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Abstract

Speed of  evolution with spatial structure and interacting mutations

By Jakub Otwinowski

Perhaps the simplest question about long term evolutionary adaptation is how quickly do 
populations adapt to a new environment by incorporating mutations? This question is 

approached from several different angles. Chapter 1 investigates the speed of  evolution 
when there is a large supply of  beneficial mutations and the population has spatial structure.  
For large system sizes, a speed limit is found on the rate adaptation. The model is analyzed as 
a surface growth model in physics, which reveals universal properties of  the model, such as 
the distribution of  fitnesses.  However, neglecting spatial structure, the speed of  evolution 

also depends on how mutations interact with each other. This may be quantified by a fitness 
landscape, or a genotype-phenotype-fitness map. In chapter 2, the fitness landscape and 
genotype-phenotype map of  an E. coli lac promoter is inferred from a large dataset with 

100,000 sequences and fluorescence measurements. The interactions between mutations are 
quantified using a simple quadratic model, similar to a spin glass Hamiltonian. Chapter 3 

describes a toy model based on an overdamped particle in a potential, which demonstrates 
how a fitness landscape with time dependent interactions between mutations determines the 

speed of  evolution.
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Chapter 1

Introduction

1.1 Background

The mathematical theory of evolution, or population genetics, was founded early in the

20th century by geneticists Sewall Wright, J. B. S. Haldane and R. A. Fisher. Population

genetics began with understanding the fundamental processes of evolution: natural selec-

tion, mutation, genetic drift (or stochasticity), migration, and recombination[1]. Central to

natural selection is the concept of fitness, that is the ability of an organism to propagate its

genes to the next generation. Often it suffices to define fitness as the relative growth rate.

Mutation today is known to be a change in genetic code, however a simplified definition of

mutation is a change in fitness of an individual. Genetic drift is a name that encompasses

the stochastic nature of reproduction and survival. For example an individual could have a

random number of children with some probability distribution with a mean defined as the

fitness. Migration is the movement of individuals from one population to another, trans-

ferring genetic information. Recombination is the shuffling of genes on a chromosomes of

offspring in sexual populations.

These processes provided population geneticists decades of research, most of which were

devoted to explaining existing variation seen in populations. Existing variation in physical

traits was, for a long time, the only type of observable. Eventually genetic data started to

appear, but the models were still simple, in that they tracked only one or two locations in

the genome.
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However, in the last few decades, advances have increased our ability to sequence genetic

code dramatically. In just the last few years the costs of sequencing have fallen faster than

Moore’s law [2]. The ability to know the genetic code, along with automated measurements

of the physical traits and fitness, has produced a wave of novel evolutionary experiments

and large datasets from existing populations, often including whole genomes instead of a few

locations. This new data raised questions that were not amenable with classical population

genetics. Variation existed in many locations in a genome, not just one. Beneficial mutations

were common in large populations, not rare [3]. Selection was dynamic over many different

time scales, not static[4]. These realizations provided a new starting point for theorists.

Here we review some recent trends in mathematical evolution, and present new research

in this context.

1.2 Evolution of large populations

The rate of adaptation was traditionally thought to be mutation limited. That is, beneficial

mutations would sweep a population one at a time, and the rate of adaptation was simply

the rate that mutations appeared and survived. However, when a population is adapting to

a new environment, beneficial mutations may be much more common, and this was noticed

in microbial evolution experiments [5]. The best known example is Lenski’s long-term

experiment, which has been running since 1988, and has gone through 50,000 generations

[6]. In this experiment, 12 parallel bacterial cultures were grown in liquid medium, and

every day 1% were transferred to a new flask with fresh medium. Since they froze samples

at many generations in the past, they could go back and sequence them once the technology

became more affordable. Instead of a population with one or two variants, they found many

beneficial mutations existed at the same time and competed with each other [3].

It turns out it is very difficult to calculate the rate of adaptation of large populations of

asexuals. The problem was originally posed by Fisher [7] and Muller [8], but only recently

there has been an intense theoretical effort to solve this problem [9, 10, 11, 12, 13, 14]. In

large populations there is much genetic variation and therefore a distribution of fitnesses,

typically Gaussian. This distribution advances in time as new mutations are discovered,
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and can be visualized as a wave traveling towards ever higher fitness. A key insight was

that it is important to consider the fluctuations in the leading edge of this traveling wave

[15]. The result is that intense competition between beneficial mutations reduces the rate of

adaptation, such that it does not depend on the total supply of new mutations, but depends

logarithmically on population size and mutation rate.

1.3 Evolution with spatial structure

The previously mentioned studies assumed that populations were well-mixed, in reference

to microbes living in well-mixed liquid medium. Each individual has the chance to compete

with the population as a whole, or, in the language of statistical physics, they are mean-field

models that do not take into account any spatial structure.

Spatial structure was considered for simpler situations (without many competing muta-

tions) in classical population genetics. Models had populations on different discrete units

called islands, demes, or stepping stones, and every generation a fraction of the population

was allowed to migrate to connected units [16, 17]. Also early on, Fisher, Kolmogorov and

others formulated a partial differential equation with traveling wave solutions to describe

the propagation of a gene in continuous space [18, 19]. Now known as the FKPP equation

after the authors, it is the simplest type of reaction-diffusion equation, widely studied in

physics and chemistry.

More recently, large geographic surveys of human genomic diversity [20] inspired the-

orists to consider the evolutionary dynamics of genes on the edge of range expansions of

populations [21, 22, 23]. They also revisited stepping stone models to calculate the dy-

namics of desegregation of multiple variants in one dimension [24], and made inferences of

selective sweeps in expanding microbial colonies [25].

Speed of evolution in spatially structured populations

When a spatially structured populations adapts to a new environment, there are many

beneficial mutations, just as in well-mixed populations. However, the time for mutations

to spread to the whole population is much slower than in well-mixed populations, and it



4

is more likely that there is competition between beneficial mutations [26, 27]. In chapter

2, we propose a model of competition in spatially structured populations and find that

the speed of evolution is qualitatively different when there is spatial structure. Above a

critical system size there is a speed limit on adaptation, and the speed does not depend on

the total population size, or the total supply of mutations. Furthermore, the evolutionary

model is nearly equivalent to a model in surface growth physics that is in a widely studied

universality class. We show that the evolutionary model is also in this universality class

because it shares the same power law growth of the width of the fitness distribution, and

the distribution itself is of the known universal form.

1.4 Epistasis and fitness landscapes

In classical population genetics, mutations were simplified as small changes in fitness whose

effects were independent of each other. In reality it is much more complex. Errors in the

duplication of genetic code lead to different physical traits, which in turn influence the

reproductive success of an organism. The genetic code is very long, and mutations may

occur in many locations in the genome, termed loci. Mutations at different loci may not

have independent effects and may interact with each other, such that the combined effect

is different from the sum of the individual effects. These interactions, termed epistasis,

are interesting for systems and developmental biologists, who would like to determine how

genetic elements interact to cause the physical traits and functions of an organism [28, 29,

30, 31, 32, 33]. Large automated studies have generated huge new datasets for this purpose.

For example, recently 5.4 million pairs of genes were analyzed in yeast to create a genome

scale interaction network [29].

Epistasis also has important evolutionary consequences, but to explain this requires a

more general description. Besides interactions between organisms, fitness is determined by

a set of physical traits (phenotype), which is in turn determined by the genetic sequence

(genotype). Therefore there is a map from the high dimensional discrete genotype space,

to the lower dimensional (discrete or continuous) phenotype space, to the one dimensional

fitness. This map may also be dependent on the environment. An individual’s genome
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determines a point in genotype space, and a population is therefore a cloud of points.

This cloud moves generally toward higher fitness, and in analogy to energy landscapes, the

genotype-fitness map is often called a fitness landscape. A landscape with no epistasis is

formulated as a single peak with linear slopes.

From the physics of spin glasses, it is known that with just pair interactions it is possible

to have an energy landscape with many local minima, where the system may be trapped

for long periods of time. It is possible that fitness landscapes are also rough, and evolution

proceeds slowly by jumping from peak to peak.

Kauffman and Levin first studied rough fitness landscapes with their tunably rugged

NK landscapes [34], similar to spin glasses. NK landscapes developed into a large body

of work that studied the dynamics of adaptation [35, 36, 37], mostly within the physics

and computer science communities. Another body of work developed around making more

complicated landscapes with more realistic assumptions, such as modeling the folding of

RNA molecules [38, 39, 40].

An orthogonal approach is to ignore the high dimensional genotype space, and model

mutations as random numbers drawn from some distribution. This was done by Kingman,

with uncorrelated adaptive steps [41], and by Gillespie who utilized extreme value theory

to identify features that are independent of the underlying fitness landscape [42].

Recent experiments on the adaptation of microbes [43, 44] have renewed interest in the

theory of adaptation in (random) fitness landscapes. For example Orr further developed the

use of extreme value theory to argue that the distribution of beneficial mutations should

be exponential [45, 46, 47]. Plotkin et. al analyzed fitness trajectories in order to infer

properties of the underlying fitness landscape [48].

Experimentalists have also begun mapping high-dimensional fitness landscapes, not just

epistatic pairs, but whole portions of genotype space designated by all possible combinations

of a limited number of loci (for a list of such landscapes see [49]). The goal is to learn

not only the genotype-fitness map, but also the evolutionary consequences, such as the

reproducibility of trajectories [50, 51, 52] or the accessibility of genotype space [53]. For

example Weinreich et. al constructed all possible combinations of five mutations that result

in antibiotic resistance of a bacterium, and they found that epistasis between mutations
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severely limited the number of evolutionarily accessible paths. The datasets have become

larger and larger. Pitt et. al’s found the fitness landscape for 107 unique sequences of RNA

with fitnesses measured by an in vitro selection protocol [54], and Hinkey et. al collected

sequences and fitnesses from thousands of HIV samples from which they inferred a fitness

landscape [55].

Genotype-phenotype map and fitness landscape of an E. coli lac promoter

It is very difficult to measure a complete fitness landscape, because a complete map would

require a fitness measurement for every possible sequence, and the number of possible

sequences grows exponentially with sequence length. In chapter 3 we reduce the number

of required measurements by fitting models of reduced complexity to data. We infer the

best linear and quadratic approximations of a landscape from the recently collected 200,000

mutated sequences (of 75 base-pairs) from a bacterial gene regulatory region. We find that

the linear or additive mutations account for about 2/3 of the variance in the data, while the

pairwise interactions of mutations account for about 10% of the variance. From simulations

we find that most of the genotypes are evolutionary accessible, with very few valleys in the

fitness landscape. We also discuss the presence of selection on the wild-type sequence, and

its optimality under two different environmental conditions. We show that it is feasible

to approximate these high dimensional landscapes in a simple way, and we describe some

important pitfalls of this type of inference.

1.5 Fluctuating selection

So far the influence of the environment has been neglected. Environmental influence may be

on any level: genotype-phenotype, phenotype-fitness, or interactions between individuals,

and crucially, it may change over time. A convenient way to describe this effect is to make

the fitness landscape time dependent, or in other words selection fluctuates in time.

Classical population genetics considered the rate of evolution and standing variation

for fluctuating selection on short timescales, shorter than the timescale of genetic drift,

such as fast changes in ecology due to seasons [56, 42, 57, 58, 59]. The related field of
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population ecology considered fluctuating selection in density regulated populations [60,

61, 62]. Population dynamics, which modeled explicit interactions between individuals was

also analyzed with fluctuating selection [63, 64]. Mustonen and Lässig used theorems from

non-equilibrium statistical physics to characterize evolutionary trajectories with fluctuating

selection on longer timescales, on the order of timescales of the occurrence of mutations

[65, 66, 67].

The effects of fluctuating selection are not easy to generalize, and seem to be heavily

context dependent. Experimental efforts have looked for genetic divergence [4] and tradeoffs

and optimality [68] under variable environments.

Speed of evolution with fluctuating epistasis

A rough, fluctuating fitness landscape may have large effects on the rate of adaptation. A

position in the genotype space may be at a local optimum at one point in time, and on a

slope at a different point in time. Kashtan et. al showed that it is possible to have such a

speedup in modular, time varying landscapes [69, 70]. Chapter 4 introduces evolution on

a dynamic, rough fitness landscape, where it is possible to quantify the dependence of the

speedup on the time scales and length scales of the landscape.

To represent an epistatic fitness landscape, we consider a one-dimensional inclined saw-

tooth function. Environmental change in epistasis is model as a periodic flip in the teeth of

the saw. The evolutionary dynamics is modeled as an overdamped Brownian particle in a

potential. The particle represents a homogenous population which moves in genotype space

towards higher fitness, while the potential is the fitness landscape. We find that the fluc-

tuating epistatic landscape can greatly enhance the motion of the population in genotype

space, similar to some models of stochastic ratchets, and we quantify the dependence on the

parameters of the landscape. Similarly, the probability to escape local optima is enhanced.

1.6 Final thoughts

The quantitative study of evolution has been accelerating in the last decade, thanks to

advancements in microbial experiments, sequencing, and a large interest in closing the
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theoretical gaps. Many important topics, aside from the previously mentioned ones, were

simmering for decades, and have recently come to a boil. The evolutionary advantages and

disadvantages of recombination have been explored in very many contexts [71, 72, 73, 74, 75,

76, 77, 78]. Others have picked apart the apparently contradictory qualities of evolutionary

robustness and evolvability [79, 80, 81]. Quantitative genetics, the study of large numbers

of loci and the resulting continuous traits, is benefiting from sophisticated analogies to

statistical mechanics [82, 83].

Sometimes subjects which were once thought to be well understood, turned out to be

quite complicated. For example, the dynamics of a population crossing a fitness valley, has

a surprisingly complex phase diagram with a half dozen regimes [84, 78]. Such surprises

give the feeling that this is all just scratching the surface, and evolution will continue to

provide us with rich phenomena to study for many more decades.



9

Chapter 2

Speed of evolution in spatially

structured populations

2.1 Introduction

The appearance of a beneficial mutation in a population and its fixation is the most basic

process of adaptation. This process determines the rate of evolution, or how quickly pop-

ulations adapt to new environments, and influences the genetic diversity of a population.

Traditionally, it was argued that mutations were rare enough, that the adaptation rate was

mutation limited. That is, once a new beneficial mutation appeared, it would sweep the

whole population quickly, and the next mutation would be sufficiently separated in time as

to not interfere.

However, recent microbial experiments suggest beneficial mutations are more common

than previously thought [13, 85, 5]. When multiple beneficial mutations coexist in a pop-

ulation in different lineages, and if there is little or no recombination, they must compete

with each other. In this regime of mutation competition, few beneficial mutations survive,

reducing the rate of evolution, as seen in microbial evolution experiments [86, 87].

The question of the rate of evolution in asexuals originated from the Fisher-Muller

hypothesis for the evolutionary advantage of recombination. Fisher [7] and Muller [8] argued

that sexual organisms had an advantage in a large population with multiple beneficial
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mutations originating in separate lineages. Sexual populations can recombine two beneficial

mutations into one organism in one generation, while asexual populations would have to

wait until one of the organisms would independently discover the second mutation in the

background of the first.

The still open question of the evolutionary advantage of recombination, and pioneering

microbial experiments have renewed interest in the theoretical understanding of the rate of

evolution in asexuals. Recent theoretical analyses have found the rate of evolution in large

populations of asexuals does not depend on the total rate of mutations, but depends weakly

on population size and mutation rates [11, 12, 88, 89, 14], consistent with experiments.

However, these analyses were limited to well-mixed populations, where each individual

competes with the whole population, such as microbes in a test tube.

Many populations are not well-mixed but confined in space such that they only com-

pete with a limited neighborhood population on timescales of a generation. Examples of

populations with spatial structure range from plants and animals over large areas of land,

to microbes in biofilms [90] to cancer [91, 92]. Spatial structure is often neglected as an in-

convenient detail. In periodic selection a single mutant effectively competes with the whole

population, and the fixation probability is the same in well-mixed and spatially structured

populations [93, 94]. However, as we will see, in conditions of mutation competition, spatial

and well-mixed populations diverge in many aspects.

Fisher and Kolmogorov [18, 19] first described the spread of a single beneficial mutation

in a spatially continuous population as a traveling wave solution of a partial differential

equation of the form

∂u

∂t
= u(1− u) +

∂2u

∂x2
,

where u is the fraction of the population with the beneficial mutation. The second derivative

represents diffusion in space, and the non-linear term is natural selection. As first noted by

Fisher, the spread of this wave is much slower than the exponential growth of a beneficial

mutation in a well-mixed population, and there must be a large number of simultaneous

waves in a large system.

Here we study a simple model of an asexual population with spatial structure and a
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steady rate of beneficial mutations. Instead of a continuous space, our model is discrete,

similar to classical models of discrete islands or stepping stones with migration between

them [16, 17]. First we must introduce some basic concepts and models from classical

well-mixed population genetics.

2.2 Wright-Fisher model

The evolutionary model described here consists of a few main features: reproduction with

inheritance, selection, and mutation. Time may be considered discrete, as it is a natural

analogy for generations of reproduction. A population consists of many individuals, and

each individual, i, has a Poisson distributed number of children per generation with mean

fi, which is called the fitness. If fi is greater than one, the population has a finite probability

of increasing forever. To keep the population finite, one may define the joint probability

of each individual to have children conditional on the total population size being constant.

This conditional distribution is a multinomial, and defines the Wright-Fisher model. It is

equivalent to the following process: to create a new generation, each of the N individuals is

assigned a parent from the previous generation randomly, but weighted according to their

fi. Individuals then inherit the fitness from the parents.

After a long time, every individual will have the same fitness, so it is necessary to

introduce some mutations. In real populations, genetic mutations can have many effects on

the physical traits of an organism. However in this context, the only important effect of a

mutation is on the fitness. A simple way to model mutations is to have them increase the

fitness multiplicatively as

f � = f(1 + s) (2.1)

where s is called the selection coefficient. The chance for a single mutation to sweep through

an otherwise homogenous population is called the fixation probability π. A widely used

approximation is given by Kimura [95]:

π =
1− e−2s

1− e−2Ns
. (2.2)
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For beneficial mutations (1/N � s � 1)

π ≈ 2s. (2.3)

Even beneficial mutations are unlikely to survive due to genetic drift. For example a bene-

ficial mutation with 1% advantage still has 98% chance of going extinct.

When s ∼ 1/N or smaller, the fixation probability becomes π = 1/N , which means the

mutation has the same chance of fixation as any other individual. Harmful mutations have

a negligible chance of fixating.

2.3 Periodic selection

Periodic selection is when beneficial mutations appears very rarely, and have time to sweep

through the whole population before the next mutation appears. In other words, the time for

a mutant to spread is much shorter than the mutation time: tfix � tmut. For a population

of size N , and a per individual mutation rate U , there will be UN new mutations per

generation in the population. The time for a mutation to appear and survive drift is

therefore

tmut = (2sUN)−1 , (2.4)

while the fixation time, is approximately [96]

tfix =
2

s
logN, (2.5)

for small s. From the separation of timescales, the periodic selection regime occurs when

UN � 1, that is less than 1 mutation appears in the population per generation. The speed

of evolution is defined as the average rate of fitness increase. Under periodic selection the

speed is mutation limited, therefore it is the inverse of the mutation time, multiplied by the

magnitude of each mutation,

v = 2s2UN.

Notably the speed depends on the total supply of beneficial mutations, UN .
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When UN � 1, mutations compete with each other. This regime may be called clonal

interference, or multiple mutations, depending on the assumptions made. Interestingly, in

this regime the speed does not depend on the total supply of mutations. Instead, v ∼ logN ,

for reasonably large (not infinite) N . The details are outside of the scope of this text (for

a review see [96]). Our model concerns the competition regime for spatially structured

populations.

2.4 Model with spatial structure

Consider a one dimensional lattice of size L and periodic boundary conditions, where each

point represents a single organism that occupies a space. The evolution follows standard

Wright-Fisher dynamics, that is generations are discrete and the next fitness of each site

is chosen randomly from one of the parents in the neighborhood, weighted according to

their fitness. The smallest possible neighborhood is in one dimension such that the child in

the next generation inherits the fitness from only two possible parents, thats is fi(t+ 1) is

chosen from either fi(t) or fi+1(t).

In the case of a homogenous system of fitness 1, where a single mutant appears with

fitness 1 + s, the fixation probability for a beneficial mutation is the same as in the well-

mixed case, π = 2s [93, 94]. Intuitively, the fixation probability is unaffected because a single

mutation has ample time to compete with the entire system, regardless of spatial structure.

Since the fixation probability is the same, the speed of evolution in periodic selection is the

same as in the well-mixed case. What is different is the timescale of fixation.

The boundary between two domains with different fitnesses may be regarded as a particle

performing a biased random walk. The speed of this biased walker is the expected value

of its position after one time step, which is c = s/2 for small s. In the continuum limit,

this model corresponds to a special case of the more general stochastic Fisher equation (or

SFKPP equation) [97, 98], where it is possible to have traveling waves with speed c ∼ s

in the strong noise regime, or c ∼
√
s in the weak noise regime. However, in the end the

dependence of the wave speed on s does not change the essential features.

Importantly, the time for fixation may be much longer in the presence of a spatial
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Figure 2.1: The fitness profile at different times during evolution resembles a surface growth
process. N = 1000, U = 10−3, s = 0.01. Lines are separated by 10000 generations

structure compared to well-mixed populations. A wave spreading with finite speed c will

take time tfix ∼ L/c to cover the whole system (and total population size N ∼ L), as

opposed to a well-mixed population where tfix ∼ log(N). The slow spread of mutations

make it more likely that many exist simultaneously in large systems.

Since we are interested in the rate of evolution during competition, a steady rate of

beneficial mutations is supplied, akin to a population adapting to a new environment.

Beneficial mutations appear randomly at a steady rate U per site per generation (harmful

mutations are unlikely to survive and are neglected). We assume that mutations have

independent effects, with no epistasis, and therefore increase the fitness by log f � = log f+s,

where s is a constant on the order of 1%.

2.5 Speed of evolution with spatial competition

Starting from uniform initial conditions, mutations appear in the population, spread, and

interfere with each other. Figure 2.1 shows the fitness profile at different time points in the

evolution. The average fitness f̄(t) increases exponentially, and a general definition of the
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speed of evolution is

v = lim
t→∞

�ln f̄(t)�
t

, (2.6)

where brackets indicate an ensemble average. While the mean is always moving, the dis-

tribution of fitness around the mean reaches a steady state after some time. The distribution

will be characterized in a following section.

For very low mutation rates or small system sizes, there should be no competition, and

the fitness profile should be constant most of the time. Competition starts when the two

timescales are about equal, tmut ∼ tfix, which yields a critical system size for our model,

Lc =
1

2
√
U
. (2.7)

Above Lc, waves of mutations crash into each other, slowing down the rate of adaptation. In

simulations is it apparent that above Lc, v saturates and becomes independent of L (figure

2.2). In other words, above the critical system size, the speed of evolution hits a speed

limit. Intuitively, when there is competition, the mutations compete with each other on a

finite length scale, and not the whole system. This is in contrast to well-mixed populations,

where v ∼ logN , and never saturates.

In figure 2.3 L is held constant and U is varied, and there is a reduction in v as the tran-

sition to competition occurs according to equation 2.7. The standard well-mixed Wright-

Fisher model was also simulated. Since the fixation time is tfix = 2 ln(N)/s , the transition

happens at a higher rate, U ∼ 1/(4N lnN).

From the observation that v becomes independent of L and dimensional analysis, we can

deduce the dependence of v on U . Since [v] = 1
[t] , [U ] = 1

[x][t] , and the wave speed [c] = [x]
[t] ,

then the only combination of variables without using L is v ∼ (cU)1/2. From simulations it

is difficult to see this exponent because of the slow convergence to asymptotic behavior.

These results describe the mean fitness of the population. In the next section we char-

acterize the variance of the distribution, by an analogy to surface growth models in physics.
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Figure 2.2: The speed of evolution versus system size for the 1D model (circles) and the
well-mixed model (squares) with U = 10−5. v quickly saturates in 1D but diverges for the
well-mixed model. Solid line is v = 2s2UL.
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Figure 2.3: The speed of evolution versus mutation rate U with L = 512 and s = 0.01
averaged over 103 fixations for the 1D model (circles) and well-mixed model (squares). The
dotted line indicates the transition to competition for the spatial model, and the dot-dashed
line indicates the transition for the well-mixed wright-fisher model (N = 512). The solid
line is the fixation rate for periodic selection (v = 2s2UL).
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2.6 Surface growth and universal fitness distributions

If one thinks of the fitness profile as a a physical surface, it becomes apparent that the

model described here is similar to surface growth physics [99]. In surface growth physics,

particles are deposited on an initially smooth surface randomly, and they may diffuse or

stick to each other, gradually forming a rough surface. Many simple models of surface

growth were studied by statistical physicists interested in non-equilibrium systems. They

discovered that a large number of models share the same properties in the continuum, long-

time limit, where many of the microscopic details of the model do not matter, and these

classes of models, or universality classes, share the same symmetries.

The evolutionary model defined here is equivalent to a surface growth model called

polynuclear growth [100, 101] (PNG), in the limit s → ∞. In PNG, the process of surface

growth may be divided into two parts, nucleation (mutation), and spreading (selection).

Sites are nucleated with low probability at any point, at a certain rate, U , which corresponds

to adding a small block of height to the surface (log fitness). The nucleated site then grows

laterally forming a new layer.

While in PNG the spreading is fast and deterministic, in our evolutionary model it is

stochastic, and the new layer may even disappear. The boundaries move and collide with

each other, and they either annihilate or stack up creating differences in log fitness greater

than s. The rate of evolution is equal to the expected increase in log fitness per unit time.

Every time step, each fitness difference at position i, contributes to the growth rate on

average a rectangle of height ∆i (from the magnitude of the fitness difference) and width

∆i/2 (from the expected change in position of the boundary), normalized by L. The total

growth rate is the sum of the individual contributions:

v =
1

2L

�

i

∆2
i .

While, the final distribution of height differences is difficult to calculate, it is more instructive

to look at the distribution of fitnesses.

In surface growth phenomena, starting from flat initial conditions, the standard devia-



18

102 104 106 108
10−3

10−2

10−1

t

σ
2

10−2 10−1 100
10−7

10−6

t/L3/2

σ
2 /L

Figure 2.4: (a) The standard deviation of the log fitness distribution as a function of time
for different system sizes, L = 213 (green), L = 214 (blue), and L = 215 (red). s = 0.05,
U = 10−5. After a transient regime, σ saturates at a value that depends on L. (b) When
the data is rescaled as σ2/L and t/L3/2 it collapses onto the same curve, indicating that in
fact σ(t) ∼ t1/3 and σ(t → ∞) ∼ L1/2, which are the PNG (and KPZ) exponents.

tion of the interface height distribution grows in time as σ(t) ∼ tβ , where β is the growth

exponent, then reaches a steady state when the correlation length reaches the size of the

system [99, 102]. In the steady state, σ(t → ∞) ∼ Lα where α is the saturation exponent.

Similarly, in our model the standard deviation of the log fitness distribution also follows

power-laws. Figure 2.4a shows the growth of σ for different system sizes. The crossover time

is where saturation sets in (the elbow), and it scales as Lα/β . One may try to measure the

exponents from the simulations, but since our model is essentially PNG, one can guess that

it has the same exponents, α = 1/2, and β = 1/3. Figure 2.4b shows that the data collapses

when plotted as σ2/L and t/L3/2, in agreement with the PNG exponents. From surface

growth physics, it is known that the distribution is Gaussian in the stationary regime, but

in the transient regime it is not, and its form was recently discovered.

The PNG model belongs to the broader Kardar-Parisi-Zhang (KPZ) class of models

[103], which share universal scaling exponents and universal distributions. It is known that

in the KPZ class in the non-stationary regime, the fitnesses grow as [104]

log fi(t) = v∞t+ (Γt)1/3χ, (2.8)

where χ is a random variable from one of the Tracy-Widom distributions, v∞ is the long-
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time growth rate, and Γ is related to the parameters of the KPZ equation. From eq. 2.8

we fine the width of the distribution:

σ2 = var(log fi) = (Γt)2/3var(χ). (2.9)

The Tracy-Widom distributions were first discovered in random matrix theory [105], and

their connection to KPZ is itself an interesting story (see [104]). The TW distributions

come from the distributions of the largest eigenvalues from different ensembles of random

matrices. Different random matrix ensembles (i.e. Gaussian unitary, Gaussian orthogonal)

correspond to different geometries in surface growth (i.e. droplet, flat).

Here we show numerically that the distribution of fitnesses in the non-stationary regime

is one of the non-Gaussian Tracy-Widom distributions characteristic of PNG and the

KPZ class (in this case, the flat initial condition means that the distribution is from the

Gaussian orthogonal ensemble). One signature of the TW distributions can be seen by

measuring higher moments, that is its skewness, �
�
log f−�log f�

σ

�3
�, and (excess) kurtosis,

�
�
log f−�log f�

σ

�4
� − 3, which do not depend on the parameters v∞ and Γ. Figure 2.5 shows

that the skewness and kurtosis of the fitness distributions are non-zero, indicating non-

Gaussianality, and they approach the known values of the GOE Tracy-Widom distribution.

It is possible to compare the fitness distribution directly to the Tracy-Widom distribu-

tion. The parameters, v∞, and Γ can be found by fitting the mean of eq. 2.8 to the mean

log fitness from simulations (adding a constant accounts for the very short time behavior

and makes the fit better). The fitnesses from the simulation are then rescaled (Fig. 2.6):

χsim =
log fi − v∞t

(Γt)1/3
. (2.10)

Figure 2.6 shows that in the non-stationary regime, the fitnesses fall onto the universal

distribution, which is skewed towards higher fitnesses, with the right tail P (χ)χ→∞ ∼

χ−3/2. To demonstrate the robustness of this result, simulations were also made with fitness

difference s generated from an exponential distribution, and the resulting distribution is

identical.
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Figure 2.5: Skewness and kurtosis of the fitness distributions (solid lines) and known values
for the GOE Tracy-Widom distribution (dashed lines). L = 214, s = 0.05, U = 10−5.

In PNG with different initial conditions, it is possible to get one of the other universal

distributions. In the droplet geometry, the initial condition is a single nucleation site,

outside of which no other nucleations are allowed to occur. The initial site spreads out, and

on top of the first layer more nucleations are allowed. This results in a curved profile, and

the height distribution around this curve is a Tracy-Widom distribution from the Gaussian

unitary ensemble.

In the evolutionary model, it is also possible to create the droplet formation. This could

correspond to a mutation that raises the mutation rate significantly (a mutator strain), and

competes with a population that has essentially no mutations. The shape of the resulting

profile is not spherical like in PNG. This presents a difficulty because to find the distribution

the unknown shape of the curve must be subtracted to find the distribution. The alternative

is to look at only at the origin, which has no curvature, but then the statistics are too few.

2.7 Discussion

The concept of effective population size has long been useful in population genetics in many

contexts, as a quantity that may be inferred from an idealized model. When considering
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Figure 2.6: (blue line) Tracy-Widom GOE distribution. (red circles) scaled fitness distribu-
tion χsim for constant s (red circles) and exponentially distributed s (green squares) after
106 time steps averaged 100 times, L = 218. U = 10−5, �s� = 0.05.
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the effective population size with spatial structure one is faced with two natural choices:

the total population size, and a population size per length (or area). Our results indicate

that the right answer depends on the situation. If the system is small enough, individuals

have time to compete with everyone, and the system is effectively well-mixed. Above Lc,

the rate of evolution does not depend on the total population, and it is appropriate to

consider only a neighborhood population: Lc times the density. It is true that v ∼ UNeff,

but it is misleading, because the effective population size depends on U itself, and in the

end v ∼ U1/2, and does not depend on the total supply of mutations.

Fisher’s fundamental theorem states that the speed of evolution is equal to the variance

of the fitness distribution (appendix A). In the spatial model, there is a speed limit for large

system sizes, while the variance grows linearly with L, and v �= σ2. It may seem as though

Fisher’s fundamental theorem is violated. However, in this case it makes more sense to

consider the local population rather than the total population. The variance of the fitness

distribution for the local neighborhood of size Lc, should not change with L, and Fisher’s

theorem still holds.

Martens and Hallatschek [27] generalized the critical system size to arbitrary wave speed

c and dimension d

Lc =
� c

2sU

� 1
d+1

. (2.11)

Using estimates of typical mutation rates, bacterial densities and motility, they estimated

that this length scale for a two dimensional habitat is on the order of 4 to 800 cell lengths.

Thus competition may be ubiquitous in microbial colonies, and may be tested experimen-

tally by varying the system sizes. The wave speed is related to the migration rate as c ∼
√
m

or c ∼ m. Therefore in the long term populations with higher migration rates have less

mutation competition and should be able to adapt more quickly to new environments.

The model presented here has the scaling exponents and universal distribution that

belong to the KPZ universality class. This is not so surprising given the similarity to the

PNG model, which is known to be in KPZ. Universality implies that the model is robust,

because many of the details, such as the wave speed, and the distribution of s, do not change

the scaling behavior and the fitness distribution. Unfortunately, these quantities appear only
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asymptotically for long times, and since it is difficult to observe them in simulation, it is

much more difficult to observe them in nature, where other forces may interfere.

In higher dimensions it is known that in the KPZ class the scaling exponents are different,

and have been estimated only numerically. The height distributions are also different. Their

exact form is unknown, but they are also skewed.
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Chapter 3

Inference of a genotype-phenotype

map

3.1 Introduction

The relationships between genotype, phenotype, fitness, and environment, to a large extent

determine the evolutionary fate of a population. These relationships often involve complex

and collective effects [106], which are difficult to untangle. One approach is to measure the

fitness of many different genotypes, and build a fitness landscape, a high dimensional map

from genotype or phenotype to reproductive fitness. This concept was first introduced by

Sewell Wright in 1932 [107]. Evolutionary dynamics and adaptation depend crucially on

features of the fitness landscape, and many studies have quantified large scale features of

landscapes, including genetic interactions [49, 43, 53, 44, 51, 108, 109, 50], the presence of

stabilizing selection [110, 111], or the reproducibility of evolutionary paths [52, 51]. Unfor-

tunately, the large dimensionality of genotype space has made fitness landscapes difficult

to measure, and only a few large landscapes have been characterized [54, 55].

A major difficulty that has precluded mapping of large fitness landscapes, either directly

or through phenotypes, is epistasis, which is the dependence of fitness effects of a mutation

on the presence of other mutations. Epistasis makes the inference of landscapes combina-

torially complex. This problem has attracted substantial attention. For example, millions
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of interactions between gene pairs have been measured from genetic knockout experiments

[28, 29, 30, 31, 32, 33]. Higher order epistatic interactions, that is those involving more

than two loci at a time, have also been investigated for small fitness landscapes [49]. Un-

fortunately, these pioneering studies have not yet provided the full picture of genotype to

phenotype or to fitness mapping for genetic sequences of larger lengths, and most such large

maps are modeled without epistasis (see, e. g., [112]). Indeed, a complete landscape would

be defined not by genes or specific loci, but by all possible nucleotide sequences. However

with ∼ 4L different sequences of length L, it had been impractical to measure the land-

scapes for sequences of relatively large length until next generation sequencing technologies

dramatically lowered the cost [113]. Nonetheless, measuring phenotypes of a large number

of sequences is still tricky, and only a few large fitness landscapes have been quantified. For

example, Pitt et al. measured the fitness landscape of ∼ 107 RNA sequences with an in

vitro selection protocol [54]. Similarly, Mora et al. studied frequencies of genetic sequences

of IgM molecules in zebrafish B cells (which are related to fitnesses), but they imposed a

translational symmetry of the sequence [114]. Finally, Hinkley et al. analyzed 70,000 HIV

sequences and their in vitro fitnesses, built a fitness landscape defined on different amino

acids of certain HIV genes, and then investigated large scale properties of the ensuing fit-

ness landscape [55, 115]. However, even in these high throughput studies, the data did not

contain all possible pairs of mutations, potentially biasing the results, especially far from

the wild type sequences (see Discussion).

In this article, we start the process of reconstructing a large, yet detailed bacterial

genotype to phenotype map, including quantifying the epistatic interactions in the ensuing

fitness landscape. We are seeking a complete landscape based on long contiguous nucleotide

sequences, which additionally allows quantifying phenotypes of transcriptional regulation

in addition to those of enzymatic activity. This permits fitnesses to be defined over both

coding and non-coding DNA. To map the landscape far from the wild type genotype, we

would like sampling of the sequence data that is unbiased by selection.

Recent experiments by Kinney et al. [116] have collected a dataset that comes close

to satisfying these criteria. The data consists of mutagenized transcriptional regulatory

sequences from the E. coli (MG1655 and TK310 strains) lac promoter. In total ∼ 200, 000
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lac promoter sequences were mutagenized in a 75 nucleotide region containing the cAMP

receptor protein (CRP) and RNA polymerase (RNAP) binding sites (-75:-1). The transcrip-

tional activity induced by the mutagenized promoters was measured through fluorescence

of the transcribed gene products and FACS sorted according to the transcriptional activity

into up to nine logarithmically spaced categories. All categories were then independently

sequenced, so that the quantitative (on the scale of 1 to 9) phenotypic effect of each se-

quence is known to within a certain accuracy. Thus the data can be used to reconstruct the

genotype-to-phenotype map. However, the promotor activity is directly related to lactose

metabolism and thus is correlated with growth rate or fitness under conditions where lactose

is the preferred energy source. Therefore, the fluorescence can also be viewed as a proxy

for fitness of this sequence. Having noted this, we will not be making this distinction again

in much of what follows, and will be using fitness landscape and genotype to phenotype map

interchangibly when this causes no confusion.

In summary, the Kinney et al. [116] dataset provides simultaneous measurements of

sequences and their phenotype (approximate fitnesses). Crucially, the data set is dense, so

that every pair of mutations has occurred at least 20 times, each time in a different genetic

backgrounds of about 5 other random mutations. We use these sequence and transcriptional

activity data to infer the detailed genetic landscape for the 75 nucleotide DNA sequence,

quantifying pairwise epistatic interactions among all of the nucleotides to the accuracy af-

forded by the data. This is done by constructing a linear-nonlinear regression model that

connects sequences to their phenotypes. Since the number of possible epistatic interactions

is comparable with the number of sampled sequences, we control the complexity of the

models by L1 regularization, to avoid overfitting. L1 regularizaton also imposes sparsity

on the inferred epistatic interactions, which is reasonable considering the limited number

of known binding sites. We then analyze the statistics of epistatic effects in the inferred

landscape. Finally, analysis of the landscapes obtained under different environmental con-

ditions provides evidence that the wild-type sequence of the E. coli lac promoter is close to

optimal in the ecological niche that the bacterium occupies.
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3.2 Results

3.2.1 Inferring the non-epistatic genotype to phenotype map

The simplest model of a genotype to phenotype map is one where each locus contributes

a fixed amount to the phenotype, regardless of the state of other loci. We fit this additive

map using linear regression of the fluorescence values y (integers 1 to 9) on the predictors

xi, which encode the presence of mutations (xi = 1 when a mutation is present, and xi = 0

otherwise). Since there are four nucleic acids, each locus has three binary numbers for each

of the possible mutations from the wild-type, and the sequence length is effectively tripled.

In other words, for each locus, 000 represents the wild-type, and 001, 010, 100 represent

the three mutations. The simplest statistical model is then

y = β0 +
3L�

j=1

βjxj + ε, (3.1)

where ε is the statistical noise. To make inferences on the largest dataset possible, we

combined the data from three experiments done by Kinney et al. [116] (fullwt, crpwt,

rnapwt, 129,000 sequences total), which differ only by the regions in which mutations were

allowed to take place. Fullwt was mutagenized over the whole sequence (-75:-1), while crpwt

and rnapwt were mutagenized only over the CRP binding area and RNAP binding area.

We then find β’s by ordinary least squares regression, e.g. coefficients that minimize �ε2� in

Eq. (3.1).

Since the wild-type is a sequence of all zeros, β0 is the predicted phenotype of the

wild type. The coefficient r2 = 1 − σ2
ε/σ

2
y measures the goodness of fit, or how much of

the variance in the data, σ2
y , is explained by the model. Some variation in the data is

experimental noise, such as background fluorescence and cell-to-cell variability, which sets

an upper bound on r2. We estimate this intrinsic noise by averaging the variance of y for

identical sequences with different recorded fluorescence values. The ratio of this intrinsic

variance to the total variance of y is 2.3/6.5 = 0.35 (recall that y ranges between 1 and 9),

so only about 65% of the total variability of the data can be explained by any statistical

model, even an arbitrarily complex model. The linear model yields r2 = 0.464 ± 0.002,
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which is about 70% of the explainable variance.

Part of the genotype-phenotype map may be non-linear (on average) due to the first five

bins being dominated by the background fluorescence. While epistasis is sometimes defined

as a non-linearity of the mean fitness as a function of the number of mutations, here were

are interested in interactions between loci. To identify these interactions in the background

on an arbitrary mean nonlinear fitness, we introduce a generalized model:

f(y) = β0 +
�

j

βjxj + ε, (3.2)

where f(y) is a monotonically increasing, nonlinear function of y. The function is found by

maximizing the fit (r2), which corresponds to minimizing1

f(y) = argmin
g(y)

var
�
g(y)− β0 −

�
j βjxj

�

var (g(y))
. (3.3)

We add the constraints that f(9) = 9, and f(1) = 1 to keep var (g(y)) finite. The function

g(y) is defined over only 9 values of y, and a constrained non-linear optimization procedure

(fmincon from MATLAB) finds an optimal f(y) quickly (Fig. 3.1). While this improves

the linear fit, r2 = 0.501 ± 0.002, statistical tests suggest that the linear-nonlinear model

is imperfect, indicating the need for inclusion of epistatic interactions. Since the nonlinear

mapping de-emphasizes noisy bins with small y, the intrinsic noise estimated with f(y) is

lower, 1.8/7.6 = 0.24. Thus the linear model accounts for about 66% of the explainable

variance.

Examination of the coefficients βj with the largest magnitude reveals the consensus

locations of the CRP and RNAP binding sites (Fig. 3.2), which validates the modeling

approach. Interestingly, the wild type does not contain the “consensus” binding sequences:

TGTGA(N)6TCACA for CRP [119] and TTGACA(N)18TATAAT for RNAP [120], but the

wild type is only four mutations away. Four of the large positive coefficients in Fig. 3.2

(positions -54, -34, -9, -8, marked red) correspond to the mutations needed to get the

1This method resembles a type of generalized linear model called ordinal probit regression[117], and is
also similar to the inference of non-linear filters in computational neuroscience using information-theoretic
tools [118].



29

0 2 4 6 8 10
0

2

4

6

8

10

phenotype y
f(y

)

Figure 3.1: Generalizing the fitted function by replacing the output values y with a non-
linear function f(y) improves the least squares fit. Constrained non-linear optimization
found the optimal f(y) for the linear model with r2opt = 0.501 ± 0.002. The non-linearity
is due to the first few bins being dominated by background fluorescence and not gene
expression.

consensus sequences.

3.2.2 Inferring epistatic contributions to fitness

The simplest model with epistatic interactions between all pairs of nucleotides can be written

as:

f(y) = β0 +
�

j

βjxj +
�

i<j

βijxixj + ε. (3.4)

The last sum is over all nucleotide pairs. Note that we keep f(y) the same as in the

previous section, which maximizes the maximum explanatory power of the nonepistatic

terms and minimizes that for the epistatic terms. The number of epistatic terms in this

statistical model (∼ L2) should be contrasted with typical biophysical models of protein-

DNA interactions, which include only a single free energy term describing interactions

between the CRP and RNAP proteins [121, 116].

The total number of coefficients β0, βi, and βij in the quadratic epistasis model, Eq. (3.4),

is 25,201, thus the linear system is too large to be solved exactly. A standard iterative algo-

rithm [122] converges to a solution with r2 = 0.79. However, overfitting is a concern since

the number of observations, 129,000, is not much larger than the number of coefficients. To

prevent overfitting, we minimize the residuals variance in Eq. (3.4) subject to a regularizing
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Figure 3.2: Stem plot of the linear coefficients. Three circles on each stem represent the
changes in fitness for each of the three possible mutations per site. The cyan and the
magenta areas correspond to the consensus bindings site locations of CRP and RNAP.

constraint

β∗ = argmin
β

�
�ε2�+ λ �β�

�
, (3.5)

where β is the concatenated vector of all the regression coefficients, ||β|| is its norm, and λ is

a free parameter (Lagrange multiplier). Regularization constrains the statistical complexity

of the model by minimizing the norm of the coefficients [123]. When the L1 norm is used,

�β� =
�

|βi|, this regression is called the Least Absolute Shrinkage and Selection Operator

(LASSO) [124]. LASSO favors sparse solutions, which here is a reasonable assumption

since most of the β’s are interaction terms, and interactions are presumed to be mainly

between the relatively small CRP and RNAP binding sequences. Thanks to an efficient

implementation of the algorithm [125], we can compute the LASSO solution for 100 values

of λ, from the maximum value (where the solution is all β’s equal to zero), to four orders

of magnitude smaller.

However, choosing the best solution is ambiguous. A common method of model selection

is cross-validation. Figure 3.3 shows that solutions with large λ are a poor fit, while small

λ values have less predictive power, as seen through cross-validation. Typically one chooses

the best model as the one with the maximum r2 (r2CV) [124]. However, both the training and

the cross-validation data are sequences with an average of only 6.8 mutations from the wild-



31

10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

λ

r2 C
V

10−4 10−3 10−2 10−1 100
0

50

100

150

200

250

300

350

va
ria
nc
e

Figure 3.3: The LASSO solution of the quadratic model was computed for 100 values of
λ. Blue is the r2 value, and red is the 10-fold cross-validated r2CV. The green curve is the
variance of f(y) for randomly generated sequences. The variance is too large even for values
of λ that are larger than the optimal value predicted by the maximum of the r2CV curve. We
choose the model with λ = 0.016 (dashed line) for further analysis. This model has ∼ 103

non-zero coefficients, most of which are epistatic.

type (9% mutated sites). Thus cross-validation may not ensure predictability for sequences

farther away in the genotype space. Indeed, the variance of the fitted values of f(y) for the

experimental data is not sensitive to changes in λ (not shown). Nonetheless, Fig. 3.3 shows

that the variance of f(y) for random sequences blows up for less constrained models (low

λ), where unrealistically high fitted values of y or f ∼ 50 . . . 100 emerge. This indicates

overfitting due to uneven sampling of the genotype space and the resulting correlations in

the training and the test data. We thus limit λ to the range where the variance of the

fitted values for random sequences is comparable to that for the experimental data and is

insensitive to λ. Incidentally, this is also the place where r2 and r2CV curves split in Figure

3.3 (dashed line, λ = 0.016, ∼ 103 non-zero coefficients). The results in the following Section

are from this set of coefficients.

3.2.3 Properties of the inferred genomic landscape

The distribution of f values for randomly generated sequences (Fig. 3.4) shows that the

random sequences are typically not very functional (presumably because the binding sites
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Figure 3.4: Histogram of phenotype f(y) values of 105 uniformly random sequences for
the λ = 0.016 model. Random sequences have very low phenotype values because of the
specificity of binding sites. The peak of the distribution indicates what phenotype values
evolve under neutral conditions. The the wild-type value, β0 (green line), is much higher
than the neutral value indicating selective pressure.

loose specificity). The peak near f = 0 represents the most common sequence that would be

observed under neutral evolution, and the relatively high value for the wild-type (fwt = 6.2)

compared to the random sequences indicates that it is under strong selection. Note that

we can assert this without any comparative genomics or population genetics data, which

would typically be required.

The fraction of variance explained by the pairwise epistatic model is r2CV = 0.569±0.007

(although it is sensitive to λ, cf. Fig. 3.3). Comparing to the non-epistatic model with

r2 = 0.501, and taking into account the intrinsic experimental noise of ∼ 25%, we see that

about 10% of the explainable variance is due to the pairwise epistasis. However, we have

not yet reached the point where adding new data does not improve the model anymore.

Thus the magnitude of the epistatic effects may become larger when more data allows us

to explore smaller values of λ without overfitting.

For the chosen λ, the coefficients corresponding to the linear terms are about 70%

non-zero, but the interaction terms are very sparse, with only about 3% non-zero. By

simultaneously looking at magnitudes of all coefficients belonging to one nucleotide, we can

find the nucleotides that affect the fitness the most. These turn out to be the nucleotides

within the CRP and RNAP binding sites (see Fig. 3.5). Thus this kind of data allows for

identification of binding sites without a biophysical model of protein-DNA interactions,



33

sites i

si
te

s 
j

 

 

20 40 60

10

20

30

40

50

60

70
0

1

2

3

4

5

6

7

Figure 3.5: Matrix of the sum of the absolute values of the pair interaction coefficients for
each pair of sites i, j (3 mutations per site equals 9 interactions). The clusters near the
diagonal are interactions within the RNAP and CRP binding sites, and the off-diagonal
clusters are interactions between the binding sites.

as is done traditionally [126, 127]. More importantly, as Fig. 3.5 shows, the model can

infer functional interactions between amino acid / nucleic acid binding over a much longer

range than can be computed from biophysical and structural biology approaches [128]. This

validates our approach to regularize the model by LASSO regression. Alternative methods

that instead limit the number of β’s by constraining the range of interactions in Eq. (3.5)

or by allowing interactions only between consensus sites would either miss the long-range

effects, or the small (but statistically significant) interactions away from the binding sites

seen in Fig. 3.5.

Epistatic interactions may be classified into several categories (see Table 3.1): synergistic

epistasis (the effect of two same-sign mutations is larger than the sum of effect of each one

separately), antagonistic epistasis (the effect of two same-sign mutations is smaller than

the sum of their individual effects), and other epistatic effects (the individual effects of

two mutations have opposite signs, while epistasis is present). We find that most of the

interactions in the E. coli lac promoter are antagonistic (406/675=60%). We found only one

case of a severe type of antagonistic epistasis (reciprocal sign epistasis), where the individual

effects are both harmful, but the total effect is beneficial. It is known that reciprocal sign
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type βi βj βij % of non-zero βij
synergistic ± ± ± 7%
antagonistic ± ± ∓ 60%

other ± ∓ ± or ∓ 33%

Table 3.1: Epistasis may be categorized as: (synergistic) the effect of two mutations is
greater than the sum of the two mutations individually, (antagonistic) the total effect is less
than the sum, and (other). In our data, the epistasis is mostly antagonistic.

epistasis is a necessary (but insufficient) condition for a multi-peaked landscape [129], and

hence we expect this landscape to be fairly smooth (at most two maxima).

While there are many ways to measure the roughness of the landscape [49], we verified

this by directly exploring the accessibility of the local fitness peaks of the inferred landscape.

We used a greedy random walk similar to the evolution of a large monomorphic population,

which can move towards higher fitness and cannot escape local maxima. Starting from the

wild-type sequence, the algorithm only chooses mutations which are higher in fitness, with

probability proportional to the fitness difference. Out of 1000 random walks, the population

ends up in only two very similar sequences which differ by 2 mutations, and they are 40

and 39 mutations away from the wild type (compare to the average of ∼ 6.7 mutations

per sequence). Since the sequences are so far away from the training data, their predicted

fitness value are likely not reliable.

3.2.4 Landscape in two environments

In addition to the data from the three experiments analyzed above, Kinney et al. [116] per-

formed experiments with a different strain of bacteria (TK310) that is unable to control its

intracellular cAMP levels. Because CRP is activated by cAMP, varying extracellular cAMP

levels controls the active intracellular concentration of CRP. E. coli prefers to metabolize

glucose over lactose, so cAMP is inhibited by the presence of glucose, and lac expression is

suppressed when glucose is present. We inferred fitness landscapes using the non-epistatic

model as in the Section 2.1 for two conditions, no cAMP and 500µM cAMP, representing an

environment with glucose and no glucose. The datasets are smaller (∼ 25, 000 sequences),

and distinguish only 5 levels of fluorescence, but they are otherwise very similar, so the

same linear-nonlinear r2 optimization was used. The following results were found with the
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non-epistatic model, but because the pair interactions account for a smaller fraction of the

variation, the epistatic model produces very similar fitted values.

As expected, when CRP is not active there is little binding at the CRP sites, and

the associated coefficients are almost all small (Fig. 3.6). Because of the lack of CRP

binding, expression for the wild type sequence, and sequences close to the wild-type, is lower

when there is glucose (Fig. 3.7). However, there are some changes to the RNAP binding

site coefficients. Random sequences are not functional in the no-glucose environment, but

they have some low functionality, comparable to the wild-type, in the glucose environment

(Fig. 3.7), suggesting that there is less specificity in the RNAP binding.

In the no cAMP (glucose) environment, lac expression should decrease the growth rate

because the cell is metabolizing glucose instead of lactose, and lac expression costs resources

[130, 131]. Therefore we expect sequences under selection, such as the wild type, to have

relatively high expression with cAMP, and low expression without cAMP, compared to

sequences not under selection (random sequences). Figure 3.7 shows that there exist very

few sequences which are better than the wild type in both environments, i.e. simultaneously

higher expression with cAMP, and lower expression without cAMP. The non-elliptical shape

of the fitted values for the experimental sequences suggests again that the wild type is under

a strong selection towards the top left corner of the plot. Finally, we point out that, even

when lactose is being metabolized, too high expression of lac genes is costly, possibly because

cellular resources are pulled to lac transcription and translation and away from production

of essential proteins [130]. This may make sequences in the top right corner of Fig. 3.7 less

fit than our f(y) model assumes, making the wild type even closer to optimality.

3.3 Discussion

We constructed a genotype-to-phenotype mapping, including effects of all pairwise epistatic

interactions, by analyzing functional properties of ∼ 200, 000 randomly mutated sequences

in the vicinity of the wild type E. coli lac operon. Our approach is generally similar to those

in Refs. [114, 55]. However, there are substantial differences. Our alleles are nucleotides in

a regulatory region of a bacteria, instead of amino acid variants. Our landscape is more
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Figure 3.7: 2D histogram of expression for the two environments, no cAMP (glucose), and
cAMP (no glucose) for 105 random sequences (orange), and sequences from the experiment
(blue), which are closer to the wild type (plus sign). The wild-type is nearly Pareto optimal
in that very few sequences have both higher expression with cAMP and lower expression
without cAMP (above and to the left of the plus sign). The phenotype values range from
1 to 5 in these experiments.
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complete, in that interaction among all pairs of nucleotides in the sequence are estimated

from the data that includes each such pair at least 20 times in different genetic backgrounds.

In particular, we have relaxed the condition [114] that the interaction terms βij can depend

only on the distance between the loci, rather than on the specific positions of the loci. Mora

et al. [114] have used maximum entropy approaches to infer the fitness landscape, while,

along with Hinkley at al. [55], we have focused on linear regression inference (though with

different regularization constraints and different nonlinear mapping between the fitness and

the observed phenotype). The quadratic model, Eq. (3.4), is the same in the regression and

the maximum entropy approach. However, the philosophical basis behind the approaches is

different, and so are the criteria used to specify the coefficients β. Maximum entropy meth-

ods choose them to constrain observable correlation functions, while regression attempts to

approximate the entire fitness function. It remains to be seen which of the two frameworks

provides a better model for genomic data.

Possibly the largest difference from the previous approaches that considered epistatic

interactions for many mutations is that we found a genotype-phenotype map, rather than

the true fitness landscape. While we expect the phenotype and the fitness to be strongly

correlated when lactose is being metabolized (and anti-correlated otherwise), the relation

between the fitness and either the observed fluorescence or its nonlinearly reparameterized

form, f(y), is likely nontrivial. Ideally, a second experiment would measure the phenotype-

to-fitness map to complete the reconstruction of the fitness landscape. In fact, Dekel and

Alon[130] have completed this second step for the lac regulatory sequence. However, we

cannot use their findings to complete the reconstruction since their E. coli strains and growth

environments were slightly different from those of Kinney et al. [116], which provided us

with the fitness data.

Our observations have revealed a few cautionary notes regarding using genome frequency

in a population as a measure of fitness [114, 55]. In such experiments, all sequence data

(including whatever part of it that is left for cross-validation) are localized near the wild

type, near-optimal sequences due to selection. Carefully inferred models (whether regres-

sion or maximum entropy based) perform well for the observed data, but will generalize

badly for sequences far away from the wild type. Our approach samples the genotype space
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more evenly without selection, and therefore is better suited for making inferences about

the global landscape properties, such as its ruggedness. Nonetheless, even in our data, with

each sequence ∼ 7 mutations away from the wild type, extrapolation to much larger geno-

typic differences produces absurd results, even if cross-validation fails to notice problems,

cf. Fig. 3.3.

In our inferred landscape, epistasis accounted for about 10% of the explainable variance.

Most of the epistasis was antagonistic, but the landscape was essentially single peaked. This

is in contrast to the work on HIV fitness landscape [115], which has observed more substan-

tial epistasis and many more local maxima. It is possible that more epistatic components

would be observed for E. coli as well if more data were available, and it was possible to

use a smaller λ without overfitting. However, more intriguing is the observation that, at

λ ≈ 4 · 10−3, which maximizes rCV in Fig. 3.3, our inferred landscape is also extremely

epistatic. Yet it is clearly wrong and overfits, even if cross-validation does not notice this

due to the sampling bias towards the wild type. We thus conclude that inferences about

the global roughness properties of fitness landscapes from sequence data may be misleading.

The severity of the problem correlates with the nonuniformity of the genotype sampling,

making the data from populations under strong selection especially suspect. To allow study-

ing global properties of landscapes, an ideal experiment would sample the sequence space

much more uniformly.

In addition to the weak epistasis, we also found that the wild-type E. coli lac regulatory

region is optimal for the two environments measured. That is, it is on the front of possible

sequences which maximize expression when it is beneficial, and minimize expression when

it is harmful. If under the growth conditions the fitness is a nonmonotonic function of the

transcriptional activity and decreases at high expression [130], the wild type operon may be

closer to the optimal front. To investigate this, experiments are needed that would study

fitnesses of many sequences under selection in fluctuating environments.

For over ten years, genome wide studies of transcription factor binding sites have been

using genomic statistics and population genetics models to infer phenotype-fitness land-

scapes with binding energy as the phenotype [132, 133, 134, 135]. Our method allows

similar findings, but is in some sense simpler because we use no population genetics. It
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is also complementary to traditional methods because we infer a genotype-phenotype map

and found the non-averaged type of epistasis. The difference is that previous studies as-

sumed that binding energies were additive, and found fitness as a non-linear function of

binding energy, while our method tries to infer a non-linear map between sequence and

transcription, without making any strong assertions about the phenotype-fitness map. The

connections between the two approaches need to be developed further. Of special interest is

understanding the effective dimensionality of the epistatic interactions: can the epistasis in

the statistical model be explained by a single parameter describing binding between RNAP

and cAMP, or are additional biophysical mechanisms important as well?

The ability of our method to identify protein binding sites and epistatic interactions

among them raises an important point. These epistatic interactions, inferred by either of

the methods we have mentioned in this work, especially interactions over long ranges, may

not correspond to true biophysical interactions between amino acids and nucleotides, but

are likely effective interactions resulting from collective effects of many other epistatic terms,

including higher order terms. Our approach may not be as useful where there is enough

information to build a detailed biophysical model, but there are few places in the genome

where this is the case. Our approach can detect long distance epistasis where a priori it is

unclear that interactions exist. When working on the genome scale, effective models that

can make accurate predictions of phenotype or fitness for previously unobserved sequences

may be useful regardless of their lack of microscopic accuracy. They may be closer to the

right level of description of the problem [136], by striking a balance between microscopic

biophysically relevant detail, and power to describe the richness of phenomena emerging on

the genomic scale.
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Chapter 4

Speeding up evolutionary search

by small fitness fluctuations

4.1 Introduction1

Organisms adapt to their environment by sequential fixation of beneficial mutations. This

process is often visualized as motion of a population, specified by multi-dimensional ge-

nomic variables corresponding to the dominant genotype in the population, in the fitness

landscape, where the height of the landscape corresponds to the reproductive fitness of an

average individual in the population [107]. Fitness landscapes are believed to be rough

with many local maxima, and a population may get stuck in one, so that every plausi-

ble mutation is deleterious [137, 138, 52, 73]. In such cases adaptation to a global fitness

maximum requires the rare fixation of deleterious mutations. Even when there is a path

of only neutral or weakly selective mutations to the global optimum, it may be difficult to

find it, and navigating such paths can be slow due to the low fixation probability (≈ 1/N

for a neutral mutation in a population of N individuals [95]). In view of this, one of the

central questions of evolutionary biology is how the current diversity of the living world

has emerged in a short few billion years since the life on Earth has started, especially since

thousands of generations of laboratory evolutionary experiments lead to only a few dozen

1This work was published as: Otwinowski, J., Tanase-Nicola, S., & Nemenman, I. (2011). Speed-
ing up Evolutionary Search by Small Fitness Fluctuations. Journal of Statistical Physics
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fixated mutations [3].

It has been recognized that temporal fluctuations in the fitness landscape can drive the

population out of a local fitness maximum, thereby accelerating evolutionary processes. For

example, the maximum of fitness at one time may be on a fitness slope at another time,

allowing the population to leave the area. The effects of fluctuating selective pressure on

mutation accumulation dynamics have been studied extensively [42, 66], starting with the

introduction of the concept of adaptive topography by Wright [107]. More recently the

evolutionary dynamics of density regulated populations in fluctuating environments have

been elucidated in more ecologically realistic models [60, 61, 62], bridging the gap between

the classical population dynamics [63, 64] and population genetics models.

In a recent pioneering numerical evolution experiment [69], these ideas were further

developed to show that certain types of fluctuating environmental pressures may speed up

evolution many times. However, it remains unknown to what extent these results generalize.

Is the speedup a general property? How does it depend on the spatiotemporal structure of

the fluctuating environment? Can a population escape any local maximum? How does the

motion in the genotype space depend on time? Do fitness fluctuations have to be dramatic,

as in Ref. [69], or can small fluctuations still speed the evolution up?

In this article, we answer some of these questions in the context of a model of evolution-

ary dynamics that is simple enough to allow a thorough analytical and numerical treatment,

but is at the same time general enough so that at least some of our predictions hold for a

wide class of evolutionary models. We consider the limit of a weak mutation rate, when

the time scales are well separated. The time between successive mutations is longer that

the typical fixation time, and the characteristic time scale of the fitness landscape changes

is the longest. Such a situation is relevant for microbial populations under seasonal en-

vironmental changes, or for host-pathogen interactions, where environmental changes may

correspond to phases of transmission, unhindered growth in a new host, and activation of

the host immune response. Further, we assume that the total population size is independent

of the genotype (though not necessarily fixed), so that the evolutionary dynamics depends

only on the relative fitness differences between the genotypes. We consider adaptation in a

highly epistatic genotypic space, such that the evolution takes place on a one dimensional
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pathway with large, local fitness differences. Under these assumptions, we show that the

evolutionary search can be sped up substantially when only a small component of the fitness

landscape undergoes temporal variations.

4.2 The model

Our model of a fluctuating environment is based on an overdamped particle in a potential.

The position x is some generalized coordinate that describes the dominant genotype in the

population, and hence a change in x is a fixation event. This genotype changes according

to an equivalent Langevin dynamics given by

dx

dt
= −1

γ

∂U(x, t)

∂x
+ η, (4.1)

where U is the potential, γ is the “friction”-like scale factor, η is a white Gaussian noise

with variance 2D, where D is the intrinsic diffusivity, presumably related in the population

biology context to the population size [42]. Notice that in the usual physics language, the

process will minimize the potential so that U is the negative fitness. Motion to minimize

U represents fixation of beneficial mutations, while Langevin noise allows low probability

fixation of neutral and deleterious mutations. The first phenomenon is called natural selec-

tion/drift in evolutionary/physics languages, and the second is unfortunately referred to as

drift/diffusion, respectively. To avoid confusion, in the remainder of the article we use the

physics terminology.

We write the potential as

U(x, t) = U0(x) + Φ(x)S(t), (4.2)

and we focus on the following range of parameters:

varS(t) ∼ 1, (4.3)

max[Φ(x)]−min[Φ(x)] � max[U0(x)]−min[U0(x)] (4.4)
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This models the emergence of novel functions in a population. Namely, the fitness is largely

independent of time, as described by U0. However, small temporal changes in fitness are

allowed. For example, acquiring a new enzyme is generically advantageous if its substrate is

present, but deleterious if it is absent due to generic costs associated with protein overpro-

duction [139, 140]. We model this by adding a small fitness component Φ(x) that fluctuates

as S(t), representing, for example, changes in the availability of the metabolite due to

seasonal or geological variations. Finally, we choose to separate the global, almost non-

epistatic, fitness from the local, possibly highly-epistatic (but small) effects by making the

gradient of U0 smaller than that of Φ, even though the scale of Φ itself is smaller than that

of U0. For example, this agrees with the observation that the ability of proteins to bind to

DNA or to metabolic substrates is highly sensitive to the details of the protein sequence

[137, 138, 52, 73].

With the conditions above, we can redefine U0, Φ, and S without much loss of generality,

so that �S�t = 0. We then consider the simplest form of Φ(x) and S(t) that satisfies

these conditions, and we will discuss how our results generalize to some other forms of

the functions in Discussion. Namely, we choose Φ to be a zero-mean periodic saw-tooth

potential, and S to be a zero-mean periodic telegraph signal. These considerations allow us

to write near a particular point x in the genotype space

1

γ

∂U

∂x
= −v + φ(x)s(t), (4.5)

φ(x) ≡ h

L
sign

�
sin

πx

L

�
, (4.6)

s(t) ≡ sign

�
sin

πt

T

�
, (4.7)

where v is the intrinsic drift (in physics terms) or bias, defined as positive for the drift to the

right, see Fig. 4.1. We always assume that |h|/L > |v|, so that the fluctuating component of

the potential can actually create local maxima and minima on top of the global landscape

U0(x). In what follows, we denote by T the time between subsequent potential flips (the

half-period of the fluctuations), and L is half of the spatial period.

This model is similar to various stochastic ratchets considered in the literature [141,
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Figure 4.1: The potential U(x, t) at a fixed time. An oscillatory, symmetric, sawtooth
perturbation is added on top of the average linear potential that creates a drift velocity of
v.

142, 143, 144]. Thus, the question of whether the fitness fluctuations can speed up the

evolutionary search is a question similar to whether a rectified or a high-variance motion

can appear due to ratcheting. We know from prior analysis [145] that any unbiased spatially

variable but temporally constant potential cannot give rise to rectified motion, and it will

always slow down diffusion. Hence temporal fluctuations are an essential component of the

model.

4.2.1 Rescaling of the equation of motion

Using the choices above, we can rewrite the equation of motion, Eq. (4.1) as

dx

dt
= [−φ(x)s(t) + v] +

√
2Dη. (4.8)

where η is a Gaussian white noise of unit variance. In Eq. (4.8), the dynamics explicitly

depends on five different parameters L, T , v, h, and D. Nevertheless, by rescaling the time,

the space, and the potential as x/L → x, t/T → t, L
hφ → φ, L

h v → v, we can reduce the

number of parameters to only three: the ratio of the typical diffusion time over half the

spatial period to half of the temporal period, ω = L2

2DT , the height of the fluctuating barriers

in diffusivity (temperature) units, β = h
D , and the ratio between the slope of the average,

large scale potential to the slope of the fluctuating perturbation, v. In physical terms, if
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ω is large, the particle has time to explore the entire valley of φ before the potential flips.

Further, β measures the difficulty of crossing the peaks by diffusion. Finally, the condition

that the perturbation induces local optima is |v| < 1.

Using the rescaled variables, the dynamics becomes

dx

dt
=

β

2ω
[−φ(x)s(t) + v] +

�
1

ω
η. (4.9)

We will use these rescaled variables in the rest of the article, unless noted otherwise. From

this equation, it is easy to recover the dynamics in the original, non-scaled units by simple

multiplications. In what follows we present simulation results obtained using first order

Euler integration scheme of the dynamics defined in rescaled variables, Eq. (4.9).

4.3 Fluctuating potentials enhances diffusion and drift

Numerical simulations suggest that the behavior of x(t) at large times is diffusive, and

anomalous scaling is not seen [146, 147, 148, 149]. This is consistent with general analytical

results obtained by multi-scale techniques [145]. We can characterize the genotype coordi-

nate motion by effective drift and diffusion constants, which depend on the spatial and the

temporal periods of the fluctuations and the barrier height. To quantify the enhancement or

the suppression of the motion at long spatial and temporal scales compared to the intrinsic

diffusivity and drift, we define

rD ≡ Deff

D
=

vart(x)

2t

L2

DT
=

vart(x)

t
ω, (4.10)

rv ≡ veff
v

=
�x(t)�

t

L

vT
=

�x(t)�
t

2ω

vβ
, (4.11)

where the time-dependent mean and variance of the trajectories x(t) are obtained numer-

ically. As seen in the Fig. 4.2, both the effective drift and the effective diffusion can be

enhanced with respect to the intrinsic values, this enhancement having a maximum for

fluctuation periods comparable to the average time to travel between two extrema.
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Figure 4.2: Enhancement of diffusion, rD = Deff
D (circles) and drift, rv = veff

v (pluses) as a

function of the relative flipping frequency ω = L2

2DT , with β = 10 and v = 1/10. At low

ω, the particle has time to reach the minima, and Deff ≈ L2

2T , or rD ≈ ω. Simulations are
averaged over 1000 trajectories and 1000 time steps. Solid line indicates rD = ω. Error
bars are smaller than the symbols.

4.3.1 Building intuition

When β � 1, the sawtooth peaks are very small, and the diffusion has no trouble crossing

them. When β is larger, the behavior is more interesting. For ω → 0, the particle has ample

time to fall into a minimum of φ before s(t) flips. When the potential flips, the particle can

now go either left or right, with unequal but comparable probabilities, which creates a biased

random walk behavior with the effective diffusion coefficient ≈ L2/(2T ), or, equivalently,

rD ≈ ω. The fluctuating potential allows the particle to diffuse against the drift, so that

the speed of the evolutionary search is strongly enhanced when the environment oscillates.

For low ω, rD ≈ ω is also small, so the diffusion is suppressed compared to the internal

value. However, for h � 1 and without the changing sign of s(t), the particle would get

stuck at a minimum of φ almost immediately, and the overall diffusion would be essentially

zero. It is hard to exit a deep potential well only with the help of diffusion. Whether rD

is greater or less than 1, the fact that oscillations make it non-zero in the long term is our

most important finding, suggesting that temporal fluctuations can make fixation of rare-to-

fixate mutations a much more common process. Figure 4.2 demonstrates these findings for

different values of ω and for β = 10 and v = 1/10.

When the flipping is fast compared to the diffusion time (large ω in the Figure), the
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fluctuating potential averages out to zero. The only motion is due to the internal diffusion,

and D and rD go to one.

4.3.2 Analytical treatment at β → ∞

In the limit β � 1, the fluctuating peaks are very high, the particle almost never crosses

them due to noise, and analytical progress can be made. First consider a particle that starts

close to a local minimum x0 of the sawtooth. After some time ∼ D/v2, which goes to zero

as β → ∞, the particle equilibrates near x0 with a probability density

p(x|x ≷ x0) ∝ e−(1∓v)|x|. (4.12)

Then the ratio between the probability, k>, that a particle is located to the right of x0 and

will move to the right after the potential flips to the probability, k<, that it is to the left of

x0 and will move to the left is

k>
k<

=
1− v

1 + v
. (4.13)

When s(t) changes sign, for a small D the particle then glides down with a constant velocity

in its chosen direction, reaching the next minimum to the right (>) or to the left (<) in

time

τ≷ =
2ω

β

1

(1∓ v)
. (4.14)

If τ≷ < 1, then the particle has the time to reach the minimum on either the left or the

right hand side (assuming, as always, that the sawtooth actually forms the local minima,

i.e., 0 < v < 1). Then when the potential flips the next time, the process repeats. This

results in a discrete random walk between the extrema of the sawtooth, and (in unscaled

variables)

Deff =
�
(k> + k<)− (k> − k<)

2
� L2

2T
, (4.15)

veff = (k> − k<)
L

T
. (4.16)
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In dimensionless units,

rD =
�
(k> + k<)− (k> − k<)

2
�
ω, (4.17)

rv = (k> − k<)
2ω

vβ
. (4.18)

Using Eq. (4.13) results in:

rD =
�
1− v2

�
ω, (4.19)

rv =
2ω

β
. (4.20)

Notably, rD ∝ 1
D → ∞ when D → 0, but rD/β = Deff/h is finite.

In Fig. 4.3, we compare the analytical results to the numerically estimated rD and rv

(here rD is normalized by β/2). As β → ∞, the agreement is clearly seen for small ω, that

is, for an infrequently flipping potential.

When the potential changes faster, and τ> > 1 > τ<, the particle fails to make it to the

minimum to the right and, after a subsequent flip, always comes back to where it started

from. However, it always reaches the left minimum before the flip. When τ> > τ< > 1, it

does not reach the left minimum either, but goes the distance β
2ω (1 + v) to the left, then

reverses and travels β
2ω (1 − v) to the right, reverses again and repeats until it reaches the

left minimum. After one flip, it moves β
2ω (1 + v), after three flips it moves β

2ω (1 + 3v), and

so on. Eventually, when β/(2ω)[(2n+1)v)+1] > 1, the particle reaches the next minimum.

Thus every time 2ω/(βv) crosses an odd integer, more periods are needed to travel between

the nearby extrema, and the diffusive behavior changes, resulting in the discontinuities in

Fig. 4.3. These dynamics can be described by a master equation

Pi(t+ 1) = (1− k>)Pi+1(t− 2n) + k>Pi(t− 1), (4.21)

where Pi(t) stands for being at an extremum i at the end of the flip t, and exactly 2n + 1

flips are needed to travel between the i + 1’th and the i’th extrema. Solving this for the
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Figure 4.3: Effective diffusion (left) and effective drift (right) versus the period of the
fluctuations. Notice that rD is normalized by 2/β, and it remains finite even if D → 0 and
β → ∞. The data are obtained for v = 1/10 and (in decreasing order of noise strength)
β = 100 (squares), β = 1000 (crosses), β = 10, 000 (circles), β → ∞ (solid line, analytical
result). In the small noise case, the behavior of the diffusing particle is markedly different
between Region 1 and Region 2. Region 1 corresponds to small ω when a particle can
always travel between two extrema of the potential, performing an effective biased random
walk. Region 2 corresponds to large ω, when the particle spends most of the time traveling
between minima but rarely reaching them. Simulations are averaged over 1000 trajectories
and 1000 time steps.

drift and the diffusion (see Appendix) gives

rv =
1− v

3 + v + 2n(1− v)

2ω

vβ
, (4.22)

rD =
8(1− v2)

(3 + v + 2n(1− v))3
ω. (4.23)

The analytical results and the numerical simulations verifying them are shown in Fig. 4.3

with ω normalized by β/2.

4.4 Fluctuating potential shortens the fitness barrier cross-

ing time

We have shown that the typical diffusive/drift behavior of the system is enhanced by the

fluctuating component of the potential. However, what kind of an effect does this enhance-

ment have on the probability of rare, atypical events, such as escape from a suboptimal

fitness maximum? To model a barrier in fitness, we place the overdamped particle in a
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flipping sawtooth potential and a constant force v, and we observe the mean first passage

time for the particle to reach an unscaled distance M = LM, against the drift, with a

reflecting boundary at x = 0, see Fig. 4.1.

4.4.1 Fluctuation-activated escape from the minimum is possible even at

zero internal diffusion

If during one half-period the particle is able to travel between the two extrema (independent

of the direction and without the help of the noise) then τ≷ < 1, and the probability that the

particle travels over multiple periods against the (effective) drift is finite even at a very low

noise. As seen in Fig. 4.4, the escape time over the average barrier in U0 depends on the

length of the barrier M. In order to understand this dependence, we consider our model in

the limit of zero fluctuating potential, which allows us to use an analytical expression for

the escape time [150]

�t�D =
M2

D

�
1

2Pe
− 1

4Pe2
�
1− e−2Pe

��
, (4.24)

where Pe is the Péclet number

Pe =

����
vLM
2D

���� . (4.25)

In Fig. 4.4, we show the simulation results of the exit time for slow fluctuations. We

compare the results to what we would have expected under a continuous diffusion with the

drift and the diffusion constant given by the values of the effective parameters as obtained

in the previous section. We observe that the escape times are well approximated with

the “effective” continuous diffusion model. The conclusion is valid even for a very small

intrinsic noise D → 0, which implies that the average time to escape over the global barrier

is fluctuation activated (as opposed to noise activated), and is much faster.

We emphasize again that the fact that even rare escape events in the fluctuating po-

tential are modeled well with the drift/diffusion approximation is different from the earlier

observation that the typical behavior in this system is diffusive.
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Figure 4.4: Mean first passage times for crossing a barrier of width M in our model (sim-
ulation, circles) and in the corresponding continuous diffusion coarse-grained model (solid
line, Eq. (4.24)) with effective parameters obtained from simulation. The parameters are
β = 104, ω = 2.5, v = −0.1, and they correspond to the leftmost point in Fig. 4.3. The small
discrepancy between simulation and analytical approximation is due the continuous nature
of the coarse-grained model. A better approximation has been obtained with a model of
discrete jumps between minima, which we don’t show here.

4.4.2 Fluctuations enhance escape even for steep barriers

The qualitative behavior of particle trajectories changes if the fluctuating potential is fast

enough such that the particle can only move less than one period in one direction in the

absence of the noise. Even though, on average, the variance of the particle position grows

linearly, and one can define a proper effective diffusion coefficient, the particle never crosses

a barrier against drift in the absence of the intrinsic noise, β → ∞. Hence the probability

of rare excursions against the effective drift cannot be described using the same effective

drift/diffusion model.

Fig. 4.5 reports results of numerical simulations at different values of the additive noise.

The escape time as a function of M still can be fitted well with a drift/diffusion model,

Eq. (4.24), with a noise dependent effective Péclet number Pe(β). We conclude that, for

small noises, the effective Péclet number is approximatively inversely proportional to the

noise strength (the plot seems to reach a constant for β → ∞). This implies that the escape

times will become infinite at zero noise. The dependence is consistent with a model without

any fluctuating potential, but with some effective parameters. The parameters are such

that, with the fluctuations, the escapes are significantly faster. Indeed as shown in Fig. 4.5,
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Figure 4.5: Dependence of the effective Peclet number, Peeff = BM on the intrinsic noise.
We simulate exit times for systems of lengths M = 1, 2, 3, 4, 5 for different β. For each
dataset with the same β, we performed a weighted least squares fit for the average escape
time of the form t = A[exp(BM)− 1−BM], fitting for A and B. The error bars indicate
the confidence bounds of the fits. We show B/β versus β decreases sublinearly and reaches
a constant at β → ∞. Thus the mean exit time diverges, but much slower than for diffusion
without the fluctuating potential. For example, for the parameter values used here (2ω/β =
1, v = 0.1), we have B/β = 0.1 with only the intrinsic diffusion, and it is ∼ 10−3 in the
fluctuating potential model as seen in the Figure.

the effective Péclet number, defined as Peeff = BM, is always smaller than the equivalent

quantity in Eq. (4.24), such that

B �
����
vL

2D

���� . (4.26)

4.5 Discussion

Using a one dimensional model of diffusion in the presence of a constant force perturbed by

small periodic fluctuations, we have shown that time dependent potentials can significantly

speed up the large scale drift, diffusion, and barrier escape times. This conclusion is valid

even for a very small intrinsic diffusivity, the long time statistics of the particle trajectories

being mainly determined by the properties of the potential fluctuations, but not of the

Langevin noise.

Our model is a caricature of evolutionary dynamics in the limit of low mutation rates

and constant population sizes. Even in this limit, there are several simplifying assumptions

in our model that can be relaxed.
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First, the periodicity of the potential time dependence is not crucial. Based on the

similarity with Brownian motor models [141, 142], we expect that our conclusions will still be

valid for a nonperiodic s(t): the nonperiodic flipping will mix together and average behaviors

from the different regions in Fig. 4.3. Further, Dubkov et al. [143] studied a randomly

flipping sawtooth with no drift. Their potential flipped with dichotomous Markovian noise

with rate v. They found an analytic expression for the diffusion enhancement rD which

grows slower than in our model for small ω, and the peak of rD is lower and at larger

ω. This is consistent with the averaging over different regions in Fig. 4.3. Similarly, if the

potential is not spatially periodic, this will introduce a quenched noise and is likely to result

in emergence of regions in x that are very hard to cross, similar to [146].

Our model is based on a piecewise linear periodic potential with discontinuous first

derivatives (sharp minima and maxima). We expect that our conclusions stay valid for

smoother perturbations as long as, upon a flip, a particle can leave the vicinity of a maximum

in a time much faster than a typical travel time between the extrema.

The piecewise-constant perturbation in our model is symmetric with respect to reflec-

tion, thus no mean rectified motion can be created [141, 145, 142]. Simply put, the system

is not a ratchet, and crossing of large scale barriers instead is achieved by creating a large

effective diffusion. Asymmetry of the perturbation may create additional rectification, but

the results in Fig. 4.3 suggest that the diffusive effects will not change qualitatively. This is

crucial for evolutionary modeling since crossing barriers by ratcheting requires tuning the

ratchet in a specific direction in the genotype space, while diffusion will explore the space

isotropically.

The genomic space is expected to be high dimensional. For simplicity we have considered

a one-dimensional model of mutation accumulation, which could still be relevant for highly

epistatic genomic landscapes with a large proportion of highly deleterious or non-viable

genotypes. Moreover, we expect that systematic application of multiscale homogenization

methods [145], would allow one to extend the results to these more general formulations.

If the assumption of well separated time scales and constant population size are not

satisfied, the Langevin microscopic dynamics used here is not valid any more. Then different

fitnesses can give rise to different population sizes, and hence to varying fixation rates and
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to a space dependent D in our language, which would require more complex models with

position and time dependent noise strengths. Such models would modify the probability of

individual trajectories [151, 149], and more work is needed in order to identify the regimes

in which such diffusion models and their predictions apply to population genetics dynamics.



55

Appendix A

Fisher’s Fundamental Theorem

The starting point for learning about adaptation historically has been Fisher’s fundamental

theorem of natural selection. Here we present a simplified derivation (for asexuals) which

shows that in essence it is a generic statement about exponential growth. Consider a

subpopulation, ni, that grows exponentially in time with a constant rate fi:

ṅi = fini,

with a total population size that also grows in time:

N =
�

i

ni.

We can define the mean fitness

F =
1

N

�
fini,

and the rate of change of average fitness

Ḟ =
1

N

�

i

fiṅi −
Ṅ

N2

�

i

fini

Ḟ =
1

N

�

i

f2
i ni −

1

N2

�
�

i

fini

�2
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equals the variance of fi. A similar result also holds for discrete times, and diploid popula-

tions.
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Appendix B

Diffusion and drift in the no-noise

limit

If it takes 2n+1 flips to go from site i+1 to site i, and, going rightwards, one returns back

in two flips, then

Pi(t+ 1) = (1− b)Pi+1(t− 2n) + bPi(t− 1). (B.1)

Multiplying by i and summing over it, we get

�i(t+ 1)� = (1− b)[�i(t− 2n)�+ 1] + b�i(t− 1)�. (B.2)

Assuming that the average can be written as

�i(t)� = c+ vefft, (B.3)

we obtain

veff =
1− b

1 + 2n(1− b) + b
. (B.4)

Now multiplying Eq. (B.1) by i2 and summing over i, we get

�i2(t+ 1)� = (1− b)[�i2(t− 2n)�+ 2�i(t− 2n)�+ 1] + b�i2(t− 1)�. (B.5)
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This allows to write for the variance of i at moment t+ 1

σ2(t+ 1) = (1− b) + (1− b)σ2(t− 2n) + bσ2(t− 1) + 2(1− b)�i(t− 2n)�

− (1− b)[�i(t− 2n)�+ �i(t+ 1)�]v(2n+ 1)

− 2bv[�i(t− 2n)�+ �i(t+ 1)�]. (B.6)

Now assuming

σ2(t) = C +Defft, (B.7)

we get

Deff =
4(1− b)b

(1 + b+ (1− b)2n)3
. (B.8)
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