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Abstract 

Comparison of Methods for Two Crossing Survival Curves 

By Yuqing Chen 

In clinical research, it is not uncommon to see that the proportional hazard assumption is 

violated, particularly when survival curves cross. The log-rank test which is widely used 

in comparing survival curves is known to have less power under such circumstance. In 

this thesis, we introduce three methods to test the difference between two survival curves 

which are (1) Gehan’s weighted log-rank test, (2) Renyi type test, and (3) Lin and Xu’s 

test. We give a brief background of the statistical theory underpinning these methods. 

Then, we conduct a simulation study to compare the three tests with log-rank test under 

different situations and censor rates. We also apply all three methods to a real data 

example from a kidney dialysis trial. In our comparison of the three methods, we found 

that Gehan’s test does not perform well in the setting situations. The weight function of 

the weighted log-rank test must be specified prior to the analysis, and an inappropriate 

weight function may result in a misleading conclusion. Renyi test is suitable to use when 

two survival curves separate largely and cross, because its power stays above 90% even 

under a high censor rate. Lin and Xu’s test is appropriate when two survival curves do 

not separate largely, and its power is influenced by the censor rate.  
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1. Introduction 
 

In time-to-event data, it is often important to compare the overall equality of two survival 

distributions under censoring. To achieve such a goal, the log-rank test has been widely 

used under the assumption of proportional hazard rates. However, this assumption may be 

violated, especially when two survival curves cross. Because early differences in favor of 

one group are canceled out by late differences in favor of the other treatment[1], the log-

rank test may lose power when survival curves cross.  

The phenomenon of crossing survival curves is observed when a treatment may offer a 

short-term benefit but does not provide long-term advantages[2]. It is also seen in survival 

after surgery because the effect of surgery can last for a long time, but the risk of death 

may be high right after surgery and decreases as the patient recovers.  

Kristiansen[3] conducted a survey including all publications in five notable journals with 

175 studies that had a time-to-event endpoint. Among 175 included studies, 47% had 

survival curve crossings. Of those studies where crossing survival curves were presented, 

the log-rank test was performed in 70% of the tests, and only 31% of them reported testing 

for proportional hazards.  

Using the log-rank test under conditions of non-proportional hazards may lead to 

misleading results. Therefore, it is necessary to use other alternative tests with greater 

power when survival curves cross.  

Statisticians have developed several tests since the 1960. Those existing methods can be 

divided into three types[4]. The first type of tests assigns different weights to the log-rank 
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test. These tests include Gehan’s generalized Wilcoxon test[5], Tarone-Ware test, Peto-

Prentice test, and Fleming-Harrington test, etc. The second type of tests are supremum 

versions of the log-rank tests, including modified Kolmogorov-Smirnov[6], and Renyi type 

tests[7], etc. These tests are based on the maximum difference between estimates of two 

survivor functions. The third type of tests is the modified log-rank test, such as Lin and 

Wang’s test[8] using squared differences at each time point, Lin and Xu’s test[9] using 

absolute differences at each time point and Levene type test focusing on variance 

differences. Methods based on splitting the analysis at the crossing point and reporting 

separate p-values have also been proposed.  

In this article, we select one specific test in each of the three types for comparison, which 

are Gehan’s test, Renyi test, and Lin and Xu’s test. We perform Monte Carlo simulation to 

assess the statistical power and type I error rate of each tests. We also apply all three 

methods to a real data example. Our goal is to evaluate the strengths and weaknesses of the 

tests in a variety of situations and censoring rates in order to better understand the strength 

and weaknesses of each tests.  

This thesis is structured as follows: In chapter 2-4, we introduce the statistical theory 

behind Gehan’s test, Renyi test, and Lin and Xu’s test. In chapter 5, we perform Monte 

Carlo simulation to compare the statistical power and type I error rate of the three methods. 

We apply all three methods to a real data in chapter 6. Finally, we summarize our findings 

and provide recommendations for the use of these tests in chapter 7. 
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2. Weighted Log-rank Test 
 

Let 𝑡1<𝑡2<<𝑡𝐷 be the distinct death time in the pooled sample. At time 𝑡𝑗 we observe 𝑑𝑖𝑗 

events in the 𝑖th sample out of 𝑛𝑖𝑗 individuals at risk, 𝑖 = 1, … , 𝐾, 𝑗 = 1, … , 𝐷. Let 𝑑𝑗 =

∑ 𝑑𝑖𝑗
𝐾
𝑖=1  and 𝑛𝑗 = ∑ 𝑛𝑖𝑗

𝐾
𝑖=1  be the number of deaths and number at risk in combined sample 

at time 𝑡𝑗. 

Table 1 Number of failures in two groups at observed failure time tj 

Group # of failure # of non-failure # at risk 

I 𝑑1𝑗 𝑛1𝑗 − 𝑑1𝑗 𝑛1𝑗 

II 𝑑2𝑗 𝑛2𝑗 − 𝑑2𝑗 𝑛2𝑗 

Total 𝑑𝑗 𝑛𝑗 − 𝑑𝑗 𝑛𝑗 

 

For a two sample test, we have the null hypothesis and alternative hypothesis as follows: 

𝐻0: ℎ1 = ℎ2 for all 𝑡𝑗 ≤  𝜏 

𝐻1: ℎ1 ≠ ℎ2 for some 𝑡𝑗 ≤  𝜏 

Here ℎ1 and ℎ2 is the hazard rate in group I and group II respectively, and 𝜏 is the longest 

time at which both of the groups have at least one subject at risk.  

The test of 𝐻0 is based on weighted comparisons of the estimated hazard rate of the 𝑖th 

population under the null and alternative hypotheses. Under the null hypothesis, an 

estimator of the expected hazard rate in the 𝑖 th group at time 𝑡𝑗  is the pooled sample 

estimator of the hazard rate 𝑑𝑗/𝑛𝑗 . Using only data from the 𝑖th group, the estimator of the 

hazard rate is 𝑑𝑖𝑗/𝑛𝑖𝑗. To make comparisons of the two estimators, let 𝑊𝑖(𝑡) be a positive 

weight function with the property that 𝑊𝑖(𝑡𝑗) is zero whenever 𝑛𝑖𝑗  is zero. The test of 𝐻0  

is based on  

𝑍𝑖(𝜏) = ∑ 𝑊𝑖(𝑡𝑗)(
𝑑𝑖𝑗

𝑛𝑖𝑗

𝐷

𝑗=1

−
𝑑𝑗

𝑛𝑗
) , 𝑖 = 1,2 
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The weight function that is commonly used in practice is 𝑊𝑖(𝑡𝑗) = 𝑛𝑖𝑗𝑊(𝑡𝑗), where 𝑊(𝑡𝑗) 

is a common weight shared by both groups. Thus, we have  

𝑍𝑖(𝜏) = ∑ 𝑊(𝑡𝑗)(𝑑𝑖𝑗

𝐷

𝑗=1

− 𝑛𝑖𝑗

𝑑𝑗

𝑛𝑗
) , 𝑖 = 1,2 

The variance of 𝑍𝑖(𝜏) is  

�̂�𝑖𝑖 = ∑ 𝑊(𝑡𝑗)
2 𝑛𝑖𝑗

𝑛𝑗
(1 −

𝑛𝑖𝑗

𝑛𝑗

𝐷

𝑗=1

)(
𝑛𝑗 − 𝑑𝑗

𝑛𝑗 − 1
) 𝑑𝑗, 𝑖 = 1,2 

For the two sample test, the test statistics can be written as  

𝑍 =
𝑍𝑖(𝜏)

�̂�𝑖𝑖
 , 

where 𝑍 follows a standard normal distribution. We reject 𝐻0 when |𝑍| > 𝑍𝛼/2. Note that 

when 𝑊(𝑡𝑗) = 1 we have the log-rank test.  

Many different weight functions have been applied to the log-rank test. The following is 

the weight functions that is commonly used[10]:  

1. Log-Rank: 𝑊(𝑡) = 1. This weight is the most general and applies equal weight to 

all parts of the survival curve. The log-rank test has optimum power to detect 

alternatives where hazard rates of survival curves are proportional to each other.  

2. Gehan (Wilcoxon): 𝑊(𝑡) = 𝑛𝑗  . This weight emphasizes early differences in the 

survival curve as each statistic is weighted by the at-risk set at a given time point.  
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3. Tarone-Ware: 𝑊(𝑡) = 𝑛𝑗
1/2

 . This weights gives more weight to differences 

between the observed and expected number of deaths in sample 𝑖 at time points 

where there is the most data. 

4. Peto-Peto: 𝑊(𝑡) = �̃�(𝑡𝑗). This is a more robust weight when the censoring between 

the two groups follow different patterns.  

5. Modified Peto-Peto: 𝑊(𝑡) =
�̃�(𝑡𝑗)𝑛𝑗

(𝑛𝑗+1)
. This weight is based on slight modification to 

the Peto-Peto. 

6. Fleming-Harrington: 𝑊(𝑡) = �̂�(𝑡𝑗−1)𝑝[1 − �̃�(𝑡𝑗−1)]
𝑞
. Here the survival function 

at the previous death time is used as a weight to ensure that these weights are known 

just prior to the time at which the comparison is to be made. This is a family of 

weights determined by the powers p and q. Setting p and q to 0 gives the log-rank 

test. When p = 1 and q = 0 we have a weight very similar to the Peto-Peto weight. 

When p=0 and q>0, these tests give more weights to the later departures; while p>0 

and q<0 gives more weight to early departures. By choosing p and q appropriately, 

one can construct tests that are most suitable against alternatives. 

In this thesis, we choose Gehan’s generalized Wilcoxon test as a representative of weighted 

log-rank tests, which emphasizes the early stage difference when there is a larger at-risk 

set. 
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3. Renyi Type Test 
 

The Renyi type test is a combination of non-parametric survival analysis and Standard 

Brownian motion, which was designed specifically for situations where crossing hazard 

function appears. In this test, we are testing the same hypothesis as in weighted log-rank 

test. 

𝐻0: ℎ1 = ℎ2 for all 𝑡𝑗 ≤  𝜏 

𝐻1: ℎ1 ≠ ℎ2 for some 𝑡𝑗 ≤  𝜏 

Here ℎ1 and ℎ2 is the hazard rate in group I and group II respectively. We need to find a 

test statistic for some weighted function at each time of failure. The weighted functions we 

mentioned in the weighted log-rank test can also be applied in Renyi type test. Under 𝐻0, 

although the survival curves may cross, there should be a maximum absolute value of the 

test statistic, which represents the difference between the two groups, at some time point 

before 𝜏. When the value is too large, we reject 𝐻0 in favor of 𝐻1 for some t. 

When we calculate 𝑍(𝑡𝑗), which is the numerator of the statistic in the log-rank test, we 

only include the data up to 𝑡𝑗 (compared to include all data up to 𝜏 in the log-rank test). 

Thus, we have 

𝑍(𝑡𝑗) = ∑ 𝑊(𝑡𝑘)(𝑑1𝑘

𝑡𝑘≤𝑡𝑗

− 𝑛1𝑘

𝑑𝑘

𝑛𝑘
) , 𝑗 = 1, … , 𝐷 

σ2(𝜏)= ∑ 𝑊(𝑡𝑘)2 (
𝑛1𝑘

𝑛𝑘
)

𝑡𝑘≤𝜏

(
𝑛2𝑘

𝑛𝑘
) (

𝑛𝑘 − 𝑑𝑘

𝑛𝑘 − 1
) (𝑑𝑘) 

where 𝜏 is the largest 𝑡𝑘 with 𝑛1𝑘, 𝑛2𝑘> 0. 
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The test statistic is  

𝑄 = sup{|𝑍(𝑡)|, 𝑡 ≤ 𝜏} /𝜎(𝜏) 

In order to find the critical value of Q, standard Brownian Motion is introduced. Brownian 

Motion is a special type of Markov Chain. In addition to Markov Chain, Brownian Motion 

also has the following criteria: 

1. For all time h>0, the difference 𝑋(𝑡𝑗 + ℎ) − 𝑋(𝑡𝑗) has a normal distribution 

2. The difference 𝑋(𝑡𝑗 + ℎ) − 𝑋(𝑡𝑗), 0<𝑡1<𝑡2<<𝑡𝑛 are mutually independent. 

3. The mean difference is 0. 

The standard Brownian Motion is intended to describe random noise that follows a standard 

normal distribution. Thus the distribution of Q can be approximated by the standard 

Brownian motion process. The p-value is 

𝑃𝑟[sup|𝑍(𝑡)| > 𝑦] = 1 −
4

𝜋
∑

(−1)𝑘

2𝑘 + 1
exp [−

𝜋2(2𝑘 + 1)2

8𝑦2
]

∞

𝑘=0
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4. Lin & Xu’s Test 
 

Lin and Wang[8] developed a new statistical testing approach to compare the overall 

homogeneity of survival curves by measuring the squared differences between the number 

of observed failures and the number of expected failures over time. Later, Lin and Xu[9] 

suggested a new method for comparing survival distributions based on the absolute 

difference between the area under two survival curves. Both of the two methods suggest 

better performance in statistical power than log-rank test when there are two survival 

curves that cross. Here, we only introduce Lin and Xu’s test in this article. 

Our null hypothesis and alternative hypothesis are: 

𝐻0: ℎ1 = ℎ2 for all 𝑡𝑗 ≤  𝜏 

𝐻1: ℎ1 ≠ ℎ2 for some 𝑡𝑗 ≤  𝜏 

Here ℎ1 and ℎ2 is the hazard rate in group I and group II respectively. Let 𝑋 = min(𝑇, 𝐶) 

and 𝛿 = 𝐼(𝑇 ≤ 𝐶), where T denotes survival time, and C denotes censoring time. Let 

𝑡1<𝑡2<<𝑡𝐷 be the distinct death time in the pooled sample. At time 𝑡𝑗 we observe 𝑑𝑖𝑗 

events in the 𝑖th sample out of 𝑛𝑖𝑗 individuals at risk, 𝑖 = 1, … , 𝐾, 𝑗 = 1, … , 𝐷. Let 𝑑𝑗 =

∑ 𝑑𝑖𝑗
𝐾
𝑖=1  and 𝑛𝑗 = ∑ 𝑛𝑖𝑗

𝐾
𝑖=1  be the number of deaths and number at risk in combined sample 

at time 𝑡𝑗. 

The survival distribution for each group at time t, 𝑆𝑖(𝑡), is estimated by Kaplan-Meier 

estimator �̂�𝑖(𝑡). 

�̂�𝑖(𝑡) = ∏ (1 −
𝑑𝑖𝑗

𝑛𝑖𝑗
)

𝑗|𝑡𝑗≤𝑡
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To measure the difference between survival curves, we calculate the absolute difference 

of the area between the two curves, which is defined as 

∆= ∫ |�̂�1(𝑡) − �̂�2(𝑡)|𝑑𝑡 = ∑ |�̂�1(𝑡𝑗) − �̂�2(𝑡𝑗)|(𝑡𝑗+1 − 𝑡𝑗)

𝑗|𝑡𝑗<𝜏

𝜏

0

 

Here 𝜏 is the last time point by which the areas under the survival curves can be 

calculated for both groups. We can further divide 𝜏 into three different situations. If the 

two groups are both censored at the last time point, 𝜏 = min(𝑋𝑖𝐷). If the last time point 

in one group is a failure, and censored in another, 𝜏 = max (𝑋𝑖𝐷(1 − 𝛿𝑖𝐷)). If there is 

failure for both groups at the last time point, 𝜏 = max(𝑋𝑖𝐷). Note, 𝑡𝑗+1 for the last 

element in the summation is defined as 𝜏. 

Using Greenwood’s formula, the estimate of the variance of �̂�𝑖(𝑡) is 

�̂�𝑆𝑖

2 (𝑡) = �̂�𝑖
2(𝑡) ∑

𝑑𝑖𝑗

𝑛𝑖𝑗(𝑛𝑖𝑗 − 𝑑𝑖𝑗)
𝑗|𝑡𝑗≤𝑡

 

For standard normal random variable Z, we have 𝐸(|𝑍|) = √(2/𝜋), and 𝑉𝑎𝑟(|𝑍|) = 1 −

2/𝜋. Under the null hypothesis, using normal approximation, �̂�1(𝑡) − �̂�2(𝑡) follows a 

normal distribution with mean 0 and variance �̂�𝑆1

2 (𝑡) + �̂�𝑆2

2 (𝑡). We can then find the 

estimate of the expectation and variance of �̂�1(𝑡) − �̂�2(𝑡), 

�̂�(|�̂�1(𝑡) − �̂�2(𝑡)|) ≐ {2/𝜋[�̂�𝑆1

2 (𝑡) + �̂�𝑆2

2 (𝑡)]}
1/2

 

𝑉𝑎�̂�(|�̂�1(𝑡) − �̂�2(𝑡)|) ≐ (1 −
2

𝜋
) [�̂�𝑆1

2 (𝑡) + �̂�𝑆2

2 (𝑡)] 

Based on the normal approximation, �̂�(∆) can be estimated as the following: 
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�̂�(∆) ≐ ∑ {2/𝜋[�̂�𝑆1

2 (𝑡𝑗) + �̂�𝑆2

2 (𝑡𝑗)]}
1/2

(𝑡𝑗+1 − 𝑡𝑗)

𝑗|𝑡𝑗<𝜏

 

The variance of ∆ is 

𝑉𝑎𝑟(∆) ≐ ∑ (𝑡𝑗+1 − 𝑡𝑗)
2

(1 −
2

𝜋
) [𝜎𝑆1

2 (𝑡𝑗) + 𝜎𝑆2

2 (𝑡𝑗)]

𝑗|𝑡𝑗<𝜏

+ ∑ 2𝜌𝑗,𝑗′(𝑡𝑗+1 − 𝑡𝑗)(𝑡𝑗′+1 − 𝑡𝑗′) (1 −
2

𝜋
)

𝑗<𝑗′|𝑡𝑗,𝑡𝑗′<𝜏

× {[𝜎𝑆1

2 (𝑡𝑗) + 𝜎𝑆2

2 (𝑡𝑗)][𝜎𝑆1

2 (𝑡𝑗′) + 𝜎𝑆2

2 (𝑡𝑗′)]}
1/2

 

where 𝜌𝑗,𝑗′  is the correlation coefficient between |�̂�1(𝑡𝑗) − �̂�2(𝑡𝑗)| and |�̂�1(𝑡𝑗) − �̂�2(𝑡𝑗)|, 

𝑗 ≠ 𝑗′. 

The estimation of 𝑉𝑎𝑟(∆) depends on the value of 𝜌𝑗,𝑗′ . Lin and Xu suggested to set 

𝜌𝑗,𝑗′ = 0.5 for all 𝑗 and 𝑗′, because the test statistic has a high power and does not inflate 

type I error. Then the estimate of 𝑉𝑎𝑟(∆) is 

𝑉𝑎�̂�(∆) ≐ ∑ (𝑡𝑗+1 − 𝑡𝑗)
2

(1 −
2

𝜋
) [�̂�𝑆1

2 (𝑡𝑗) + �̂�𝑆2

2 (𝑡𝑗)]

𝑗|𝑡𝑗<𝜏

+ ∑ (𝑡𝑗+1 − 𝑡𝑗)(𝑡𝑗′+1 − 𝑡𝑗′) (1 −
2

𝜋
)

𝑗<𝑗′|𝑡𝑗,𝑡𝑗′<𝜏

× {[�̂�𝑆1

2 (𝑡𝑗) + �̂�𝑆2

2 (𝑡𝑗)][�̂�𝑆1

2 (𝑡𝑗′) + �̂�𝑆2

2 (𝑡𝑗′)]}
1/2

 

By standardizing ∆, we now have the test statistic: 

∆∗=
∆ − �̂�(∆)

√𝑉𝑎�̂�(∆)
 

We reject 𝐻0 in favor of 𝐻1 when |∆∗| > 𝑍𝛼/2.  
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5. Simulation Study 
 

To evaluate the performance of Gehan’s test, Renyi test and Lin’s method, Monte Carlo 

simulations are carried out to study the statistical power and the type I error under a variety 

of situations. We compare these three methods with log-rank test in the simulations.  

5.1 Estimation of Type I Error 

The number of iteration is 3000. Two random samples are generated independently from 

exponential distribution with mean 5, with 4 different censor rate 0, 20%, 40% and 60%. 

The type I error rate is calculated as the proportion of 3000 repeated samples in which we 

reject the null hypothesis at 0.05 significant level. 

Table 2 shows that all four tests have similar type I error rates which are close to 0.05. 

Gehan’s test and Renyi test are more conservative compared to log-rank test and Lin and 

Xu’s test. As censor rate increase, Lin and Xu’s type I error rate exhibit slight increase 

while other tests remain at 0.05 level. 

Table 2 Type I error rate of four tests at different censor rate 

censor rate log-rank test Gehan's test Renyi test Lin and Xu's test 

0 0.048 0.048 0.043 0.031 

20% 0.053 0.048 0.042 0.044 

40% 0.052 0.046 0.045 0.05 

60% 0.047 0.047 0.044 0.056 

 

5.2 Estimation of Power 

We consider the three different situations. In Situation 1, we create two survival curves 

with proportional hazards. In Situation 2, we design two crossing survival curves. In 

Situation 3, we have two survival curves are very close at the beginning, and diverge then. 
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The simulations will demonstrate the statistical power of the log-rank test, Gehan’s test, 

Renyi test, and Lin and Xu’s method. The number of iterations in each simulation study is 

3000. The estimated statistical power is calculated as the proportion of 3000 repeated 

random samples in which we reject the null hypothesis at 0.05 significance level.  

 

  

Situation 1 Situation 2 

 

 

Situation 3 

Figure 1 Survival curves of samples in simulation study under 3 situations 

 

5.2.1 Situation 1 

We first consider a situation where two survival curves with proportional hazard. We 

generate samples from an exponential distribution with mean 5 and 2 independently for 

group I and group II. 
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Furthermore, we also include different scenarios of censoring to better evaluate the 

performance of the tests in this situation. We first include the situation without censoring. 

Then we obtain censor rates of 20%, 40%, and 60% approximately for both of the groups 

by generating censoring time from uniform distribution Unif(0, 28), Unif(0, 13),  Unif(0, 

7) separately for group I, and Unif(0, 150), Unif(0, 55),  Unif(0, 30) for group II 

respectively. 

Table 3 Power of four tests at different censor rate for when survival curves have proportional 
hazard 

censor rate log-rank test Gehan's test Renyi test Lin and Xu's test 

0 1 0.999 0.989 1 

20% 1 0.998 0.998 1 

40% 0.998 0.993 0.994 0.998 

60% 0.964 0.942 0.951 0.960 

 

Table 3 shows that all of the four tests perform well in situation I. As censor rate increases, 

there is a slight decrease in power for all four tests, but they still have great power which 

are above 90%. It also shows that among all tests, log-rank test has the optimal power when 

survival curves show proportional hazards.  

5.2.2 Situation 2 

We next consider a situation where two survival curves cross. In Group I the survival times 

follow an exponential distribution with mean of 6. In Group II the survival times follow an 

exponential distribution with mean of 2. However, if the survival time in Group II is greater 

than 1.5, then the survival time is re-generated from an exponential distribution with mean 

of 40.  
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Furthermore, we also include different scenarios of censoring to better evaluate the 

performance of the tests in this situation. We generate censoring time from uniform 

distribution Unif(0, 28), Unif(0, 13),  Unif(0, 7) separately for group I, and Unif(0, 150), 

Unif(0, 55),  Unif(0, 30) for group II in order to achieve censor rates of 20%, 40%, and 60% 

approximately for both of the groups. We also consider the situation without censoring.  

Table 4 Power of four tests at different censor rate for when survival curves cross 

censor rate log-rank test Gehan's test Renyi test Lin and Xu's test 

0 0.714 0.168 0.999 1 

20% 0.21 0.407 0.996 0.999 

40% 0.082 0.705 0.987 0.945 

60% 0.539 0.924 0.99 0.682 

 

Table 4 confirms that the log-rank test has limited power when survival curves cross. A 

high censor rate seems to have a considerable influence on the log-rank test and Lin and 

Xu’s test. Renyi test and Lin and Xu’s test both perform better than other tests at low and 

moderate censor rates. Renyi test performs the best among all four tests with a high power 

at all censor rate, while Lin and Xu’s test lose power when censor rate in high. Gehan’s 

test has an increasing power as censor rate increases because the Gehan’s test assigns a 

greater weight to earlier failure times, making the test insensitive to differences at later 

times.  

5.2.3 Situation 3 

Finally, we consider a situation where two survival curves are close at the early stage, and 

diverge later. We generate samples for group I from an exponential distribution with mean 

5. For group II, we generate samples from an exponential distribution with mean 4. 
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However, if survival time is greater than 4, we regenerate the sample from an exponential 

distribution with mean 40.  

We consider different scenarios of censoring to better evaluate the performance of the tests 

in this situation as well. In addition to the scenario without censoring, we consider other 

situations where we have censor rate of 20%, 40%, and 60% approximately for both of the 

groups. We generate censor time from uniform distribution Unif(0, 25), Unif(0, 11.5),  

Unif(0, 4.5) for group I, and Unif(0, 60), Unif(0, 12),  Unif(0, 4.3) for group II respectively.  

Table 5 Power of four tests at different censor rate for when survival curves are close at early stage 
and diverge later 

censor rate log-rank test Gehan's test Renyi test Lin and Xu's test 

0 0.602 0.059 0.707 1 

20% 0.178 0.097 0.358 0.983 

40% 0.057 0.187 0.229 0.291 

60% 0.246 0.218 0.217 0.269 

 

In situation 3, we create two survival curves that are close at the beginning, and separate 

later. As far as the log-rank test is concerned, the simulation results here are similar to those 

in situation 2 in that the log-rank test has low power. Gehan’s test also shows a similar 

trend as censor rate increases. It has an increasing power as censor rate increases because 

the Gehan’s test assigns a greater weight to earlier failure times, causing the test to be 

insensitive to differences at later times. A high censor rate affects the log-rank test, Renyi 

test, and Lin and Xu’s test. Renyi test exhibits moderate performance when there is no 

censoring with a 70.7% power. However, its power decrease apparently under the influence 

of increasing censor rate. Lin and Xu’s test performs better than other tests at all censor 

rate. However, it loses power to below 30% when the censor rate is above 40%.  
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6. Real Data Example from a Kidney Dialysis Trial 
 

We apply the log-rank test, Gehan’s test, Renyi test and Lin and Xu’s test to a real dataset 

from a kidney dialysis trail. The data can be found in Klein and Moeschberger[1]. Scientists 

designed the trial to study the time to first exit-site infection (in months) in patients with 

renal insufficiency. Patients are divided into two groups based on how their catheter is 

replaced. 43 patients accepted surgically replacement, and 76 patients had a percutaneous 

replacement. Data in table 6 include time to first exit-site infection (or censoring time) in 

both groups. 

We apply the log-rank test, Gehan’s test, Renyi test and Lin and Xu’s test to the data, and 

get the corresponding p-values. Log-rank test, Gehan’s test, and Renyi test all give a non-

significant p-value which is 0.112, 0.964, and 0.225. We fail to reject H0. Lin and Xu’s test 

give a significant p-value of 0.010<0.05, so we reject H0 and claim there is significant 

difference between the two survival curves. 

In this example, the log-rank test fails because the two survival curves cross. The earlier 

differences are cancelled out by the later opposite direction differences. Gehan’s test fails 

because it puts more weight to the earlier time points. The two curves actually have smaller 

differences at earlier time points and bigger differences at later points, which the Wilcoxon 

test is not able to detect. Renyi test is based on detecting the largest difference between two 

survival curves, while Lin and Xu’s test, however, sum up the absolute difference at all 

time point. It is reasonable that Lin and Xu’s test suggests to reject H0 while Renyi test 

does not. 
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Figure 2 Survival curves of the kidney dialysis data 

 
Table 6 Time to first exit-site infection from kidney dialysis data 

Surgically placed catheter  

Infection times: 1.5, 3.5, 4.5, 4.5, 5.5, 8.5, 8.5, 9.5, 10.5, 11.5, 15.5, 16.5, 18.5, 23.5, 26.5 

Censored observations: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 

13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5  

Percutaneous placed catheter  

Infection times: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 6.5, 15.5 

Censored observations: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 3.5, 3.5, 

3.5, 3.5, 3.5, 4.5, 4.5, 4.5, 5.5, 5.5, 5.5, 5.5, 5.5, 6.5, 7.5, 7.5, 7.5, 8.5, 8.5, 8.5, 9.5, 9.5, 10.5, 10.5, 10.5, 11.5, 11.5, 

12.5, 12.5, 12.5, 12.5, 14.5, 14.5, 16.5, 16.5, 18.5, 19.5, 19.5, 19.5, 20.5, 22.5, 24.5, 25.5, 26.5, 26.5, 28.5  
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7. Discussion and Conclusion 
 

In clinical research, it is not uncommon that the hazards rates are unequal, particularly 

when two survival curves cross each other. In this thesis, we considered three different 

tests – Gehan’s test, Renyi test, and Lin and Xu’s test - for the comparison of two survival 

distributions under various situations. The objective of this study was to suggest hypothesis 

tests that is appropriate for use when survival curves cross. Because survival functions are 

more common and intuitive than hazard functions when investigating the survival 

differences between two groups, simulations were performed for situations in which the 

survival distributions 1) show proportional hazards; 2) cross; 3) are close at early stage and 

separate. The simulation results demonstrated that Renyi test is suitable when two survival 

curves have very different patterns and cross each other. Renyi test perform well under a 

high range of censor rate. Lin and Xu’s test becomes optimal when two survival curves do 

not separate well, and its power is largely influenced by censor rate.  

Weighted log-rank test is not particularly designed for crossing survival curves. It is 

important to choose the correct weight before using the test because inappropriate weight 

may lead to a misleading conclusion. Furthermore, it is also important to decide the weight 

based on prior knowledge or other information without looking into the data. It is 

inappropriate to choose weight after seeing the data. 

In this thesis, we only generate censoring time from uniform distribution, and survival time 

from exponential distribution. More situations need to be considered in further study. We 

only compare three methods, while there are more tests particularly designed for the 

situation with survival curves crossing. Fleming et al.[6] have developed the modified 
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Kolmogorov-Smirnov test for the correct comparison of crossing survival curves. 

Koziol[11] has generalized the Cramér-von Mises test to censored data. Qiu and Sheng[12] 

have suggested a two-stage procedure in which the log-rank test serves as the first stage 

and a proposed procedure for addressing the crossing hazard rates is applied in the second 

stage. Kraus[11] has constructed a class of Neyman’s smooth tests based on the concept of 

Neyman’s embedding and a data-driven strategy. Li[2] et al. have compared the methods 

using Monte Carlo simulations under different sample size, censor rate, and crossing time. 

In practice, researchers should decide a proper test to use based on the characteristics of 

the data.  
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9. Appendix 

R code for Lin and Xu’s test:  

lin2<-function(time, event,group){ 

  raw<-data.frame(time,event,group) 

  raw<-raw[with(raw, order(group, time)), ] 

  raw1<-raw[which(raw$group==1),] 

  raw2<-raw[which(raw$group==2),] 

   

  d<-data.frame(summary(survfit(Surv(time,event)~group, conf.int = 0.95))$time, 

summary(survfit(Surv(time,event)~group, conf.int = 

0.95))$surv,summary(survfit(Surv(time,event)~group, conf.int = 

0.95))$strata,summary(survfit(Surv(time,event)~group, conf.int = 0.95))$std.err) 

  colnames(d)<-c("time","surv","strata","std.err") 

   

  l<-length(d$strata[which(d$strata==levels(d$strata)[1])]) 

  ll<-nrow(d) 

  strata<-c(rep(1,l),rep(0,(ll-l))) 

  group1.dat<-head(d,l) 

  group2.dat<-tail(d,(ll-l)) 

   

  mergedata<-merge(group1.dat, group2.dat, by.x=colnames(group1.dat)[1], 

by.y=colnames(group2.dat)[1],all = T) 
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  n=nrow(mergedata) 

   

  index2<-min(which(!is.na(mergedata[,2]))) 

  index5<-min(which(!is.na(mergedata[,5]))) 

   

  for (i in index5:n){ 

    if (is.na(mergedata[i,5])){ 

      mergedata[i,5]=mergedata[i-1,5] 

      mergedata[i,7]=mergedata[i-1,7]} 

  } 

  for (i in index2:n){ 

    if (is.na(mergedata[i,2])){ 

      mergedata[i,2]=mergedata[i-1,2] 

      mergedata[i,4]=mergedata[i-1,4]} 

  } 

  if(index5!=1){ 

    mergedata[1:(index5-1),5]<-1 

    mergedata[1:(index5-1),7]<-0} 

  if(index2!=1){ 

    mergedata[1:(index2-1),2]<-1 

    mergedata[1:(index2-1),4]<-0} 

   

  mergedata<-mergedata[,-6] 
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  mergedata<-mergedata[,-3] 

  colnames(mergedata)<-c("time","surv1","se1","surv2","se2") 

   

 

  if (tail(raw1$event,1)==0 && tail(raw2$event,1)==0) 

  {tao=min(tail(raw1$time,1),tail(raw2$time,1)) 

  mergedata[n+1,]<-c(tao,mergedata[n,2:5])} 

   

  if (tail(raw1$event,1)==1 && tail(raw2$event,1)==0) 

  {tao=tail(raw2$time,1)} 

   

  if (tail(raw1$event,1)==0 && tail(raw2$event,1)==1) 

  {tao=tail(raw1$time,1)} 

   

  if ((tail(raw1$event,1)==1 && tail(raw2$event,1)==0) ||(tail(raw1$event,1)==0 && 

tail(raw2$event,1)==1)) 

  {mergedata$se1[which(is.na(mergedata$se1))]=0 

  mergedata$se2[which(is.na(mergedata$se2))]=0 

  mergedata[n+1,]<-c(tao,mergedata[n,2:5])} 

   

  if (tail(raw1$event,1)==1 && tail(raw2$event,1)==1) 

  {tao=max(tail(raw1$time,1),tail(raw2$time,1)) 

  mergedata$se1[which(is.na(mergedata$se1))]=0 
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  mergedata$se2[which(is.na(mergedata$se2))]=0} 

   

  delta=0 

  edelta=0 

  var2=0 

  var1=0 

  for (i in 1:(nrow(mergedata))){ 

    # print(i) 

    # print(var1) 

    if(mergedata$time[i]<tao){ 

      delta<-delta+abs(mergedata$surv1[i]-mergedata$surv2[i])*(mergedata$time[i+1]-

mergedata$time[i]) 

      edelta<-

edelta+sqrt(2/pi*(mergedata$se1[i]^2+mergedata$se2[i]^2))*(mergedata$time[i+1]-

mergedata$time[i]) 

      for (j in 1:(nrow(mergedata)-1)){ 

        if (i<j && mergedata$time[j]<tao){ 

          var2<-var2+(mergedata$time[i+1]-mergedata$time[i])*(mergedata$time[j+1]-

mergedata$time[j])*(1-

2/pi)*sqrt((mergedata$se1[i]^2+mergedata$se2[i]^2)*(mergedata$se1[j]^2+mergedat

a$se2[j]^2))} 

      } 
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      var1=var1+(mergedata$time[i+1]-mergedata$time[i])^2*(1-

2/pi)*(mergedata$se1[i]^2+mergedata$se2[i]^2)} 

  } 

   

  var=var1+var2 

  delt<-(delta-edelta)/sqrt(var) 

  1-pnorm(delt) 

   

} 


