the water molecule exhibits an in-

teresting dual identity as either either proton donor or acceptor.

An early PES of the H2−H2O dimer has been reported by Hodges et al. 186 in 2004.

This was a rigid-body, five-dimensional PES obtained with scaled perturbation theory. In

2005, Faure et al. 187 presented a full-dimensional interaction potential, calibrated using

highly accurate CCSD(T) with explicitly correlated R12 method. The authors first cal-

culated the H2−H2O interaction by performing rigid-rotor five-dimensional calculations



Chapter 5. Many-body Potentials for Clathrate Hydrates 64

for a large number of geometries at “medium accuracy” CCSD(T) level. The resulting

surface was further calibrated by means of high-precision explicitly correlated CCSD(T)-

R12 calculations on a subset of the rigid-rotor intermolecular geometries. Finally, the five-

dimensional rigid-rotor PES was extended to all nine dimensions. Later they reported a

vibrationally averaged potential for the dimer.188 This PES was then used to investigate

rovibrational states of the H2−H2O dimer, showing good agreement with experimental

observations.184 The extension beyond the rigid rotor was made using a quadratic Taylor

series expansion about the rigid rotor reference configuration. It has not, to the best of

our knowledge, been used for vibrational applications beyond zero-point averaging of the

full potential.

In this section, flexible, ab initio potential energy surfaces for the intrinsic two-body

energies of H2−H2O is presented.

5.5.1 Ab initio calculation and potential fitting

For calculations of the intrinsic two-body H2−H2O energies, the CCSD(T)-F12 method

was employed, and tests of various basis sets were performed to evaluate their accuracy

and efficiency, in order to come up with a reasonable choice for the database of energies.

For this purpose the ab initio dissociation energy (De) of the H2−H2O dimer was calcu-

lated at the CCSD(T)-F12a level of theory using aVTZ, aVQZ, aV5Z and haQZ (aVQZ

for O and VQZ for H) basis sets for the global and secondary minima. The results are

given in Table 5.7, along with the result from previous CCSD(T)-R12 calculations using

theoretical equilibrium geometries.187 Compared to the aV5Z results, haQZ energies are

off by only a few (though maybe fortuitously) wavenumbers. Furthermore, it’s consid-

erably faster than the aVQZ basis. Therefore, the haQZ basis seems to be a reasonable



Chapter 5. Many-body Potentials for Clathrate Hydrates 65

choice for both computational cost and accuracy, and the estimated computational cost of

the calculations for the database of roughly three days of CPU time on a sixteen-processor

computer, was deemed quite feasible.

Table 5.7: Comparison of De (in cm−1) for H2−H2O dimer at CCSD(T)-F12a level of
theory using different basis sets, and from a previous study.

Minimum Geometry aVTZ aVQZ aV5Z haQZ Ref. 187

Global 241.4 227.8 223.2 224.0 221.2
Secondary 220.8 203.0 197.7 194.7 -

Thus, for the intrinsic two-body potential we generated a database of 44623 ab initio

energies at CCSD(T)-F12a level of theory with haQZ basis set. A first set of H2−H2O

configurations was obtained by means of direct-dynamics simulations performed using

normal-mode sampling of initial conditions at several internal excitation energies up to

the dissociation limit and employing B3LYP/6-31G(d,p) level of theory. Then, starting

from many of the distorted monomer configurations thus generated, additional dimer

geometries were randomly sampled by varying inter-monomer H-O or H-H distances in

the range between 2.0 and 9.0 Angstroms. At these configurations, the intrinsic two-body

interaction was obtained according to

V
(2)

H2−H2O = VH2−H2O − VH2
− VH2O. (5.6)

Thus, three electronic energies are needed per configuration. From the database of these

energies, a preliminary two-body fit was performed to assess the appropriateness of the

sampled configurations. Harmonic frequencies of the global minimum and some one-
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dimensional cuts obtained with this preliminary PES were compared to the correspond-

ing values from ab initio calculations. Thereby, about 3000 points were added to the

preliminary dataset to provide a better coverage of the surface. We did not employ coun-

terpoise correction because basis superposition errors are expected to be small for the

basis set used. All the ab initio calculations were carried out using MOLPRO 2010.167

For the H2−H2O two-body potential, the permutational group we have adopted is

221, meaning that the two hydrogens of H2 can be interchanged without modification

of the potential energy. The same applies to the two hydrogens of the H2O monomer,

while the single oxygen atom does not have a permutational counterpart. The full (F)

and purified (P) fitting bases are used to fit this two-body potential.

We have obtained several fits for the intrinsic H2−H2O interactions, adopting the

techniques described in the previous section. The potentials have been first assessed on

the basis of their rms fitting error and relative computational costs. Table 5.8 summarizes

these for each potential, identified by the label introduced in the previous section. The

computational times are evaluated by averaging batches of 10 series of 50000 potential

calls, and compared by setting arbitrarily to 100 the cost of F-221/6.

Table 5.8: Number of coefficients, fitting rms error, and relative computational times,
for different fitted H2−H2O intrinsic potentials. Time is arbitrarily set equal to 100 for
F-221/6.

H2−H2O No. Coeff. rms (cm−1) time (arb. units)

F-221/6 2304 3.8 100
P-221/6 2174 5.0 53

PP-221/6 260 114.8 7
P-221/7 5216 4.2 153
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Table 5.8 shows that for the two-body interaction, F-221/6 is characterized by a very

small fitting error. The purified potential (P-221/6) still has low rms error and speeds

up calculations by a factor of two. The pruned purified potential (PP-221/6) depends on

a much smaller number of coefficients and it is extremely fast but, on the other hand,

its fitting error is much higher. This can be explained by recalling that PP potentials

depend exclusively on inter-monomer variables. In the two-body system presented here,

there are only six inter-monomer distances, which is fewer than the dimensionality of the

H2−H2O surface (nine). Finally, we notice that an increment of the maximum polynomial

order (P-221/7) decreases only slightly the fitting error but increases about three times

computational overheads. For these reasons, F-221/6 and P-221/6 are employed in our

further calculations.

5.5.2 Test of the potential

Figure 5.9 shows the distribution of the intrinsic two-body energy and the corresponding

fitting error of F-221/6. The interaction between H2 and water is fairly small, with most

of the sampled energies between -250 and 150 cm−1. A large number of points were

sampled at large monomer separation so that the F-potential does numerically reproduce

the correct asymptotic energy (which is zero). These energies contribute to the high peak

at V2b = 0 in panel (a) on the left. The panel (b) shows the distribution of the fitting

error, which, in general, is lower than 15 cm−1, with rms of 3.8 cm−1. The rms error

in repulsive short range, van der Waals minimum and long range regions are listed in

Table 5.9. Overall the error is small and varies little in different regions, but in the long

range it is relatively large compared to the (small) energies in this region. This is because

our fits employ exponentially decaying functions, which do not have the correct long
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range decay. However, the database and the fit do yield energies that are in the few

wavenumber range. For applications that require very precise potential evaluations in

the long range, investigators can easily switch at large distances to a potential that has

the correct analytical H2−H2O interaction.

Figure 5.9: Distribution of (a) energy and (b) fitting error (full fitting basis) of intrinsic
two-body energies.

Table 5.9: Root-mean-square error (in cm−1) of the F-221/6 potential in the repulsive,
van der Waals minimum and long range regions. The average absolute potential in each
region is also listed.

Center-of-mass distance < 2.7 Å 2.7 Å– 5.0 Å > 5.0 Å

Average |V2b| 11032.4 81.3 5.7
rms error 5.8 4.2 3.2

Two one-dimensional cuts at two different orientations of the H2−H2O dimer from

ab initio calculations and the PES are given in Figure 5.10, which shows very good
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agreement between the F-221/6 and P-221/6 fits, and both agree with the ab initio

energies excellently.

Figure 5.10: Two one-dimensional cuts from the two-body PESs and ab initio calcula-
tions, at two different orientations.

The global full PES of the H2−H2O dimer is the sum of the intrinsic two-body poten-

tial (here either F-221/6 or P-221/6) and pre-existing hydrogen189 and water monomer

potentials.169 This global H2−H2O PES was employed for geometry optimization, cal-

culation of the dissociation energy, normal mode analysis and DMC calculations of the

zero-point energy and wavefunction of the dimer.

The two minima were located on the full PESs, and their configurations are depicted

in panels (a) and (b) of Figure 5.11. The global minimum has a planar structure, while in

the higher-energy minimum, the H2 is perpendicular to the H2O plane. The dissociation

energies of these two minima are given in Table 5.10. Dissociation energies obtained from

the analytical PESs agree well with the ab initio values.

The harmonic frequencies of the two minima are reported in Table 5.11. The ab
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Figure 5.11: The structures of (a) global minimum of H2−H2O dimer, (b) secondary
minimum of H2−H2O and (c) global minimum of H2(H2O)2 trimer.

Table 5.10: De (in cm−1) for the H2−H2O dimer from ab initio CCSD(T)-F12a/haQZ
calculations and two different PESs.

Structure ab initio F-221/6 P-221/6

Global minimum 224.0 223.7 225.8
Secondary minimum 194.7 191.4 189.8
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initio frequencies for the first two modes are not shown because it’s computationally too

demanding to get well-converged frequencies for those low-frequency librations. Results

for the two PESs agree well with each other. The agreement with the ab initio frequencies

is also very good. Note also the small differences between the sets of frequencies for the

intramolecular modes of each minimum. This is already an indication that these minima

are actually quite “floppy”. This is investigated in detail next.

Table 5.11: Harmonic frequencies of the two H2−H2O minima from ab initio and PES
calculations.

Global minimum Secondary minimum

ab initio F-221/6 P-221/6 ab initio F-221/6 P-221/6

- 33.1 36.9 - 39.3 39.4
- 34.9 38.3 - 82.7 85.4

135.9 132.8 132.8 117.3 100.7 101.1
257.5 259.0 262.3 142.2 135.8 133.9
287.0 281.4 281.2 356.9 337.3 330.8
1648.8 1649.4 1650.0 1650.7 1651.0 1651.1
3834.7 3831.0 3831.6 3831.7 3832.4 3834.9
3945.0 3943.0 3943.5 3940.8 3943.2 3943.0
4382.7 4380.6 4379.7 4388.6 4387.6 4387.9

The ZPEs of the dimer and the fragments have been calculated using DMC simula-

tions. For each system studied, ten simulation were carried out, and in each simulation,

20000 walkers were propagated for 55000 steps. The walkers were equilibrated in the first

5000, and the energies in the remaining steps were collected to calculate the ZPE. The

ZPE of the bound dimer is 7003.8 ± 1.2 cm−1 when employing F-221/6. If P-221/6 is

used, then the ZPE is 7005.3± 0.7 cm−1, which agrees very well with the F-221/6 result.

The sum of ZPEs of the two fragments were calculated with two different approaches.
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The first approach still consists of DMC simulations but uses only the monomer PESs.

The result is 6814.3 ± 1.0 cm−1. In the second approach, the H2 ZPE was calculated

with a one-dimensional discrete variable representation (DVR), while the ZPE of wa-

ter was calculated using the software MULTIMODE.38,39 The sum of the two ZPEs of

the fragments is in this case 6816.2 cm−1, in agreement with the value obtained with

DMC calculations. Finally, we evaluated the measurable dissociation energy (D0) of the

H2−H2O dimer, and our best estimate is 34.5±1.6 cm−1, using the DMC ZPEs for both

the bound dimer (7003.8±1.2 cm−1 from the F-221/6 fit) and the fragments (6814.3±1.0

cm−1), and the CCSD(T)-F12a/haQZ electronic dissociation energy (224.0 cm−1).

Figure 5.12: Iso-surfaces of the vibrational ground state wavefunction for the H2−H2O
dimer from the DMC simulations with two different iso-values. The global and secondary
structures are also indicated as reference structures in panels (a) and (b), respectively.

The vibrational ground state wavefunction of the dimer can also be obtained from

the DMC simulation. About 2000000 geometries of the walkers were collected from the

simulations and these geometries were optimally aligned into the principal axis frame.

The wavefunction amplitude was obtained by dividing the space into volume elements and

performing histogram binning in the atomic coordinates, as was done for CH4−H2O. The

vibrational ground state wavefunction of the H2−H2O dimer is shown as cloud-like iso-
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surfaces in Figure 5.12, with two different iso-values. In panel (a), the iso-value is 70.7%

of the maximal amplitude, while, in panel (b), the iso-value is 45% of the maximum. As

a reference, the geometries of the global and secondary minima of the H2−H2O dimer are

also shown. As one can see from the figure, the wavefunction has larger amplitude near

the global minimum, but also has significant amplitude near the secondary minimum.

We conclude that, overall, the vibrational ground state wavefunction is broad and spans

both minima, indicating that the dimer is characterized by large amplitude motion (i.e.

nearly free monomer rotation).

5.5.3 Summary

We have presented four different intrinsic two-body potentials for H2−H2O. The most

accurate fit has rms error of 3.8 cm−1, and it is obtained upon least-squares fit based on

full fitting bases. For this two-body potential, the pruned-purified bases (PP) contains

fewer variables than the degrees of freedom; therefore, the PP potential has a significant

error. These intrinsic two-body potentials using full and purified fitting bases have been

employed to build the potential of H2−H2O dimer. The PES can reproduce the electronic

dissociation energy and the harmonic frequencies of the dimer precisely. Our best esti-

mation of the dissociation energy D0 of the dimer is 34.5 ± 1.6 cm−1, based on DMC

calculations of the zero-point energies of the dimer and isolated monomers. Further ex-

amination of the vibrational ground state wavefuntion obtained in the DMC simulations

indicates that the hydrogen and water monomers undergo nearly free internal rotation.
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5.6 H2−H2O−H2O Potential

Xu et al. 148 performed quantum translation-rotation calculations for the H2 trapped

inside clathrate cages, based on two different types of H2−H2O pair potentials, such

as a simple point charge model (SPC/E)75, and the ab initio one by Hodges et al. 186 .

However, calculations using the five-dimensional ab initio PES overestimate the angular

anisotropy of the H2−H2O cage interaction, yielding too large H2 rotational splittings, and

underestimate the translational frequencies; on the contrary, the same calculations using

SPC/E potential, which actually incorporates approximately some effect of nonadditive,

many-body induced polarizations, yield better agreement with experiment. This implies

that three-body H2(H2O)2 interactions cannot be neglected. So we have also constructed

PESs for the three-body interactions.

5.6.1 Ab initio calculation and PES fitting

For the intrinsic three-body potential, we employed the CCSD(T)-F12a level of theory

and haTZ (aVTZ for O and VTZ for H) basis set. The database consists of 36603 ab initio

energies. A first set of 29757 points was generated following the same procedure adopted

for the H2−H2O two-body database, as described above. The remaining 6846 points

were selected from clathrate structures. The intrinsic H2(H2O)2 three-body energies was

obtained according to

V
(3)

H2(H2O)2
= VH2(H2O)2

− V (2)
(H2O)2

−
2∑
i=1

V
(2)

H2−H2O(i) −
2∑
i=1

VH2O(i) − VH2
. (5.7)

The ab initio calculations were carried out using MOLPRO 2010.167

Similar to the CH4−H2O−H2O and H2−H2O intrinsic potentials, different fitting
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Table 5.12: Number of coefficients, fitting root mean square error, and relative compu-
tational times, for different fitted H2−H2O intrinsic potentials. Time is arbitrarily set
equal to 100 for F-221/6.

H2(H2O)2 No. Coeff. rmse (cm−1) time (arb. units)

F-422/5 5801 2.9 2378
P-422/5 2850 9.4 1128

PP-22211∗/5 9649 6.5 390
P-22211∗/4 4455 12.7 186

bases and symmetry groups were adopted to fit this H2(H2O)2 intrinsic three-body po-

tential. Table 5.12 summarizes the number of coefficients, rmse, and computational cost

for each potential, identified by the label introduced in the previous section. The com-

putational times are evaluated by averaging batches of 10 series of 50000 potential calls,

and the cost of the F-221/6 fit of the H2−H2O two-body is set to 100. We first notice

that the potential obtained by means of the invariant polynomial technique (F-422/5) is

very accurate but also very slow, and the purified potential for the same permutational

group (P-422/5) cut costs just in half. Better results are obtained by lowering the order

of the permutational group. The potentials for group 22211∗ are faster to evaluate even

if they depend on a larger number of coefficients (and consequently polynomials). The

reason is that the single polynomials are much cheaper to calculate than in the case of

symmetry 422. The precision of PP-22211∗/5 and P-22211∗/4 is also very good. In the

case of the three-body interaction, the pruned-purified potential depends on 21 inter-

monomer variables, a number larger than the dimensionality of the H2(H2O)2 surface

(18), and the fitting rmse remains small. Due to their combined fitting accuracy and

speed, PP-22211∗/5 and P-22211∗/4 will be employed in the trimer calculations together

with F-422/5. Finally, we note, that computational times for the three-body fits are much



Chapter 5. Many-body Potentials for Clathrate Hydrates 76

larger than for the two-body fits, as expected.

5.6.2 Test of the potential

Similar to the two-body case, Figure 5.13 shows the distribution of energy and fitting error

for the F-422/5 intrinsic three-body potential. The intrinsic three-body energy is weaker

than the two-body one, and consequently the distribution of the energy is narrower. We

also needed a large number of points at large monomer separation to guarantee zero

asymptotic value in the case of the full fitting basis. Rmse (2.9 cm−1) and fitting error

distribution are comparable to those of the intrinsic two-body.

Figure 5.13: Distribution of (a) energy and (b) fitting error (F-422/5 potential) of in-
trinsic H2(H2O)2 three-body energies.

Two one-dimensional cuts that are not included in the fitting database are shown in

Figure 5.14. Three fits of the three-body energy have been tested here. In one of the cuts,

the fitted intrinsic potentials agree almost perfectly with the ab initio energies, while, in

the other cut, the agreement is not perfect for F-422/5. It approaches zero slightly too
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fast when the O-O distance increases. However, overall, the fitted three-body potentials

are precise representations of the ab initio energies.

Figure 5.14: Two one-dimensional cuts of the three-body interaction for the H2(H2O)2

trimer from ab initio calculations and the indicated intrinsic three-body PESs.

The full, global PES of the H2(H2O)2 trimer is the sum of five potentials: water

monomer, H2 monomer, water two-body from our group, and the present H2−H2O intrin-

sic two-body (F-221/6) and H2(H2O)2 intrinsic three-body. For the latter, three potentials

were tested and compared, i.e. F-422/5, P-22211∗/4 and PP-22211∗/5. The structure of

the trimer minimum with some geometric parameters is depicted in panel (c) of Fig-

ure 5.11. The H2 and the hydrogen bonded OH form a nearly planar ring, with one free

OH above and one below the ring. The electronic dissociation energy of the trimer, De,

was determined by setting the zero of energy for the three isolated monomers in corre-

spondence of their equilibrium geometry. The contribution of all the one-body, two-body

and three-body terms as well as the final De are listed in Table 5.13. Note, the minima

all differ slightly for each column in the table and so the contributions from all one-body
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and two-body terms differ slightly among the PESs, even though the same one-body and

two-body potentials are used in all PESs. The three analytical PESs all have somewhat

smaller values of De compared to the ab initio value. The difference is mainly due to the

(H2O)2 two-body energy. The reason is that different ab initio methods were employed

in the calculations. The potential we use for the water two-body in our analytical PESs

has a near-exact De, and thus more accurate than the one obtained with the present ab

initio calculations, which use CCSD(T)-F12a/haTZ level of theory without counterpoise

correction. Thus, we believe that accurate De is within a few wavenumbers of 2140 cm−1.

Table 5.13: Energy of each term in the many-body decomposition of the H2(H2O)2

trimer.

ab initio F-422/5 PP-22211∗/5 P-22211∗/4

H2 one-body 1.7 1.4 1.5 1.4
H2O one-body 15.6 13.7 14.0 13.7
H2−H2O two-body -356.6 -354.4 -358.2 -351.3
(H2O)2 two-body -1745.0 -1703.3 -1690.9 -1703.4
H2(H2O)2 three-body -103.0 -95.9 -113.3 -100.5

De 2187.3 2138.5 2146.9 2140.1

Table 5.14 gives the harmonic frequencies for the H2(H2O)2 trimer. All the three

PESs reproduce the frequencies accurately. However, if we just include the two-body

interaction and neglect the H2(H2O)2 interaction, the frequency of the H2 stretch (the

last row in the table) is overestimated. Overall the effects of the three-body interaction

on the frequencies is small but not negligible. This is another confirmation that the

H2(H2O)2 intrinsic three-body contribution is notable and should not be neglected in

both energetics calculations and harmonic-frequency analysis.
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Table 5.14: Harmonic frequencies of intramolecular modes of the H2(H2O)2 trimer from
ab initio calculations and two different analytical potentials. Frequencies obtained ne-
glecting the intrinsic three-body potential are listed in the last column.

ab initio F-422/5 PP-22211∗/5 P-22211∗/4 Without three-body

1648 1650 1651 1651 1650
1666 1666 1665 1664 1664
3740 3746 3748 3746 3754
3821 3823 3823 3822 3825
3914 3916 3916 3915 3916
3928 3931 3931 3932 3933
4355 4358 4356 4360 4372

5.6.3 Summary

The intrinsic three-body potentials presented in this section have been tested by em-

ploying them in the PES of the H2−H2O−H2O trimer. The potentials using the purified

and pruned-purified bases are much faster than that uses the full bases, and at the same

time retain relatively high accuracy. For the trimer, the PES also reproduces dissociation

energy and harmonic frequencies quite accurately.

5.7 Many-body “Plug and Play” Potential for Clathrate

Hydrate

By summing up the pre-existing WHBB water potential,28 which includes the water

intramolecular potential,169 intrinsic two-body (H2O)2
178,179 and three-body (H2O)3 po-

tentials,27 the monomer potentials (methane168,170 or hydrogen189), and the intrinsic two-

body and three-body potentials described in this chapter, we are able to approximate

precisely the PES for a gas molecule (CH4 or H2 here, but this approach can be extended
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to other molecules) surrounded by an arbitrary number of water monomers. The approx-

imation is at the three-body level of the many-body representation. Besides accuracy,

computational costs of potential calls made with the fitted three-body potentials need

to be estimated when building such a complex PES. The many-body potentials of the

X(H2O)n (X=H2, CH4) has the “plug-and-play” feature. This feature allows us to use

different fits for different purposes. For example, we could use spectroscopically accurate

monomer potentials and the most accurate fits for the intrinsic two-body and three-body

energies for spectroscopic studies, and use the most efficient fits when the computational

cost is high but the requirement for the accuracy is relatively low.

A final and more challenging application of our intrinsic potentials is the calculation

of the dissociation energy of a methane or hydrogen molecule in a dodecahedral water

cage. The empty (H2O)20 dodecahedral cage has been optimized by employing the WHBB

water potential, and the corresponding energy were calculated. Geometry of CH4 or H2

in the (H2O)20 cage has been optimized by means of the analytical PES for X(H2O)n

(n=20). The energies of the two X(H2O)20 systems were calculated. De was obtained as

the difference between the calculated energies of X(H2O)20 and the corresponding empty

water cage. (The potential of the monomer at equilibrium is set to zero) To assess the

impact of the intrinsic two-body and three-body interaction on De, 20 terms of X−H2O

two-body interactions and the 190 X(H2O)2 terms in the cluster were also evaluated. For

comparison, ab initio calculations of the two-body or three-body interactions were also

performed.

The results for CH4(H2O)20 are presented in Table 5.15. For this system, three

different conformers of the cage with different proton arrangements were considered.

Ab initio calculations demonstrate that the three conformers have similar three-body

CH4−H2O−H2O interactions, with conformer 2 and 3 slightly higher in energy. This
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feature is best reproduced by P-422111*/4 and PP-422111*/4. Looking at the single con-

former energies, P-422111*/4 and PP-422111*/4 give the best estimate for conformer 2

and conformer 3, while conformer 1 is best approximated by F-4421/4. The best poten-

tials provide energies that are within 0.1-0.15 kcal/mol (or less) of the ab initio value.

This is a small error (about 40-50 cm−1) if one considers that there is a total of 190 terms

that sum up to yield the three-body energy. A combination of previous results for the

trimer and results for cluster systems shows that potentials with maximum polynomial

order M=4 are in general more accurate than those with M=3. However, the latter are

much faster and have good accuracy, so in some applications they could be the preferred

choice. Cluster calculations point out once more that three-body contributions to the

total energy are not negligible.

As a comparison, we note that recently, Deible et al. 190 performed ab initio and

quantum Monte Carlo calculations to determine the De of CH4(H2O)20. The struc-

ture they employed is labeled as conformer 3 in this work, and the authors reported

a De of 5.3 kcal/mol. However, they froze the geometry of (H2O)20 when methane is

enclathrated, thus underestimating De. They have also calculated the 20 terms in the

two-body CH4−H2O interaction and the 190 terms of the three-body CH4−H2O−H2O

interaction for their geometry, employing the high-level CCSD(T)-F12b method with

VTZ-F12 basis set and counterpoise correction. The sum of two-body energies and the

sum of three-body energies are -5.85 kcal/mol and 1.01 kcal/mol. The difference with our

estimates is mainly due to the different geometries (which impact to the two-body energy

for about 0.2 kcal/mol), level of electronic theory and counterpoise correction employed.

For the hydrogen-water system, we just calculated the dissociation energy of the con-

former 1, because the dissociation energy is not sensitive to the proton arrangement, based

on the results of the CH4(H2O)20. The “F” potentials for both H2−H2O and H2(H2O)2 are
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used in this application. The De, two-body and three-body contributions are presented

in Table 5.16. For the two-body, the difference between ab initio and the PES values is

only 0.26 kcal/mol, and this can be due to the different levels of electronic structure the-

ory employed. The ab initio calculations were based on CCSD(T)-F12a/haTZ, while the

PES employs CCSD(T)-F12a/haQZ. The many three-body interactions are small and of

opposite signs in this cluster, so contribute only 0.14 kcal/mol to the dissociation energy.

Finally the PES predicts that the De of H2(H2O)20 is 2.67 kcal/mol, which is about 1

kcal/mol larger than the value predicted by MP2/6-31G(d) calculation.81

Table 5.15: Binding energies and three-body energies for three conformers of
CH4(H2O)20. Ab initio calculations are at the MP2-F12/haTZ level. Energies are in
kcal/mol.

Conformer 1 a Conformer 2 b Conformer 3 c

2-body -6.77 -6.81 -6.79

F-4421/4 3-body 0.72 0.54 0.54
P-422111*/4 3-body 0.59 0.63 0.66
PP-422111*/4 3-body 0.61 0.63 0.65
F-422111*/3 3-body 0.66 0.53 0.53
P-422111*/3 3-body 0.67 0.59 0.57
PP-422111*/3 3-body 0.63 0.60 0.56
ab initio 0.75 0.77 0.77

De (PP-422111*/4) 6.16 6.18 6.14

a Structure extracted from crystal structure in Appendix of Ref. 67
b Structure from WHBB28

c Structure from the supplementary material of Ref. 190
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Table 5.16: The dissociation energy (in kcal/mol) of H2(H2O)20 and the contributions
of the H2−H2O two-body and H2(H2O)2 three-body interactions.

ab initio PES MP2/6-31G(d) a

De - 2.67 1.68
H2−H2O 2-body -2.29 -2.55 -
H2(H2O)2 3-body -0.22 -0.14 -

a Ref. 81

5.8 Summary and Conclusions

We have constructed the intrinsic two-body and three-body potentials of different accura-

cies and complexities for the CH4−H2O, CH4−H2O−H2O, H2−H2O, and H2−H2O−H2O

interactions. These potentials are least-squares fits to high-level ab initio data, based on

permutationally invariant polynomials. The full permutationally invariant fitting bases

can be purified so the potential becomes exactly zero when one or more monomers are

separated with the others. The full and purified fitting bases have been employed in

building these potentials of non-covalent interactions.

We have employed the intrinsic PESs in the many-body PESs of the CH4(H2O)n and

H2(H2O)n systems. The binding energy of a methane or a hydrogen molecule with the

512 clathrate cage has been calculated, and the two-body and three-body contributions

agree quite well with the ab initio calculation. More importantly, the purified and pruned-

purified PESs run much faster than our conventional permutationally invariant fits.

These results point out that the the fitting procedure with purified bases is promising

for studies of more complex systems or even condensed phase clusters, where a larger

number of two-body and three-body interactions necessitate to be considered. In these

cases, a substantial reduction of computational cost allows to follow the real dynamics
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of the system for much longer times.



Chapter 6

Storage Capacity and H2 Diffusion

in Clathrate Hydrates

6.1 Overview

The hydrogen clathrate is a potential material for hydrogen storage and transport.64,65,71

Therefore, the storage capacity of clathrate has been investigated extensively by both ex-

periment and theory. Hydrogen and water crystallize in the form of structure II clathrate

(sII), whose unit cell consists of 136 water molecules that form 8 large 51264 and 16 small

512 cages.62 The H2 molecules occupy both small and large cages in this case. This pure

H2 clathrate is produced at extreme pressure (∼200 MPa), which makes it impracti-

cal for hydrogen storage.69 Florusse et al. 72 showed that the synthesis pressure can be

greatly reduced if large molecules such as tetrahydrofuran (THF) is introduced to fill

the large cage. However, compared to the pure H2 clathrate, the storage capacity of the

binary clathrate is much smaller, because most of the large cages are occupied by large

molecules, and H2 molecules only occupy small cages. The number of hydrogen molecules

85
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that can be trapped inside the small 512 cages is still under debate. Mao et al. 69 suggested

that the small cavities are occupied with two H2 molecules, and this is supported by a

theoretical work with a statistical mechanical model in conjunction with first-principles

quantum chemistry calculations70, and an ab initio study using isolated cages as model

systems.81,82 Studies of the binary clathrate also showed that the small cages are dou-

bly occupied.72,74,84 On the other hand, some experiments76,79,112, molecular dynamics

(MD)75 and Monte Carlo simulations77 supported single occupancy of the small cages.

Recently, Koh et al. 89 suggested that only ∼1% expansion of the cage dimensions is

sufficient to provide stable room for double occupancy in the small cavity.

Another related question is the barrier for the H2 diffusion (intercage hopping) in

clathrate hydrate, because fast diffusion of H2 is necessary in order for the hydrate to be

a practical storage medium. Experimentally, Okuchi et al. 127 directly measured the H2

diffusion using nuclear magnetic resonance (NMR) spectroscopy, and they estimated that

the activation energy of the diffusion is about 3 kJ/mol. However, in a decomposition

experiment of the H2−THF binary clathrate, an activation energy of 52–64 kJ/mol was

extracted from the Arrhenius plot of the diffusion coefficient,131 and this is one order of

magnitude larger than the NMR measurement. Theoretically, Alavi and Ripmeester 128

performed DFT (B3LYP) and MP2 calculations of the potential energy barrier of a H2

moving through the cage’s faces, and the barriers are 21–25 kJ/mol for the hexagonal

faces and 105–120 kJ/mol for the pentagonal faces. In this study the cage was kept

rigid. Frankcombe and Kroes 129 carried out MD simulations, from which an activation

energy of 32 kJ/mol was obtained. Static calculations in this work suggested the barrier

of the H2 through the hexagonal faces is 23.8–27.6 kJ/mol, which agrees reasonably well

with the MD result. In a DFT study of the barrier using the lattice model that allowed

relaxation, the barrier is about 20 kJ/mol,80 which is close to the result using rigid cage.
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Another classical equilibrium MD simulation shows that the H2 in the small cage cannot

migrate if the small cage is singly occupied, but when the small cage is doubly occupied,

the intercage hopping can be observed by temporary openings of pentagonal small-cage

faces.132 Recently the free-energy barrier of the H2 migration were calculated using MD

simulations with umbrella sampling, based on DFT theory135 or empirical potential136.

Both studies show that the barrier for the hexagonal faces decreases when increasing

occupancy of the 51264 cage. However, in one study, the barrier is 5–10 kJ/mol,135 while

in the other one , the barrier is 14–31 kJ/mol.136 High-level CCSD(T) benchmark of the

potential-energy barrier has been reported,137 though the authors only employed the H2

passing through a water ring hexamer as the model system, due to the computational

cost.

Therefore, discrepancies about the cage occupancy and the diffusion barrier in hydro-

gen clathrate still exist. In this work I apply the potential energy surface (PES) of the

hydrogen clathrate presented in Chapter 5 to investigate the storage capacity and the

H2 diffusion. Instead of the unit cell with period boundary condition, the isolated cages

are used as the model system, in order to reduce the computational effort. Though the

pure H2 clathrate crystallizes in sII, which consists of two types of cages (512 and 51264),

the binary clathrates could have other crystal structures. Therefore, I did not use the

two sII cages; instead, as a start, I investigated the two most common cages in clathrate

hydrate, i.e., 512 and 51262. The energetics of multiple H2 trapped inside a single cage

are calculated with the PES, and the relative stability of each occupancy is obtained.

Reaction paths of H2 escaping through different windows were obtained with rigid cages,

and the barrier heights of different windows were estimated.
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6.2 Potential Energy Surface

The potential energy of (H2)m(H2O)n is decomposed into the potential of H2 molecules,

the potential of water, and the interaction between H2 molecules and water. Each of

the three components is further decomposed using many-body expansion, presented in

Chapter 2. The potential of H2 molecules consists of H2 monomer and pairwise H2−H2

interaction. The H2 monomer potential is due to Schwenke 189 , and the H2−H2 interaction

is a six-dimensional (6D) potential191 that combines a 4D H2−H2 interaction (with rigid

monomers)192 and a 6D one constructed using slightly lower-level ab initio theory.193 The

interaction potentials between H2 and water have been presented in Chapter 5, and here

the F-221/5 and P-22211/4 were used for the H2−H2O two-body and H2(H2O)2 three-

body, respectively. Three water potentials were considered in this work: WHBB,28 MB-

pol,194–196 and TTM3-F.197 The WHBB and MB-pol are ab initio-based water models and

they are more accurate than the empirical TTM3-F, at the cost of much more expensive

computations. Recently we re-fitted the (H2O)3 intrinsic three-body potential using the

purified fitting basis by Conte,26,198 and in this work, this new three-body is used in the

WHBB water potential and therefore, the new version of WHBB in this work is referred

to as “WHBB/P”.

6.3 Storage Capacity

The 512 and 51264 cages are taken from Xantheas,199 and the geometries of the two cages

were optimized using three different water potentials. The geometries of nH2@512 (n=1,

2, · · · , 5) and nH2@51262 (n=1, 2, · · · , 7) were optimized using the clathrate PES. Here

two versions of the H2-water interaction were used: one with only the H2−H2O two-body
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interaction and the other with the H2(H2O)2 three-body included. The energy differences

between the (H2)n@cage and the empty cage were calculated by

∆E = EnH2@cage − Eempty cage. (6.1)

Because the energy of an isolated H2 molecule at equilibrium is zero in the PES, this

energy difference is the binding energy of nH2+cage. Negative values of ∆E mean that

the system is stabilized with the H2 molecule(s) trapped inside the cage; on the other

hand, positive ∆E indicates the molecular cluster is not stable.

Table 6.1: ∆E’s (in kcal/mol) for systems listed below, calculated with WHBB or MB-
pol water potential, and two-body H2-water interaction, and with MP2/aVDZ calculation

System WHBB/P MB-pol MP2

H2@512 -2.508 -2.563 -3.425
2 H2@512 -3.408 -3.255 -3.721
3 H2@512 -3.018 -2.467 -3.004
4 H2@512 -0.096 0.800 0.085
5 H2@512 6.364 7.829 7.133

H2@51262 -2.185 -2.201 -2.953
2 H2@51262 -4.241 -4.207 -5.364
3 H2@51262 -6.084 -5.986 -7.001
4 H2@51262 -6.261 -5.917 -7.034
5 H2@51262 -4.950 -4.266 -5.720
6 H2@51262 -4.606 -3.729 -5.541
7 H2@51262 -0.745 0.595 -1.008

The ∆E’s calculated with different combinations of the PESs are summarized in Ta-

ble 6.1 and 6.2, and the MP2/aVDZ calculation by Xantheas199 is also shown. The three

columns from Table 6.1 are plotted in Figure 6.1. From the figures and tables, one can
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Table 6.2: ∆E’s (in kcal/mol) for systems listed below, calculated with three water
potentials and H2-water interaction up to three-body.

System WHBB/P MB-pol TTM3-F

H2@512 -2.095 -2.036 -2.043
2 H2@512 -3.071 -3.167 -2.756
3 H2@512 -3.175 -3.438 -2.610
4 H2@512 -0.278 -0.571 0.738
5 H2@512 5.531 7.859 7.850

H2@51262 -2.032 -1.935 -1.961
2 H2@51262 -3.976 -3.829 -3.785
3 H2@51262 -5.964 -5.665 -5.266
4 H2@51262 -5.188 -5.260 -4.496
5 H2@51262 -4.567 -4.756 -3.702
6 H2@51262 -3.612 -3.801 -2.481
7 H2@51262 0.203 1.233 1.233

Figure 6.1: ∆E against the number of H2 molecules in 512 cage and (b) 51262 cage,
calculated with indicated potential or ab initio method.
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find that the results from different water models and different H2-water interaction po-

tentials agree with each other semi-quantitatively, and the agreement with MP2/aVDZ

calculation is also good. The contribution of the three-body H2(H2O)2 interaction is quite

small and it is in general less than 1 kcal/mol. Thus in a lot of cases, the three-body

H2(H2O)2 can be safely neglected. The ∆E values are also not sensitive to the water

models used in the calculation. The agreement between WHBB and MB-pol is expected,

as both of them are ab initio-based potentials for water with comparable accuracy; how-

ever, the TTM3-F is a empirical potential and yet the results show very similar trend as

the WHBB and MB-pol.

When only the electronic energies are considered, these calculations predict that n=2

or 3 (the difference is quite small) is the most stable species for 512 cage and n=3 or 4

is the most stable for 51264 cage. However, the zero-point motion of the H2 molecule(s)

should also be taken into account when comparing the stability of these enclathrated

species. Diffusion Monte Carlo (DMC) calculations were performed to calculate the zero-

point energy (ZPE) of the enclathrated hydrogen molecules. The cages were frozen in

the diffusion Monte Carlo simulations, and the confined H2 molecules were treated in full

dimensionality. The simple unbiased algorithm described in Chapter 3 was applied here.

Specifically, for each cluster, 50000 walkers were propagated for 35000 steps with a step

size 5.0 au. The walkers were first equilibrated for 5000 steps, and then the energies of

walkers were collected to calculate the ZPE of the H2 molecules. Based on the ZPEs, I

obtained the binding energy D0 of the clusters:

D0 = ∆E + ∆ZPE, (6.2)

where ∆ZPE = ZPEconfined − ZPEisolated is the difference in ZPE of the confined and iso-
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Figure 6.2: The nuclear wavefunction of one and two H2 molecules trapped inside the
512 cage.

lated H2 molecule(s). I use the ∆E values calculated with WHBB water potential and the

H2-water interaction up to three-body, i.e., the column “WHBB/P” in Table 6.2. Similar

to the ∆E, more negative value means the system is more stable. The D0 values are listed

in Table 6.3, as well as the MP2/aVDZ calculation with harmonic ZPE correction.

Table 6.3: D0 values (in kcal/mol) enclathrated H2 molecule(s) based on DMC calcula-
tions, as well as the MP2 calculation with harmonic ZPE correction.

System ∆E ∆ZPE D0 MP2

H2@512 -2.095 0.457 -1.683 -2.770
2 H2@512 -3.071 2.247 -0.824 -0.892
3 H2@512 -3.175 5.112 1.937 2.545

H2@51262 -2.032 0.540 -1.492 -2.441
2 H2@51262 -3.976 1.591 -2.385 -2.816
3 H2@51262 -5.964 3.481 -2.483 -2.585
4 H2@51262 -5.188 5.395 0.207 -0.714

Figure 6.2 shows the wavefunction of one and two H2 molecule(s) trapped inside the
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512 cage. One can see that the wavefunction is delocalized and H2 can almost rotate

freely inside the cage. However, the wavefunction of two H2 is not as delocalized as the

one H2 case, and the two H2 tends to avoid each other. According to Table 6.3, the ZPE

of two H2 in the cage is more than twice the ZPE of a single enclathrated H2 due to this

repulsion between the H2 molecules. Though 2 H2@512 has lower electronic energy, the

ZPE of the two enclathrated H2 is much higher and therefore it is actually less stable

than H2@512. Based on the D0 values, we conclude that among nH2@512 species, n=1

is the most stable. For nH2@51262, n=2 or 3 is the most stable, depending on the ∆E

values used. Note that D0 of n=2 is still negative, which means the two H2 molecules

can be stabilized when they are trapped in the cage, compared with completely isolated

case. The energy of n=2 is higher than n=1, so at thermal equilibrium, one H2 molecule

would like to find its way out. However, if the barrier for this H2 diffusion is high enough,

2 H2@512 is metastable and the two H2 molecules would still be trapped inside the cage.

Therefore, the barrier of H2 diffusion will be discussed in the following section.

6.4 H2 Diffusion

First consider one H2 molecule trapped in a single cage. Reaction paths of H2 diffusion

through different windows of the 512 and 51262 cages are obtained as follows. First, the

cage is frozen and the H2 molecule is moved from inside to outside of the cage, through

the center of the pentagonal or hexagonal window, and thus rigid cuts were obtained. At

each point along the rigid cut, the orientation of the H2 (determined by the polar and

azimuthal angles) was optimized and the energy of the optimal orientation was computed.

Figure 6.3 shows the reaction path of a H2 molecule through the pentagonal window in

512, and pentagonal or hexagonal window in 51262. There are 12 pentagonal windows
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Figure 6.3: Reaction paths of a H2 molecule (a) through the pentagonal window in 512;
(b) through pentagonal and hexagonal windows in 51262.

in a single cage, and 2 hexagonal windows in 51262 cage, and in the figure only one of

such paths is shown. Even for the same type of window, due to slight difference in ring

diameters and the proton arrangement, the barrier height are different. The barrier height

of the pentagonal window ranges from about 5000 to 7000 cm−1, and the average is 5909

cm−1 (70.7 kJ/mol) relative to the minimum (the H2 trapped in the cage), with standard

deviation of 605 cm−1 (7.2 kJ/mol). While the average barrier height of the pentagonal

window is only 1624 cm−1 (19.4 kJ/mol), which is significantly lower than that of the

pentagonal window, with standard deviation of 81 cm−1 (1.0 kJ/mol). Compared to the

earlier rigid cage calculation128 that predicts a barrier height of 105–120 kJ/mol through

pentagonal faces, this work predicts a significantly smaller barrier height; while the barrier

for the hexagonal window is just slightly lower than the earlier rigid cage calculation.

Next consider the barrier for H2 passing through the shared pentagonal window be-

tween two 512 cages. Using this model, the relation between the barrier height and the

occupancy of the initial or adjacent cage could be investigated. The notation “(n1, n2)”

is used to represent the occupancy of two cages: cage 1 is occupied by n1 H2 molecules

and cage 2 is occupied by n2 H2 molecules. I started from (1, 0)→ (0, 1), and Figure 6.4
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Figure 6.4: Energy profile of a H2 molecule hopping between two adjacent 512 cages.

shows the energy profile of a H2 molecule moving along the dashed axis. This energy

profile was obtained in the similar way described above: the cage was frozen and the

orientation of the H2 molecule was optimized at each point along the path. For this par-

ticular local structure of the pentagonal window, the barrier of H2 hopping is 7434 cm−1

(88.9 kJ/mol) relative to the minimum. This is the barrier height for (1, 0) → (0, 1).

Then I studied (2, 0) → (1, 1) → (0, 2). For this system, the full energy profile was not

calculated; instead only the energies of five geometries (the three minima and the two

transition state) were calculated. The barrier for (2, 0)→ (1, 1) is about 7056 cm−1 (84.4

kJ/mol) while the barrier for (1, 1) → (0, 2) is about 7506 cm−1 (89.8 kJ/mol). These

results indicate that higher occupancy in the initial cage leads to a lower barrier (88.9

kJ/mol for (1, 0) → (0, 1) v.s. 84.4 kJ/mol for (2, 0) → (1, 1)), while the occupancy of

the destination has little effect on the barrier height (88.9 kJ/mol for (1, 0)→ (0, 1) v.s.

89.8 kJ/mol for (1, 1)→ (0, 2)).

The calculations above all used the rigid cage, so the effect of cage relaxation is not
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Figure 6.5: Geometry of one H2 molecule passing through (H2O)6 ring.

considered. When the cage is flexible, the window could expand a little to allow the H2

molecule to go through, which could lower the barrier height compared to rigid cage

model. However, such calculations using even the isolated cage model is very compu-

tationally demanding. Therefore, in order to investigate the importance of relaxation,

I performed calculations for one H2 molecule pass through a flexible (H2O)5 or (H2O)6

ring. The cages in crystals should be more rigid than the (H2O)5 and (H2O)6 rings, so the

decrease of the barrier height in the rings sets the upper limit for the barrier decrease in

clathrate hydrate. In these calculations, the H2 is rigid and passes through the ring at the

perpendicular orientation, as is shown in Figure 6.5. At each H2-ring distance, I scanned

ten different ring diameters, and at each ring diameter, the O atoms were frozen and

the positions of H atoms in water were optimized. The minimum energy and the optimal

ring diameter at each H2-ring distance were recorded. Without any ring relaxation, the

barrier for H2 diffusion through the (H2O)5 and (H2O)6 rings are 74.6 and 15.6 kJ/mol,
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respectively. And this is actually very close to the barrier in the isolated cages. When

the ring diameters are allowed to change, the barriers further decrease to 36.9 and 10.6

kJ/mol, respectively.

6.5 Summary and Conclusion

The many-body potential energy surface for hydrogen clathrate presented in Chapter 5

was employed to investigate the occupancy of the cages, and barrier for H2 diffusion in the

hydrate. When only the electronic binding energies are considered, the most stable sys-

tems are 2 H2@512, and 3/4H2@51262 for the small and large cage, respectively. However,

when the ZPE of the confined H2 molecules is taken into account, the most stable ones

are 1 H2@512 and 2/3H2@51262. The barrier of H2 diffusion through pentagonal faces is

estimated to be about 36–75 kJ/mol, while for the hexagonal faces, the barrier is between

10 and 20 kJ/mol, where the lower bound is obtained from the relaxed (H2O)5 or (H2O)6

ring. This barrier is small for the hexagonal faces, but quite large for pentagonal ones.

This work suggests that at thermal equilibrium, each small 512 cage should be singly

occupied. However, doubly occupied small cages are also possible, due to the relatively

high barrier of the pentagonal windows.
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98



Chapter 7

Ground State Properties and

Vibrational Spectra of H +
7

7.1 Overview

The protonated hydrogen clusters H +
2n+1 (n>1) have been extensively studied, due to

the important role they play in interstellar chemistry.200–202 The first member of this

series, H +
3 , has been detected in the interstellar medium.203,204 The larger clusters can

be described as a central H +
3 solvated by H2 molecules.205–209 Characterization of the

potential energy surfaces (PESs) of these clusters210–215 illustrates that the potential

is very flat in the region around the minimum, with several low-lying saddle points.

This indicates that these ions are fluxional (“floppy”). Investigation of the vibrational

ground states of these floppy molecules, which could provide insights for understanding

the spectroscopy and dynamics, is of great importance.

As the first member of the protonated hydrogen cluster family and a fluxional ion, H +
5

has attracted many theoretical studies. H +
5 has several low-lying stationary points on

99
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the PES: the saddle point for proton exchange lies at only 52 cm−1 above the minimum,

and the saddle point for the torsion of the outer H2 is roughly 100 cm−1 above the

minimum. Its vibrational ground state properties and large-amplitude motion have been

investigated.216–220 Based on these theoretical works, the H +
5 could be best described as

two H2 molecules sharing a proton, instead of H +
3 solvated by one H2 molecule, and the

shared-proton mode plays an important role in the infrared spectrum of H +
5 . Theoretical

calculations of the spectrum have been performed, using the knowledge obtained from

the investigation of the PES and large-amplitude motion.220–229 These theoretical spectra

agree reasonably well with the experimental measurements.222,223,230,231

However, for the second member, H +
7 , little work has been done. Experimentally,

Okumura et al. 230,231 recorded the infrared predissociation spectrum, and recently Young

et al. 232 revisited the photodissociation spectrum of H +
7 . The experimental spectrum of

H +
7 is simpler than that of H +

5 . A weak and broad feature at about 2200 cm−1 and

a peak at 3982 cm−1 were reported. The authors performed DFT(B3LYP)/6-311+G**

and MP2/6-311+G** calculations with double harmonic approximation, and they as-

signed the feature at about 2200 cm−1 to the asymmetric stretch of the central H +
3 ,

and the 3982 cm−1 peak to the stretch of outer H2.232 Theoretically, Barbatti and Nasci-

mento 233 performed vibrational self-consistent field calculation, followed by second-order

vibrational Møller-Plesset perturbation for H +
5 , H +

7 , and H +
9 . In this calculation, the

ab initio theory was relatively low-level and only two-mode coupling was employed. Re-

cently, a DFT-based PES214 and a full-dimensional, permutationally invariant PES215

became available. In addition to the PES reported by Barragán et al. 215 , I also con-

structed a spectroscopic one that only describes the global minimum and a few low-lying

stationary points, and a DMS in order to calculate the infrared intensities. Details of the

new PES and DMS will be presented later in the chapter.
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Inspired by the recent infrared photodissociation experiment and the development of

the full-dimensional PESs, we investigated the vibrational ground state properties and

the infrared spectrum of H +
7 . We performed diffusion Monte Carlo (DMC) simulations

to characterize the vibrational ground state. From the DMC simulation, the dissociation

energy of H +
7 was obtained. The stability of the partially deuterated species and the

(possible) H-exchange in this cluster was also investigated in the DMC. Finally with

the preliminary information obtained from the DMC simulations, I carried out VSCF

and VCI calculations to obtain the infrared spectra of H +
7 and D +

7 , using the code

“MULTIMODE”.

7.2 Potential Energy and Dipole Moment Surface

Two PESs have been used in the simulations: one is constructed at MP2/cc-pVQZ level

of theory and describes the dissociation of H +
7 to H +

5 and H2 (denoted as PES I in this

chapter);215 the other is computed at CCSD(T)-F12b/cc-pVQZ-F1232,33,234 level of theory

and this is a local PES that does not describe the dissociation (denoted as PES II). Both

PESs employ the fitting procedures described in Chapter 2, and PES-I was applied in

the calculation of the dissociation energy D0 of H +
7 . However, this PES underestimates

the electronic dissociation energy, De of H +
7 by 65 cm−1, compared to the CCSD(T)

benchmark at complete-basis-set (CBS) limit. Moreover, the MP2 harmonic frequencies

of the H +
3 and H2 stretches differ from the CCSD(T) results by 50 to 100 cm−1, and

this is not accurate for spectroscopic calculations. Therefore, We employed higher-level

CCSD(T)-F12b/cc-pVQZ-F12 method and obtained the improved PES II in the bound

region of H +
7 .
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7.2.1 Ab initio calculations for PES II

Different levels of ab initio calculations were performed and the corresponding electronic

dissociation energies were computed. Table 7.1 shows the results. One can see that com-

pared to the CCSD(T)-CBS value, MP2/cc-pVQZ underestimates the De by about 65

cm−1 and CCSD(T)/cc-pVQZ underestimates it by 46 cm−1. With the explicitly corre-

lated CCSD(T)-F12 method, the difference in the De compared to the CBS limit be-

comes 27 cm−1, and finally with cc-pVQZ-F12 basis set, the difference further decreases

to about 20 cm−1. On the other hand, a single-point calculation of the electronic energy

with CCSD(T)-F12b/cc-pVQZ-F12 already costs about two minutes on a 16-processor

computer, so it’s not feasible to apply higher-level theories or larger basis sets, and this

combination of method and basis was employed.

Table 7.1: Total energies (in a.u.) of the optimal structure of the H +
7 and H +

5 + H2,
together with the De values (in cm−1) at the indicated level of theory and basis sets.

Method/Basis set EH +
7

EH +
5

+ EH2
De

MP2/cc-pVQZ -3.690091 -3.682229 1726
CCSD(T)/cc-pVQZ -3.712379 -3.705714 1745
CCSD(T)-F12b/cc-pVQZ -3.713718 -3.705681 1764
CCSD(T)-F12b/cc-pVQZ-F12 -3.714058 -3.705989 1771
CCSD(T)/CBS a -3.71453 -3.70637 1791

a From Ref. 215.

A subset of 42525 configurations were selected from the database of PES I, and

additional 195 geometries were added to the dataset in regions where the energies from the

PES are unphysically low or differ substantially from the ab initio results. The ab initio

calculations on these 42720 configurations were performed using MOLPRO 2010.1,167
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and the expectation values of the dipole moments were also computed, at the MP2 level.

7.2.2 Potential energy and dipole moment surfaces fitting

The fitting methods for the PES and DMS have been described in Chapter 2, and here

the invariant primary and secondary polynomials were applied as the fitting basis. The

full symmetry of H +
7 was used so that all the H atoms are allowed to permute. The

maximum polynomial order is seven, leading to 739 terms for the analytical expression

of PES, and 3528 for the DMS, respectively.

7.2.3 Properties of the potential energy and dipole moment

surfaces
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Figure 7.1: Number of points and root-mean-square error below each energy.
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The overall root-mean-square (rms) error of the PES II is 17.2 cm−1, which is an order

of magnitude smaller than that in PES I. Figure 7.1 shows the number of points and rms

error below each energy in the PES. As is shown in the figure, most of the configurations

in the data set are below 15000 cm−1, and the rms error for this region is only 5 cm−1.

Thus, this fit provides an accurate representation of H +
7 potential surface in the bound

region, up to energies of about 15000 cm−1 above the global minimum.

Figure 7.2: Geometries of the three lowest stationary points of H +
7 .

Table 7.2: The energy of the minimum structure (in a.u.) and the relative energies of two
stationary points (in cm−1) from CCSD(T)-F12b/cc-pVQZ-F12 calculations, the PES I
and II.

Config. CCSD(T)-F12b PES II PES I a

1-C2v -3.714058 -3.714058 -3.690083
2-Cs 47.3 46.9 45.2
3-C2v 113.5 113.9 122.8

a From Ref. 215

Figure 7.2 shows the geometries of the lowest three stationary points, and these three

configurations are labeled as 1-C2v, 2-Cs, and 3-C2v, respectively. In Table 7.2 I list the
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energies of them on PES I and II, as well as the CCSD(T)-F12b ab initio energies. One

can see that the differences between energies from the PES II and ab initio values are less

than 1 cm−1. The PES I does not agree well with the CCSD(T)-F12b energies, because

it is based on MP2 calculations.

Figure 7.3: Contour plots of the PES. In the left panel, H +
7 is initially at 1-C2v, and

φ1 and φ2 are torsional angles of two H2; in the right panel, H +
7 is also initially at the

minimum, and φ2 is the torsional angle of H2 and D2 is the H +
3 -H2 distance.

Figure 7.3 shows the contour plots of PES II. In the panel on the left, we show the

contour lines of the potential with the H +
3 core fixed, while the two H2 units are both

rotating in the φ1 and φ2 coordinates, where φ1 and φ2 are the torsional angles of the two

H2 units. The torsional angle is zero for the minimum configuration and is 90 degree for

the saddle point. One can see the behavior of the PES around the four symmetric 1-C2v

minima, the four equivalent 2-Cs saddle points connecting them, and the 3-C2v stationary

point. In the panel on the right, the H +
7 is originally at the 1-C2v configuration and the

contour plot is presented as a function of the D2, which is the H +
3 -H2 distance and φ2



Chapter 7. Ground State Properties and Vibrational Spectra of H +
7 106

coordinates. The region around the two symmetric 1-C2v minima and their 2-Cs barrier

are shown up to energies of 180 cm−1.

Normal-mode analysis was carried out for the minimum, and the harmonic frequencies

predicted by the PES as well as ab initio calculation are listed in Table 7.3. The difference

between the PES II and the ab initio data is less than 5 cm−1.

Table 7.3: Comparison of harmonic frequencies (in cm−1) calculated from the ab initio
program at CCSD(T)-F12b/cc-pVQZ-F12 level of theory and the PES.

Mode Description CCSD(T)-F12b PES

1 torsion of H2 98 96
2 torsion of H2 124 122
3 168 167
4 562 565
6 572 571
7 695 694
8 732 733
9 797 798
10 907 908
11 bending of H +

3 2294 2293
12 asymmetric stretch of H +

3 2525 2527
13 asymmetric stretch of H +

3 3288 3286
14 out-of-phase stretch of two H2 4237 4235
15 in-phase stretch of two H2 4237 4237

ZPE 10821 10818

The rms fitting error of the dipole moment is 0.0006 au. The x-, y- and z-components

of the dipole moments along specified normal modes (see the descriptions of the normal

modes in Table 7.3) at the minimum are plotted in Figure 7.4. As one can see, the

dipole along the asymmetric stretch of H +
3 (mode 12) and out-of-phase stretch of two

H2 (mode 14) has significant change. So these two modes should have large contribution
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Figure 7.4: One-dimensional cuts of the dipole moment surface along the specified nor-
mal modes at the minimum configuration.

in the infrared spectrum of H +
7 (see Section 4).

7.3 Diffusion Monte Carlo Calculations

7.3.1 Computational details

In order to determine the dissociation energy D0 of H +
7 (or D +

7 ), DMC calculations

were performed for H +
7 (D +

7 ) and H2+H +
5 (D2+D +

5 ), using PES I. The simple unbi-

ased algorithm described in Chapter 4 was applied here, with the step size ∆τ = 5.0 au

and α = 0.2. The convergence of the DMC calculations with respect to the step size was

also tested with step sizes fof 2.5 and 7.5 au, and the difference is only about 3 cm−1.

For simulations of H +
7 (D +

7 ), all the walkers were initiated at the equilibrium configura-
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tion, and for H2+H +
5 (D2+D +

5 ), the fragments were separated by 15 Åwith each at its

equilibrium configuration. For each system, five independent simulations were performed

and in each simulation, 20000 walkers were propagated for 10000 steps. The walkers were

equilibrated in the first 2000 steps, and the reference energies in the remaining 8000 steps

were collected and averaged to compute the final ZPE. The standard deviation from the

five simulations was used to estimate the statistical error of the DMC simulations.

Both PES I and PES II were applied in the DMC calculations of the partially deuter-

ated H +
7 . Simulations were carried out for all the possible partially deuterated isotopo-

logues and isotopomers, and the walkers were initiated at the equilibrium configuration

of H +
7 , with hydrogen atom(s) at different positions replaced by deuterium. For simula-

tions on PES I, three simulations were performed for each species, and in each simulation,

20000 walkers were propagated for 10000 steps, with first 2000 step for equilibration. For

simulations on PES II, only one simulation was carried out for each counterpart, but the

20000 walkers were propagated for 65000 steps with first 5000 steps for equilibration.

The vibrational ground-state wavefunction is visualized as an isosurface, and it is

obtained as follows. The equilibrated walkers from the DMC simulations are recorded and

optimally aligned into the Eckart frame. The space was divided into volume elements and

a statistical analysis was performed for each volume element to obtain the wavefunction

amplitude there.

7.3.2 Results and discussions

Figure 7.5 shows the imaginary time evolution of an illustrative DMC simulation, initiated

from the separated H +
5 and H2 fragments, and after about 4500 steps ends in H +

7

complex. (This simulation was not used in computing the D0; it is presented here just
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because the D0 can be shown conveniently in this imaginary time evolution.) The ZPE

of H +
7 , averaged from five DMC simulations, is 10490 cm−1, with a standard deviation

of 10 cm−1, while for the H +
5 and H2 fragments, the total ZPE is 11242 cm−1 with a

standard deviation of 5 cm−1. These results provide a dissociation energy of 752 ± 15

cm−1 for the H +
7 cluster. The ZPEs are 7530 ± 8 and 8510 ± 6 cm−1 for D +

7 and D2 +

D +
5 fragments, respectively. Therefore, the D0 value of D +

7 is 980 ± 14 cm−1. However,

PES I underestimates the De by 65 cm−1, and when the DMC values of D0 are corrected

by this amount, our best estimations of D0 are 817 ± 15 and 1045 ± 14 cm−1 for H +
7

and D +
7 respectively.

Figure 7.5: DMC simulation starting from the H +
5 + H2 fragments and ends at H +

7 .
The calculated ZPEs and D0 values are also indicated.

The ground state wavefunction of H +
7 is shown in Figure 7.6. According to this plot,
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the H +
3 core is relatively localized; on the other hand, the amplitude for the torsional mo-

tion of the two H2 units is significant, indicating that the H2 units are highly delocalized

and behave like nearly free rotors.

Figure 7.6: Isosurface of the vibrational ground state wavefunction of H +
7 from DMC

simulations.

The ZPEs of all the possible isotopomers of partially deuterated H +
7 calculated by

DMC simulations are summarized in Table 7.4. Here the notation [H2−HHH−H2]+ is

used to represent the H +
7 . The first and last “H” in “HHH” represent the two atoms in

the central H +
3 that are bonded to the diatom H2 units, and the “H” in the middle is

the un-bonded atom.

For some isotopomers, I was not able to obtain accurate ZPEs because they isomerized

(Here isomerization occurs in imaginary-time, so this is not real-time dynamics.) to more

stable counterparts very quickly. Though the ZPE values from the two potential energy

surfaces differ, relative stability of each isotopomer obtained from two PESs agrees with

each other. Based on the ZPEs calculated by DMC, the following rules can be summarized

for the position that deuterium prefers. (1) Deuterium prefers to stay in the central H +
3



Chapter 7. Ground State Properties and Vibrational Spectra of H +
7 111

Table 7.4: Zero-point energies (cm−1) of indicated species calculated by DMC.

Isotopomer DMC (PES II) DMC (PES I) Harmonic (PES II)

[H2−HDH−H2]
+ 9847.4 ± 2.6 10021.3 ± 3.6 10315.8

[H2−DHH−H2]
+ 9866.8 ± 1.1 a 10051.2 ± 7.2 10330.7

[HD−HHH−H2]
+ N/A b 10137.6 ± 7.7 a 10444.8

[H2−DDH−H2]
+ 9373.8 ± 1.3 9549.8 ± 6.4 9800.4

[H2−DHD−H2]
+ 9413.3 ± 1.1 a 9578.6 ± 7.7 a 9824.7

[HD−HDH−H2]
+ 9502.5 ± 0.5 9674.7 ± 4.1 9941.8

[HD−DHH−H2]
+ 9524.4 ± 2.0 a 9693.6 ± 3.5 9956.1

[HD−HHD−H2]
+ 9525.9 ± 2.1 a 9698.0 ± 5.3 9957.2

[D2−HHH−H2]
+ N/A b N/A b 10019.3

[HD−HHH−HD]+ N/A b 9798.5 ± 4.0 a 10072.3

[H2−DDD−H2]
+ 8889.6 ± 2.2 9052.8 ± 4.7 9267.6

[HD−DDH−H2]
+ 9030.4 ± 3.6 9201.8 ± 3.8 9424.1

[HD−HDD−H2]
+ 9030.0 ± 2.6 9196.4 ± 6.1 9425.1

[HD−DHD−H2]
+ 9064.7 ± 1.8 a 9225.1 ± 6.2 a 9448.8

[D2−HDH−H2]
+ 9106.0 ± 5.9 a 9274.8 ± 6.5 9514.6

[D2−DHH−H2]
+ N/A b 9289.8 ± 6.5 a 9528.6

[D2−HHD−H2]
+ N/A b 9292.2 ± 7.4 a 9530.4

[HD−HDH−HD]+ 9158.3 ± 3.1 9328.1 ± 2.7 9567.3
[HD−HHD−HD]+ 9182.0 ± 5.5 a 9346.6 ± 2.9 a 9582.1
[D2−HHH−HD]+ N/A b N/A b 9646.3

[HD−DDD−H2]
+ 8544.1 ± 2.1 8701.7 ± 4.9 8890.3

[D2−DDH−H2]
+ 8636.8 ± 0.8 a 8791.8 ± 9.3 8995.2

[D2−HDD−H2]
+ 8629.6 ± 2.4 8784.9 ± 3.5 8996.9

[HD−DDH−HD]+ 8686.9 ± 1.3 8845.3 ± 3.7 9048.4
[D2−DHD−H2]

+ 8665.4 ± 1.1 a 8822.1 ± 6.6 9020.2
[HD−DHD−HD]+ 8719.4 ± 1.5 a 8876.3 ± 2.9 a 9072.5
[D2−HDH−HD]+ N/A b 8918.0 ± 5.7 a 9139.7
[D2−DHH−HD]+ N/A b 8946.3 ± 5.5 a 9154.1
[D2−HHD−HD]+ N/A b 8942.2 ± 6.4 9154.8
[D2−HHH−D2]

+ N/A b 8992.6 ± 5.7 a 9220.0

[D2−DDD−H2]
+ 8143.2 ± 2.1 8286.8 ± 5.4 8460.4

[HD−DDD−HD]+ 8198.0 ± 1.8 8348.8 ± 3.3 8512.4
[D2−DDH−HD]+ 8288.8 ± 1.1 a 8445.0 ± 5.0 8619.0
[D2−HDD−HD]+ 8283.9 ± 2.4 8435.7 ± 4.2 8619.7
[D2−DHD−HD]+ 8320.3 ± 2.2 a 8469.3 ± 4.2 8643.5
[D2−HDH−D2]

+ N/A b 8517.0 ± 6.0 8711.7
[D2−DHH−D2]

+ 8389.9 ± 3.8 a 8534.1 ± 6.4 a 8726.5

[D2−DDD−HD]+ 7797.2 ± 1.4 7935.7 ± 3.7 8082.1
[D2−DDH−D2]

+ 7889.8 ± 1.5 a 8035.6 ± 5.4 8190.0
[D2−DHD−D2]

+ 7922.0 ± 1.6 a 8063.9 ± 6.1 8214.1

a Isomerization occurred in the calculations for these species, but the date collected were
adequate so that the ZPE can be obtained.

b Isomerization occurred quickly (in imaginary-time) so that the ZPE value cannot be ob-
tained.
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positions rather than the outer H2 position. Furthermore, in H +
3 , deuterium prefers the

un-bonded position. (2) If two deuteriums are in the outer H2, forming D2 is more stable

than two HD’s.

In addition, if we compare the order of the ZPEs of different isotopomers calculated

by DMC with that calculated by harmonic approximation, we can find that the harmonic

approximation gives the correct order, and it is adequate to describe the relative stability

of the isotopomers qualitatively. However, as seen, the harmonic ZPEs are much higher

than the correct DMC ones, due to the anharmonicity of H +
7 .

When analyzing the DMC results, we found some isotopomers can rearrange to a

more stable configuration on the imaginary-time-scale of the propagations done. All these

isomerizations could be classified into two types: the first type is that the unstable iso-

topomer rearranges to the one with more deuterium atoms in the H +
3 core; the other type

is that the number of deuterium atoms in the central H +
3 doesn’t change, but the deu-

terium moves from the bonded to the unbounded location in the complex. For example,

[HD−HHH−H2]+ → [H2−HDH−H2]+ belongs to the first type, while [H2−DHH−H2]+

→ [H2−HDH−H2]+ belongs to the second type. In Figure 7.7 we show the imaginary

time evolution of the reference energy for two DMC simulations. The upper panel shows

the isomerization [H2−DHH−H2]+ → [H2−HDH−H2]+; however, since the ZPEs of the

two isotopomers differ only 20 cm−1, one cannot see a significant change in the reference

energy. In the lower panel, the initial configuration was [D2−HHH−HD]+, and it first

became [D2−DHH−H2]+, and then became [H2−DDD−H2]+.

The second type of isomerization is accomplished through a reaction path that con-

nects two equivalent minima and the saddle point 4-C2v, which has also been reported

in PES I215 (see Figure 7.9 for the structure). The reaction path is shown in Figure 7.8,

with the computational details to determine the path given below. However, this type
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Figure 7.7: Imaginary time evolution of the reference energy for two DMC simulations:
(a) [H2−DHH−H2]+ → [H2−HDH−H2]+; (b) [D2−HHH−HD]+ → [D2−DHH−H2]+ →
[H2−DDD−H2]+.
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Figure 7.8: Reaction path obtained from “quenched” molecular dynamics simulation
that starts from 4-C2v. The geometries shown along the path correspond to the red
circles on the path.

of isomerization can also be accomplished by simply the torsion of the central H +
3 , for

which motion the saddle point was not reported in the PES I. Furthermore, none of the

ten stationary points reported in the PES I could be the transition state of the exchange

in the first type of isomerization. This motivated us to try to locate the two saddle points

for the torsional motion of the central H +
3 and for the H-exchange.

The analytical PES allows me to perform a thorough search for stationary points.

Specifically, I used the geometries of the walkers in the DMC calculations as the initial

guesses, and then apply Newton’s method to optimize the structure on the analytical

PES. If the geometry of the walker is close to a stationary point, Newton’s method

converged to that stationary structure quickly; on the other hand, if the walker is far

from a stationary point, Newton’s method cannot converge and I simply discarded that

walker. Most of the walkers were discarded, but since there were thousands of random

walkers, I was able to locate several stationary points on the PES. I found two saddle

points that may relate to the isomerization, and their structures were further optimized



Chapter 7. Ground State Properties and Vibrational Spectra of H +
7 115

and then normal mode analysis was carried out using MOLPRO. Figure 7.9 shows the

structures of the global minimum and the 4-C2v, 11-C2v, as well as 12-C2v saddle points.

As one can see, 11-C2v can be viewed as one H2 molecule bonded to the H +
5 at its D2h

configuration; thus this exchange is very similar to that in H +
5 . The exchange saddle

point is 661.4 cm−1 above the minimum, and the barrier height for the H +
3 rotation is

about 1450 cm−1. Both of 11-C2v and 12-C2v have one imaginary frequency, corresponding

to the proton exchange mode and the torsional motion of the central H +
3 , respectively.

These two saddle points are now also included in PES II, and the energies of them as

well as the 4-C2v are listed in Table 7.5.

Figure 7.9: Geometries of three stationary points of H +
7 that are related to the H-

exchange.

Table 7.5: The energies relative to the minimum (in cm-1) of 4-C2v, 11-C2v, and 12-C2v

computed at the indicated levels of theory as well as the value from PES I and II.

Config. PES I a PES II CCSD(T)-F12b

4-C2v 828.3 847.3 839.4
11-C2v 707.1 659.4 661.4
12-C2v 1198.2 1457.6 1457.6

a From Ref. 215
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For the two new saddle points as well as the 4-C2v, “quenched” molecular dynamics

calculations were carried out on PES II: the molecule was initially at the saddle point and

was given small initial internal energy. After each step I reduced the velocity of each atom

to 95% so that they would basically follow the potential gradient, and the trajectory is

a good approximation to the reaction path. The reaction paths from 11-C2v and 12-C2v

to the minimum are shown in Figure 7.10.

Figure 7.10: Reaction paths to the minimum that start from: (a) 11-C2v and (b) 12-C2v.
As mentioned in the text, the paths are obtained from molecular dynamics simulations,
and the geometries shown along the path correspond to the red circles on the path.

Therefore, for partially deuterated isotopologs, isomerization between the isotopomers

is possible at vibrational ground state. Now the question arises whether the two types

of isomerization could also occur at the vibrational ground state of H +
7 . To answer this

question, I analyzed the 98714 walkers collected from five DMC trajectories of H +
7 using

the PES II. Among these walkers, I found about 2000 of them has hydrogen atom at the

interior that moved to the exterior, and confirmed that the H-exchange occurred. These

results indicate that H +
7 is indeed fluxional in the ground vibrational state. However,

based on the rarity of the events (only about 2% walkers show H-exchange) leading to



Chapter 7. Ground State Properties and Vibrational Spectra of H +
7 117

these isomerizations, we cautiously assert that H +
7 is not as fluxional as CH +

5 , which

isomerizes readily, owing to much smaller barriers separating the isomers.

7.4 IR Spectrum of H +
7

7.4.1 Computational detail

The code “MULTIMODE” was used for vibrational calculations. As mentioned in Chap-

ter 3, this code uses the Watson Hamiltonian40 in mass-scaled normal coordinates. How-

ever, the Watson Hamiltonian has difficulty in describing the large amplitude motions

such as torsion. For molecules with low torsional barriers, the reaction-path version

(MM-RPH) is employed to include one large-amplitude coordinates by the“reaction-

path Hamiltonian”41,44. For H +
7 , the two H2 units act almost like free rotors, based on

the DMC calculations. However, here I did not perform MM-RPH calculations; instead,

I employed the single-reference version (MM-SR) limited to the five highest-frequency

modes. The reason for choosing MM-SR is that I only focus on the experimental part

of the spectrum, which is probed the high frequency H +
3 and H2 internal modes. There-

fore, it’s reasonable to restrict the calculations to the five high frequency modes and

these calculations can be conveniently done with MM-SR. However, in recognition of the

nearly free-rotor motion of the two H2 groups, I carried out MM-SR calculations at three

configurations on the torsion path, i.e., 1-C2v, 2-Cs, and 3-C2v, as described below.

In brief, we solve the five-mode Schrödinger equation

Ĥψ( ~Q) = Eψ( ~Q), (7.1)

where ~Q = [Q1 Q2 Q3 Q4 Q5] denotes the five high-frequency modes, and the Ĥ is the
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Watson Hamiltonian, given by Eq. 3.22 in Chapter 3. The V ( ~Q) here is the full potential

with respect to the five modes while the other modes are fixed at zero. In this work, the

4MR and 5MR potential are used. Note that in this five-mode calculation, 5MR potential

is a complete expansion.

I solved the time-independent nuclear Schrödinger equation for zero total angular mo-

mentum using the VSCF+VCI approach. In order to test the convergence, two different

sizes of basis functions were employed in the calculation. In the calculation with smaller

basis, 11 harmonic oscillator basis functions were used for each mode in the VSCF step.

Simultaneous excitation of up to four modes in the VCI step was allowed. The MAXBAS’s

for each mode in 1-, 2-, 3-, and 4-mode basis were all 10, and the MAXSUM was 10.

(See Chapter 3 for the definition of MAXBAS and MAXSUM) In the calculation with

larger basis, the number of harmonic oscillator basis functions became 13. Simultaneous

excitation of up to five modes were allowed, with MAXBAS and MAXSUM equaled to

12.

The infrared intensities were calculated with the two step “dump-restart” method

described in Chapter 3. To finally get the spectra, the stick line shapes were replaced by

Gaussian line shapes to achieve a similar line width as the experiment.

7.4.2 Results and discussions

In total I performed four VSCF+VCI calculations (4MR/5MR + small/large basis). The

frequencies of the five fundamentals and a combination band obtained in these calcula-

tions are listed in Table 7.6. As one can see, the difference between these calculations are

mostly less than 1 cm−1. Therefore, calculation employing 4MR potential and 11 basis

functions is enough to achieve converged results for this problem, and thus it is used for
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the calculations of the spectra.

Table 7.6: Anharmonic frequencies (cm−1) of the intramolecular modes of H +
7 with 4MR

and 5MR of the potential and different number of basis functions.

4MR 5MR

Config. Mode 11 basis 13 basis 11 basis 13 basis

1-C2v

ν11 1909.7 1909.1 1909.7 1909.1
ν12 2172.9 2172.7 2172.9 2172.7
ν13 2907.0 2906.5 2907.0 2906.5

ν11 + ν12, ν14 3941.1 3939.5 3941.3 3939.6
ν15 3983.9 3983.8 3983.9 3983.8

ν14, ν11 + ν12 4004.2 4003.5 4004.0 4003.2
2-Cs

ν11 1928.1 1927.6 1928.1 1927.6
ν12 2174.3 2174.1 2174.3 2174.1
ν13 2908.9 2908.4 2908.9 2908.4

ν11 + ν12, ν14, ν15 3952.8 3951.7 3952.8 3951.6
ν15, ν14, ν11 + ν12 3983.9 3983.8 3983.9 3983.8
ν15, ν11 + ν12, ν14 4012.0 4011.0 4012.1 4011.1

3-C2v

ν11 1928.2 1927.7 1928.2 1927.7
ν12 2185.1 2184.8 2185.0 2184.8
ν13 2912.8 2912.3 2912.8 2912.3

ν14, ν11 + ν12 3960.7 3959.6 3960.9 3959.8
ν15 3989.2 3989.1 3989.2 3989.1

ν14, ν11 + ν12 4018.6 4017.5 4018.4 4017.2

From the VSCF+VCI calculation I find that for the 1-C2v and 3-C2v reference con-

figurations two states show strong mixing: (1) the out-of-phase stretch of the two H2; (2)

the combination mode of the H +
3 bending and H +

3 asymmetric stretch. While for 2-Cs,

three states, namely two stretches of the two H2 and combination mode of H +
3 bending

and asymmetric stretch, have strong coupling.
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Figure 7.11: Comparison of the calculated and experimental spectra for H +
7 and D +

7 ,
respectively. We combined the spectra of 1-C2v (blue sticks), 2-Cs (red sticks) and 3-C2v

(green sticks) in one figure, and replace the stick line shape with Gaussian line shape to
obtain the calculated spectra (purple lines).
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Since the DMC simulations suggest that the two H2 almost rotate freely at vibrational

ground state, I combined the three spectra of the three reference configuration, to obtain

an overall spectrum for H +
7 , which is shown in Figure 7.11. In the range from 2000 to 4500

cm−1, the calculated spectrum has two relatively intense peaks at 2177 and 3954 cm−1,

respectively, which are in good agreement with the experimental ones at about 2200 and

3982 cm−1. As is explained in Ref. 232, the relative intensity between the two bands can

be attributed to the lower laser power at low frequency and the lower photodissociation

yield with lower energy photons. Therefore, the differences of the intensities between our

computations and the experiment is understandable. Comparing with the scaled DFT

spectrum232 of H +
7 , which overestimates the peak at 3982 cm−1 by about 100 cm−1,

the spectrum from the VCI calculations is in better agreement with the experiment. In

addition, I can assign the peak at 3982 cm−1 to the mixed state mentioned above, instead

of the pure stretch of the H2. The spectrum for D +
7 is also shown in Figure 7.11. As is

shown, it doesn’t exhibit significant differences compared to that of H +
7 , except that the

positions of the peaks are shifted by a factor of roughly
√

2.

7.5 Conclusions and Remarks

I constructed a new PES of H +
7 based on high-level CCSD(T)-F12b/VQZ-F12 energies.

Unlike the PES presented by Barragán et al. 215 which could describe the H +
7 → H +

5 +

H2 channel, this new PES is only in the bound region of H +
7 , but it’s more precise. The

rms fitting error is only 5 cm−1 for energies up to 15000 cm−1. This PES, together with

the one due to Barragán et al. 215 , were used in the DMC simulations that characterize

the vibrational ground states of H +
7 . In addition, a DMS is also reported here, which is

a fit to MP2 dipole expectation values, with an rms fitting error of 0.0006 au. The new
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CCSD(T)-F12 PES and the DMS were employed in the calculation of the IR spectra of

H +
7 and D +

7 .

I performed DMC simulations to investigate the dissociation energies and vibrational

ground states of H +
7 and D +

7 clusters, using two ab initio, full-dimensional PESs. The

dissociation energy is 817 ± 15 cm−1 for H +
7 → H +

5 + H2, while it is 1045 ± 15 cm−1

for D +
7 . The DMC simulations also show that the H +

3 core in H +
7 is relatively localized,

while the two H2 behave like quasi-free rotors. Several H-exchange pathways have been

located: one involves the exchange of H between the central H +
3 and the outer H2, and

the other could be the migration of the outer H2 or the torsion of the central H +
3 . For

relatively unstable isotopomers, the H-exchange is quite common in the DMC simulations,

so that the molecules can isomerize to more stable isotopomers. However, for H +
7 and

D +
7 , the exchange is very rare. The ZPEs obtained from DMC calculations for partially

deuterated H +
7 species also reveal the stability of different isotopomers. The most stable

isotopomer first maximizes the number of deuterium in the H +
3 and then maximize the

deuterium in one H2. Furthermore, the un-bonded position in the central H +
3 is preferred

over the two equivalent bonded positions.

According to the DMC simulations, the H-exchange is very rare so that it should have

little effects on the IR spectra of H +
7 and D +

7 . However, the two H2 units still undergo

nearly free rotations, which may have an effect on the IR spectroscopy. Therefore, I

performed VSCF+VCI calculations using three structures as the reference, and combined

the results from these three reference geometries to obtain the IR spectrum. In addition,

since the experiment focused on the high-frequency intramolecular vibrations, so I only

considered these modes in the calculation. The spectra of H +
7 and D +

7 obtained from

these calculations agree reasonably well with the experiment.



Chapter 8

Tunneling Splitting and

Fundamentals of Formic Acid Dimer

8.1 Overview

The cyclic formic acid dimer, (HCOOH)2, (FAD) has attracted considerable attention as

it is a prototype for doubly hydrogen-bonded complexes, as well as deep double-proton

tunneling, owing to the large barrier (roughly 2900 cm−1) separating two equivalent

minima. The frequency of the hydrogen bonded O–H stretch is strongly perturbed by

the strong hydrogen bonds and so the vibrational spectrum of FAD in the O–H stretching

region also presents a challenge to experiment and theory.

The tunneling splitting of FAD and its deuterated counterparts have been measured

experimentally using high-resolution IR spectroscopy.235–240 From two independent mea-

surements,236,240 the splitting of (HCOOH)2 is 0.016 cm−1. This splitting is small, imply-

ing a high barrier for the double-proton transfer. (By contrast, the ground-state tunneling

splitting in malonaldehyde is roughly 22 cm−1 and the barrier height for this single-proton

123
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transfer is roughly half that of FAD.) For (DCOOH)2, the ground state tunneling splitting

could be either 0.0029 or 0.0125 cm−1 and it could not be determined unambiguously.235

The tunneling splitting of (DCOOD)2 could not be resolved in experiment, but an upper

limit of 0.002 cm−1 was reported.237

The IR and Raman spectra to probe the molecular vibrations of FAD have also been

measured. Early experiments were performed at room temperature,241–244 so the spectra

were complicated by hot-band absorptions, making the assignment very difficult. Later

the spectra were taken in supersonic jet245–248 and in rare gas matrix.249,250 The O–

H stretch bands in the experimental spectra spreads over a big range, and has a rich

substructure.

Theoretically, calculating the ground-state tunneling splitting of FAD is a challenge,

certainly to within say 10% of experiment, because the splitting is small. It is clearly very

sensitive to the barrier height and shape, and coupling of modes. Also, it is clear that the

high dimensionality (24 modes) makes a rigorous, full-dimensional quantum calculation

highly challenging, if not prohibitive. Previous theoretical calculations for the tunnel-

ing splitting of (HCOOH)2 have necessarily made compromises with both the electronic

structure method (all used DFT theory) and the number of degrees of freedom consid-

ered. The results from these do find a splitting less than 1 cm−1; however, virtually all the

more recent calculations obtain a splitting that is smaller than experiment by a factor of

2 to 10,251–260 with the exception of an approximate instanton calculation,255 which is in

very good agreement with experiment. These authors also calculated the tunneling split-

ting for (DCOOH)2, and suggested that the splitting is 0.0125 cm−1. However, another

instanton calculation using B3LYP/6-311++G(3df, 3pd) with CCSD(T) correction leads

to a much smaller splitting of 0.0038 cm−1 for (DCOOH)2, in favor of the alternative as-

signment for the ground state tunneling splitting.256 Recent seven-dimensional quantum
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calculations by Luckhaus 261 with B3LYP/6-31+G∗ and a barrier of 2924 cm−1 obtained

a splitting of 0.008 cm−1 for (HCOOH)2, about half of the experimental value. Jain and

Sibert 262 carried out a three-mode calculation using a model B3LYP-based potential,

with a barrier of 2909 cm−1 for (HCOOH)2, and obtained a splitting of 0.0017 cm−1,

about a factor of ten smaller than the experiment.

In addition to tunneling splitting, there have also been ab initio molecular dynamics

studies on tunneling dynamics, and support a concerted mechanism for double-proton

transfer,263–267 though stepwise268 and quantum entanglement mechanisms269 have also

been proposed. Recently, from direct-dynamics, path-integral metadynamics calculations,

it was concluded that the double-proton transfer in FAD is concerted but not corre-

lated.270

The O–H stretching region of IR spectrum has also been examined by several the-

oretical studies. Florio et al. 271 modeled the spectrum of FAD using cubic anharmonic

coupling, and suggests that the coupling between the O–H stretch with C–O–H bend has

a profound effect. Matanović and Došlić 272 investigated the C–H and O–H stretch region

of the spectrum using both vibrational second-order perturbation theory (VPT2) and

non-perturbative treatment in reduced dimensionality. They stated that the red-shift of

the O–H frequency is mainly due to the coupling with the symmetric O–H stretch, while

the broadening of the spectrum is due to the coupling to low-frequency modes and Fermi

resonance. Barnes and Sibert 273 employed a reaction surface Hamiltonian to model the

symmetric O–H stretching Raman spectrum, and they concluded that extensive state

mixing is found, which leads to broad spectral features. Recently, Pitsevich et al. 274 at-

tempted to assign the bands by using a hybrid method that combines VPT2 calculation

and a two-dimensional PES for the O–H stretches. Except the C–H and O–H stretches,

VPT2 calculations agree reasonably well with experimental frequencies.272,274
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An ab initio, full-dimensional PES for FAD has not been reported, to the best of our

knowledge, and I present one here, using techniques described in Chapter 2. FAD is a

high-dimensional system, i.e., 45 Morse variables, and yet I was able to develop a PES that

accurately describes the two equivalent minima and saddle-point region separating them

with only 13475 configurations and electronic energies. This would amount to 1.24 points

per Morse variable, if a direct-product grid were to be used. Obviously, permutational

symmetry is a great help here. The full symmetry group was used which is of order

4!4!2! = 1152.

8.2 Potential Energy Surface

The CCSD(T)-F12a method32,33 was employed to obtain electronic energies. However,

given the large number of electrons, the modest-sized haXZ basis sets (X=D and T;

haXZ means VXZ for H atoms, and aVXZ for C and O atoms) were investigated and

tested for the barrier height. Geometries of the minimum and saddle point were opti-

mized with the haDZ basis, and then single point calculations were done with haDZ and

haTZ bases at these geometries to determine the barrier height. Table 8.1 compares the

corresponding barrier heights, along with results from previous calculations, of which the

one from Ivanov et al. 270 is considered the most rigorous. Clearly, the result using the

haDZ basis set is not accurate enough for the present application; however, the barrier

height using the haTZ basis is only 50 cm−1 below the CCSD(T)/aV5Z//MP2/aV5Z

result. Given that a single CCSD(T)-F12a/haTZ calculation takes about 40 minutes on

the computing system, using MOLPRO 2010167, calculations with a larger basis are not

feasible, considering that more than 10000 energies are needed for the PES fit.

The configurations for the dataset were selected as follows. First, direct-dynamics
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Table 8.1: Barrier height (cm−1) for double proton transfer in formic acid dimer from
different methods. The method before and after the “//” is the level used for the single
point calculation and geometry optimization, respectively

Method Ref. Barrier height

CCSD(T)-F12a/haDZ// This work 2781
CCSD(T)-F12a/haDZ
CCSD(T)-F12a/haTZ// This work 2853
CCSD(T)-F12a/haDZ
CCSD(T)/aV5Z// 270 2903
MP2/aV5Z
B3LYP/6-31+G∗ 261 2933

trajectories were run using the efficient MP2/VDZ method from minimum and saddle

point configurations with kinetic energies in the range 500–10000 cm−1. From these tra-

jectories, 8325 “scattered” configurations were selected for an initial fit, using CCSD(T)-

F12a/haTZ energies obtained at these configurations. Additional configurations were

obtained as follows: 2200 geometries were selected from normal-mode sampling around

the two stationary points to give accurate harmonic frequencies; 1400 geometries were

randomly sampled along the minimum energy path connecting the minima and the sad-

dle point; and finally 1550 geometries were added, based on information from diffusion

Monte Carlo (DMC) calculations, i.e., energies from the PES that are un-physically low

or otherwise differ substantially from ab initio results. The final dataset consists of 13475

geometries and corresponding energies.

As noted above, the PES is a least-squares fit to the dataset, using fitting ba-

sis functions that are permutationally invariant polynomials in Morse variables yij =

exp(−rij/a), where rij are inter-nuclear distances and a = 2.0 Bohr. A weight is assigned

to each point in the dataset, given by 0.004/(0.02 + ∆V )(0.2 + ∆V ), where ∆V is the

energy relative to the minimum in Hartree. The maximum order of the polynomials is
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four, resulting in 1784 linear coefficients. Typically maximum orders of five or six is used

for PESs; however, for the FAD, the number of coefficients grows rapidly with the order

and maximum order of five contains more than 10000 coefficients. Because the dataset

only consists of 13475 points (and due to the high cost of the ab initio calculations,

it’s not feasible to calculate much more points for the fifth-order fit), this would cause

over-fitting. Nevertheless, the overall weighted root-mean-square (rms) fitting error is 11

cm−1, and the absolute error for 6908 energies that are less than 4400 cm−1 is about 13.8

cm−1.

The configurations of the minimum and the saddle point from the PES are shown

in Figure 8.1. The key geometrical parameters of these configurations are given in Ta-

ble 8.2. The barrier height from the PES is 2848 cm−1, which agrees well with the direct

CCSD(T)-F12a/haTZ calculation.

Figure 8.1: Configurations of the two stationary points of formic acid dimer: (a) the
minimum and (b) the saddle point.

Next, consider the harmonic frequencies of the minimum and the saddle points. These

are given in Table 8.3, together with the CCSD(T)-F12a/haDZ frequencies. Pictures and

descriptions of these normal modes are given in Figure 8.2 and 8.3. The PES is based

on higher-level ab initio calculations than CCSD(T)-F12a/haDZ, but the agreement is

quite good. The PES frequencies for the minimum are also in very good agreement with
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Table 8.2: Key geometrical parameters of minimum and the saddle point of the formic
acid dimer from the PES and CCSD(T)-F12a/haDZ geometries. Bond lengths are in
Angstroms and angles in degrees.

Minimum Saddle point

Parameter PES ab initio Parameter PES ab initio

r(O–H) 0.993 0.994 r(O–H) 1.205 1.204
r(C–H) 1.093 1.095 r(C–H) 1.092 1.095
r(C–O) 1.312 1.312 r(C–O) 1.260 1.260
r(O· · ·O) 2.678 2.673 r(O· · ·O) 2.409 2.407
r(C=O) 1.218 1.218
∠O=C–O 126.2 126.1 ∠O–C–O 126.6 126.6
∠O=C–H 122.1 122.0 ∠O–C–H 116.7 116.7
∠C–O–H 109.7 109.7 ∠C–O–H 115.4 115.4
∠O–H· · ·O 179.0 178.7 ∠O–H–O 177.4 177.4

CCSD(T)/aVQZ frequencies reported recently.275

DMC55–57,59 calculations were done for the zero-point state of the FAD using the

PES. The unbiased “birth-death” process is used in our simulation, and the details of

this algorithm are given in Ref. 58 and in Chapter 3. To compute the ZPE of the formic

acid dimer, ten simulations were performed, and in each simulation, 30000 walkers were

initiated at the saddle point and were propagated for 40000 steps with step size, ∆τ , of

5.0 au. The first 10000 steps were used for equilibration, and the remaining 30000 steps to

compute the ZPE. These simulations give a ZPE of 15337±7 cm−1. (As noted above, these

calculations were also done using initial PESs to locate additional needed configurations.)

These calculations typically require of the order of 109 potential evaluations, so a PES is

a necessity in order to do them.
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Table 8.3: Harmonic wavenumbers (in cm−1 of the formic acid dimer at minimum and
saddle point geometries, from the PES and ab initio CCSD(T)-F12a/haDZ calculations.

Minimum Saddle point

Mode PES ab initio PES ab initio

1 70 92 1355i 1356i
2 167 183 80 79
3 170 222 219 222
4 209 230 226 222
5 254 290 317 298
6 275 293 514 518
7 693 691 592 586
8 716 716 744 748
9 956 972 814 796
10 970 989 1065 1071
11 1084 1093 1079 1076
12 1100 1094 1241 1236
13 1255 1260 1341 1312
14 1258 1263 1395 1361
15 1406 1396 1397 1399
16 1408 1422 1400 1405
17 1448 1466 1404 1407
18 1481 1492 1408 1409
19 1715 1721 1604 1585
20 1780 1785 1691 1692
21 3095 3101 1743 1747
22 3097 3107 1749 1759
23 3232 3204 3101 3106
24 3326 3303 3106 3107
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Figure 8.2: Normal modes of the minimum of formic acid dimer.
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Figure 8.3: Normal modes of the saddle point of formic acid dimer.
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8.3 Computational Details and Results

8.3.1 Tunneling splittings

I carried out reduced-dimensionality quantum calculations for the tunneling splitting,

as described in Ref. 276. In brief, the m-mode Hamiltonian, neglecting the vibrational

angular momentum terms, is given by

Ĥ = −1

2

m∑
i=1

∂2

∂Q2
i

+ V (Q1, Q2, · · · , Qm), (8.1)

where V (Q1, Q2, · · · , Qm) is the potential relaxed with respect to the remaining degrees of

freedom, at fixed values of Q1, · · · , Qm. In the one-dimensional case, Q1 is the imaginary-

frequency mode Qim, and this one-dimensional approach has been successfully applied

in computing the tunneling splitting of malonaldehyde.277,278 In my calculation, the po-

tential was not rigorously relaxed; instead, in V (Q1, Q2, · · · , Qm), the Qm+1, · · · , Q3N−6

were simply determined by their values at Q1 in the one-dimensional Qim path. In this

approach, the barrier height is the correct one, and the calculation is much more efficient,

especially when m is large. This is also justified by the fact that many modes either do

not change or change very little along the rectilinear Qim-reaction path.

I applied this approach with m up to 4 to calculate the ground state tunneling splitting

of FAD. As noted Q1 is the imaginary-frequency mode, and the selection of Q2, · · · , Qm

is described as follows. I first obtained the value of the saddle point normal coordinates

at the minimum. The mode with the largest displacement is Q2, the mode with second

largest displacement is Q3, etc. In the case of FAD, Q2 is the dimer stretch (mode 6) of the

saddle point; Q3 is dimer in-plane rock (mode 3); Q4 is O–C=O bend (mode 8). Figure 8.4

shows the contour plot of the potential with respect to (Q1, Q2) and (Q1, Q3). One can
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Figure 8.4: Contour plots of the FAD potential energy surface.

see strong coupling among these modes, so they should be included in the calculation of

the tunneling splitting. This selection of the modes to couple with Qim is consistent with

the choice made by Jain and Sibert.262 In their three-mode calculation they also chose

the in-plane dimer rocking and dimer stretching modes. This approach is also very similar

to the one by Luckhaus 261 , except that I use relaxed potential while his is not relaxed.

Therefore, my choice of V (Q1, Q2, · · · , Qm) always has the correct barrier height, but in

the calculation by Luckhaus,261 the barrier height was slightly lower, though it’s only 9

cm−1 lower than the full-dimensional barrier.

For m = 1, the one-dimensional Schrödinger equation was solved using a standard

discrete variable representation (DVR) approach. For m = 2, 3, 4, the multi-dimensional

Schrödinger equations were solved using a direct-product of particle-in-a-box functions.

The ranges of the boxes are: −120.0 ≤ Q1 ≤ 120.0, −250.0 ≤ Q2 ≤ 20.0, −150.0 ≤

Q3 ≤ 150.0, and −70.0 ≤ Q4 ≤ 200.0. These are large enough to cover the region of

the saddle point and both minima. Particle-in-a-box functions were used owing to the

large displacement of the four normal modes (all zero at the saddle point of course)

at each minimum. The matrix elements of the potential were obtained using numerical
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quadrature with equally spaced quadrature grids. In the three-dimensional calculation, 75

grid points were used for each mode, and 60 grid points per mode were used in the four-

mode calculations. Finally, symmetry was exploited to separate the Hamiltonian matrix

into two blocks. The symmetries of Q1, Q2, Q3, Q4 are odd, even, odd, even, respectively.

The Hamiltonian matrix was diagonalized and the splitting is just the energy difference

between the lowest two energy levels. In the two-mode calculations, I used 25, 30 and

35 basis functions for each mode to test the convergence, and 30 is sufficient to get a

converged result. In the three-mode calculations, I used 30 basis functions per mode. In

addition, as the calculation is very expensive in four modes, I experimented with fewer

basis functions than 30 in the three-mode calculation, and found that 30 functions for

Q1 and 12 functions for other two modes leads to splitting that differed by 0.003 cm−1

from the largest three-mode calculation. Therefore, in the four-mode calculations, I used

30 basis functions for Q1, and 12 functions for the other three modes. No restrictions on

the direct-product bases were used and so the order of the corresponding Hamiltonian

matrices is just the product of the basis for each mode. However, symmetry was used so

each block is 13500 by 13500 in the three-mode calculation, and 25920 by 25920 in the

four-mode calculation.

The same procedures were used to calculate the ground-state tunneling splitting of

(DCOOH)2 and (DCOOD)2. The results for the three complexes are given in Table 8.4.

For (HCOOH)2, the one-mode calculation gives a tunneling splitting of 0.44 cm−1, which

is close to the value of 0.55 cm−1 reported by Jain and Sibert using the same method.262

As seen in the table, as the coupling increases the splitting goes down, with the three

and four-mode results nearly the same and giving a splitting that is roughly twice the

experimental one. The number of basis in the four-mode calculations is not very large

and the convergence of the splitting cannot be tested thoroughly. Additional coupling
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Table 8.4: Ground-state tunneling splitting (cm−1) from m-mode quantum calculations
for the indicated FAD complex.

(HCOOH)2 (DCOOH)2 (DCOOD)2

1-Mode 0.44 0.41 0.015
2-Mode 0.16 0.15 ∼ 0.003
3-Mode 0.032 0.028 ∼ 0.0003
4-Mode 0.037

Exp. 0.016 a 0.0029 or 0.0125 b < 0.002 c

a Ref. 236 and 240
b Ref. 235
c Ref. 237

with more modes would be small, because Q5, · · · , Q24 vary little, if at all, from saddle

point to the minimum. However, given that the difference with experiment is only roughly

0.016 cm−1, additional coupling cannot be ruled out. Of course, some inaccuracy of the

potential, in particular the barrier height, could be responsible for the residual difference.

For (DCOOH)2, the splitting is only slightly smaller than that of (HCOOH)2 in accord

with the small experimentally determined reduction to 0.0125 cm−1 for the ground state

tunneling splitting of (DCOOH)2. The calculated splitting for (DCOOD)2 is roughly

0.0003 cm−1, which is well within the experimental bound of less than 0.002 cm−1.

The splitting of the excited states of HCOOH and comparison with the recent calcu-

lation by Jain and Sibert are presented in Table 8.5.

8.3.2 Anharmonic frequencies

To theoretically calculate the fundamental frequencies of FAD, I applied vibrational self-

consistent-field and virtual-state configuration interaction (VSCF+VCI) method,37 using

the code “MULTIMODE”.38,39 The calculation used the minimum geometry as reference,
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Table 8.5: Tunneling splittings (cm−1) for a few excited states of FAD. (v2, v3) are the
quantum numbers for Q2 and Q3.

This work Ref. 262

(v2, v3) Esym Easym ∆E Esym/Easym ∆E

(0, 0) 0.000 0.031 0.031 0.000 0.0017
(1, 0) 193.687 193.998 0.311 179.9 0.019
(0, 1) 275.790 275.801 0.011 223.2 0.0080
(2, 0) 386.109 387.596 1.486 359.6 0.080
(1, 1) 469.118 469.115 -0.003 403.2 0.090
(0, 2) 551.789 551.774 -0.015 446.8 0.023

since the barrier separating the two minima is quit high and the tunneling splitting cannot

be resolved in most of the spectra. Full-dimensional calculations for the fundamental

frequencies are not feasible, either, due to the large number of vibrational modes (24).

Therefore, we performed the calculation in reduced dimensionality, and the same strategy

was also applied in the calculation for the IR spectrum of H +
7 and D +

7 . In brief, we solved

the reduced-dimensional m-mode (with m < 3N−6) Schrödinger equation Ĥ(Q)ψ(Q) =

Eψ(Q) with zero total angular momentum, where Ĥ is the Watson Hamiltonian (Eq. 3.22

in Chapter 3), and Q = [Q1 · · ·Qm] denotes the m modes coupled in the calculation. The

potential V (Q) in the Hamiltonian is the full potential of FAD with the remaining modes

fixed at zero.

Since here the spectrum in C–H and O–H stretching region is of interest, all the out-

of-plane modes were not considered in the anharmonic calculation, and they were fixed at

zero. Fifteen modes of the minimum were coupled in the calculation. These 15 modes are

mode 4, 7, 8, and 13–24 (see the table above), and they belong to Ag and Bu symmetry

of C2h point group.

For this specific calculation of FAD, the potential is expressed in 4MR. (The termi-
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nologies such as nMR, m-mode basis, MAXBAS, and MAXSUM have been described in

Chapter 3) In the VSCF step, 23 harmonic basis functions were used for mode 4; 17 basis

functions for mode 7 and 8; 15 basis functions for mode 13–20; and 13 basis functions for

mode 21–24. In the VCI calculation, I used 4-mode basis, that is, 4 modes can be excited

simultaneously. In the 1-mode basis, the MAXBAS is 14 for mode 4; 8 for mode 7 and

8; 6 for mode 13–20; and 4 for mode 21–24. In the 2-mode basis, the MAXBASs are 13,

7, 5, and 3 for mode 4, mode 7–8, mode 13–20, and mode 21–24, respectively. In 3-mode

basis, the MAXBASs are 12, 6, 4, 2, and in the 4-mode basis, they are 11, 5, 3, 2. The

MAXSUM is always 14 for 1-, 2-, 3-, and 4-mode basis. With all these restrictions, the

size of the Hamilton matrix in two symmetry blocks are 94247 and 88805, respectively.

The matrix size was reduced to 23270 and 23034 based on a perturbation test to elim-

inate the rows and columns of the matrices, which has been described in detail in Ref.

45 and 46

Table 8.6 presents the fundamental frequencies of the 15 modes from VSCF+VCI

calculation and comparison with experiments and VPT2 calculation. For most of the

modes, the anharmonic fundamental frequencies from VSCF+VCI and VPT2, and the

experimental measurement agree well with each other. The VSCF+VCI results indicate

that these modes don’t have strong coupling with other modes, and in this situation,

VPT2 is also capable to provide good frequencies. On the other hand, however, the

C=O in-phase stretch, the two C–H (in-phase and out-of-phase) stretches and two O–H

stretches couple strongly with other modes. For the in-phase C=O stretch, it couples with

the combination mode of dimer stretch and C–O–H bend and the combination mode

of dimer stretch and O=C–O bend overtone, and three VCI states are identified that

contain large contribution from this mode. The O–H stretches are more complicated: for

the asymmetric (out-of-phase) O–H stretch, three VCI states contain large contribution



Chapter 8. Tunneling Splitting and Fundamentals of Formic Acid Dimer 139

Table 8.6: Anharmonic fundamental frequencies (cm−1) of FAD from VSCF+VCI cal-
culations, and comparison with VPT2 calculation and experiments.

Mode Symmetry VSCF+VCI VPT2 b Experiments

4 Ag 208 199 194c

7 Ag 692 686 680c

8 Bu 703 720 698d

13 Ag 1248 1236 1214e

14 Bu 1234 1234 1230d

15 Bu 1365 1373 1364d

16 Ag 1374 1372 1375e

17 Bu 1407 1428 1454d

18 Ag 1455 1479 1415e

19 Ag 1638, 1647, 1682a 1644 1670e

20 Bu 1730 1738 1746d

21 Ag 2953, 2959, 2962a 2882 2949e

22 Bu 2943, 2959a 2872 2939d, 2944f, 2957g

23 Ag 2583, 2597a 2698 complex
24 Bu 2825, 2842, 2972a 2836 3000f, 3084c, 3110g

a Strong mixing
b B3LYP/VTZ, see Ref. 274
c Raman spectroscopy, see Ref. 248
d FTIR spectroscopy, see Ref. 246
e Raman spectroscopy, see Ref. 243
f IR spectroscopy, see Ref. 244
g Infrared spectroscopy, see Ref. 279
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of this stretch; on the other hand, since the barrier of the proton transfer is only about

2900 cm−1, the symmetric (in-phase) O–H experience large anharmonicity so that the

fundamental frequency is about 2600 cm−1.

8.4 Summary and Conclusions

A semi-global, full-dimensional potential energy surface for the formic acid dimer is pre-

sented. This PES utilizes high-level CCSD(T)-F12a electronic structure theory with haTZ

basis set. The analytical potential is a linear least-squares fit to 13475 ab initio geome-

tries and energies, using permutationally invariant polynomial basis, with weighted rms

fitting error of 11 cm−1. I demonstrate the accuracy and capability of this potential by

applying it to calculate the tunneling splitting and anharmonic fundamentals of FAD.

The best estimate of the tunneling splitting is about 0.0366 cm−1, which is about twice as

large as the experimental measurement. Nevertheless, the agreement between the theory

and experiments is excellent. The tunneling splittings of a few excited states are also

presented. I have performed VSCF+VCI using the global minimum as reference to cal-

culate the anharmonic fundamental frequencies. For most of the modes, the calculation

agrees with early VPT2 calculations as well as FTIR and Raman measurements. On the

other hand, for C–H and O–H stretches, the calculations indicate that the mode-mixing

is very strong, and further investigation of this region in the spectrum is necessary. For

the symmetric O–H stretch (Ag), using minimum as the reference geometry may not be

a correct choice, and a larger region of the PES, including two minima and the saddle

point, has to be taken into account in the calculation.



Chapter 9

Vibrations of Methane Confined in

Clathrate Cages

9.1 Overview

Vibrational spectroscopy is a valuable tool to investigate the properties of the methane

clathrate hydrates, such as the structures, cage occupancies and hydrate composition. Ra-

man spectroscopy has been applied to study the vibrational energies of the enclathrated

methane molecule.96,97,100,102,103,106,110 The symmetric stretch of the methane is Raman

active, and its frequency red-shifts compared to the corresponding gas-phase one. Fur-

thermore, the frequencies of methane in large cages (51262 and 51264) are lower than the

small cavity (512). Therefore, Raman spectroscopy has been used to identify the hydrate

structures and the cage occupancies. A simple “tight cage and loose cage” model,280

which was originally proposed to explain the frequency shifts of diatomic solutes due

to interactions with liquid solvents, can be used to qualitatively explain the frequency

shifts of the enclathrated methane. The IR spectrum of the methane stretching mode ex-

141



Chapter 9. Vibrations of Methane Confined in Clathrate Cages 142

hibit substructure that resembles the gas-phase ro-vibrational lines, indicating that the

trapped methane in the cage is a quasi rotor displaying gaseous behavior.104 Later the IR

spectrum of CH4/CF4 clathrate mixtures has been recorded to decipher the assignment

of the stretching modes in different cages.105 Since CF4 always occupies the large cage,

in the CH4/CF4 clathrate mixture, the absorption of methane in the large cage becomes

weaker, and thus it can be distinguished from the absorption of the methane in the small

cage. The authors discovered that the asymmetric stretching frequencies in the large 51262

cage, similar to the symmetric stretch, are also lower than those in small 512 cage. In

addition, the spectrum for the overtones and combination modes of the trapped methane

was also recorded and the transitions were assigned. The rotation-translation eigenstates

of enclathrated guest methane were probed by inelastic neutron scattering.139–145 The

transitions between the three lowest rotational states are between 8 and 27 cm−1,140 and

translational excitations appear at higher energies;143,145 however, the assignment of the

peaks is complicated due to the lattice vibrations.

Theoretically, the intramolecular vibrations of enclathrated methane have been calcu-

lated using ab initio molecular dynamics simulations and Fourier transformation of the

autocorrelation functions.98,99,101,107,108 These simulations applied simple model poten-

tials such as Kuwagai-Kawamura-Yokokawa281 and consistent valence force field (CVFF)282,

or using density functional theory such as SIESTA283 and Perdew-Burke-Ernzerhof (PBE).284

These studies are able to reproduce the experimental trend of the frequency shift of the

symmetric stretch but not quantitative agreement. In addition to molecular dynamics,

the vibrations of confined methane has been investigated using direct harmonic normal

mode analysis, applying model potential285, or using computationally efficient method

such as Hartree-Fock86 and density functional theory.86,88,111 As expected, the harmonic

approximation can only achieve qualitative agreement with the experimental trend. It is
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also worth noting that the “independent molecule model” in Ref. 285 is very similar to

“local monomer model” (which has been described in Chapter 3) at the harmonic level.

The translation-rotation energy levels of enclathrated methane molecule have been inves-

tigated via fully coupled six-dimensional quantum calculations, using a simple pairwise

additive potential for methane-water interaction.150 The calculated results for rotational

and translational transitions agree with the experiments reasonably well. The angular

anisotropy of the methane-cage interaction is exaggerated, and the translational funda-

mentals are underestimated, due to the deficiencies of the potential applied in the study.

However, the early investigations of the guest vibrations does not apply accurate po-

tential energy surface (PES) for the methane hydrate. The potential was either evaluated

by efficient low-level ab initio theories (for instance, density functional theory, Hartree-

Fock or second-order Møllet-Plesset) or by assuming the methane-water interaction is

pairwise additive. Furthermore, in calculations of the guest intramolecular vibrations,

the methods applied are normal mode analysis or molecular dynamics, which are not

able to account for anharmonicity or quantum effects. Therefore, more reliable results

would be expected if accurate PES and rigorous method for vibrations were applied. In

Chapter 5 I have presented full-dimensional PESs for clathrate hydrates using the many-

body expansion form. In terms of vibrational calculations, vibrational self-consistent

field (VSCF) and virtual state configuration interaction (VCI)37 combined with “local

monomer model”48 is used here.

I employed the new many-body PES of CH4(H2O)n and perform local monomer quan-

tum anharmonic calculations for the intramolecular vibrations of the guest methane in

different clathrate cages. Specifically, the frequency of methane symmetric stretch has

been calculated and compared to experimental Raman spectroscopy data, and the fre-

quencies of asymmetric stretches, a few overtones and combination bands are reported.
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Bending fundamentals are also given even though they have not been measured exper-

imentally. The vibrational ground state properties have been characterized by rigorous

quantum diffusion Monte Carlo (DMC) calculations. The binding energy of methane with

two cages is also presented.

9.2 Potential energy surface

The many-body potential of CH4(H2O)n is described in Chapter 5:

VCH4(H2O)n
=V

(1)
CH4

+
∑
i

V
(1)

H2O(i) +
∑
i

V
(2)

CH4−H2O(i) +
∑
i<j

V
(2)

H2O(i)−H2O(j)+∑
i<j

V
(3)

CH4−H2O(i)−H2O(j) +
∑
i<j<k

V
(3)

H2O(i)−H2O(j)−H2O(k),

(9.1)

where V (1), V (2) and V (3) are monomer one-body, intrinsic two-body and three-body

energy, respectively. In the CH4(H2O)n potential, this expansion is truncated at three-

body level. As is suggested in the study of Deible et al. 190 , the sum of the contributions

from higher-order terms is less than 10% of the binding energy of CH4(H2O)20, and thus

these terms are dropped in our many-body potential.

The methane monomer potential is due to Yurchenko et al. 170 This potential is of

near-spectroscopic accuracy for methane vibrations. The fit “F-4211/5” (see Chapter 5)

is used for methane-water intrinsic two-body; however, additional 6463 points have been

added to the database to fix unphysical regions in the PES. The latest root-mean-square

(rms) fitting error is 4.1 cm−1. The methane-water-water three-body potential is the one

labeled “PP-422111*/4” in Chapter 5, with a new database that contains 540 more points

to fix the unphysical region and to improve the harmonic frequencies of the clusters. The

rms fitting error now is 9.6 cm−1.



Chapter 9. Vibrations of Methane Confined in Clathrate Cages 145

These two particular fits are selected because they achieve good accuracy and compu-

tational efficiency. The remaining components are all included in the WHBB water poten-

tial,28 which consists of spectroscopically accurate monomer potential,169 CCSD(T)/aVTZ

water two-body178,179 and MP2/aVTZ three-body potentials.27

CH4 in 512 cage CH4 in 51262 cage

CH4 in 435663 cage CH4 in 51264 cage

Figure 9.1: The geometries of methane in four different cages.

The initial geometries of the isolated 512 and 51262 cages were extracted from the

sI crystal structure reported in Ref. 67, while the isolated 51264 and 435663 cages were
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extracted from the Structure II and H in Ref. 85. The 512, 51262, 51264 and 435663 cages

consist of 20, 24, 28 and 20 water molecules, respectively. The methane molecule was

added to the cages and the geometries of these clusters were fully optimized using the

analytical potential. The optimized geometries are shown in Figure 9.1.

9.3 Local monomer model

In this work, the intramolecular vibrations of methane are of interest, so the local

monomer model is expected to work well, as the interaction between methane and the

cage is weak. In this model, one monomer is treated at a time, but interacting with all

the other monomers that are held fixed. This model has been explained in details in

Chapter 3

Figure 9.2: Vibrational density of states calculated at harmonic level using local
monomer and full-dimensional normal mode analysis. The intramolecular vibrations of
methane are labeled.

The accuracy of the local monomer model was investigated at the harmonic level by
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comparing the result of local monomer normal mode analysis for CH4@(H2O)20 to the

full-dimensional one. In the local monomer approach, the computation of the monomer

Hessian and the diagonalization was repeated for all the monomers (one methane plus

twenty water molecules). In the full-dimensional normal mode analysis, the Hessian is

195×195, and 189 normal modes are obtained. Each mode can be represented using a stick

with uniform height at the corresponding frequency, and each stick was replaced with

a Gaussian function that has a standard deviation of 15 cm−1. In this way I obtained

smooth curves for the harmonic vibrational density of states. Figure 9.2 shows these

for CH4@(H2O)20, calculated with local monomer and full normal mode analysis. As

expected, the local monomer model is not able to describe the low-frequency collective

motions very well, as is shown by the fair to poor agreement between 0 and 1100 cm−1.

However, for the intra-monomer vibrations, the agreement between local monomer and

full normal mode analysis is excellent, especially for the methane vibrations. Since in this

work I mainly focused on the intramolecular vibrations of methane, the good agreement

between local monomer and full normal mode analysis in this region is very encouraging.

A detailed comparison for these modes is given in Table 9.1 for four cages. The isolated

gas-phase results are also given. The agreement between the local and full normal mode

analysis is excellent, with the deviations for each mode no larger than 1 cm−1. In addition,

it is obvious that the degeneracy in the gas phase splits in the cages, due to the anisotropy

of the methane-cage interaction. Note that due to the smoothing procedure, this splitting

is not resolved in Figure 9.2. Finally, the harmonic frequencies of the symmetric stretch

(ω1) in four cages is lower than that of gas phase, and those in larger cages (51262 and

51264) are more red-shifted, which agrees with the experimental trend.
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Table 9.1: Harmonic frequencies (cm−1) of CH4 confined in the four indicated cages,
calculated by local monomer and full (in parenthesis) normal mode analysis, as well as
the values of gas-phase methane calculated using the ab initio monomer PES of reference
170.

Mode a 512 51262 435663 51264 gas

ω4 1332 (1332) 1335 (1336) 1327 (1328) 1335 (1335) 1347
1336 (1337) 1340 (1340) 1341 (1342) 1338 (1338) 1347
1342 (1343) 1345 (1345) 1346 (1347) 1351 (1352) 1347

ω2 1562 (1562) 1567 (1567) 1566 (1566) 1568 (1568) 1574
1575 (1574) 1570 (1569) 1570 (1569) 1572 (1572) 1574

ω1 3017 (3017) 3009 (3009) 3016 (3016) 3007 (3007) 3037
ω3 3142 (3142) 3127 (3127) 3143 (3143) 3121 (3121) 3156

3152 (3152) 3139 (3139) 3145 (3145) 3133 (3133) 3156
3156 (3156) 3144 (3144) 3147 (3147) 3151 (3151) 3156

a The modes are labeled using standard gas-phase spectroscopic notation.

9.4 VSCF+VCI calculations

To go beyond the harmonic approximation, the nuclear Schrödinger equation of the

embedded methane monomer, m:

[
T̂m + V̂m( ~Qm)

]
ψm( ~Qm) = Eψm( ~Qm). (9.2)

is solved. In the equation, ~Qm is the set of nine intramolecular local normal modes of

methane, obtained from local normal mode analysis. T̂m is the kinetic energy operator

(with vibrational angular momentum terms included), and V̂m( ~Qm) is the full potential

of methane, perturbed by the water cage, and it depends dynamically on the nine local

normal modes of methane, with all the water molecules frozen.

To solve this Schrödinger equation, the VSCF+VCI approach was applied, using the

code MULTIMODE. In brief, in the VSCF calculation, the total vibrational wave function
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is given by a single direct product of one-mode functions, and these one-mode functions

are optimized via the self-consistent field procedure. The solutions give the VSCF ground

state and virtual states. In the VCI calculation, the VSCF ground state and excited,

virtual states are used as basis functions to calculate the Hamiltonian matrix. The states

obtained by diagonalizing the Hamiltonian matrix are eigenstates of the system, and they

are labeled by the dominant VSCF virtual state.

The VSCF+VCI calculation was first applied to isolated methane to test the con-

vergence of our calculation with respect to the excitation space chosen in the VCI. We

employed an efficient 4MR for the potential. The maximum excitations are 11, 10, 9, 8

for the five bending modes and 9, 8, 7, 6 for the four stretching modes in 1-, 2-, 3- and

4-mode basis, respectively, and the maximum sum of quanta is 11. The four fundamentals

calculated are 1311, 1534, 2917 and 3021 cm−1. These are in very good agreement with

the corresponding converged variational values of 1311, 1533, 2916 and 3019 cm−1,170

which in turn are in good agreement with experiment, 1306, 1534, 2917 and 3019 cm−1.

The same numerical parameters were used in local monomer calculations of methane in

four cages. The CI matrix size is 55848. The size of the matrix can be reduced, based on

a perturbation test to eliminate the rows and columns of the matrix. The details of this

strategy have been described in Ref. 45 and 46 as well as Chapter 3. The reduced ma-

trix size is roughly 14000. I employed the iterative block-Davidson method286 to obtain

eigenvalues and eigenvectors, since I was only interested in several hundred eigenstates.

9.4.1 Fundamental frequencies

Table 9.2 lists the calculated anharmonic frequencies of the symmetric stretch of methane

in four cages, as well as experimental results from Raman spectroscopy96,106 and the
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recent calculation using Car-Parrinello molecular dynamics (CP-MD).108 As seen, the

frequencies from different experiments agree well, except for the 435663 cage. In the early

experiment by Sum et al. 96 , the frequency of symmetric stretch in this cage is close to that

in two larger cages; on the contrary, a recent experiment106 suggests that the frequency

in the 435663 cage is only slightly lower than that in the 512 cage. In our calculation, the

anharmonic frequency of the symmetric stretch of methane in 435663 is only 1 cm−1 lower

than that of 512 cage, and the trend is in agreement with the more recent experiment. The

overall agreement with experiment is very good; however, there appears to be systematic

underestimation of the frequencies by about 10 cm−1. The difference between the theory

and experiments may due to the accuracy of the PES (such as the level of ab initio

calculations, the lack of methane-water four-body or even higher order interactions),

the limitation of the local monomer model (no coupling between methane and lattice

vibrations and no coupling with frustrated translations and rotations of methane), and

the model systems we applied in the calculation (isolated cages without inclusion of more

water molecules and the order of the protons in hydrogen bond network). Nevertheless,

the level of accuracy of the current calculations is well beyond previous calculations, such

as the CP-MD.

The calculated fundamentals of asymmetric stretches of methane in sI cages (512

and 51262), as well as the recent CP-MD results, are shown in Table 9.3. However, the

assignment of transitions in the experimental Fourier transform infrared spectrum (FTIR)

is challenging due to relatively low resolution,104,105 as the methane absorption overlaps

with low wavelength wing of the ice feature, as well as the splitting of the asymmetric

stretches caused by anisotropic crystal field. The asymmetric stretch of methane in 51262

cage is at about 3000 cm−1, while that of methane in 512 cage is at about 3016 cm−1.

Our calculations give three frequencies for asymmetric stretches, and those in 512 cage
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Table 9.2: Anharmonic frequencies (cm−1) of methane symmetric stretch in four cages
calculated by MULTIMODE, and comparison with Raman spectra and CP-MD simula-
tion.

Cage MULTIMODE Raman CP-MD

512 2902 2914 a,b 2915 a,c 2876 d, 2879 e

51262 2893 2901 b 2905 c 2865 d

435663 2901 2910 b 2905 c 2875 e

51264 2888 2902 b 2904 c

a 512 cage of structure I;
b Ref. 106;
c Ref. 96;
d 512 cage of structure I from Ref. 108;
e 512 cage of structure H from Ref. 108.

is higher, which agrees with the experiment. The difference between our calculation and

experiment is again about 10 cm−1.

Table 9.3: Anharmonic frequencies (cm−1) of methane asymmetric stretches in four cages
calculated by MULTIMODE, and comparison with FTIR and CP-MD simulation.

Cage MULTIMODE FTIR CP-MD

512 3010, 3021, 3027 ∼3016 a 2979 b

51262 2994, 3007, 3014 ∼3000 a 2963 b

a Ref. 104 and 105;
b Ref. 108

In recognition of the fact that methane exhibits large-amplitude angular motion in

the cages (see below), I performed addition VSCF+VCI calculations for five randomly

selected orientations of methane in the 512 and 51262 cages. The geometries of the cages

were kept the same as the minima, and the orientation of the methane was randomly
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sampled. All the parameters in the VSCF+VCI calculations are kept the same. Table 9.4

summarizes the frequencies of the symmetric stretches at different orientations and the

corresponding energies of that particular orientation. The small variation of the frequency

(about 20 cm−1) at different orientations indicates that the angular anisotropy of the

methane-cage interaction is small but not negligible. A correlation exist between the

frequency of the stretching mode and the energy, and the general trend is that higher

frequency corresponds to the orientation with higher energy.

To get an estimate of the average frequency when the orientation is considered, we

calculated the “thermal-averaged” frequencies for methane in these two cages, with each

frequency weighted by the Boltzmann factor exp(−β∆V ). Two temperatures are chosen,

corresponding to the temperatures in two experimental measurements: 100 K according

to the experiment by Ohno et al. 106 ; 270 K from the experiment by Sum et al. 96 . At

100 K, the average frequencies in the 512 and 51262 cages are 2902 and 2894 cm−1,

respectively. They are only 0 – 1 cm−1 higher than the frequencies of the minimum

orientation. However, at 270 K, the average frequencies in two cages become 2909 and

2896 cm−1, which shift towards the experimental values, and are 7 and 3 cm−1 higher

than those of the minimum. The temperature dependence may be responsible for the

slight difference in the two measurements. In fact, the experiment at lower temperature

(100 K) reported slightly lower frequencies than those from the measurement at 270 K;

our calculation also predicts this trend. Of course we are aware that this thermal average

approach is not a rigorous analysis. On the one hand, only five random orientations are

not sufficient to sample all the possible orientations; on the other hand, averaging with

a Boltzmann weight is not rigorous (though should be a good approximation at these

two temperatures) here. However, qualitatively, this averaging approach illustrates the

trend of the up-shift of the frequency when the rotational delocalization of the confined
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methane is taken into account.

Table 9.4: Frequencies (cm−1) of methane symmetric stretches in 512 and 51262 cages at
six orientations (including the minimum), and the corresponding energies (cm−1) of each
orientation.

512 cage 51262 cage

orientation freq. energy freq. energy

min 2902 0 2893 0
1 2917 392 2894 66
2 2919 288 2898 212
3 2919 350 2899 148
4 2919 396 2910 585
5 2924 511 2914 685

In addition to the symmetric and asymmetric stretches of the confined methane, our

calculations also provide fundamental frequencies of the bending modes, which haven’t

been measured experimentally. These frequencies are reported in Table 9.5. As expected,

these results show splittings relative to isolated methane, where mode 2 is doubly de-

generate and mode 4 is triply degenerate (see, Table 9.1.) These results are of further

interest, as there are experimental measurements of overtones and combination bands

involving these modes. These are discussed next.

9.4.2 Overtones and combination bands

Some overtones and combination bands of methane in sI clathrate hydrate have been

measured in Raman102,103,110 and FTIR105. In the Raman spectrum, the band at about

2570 cm−1 is assigned to the overtone of the bend (2ν4), and the band at about 3050

cm−1 to the overtone of asymmetric bending (2ν2). In FTIR, the absorption up to 6000
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Table 9.5: Fundamental frequencies (cm−1) of CH4 bending modes in four cages, calcu-
lated by MULTIMODE.

Mode a 512 51262 435663 51264

ν4 1332 1335 1327 1335
1336 1340 1341 1338
1342 1345 1346 1351

ν2 1562 1567 1566 1568
1575 1570 1570 1572

a The modes are labeled using standard gas-phase spectro-
scopic notation.

cm−1 has been assigned, and particularly, the ν1 + ν4 and ν3 + ν4 combination mode of

methane in small and large cages has been distinguished by tuning the CH4/CF4 ratio in

the mixed clathrate. In these two combination modes, the frequencies in the small cage

are also 10 to 20 cm−1 higher than in the large cage, as is the case for the CH4 stretches.

Table 9.6: Energies (cm−1) of some overtones and combination modes calculated by
MULTIMODE, and comparison with experiments. The “s” and “l” in the parenthesis
indicate the small or large cage.

Transition Theory Experiment

2ν4 2575–2617 (s), 2579–2625 (l) ∼2570 a

2ν2 3052–3074 (s), 3056–3061 (l) ∼3050 a

ν1 + ν4 4195, 4198, 4205 (l) 4188, 4193, 4197 (l) b

4201, 4207, 4212 (s) 4201, 4207, 4211 (s) b

ν3 + ν4 4301–4333 (s), 4286–4326 (l) 4312–4332 (s), 4284–4303 (l) b

ν2 + ν3 4529–4562 (s), 4516–4542 (l) 4507–4540 b

a Raman, Ref. 102 and 110
b FTIR, Ref. 105.

Table 9.6 shows the comparison between the results from our calculations and experi-
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mental measurements. Due to the splitting caused by the anisotropy of the environment,

our calculation can predict the energies of states that were not resolved by the FTIR

experiments. For certain transitions such as 2ν4, due to this splitting, as many as nine

frequencies can be associated to it within a relatively small energy range; therefore we

only present the range in this paper instead of listing all the frequencies explicitly. For

the two overtones, the experimental values are very close to, but slightly outside our cal-

culated lower bounds. For the combination modes, our calculation agrees with the FTIR

results very well.

9.5 Diffusion Monte Carlo calculations

The diffusion Monte Carlo method was applied to study the zero-point properties of

the confined methane molecule. Due to the computational cost, treating the methane

and the water cage in full dimensionality is not feasible. However, since the interaction

between the confined guest molecule and the water cage is relatively weak, we fixed the

water cage, and treat explicitly the confined methane molecule in full dimensionality

(15-dimensional). Thus, the calculations characterize the vibration-translation-rotation

motion of the enclathrated methane molecule.

In the DMC simulations, the simple unbiased algorithm described in Ref. 58 and

Chapter 3 of this work was applied. These calculations were done for the four cages. For

each cage, five simulations were performed, and in each 20000 walkers were propagated

for 30000 steps with step size, ∆τ , of 5.0 au. The walkers were first equilibrated for 10000

steps, and then the reference energy was collected. It is worth noting that the simulation

is still very expensive, as about 109 potential evaluations are needed per simulation,

and each potential evaluation requires 20 to 28 methane-water two-body and 190 to 378
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methane-water-water three-body potential evaluations. The most time-consuming step

is to evaluate the three-body potential, and our “PP-422111*/4” potential is efficient

enough to allow such simulations. In fact, a single simulation of the CH4@(H2O)20 (the

smallest system) still takes about four days of CPU time on a sixteen-processor computer,

and the CH4@(H2O)28 takes about nine days.

The nuclear wave functions of methane, represented as isosurfaces, are shown in Fig-

ure 9.3. The isovalue is 40% of the maximum wave function amplitude in all the figures.

The ball-and-stick models in the figures represent the minimum geometries of these four

isolated clusters, while the “clouds” represent the nuclear wave functions. Since the coor-

dinates of water cages were always fixed during a simulation, the nuclear wave function

can be obtained by simply superimposing the walkers from the simulation. Compared

to the VCI calculation, which was restricted to the nine intra-molecular vibrations, the

DMC nuclear wave functions provide additional information on the translations and hin-

dered rotations of methane in the cage. It can be clearly seen that the wave functions of

methane in the large cages are more extended than those in the small cage. For example,

the wavefunction of methane in the 51262 cage is extended along the long axis of the

cage. (This can be clearly seen by comparing the wavefunctions of the carbon atom.)

This agrees with the fact that the one-dimensional potential cut along this axis is looser

than the small cage. In addition, note that we start to see the delocalization of the hy-

drogen wave function at 40% of the maximum amplitude. Though we did not quantify

the hindered-rotor barrier heights, the random sampling of orientations suggests that the

barrier height is on the order of hundreds of wavenumbers (see Table 9.4).

The vibration-translation-rotation ZPEs of the confined methane in the two cages are

reported in Table 9.7. Thus, the measurable dissociation energy (D0) of methane in the

cages can be estimated. First, the electronic dissociation energy (De) was calculated as
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(a) (b)

(c) (d)

Figure 9.3: Ground state nuclear wave function of methane in 512, 51262, 435663 and
51264 clathrate cages.
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the energy difference between CH4@(H2O)n cluster and the isolated cage plus methane.

Then the D0 was estimated using

D0 ≈ De − ZPEV-T-R + ZPECH4
, (9.3)

where ZPEV-T-R is the ZPE of the vibration-translation-rotation motion, and ZPECH4
is

the vibrational ZPE of gas-phase methane. The latter was calculated in two approaches.

One approach was DMC simulations on an isolated methane molecule, and the ZPE is

9701±2 cm−1; the other was quantum VSCF+VCI calculation using MULTIMODE, and

the ZPE calculated is 9702 cm−1. Both methods are rigorous for methane, and the results

agree with each other. Therefore, our estimates of D0 for methane in 512 and 51262 are

5.55 and 5.42 kcal/mol, respectively.

In addition to the total vibration-translation-rotation ZPEs and the dissociation en-

ergy, the vibrational ZPEs of the confined methane were calculated using local monomer

VSCF+VCI, and the results are shown in Table 9.7. Therefore, we were able to es-

timate the ZPE of the translation-rotation motions, by calculating the difference be-

tween the ZPEs of the vibration-translation-rotation motions and the vibrational ZPEs.

These values are also listed in the table. Matanović et al. 150 have performed rigorous

six-dimensional quantum calculations for translation-rotation eigenstates of methane in

these two cages, though with approximate pairwise additive potential for the CH4-cage

interaction. They reported the ZPEs of the translation-rotation motions in two cages

as 165.2 and 107.0 cm−1, respectively. Our results are about 120 cm−1 higher, but the

difference in the ZPEs for two cages is about the same. The difference between these

previous and the present calculations results from the different potentials used and the

different geometry of the cages. The results of translation-rotation motions in 435663 and
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51264 cages are also given in the table.

Table 9.7: The vibration-translation-rotation ZPE (denoted V-T-R ZPE), vibration-only
ZPE (denoted Vib ZPE), the difference (denoted T-R ZPE) (cm−1) for methane in four
cages, and the electronic and physical dissociation energy (kcal/mol) of CH4@(H2O)20

and CH4@(H2O)24. The vibrational ZPE of gas-phase methane is also shown.

Cage V-T-R ZPE Vib ZPE T-R ZPE De D0

512 9961±3 9671 290±3 6.29 5.55
51262 9877±2 9648 229±2 5.92 5.42
435663 9924±3 9664 260±3
51264 9850±3 9645 205±3
gas - 9702 - - -

9.6 Summary and conclusions

The PES for methane clathrate I developed has been applied to calculate the intramolecu-

lar vibrations of enclathrated methane. These are nine-dimensional, local monomer quan-

tum calculations that couple all the intramolecular vibrational modes of methane. The

calculations employed the VSCF+VCI approach and were performed using the code

MULTIMODE. For the symmetric stretch of confined methane, my calculations repro-

duce the same experimental trend that the frequency in the small cage is higher than that

in the large cage. The absolute frequencies of the symmetric stretch in different cages

were only underestimated by about 10 cm−1. For the symmetric stretches, overtones and

combination modes, the VSCF+VCI calculations also agree with experiments well. This

suggests that the accuracy of the PES is good, and “local monomer” approximation is

adequate to capture the dynamics of intramolecular vibrations of confined methane.



Chapter 9. Vibrations of Methane Confined in Clathrate Cages 160

Diffusion Monte Carlo calculations were performed on methane in rigid cages to char-

acterize the zero-point properties of the vibration-translation-rotation of methane con-

fined in these cages. The nuclear wave functions obtained in the DMC simulations suggest

that the methane molecule confined in the cages could tunnel through the hindered-rotor

barriers, which agrees with early findings. With the ZPEs calculated from DMC and

MULTIMODE, I estimated the D0 for methane in 512 and 51262 to be 5.55 and 5.42

kcal/mol, respectively, and the ZPEs of translation-rotation motions in the two cages to

be 290 and 229 cm−1.

Having verified the accuracy of our potential for CH4(H2O)n system, future work

will involve the application of this PES to investigate more properties of the methane

hydrates. For instance, the translation-rotation motion of confined methane in the water

cage and the lattice vibrations. The temperature dependence of properties could also be

studied, when thermodynamics approaches are incorporated in the simulations using the

PES.
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Chapter 10

Thermal Decomposition of Methanol

10.1 Overview

The rovibrational spectroscopy of methanol has been the subject of numerous experi-

mental287–294 and theoretical42,295–303 works, with a focus on the facile internal torsional

motion. Signatures of that motion in the vibrational spectrum of the fundamentals and

overtones of the CH and OH-stretch modes have reported in recent experiments. It is a

challenging system for theoretical approaches, owing both to the dimensionality of the

configuration space (12 degrees of freedom) and also the need to accurately describe

the low-barrier torsional motion. High-level theoretical work on the vibration/torsion

energies of methanol has made use of ab initio-based force fields and potential energy

surfaces (PESs).42,299–303 The most recent of these42 is a fit to electronic energies obtained

using CCSD(T) theory with aug-cc-pVTZ (aVTZ) basis. This PES has been employed

in MULTIMODE-reaction path calculations42,303 of low-lying vibration/torsion energies,

which are in good agreement with experiment.

However, these force field and PESs do not describe dissociation or near dissociation
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of any fragments. The thermal decomposition of methanol and the recombination of the

fragments are important precesses in combustion chemistry and therefore has been stud-

ied over a range of temperatures and pressures for several decades in both experiments

and theoretical calculations.304–315 Recent work can be found in Ref. 316–331. Methanol

is also widely found in the interstellar medium and its mechanism of formation is still a

subject of discussion.332,333

The thermal decomposition of methanol involves several reaction channels, including

CH3 + OH, 1CH2 + H2O, H2 + H2CO, H2 + cis/trans-HCOH, H + CH2OH, H + CH3O,

etc. Based on most of the experimental and theoretical work, the main product chan-

nel is the CH3 + OH. High-level theoretical modeling of the thermal decomposition and

recombination of methanol has been reported by a number of groups, including varia-

tional RRKM study of the rate constants using G2M334 ab initio theory,316 (variational)

RRKM theory with CCSD(T) energetics,317,318 MRCI characterization of the stationary

points on the PES and ab initio molecular dynamics simulations,319 and transition state

theory combined with QCISD(T) energetics.322 However, these theoretical works are all

based on the characterization of the stationary points on the PES. Therefore, the goal

here is to construct a full-dimensional, analytical PES that describes the bound region

as well as the dissociation channels. It should be noted that a model, empirical potential

has been reported for CH3 + OH recombination and used in quasiclassical trajectory

calculations.327 Yet the properties of the bound region of the PES were not reported

and evidently were not included in that work. Thus, the description of CH3OH is cer-

tainly below the level needed for spectroscopic analysis. Very recently, a full-dimensional

PES was reported,331 which is a permutationally invariant fit to about 340000 electronic

energies calculated by the MRCI+Q/aVTZ level of theory. 1

1The work presented in this chapter was done nearly at the same time of this reference.
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In this chapter, I present the full-dimensional PES of methanol I have constructed, and

the molecular dynamics simulations to model the thermal decomposition of CH3OH using

this PES. Some of the reaction channels, such as CH3 + OH and H + CH2OH/CH3O, are

challenging for electronic structure theory, due to the multi-reference character. These

will be discussed in the following sections.

10.2 Potential Energy Surface

The construction of this PES generally follows the procedures described in Chapter 2.

A schematic of the PES is shown in Figure 10.1, with all the stationary configurations

labeled. The PES can describe six dissociation channels.

10.2.1 Sampling of configuration space

The structures of the stationary points (minimum, T-TS, TS1–4) were optimized using

CCSD(T)-F12b/aVDZ level of theory. The complete database consists of geometries in

the following four subsets. The first set of geometries came from ab initio molecular dy-

namics simulations using DFT/B3LYP, which were initiated from the transition states.

These geometries mostly describe the regions that connect the minima and saddle points.

The second subset consists of the 19315 geometries from the previous PES42. This subset

focuses on the bound region of methanol and the barrier of the CH3 torsion. The third

subset contains fragment data in dissociation channels. For each channel, the configu-

rations of each fragment were sampled using direct dynamics, and the two fragments

were combined with different separations (the distance between two center-of-mass) and

different orientations. The last subset was obtained by running diffusion Monte Carlo

and molecular dynamics simulations to locate the un-physical regions of the PES. The
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Figure 10.1: Schematic of the methanol potential energy surface. The energies from
CCSD(T)-F12b/aVDZ (red) and the fitted PES (black) with or without (in parenthesis)
harmonic zero-point correction are also shown.
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total number of configurations in the database is 181765.

10.2.2 Ab initio calculations and potential fitting

As mentioned, some of the channels are challenging for electronic structure calculations

due to the multireference character. For example, Figure 10.2 shows two cuts for increas-

ing RCO using CCSD(T)-F12b and MRCI theory. It is clear that in this case CCSD(T)-

F12b starts to fail when the C-O distance reaches 5 Bohr, and the T1 diagnostic becomes

large.

Figure 10.2: Comparison of CCSD(T)-F12b and MRCI cuts for CH3OH → CH3 + OH

However, given the large computational expense of high-level multi-reference meth-

ods and the fact that the PES is dominated by closed-shell electronic configurations, I
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undertook a hybrid approach for the PES. For geometries for which a single-reference

method is valid, I employed the CCSD(T)-F12b/aVDZ method.32,33 For geometries in the

multi-reference region (where the T1 diagnostic of CCSD(T)-F12b is larger than 0.02),

I employed CASPT2/aVDZ. The single-state CASPT2 calculations used CASSCF with

10 active electrons and 10 active orbitals (CAS(10,10)) as the reference, and the energy

of the lowest state was calculated. Here CASPT2 was employed for the multi-reference

region instead of MRCI because generally the results from the two methods are quite

close for methanol, but the cost of a CASPT2 calculation is much less than an MRCI one

(3 minutes per point using CASPT2 vs. 1 hour per point using MRCI). CCSD(T)-F12b

calculations were also done for the non-interacting, separated fragments, which individ-

ually can be treated by this method (however, unrestricted coupled-cluster, UCCSD(T),

should be used for some fragments). Therefore, this PES does not describe the long-range

interaction between the fragments correctly, but this error is small compared to the en-

ergy scale of this PES, as most of the transition states and the dissociation channels are

70–100 kcal/mol above the CH3OH minimum. All the coupled-cluster calculations were

performed using the software MOLPRO 2008,335 and the CASPT2 calculations were

carried out using MOLCAS Version 7.8.336–338

However, there are several issues using this hybrid CCSD(T)-F12b/CASPT2 approach

to generate data for the fit. Firstly, the absolute energy from the two methods are differ-

ent; therefore, a shift to the CASPT2 ones must be applied so that they are compatible

with the CCSD(T) ones. This is done by shifting the CASPT2 energies by the differ-

ence between CCSD(T)-F12b and CASPT2 energies at the dissociation limit (with the

fragments at their equilibrium). Secondly, in the regions of the PES where the CCSD(T)-

F12b theory is applicable, those energies, which dominate the dataset, are more accurate

than corresponding CASPT2 ones.
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The PES is a least-squares fit to all the ab initio energies in the database. The fit is

permutationally invariant with respect to the exchange of H atoms. The maximum fit-

ting order is six, leading to 3338 linear coefficients. In this fit, a weight was assigned

to each data point, depending on the energy of each point. The weight is given by

0.25/(0.25+∆E), where ∆E is the energy relative to the global minimum in Hartree.

The weight of CASPT2 energies was further lowered by a factor of 0.6 because the en-

ergies obtained by shifting CASPT2 ones are not as accurate as the CCSD(T)-F12b

ones.

10.2.3 Properties of the potential energy surface

The overall root-mean-square (rms) fitting error of the PES is 606 cm−1. The relation

between the rms fitting error and energy (relative to the minimum) and the number of

points that are below that energy is shown in Figure 10.3. The number of configurations

grow rapidly between 30000 and 50000 cm−1, and there are about 120000 configurations

in this energy range. That’s because most of the dissociation channels and the transition

states have energies in this range. The rms fitting error increases almost linearly as a

function of the energy cut-off.

The structures and the energies of the stationary points corrected with harmonic

zero-point energy (ZPE) are also presented in Figure 10.1. In addition, I present the

electronic energies in parenthesis. The values in red are CCSD(T)-F12b/aVDZ energies

computed with MOLPRO, and the values in black are energies from the PES. One can

see good agreement between the PES and ab initio energies for the stationary points and

the dissociation channels.

Normal mode analyses were carried out at all stationary structures. The harmonic
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Figure 10.3: Number of points and rms error of the methanol PES below each energy.

frequencies and ZPE obtained in ab initio calculations (CCSD(T)-F12b/aVDZ) and from

the PES are presented in Table 10.1–10.3. In general, these harmonic frequencies are in

good agreement with CCSD(T)-F12b results.

To further test the fidelity of the PES from the bound region to dissociation, I show

1-D cuts of the PES in different dissociation channels. Figure 10.4 shows six cuts in

the CH3 + OH channel at different CH3 and OH orientations, as a function of the C-O

distance. The CCSD(T)-F12b, CASPT2, and MRCI energies along these cuts are also

shown in the figure. Several points can be made from these plots. Firstly, in the multi-

reference region (in general, RCO between 4 and 9 Bohr), the PES faithfully represents

the CASPT2 energies, for a large range of fragment orientation angles. In the strongly

attractive region, the PES agrees well with direct calculated CCSD(T)-F12b energies;

however, the CASPT2 and MRCI energies do not agree well with the coupled-cluster

ones. This is not surprising due to the limited accuracy of these method, at least in the
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Table 10.1: Comparison of harmonic frequencies (in cm−1) of the minimum and T-TS
of methanol calculated by CCSD(T)-F12b/aVDZ level of theory and the PES.

Minimum T-TS

Mode PES ab initio PES ab initio

1 282 289 278i 285i
2 1055 1064 1044 1069
3 1084 1090 1057 1100
4 1182 1178 1196 1192
5 1409 1381 1425 1366
6 1483 1481 1473 1488
7 1504 1505 1519 1499
8 1531 1515 1530 1527
9 3022 3013 3030 3030
10 3057 3072 3090 3101
11 3138 3133 3105 3106
12 3908 3865 3948 3902

Table 10.2: Comparison of harmonic frequencies (in cm−1) of TS1 and vdW calculated
by CCSD(T)-F12b/aVDZ level of theory and the PES.

TS1 vdW

Mode PES ab initio PES ab initio

1 937i 870i 10 44
2 262 371 334 353
3 384 446 713 646
4 869 738 743 668
5 1037 991 1116 1101
6 1150 1097 1207 1153
7 1403 1406 1408 1402
8 1598 1543 1811 1670
9 2726 2701 2961 3943
10 2995 3031 3028 3010
11 3096 3121 3867 3783
12 3854 3820 3891 3868
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Table 10.3: Comparison of harmonic frequencies (in cm−1) of the TS2, TS3, and TS4
calculated by CCSD(T)-F12b/aVDZ level of theory and the PES.

TS2 TS3 TS4

Mode PES ab initio PES ab initio PES ab initio

1 2094i 2122i 848i 954i 944i 1000i
2 667 857 493 557 444 562
3 941 933 653 658 641 667
4 1125 1153 751 903 857 953
5 1148 1202 1178 1002 1136 1026
6 1291 1263 1302 1220 1167 1192
7 1361 1455 1352 1246 1330 1258
8 1530 1501 1439 1401 1472 1437
9 2039 1923 1560 1441 1701 1467
10 2262 2351 2832 2813 2917 2758
11 3124 2963 2981 2913 3021 2990
12 3135 3013 3735 3747 3733 3807

single-reference region. (One measure of the CASPT2 inaccuracy is that the CASPT2

electronic dissociation energy for CH3OH→ CH3 + OH is roughly 8 kcal/mol lower than

the CCSD(T)-F12b one of 98.2 kcal/mol.) Figure 10.5 shows two cuts in the CH2OH

+ H channel, as well as CCSD(T)-F12b and shifted CASPT2 energies. This channel

also involves the multi-reference region, and hybrid data were also used for this channel.

Similar to CH3 + OH, the energies in the multi-reference region agree very well with the

CASPT2 calculations, and the strongly attractive region of the PES agrees with coupled-

cluster energies. Figure 10.6 shows the potential along a rectilinear reaction coordinate,

namely the imaginary-frequency normal coordinate of the saddle points (TS1–4), denoted

Qim. The potential shown is the one minimized with respect to the remaining 3N−7 (11)

normal modes of the saddle point for each value of Qim. These regions can be described

correctly by single reference electronic structure theory, so only CCSD(T)-F12b energies



Chapter 10. Thermal Decomposition of Methanol 172

are shown in the figures. Again, the agreement between the PES and the ab initio theory

is good.

Finally consider the measurable dissociation energy D0 for each channel. The ZPE

of the minimum and all the fragments were calculated rigorously using diffusion Monte

Carlo (DMC) simulation. The algorithm described in Chapter 3 were applied. For each

system, five simulations were performed, and each simulation was propagated for 20000

steps, with step size of 5.0 au. In each simulation, the system was equilibrated for the

first 2000 steps and the energies in the remaining steps were collected to compute the

ZPE. The uncertain in the ZPE was estimated by the standard deviation of the five

simulations of a particular system, and the uncertainty in the dissociation energy was

estimated based on the uncertainties in the ZPEs. The ZPEs, the D0 values calculated

by DMC, and the experimental dissociation energies are listed in Table 10.4. One can see

good agreement between theoretical calculation and the experiments.

Table 10.4: ZPEs (cm−1 of the methanol dissociation channels and the theoretical and
experimental dissociation energies (kcal/mol).

ZPE (cm−1) D0 (kcal/mol) Experiment a

CH3 + OH 42641 ± 9 90.04 ± 0.04 90.25
1CH2 + H2O 42829 ± 14 90.83 ± 0.06 90.83
trans-HCOH + H2 36303 ± 5 71.92 ± 0.03 72.48
cis-HCOH + H2 37830 ± 4 76.29 ± 0.03 77.12
H2CO + H2 18127 ± 4 19.96 ± 0.03 20.33
CH2OH + H 43949 ± 5 93.79 ± 0.03 94.55
Minimum 11148 ± 5 - -

a From Ref. 339
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Figure 10.4: Unrelaxed one-dimensional cuts from the PES (line) for different CH3 and
OH orientations, compared to CCSD(T)-F12b (black triangles), CASPT2 (black circles)
and MRCI (open squares) calculations.
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10.3 Molecular Dynamics Simulations

10.3.1 Computational details

The molecular dynamics trajectories were initiated at the global minimum. Microcanon-

ical sampling was employed to prepare the initial conditions of the trajectories, with zero

total angular momentum. In addition, I calculated the energy in each normal mode of

the minimum, and the initial condition was re-assigned until the energy in each mode

was larger than its harmonic ZPE. I carried out MD simulations for nine different initial

internal energies (the energy of the minimum is zero): 43000, 44000, 45000, 46000, 47000,

48000, 49000, 50000, 51000 cm−1; these energies are 91.07, 93.93, 96.79, 99.65, 120.51,

105.37, 108.23, 111.09, and 113.95 kcal/mol relative to the ZPE of the minimum. The

lowest internal energy, 91.07 kcal/mol, is just slightly higher than the CH3 + OH and

1CH2 + H2O channels and TS1–TS4. For each initial internal energy, 40000 trajectories

were carried out. The velocity Verlet algorithm was applied to propagate the trajectory,

with step size of 0.121 fs. The maximum number of steps for these trajectories is 5000000,

corresponding to 604.8 ps. When a trajectory reaches the maximum number of steps, or

when the largest internuclear distance exceeds 15.0 Bohr, the trajectory stops.

In this work, I mainly focus on the branching ratio of each dissociation channel.

Therefore, the number of trajectories that ended up in each channel was counted, and

the fraction of each channel was calculated. Note that when the initial energy is low, the

vibrational energy of the final products could be smaller than the ZPE. These trajectories

are “un-physical” and should not be considered in the analysis. I employed the soft ZPE-

constraint to remove these un-physical trajectories. To do this, for each fragment, the

translational energy was first removed. The rotational energy can be calculated using

Eq. 4.11 in Chapter 4, and then the vibrational energy can be obtained using Eq. 4.12. If
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the sum of the vibrational energy of two fragments are smaller than the Harmonic ZPE

of them in a trajectory, that trajectory was discarded.

10.3.2 Results and discussions

The branching ratio of each channel obtained from the MD trajectories at different initial

internal energy are summarized in Figure 10.7. At the lowest internal energy (91.07

kcal/mol), in principle, all the dissociation channels except CH2OH + H are open. In

simulations, I observed trajectories end up in the CH3 + OH, cis/trans-HCOH + H2,

and H2CO + H2; however, I did not find the 1CH2 + H2O product. This might due

to the fact that the initial energy is only about 0.6 kcal/mol higher than the minimal

energy to that channel, and the number of trajectories that dissociate is not adequate

to give good statistics. At this energy, only about 3000 trajectories dissociated and had

enough vibrational energy in fragments. The dominant channel at this energy is the

cis/trans-HCOH + H2, because the relatively low barrier to the products.

As the initial internal energy increases, I can observe the 1CH2 + H2O products in

the simulation: at 96.79 kcal/mol, the CH2OH + H opens up, and this energy threshold

is in fairly good agreement with the D0 of this channel (94.5 kcal/mol). One can see that

at high energies, the CH3 + OH and CH2OH + H products start to dominate, because

only a single bond cleavage is involved in these two channels, while the molecule has to

go through transition states for other products. For the H2CO + H2, the ratio is very

small (about 1%) in the whole range of initial internal energy.

Based on the MD simulations, I confirm that the CH3 + OH is the major product

in the thermal decomposition of methanol. However, the atomic H product could be

significant at higher energy. In the simulation, I observe the 1CH2 + H2O, but the ratio
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is not as large as what the previous experiments show. Furthermore, I find that at low

internal energy, the cis/trans-HCOH + H2 could be dominant, and even at high internal

energy, the ratio of these two channels are still non-negligible.

10.4 Summary, Conclusions, and Remarks

In this work, a full-dimensional potential energy surface of methanol is constructed. It

describes the CH3 + OH, 1CH2 + H2O, CH2OH + H, H2 + H2CO, and H2 + cis/trans-

HCOH dissociation channels. This PES is a permutationally invariant fit to 181765 ab

initio energies, calculated with CCSD(T)-F12/aVDZ and CASPT2/aVDZ theories. One-

dimensional cuts show that this PES agrees with CCSD(T)-F12b energies in the single-

reference region, and with CASPT2 ones in multi-reference region. The fidelity of the PES

is further confirmed by the good agreement in dissociation energies with experiments.

Microcanonical molecular dynamics simulations have been performed, in order to

investigate the thermal decomposition of methanol. The simulations confirmed that the

CH3 + OH is the dominant product, while the cis/trans-HCOH + H2 channel is also

significant. However, these are microcanonical calculations, i.e., the molecule has a fixed

total energy, and pressures were not considered in the simulations; the results should

not be directly compared to experiments, as the experiments are conducted at certain

temperatures and pressures. Simulations using canonical ensemble will be carried out in

the future to model the thermal decomposition of methanol.
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Dissociation of Vinyl Chloride

11.1 Overview

Vinylidene, H2CC, is a key reaction intermediate and an important initially-formed prod-

uct in many photochemical reactions.340–342 Perhaps the most frequently cited example,

which provides spectroscopic proof that vinylidene is formed, is the vibrationally resolved

C2H –
2 negative ion photoelectron spectrum.343,344 The linewidths in this spectrum are

widely cited as showing that the isomerization lifetime of vinylidene in its zero-point

vibrational level is ∼400 fs. Coulomb Explosion Imaging (CEI) experiments345 of neutral

vinylidene 3.5 s after anion photodetachment showed that roughly 50% of the observed

structures are vinylidene-like and 50% acetylene-like. This proves that the vinylidene

structure “lives” for at least 3.5 µs. How can this observation be reconciled with a 400 fs

isomerization lifetime?

The resolution of this paradox will emerge as we recall that eigenstates are stationary.

The issue is whether one can produce C2H2 eigenstates that are predominantly vinylidene

in character. Such eigenstates were shown to exist in the first full-dimensional quantum

179
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calculations by Zou and Bowman,346 and seen consistently in potential energy surfaces

(PESs) of ever-increasing accuracy since then.347–349 However, one key to success in ex-

perimental production of these eigenstates is that the vinylidene be rotationally cold, as

rotation has been shown to promote intramolecular vibrational relaxation (IVR), which

profoundly increases the density of acetylene vibrational states into which vinylidene can

isomerize.350,351

Figure 11.1: Energies (kcal/mol) of stationary points on the vinyl chloride potential
energy surface relevant to HCl elimination from DFT-M06-2X/aug-cc-pVDZ calculations
and from CCSD(T)-F12/aug-cc-pVDZ given in parentheses.

Photodissociation of vinyl chloride has been studied extensively at 193 nm using a

broad range of techniques, which include resonant ionization detection of HCl,352–354 time-

resolved FTIR,355 and photofragment translational spectroscopy with vacuum ultraviolet
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photoionization product detection.356 Theoretical work has included a detailed mapping

of the stationary points on the ground state PES by Riehl and Morokuma 357 and direct

dynamics studies by Nunes et al.358,359 For HCl elimination, which is the lowest energy

decay path and the focus here, there are two reaction channels as depicted in Figure 11.1:

via a 3-center (3C) transition state (3C-TS) to HCl + vinylidene, with a zero-point

corrected reverse barrier of 2.5 kcal/mol, or by a 4-center (4C) 4C-TS that is 52 kcal/mol

above the HCl + acetylene asymptote.

The well-studied 193 nm dissociation includes both 3C and 4C channels, in a ratio

estimated from the rotational distributions in HCl to be 4:1. The rotational distribution

for the 3C channel was seen in the earlier dynamics study358 to reach a maximum around

J = 5 and extend to J = 40. The 4C channel, on the other hand, extends broadly from

J = 18 to 40 with undetectable population in low rotational levels. This underscores the

problem that precludes 193 nm dissociation as a route to synthesis of cold vinylidene:

the excess energy yields vinylidene with such high internal excitation that the product

vinylidene character will be diluted into many excited acetylene levels and lost.

Thus experimentalists turned to infrared photodissociation as a possible route to cold

vinylidene. In this joint experiment/theory work, Suits and co-workers360 carried out

infrared multiphoton dissociation (IRMPD) experiment by dissociating vinyl chloride in

a molecular beam using a TEA-CO2 laser, then probing the HCl product state specifically

using 2 + 1 resonant ionization. They obtained the rotational distribution for the HCl

product in v = 0, and recorded images on a number of rotational levels in v = 0 and

v = 1. I carried out molecular dynamics simulations to provide theoretical support for

this experiment.
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11.2 Computational Details

I have performed direct dynamics trajectory studies to determine the translational energy

release and product state distributions following excitation at energies just above the

3C-TS, both for comparison to experiment, and to probe the nascent C2H2 rotational

excitation.

The direct dynamics simulations were carried out using Gaussian 09 package361 with

the M06-2X density functional362 and aug-cc-pVDZ basis set. This functional was found

to give satisfactory energetics compared to higher level CCSD(T)-F12/aug-cc-pVDZ cal-

culations. The trajectories were initiated at the 3C saddle point and standard micro-

canonical normal mode sampling was employed.60 An additional 7.0 kcal/mol energy was

added to the imaginary-frequency mode. This energy was chosen as a compromise be-

tween the experimental energy (which is somewhat above the threshold for dissociation)

and consideration of the computational cost of running direct-dynamics. Any spurious

angular momentum was removed, so the initial angular momentum was zero (J = 0)

for all the trajectories. The step size is 5 a.u. (0.121 fs), and the maximum number of

steps for a trajectory is 4000 (483.8 fs). Each trajectory required roughly 24 hours on a

single node of our compute cluster. In total, 452 trajectories dissociated, and the total

translational energy and angular momenta of the fragments were calculated and analyzed

here, using the procedures mentioned in Chapter 4 and Ref.61

11.3 Results and Discussion

Figure 11.2(A) shows the HCl v = 0 resonance-enhanced multiphoton ionization (REMPI)

spectrum Suits and co-workers obtained following IRMPD of vinyl chloride. No signal
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was detected in rotational levels 20 or 25, despite the fact that these levels are expected

to be well-populated via the 4C pathway. The HCl rotational level populations obtained

from the trajectory calculations are shown in Figure 11.2(B). A Boltzmann fit (inset)

gives a rotational temperature of 270 K for the experimental spectrum and 510 K for the

trajectory results. This difference may be due in part to the additional 7 kcal/mol above

the 3C-TS provided in the trajectory calculations.

Figure 11.2: HCl (v = 0) rotation distribution following IRMPD of vinyl chloride. (A)
Experimental REMPI spectrum; (B) trajectory results (red squares) and experimental
populations (blue circles) with Boltzmann plot inset.
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DC slice images of a range of rotational levels of HCl in v = 0 and v = 1 are given in

Figure 11.3, as well as the total translational energy distributions derived from the images.

All of the images are isotropic and show low translational energy release, peaking at 3–

5 kcal/mol with an average total translational energy of 4–5 kcal/mol. Results for HCl

v = 1 are similar, although the signal is significantly weaker and the average translational

energy release lower at 3 kcal/mol. The low translational energy release seen here is in

stark contrast to the results at 193 nm, which peak at 15 kcal/mol and extend beyond

60 kcal/mol. The translational energy distribution obtained from the trajectory data is

also given in Figure 11.3, showing an average translational energy release of 2.5 kcal/mol,

in good agreement with the experimental results. The low translational energy release,

resembling the reverse barrier for the 3C-TS, combined with low rotational excitation in

HCl, indicate clearly that the product we detect originates in the 3C elimination of HCl

from vinyl chloride, making vinylidene as a 1:1 co-product. The good agreement with

the theory for dissociation starting from the 3C-TS confirms this. The absence of the 4C

product in the experiments is readily understood from the 3 kcal/mol higher energy of

the 4C-TS, as well as entropic factors that favor the 3C channel.

Now consider the predicted internal excitation in the vinylidene co-product. For this

only the trajectory calculations could be used, as information about vinylidene is not

yet directly available from experiment. The results, obtained from a classical calculation

of the C2H2 rotational excitation in each trajectory, are given in Figure 11.4. Sixty-five

percent of all trajectories result in J = 20 or below for C2H2, and 25% in J = 10 or lower.

This low rotational excitation in the C2H2 product is extremely significant. Perry and

Herman showed that high rotation results in complete IVR on the acetylene side of the

isomerization barrier.350,351 As a result, vinylidene (and local-bender acetylene) charac-

ter is diluted into many eigenstates, thereby reducing both the single rotation-vibration
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Figure 11.3: HCl DC sliced images and total translational energy distributions for indi-
cated rotational level, and corresponding trajectory result.
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level populations and the transition moments, rendering all J = 0→ 1 transitions unde-

tectably weak. In the absence of C2H2 rotational excitation, eigenstates of predominantly

vinylidene character are seen to persist.

Figure 11.4: C2H2 total rotational distribution obtained from trajectories. Inset shows
a typical trajectory that persists as vinylidene, with snapshots every 90 fs.

Shown in Figure 11.5 is a typical trajectory that persists as vinylidene, to highlight

that the 3C elimination indeed initially forms the vinylidene structure. However, one

must refrain from thinking too classically about this. In these experiments, a chemical

“pluck” of the system creates, at t = 0, a pure vinylidene quantum mechanical superpo-

sition state. The time evolution of this initially formed state will depend on the number,

nature, and energy spacings of the eigenstates that express this t = 0 state. Different



Chapter 11. Dissociation of Vinyl Chloride 187

Figure 11.5: A typical trajectory of vinyl chloride dissociation that persists as vinylidene

vinylidene vibrational levels will have different time behaviors. In general, there will be

a fast initial decay of the phased-up vinylidene character. But if there are only two or

three dominant eigenstates, the vinylidene character will be manifest as nearly perfectly

recurring quantum beats, as seen in the CEI experiments.

11.4 Summary and Conclusions

The combination of the experiments and trajectory calculations shows clearly that IRMPD

of vinyl chloride creates vinylidene states (via the 3C transition state) at t = 0. That

is, IRMPD of vinyl chloride gives rise to 3C elimination of HCl with the co-product

C2H2 born as vinylidene with low rotational excitation. This t = 0 vinylidene state will

have a particularly simple quantum mechanical eigenstate description, ideal conditions
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for future direct spectroscopic detection.



Chapter 12

Adiabatic Switching Method for

Initial Conditions

12.1 Overview

Computational simulations have become significant tools to investigate chemical reac-

tions, thanks to the drastic enhancement in the performance of computers. Ideally, in

the case of chemical reactions, where the motions of nucleus and electrons are involved,

quantum mechanical scattering theory for the nuclear motion should to be applied. How-

ever, exact quantum calculations are very computationally demanding that they have

rarely been applied in more than six degrees of freedom, and for the relevant example of

reactions of atoms with methane far from full (12) dimensionality.

When nuclear quantum effects are not significant, molecular dynamics (MD) simula-

tions, which treat the nuclei as classical particles, represent an alternative way to simulate

the reaction process. One limitation of the basic MD simulation is that it fails to describe

the zero-point motion of the molecule, even classically. The zero-point energy (ZPE) of a

189
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polyatomic molecule is usually a large amount of energy (tens of kcal/mol), so the lack of

it could lead to poor estimate of reaction barriers or thresholds. Furthermore, the origi-

nal MD method is not able to treat mode-specific reactions, when a certain vibrational

mode of the molecule is excited. Quasiclassical trajectory (QCT) calculations offer an

improvement to the basic MD method by incorporating the semiclassical quantization of

molecular vibrations as the initial condition. Thus, the QCT method is able to describe

the zero-point motion and mode-specific conditions, and has been extensively applied

to dynamics simulations of gas-phase chemical reactions. These methods have been re-

viewed in detail by Hase60,61 and the methods have been adopted in the code, VENUS,

that performs QCT calculations.363

One widely-used approach to prepare the initial conditions in QCT calculations is

normal-mode sampling method.60 To be specific, consider the X + CH4 reaction, where

X is an atom. A normal-mode analysis is done for the molecule, e.g., CH4, using the given

molecular potential that contained in the full potential energy surface (PES) describing

the reaction. This results in a separable sampling procedure, because the vibrational mo-

tion is treated as uncoupled harmonic oscillators. For the zero-point state, the harmonic

ZPE of each mode is assigned to the molecule. For excited vibrational states, the same

procedure is used. The problem with this procedure is obvious, because the PES of any

real molecule does not consists of simple uncoupled harmonic oscillators but is inher-

ently anharmonic. Typically, the harmonic ZPE is on the order of one to several hundred

wavenumbers higher than the correct ZPE. In addition, the initial state prepared in this

way is not a stationary state of the real molecular Hamiltonian, meaning that vibrational

energy flows back and forth among the vibrational modes. However, when averaged over

an ensemble of trajectories, the harmonic action has been shown to be maintained for

thousands of time steps, as for example in the recent QCT study of mode-specificity in
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the Cl + CHD3 reaction.364 Thus, normal-mode sampling generally does provide good

and robust results. This is illustrated in the 2014 review of recent QCT calculations of

the X + CH4 (and isotopologs) reaction for both the vibrational ground and excited

state reactions, where X is H, F, Cl, Br and O(3P),365 and also more recent application

to mode-specific effects in O(3P) + CH4.366

Experiments and QCT calculations of mode-specificity in reactions of CH4 (and iso-

topologs) have been the focus of numerous studies in the gas phase, e.g., references 364–

370. In the QCT studies, normal mode sampling have been performed, using accurate

analytical potential energy surfaces.364–366,370 The mode-specific dissociation of methane

on a metal surface is also a prototype system when investigating the mode selectivity in

gas-surface reactions, and it is also the rate-limiting step in steam reforming.371–374

This apparent success of normal-mode sampling notwithstanding, it has been known

for years that rigorous phase-space sampling of initial states in QCT calculations should

be based on semiclassical quantization of ro-vibrational states of polyatomic molecules.

The field of semiclassical quantization of molecular motion, in particular vibrational mo-

tion, is large, with many contributions and advances made in the 1980s.375–388 Neverthe-

less, the methodology is complex, as the forces, even at zero-point energies, are non-linear

and the search for periodic orbits is challenging. Perhaps the most recent and success-

ful application of a state-of-the-art semiclassical theory to vibrational state quantization

was done in 2011 in a demonstration to H2CO.389 This work, which was computationally

intensive, was aimed at determining eigenvalues only.

Perhaps the first use of semiclassical quantization of vibrational energies (using clas-

sical perturbation theory) for a collision system was in the context of energy transfer in

triatomic molecules.390 That review is an excellent source for the details involved in per-

forming semiclassical quantization at that time. The sophisticated fast Fourier transform
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method378,379 was employed recently to quantize final states of the NH2 product in the H

+ NH3 reaction.391 Comparison with the standard harmonic analysis showed only small

differences, again confirming the robustness of that approach.

Among the numerous semiclassical methods available, adiabatic switching (AS)381–388

is considered here. The basic idea of adiabatic switching is as follows: the Hamiltonian

of the polyatomic molecule can be written as the sum of a zeroth-order separable, and

non-separable parts, H = H0 + ∆H. The separable part H0 is easily quantized semi-

classially. Then the Hamiltonian becomes time-dependent, being switched from H0 to

H sufficiently slowly, and according to the adiabatic theorem, the quantized state of H0

will slowly evolve to the corresponding quantized state associated with the true Hamil-

tonian H. The application of AS in semiclassical quantization has been investigated and

reviewed.381–388 The method, as will become clear below, is straightforward to apply and

so it offers the prospect of being readily implemented in QCT calculations involving poly-

atomic reactants (and products). Recently, AS has been applied successfully to obtain

the Wigner distribution for anharmonic coupled oscillators, starting with a zero-order

separable distribution.392

To the best of my knowledge, AS has been applied twice in QCT calculations. The first

time was in 1995 to a full-dimensional model of the H + CD4 reaction,393 and then in 2006

to a study of the Cl + CH4 reaction, using an ab initio-based potential.394 In both cases,

the ZPE of CH4 was quantized using AS. The former study focused on the reaction cross

section and ro-vibrational state distributions of the HD product at one collision energy.

Standard normal-mode sampling was also done and results from the two approaches were

compared, with the conclusion “However, in application to the H + CD4 → HD + CD3

reaction, we find no discernible difference between the two sampling methods.” Thus, the

authors did not recommend AS for use in QCT calculations. In addition, the AS zero-
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point energy had a standard deviation of roughly 170 cm−1, much larger than had been

reported in previous realistic applications to H2O, HCO and H2CO.388 In the more recent

study, the standard deviation of the ZPE was reported as 35 cm−1 using a switching time

of 0.67 ps. In both studies, the absence of accurate quantum calculations of the ZPE

meant that an assessment of the accuracy of the AS ZPE was not possible. However,

Castillo et al. 394 did note that the AS result of 27.5 kcal/mol was in good agreement

with the “experimental” value of 27.1 kcal/mol, i.e., a difference of 129 cm−1.

In this work, I revisit AS for methane for the ZPE and two fundamentals, using an

accurate ab initio-based PES for which exact quantum energies are available. I come to

a different conclusion with respect to the accuracy of AS quantization than one made

in 1995 and suggest that AS may be an effective, simple and general way to perform

semiclassical quantization in the context of QCT calculations. CH4 is challenging for

semiclassical quantization, since it has nine vibrational degrees of freedom, two sets of

which are triply degenerate, one set doubly degenerate and thus only one singly degen-

erate mode. Thus, to the best of my knowledge, the present calculations represent an

application of semiclassical quantization to the largest polyatomic molecule beyond the

ZPE.

12.2 Theory and Computational Details

12.2.1 Adiabatic switching

Adiabatic switching is founded in the adiabatic theorem of classical mechanics,395 which

states that certain constants of the motion may evolve invariantly in time. For semi-

classical quantization, these are the good action variables.381–385 The time-dependent
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Hamiltonian in AS is given by

H(t) = H0 + s(t)(H −H0), (12.1)

where H0 is the zeroth-order Hamiltonian, s(t) is a switching function that varies mono-

tonically from 0 to 1 over a finite time interval T and remains 1 for t > T .

Here the zeroth-order Hamiltonian is the harmonic one,

H0 =
3N−6∑
i=1

(
P 2
i

2
+
ω2
iQ

2
i

2

)
= K + V0, (12.2)

where Qi the are the mass-scaled normal modes and ωi are the corresponding harmonic

frequencies. The switching function s(t) is chosen as385,388

s(t) =
t

T
− 1

2π
sin

2πt

T
, (12.3)

where T is the switching time. Therefore H −H0 = V − V0, where V and V0 are full and

harmonic potentials, respectively, and thus H(t) = H0 + s(t)(V − V0).

The semiclassical quantization conditions of H0 are the usual ones,

∮
PidQi = 2π(ni + 1/2)~, (12.4)

where ni are integers and these variables are classical actions. Since the H0 is a separable

harmonic-oscillator Hamiltonian, the semiclassical quantization can be achieved trivially,

as shown next.
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12.2.2 Quantization of H0

A standard normal-mode analysis is performed at the global minimum structure of the

molecule, in the present case methane. A set of harmonic frequencies ωi and the corre-

sponding normal mode eigenvectors Li (i = 1, 2, · · · , 3N − 6) are obtained.

For each mode, the normal coordinate Qi and the corresponding momentum Pi are

in terms of action/angle variables by

Qi = [(2ni + 1)~/ωi]1/2 cos(ωit+ φi), (12.5)

Pi = − [(2ni + 1)~ωi]1/2 sin(ωit+ φi), (12.6)

where ni is the integral quantum number of mode i, and φi is the phase of the i-th

oscillator, which varies uniformly from 0 to 2π.

For sampling purposes, e.g., in QCT calculations, at t = 0, the phase for each mode

is randomly sampled from a uniform distribution on (0, 2π). Once the random phase φi

are determined, Qi and Pi are obtained and then transformed rigorously to the Cartesian

coordinates qi and momenta pi via

q = q0 + M−1/2LQ, (12.7)

p = M 1/2LP , (12.8)

where q0 is a vector of the Cartesian coordinates of the minimum; L is a matrix consists

of the normal mode eigenvectors; M is a diagonal matrix whose elements are the masses

of atoms.

These are then the initial conditions for the AS trajectory. AS can be done with a

single trajectory, or as is more typical, for an ensemble of trajectories.
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12.2.3 Propagation

For general utility, the AS is implemented in Cartesian coordinates and momenta. In

this way, the method can be applied to any molecule, cluster, etc. Thus, the equations

of motion

q̇i =
∂H(t)

∂pi
, ṗi = −∂H(t)

∂qi
(12.9)

are integrated numerically, and H(t) = H0 + s(t)(V − V0), as stated above. In order to

evaluate the harmonic potential, V0, at each time step, the coordinate system is trans-

formed to the Eckart frame, to eliminate the rotation of the molecule due to either

numerical inaccuracy or rotation-vibration coupling. The transformation to the Eckart

frame is done by a rotation of the coordinate system to a new one that satisfies the

Eckart conditions. This is done by rotating the coordinates ri to satisfy these conditions.

The rotation matrix, C is computed using the method of Dymarsky and Kudin 396 . The

details of the procedure used are given elsewhere,365,370 where the context was the final

state analysis of products. In brief, C is determined from the equation

N∑
i=1

mir
eq
i × (Cri − reqi ) = 0, (12.10)

where reqi is the reference configuration where the normal mode analysis was performed.

Once the Cartesian coordinates in the Eckart frame are obtained, the reference set of

normal coordinates is obtained as usual, and V0 can be easily evaluated as

V0 =
3N−6∑
i=1

ω2
iQ

2
i

2
, (12.11)
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and subtracted from the full potential. Note that the transformation to the Eckart frame

is only performed to evaluate the harmonic potential, otherwise the classical propaga-

tion proceeds as usual in the original set of Cartesian coordinates and momenta. This

transformation is easily implemented into any trajectory code.

12.2.4 Computational details

I performed AS calculations for methane, with different switching times T for the zero-

point state and two fundamentals. The velocity Verlet algorithm was applied to numeri-

cally integrate the equations of motion, and the gradient at each step was calculated by

numerical finite difference. The step size used in all the trajectory calculations was 0.06

fs. For each quantized state, three different switching times have been used, namely, T =

0.24, 0.48, and 1.21 ps. After the full potential was completely turned on, the molecule

was further propagated for 5000 steps using the full potential energy surface. For each

switching time, 1000 trajectories were run to obtain statistically well-converged averages

and standard deviations of the final quantized energies.

An ab initio-based potential energy surface, of near spectroscopic accuracy and for

which accurate quantum vibrational energies are available,170 is used in the present cal-

culations.

12.3 Results and Discussion

12.3.1 CH4 zero-point energy

The ZPE as a function of time for a single trajectory and three total switching times

is shown in Figure 12.1. As seen, the initial harmonic ZPE (9847 cm−1) changes as the
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potential is switched to the full potential and the vibrational energy of CH4 converges to

a value that is close to the exact quantum ZPE of 9702 cm−1. The decrease in energy is

generally monotonic with small oscillations.
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Figure 12.1: Zero-point vibrational energy of CH4 using adiabatic switching for three
switching times.

In principle, the quantized energy in the molecule should be independent of the trajec-

tory initial conditions after the potential is completely switched to the full one, assuming

that the adiabatic switching process is slow enough. However, due to the finite switch-

ing time, the final energy has a distribution, centered at the semiclassical anharmonic

ZPE. I propagated 1000 trajectories for each switching time, and the final energy of each

trajectory was recorded. For each energy, I applied a Gaussian function centered at that

energy with width of 7.5 cm−1, and the superposition of the 1000 Gaussian functions rep-

resents the distribution of the 1000 energies for a particular switching time. The results

are shown in Figure 12.2. The three distributions are all centered at about 9670 cm−1,
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Figure 12.2: The distribution of the semiclassical anharmonic ZPE of CH4 from 1000
trajectories, for three switching times.

which is only about 30 cm−1 lower than the exact quantum ZPE. Therefore, I believe

that the correct semiclassical vibrational ground state of methane is obtained using the

adiabatic switching method. The standard deviations for the three switching times are

23.9, 18.8 and 14.3 cm−1, verifying the expectation that a longer switching time leads to

more precise results.

In these calculations, I also monitored the normal coordinates of the methane molecule

(specifically, the six zero-frequency rotational and translational modes) along the trajec-

tory. At each step, the Cartesian coordinates of the molecule were transformed to the

normal coordinates directly without aligning to the Eckart frame. Of course, initially the

normal coordinates for those six modes were zero, but during the propagation, the nor-

mal coordinates of the three rotational modes can be very large (50 to 100 a.u.), owing

to vibration rotation coupling, without transformation to the Eckart frame. The trans-

lational modes remain zero as there is no coupling to those modes. After transforming
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to the Eckart frame when evaluating the potential energy, the coordinates of the three

rotational modes are nearly zero, as they should be. Therefore, the transformation to

the Eckart frame, when calculating the potential, is an important procedure in the AS

trajectory calculations.

Note, the present standard deviations are significantly smaller than the one reported

in 1995 by Huang et al. 393 for CD4 of 171 cm−1, despite a much longer switching time of

7.8 ps used by that group. I can only speculate about this large difference in the standard

deviations; however, that group cited several possible sources for the discouragingly large

standard deviation. One was their implementation of AS, which appears to be similar to

the one used here, with the possible exception of not transforming to the Eckart frame to

determine the harmonic potential. This important aspect of the current implementation

is not mentioned by Huang et al. In any case, the results here for the ZPE are consistent

with previous results using AS, e.g., for H2CO, where differences with exact quantum

calculations are roughly 10 cm−1 and standard deviations are roughly half that.388

12.3.2 Excited states

To further test the AS method, I prepared the initial conditions for the excited state

of the symmetric stretching and asymmetric stretching normal modes, to verify if the

molecule could evolve to the corresponding excited state on the full potential semiclassi-

cally. The average energies relative to the semiclassical ZPE averaged for 1000 trajectories

and three switching times are given in Table 12.1. As is seen from the table, after the

switching process, the vibrational energy agrees well with the corresponding quantum

energy. This indicates that after the adiabatic switching, the methane molecule is in the

correct semiclassically quantized state that corresponds to the desired quantum state.
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Table 12.1: The energy relative to the semiclassical ZPE in cm−1 and the standard
deviation (in parentheses) over 1,000 trajectories for the specified excited states and
switching time in picoseconds. The fundamentals from quantum calculations are also
listed in the last column.

Mode excited T = 0.242 T = 0.484 T = 1.209 Quantum a

sym. str. 2915 (46.5) 2907 (41.9) 2901 (27.1) 2917
asym. str. 1 3014 (48.5) 3015 (40.1) 3017 (29.7) 3019
asym. str. 2 3008 (63.6) 3016 (40.6) 3018 (28.6) 3019
asym. str. 3 3010 (56.5) 3016 (42.2) 3018 (29.2) 3019

a Quantum results from Ref. 170

The agreement with exact quantum results is very good, although the standard de-

viations are larger than those for the ZPE. Note that the aysmmetric stretch is triply

degenerate and the three AS energies are nearly identical, being within one wavenumber

of each other. While these degenerate states are uncoupled at t = 0, it is likely that they

mix as the full potential is switched on. No attempt to analyze the extent of mixing was

made. It is also worth noting that resonances, e.g., Fermi resonances, present challenges

for semiclassical quantization, including AS. Analysis of these, along with strategies to

deal with them, are beyond the scope of this paper; however, the interested readers are

referred to reference 26 for a discussion of this.

So, having established that AS does provide good accuracy compared to exact quan-

tum calculations, next I describe how AS can be implemented to provide semiclassical

initial conditions in quasiclassical trajectory calculations.

12.3.3 Implementation in quasiclassical trajectory calculations

To begin, recall that in standard normal-mode sampling, the initial Cartesian coordinates

and momenta are obtained from uniform (and typically random) sampling of the normal
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mode coordinates and momenta, c.f., Eq. 12.6. The resultant propagation using the full

Hamiltonian is not stationary and further, each set of initial conditions, in general, results

in a different total energy. This is mostly due to the anharmonicity of the potential;

however, the vibrational angular momentum terms also contribute. The variation in the

total energy can be several hundred to a thousand or so wavenumbers. Scaling of the initial

kinetic energy is typically done to restore the total energy to the desired value.60,365

An alternative normal-mode sampling results from selecting initial conditions in

Cartesian coordinates and momenta from trajectories in these coordinates and momenta

using the harmonic potential, with initial conditions determined from each normal-mode

coordinate and momentum. Although these trajectories do not obviously manifest the

underlying periodic motion they can be used to collect Cartesian coordinates and mo-

menta uniformly in time and then randomly sampled as initial conditions in a simulation

of a collision with an atom, molecule, surface, etc.

For general, anharmonic molecular potentials, locating the semiclassical invariant tori

of a polyatomic molecule is a major challenge. Even with successful quantization using AS,

locating the adiabatically evolved tori is problematic.397 Thus, sampling initial conditions

using the generalization of Eq. 12.6, i.e., with the new action/angle variables is not

feasible. However, sampling can be done using Cartesian coordinates and momenta of

an adiabatically switched trajectory, provided it is done uniformly in time. This is the

analog of the alternative way to perform normal-mode sampling in the case of a harmonic

potential, just described. Thus, initial conditions are obtained by simply sampling the

Cartesian coordinates and momenta of an AS trajectory provided the trajectory has

been propagated long enough to fully sample the phase space. Sampling from several

AS trajectories can result in a some dispersion of the total energy, owing to the small

dispersion in the AS energies (relative to the harmonic case).
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In summary, the procedure for a quasiclassical trajectory calculation using AS for

initial quantization, is as follows. Use AS for the non-interacting molecular reactants to

establish the quantized trajectory in Cartesian coordinates and momenta of the reactants,

using the procedure described here for quantization of CH4. Select initial conditions for

the internal motions of each reactant from one or more AS trajectories, uniformly in

time, and then add the kinetic energy of relative motion in the usual way and sample the

initial relative momentum, impact parameter, etc. The additional computational cost,

relative to standard normal-mode sampling, is just in generating the AS trajectory(ies).

Finally, AS can also be used to analyze the final state(s) of the products. This was

done in393. Currently harmonic analysis is typically done to determine final actions and

to assign final states,365 and this does appear to be a robust procedure. Indeed, the

final vibrational-state distribution of the NH2 product in the H + NH3 reaction obtained

using harmonic analysis differed from the one using fast-Fourier-transform semiclassical

analysis by only a few percent.391 However, given both its simplicity and generality, AS

could replace harmonic analysis as the routine way to quantize the reactants and analyze

the final states of the products.

12.4 Summary and Conclusions

I have calculated the vibrational energies of CH4 for the ground state and two funda-

mentals using AS with an existing ab initio-based potential energy surface. AS was done

using a standard separable harmonic normal mode zeroth-order Hamiltonian to the full

one in Cartesian coordinates. Details of the procedure were given, with special note taken

of the transformation from Cartesian coordinates of the AS trajectory to the reference

normal mode coordinates. Comparison with available accurate quantum energies showed
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good agreement, i.e., differences between 2 and 30 cm−1.

This approach can be used to prepare molecules with the correct semiclassical phase

space for initial conditions in quasiclassical trajectory calculations. This, in principle,

eliminates the inaccuracies that exist in using non-stationary, harmonic phase space for

initial conditions. As noted already, these are evidently not large, provided a sufficient

number of trajectories are used to average the results. However, future calculations com-

paring the outcomes of the two approaches would be useful.
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[218] Pérez de Tudela, R.; Barragán, P.; Prosmiti, R.; Villarreal, P.; Delgado-Barrio, G.

J. Phys. Chem. A 2011, 115, 2483.

[219] McGuire, B. A.; Wang, Y.; Bowman, J. M.; Widicus Weaver, S. L. J. Phys. Chem.

Lett. 2011, 2, 1405.

[220] Lin, Z.; McCoy, A. B. J. Phys. Chem. Lett. 2012, 3, 3690.

[221] Lin, Z.; McCoy, A. B. J. Phys. Chem. A 2013, 117, 11725.

[222] Cheng, T. C.; Bandyopadyay, B.; Wang, Y.; Carter, S.; Braams, B. J.; Bow-

man, J. M.; Duncan, M. A. J. Phys. Chem. Lett. 2010, 1, 758.

[223] Cheng, T. C.; Jiang, L.; Asmis, K. R.; Wang, Y.; Bowman, J. M.; Ricks, A. M.;

Duncan, M. A. J. Phys. Chem. Lett. 2012, 3, 3160.

[224] Sanz-Sanz, C.; Roncero, O.; Valdés, A.; Prosmiti, R.; Delgado-Barrio, G.; Villar-

real, P.; Barragán, P.; Aguado, A. Phys. Rev. A 2011, 84, 060502.

[225] Aguado, A.; Sanz-Sanz, C.; Villarreal, P.; Roncero, O. Phys. Rev. A 2012, 85,

032514.

[226] Valdés, A.; Prosmiti, R.; Delgado-Barrio, G. J. Chem. Phys. 2012, 136, 104302.

[227] Valdés, A.; Barragán, P.; Sanz-Sanz, C.; Prosmiti, R.; Villarreal, P.; Delgado-

Barrio, G. Theor. Chem. Acc. 2012, 131, 1210.

[228] Valdés, A.; Prosmiti, R. J. Phys. Chem. A 2013, 117, 9518.



References 222

[229] Song, H.; Lee, S.-Y.; Yang, M.; Lu, Y. J. Chem. Phys. 2013, 138, 124309.

[230] Okumura, M.; Yeh, L. I.; Lee, Y. T. J. Chem. Phys. 1985, 83, 3705.

[231] Okumura, M.; Yeh, L. I.; Lee, Y. T. J. Chem. Phys. 1988, 88, 79.

[232] Young, J. W.; Cheng, T. C.; Bandyopadhyay, B.; Duncan, M. A. J. Phys. Chem.

A 2013, 117, 6984.

[233] Barbatti, M.; Nascimento, M. A. C. J. Chem. Phys. 2003, 119, 5444.

[234] Peterson, K. A.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2008, 128, 084102.

[235] Madeja, F.; Havenith, M. J. Chem. Phys. 2002, 117, 7162.

[236] Ortlieb, M.; Havenith, M. J. Phys. Chem. A 2007, 111, 7355.

[237] Gutberlet, A.; Schwaab, G. W.; Havenith, M. Chem. Phys. 2008, 343, 158.
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[260] Matanović, I.; Došlić, N.; Johnson, B. R. J. Chem. Phys. 2008, 128, 084103.

[261] Luckhaus, D. Phys. Chem. Chem. Phys. 2010, 12, 8357.

[262] Jain, A.; Sibert, E. L. J. Chem. Phys. 2015, 142, 084115.

[263] Kim, Y. J. Am. Chem. Soc. 1996, 118, 1522.

[264] Lim, J.-H.; Lee, E. K.; Kim, Y. J. Phys. Chem. A 1997, 101, 2233.

[265] Miura, S.; Tuckerman, M. E.; Klein, M. L. J. Chem. Phys. 1998, 109, 5290.

[266] Kohanoff, J.; Koval, S.; Estrin, D. A.; Laria, D.; Abashkin, Y. J. Chem. Phys.

2000, 112, 9498.

[267] Markwick, P. R. L.; Doltsinis, N. L.; Marx, D. J. Chem. Phys. 2005, 122, 054112.

[268] Ushiyama, H.; Takatsuka, K. J. Chem. Phys. 2001, 115, 5903.

[269] Fillaux, F. Chem. Phys. Lett. 2005, 408, 302.

[270] Ivanov, S. D.; Grant, I. M.; Marx, D. J. Chem. Phys. 2015, 143, 124304.

[271] Florio, G. M.; Zwier, T. S.; Myshakin, E. M.; Jordan, K. D.; Sibert, E. L. J. Chem.

Phys. 2003, 118, 1735.
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