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Abstract

Effects of polydispersity and Isomorph Theory on shearing soft glassy materials
By Yonglun Jiang

My PhD work consists of two simulation projects. One is to study the effect
of polydispersity on the dense 2D granular system under steady shear. We use the
Durian bubble model together with Lees-Edwards boundary conditions to generate
the shear on our systems with exponential size distributions with various size spans.
Then we compare the results with conventional bidisperse system. Shear produces a
mean affine flow, and nonaffine plastic deformations resulting from local rearrange-
ments. We calculate the deviation from the affine flow to quantify the nonaffinity
for individual particles. We also calculate the deviation from the local group affine
motions to quantify the local plastic deformation. We find that both of them signif-
icantly depend on the particle size as well as the positions to other particles within
the system. In contrast to bidisperse systems, the large particles in our simulations
cause a new flow pattern for the relatively smaller particles. This flow pattern leads
to more complicated ways of rearrangements that are the origins of the new behaviors
we find. We further demonstrate a quantitative way to distinguish between “large”
and “small” particles. Finally, we show how these results become increasingly im-
portant as the particle size distribution broadens. These findings are qualitatively
different than previously found in bidisperse systems.

The other project is to apply the isomorph theory on the glassy simple system
under simple shear. After cooling the Kob-Andersen binary Lennard-Jones system
below the glass transition, we generate a so-called isomorph from the fluctuations
of potential energy and virial in the NVT ensemble: a set of density, temperature
pairs for which structure and dynamics are identical when expressed in appropriate
reduced units. To access dynamical features, we shear the system using the SLLOD
algorithm coupled with Lees-Edwards boundary conditions and study the statistics
of stress fluctuations and the particle displacements transverse to the shearing di-
rection in steady state. We find good collapse of the statistical data, showing that
isomorph theory works well in this regime. The analysis of the distribution of stress
fluctuations allows us to identify a clear signature of avalanche behavior in the form
of an exponential tail on the negative side. This feature is also isomorph invariant.
We then investigate further and turn our focus on the transient part of the stress and
strain curve when the system yields. For the study here, we investigate a much larger
density span over which the performance of various isomorph generating methods
needs to be examined. Comparisons and comments on these methods are provided.
We then shear the system along the identified isomorph. Here since the transient part
depends on the thermal history, we shear the glassy samples generated by different
cooing rates with different strain rates. Excellent collapsing quality again for steady
state stress is verified. We notice however, that the peak stress at the transient part
on the stress strain curve is not invariant, but decreases by a few percent for each ten
percent increase in density, although the differences decrease with increasing density.
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Chapter 1

Introduction

1.1 Amorphous materials and three control pa-

rameters

Mayonnaise can support its own weight like a solid but also flow under external stress

like liquid. Similar materials, sharing both solid and liquid properties, are known gen-

erally as amorphous materials. One of the most important features of such materials

is the microscopic disordered structure, like liquids. Many of them can nonetheless

possess very solid-like properties such as high strength and stiffness, smooth surfaces,

and brittle failures under overwhelming external stress. For decades, people have been

trying to connect this irregular disordered structure at any scales to the macroscopic

material properties and behaviors. Part of my work recorded here, in some sense, is

to add one brick to this big building. Based on the sizes of the individual particles,

various systems have been investigated from a few nanometers, such as metallic glass,

to centimeter scale such as granular materials including grains and disks. In between,

people also study from small to large, polymer glasses, colloids (solid particles dis-

persed in liquid like ink and toothpaste), foams (bubbles of gas in a liquid like shaving

cream) and emulsions (droplets of one liquid present in a second immiscible liquid
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like mayonnaise). Corresponding computation works have also been done and various

models and theories have been proposed to address the question mentioned above,

how to understand the macroscopic behaviors of the system from the microscopic,

individual particle level. Let me first introduce some background information about

what people generally care about for these systems from the “macro” point of view.

There are three major parameters controlling the macroscopic properties and be-

haviors of the amorphous systems. First of all, density ρ, the total mass of particles

divided by the volume of the system (number density is also frequently used when

the mass of each particle is the same). Volume fraction in 3D and area fraction φ in

2D are also used, defined as the total volume (area in 2D) of particles divided by the

system volume (area in 2D). Take colloidal systems in 3D as an example. When the

volume fraction is low below 0.494, the system is in general a liquid in equilibrium.

With the increase of volume fraction, the system can either crystallize when the size

distribution of the particles in the system is monodisperse and fully crystallized above

a value of 0.545, as shown in Fig. 1.1 by the top arrows. However, the crystal state

or crystalization process is not what we would like to investigate. The alternative

route for increasing volume fraction is that the system can enter a supercooled liquid

state (see next paragraph for definition of supercooled liquid) when the particles are

more polydisperse or unable to crystallize. For supercooled liquid system, further

increasing the volume fraction moves it into the glassy state where only localized vi-

brational motion survives [60]. It should be mentioned that if prepared properly, the

system can form crystal even with high polydispersity, not one crystal as a whole, but

with sub-regions containing different states of crystals [126]. The process by which a

system entering the glassy state (solid like) from supercooled liquid state (liquid like)

is called glass transition, shown by Fig. 1.1.

Temperature is another key parameter. As mentioned above, the individual par-

ticles in different systems vary in size. Foams and emulsions, bubbles or droplets
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Figure 1.1: Figure 1 in [60] shows a phase diagram of hard spheres versus volume
fraction, Φ. Solid (dashed) arrows indicate (non)equilibrium states. Note that the
existence of the glassy state requires some polydispersity. Bottom inset images are
confocal micrographs. Republished with permission of IOP Publishing, Ltd, from
”The physics of the colloidal glass transition”, Gary L. Hunter and Eric R. Weeks, 75,
6, copyright (2012) [60]; permission conveyed through Copyright Clearance Center,
Inc..

dispersed in a continuous liquid phase, are usually larger than tens of microns. These

sort of systems with particles that are large enough so that the Brownian motion

effect can be ignored are called athermal system. Thermal fluctuations play a major

role in other systems consisting of smaller particles like colloids and polymers. The

glass transition mentioned above is a great example where temperature is as crucial

as density [86, 127]. When the density is moderate and temperature is high, thermal

fluctuation enables particles to move around to find the equilibrium state so that the

system is liquid like. When the temperature is low such that the particles are mostly

frozen, the system again either rearranges to form an ordered crystal where particles

mainly vibrates, or becomes out of equilibrium (enters glassy state) where the system

cannot sample the whole configuration space. More specifically, there are two situa-

tions where the material does not crystallize. Some materials consist of polydisperse

particles and can avoid crystallization even when undercooled; alternatively, a sample

can be cooled faster than nucleation can occur. In such situations, the sample is said

to be a supercooled liquid. Further cooling the supercooled liquid returns a liquid-like
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Figure 1.2: Phase diagram where control parameters are temperature, density, and
applied load. The state below the curved surface is solid-like, with the projection onto
the load-density plane being the jammed state and the other being glassy state. The
curved plane corresponds to the regular glass transition. The transition line, or the
projection of the curved plane on the density-load plane is the jamming transition.
Reprinted by permission from [102], [“Jamming at zero temperature and zero applied
stress: The epitome of disorder”, Corey S. O’Hern, Leonardo E. Silbert, Andrea J.
Liu, and Sidney R. Nagel, Phys. Rev. E 68, 011306, 2003.] COPYRIGHT (2003) by
the American Physical Society.

structure but frozen microscopic dynamics, i.e. the system becomes a glass. There-

fore, for a certain density, there is also a transition in terms of temperature where a

system changes between liquid and glass states and the corresponding temperature is

called glass transition temperature Tg.

Figure 1.1 mentioned above is a one-dimensional phase diagram of colloidal system

that only considers density of a system. The glass transition is a point in Fig. 1.1.

The interplay of the two parameters density and temperature can thus determine a

line on a two-dimensional phase diagram separating glass and liquid which is called

glass transition line. See the transition line in the T − 1/Φ plane in Fig. 1.2 below

for an illustration.
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The study on glass transition density and temperature is one example that people

work hard to understand from the microscopic scale, for example from the micro

structures. Various models and theories are proposed and debates are still ongoing

[89, 127, 21]. Another example is aging in the glassy state. Theoretically, as long

as the temperature is not zero, thermal fluctuation always exists and it is always

possible for a system to evolve towards a more stable, lower energy state (more

solid like). This evolution process is called aging [69, 113, 46, 42]. This means

that the system is constantly changing with time. Consequently, the thermal history

matters. How a thermal system is prepared thus has a strong effect on its properties.

For example, cooling or quenching a system quickly usually results in a less stable

glass compared with slowly preparing the glass [7, 37, 116]. The slowly prepared

system has more time to evolve during the preparation process and thus can be more

stable. This quenching rate Ṫ is therefore an important factor and one of my studies

considers this situation. Since the evolution involves the rearrangements of particles

(if every particle is completely frozen, i.e. at zero temperature, then the system won’t

evolve), many previous studies attempted to explain the phenomenon by looking at

the microscopic individual particle behaviors. Athermal systems are a different story.

Since no thermal effects are present, once the density is high enough so that no

space is available for particles to move, the system is entirely frozen and such state is

called jammed state. The entering of system into the jammed state is called jamming

transition. The dynamic is completely frozen in the jammed state and people turn

to apply external influence to the systems and consider the reactions.

The externally applied influence, normally stress, is the third parameter. Peo-

ple apply external force mainly to probe the mechanical or rheological properties of

the systems, such as failure, creep, and yield of materials, shear thinning and shear

thickening (see below for definition), etc. Again, many studies try to explain these

macro system-wise properties and behaviors from the micro individual particle level
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[123, 39, 45, 27, 32]. People working on glassy systems where aging takes effect but

is not desired also apply shear to ‘rejuvenate’ an ageing sample [96]. See next section

for more explanation. The applied force can also drive the jammed system to flow

and thus unjam. Therefore, density and external force together determine the state

of athermal systems and just like the glass transition line mentioned above, a jam-

ming transition line can also be defined by the two factors. Take the three controlling

parameters into account at the same time and a transition plane can be defined on

the phase diagram as shown in Fig. 1.2, separating solid-like (below the plane) and

liquid-like (above the plane) phases.

Figure 1.2 is believed to be universal and works for various amorphous materials

mentioned above. Below the curved plane is defined as jammed or solid phase. Some

people consider the projection of the solid phase onto the zero temperature plane as

the jammed phase and the rest of solid region as glassy phase. They thus treat the

jamming transition as a special case of glass transition while others believe the two are

fundamentally different [61, 86, 75]. Many studies work on trying to investigate the

relation between the two [61, 16, 75]. On the transition plane (transparent plane in

Fig. 1.2), three important critical quantities are the glass transition temperature Tg,

jamming transition density φj, stress that yields (unjams) the system which is called

yield stress σy, as shown in Fig. 1.2. The mechanical, dynamical, and rheological

behaviors of amorphous materials are shown to depend significantly on the distance to

these critical points. For example, numerous experimental and numerical studies have

found universal scaling of many quantities of the systems like shear modulus G with

distance to φj, which are called critical scaling laws [35, 40, 102, 103]. Microscopic

level origins behind these behaviors are still under investigation.

My two projects are on both thermal and athermal systems with simulation, in

glassy state and above φj (in jamming state) respectively. External stress is applied

to both systems in the form of simple shear with constant strain rates γ̇. Details
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about the simulation are in Chapter 2. We vary the γ̇, T , ρ in 3D or φ in 2D, Ṫ and

examine their influences on the behaviors of our systems.

1.2 Yield of amorphous solid

When the system is in a liquid like state, normally called complex liquid, applying

external force is generally for the purpose of testing the rheological properties of the

system. Examples include investigating the flow curve, constitutive laws, dependence

of viscosity on shear rate, and shear thinning, shear thickening, and shear banding,

etc (see below for the definitions). We work on the other branch, where the external

force is applied to glassy or jammed systems. For athermal system, as mentioned

above, an external force is necessary to activate their dynamics and enable the con-

figuration evolution. For thermal system, both external force and thermal fluctuation

can drive the configuration changes. Therefore, there are both situations involving

competition between the two where people need to consider questions like which one

dominates and which one can be neglected, and situations involving summation of

the two where people account both effects on the final response of the system like

both their contribution to the stabilization (energy release) of the system [17, 18].

These differences highlight the necessity of different considerations for thermal and

athermal systems. Nevertheless, the methods people use to apply the external force

are similar.

Typical protocols include shearing by rotating the wall of a rheometer (Couette

shear), applying pressure in given directions (indentation, pure shear, simple shear,

cyclic shear, and compression), or simply using gravity such as placing the material

on a tilted plane [29]. Rheometers control either the applied torque τ or the angular

velocity Ω of the rotating plate. In the former case, the applied macroscopic shear

stress is kept constant on a rotating cylinder and one monitors the resulting shear
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strain γ or strain rate γ̇. Conversely, strain-controlled experiments control the strain

γ or strain rate γ̇ and keep track of the stress response σ(γ). Examples of experiments

and simulation works to name a few include [67, 22, 98, 88, 70, 109, 20].

The response to the external force also varies for different systems. Generally

speaking, when a small stress is applied, the deformation of a system is mostly elastic,

meaning that the configuration can return back to the initial stage, in other words, the

deformation is reversible. Under larger stress, the change of configuration starts to

become irreversible and is called plastic deformation. When the stress on the system

is larger than a threshold value, which is termed as yield stress σy, the system yields.

After the yield, the plastic deformation accumulates in brittle materials and the

system finally fails and displays macroscopic fracture, while in ductile materials the

plastic deformation mainly release the accumulated energy and stress in the system

and the configuration enters a lower energy and more stable state, after which the

energy and stress accumulate again and process repeats. We observe steady flow for

such materials. The stress and strain curve in Fig. 1.3 illustrates such process. The

starting linear part corresponds to the elastic response where the system behaves like

a Hookean solid. Then a transient overshoot part occurs where the system yields. The

maximum stress is defined as the static yield stress σmax. This key quantity highly

depends on the stability of the system and thus is highly influenced by the preparation

process of the system, for example the quenching rate used to prepare the sample.

Then the system either undergoes failure or enters the steady flow state where the

stress fluctuates around a mean value called steady state stress σss. This quantity is

less affected by the thermal history since the memory of the initial preparation state

is erased in this steady flow state. Note that not all systems under shear show the

overshoot of stress.

The curve showing the dependence of σss on the shear rate γ̇ is the flow curve. A

Newtonian fluid typically shows a linear relationship between σss and γ̇ and the slope
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Figure 1.3: Sketch of stress and strain curve, i.e. macroscopic response of amorphous
materials to external load. Failure and steady flow correspond to brittle and ductile
materials respectively. The static yield stress σmax and steady state stress σss (SS
strands for steady state, also the steady flow state in the sketch) are indicated.
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Figure 1.4: Sketch of a typical flow curve, i.e. the steady-state shear stress σss against
the shear rate. A shear band forms when a stress plateau is observed no matter the
shear rate. A more general definition of shear band is region where the local response
is clearly different than the bulk.

is the viscosity η. Nonlinear relation includes η(γ̇) increasing with γ̇ which is called

shear thickening, and decreasing with γ̇-shear thinning. Shear band forms where the

σss is a constant no matter how large γ̇ is. See Fig. 1.4 for illustration. Numerous

studies address these quantities from different views and perspectives [45, 108].

Looking deeper and closer at the stress and strain curve, people find that instead of

a smooth curve, the detailed shape is mostly jagged with very local basins and bumps

resulting from the repeated process mentioned above. Let us recall that the energy U

accumulates elastically where the stress increases and then is released through plastic

deformations at some threshold points where stress reaches a peak and then drops,

forming a bump and basin. This process happens locally at different places among the

system, forming the overall stress and strain curve. It is thus of particular importance

to investigate the nature of these plastic deformations in order to better understand

the macroscopic behaviors of these systems. Various methods and ideas are proposed
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to identify and quantify these deformations, see next section. One particularly hot

topic recently is to predict the positions in a system where plastic events are highly

likely to happen based on solely on the structural information of the system. These

positions are called soft spots [31, 128, 30]. One of my studies also shows that simple

predictions can also be made provided the local information of sizes and positions of

individual particles. See chapter 3 for more results.

Once a plastic deformation happens, the released stress propagates away in certain

directions [34, 81], which might be able to trigger other plastic deformation at places

close to the threshold stress. Therefore, long-range interaction exists between these

events and avalanches might be triggered. The scale of such nonlocal effect highly

depends on the position to the jamming transition point φj. The strain rate used to

shear the system and the temperature (for thermal systems) also have strong effects

on the length scale of the nonlocal effect, and under certain situations avalanches

spanning the whole system can be found. We also demonstrate evidence of such

avalanches in one of our studies, see chapter 4 for more details.

My first project focuses on the plastic deformation of athermal system above

jamming transition point φj under simple shear using simulation. See the details

of our simulation in chapter 2 and results about dependence of individual particle

behaviors on polydispersity (see below for more description) in Chapter 3. My second

project works on the thermal system in glassy state under shear again using simulation

and we look at the two key quantities σmax and σss on the stress and strain curve.

We also investigate the properties of the stress drop in the steady flow state between

the bump and basin. See the simulation details in chapter 2 and related results in

Chapter 4 and 5.
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Figure 1.5: Confocal laser scanning microscopy photos of a commercial mayonnaise
with/without fish oil (The two images are rotated by 90 degrees for better illustra-
tion). Various sizes of particles can be seen, showing the high polydispersity of real
products. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: European Food Research and Technology [66], “Oxidation in fish-oil-enriched
mayonnaise 1. Assessment of propyl gallate as an antioxidant by discriminant par-
tial least squares regression analysis”, Jacobsen, C., Hartvigsen, K., Lund, P. et al,
COPYRIGHT (1999), November 1999 (doi: 10.1007/s002170050526)

1.3 Effect of polydispersity

Polydispersity means that the samples are composed of particles of different sizes. For

a given sample, there is a size distribution P(R) of the particle radii. The polydis-

persity is quantified by δ =
√
〈∆R2〉/〈R〉. Here ∆R = R − 〈R〉 and the moments of

R and ∆R are defined as 〈Rn〉 =
∫
RnP (R) dR and 〈∆Rn〉 =

∫
∆RnP (R) dR. Poly-

dispersity δ = 0 means monodisperse and for the conventional bidisperse systems it

is normally less than 0.2.

As mentioned in previous sections, many of amorphous materials in real life, ap-

pearing in nature and industrial applications and commercial products, in various

length scales, are mixtures of various sizes of particles. For example, the cytoplas-

mic and nucleoplasm environment in cell usually contain various sizes of inclusions

and organs [114]. Figure 1.5 also shows the microscopic structure of mayonnaise. It

is obvious that various sizes of droplets are there in the mayonnaise sample, which
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is certainly more complicated than the single-size systems. The goal of one of my

projects is to bridge between the simple model systems studied previously with low

polydispersity, and the complex highly polydisperse real-world materials, by examin-

ing the role of the particle size distribution in sheared materials. In addition, in real

life applications and experiments, polydispersity is in fact almost inevitable due to

the manufacturing process, even if a completely monodisperse sample is demanded.

For example, the monodisperse colloidal samples that many labs study normally come

with a polydispersity index, indicating the quality of how monodisperse the samples

are. On the other hand, in many computational studies on amorphous materials, a

small polydispersity is introduced to avoid crystallization e.g. by using a binary size

distributed system [67, 48, 81]. Although it commonly exists in numerous applica-

tions and researches, most previous studies are about model systems with no- or low-

polydisperse size distributions, bidisperse system for example, where polydispersity is

generally considered to play a small role and particles are treated equally and size dif-

ferences are ignored. For example, many computational studies use two distinct sizes

with size ratio O(1) [139, 49, 135, 95, 30] and many experimental studies use nominally

single component systems with intrinsic polydispersity [87, 97, 55, 110, 117, 19, 134].

These studies have led to insights such as the importance of non-affine motion in

sheared disordered materials [49, 135, 117], but generally treat the amorphous sys-

tem as homogeneous. However, even in this sort of model systems, evidence can be

found that the small and big particles in the bidisperse system are different in struc-

ture and dynamics [90]. Moreover, a confocal microscopy study of a sheared highly

polydisperse emulsion showed qualitative differences in the motion of large and small

droplets [26]. The universality of polydispersity as well as these signs indicating the

importance of particle size call the need to investigate its influence on the behaviors

of polydisperse systems.

Indeed, polydispersity leads to interesting physics. For example, polydisperse
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hard spheres can phase separate into multiple crystalline phases [126]. Polydisper-

sity can lead to new phases for active matter systems [76]. An experimental study

of polydisperse colloidal glasses found that different particle sizes had different dy-

namics and local environments [56]. Diffusion of tracers in porous materials becomes

anomalous when the porous medium is highly polydisperse [23]. Force chains in gran-

ular materials become dramatically more heterogeneous in more polydisperse systems

[99, 100, 15]. The viscosity of particulate suspensions strongly depends on polydis-

persity [107], varying by as much as a factor of 150 for constant volume fraction

of particles [24]. These studies highlight the role of the particle size distribution in

leading to new physics.

In conclusion, polydispersity is important, in one sense that polydisperse systems

behave differently from conventional monodisperse and bidisperse systems, in a second

sense that different sizes of particles in the polydisperse system behave differently even

for the conventional bidisperse system, in a third sense that previously mentioned

quantities and ideas which work nicely for low polydispersity systems might not be

suitable anymore for polydisperse systems, and in the final sense that in many real

situations, polydispersity must be taken into account.

We work on investigating the effect of polydispersity on different properties of

the amorphous system under shear, like plastic deformation quantified by D2
min,i and

nonaffinity quantified by the individual nonaffine motion, etc. See how we generate

certain size distribution in Chapter 2, more discussion on the influence of polydisper-

sity on the calculation of these quantities and our results in Chapter 3. The work in

chapter 3 has been submitted to “PHYSICAL REVIEW L”.
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1.4 Isomorph theory

Recently, it was discovered that a broad class of classical condensed matter systems

exhibit an approximate scale invariance[4, 5, 6, 120, 51, 121]. Upon changing a sys-

tem’s density, a corresponding change in temperature can be found such that the

structure and dynamics of the system are unchanged, as long as they are compared

in an appropriate dimensionless form. State points which are equivalent in this sense

are said to be isomorphic, and the key feature of systems exhibiting so-called hidden

scale invariance is the existence of isomorphic curves, or isomorphs, in the thermody-

namic density temperature phase diagram. The sketch in Fig. 1.6 illustrates the idea.

Take a system in the figure with density ρ1 and temperature T1 as the starting point.

When scaled to a different density ρ2, the isomorph theory says that a corresponding

temperature T2 can be found such that many structure and dynamical properties are

the same if compared in the correct units (which are called reduced units). Tracing

all such points on the phase diagram for the reference point (ρ1, T1) returns us the

isomorph of the point (ρ1, T1).

The theory of isomorphs shows how they can be identified straightforwardly in

computer simulations, how to appropriately scale quantities for comparison, and

which quantities are expected to be isomorph invariant. Isomorphs have been identi-

fied and investigated in the equilibrium liquid state for many model systems[4, 63, 64,

13, 137]. Systems with good isomorphs include those dominated by van der Waals in-

teractions, including molecular systems, and most metals[59], while strong directional

bonds, as in hydrogen-bonding systems and network formers, generally give rise to

more complex behavior and the absence of isomorphs. Water is a good example of a

system without good isomorphs. The phase is not important for whether isomorphs

can be found, as long as relatively-high-density condensed phases are considered.

Equilibrium is also not essential that isomorphs have been studied in conditions of

nonequilibrium steady state shearing[124] and aging[51, 52, 42] and zero-temperature
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Figure 1.6: Sketch of a random isomorph on the density temperature diagram. The
system at (ρ1, T1) and (ρ2, T2) are isomorphic if they have same structure and dynam-
ics (in appropriate units). Therefore, the physics is essentially invariant along this
curve.
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shearing of a glass[85]. The class of systems exhibiting good isomorphs has been

referred to as R-simple systems (R denoting Roskilde University where the theory

was proposed). We work on one R-simple system in glassy state, the Kob-Andersen

binary Lennard Jones (KABLJ) glass forming model (see chapter 2 for the definition),

at finite temperature. Finite temperature glassy systems under shear have not been

checked before as to whether the isomorph theory works or not.

Demonstrating the presence of good isomorphs in the glassy state has theoretical

relevance not just because it permits a simplification of the phase diagram (since all

points on an isomorph are invariant), but for two other reasons. First, given the ex-

istence of isomorphs, it becomes clearer what the relevant thermodynamic variables

are: Pressure, while being of course extremely relevant from an experimental point

of view, becomes secondary to density. Moreover, strain rates should be specified

and compared in their dimensionless (reduced) form. Second, the existence of iso-

morphs puts a strong constraint on theories of glassy behavior. Several theories for

the mechanical properties of amorphous materials have been proposed. Hidden scale

invariance imposes constraints on candidate theories, since a theory which purports

to be general should in particular apply to systems with hidden scale invariance and

should therefore involve equations expressed in reduced-unit quantities which are ex-

plicitly isomorph invariant. This principle has been called the isomorph filter[51, 28].

In the context of theories of the glass transition, for example, a theory connecting

the (reduced) relaxation time to the configurational entropy, with no other depen-

dence on thermodynamic state, passes the isomorph filter because both quantities are

isomorph invariant.

One key question is then how to express the quantities in the correct dimension-

less reduced units. There are various ways to nondimensionalize quantities. People

normally normalize them using either microscopic unit system or macroscopic unit

system. For example, if the Lennard Jones potential between pairs of particles is
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applied ULJ(r) = 4ε[( r
σ
)−12− ( r

σ
)−6]. The microscopic units are ε for energy and σ for

length. Alternatively, if the material has temperature T and length L, then the units

can be kBT for energy and L for length. The correct units to use are macro ones [41].

Here what we do is that we essentially scale out the direct effects of changing density

and temperature on structure and dynamics: If we have N particles in a volume V ,

then the system’s (number) density is ρ ≡ N/V . A basic length scale l0 is defined

by interparticle spacing ρ−1/3. If the system is in equilibrium at temperature T ,

then a basic timescale is defined by the time for a particle with the thermal velocity√
kBT/m to cover a distance l0: t0 = ρ−1/3(kBT/m)−1/2. In the case of a mixture,

the average mass 〈m〉 should be used. Given l0 and t0, we can rescale space and time,

making it possible, for example, to compare trajectories at different state points; the

rescaling accounts for the most trivial effects of changing density and temperature.

In fact, all physical quantities can be rescaled similarly, by taking appropriate combi-

nations of l0, t0, and 〈m〉. For a quantity with dimensions of energy, the scale factor

is just kBT . For a pressure (or stress or elastic modulus) the scale factor is ρkBT .

We denote the rescaled reduced-unit quantities by a tilde; thus the reduced form of

a particle position r is r̃ ≡ ρ1/3r, similar for other quantities. Note that these units

are experimentally assessable.

Another key question is how to identify isomorphs. The scale invariance that

underlies the existence of isomorphs derives ultimately from the fact that the poten-

tial energy landscape of the N-particle system changes in a somehow homogeneous

way when density is changed. For example, suppose changing the density of any

microscopic configuration ρ1 by a factor λ to ρ2 results in the potential energies be-

ing changed by a factor λγ for some exponent γ. This can then be compensated by

increasing temperature by the same factor, meaning all Boltzmann factors will be

unchanged, so the statistical probability of all microstates will be the same at the

new density as for the corresponding unscaled configurations at the original density.
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The method based on this idea is called the direct isomorph check (DIC). The tem-

perature factor can be derived by requiring the potential energy at the scaled density

scales accordingly. Details about how to perform the DIC are in chapter 5. It follows

that all statistical measures of structure will be invariant when expressed in terms of

the reduced coordinates r̃. It can also be shown [120] that the equation of motion

is also the same for both states when expressed in reduced units and therefore that

all dynamical quantities are also invariant in reduced units. There are also several

other methods based on other ideas that are able to generate isomorphs. Since we are

interested in glassy system at finite temperature, i.e. the system is in nonequilibrium

state, other factors like thermal history (aging) must be considered, making the iden-

tification of isomorphs more subtle. Extra carefulness is needed about which method

to use to generate the isomorph. Details about how the different methods work and

how to perform them in simulation as well as their performance (quality of isomorph,

in other words the quality of the invariance) can be found in chapter 5. It should

be noted that there are also ways to identify isomorphs in experiments. For any R

simple system, isomorphs may be obtained by tracing density and temperature points

with constant reduced viscosity or diffusion constant. For highly viscous liquids the

isomorphs are basically the lines of constant relaxation time, the so-called isochrones.

My study on isomorphs involves three parts. For the first part, we check the

quality of isomorph theory for the KABLJ glass at two different starting temperatures

under shear with different strain rates γ̇. Here we don’t bother too much about

which methods to use to generate the isomorph. We choose the most common and

classic one (see chapter 4) and only test a small density span ρ ∈ [1.265, 1.384] and

[1.324, 1.448] for the two starting T = 0.1, 0.55. We focus on the steady state and

verify the invariance of the structure and particle dynamics, and quantities related

to the steady state stress σss mentioned in previous section. The other two parts

involve a much larger density span ρ ∈ [1.183, 2.789]. The work has been published
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on “PHYSICAL REVIEW E” [67]. For the second part, we test 5 methods (see

chapter 5 for details) to generate isomorph to compare their performance for such a

large density span. We evaluate them by checking the quality of the invariance of the

σf = 〈σss〉, the mean stress in the steady flow state. For the third part, we investigate

both the σf at the steady state and σmax at the transient overshot part of the stress

and strain curve. Since σmax is the stress at the peak, we call it peak stress and label

it as σp. As mentioned before, the peak stress sensitively depends on the thermal

history of the system. Therefore, we also vary the cooling rate we use to obtain the

starting glassy configuration. Results and discussion are in chapter 5. The work in

chapter 5 is planned to be submitted to “PHYSICAL REVIEW E”.
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Chapter 2

Simulation method

For the first project about polydispersity, I work with programming language IDL.

For the second project about isomorph, I use Python. Here, I’d like to comment on

simulation as a tool in soft matter research area. Insights of the new understandings

of amorphous solids have often originated from computer simulations. People use

simple models to simulate the systems being studied and ignore factors and effects

that are not important under the certain situations that people care about. For

example, when studying the packing of amorphous solids, a classic model to use is the

hard sphere model where only a repulsive force is considered when a pair of particles

are in contact or within a certain amount of distance [91, 131, 140]. Other factors

such as possible attraction between particles and slight deformation of particles are

neglected because they are assumed to play a small role in the packing of the system.

Indeed many significant results have been found and consistency has been proved

with experimental studies [38, 68, 122, 2]. Ultimately experiments are still needed

but there are many times that the experiments are difficult to perform and time

consuming. Simulation is a good alternative here.

Most of the time people mainly consider pairwise interactions in the system. Usu-

ally the first step is to choose the potential energy, since force can be derived from
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the potential energy and thus the dynamics of the system can then be determined.

However, sometimes people can also directly choose the needed force and skip the

potential step. The next step is to derive the force and then solve the equation of

motion for each single particles in the system. Then the dynamics of the whole system

can be calculated. Common pair potential includes Lennard-Jones (LJ), the purely

repulsive inverse-power law (IPL), the Yukawa ‘screened Coulomb’ pair potential, the

Morse pair potential, the hard sphere potential, etc. The final step normally is to

investigate the properties of interest based on each particle’s position and velocity

information.

The simulation method that involves numerically solving the equations of motion,

which if are the Newton’s equations of motion, is called ”molecular dynamics” (MD).

It traces the trajectories for every particle. Newtonian dynamics conserves the energy

E (when no damping effects such as viscous force are considered). When considered

at constant volume V and particle number N , this is referred to as NV E dynam-

ics. NV T simulation where temperature is conserved and NV U simulation where

constant potential energy is applied (tracing out a geodesic curve on the constant-

potential-energy hypersurface) and NPT simulation with constant pressure are also

frequently applied depending on the needs and systems under investigation. All these

simulation methods are deterministic that the system’s evolution is uniquely deter-

mined once the simulation is started. Brownian or Langevin stochastic dynamics on

the other hand work differently. Usually they return the similar results and statistics.

People choose from these methods based on the specific properties the systems have.

Other simulation strategies are also frequently applied but my current interests are

on MD simulation.
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2.1 Durian bubble model and Runge-Kutta method

We use the Durian bubble model to simulate soft granular particles in 2D, where

we only consider a harmonic repulsive force when two particles are in contact and a

viscous force when two particles move by each other with different velocities [40, 57].

~F repulsive
ij = F0[

1

|~ri − ~rj|
− 1

|Ri +Rj|
]~rij (2.1)

~F viscous
ij = b(~vi − ~vj) (2.2)

Here, ~F repulsive
ij is the repulsive force from j on i and same for ~F viscous

ij . F0 and b are

constants indicating the relative strength of the two forces. We use 1 for both of

them. i, j indicate particles i and j. ~ri, Ri, and ~vi are the displacement vector (where

a particle is), the radii, and the velocity vector of particle i. Same for j. ~rij is the

direction vector pointing from particle j to i. Only when the distance between two

particles is smaller than the sum of their radius (the two in contact) is the repulsive

force between them nonzero. It should be noted that this repulsive force models

interaction between soft particles, since ~rij must be smaller than Ri + Rj for the

force to be nonzero, meaning that particles must deform. The term Ri + Rj also

indicates that larger particles are softer. Note here that the Durian bubble model is

also harmonic.

With the forces given, particle equation of motion can be determined and solved to

obtain the position and velocity of each particle at each time step. We use the Runge-

Kutta method to numerically solve the equation of motion [112]. In our system, the

inertial effects are negligible and the net force on each bubble sums to zero. The

equation of motion for particle i by summing over neighbors in touch j then is

~vi = 1/Ni

∑
j

(~F repulsive
ij /b+ ~vj) (2.3)
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Here Ni is the number of j particles for i. We then calculate ~rij and get the neighbor

list j for all particles in the system. Below is an example showing how we perform

the Runge-Kutta method.

The calculation process is the following to obtain the velocity of particle i at time

t0 + dt:

~vi = 1/Ni(t0)
∑
j

(~F repulsive
ij (t0, ri(t0), rj(t0)) + ~vj(t0)), ~vi(t = t0) = ~v0 (2.4)

k1,i = 1/Ni(t0)
∑
j

(~F repulsive
ij (t0, ri(t0), rj(t0)) + ~vj(t0)) (2.5)

k2,i = 1/Ni(t0 + dt/2)
∑
j

(~F repulsive
ij (t0 + dt/2, ri(t0) + k1,idt/2, rj(t0) + k1,jdt/2) + k1,j)

(2.6)

k3,i = 1/Ni(t0 + dt/2)
∑
j

(~F repulsive
ij (t0 + dt/2, ri(t0) + k2,idt/2, rj(t0) + k2,jdt/2) + k2,j)

(2.7)

k4,i = 1/Ni(t0 + dt)
∑
j

(~F repulsive
ij (t0 + dt, ri(t0) + k3,idt, rj(t0) + k3,jdt) + k3,j) (2.8)

~vi(t = t1) =
1

6
dt(k1 + 2k2 + 2k3 + k4), t1 = t0 + dt (2.9)

ri(t = t1) = ri(t = t0) + ~vi(t = t1)dt (2.10)

Here j indicates the neighbors of i in contact and we omit b since b = 1. The above

calculations are done for all particles and repeated so that we are able to obtain the

tracking array of the system with the positions and velocities of every single particles

at each time step. Then it is just a matter that how often we need to save these

information. dt can be tuned to adjust how accurate the calculation is. And each

time the neighbor list needs to be updated to acquire the correct forces. For our

purpose, we choose a relatively large dt = 2 that is able to return us consistent

results with a small dt like dt = 0.1 and a reasonable flow movie of the system under

shear.
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Figure 2.1: An illustration of Lees-Edwards boundary conditions. Two motions are
shown: particle 1 crosses the y boundary, it appears at the other side of the simulation
box with same x, y position; particle 2 crosses the y boundary and appears with the
same y position but a shifted x position. The amount of the shift is treated as the
applied shear strain times the box length in y direction.

The Runge-Kutta method is generally good for solving most differential equations.

Once the equations are determined, the above steps can be easily performed. Thus,

it is of great use to understand how the method works. Other forces and interactions

can be easily added into the model to simulate other situations.

2.2 Lees-Edwards boundary conditions

As mentioned in previous sections, we work on shearing the amorphous system. In

our investigation using the Durian bubble model, we achieve it by applying the Lees-
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Edwards Boundary condition, which is called boundary driven flow. The sketch in

Fig. 2.1 illustrate the idea. In the x direction, the normal periodic boundary condition

is applied, i.e. when a particle moves outside of the simulation box by crossing the y

boundaries, it appears at the other side of the simulation box with the same y position

and the x position in the fake simulation box. In calculation it is the following

x→ x mod lx, y = y (2.11)

Here x is the x position and lx is the box’s x length. I mod J is equal to the

remainder when I is divided by J . In the y direction, the Lees-Edwards boundary

condition is applied, i.e. when a particle crosses the x boundaries, it appears at the

other side of the simulation box with the y position in the fake simulation box and

the x position subtracted by the amount of shear. In calculation it is the following

x→ x± dx, y = y mod ly (2.12)

Here dx is the amount the top boundary of the box is sheared, i.e. the strain γ times

box y length ly. ± correspond to crossing the bottom and top boundaries and indicate

that we apply opposite shear at the two boundaries.

This Lees-Edwards boundary condition together with the previous section are

able to achieve shearing the system uniformly with simple shear, i.e. the applied bulk

strain is constant all over the system. At the first time step, the strain is 0. Then

the positions and velocities are calculated and updated for the second time step. At

the second time step, the strain becomes δγ. Here δγ divided by the time step dt is

the strain rate, one of the controlling parameters in our system, which indicates how

fast we shear the system. Then the positions and velocities are updated again. Now,

the particles outside of the simulation box need to be moved back to the box with

new positions after applying the boundary conditions. The process is repeated and a



27

steady shear can be achieved.

It should be noted that carefulness is needed for the velocities of particles crossing

the top and bottom boundaries. The velocities are the same if crossing the left and

right boundaries. However, when crossing the top and bottom ones, the direction

of the velocity of the boundary-crossing particle is opposite in the real box and fake

box in our strain profile. In our system the top half and bottom half are sheared in

opposite directions. Therefore, the Lees-Edwards boundary condition also needs to

be applied to the velocities in x direction.

It should also be pointed out that that the neighbor calculation for particles near

boundaries also requires to consider the Lees-Edwards boundary condition. Figure

2.2 shows one example. The red particle is the reference center particle. Green ones

are its neighbors. The one far away, touching the bottom boundary, is actually also

touching the top boundary in the fake box. Therefore, the y distance between it and

the red one is small. In our simulation box, the distance between two particles can

never exceed lx/2 in x direction and ly/2 in y direction.

Another key process in our simulation is to generate the polydisperse radius for

each particle. The random number generation method is used. See the book ”Numer-

ical Recipes” [111] for more information. The idea is very straightforward. The first

step is to generate n random numbers following uniform distribution between 0 and

1, meaning that it is equally likely to get any value between 0 and 1. Here we just

use the function randomu that comes with the IDL language. The next step is to

derive the transformation equation to translate each uniform distributed number to

the needed distribution. Assume x follows the uniform distribution between 0 and 1:

p(x)dx = dx, 0 < x < 1. Here p(x) is the probability of getting x and is normalized

so that the integration of it between 0 and 1 is 1. Suppose the distribution that we

need is y and we can set y as a function of x. p(y) then follows by the fundamental

transformation law of probabilities |p(y)dy| = |p(x)dx|. To obtain an exponential
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Figure 2.2: An example of the neighbor calculation. The red particle is the center
one and the green particles are its neighbors.

size distribution for y, assume y(x) = − ln(x), then p(y)dy = |dx
dy
|dy = e−ydy. Here,

we just need to solve for x(y) with given needed p(y) and then calculate the inverse

function of x(y) so that the transformation from x to y is determined. The idea to

obtain other distributions is similar. Check ”Numerical Recipe”[111] for methods to

get other distributions such as Gaussian, Gamma, Poisson, and binomial, etc.

With this method, we are able to generate different size distributions such as

exponential size distribution, gaussian, uniform, power law, etc. We mainly focus

on the exponential size distribution, see chapter 3. Other ones are also tested, see

chapter 4.
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2.3 RUMD

RUMD is a high-performance molecular dynamics simulation free open source soft-

ware package optimized for NVIDIA’s graphics cards developed by research group

“Glass and Time” at the Department of Sciences in Roskilde University in Denmark.

Another similar package that is widely used is called “LAMMPS”. RUMD uses graph-

ics processing units(GPUs) for its calculation, which is getting more and more popular

nowadays. The details about how to install RUMD, how it is developed, and GPU

coding etc can be found at http://rumd.org. Here, I’ll describe some key features of

RUMD and what can be achieved with RUMD as well as what I did with RUMD as

an example to illustrate how to perform a MD simulation with it.

As mentioned above, a pairwise potential is required. RUMD can achieve Lennard-

Jones, Gaussian core, inverse power law, exponential, Yukawa, etc and it is easy

to implement new pair potentials. It can run all ensembles aforementioned, NVT,

NVE, NVU, and NPT. For example, it can perform constant NVT integration to

update positions and velocities each timestep for each individual particles in the

group using a Nosé/Hoover temperature thermostat. This creates a system trajectory

consistent with the canonical ensemble. Shear simulation is also possible using Lees-

Edwards boundary conditions and the SLLOD equations of motion. It also comes

with many analysis tools to calculate some classic structure and dynamics properties

of the system. See chapter 5 and 6 for some analysis I did with RUMD.

How to start a RUMD simulation and more advanced usages can be found again at

http://rumd.org. I use RUMD to simulate KABLJ system with 8000 big particles and

2000 small ones interacting with Lennard Jones potential [71]. The microscopic units

of energy and length scale (see previous chapter) for big-big (AA), big-small (AB),

small-small (BB) interactions are separately chosen as εAA = 1, σAA = 1, εAB =

1.5, σAB = 0.8, εBB = 0.5, σBB = 0.88 in Lennard Jones units where ε is for

energy and σ is for length. I first equilibrate the configuration at T = 1 using NV T
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simulation and then cool the system to T = 0.3 with different cooling rate Ṫ again

with NVT simulation. Then the glassy system is sheared with planar Couette flow

using SLLOD integrator and Lees-Edward boundary conditions (see previous section).

The idea of creating shear in the simulation is similar to what I do with the Durian

bubble model. Here, the SLLOD equations of motion below are applied together with

the Lees-Edwards boundary conditions.

ẋi = Pxi/m+ γ̇yi,

ẏi = Pyi/m,

żi = Pzi/m,

Ṗxi = Fxi − γ̇Pyi,

Ṗyi = Fyi,

Ṗzi = Fzi

(2.13)

They were originally proposed by Hoover and Ladd [58, 77] and then proven to be

equivalent to Newton’s equations of motion for shear flow by Evans and Morriss

[47]. Daivis and Todd [33] later showed that they can generate the desired velocity

gradient and the correct production of work by stresses for all forms of homogeneous

flow. For SLLOD equations of motion, the Lees-Edwards boundary conditions are not

required for the velocities. As with Durian bubble model, here I also shear the system

with fixed strain rate. The reason is that we achieve the shear in both methods by

deforming the simulation box in a sense of simple shear with fixed rate. Therefore,

each point in the simulation box can be thought of as having a “streaming” velocity

which scales linearly with the positions perpendicular to the shear direction, y for

example if shear in x.

Some final comments on both methods, coding the Durian bubble model and

shearing ourselves and applying RUMD package to achieve the MD simulation. The
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pros of the former are that I know every detail of our simulation and I learned how

to use the Runge-Kutta method to solve simple differential equations. I can easily

modify our codes and adapt to other situations that need more flexibility and degrees

of freedom. For example, we can easily add terms in the equation of motions and

simulate clogging of particles falling under gravity in a hopper [57]. The pros of using

packages like RUMD and LAMMPS are that it is easy for a beginner to start a MD

simulation quickly from knowing nothing about MD simulation. The details of solving

equations and saving results are all in the package. Users just need to understand

the user manual about the meaning of each functions and related parameters. The

development of these packages is already very mature and many information of the

system can be easily obtained by choosing correct functions and correct keywords

in the functions. For example, the calculation of stress and potential energy and

pressure and other quantities are already included in the packages. However, in our

homecoded simulations, we need to add them one by one ourselves if we need.
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Chapter 3

Effects of Polydispersity on 2D

dense soft particles under steady

shear

We examine the particle-scale motion of highly polydisperse dense 2D granular sys-

tems under shear using simulation. The largest particles are as much as ten times the

size of the smallest in our system. Shear produces a mean affine flow, and nonaffine

deviations. We calculate the deviation to quantify the nonaffine behaviors of both

individual and local groups of particles. Strikingly different behaviors from the more

commonly studied amorphous systems with low polydispersity are found. We show

that all quantities under investigation significantly depend on the particle size. The

large and small particles’ behaviors are qualitatively different. In contrast to low

polydisperse systems, the large particles in our simulations give rise to a new flow

pattern for the smaller particles, which we demonstrate could be one of the origins

of the local nonaffine and plastic behaviors we find. These findings are qualitatively

different than previously found in low polydisperse systems. Moreover, we quantify

the local fields of individual and group nonaffine motions around certain sizes of parti-
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cles and check the dependence on particle size in different size distributions including

a bidisperse system. We show that on one hand, both fields depend on the size of

particles and looks qualitatively different between big and small particles, enabling us

to define “big” and “small” effectively in the particular system under study. Even a

bidisperse sample exhibits noticeable differences between the two sizes of particles. In

most previous studies on bidisperse system, the two sizes are treated to be the same

for granted. Our results show that new physics is very likely to be learned if size

dependence is considered. On the other hand, the properties of the fields also vary

between different size distributions, especially different between bidisperse and highly

polydisperse systems. We characterize the crossover in the two nonaffine behaviors

from the low- to high-polydispersity regime.

3.1 Introduction

In this chapter, we use the Durian bubble model [40] to simulate several highly poly-

disperse 2D granular systems with different size distributions and one bidisperse sys-

tem under steady shear. We find that the particle-level behaviors of our polydisperse

systems are qualitatively different than the previously studied low polydisperse sys-

tem. Specifically, we show that the large particles are more likely to follow the bulk

flow, even in bidisperse system. An examination of local averaged particle behaviors

around particles with various sizes (in a coshearing reference frame) show that the

presence of the large particles can dramatically change the motions of nearby parti-

cles. We also find that the pattern of such averaged local behaviors are completely

opposite for small and large particles and the pattern changes gradually with increas-

ing particle size. By comparing systems with different size distributions, we find that

the abovementioned results of the flow pattern are generally true and the magnitude

increases with the size span or the size ratio between the largest and smallest parti-
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cles. High-polydisperse systems also show novel plastic behaviors in the local scale

and position dependence (relative to certain sizes of particles) than bidisperse system.

These findings prove the significant effects brought by the large polydispersity and

emphasized the needs for future theoretical studies to consider the size of particles in

amorphous systems. For instance, our results show that the largest particles strongly

influence nearby particles to rearrange, suggesting that previously studied soft spots

(e.g. [95, 30]) will be different in character – and easier to identify – in highly polydis-

perse materials. Our results also confirm the importance of simulating polydisperse

systems to the glass physics community. For example, recently the “Swap Monte

Carlo” method used to probe increasingly low temperatures of the glassy systems

crucially relies on having sufficiently broad polydispersity so that Monte Carlo swaps

of particle radii help equilibrate the system [101].

3.2 Simulation

Here we provide more details of our simulation. We use the Durian bubble model,

where particles feel a repulsive contact force and a viscous force from neighboring

particles moving at different velocities. No inertial effect is considered. Detailed

definition can be found in chapter 2. We consider a variety of exponential size dis-

tributions P (R) ∼ exp(−R/λ) with R being the radius. The distributions are over

Rmin ≤ R ≤ Rmax = αRmin with α ranging from 2 to 10 which controls the breadth

of the distribution. The decay constant λ is set to Rmin. We take 〈R〉 as our unit

of length; equivalently we adjust Rmin so that 〈R〉 = 1. An example of the proba-

bility distribution function of the α = 10 size distribution is shown in Fig. 3.1. To

nondimensionalize time we use the microscopic relaxation time, which is set by the

time scale characterizing two individual particles of radius 〈R〉 pushing apart, based

on the inter-particle spring constant and viscous damping forces [40]. We use number
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Figure 3.1: The probability distribution function of the α = 10 size distribution. The
mean radius 〈R〉 = 1.

ratio 50 : 50 and size ratio 1/1.4 for the bidisperse system. These distributions can

be characterized by their polydispersity, defined as the standard deviation of P (R)

divided by 〈R〉. The polydispersity ranges from 0.20 to 0.50 for the exponentially

decaying P (R) we consider, and is 0.17 for the bidisperse sample.

These systems are sheared in square boxes with length L using Lees-Edwards

boundary conditions. We keep the quantity L
〈R〉 = 100 constant and guarantee that

L is at least 20 times larger than the Rmax for all systems. The area fraction φ

is 0.93, which is well above the jamming transition point ranging between 0.841

to 0.859 for our systems so that our systems are all well jammed withour shear.

Our nondimensional strain rate is γ̇ = 10−4, chosen to be in a rate-independent

regime [40, 104, 81] (see next paragraph for the meaning of rate-independent). We

simulate the shear at least up to strain γ = 10 to ensure enough statistics; an initial

transient response for γ < 0.2 is discarded before analysis. We define steady state by

investigating the evolution of two quantities, the averaged nonaffine motion squared

and D2
min of the whole system (see the sections below for definition). We find that the

two quantities enter a steady state after around γ = 0.1. We use data γ > 0.2. Other

simulation details can be found in Ref. [57]. We will focus most of our discussion and
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(a) (b)

Figure 3.2: (Color online). Panel (a) shows an example of the exponential size dis-
tribution system with the particle size ratio Rmax/Rmin = α = 10. Pink arrows
indicate the motions of particles for a strain interval of 0.005. The sketch on the right
demonstrates the flow pattern around large reference particles under the applied shear
strain.

comparison on the polydisperse system with α = 10 that contains 2500 particles and

the bidisperse system with 3098 particles unless otherwise clarified. A snapshot of

the α = 10 system under shear is shown in Fig. 3.2(a).

It should be noted here that we choose the number of particles for each system to

satisfy that the nondimensional simulation box length L/〈R〉 is a constant for all size

distributions in order to make proper comparisons between different systems. Our

examination on the number of particles shows that the dynamical properties of the

system are very sensitive to the system size. We define an effective diffusion constant

D as the slope of the linear fitting of the mean square displacement to the lag time ∆t.

The dependence of D on L/〈R〉 is qualitatively consistent with what Lemâıtre et al.

found in a finite size effect check for a two-dimensional Lennard-Jones glass at T = 0,

sheared at finite strain rates γ̇ [81]. The reason for using a constant nondimensional

strain rate is similar to using constant L/〈R〉. Our check on the dependence of D on

the strain rate also qualitatively agrees with Lemâıtre et al [81], see Fig. 4 and 5 in

their paper. For a certain strain rate, D increases with increasing system size and
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the increasing rate increases with decreasing strain rate. For a certain system size, D

increases with decreasing strain rate and the increasing rate increases with increasing

system size. To avoid the boundary effect where a big particle can interact with itself,

we must use a large system size to achieve a large simulation box. In accordance,

we use a rather small strain rate so that the quantity D/L is in the plateau regime

as in their Fig. 5, which is considered to be rate-independent. We then fix the two

nondimensionalized quantities L/〈R〉 and γ̇〈R〉 to achieve the same effective dynamics

among all systems. Our hypothesis is that our main results (shown below) would not

change if larger system size and slower strain rate are used.

3.3 Nonaffine motion

To examine rearrangements and other behaviors of particles, we choose a lag time ∆t

to satisfy a strain interval ∆γ = 0.005. Smaller ∆γ are also checked and does not

change our story. Larger choice of ∆γ would lead to increasing possibility of inves-

tigating the accumulation effect of multiple rearrangements. In order to characterize

the behavior of individual particle, we define the affine motion ∆~rA,i for particle i as

∆~rA,i = ∆γ yi · x̂, where yi is the position of particle i in the gradient direction and x̂

is the velocity direction. All particles in the system would follow this imposed affine

motion if no particle rearrangement occurs. Local rearrangements on the other hand

cause deviations. As shown in Fig. 3.2(a), although in general particles follow the

sketch, deviations such as motions in the gradient direction are obvious. We define

such deviation as the nonaffine motion ∆~rNA,i = ∆~rreal,i−∆~rA,i, where ∆~rreal,i is the

real motion of particle i. We note that ∆~rNA,i only describes the behavior of individ-

ual particles and does not involve neighbors of particles defined in the next section.

Note that the magnitude |∆~rNA,i| can also be used to describe an effective mobility

of individual particles. Nonaffine motion quantifies the nonaffinity of particles but
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Figure 3.3: Averaged normalized ∆~r2NA,i (a), D2
min,i (b) versus the size R for systems

with different size distributions. Data shown with span in x axis from large to small
corresponds to exponential size distribution with α = 10, 5, 4, 3, 2 (purple to blue
legends), and finally bidisperse indicated by diamonds

not the plastic deformations of them. Here plastic means irreversible. A nonaffine

motion can be either reversible or irreversible so that it is not necessarily plastic. To

determine whether a nonaffine motion is plastic or not, a reverse shear back to the

original position is required and is beyond the scope of our study here. Nonetheless,

it can still provide useful information about how individual particles behave locally.

We apply another quantity to investigate the plastic deformations in the system, see

the next section.

We first check how the nonaffine motion depend on the sizes of particles in the

systems, as shown in Fig. 3.3(a). We find that on average ∆~r 2
NA,i decreases as particle

radius R increases for all systems, including the bidisperse system; this agrees quali-

tatively with previous observations in polydisperse emulsions under cyclic shear [26].

Therefore, large particles are more likely to follow the affine shear flow, whereas small

particles will have more nonaffine motions, or shear-induced diffusivity. A simple
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Figure 3.4: The power law fitting ∆~r 2
NA,i ∼ Rβ with β = −0.18 for the α = 10 system.

The figure is in log-log axis and the black dashed line is the fit.

explanation is that large particles have more neighbors than small ones. The mo-

tions of these neighbors on average cancel with each other, which results in the larger

particles having smaller magnitude of ∆~rNA,i. Equivalently, moving a large particle

non-affinely requires more neighboring particles to also move non-affinely to make

room, which is harder to do. The data with the broadest span in R in Fig. 3.3(a) are

well fit by ∆~r 2
NA,i ∼ Rβ with β = −0.18 as shown in Fig. 3.4, although the data do

not span a big enough range to conclusively decide that this is power law behavior.

The limitation of the breadth of the size distribution for the power law fit is difficult

to improve. Adding one order of magnitude of fitting range would require a size ratio

of 100, which needs extremely large system size. Note that the bidisperse results are

also consistent with those of the polydisperse systems, showing clear different ∆~r 2
NA,i

values for small and large particles.

The α = 2 system seems to deviate much from the rest. The reason behind the

deviation is not clear yet. One possible reason is that the system is more crystalline,

i.e. hexagonally ordered [25]. The meaning of the power law behavior, if true, is also

not clear and needs further investigation.
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Figure 3.5: (Color online). Example of the specific detouring movement in the co-
shearing reference frame around a large particle (right panel) in the α = 10 system.
Cyan arrows indicate the initial velocities here. A comparison with a small particle
case is provided in the left panel, showing no such detouring movement.

These results reveal the following microscopic picture of motion near the large

particles. Large particles are “strong” and have less nonaffine motion; they are more

likely to follow the affine imposed shear flow. In the reference frame co-moving with

the affine velocity of a large particle, this relative immobility causes the “weaker”

small particles to detour around the larger particles, as sketched in Fig.3.2(b). Indeed,

it is this detour motion that gives the smaller particles their larger average ∆~r2NA,i

seen in Fig. 3.3(a). Examining the trajectories of individual particles reveals motions

that qualitatively match the sketch of Fig. 3.2(b), as shown in Fig. 3.5.

To better understand how large particles perturb the flow we need to calculate

the average non-affine flow field around particles of different sizes. With the center of

reference particle being the origin, we divide the local area around reference particles

into bins of (x, y). We then average the non-affine motion 〈∆~rNA,j〉 of all particles j at

a specific (x, y) bin relative to a reference particle i. We then average that field over

all reference particles i with radii Rr in a specific range to get better statistics yielding

〈∆~rNA〉(x, y). In Fig. 3.6 we show this average field for particles with 2.0 ≤ Rr ≤ 2.8.
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Figure 3.6: ∆~rNA,i vector field for particles with 2.0 ≤ Rr ≤ 2.8 in the system with
α = 10. Arrows indicate ∆~rNA,i and are magnified by a factor of 200. The central
region with a distance to the reference particle being less than 5.6 (here the axis is
not normalized) indicated by the black circle is removed for clarity.
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Figure 3.7: Example of the fake trajectory obtained by combining the affine shear
flow and the field of Fig. 3.6 around the same large particles as in Fig. 3.2(b).

At the top left and bottom right, the mean non-affine flow field is outward, whereas

at the top right and bottom left, the mean non-affine flow is inward. The top left and

bottom right, relative to the reference particle, are referred to as the “compressive

directions” as the imposed affine flow tries to push neighboring particles toward the

reference particles [9, 10]. This affine push is resisted by the large reference particle,

resulting in outward-pointing non-affine motion. Likewise, the regions at the top

right and bottom left are referred to as the “extensional directions” in terms of the

background flow, and the non-affine motion is inward. In fact, adding the background

affine shear flow to the nonaffine flow field of Fig. 3.6 yields the qualitative sketch of

Fig. 3.2(b). One example is provided in Fig. 3.7 where the trajectory is integrated

using the affine motion and nonaffine motion in Fig. 3.6 from the starting position.

This non-affine motion field clearly illustrates the importance of relative positions in

the polydisperse sample.

We then wish to understand how the flow patterns measured by ∆~rNA(x, y) depend

on the reference particle size Rr, so accordingly Fig. 3.8 shows four examples of the
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r̂ component of this field. The top two panels are data from the broadest particle

size distribution, examining the flow around smaller (top left) and larger (top right)

particles. For comparison, the bottom two panels are from the simulation with the

bidisperse distribution, again showing the smaller (bottom left) and larger (bottom

right) of the two particle sizes. The first observation is that the pattern of the field

in the top left panel is opposite to the one at top right. We find it changes gradually

with increasing Rr, see Fig. 3.9(a) below. In both of the top panels, a large near

field and a relatively small but still clear far field can be identified. Both near and

far field behaviors change with Rr. The second observation is that the data from the

bidisperse sample shown in the bottom panels is qualitatively different: the regions

near by reference particles have rings related to the pair correlation function, and the

far field is closer to the neutral color.

The interpretation of Fig. 3.8(top right) is that large particles are strong, move

more affinely, and force the other particles to detour around them. For the smaller

reference particles in Fig. 3.8(top left) the influence of the reference particle is clearly

different. At the surface of these small reference particles, for a center of a neighboring

particle to be close, the neighboring particle must also be small. Thus the region

immediately around the small reference particle looks similar to the region around the

large particle: small reference particles cause an outward non-affine motion along the

compressive direction, and inward non-affine motion along the extensional direction.

However, farther away from small reference particles, the size of neighboring particles

can be significantly larger than the reference particle. These small reference particles

are weaker and more likely to be moved nonaffinely by their neighboring particles.

Thus, the inward moving (dark blue) colors around the small reference particle along

the compressive directions reflect that, on average, the small reference particle is

being pushed away from the neighbors along these directions. In other words, the

non-affine motion pattern around large reference particles, as seen in Fig. 3.8(top
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Figure 3.8: Color field of ∆~rNA,i · r̂; the dot product with r̂ selects for components
of the motion that are outward (light red) or inward (dark blue), as indicated by the
color bar. From left to right, the top two panels are size ranges Rr = 0.80− 0.84 and
2.0− 2.8 using data from the broadest size distribution (Rmax/Rmin = α = 10). The
bottom two panels are from the bidisperse system (particles in size ratio 1 : 1.4) for
the small (lower left) and large (lower right) particles.
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right), is precisely because the large reference particles are larger than many other

particles; and the pattern around smaller reference particles is qualitatively different

precisely because they are smaller than many other particles.

To verify this assertion, we quantify the behavior of ∆~rNA(x, y) · r̂ by least squares

fitting the field data to −A2(Rr, r) sin 2θ, that is, switching from (x, y) to (r, θ) with

the origin sitting at the center of the reference particle and taking advantage of the

symmetry of Fig. 3.8 to express the magnitude of the flow in terms of the amplitude

A2(Rr, r). In this way, r is the distance to origin and θ is the angle between the line

of r and the horizontal line passing origin pointing to the right. This amplitude varies

as a function of distance r to the center of the reference particles. The results for

A2(Rr, r) for several reference droplet radii Rr are shown in Fig. 3.9(a), showing an

obvious dependence of ∆~rNA field on size. For the largest reference particles [Rr = 5,

the dark purple curve] A2 is negative for all distances r from the reference particles.

This negative A2 indicates that the large particles are strong, and cause the average

flow field sketched in Fig. 3.2(b) and quantified in Fig. 3.8(top right). The shape

of A2 gradually changes with decreasing Rr. For the smallest reference particles

[Rr = 0.5, the light pink curve], A2 is positive over most of the range, with a small

exception at the smallest r. This confirms that these particles are weak, and are the

ones whose motion is most often perturbed by the larger particles, quantifying what

is seen in Fig. 3.8. These results are qualitatively different from the bidisperse case

where the two A2 curves for the two sizes show similar oscillatory pattern, as shown

in Fig. 3.11(a) and (b), which reflects the pair correlation function and matches the

rings visible in the bottom two panels of Fig. 3.8.

We then wish to understand how these results depend on the reference particle

size Rr. In particular we will focus on the far field: in some cases A2 > 0 for large

r indicating weak particles, and in others, A2 < 0 indicating strong particles. We

quantify the far field by calculating the average 〈A2(r)〉r over Rr + 6 ≤ r ≤ 40; the
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Figure 3.9: (a) A2 against distance r for the α = 10 system. Color indicates different
Rr. (b) 〈A2,far〉 versus R curves for three systems. The color here indicates size spans
for exponential size distributions [α = 10, 5, and 3; colors matching Fig. 3.3(a)] and
the open diamonds correspond to the bidisperse system. Solid lines are quadratic fits
to guide the eye. The crossing zero point at each solid line is defined as R∗. The inset
in (b) shows R∗ obtained from A2 as a function of the polydispersity.
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results are not sensitive to this choice of averaging region. The data are shown in

Fig. 3.9(b), confirming the qualitative results discussed above: that the flow pattern

for non-affine motion differs in sign for small reference particles as compared to large

reference particles. Solid lines are quadratic fits to guide the eye. These results

answer two interesting questions. First, for a given size distribution, how do we

distinguish between “large” and “small” particles? The size Rr for which A2 = 0

gives us a threshold R∗ separating the two particle sizes. For the broadest particle

size distribution that we have discussed extensively above, R∗ ≈ 1.7. Essentially

this analysis says that large particles are strong in the sense of causing the flow field

sketched around a large particle in Fig. 3.2(b), and that small particles are weak in the

sense of being more likely to follow the Fig. 3.2(b) flow field around larger particles.

Second, how does R∗ depend on the particle size distribution? The inset to Fig. 3.9(b)

shows R∗ as a function of the polydispersity δ of the particle size distributions. Not

surprisingly, R∗ grows for broader particle size distributions. Intriguingly, the amount

of particles larger than R∗ decreases from 39% at α = 2 to only 9% at α = 10, our

broadest size distribution.

A short conclusion here: 1) large particles behave qualitatively different than

small ones; 2) a transition particle radius, R∗, separating the two classes of particles

can be defined; 3) these effects become increasingly important as the particle size

distribution broadens.

Before moving on to the D2
min,i results in the next section, we here demonstrate

that one simple relative size idea is able to explain each A2 curve in Fig. 3.9(a). We

again start from exponential α = 10 system. To save computational cost, we here

divide the particles into 8 bins noted as from bin1 to bin8 based on size (See caption

of Fig. 3.10 for the size range of each bin). We first calculate the ∆~rNA,i · r̂ field

with only one bin of particles Rb in the background for each reference bin, i.e. 8 A2

curves for each reference particles bin. Here Rb is the radius of background particles.
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Figure 3.10: A2 and count/r versus r curves for the smallest (panel a and c) and
largest (panel b and d) reference particle subgroups in the α = 10 system. Color
indicates bins. From purple to light green, the size range is 0.5 − 0.7, 0.7 − 0.9,
0.9 − 1.1, 1.1 − 1.3, 1.3 − 1.5, 1.5 − 2, 2 − 2.5, 2.5 − 5. Black curves in panel a and
b show results using all particles (all 8 bins) in the background. For clarity, only 4
curves corresponding to the 4 arrows in panel a are plotted in panel c.

For example, for bin1 as the reference particles, we have A2 curves of using from bin1

to bin8 as background particles, resulting in 8 curves. Therefore, we generate 64 A2

curves in total.

Figure. 3.10 shows comparison between the smallest and largest reference bins. In

addition, the bottom two panels show the number of counts the relative background

particles appear at the corresponding distance r to the center of the reference particle

divided by r. This is alternative to the conventional plot of g(r). In other words,

the larger the value is, the more frequent, or more likely the background particles

are to be at the distance r. We have checked g(r) and find same results. Here we

use the count to show that our statistics are fairly good. Color indicates different

bins in the background and black shows results using all particles (all 8 bins) in the

background. It is obvious that particle size again is important. Different relative

sizes lead to different shapes of A2 curve. For a small Rr like in Fig. 3.10(a), the

peak value of A2 decreases with Rb. No clear peak can be found for large Rr. The far
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field value of A2 however does not show a clear trend or dependence on Rb. We also

notice that the position of peak A2 in Fig. 3.10(a) coincides with the first valley of

corresponding curve in Fig. 3.10(c), indicated by arrows in Fig. 3.10(a). We interpret

it from one possible microscopic picture. Some background particles strongly prefer

to moving away at such distance r (valley at r in Fig. 3.10(c)) while other particles

behave exactly the opposite (peak at r) or have no preference, leading to the large A2.

More importantly, the difference between the black A2 curve and the sum of other

colors weighted by the count/r curves in Fig. 3.10(c) is negligible, leading to

A
(Rr,all)
2 =

∑
i

wiA
(Rr,Rb,i)
2 (3.1)

Here, i indicates the group of background particle with radius Rb,i and wi is the weight

of group i calculated as wi = counti/
∑

i counti. Equation 3.1 illustrates that each A2

curve in Fig. 3.9 is simply the weighted sum of contributions from all subgroups with

various relative sizes. Other size spans and bidisperse system have also been checked

and we reach same conclusions. Two more examples are given below in Fig. 3.11 and

3.12 for the bidisperse system and α = 4 exponential size distribution system. Same

results are reached. We hence note here that the validity of this expression is assumed

to be applicable to any size distributions.

3.4 D2
min,i

The other quantity independent from ∆~rNA,i is D2
min,i. We follow ref[48] and calculate

it between strain γ and γ + ∆γ to measure the group nonaffine motion of particle i

and its surroundings at strain γ.

D2
min,i(γ) =

1

Ni

Ni∑
j

[~rij(γ + ∆γ)− Ei(γ)~rij(γ)]2 (3.2)
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Figure 3.11: A2 and count/r versus r curves for the bidisperse system. Purple shows
results for the smaller size and green corresponds to the larger size. Black curves
show results using all particles in the background.

Figure 3.12: A2 and count/r versus r curves for the α = 4 system. Color indicates
the six bins and black curves show results using all particles in the background. The
left two panels are for the smallest reference particles bin and right two are for the
largest. Only four colors are shown in panel (c) for clarification. Vertical dashed lines
in panel (c) correspond to the first minima.
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Here, the summation range Ni are neighbors of particle i. We fix Ni = 15 for all

particles by taking the closest 15 particles to particle i from the surface to surface

distance. rij(γ) is the separation vector between particle i and j at strain γ. Ei(γ)

is the local strain tensor that minimizes D2
min,i for particle i at strain γ calculated

by least square fitting. This local strain defines the local affine group motion for all

the neighbors, which is the second term in the summation in equation (3.2). We

note that D2
min,i quantifies the averaged deviation of all the neighbor motions from

this local affine group motion, and is calculated based on the relative motions to

particle i. In other words, a large D2
min,i does not imply specifically that particle i is

moving problematically, but the particles in the neighborhood of particle i are moving

incoherently, indicating possible plastic rearrangements. The idea in one sentence is

that it measures how nonaffine the local group displacements around a particle are.

If the motions of these particles can be perfectly described by a deformation tensor

(strain tensor) ↔ E, then these motions are perfectly affine and the nonaffinity of

the group is 0, D2
min,i = 0 at this moment. D2

min,i thus can serve as a localized plastic

rearrangements indicator and characterizes the local plastic behavior. Larger D2
min,i

value in general indicates larger plastic deformation in the specific local neighborhood.

One important feature of D2
min,i is that it highly depends on the number of neigh-

bors included in the calculation. We notice that D2
min,i increases with number of

neighbors when using simple random Gaussian distributed motions and random rel-

ative positions of neighbors. Thus, a constant Ni is required for properly compare

D2
min,i of different sizes of particles. Previous choices of Ni definition to name a few

include: 1) particles within a certain distance to the reference particle i are considered

neighbors (usually the first minimum g(r) distance); 2) the first layer of neighbors

in contact; 3) first Voronoi layer particles as neighbors. These ideas work for low

polydisperse systems since Ni varies little for different particles. They fail to work

in our polydisperse systems because on one hand Ni defined in these ways strongly
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Figure 3.13: Two examples of our neighbor definition. We use the closest 15 particles
as neighbors of the reference particle. Red indicates reference particle and green is
for neighbor. Left panel is for a R = 1.5 particle and right is for an R = 5 particle
(the largest).

depends on particle size, and on the other hand it is possible that big particles would

never be the neighbors of small ones. Therefore, we choose to use the closest 15

neighbors in our calculation. Other choices of such as 10 and 20 are also tried. The

main results remain almost the same and our conclusions do not change. However,

Ni = 15 generally returns us around two layers of neighbors for the smallest particles

and slightly less than a full layer of neighbors for the largest particle in our exponen-

tially distributed system, which is reasonable for our purposes. Two examples are

provided in Fig. 3.13.

We again first check the dependence on the sizes of particles in the systems,

as shown in Fig. 3.3(b). Similar to individual nonaffine motion result, on average

D2
min,i decreases with particle size for all systems, including the bidisperse system.

The negative slope of D2
min,i suggests smaller plastic rearrangement during the strain

interval in the local neighborhood very close to the surface of large particles. One

possible explanation is that at the region very near the surface of large particles,

the special movement pattern shown in Fig. 3.2(b) dominates and neighbors mainly

behave accordingly and coherently. In the meantime, this detour motion conflicts with

particles nearby that can move affinely. This leads to possible rearrangements near
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Figure 3.14: Color field of
D2

min,i

〈R〉2 for the same groups of particles in Fig. 3.8. Color
bar indicates the magnitude.

large particles, promoting large D2
min,i for small particles. Therefore, it is more likely

to observe large D2
min,i values at certain positions around large particles in the system.

Note that again, the bidisperse results also collapse well to the family, showing clear

different D2
min,i values for small and big particles. These are clear evidence indicating

that size is important.

To confirm the position dependence we anticipate, we follow the same way we

investigated the nonaffine motion field in the previous section and show the same

four examples as in Fig. 3.8 of the D2
min,i field in Fig. 3.14. We focus on the same

places and directions where the outflow and inflow lie and point, i.e. the compressive

and extensional directions. The top two panels again show opposite patterns of D2
min,i

field for small and large reference particles. Moreover, the clear quadrapole pattern
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around large particles agrees with our position argument above, emphasizing the

importance of “relative positions” regarding the local plastic behaviors. The patterns

of bidisperse system are qualitatively different from the top two panels and are almost

the same for the two sizes of particles. We note that the magnitude of D2
min,i away

from the very surface of the reference particles in the top panels is larger than the

bottom panels, suggesting an enhancement of local plastic rearrangements with the

presence of large polydispersity. A much larger decay length can also be found for the

top two panels. In other words, the length scale of the effects brought by the presence

of big particles is much larger in the highly polydisperse systems. A quantification of

such decay length and its dependence on the sizes would be interesting.

Similar quantification method is applied to the D2
min,i field with

D2
min,i = −A4(Rr, r) cos 4θ +B (3.3)

Here r and θ is defined in the same way as we did for A2 analysis. Again, the A4

versus r curves also depends on Rr. An example is in Fig. 3.15. A positive A4

value corresponds to the typical quadrapole pattern around large reference particles.

A negative one then is for a quadrapole pattern with shifted phase, which looks

completely opposite to positive case, corresponding to small reference particles. A4

reaches the background value at r > 10 (corresponding to 20 in the x axis in Fig. 3.15),

indicating the large decay length and that the influence of large particles can extend

to very far away. It also shows that we can quantify the decay length by either simply

finding the r where A4 first reaches the background value or first fitting the curve

and then obtain the length. We leave this to future study.

We use the same far field definition as in previous section and calculate the mean

far field A4 to perform the same R∗ analysis. A comparison between 〈A2,far〉 and

〈A4,far〉 is shown in Fig. 3.16. We define R∗ the same way and find a similar trend
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Figure 3.15: An example of A4 versus r curves in the α = 10 system for Rr = 2− 2.8
particles.

to the result from A2, as shown in the insets. Same conclusion can be drawn as in

previous section. The comparisons between the R∗ and mean radius 〈R〉 for each

size distribution from A2 and A4 analysis are shown in the insets of Fig. 3.16. Take

the α = 10 system as an example, the R∗ from A2 analysis leads to 9.2% of particles

being large and 7.2% from A4 result. In terms of area of particles, R∗ from A2 analysis

corresponds to 37.4% of particle area being large and 32.5% from A4 result. However,

we have checked the percentage of large particle either in terms of particle number

or area, from both A2 and A4 analysis against the polydispersity and α, and find no

clear trend.

3.5 Discussion

The above two sections contain our main results from investigations on the size de-

pendence of various quantities and comparisons between polydisperse and bidisperse

systems. All our results shown here are strong evidence that polydispersity is impor-

tant and different sizes of particles need to be treated differently. We also demonstrate

that two major questions can be addressed: 1) for a given size distribution, is there a

threshold radius R∗ that effectively distinguishes between small and big? 1) if so, how
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Figure 3.16: A comparion between 〈A2,far〉 and 〈A4,far〉 against Rr for all systems.
Here panel (a) shows same results as in Fig. 3.9. Solid lines are quadratic fitting to
guide the eye. Color indicates different size distributions and black diamonds are for
bidisperse system. Insets show R∗ versus polydispersity δ.
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does this particle size scale depend on the particle size distribution? The consistent

results from our analysis using two separately defined quantities ∆~rNA,i and D2
min,i

verify that R∗ exists and grows for larger size spans.

A further consequence of our work will be on predicting sites of plasticity in highly

polydisperse athermal amorphous materials under shear or particle rearrangements at

finite temperature. Current analyses typically focus on the rearrangement statistics

of only large particles, or implicitly assume via their definition of plastic activity that

the qualitative nature of rearrangements are insensitive to particle size [95, 30, 118,

8, 12, 36, 105]. Our results suggest that if one wishes to perform similar analysis

in polydisperse materials, a definition of softness that explicitly depends on particle

sizes will be necessary.

3.6 Conclusion

In this work we have shown that in a sheared amorphous material with high poly-

dispersity, particle size matters. Large particles are more likely to move affinely,

following the imposed shear flow, as they feel the average motion of all of their neigh-

bors. We term such particles as “strong” in the sense that they resist being pushed

non-affinely by their neighbors. The imposed shear flow causes those neighbors to de-

tour around the strong particles, which means the smaller a particle is, the “weaker”

it is and thus the more its motion is nonaffine. We show that one can quantify this

by identifying a transition particle radius, R∗, separating the two classes of particles.

Furthermore, we see that these effects become increasingly important as the particle

size distribution broadens. Intriguingly, we demonstrate this distinction still matters,

albeit only slightly, for the canonical bidisperse sample with particle size ratio 1 : 1.4.

Nonetheless, the behavior of the highly polydisperse samples is qualitatively distinct

from the more homogeneous samples with low polydispersity. Our results may have
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implications, e.g., for diffusive motion in biological cells, which are highly polydisperse

crowded environments [114].
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Chapter 4

Isomorph theory on sheared glassy

systems: Part I

The majority of this chapter of this dissertation was first published as follows: [67].

copyright(2019) American Physical Society. Reused with permission.

We study hidden scale invariance in the glassy phase of the Kob-Andersen bi-

nary Lennard-Jones system. After cooling below the glass transition, we generate a

so-called isomorph from the fluctuations of potential energy and virial in the NVT

ensemble: a set of density, temperature pairs for which structure and dynamics are

identical when expressed in appropriate reduced units (meaning of hidden scale invari-

ance). To access dynamical features, we shear the system using the SLLOD algorithm

coupled with Lees-Edwards boundary conditions (see chapter 2) and study the statis-

tics of stress fluctuations and the particle displacements transverse to the shearing

direction. We find good collapse of the statistical data, showing that isomorph the-

ory works well in this regime. The analysis of stress fluctuations, in particular the

distribution of stress changes over a given strain interval, allows us to identify a clear

signature of avalanche behavior in the form of an exponential tail on the negative side.

This feature is also isomorph invariant. The implications of isomorphs for theories of
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plasticity are discussed briefly.

I use the RUMD package for simulation and python for analysis and xmgrace for

making figures in this chapter.

4.1 Introduction

Background information can be found in chapter 1. In our investigation here on the

steady state part of the stress and strain curves, we consider a glassy system created

by cooling a viscous liquid down below its glass transition and then apply Couette-

type shearing at constant volume and fixed strain rate. This necessarily involves

a departure from equilibrium and in principle introduces a potential dependence on

thermal history, for example, through the cooling rate, as well as possible aging effects,

into the system’s behavior. We minimize these issues by restricting our attention to

steady-state shearing: If one shears the system at a constant strain rate beyond, say,

0.5 or 1.0 strain, a steady state is obtained which depends only on the density, the

temperature, and the strain rate. We define the system entering the steady state here

when the stress starts to fluctuate around a certain mean value.

More specifically, we work with the usual Kob-Andersen binary Lennard Jones

glass forming model[71, 72, 73], which is useful because it is difficult (though not

impossible[133, 65]) to crystallize on computer timescales. Our system contains 800

big (A) particles and 200 small (B) ones. From now on, when not using reduced

units, we work with the unit system defined by the Lennard-Jones (LJ) parameters

of the A particles’ interactions with each other, σAA and εAA, and the mass which is

the same for both A and B particles; thus, temperature is given in units of εAA/kB.

The potential is cut off using the shifted-force method[132] at 2.5σ for each type

of interaction. I first run a NVT simulation to equilibriate the system at a high

temperature T = 1. The glassy states are created by cooling the liquid at constant



61

pressure (NPT simulation) at a fixed cooling rate from temperature T = 1.0 down to a

given start temperature Tstart. Different cooling rates are applied, but for the steady-

state results presented in this work the cooling rate is not relevant. The reason for

cooling at fixed pressure rather than fixed volume is to avoid arriving at a state where

the pressure is very low or negative, since good isomorphs are generally obtained at

not too low pressures.

We are interested at two glassy systems acquired after the above steps: 1) ρ =

1.265 and T = 0.55 and 2) ρ = 1.324 and T = 0.1, corresponding to two states in the

thermodynamics phase diagram with one close to liquid state and one deep in glassy

state, as shown in Fig. 4.1. We use the two as starting configurations and calculate

two isomorphs (see next section for the method we use) for them separately, each

containing 10 points. For these 20 configurations, we then shear them with different

strain rates to a strain of at least 4 and focus on the data belonging to the second half

of the shear, where the system is in the steady flow state. We analyze the statistics

related to the stress there. We check the dependence on how “glassy” the system is

by comparing the results of the two.

4.2 Methods to generate isomorph

The simplest way to express and identify hidden scale invariance was shown in

Ref. [119], where the essential condition was stated as follows: A change of den-

sity must preserve the order of potential energies of microstates. In other words,

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb) where upper case boldface R represents the

entire 3N-vector of the particle coordinates and the density is scaled by λ. To test for

scale invariance, we consider infinitesimal changes of density under uniform scaling,

whereupon changes in the potential energies U of microstates are given by

dU = Wd ln ρ; (4.1)
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here W is the virial, a quantity typically calculated in computer simulations due to

its appearance in the formula for pressure[1]. Requiring that the order of energies be

preserved means in particular that configurations at a given density with the same U

will experience the same change in U upon an infinitesimal change of ρ. By Eq. 4.1

this means they have the same W . In other words, the potential energy and virial

must be strongly correlated (the discovery of strong U andW correlations[106] marked

the beginning of the development of isomorph theory). Linear regression applied to a

scatter plot of W versus U yields two parameters, namely, the correlation coefficient

R =
〈∆U∆W 〉√

〈(∆U)2〉
√
〈(∆W )2〉

(4.2)

and the slope

γ =
〈∆U∆W 〉
〈(∆U)2〉

(4.3)

Here angular brackets denote canonical ensemble averages and ∆X ≡ X−〈X〉 for any

quantity X. A value of R close to unity in a region of the phase diagram (typically

values above around 0.9 are considered good, although lower thresholds have also

been used[59]) indicates that the system exhibits hidden scale invariance and should

have good isomorphs in that part of the phase diagram. The interpretation of the

slope γ was given in Ref. [51]: It is the slope of curves of constant excess entropy

(that is, configurational adiabats) in the (ln ρ, lnT ) phase diagram

(
∂ lnT

∂ ln ρ
)Sex = γ(ρ, T ) (4.4)

The excess entropy is defined as the entropy minus that of the ideal gas with the

same density and temperature and is one of the thermodynamic properties which is

invariant along an isomorph. Thus, in systems with good isomorphs, the γ of Eq. 4.3 is

just the density scaling exponent γ discussed above. In the Schrøder-Dyre formulation
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Table 4.1: Thermodynamic data for the starting points of glassy isomorphs, obtained
by cooling at constant pressure P = 10.0 from temperature 1.0 over 108 steps of size
dt = 0.0025. The cooling rate is therefore 1.8 × 10−6 for cooling to T=0.55 and 3.6×
10−6 for cooling to T=0.1.

Tstart = 0.55 Tstart = 0.10
ρ T P R γ ρ T P R γ

1.265 0.550 9.35 0.955 4.950 1.324 0.100 9.75 0.824 5.011
1.278 0.577 10.68 0.954 4.971 1.337 0.105 11.21 0.834 5.002
1.291 0.606 11.99 0.962 5.078 1.351 0.110 12.79 0.843 4.953
1.304 0.637 13.72 0.960 5.033 1.364 0.116 14.48 0.855 4.944
1.317 0.669 15.37 0.965 5.015 1.378 0.121 16.29 0.864 4.916
1.330 0.702 16.99 0.968 4.936 1.392 0.127 18.22 0.873 4.879
1.343 0.737 18.94 0.972 4.927 1.406 0.134 20.29 0.879 4.873
1.356 0.773 21.07 0.973 4.874 1.420 0.140 22.49 0.886 4.829
1.370 0.811 23.09 0.976 4.901 1.434 0.147 24.85 0.893 4.817
1.384 0.851 25.24 0.979 4.869 1.448 0.154 27.37 0.899 4.799

of the theory, the status of configurational adiabats was raised such that these are

considered to define isomorphs in systems with strong U and W correlations[119].

Since γ(ρ, T ) can be calculated at any state point using the fluctuation formula 4.3,

Eq. 4.4 provides a general method to generate isomorphs by numerical integration.

Typically, steps of order 1% in density are used.

The temperatures chosen for starting isomorphs again are 0.55 and 0.1. For gen-

erating glassy isomorphs a configuration is drawn from the cooling run close to the

desired temperature, and its density is used as the initial state for isomorphs. Due

to fluctuations, its density is not necessarily the same as the mean density for the

chosen temperature and pressure; similarly, when performing NVT simulations in the

glassy state the mean pressure is close to but not equal to the pressure of the cooling

run. Table 4.1 shows thermodynamic information including the isomorph parameters

R and γ for the different state point along each of the two isomorphs.

We estimate that the starting temperature of our high-temperature isomorph cor-

responds, if we were to follow the isomorph down to the usual density 1.2, to a

temperature close to 0.421. At this temperature the Kob-Andersen mixture can be
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equilibrated as a liquid, but it requires substantial patience (see discussion below);

at the strain rates we apply in our deformation runs, the system can be considered a

glassy solid. According to Chattoraj et al.[18], particle displacements become driven

more by strain than thermal motion once the strain rate exceeds 10−2/τα, where τα

is the relaxation time (in our study is obtained by fitting the self-intermediate scat-

tering function to a stretched exponential function). Since our lowest strain rate is

of order 10−5 and τα certainly exceeds 103, this criterion is met and therefore we can

speak of deformation of a glassy amorphous solid, at least regarding steady state dy-

namics. Our second isomorph, starting at the lower temperature 0.1, gives a system

deep in the glassy state for which virtually no spontaneous relaxation is expected

on conceivable simulation timescales. From Table 4.1 we see that the R values for

the lower-temperature isomorph are somewhat lower than for the high-temperature

isomorph, staying between 0.8 and 0.9; one might therefore expect poorer collapse of

curves, but we will see that this is not the case for our data. Starting with the glassy

states taken from the cooling run as mentioned above, we ran NVT simulations and

then increased the density in steps of 1% while adjusting the temperature based on

the observed value of γ, according to

Tn+1 = Tn[1 + γn(ρn+1 − ρn)/ρn] (4.5)

This integrates Eq. 4.4 numerically using the Euler method and when applied to

systems in equilibrium generates curves of constant excess entropy. In applying it here

we essentially ignore possible complications from being out of equilibrium, assuming,

for example, that no significant aging occurs during this NVT simulation. The number

of time steps is 107 and the starting configuration for each state point is the final

configuration from the previous state point. Figure 4.1 shows three isomorphs in the

density-temperature phase diagram including one equilibrium liquid isomorph and
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Figure 4.1: The black symbols indicate an isomorph in the supercooled liquid which
includes the point ρ = 1.2, T = 0.44. We use this as a guide to locating the glass
transition; its relaxation time is about 2700 in reduced units, corresponding to 3850
in LJ units at the lowest density 1.2). The inset shows the intermediate scattering
function for the different state points, lying almost on top of each other. The red and
green symbols indicate isomorphs generated in the glass which we use for studying
deformation, referred to as those starting at temperature T=0.55 and T=0.1, respec-
tively. Note that the starting densities are not the same, since these are taken from
a cooling run at fixed pressure P = 10.

the two glassy isomorphs. Figure 4.2 shows a very good degree of collapse for the

radial distribution function along the glass isomorphs when plotted as a function

of the reduced pair distance r̃ = ρ1/3r. This is true even for the high-temperature

isomorph, which one might expect to show some (small) changes of structure due

to aging[74]. The results of isomorph calculated using above method are listed in

Table. 4.1.

Before considering the stress and strain related results, it is useful to have an

idea of where the glass transition is, so as to locate our glassy isomorphs in the
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Figure 4.2: Radial distribution function for the large (A) particles in reduced units
along glassy isomorphs starting at (a) T = 0.55 and (b) T = 0.1. Each figure shows 10
curves, where the density is increased by 1% for each state point, giving a 9.4% change
in density overall; the temperature increases by 54% overall. The insets show close-
ups of (a) the first peak and (b) the second peak where very some small deviations
are discernible.
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phase diagram and compare to other work on this system. When considering the

full phase diagram the glass transition can be defined as the set of (ρ, T ) points

where the liquid’s relaxation time attains some fixed value. There are two sources of

ambiguity or arbitrariness in such a definition: which observable to use when defining

the relaxation time and which value to set as defining Tg(ρ). Experimentally, for the

latter one chooses conventionally a value of order 100s in real units; with the isomorph

theory in mind it is natural to specify a criterion in reduced units, since in a system

with isomorphs the glass line will then correspond to an isomorph[52]. In computer

simulations, relaxation times of order 100s are nowhere near realistic, so as a guide we

choose a viscous liquid state which can be equilibrated in reasonable time. In Fig. 4.1

we plot a viscous liquid isomorph whose temperature at the usual Kob-Andersen

density 1.2 is 0.44. The relaxation time there (based on fitting the self-intermediate

scattering function of the A particles to a stretched exponential function) is 3850 (LJ

units), which corresponds to about 2700 in reduced units. This isomorph is generated

using the analytical expression for Lennard-Jones potentials as described in Ref. [13]

(using the same reference density 1.6 but a slightly lower value of γ at the reference

density, 4.58 instead of 4.59) and simulated for 108 time steps per state point. This

line is used as a reference in our system.

4.3 Invariance of various quantities

Now that we have the two isomorphs, we then shear the total 20 configurations with

various strain rates and check the invariance of quantities related to the steady state

stress.
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4.3.1 Analysis of Stress-strain Curves

We first directly check the stress and strain curves. It should be noted here that

when identifying isomorph-invariant properties it is important that the shear rate

be specified in an isomorph-invariant way; that is, the reduced-unit strain rate ˜̇γ =

γ̇(kBT/m)−1/2ρ−1/3 should be fixed when comparing the stress and strain curves at

different density-temperature points on an isomorph[124]. The full set of flowing

states is therefore characterized by a triple (ρ, T, ˜̇γ). Since the physics is in principle

invariant along a (ρ, T ) isomorph at a given reduced strain rate, we have thus a

two-dimensional phase diagram, where a state can be labeled by the isomorph and

reduced strain rate. This has been previously shown in the nonviscous regime for the

Lennard-Jones fluid[124], but has not been tested below the glass transition. In our

simulations we choose nominal strain rates of 10−2, 10−3, 10−4, or 10−5 and nominal

time step of 0.004. By “nominal” time step and strain rate we mean the value in

real units at the first point of each isomorph. These values are scaled to keep the

reduced-unit time step and strain rate (SR) fixed along the isomorphs. For all our

deformation runs we simulated 108 molecular dynamics steps, which for the above

nominal strain rates give total strains of 4000, 400, 40, and 4, respectively. Chattoraj

et al. found that total strains of up to 13.0 or even 24.0 were necessary for accurate

statistics[18]. This suggests that our runs are sufficiently long except possibly for the

lowest strain rates. Note that the strain itself is dimensionless and therefore does not

need to be put into reduced units.

Isomorph theory predicts the whole stress-strain curve to be invariant along iso-

morphs when stress is given in reduced units σ̃ = σ/ρkBT . In the small systems

typically studied in simulations and particularly at low temperatures and strain

rates, however, stress-strain curves in the glassy regime exhibit extremely intermit-

tent behavior[92, 93, 94, 3] which is sensitive to initial conditions and other sources of

randomness. Examples of this can be found in Fig. 4.3. Therefore, a collapse of the
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Figure 4.3: (a) Section of stress-strain curve for lowest-density state point on the
higher-temperature isomorph (ρ = 1.265, T = 0.550) at the lowest nominal strain rate
10−5. (b) Section of stress-strain curve for a state point on the lower temperature
isomorph (ρ = 1.324, T = 0.100) at the lowest strain rate 10−5. The abrupt drops
can be identified with avalanches of plastic activity. The difference in vertical scale
between (a) and (b) can be attributed partly to the definition of reduced units for
stress.
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actual stress-strain curves cannot be expected, except perhaps the initial part which

covers the elastic regime and the transition to a flowing state. We hence choose to

study the statistical properties of the steady-state region instead where properties

become time independent, apart from fluctuations.

It should be noted that in principle, however, isomorph theory allows for inde-

pendent configurations from equilibrium states above the glass transition which are

isomorphic to each to be cooled into the glassy state in an isomorphic way such

that the entire thermal histories and deformation histories are isomorphic. In that

case the entire stress-strain curves could be compared, rather than simply the steady

state part. Some ten years ago Lerner and Procaccia proposed a scaling theory for

steady-state plasticity based on approximating the pair potential by an inverse power

law[82]. The relation between that work and isomorph theory will be discussed below

in this section.

The most basic statistical measures that can be extracted from the stress-strain

curve are the mean value of the stress (the flow stress) and its standard deviation.

Figure 4.4 shows these quantities plotted in reduced units along the two isomorphs

studied, with different nominal strain rates. The curves are consistent with being all

flat within the statistical error (for the flow stress at the highest strain rate and the

low-temperature isomorph a small systematic decrease with increasing density can be

detected, not visible on the scale of the figure). The errors are rather large for the

standard deviation at the lowest strain rates where, as we noted above, the total strain

is significantly smaller. This figure demonstrates isomorph invariance, the focus of

this work. We can also comment briefly on the strain rate and isomorph dependence.

The dependence of flow stress on strain rate is relatively weak given three orders of

magnitude variation in the latter. Equivalently, the shear viscosity varies by several

orders of magnitude, indicating we are in a strongly non-Newtonian (shear-thinning)

regime, as expected for glassy systems[11, 138]. Comparing the two isomorphs, the
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Figure 4.4: Flow stress and standard deviation during steady-state regime as a func-
tion of density along (left panels) high- and (right panels) low-temperature isomorphs
for different strain rates. The legend indicates the nominal strain rates, that is the
real strain rates at the first point on each isomorph; for other state points in each
data set the reduced unit strain rate is the same. Error bars have been calculated
using standard formulas[130]; the horizontal lines indicate the mean value over the
isomorph.
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reduced flow stress is a almost factor of 10 smaller at the high-temperature isomorph

compared to the low-temperature one, partly reflecting its proximity to the super-

cooled liquid state, but to some extent also an effect of our choice of reduced units (see

below for a discussion of alternative choices). Interestingly, for the high-temperature

isomorph the fluctuations of the stress are independent of the strain rate (as well as

being invariant along the isomorph). This must mean that the fluctuations here are

essentially thermal in origin, despite the rheology being clearly glassy in this regime

(as determined from the strain rate dependence of the flow stress).

To investigate the dynamical correlations present in the stress-strain curves and

check these for isomorph invariance, we consider the autocorrelation function of the

shear stress, plotted as a function of strain interval. Figure 4.5 shows the results.

The collapse is not as good as we have seen in the flow stress. While the curves are

somewhat noisy, inspection of the curves shows a trend where the decorrelation moves

to lower strain intervals as density increases along the isomorph. To illustrate this

more clearly, we fit the autocorrelation curves to a compressed exponential

C(δε) = A exp[−(∆ε/εc)
β] (4.6)

where β is greater than unity. For β < 1 this function is known as a stretched ex-

ponential, typically used to fit time dependent relaxation correlation curves in the

dynamics of supercooled liquid. The characteristic strain εc corresponds to the relax-

ation time τ in time-dependent correlation functions, indicating roughly the strain

interval after which a stress fluctuation has decayed away. As shown in Fig. 4.5, the

compressed exponential expression can fit the main part of the decay reasonably well,

but not the initial slow decay or the negative portion at long times, with values of the

characteristic strain εc falling in the range 0.01− 0.035 and values of the compression

exponent β in the range 1.3 − 1.5. Figure 4.6 shows that along the isomorphs, εc
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Figure 4.5: Normalized shear stress autocorrelation functions along the high (a)
and low (b) temperature isomorphs for three different strain rates. Curves have been
shifted for clarity. The dashed lines indicated fits using a compressed exponential
function for the first curve in each set (lowest density and temperature); the param-
eters can be seen in Fig. 4.6.
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decreases approximately linearly as density increases, in a similar manner for both

isomorphs, while β increases slightly for the high-temperature isomorph but shows lit-

tle variation on the low-temperature isomorph. Comparing different strain rates, both

εc and β decrease as strain rate decreases, although for β the effect is weak compared

to noise. Further investigation with longer runs will be necessary to determine if the

apparent variation of εc is an artifact of insufficiently long runs, a sign of an imperfect

procedure for generating isomorphs, or a genuine limit of isomorph invariance (which

is never exact). We note also that there seems to be a systematic undershoot to

negative correlation, after most of the stress has decorrelated. This could tentatively

be interpreted as a sign of avalanche-type dynamics (discussed below).

As a further type of statistical analysis of the stress-strain curves we attempt to

infer something about the microscopic processes by considering the distributions of

stress changes ∆σ over a given interval of strain ∆ε. Unlike the case of athermal,

infinitely slow driving (quasi static) also called AQS simulation that has been studied

by several authors[92, 93, 94, 3, 83, 84, 85], it is not possible to unambiguously identify

single flow events or so-called avalanches, since thermal fluctuations tend to merge

them together. Lemâıtre et al. have shown, however, that the dynamics of a glassy

system can still be understood in terms of avalanche-type behavior at relatively high

temperatures, up to around 0.75Tg[17, 18]. This would put our high-temperature

isomorph outside the avalanche-dominated regime and our low-temperature one well

within it. Indeed, visual inspection of the stress-strain curves for lower strain rates

and lower temperature shows drops in the stress reminiscent of avalanche behavior

[see Fig. 4.3b]. The distribution of stress changes over a given strain interval can be

used to identify signatures of avalanche behavior without having to identify precisely

when avalanches occur.

Figures 4.7 and 4.8 show histograms of the reduced unit stress changes ∆σ̃ =

δσ/ρkBT , for different strain intervals ∆ε and different strain rates, from simulations
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Figure 4.6: Fits of shear stress autocorrelation to Eq. (4.6) shown as functions of den-
sity along the high (a) and low temperature (b) isomorphs. The characteristic strain
over which decays occurs, εc, decreases approximately linearly as density increases.
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Figure 4.7: Histograms of stress changes of intervals as indicated for the high-
temperature isomorph for different strain rates. For each strain rate and ∆ε, distri-
butions from the ten members of the isomorph are plotted in the same color. The fact
that they appear as one curve for each color, apart from broadening due to statistical
noise at the lowest strain rates, indicates a high degree of collapse. The distributions
are essentially Gaussian for all strain rates and strain intervals ∆ε, and their widths
are relative insensitive to ∆ε even at the lowest strain rates, indicating that most of
the fluctuations are thermal rather than strain-driven. The inset in (d) shows an al-
ternative way of exhibiting isomorph invariance for ∆ε=0.000512 by coloring different
members of the isomorph differently, and on a linear scale.
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Figure 4.8: Histograms of stress changes of intervals as indicated for the low-
temperature isomorph for different strain rates. As in Fig. 4.7 distributions for a
given strain rate and strain interval, but different members of the isomorph, are plot-
ted in the same color. They are Gaussian for the largest strain intervals ∆ε as well
as for the shortest ∆ε at the slowest strain rate, where the contribution of strain to
the fluctuations is negligible compared to the thermal contribution. For larger ∆ε at
the slowest strain rate an exponential tail on the negative side is a clear indication
of plastic events organizing into avalanches. For even larger ∆ε, and at the larger
strain rates, mixing of thermal and mechanic noise, and multiple avalanches lead to
more disorganized histograms. The inset of (d) shows on a linear scale distributions
of the second smallest strain interval with the different members of the isomorph
represented with different colors as an alternative check of the invariance.
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on the high- and low-temperature isomorphs, respectively. Curves of the same color

represent data from different state points on the isomorph, i.e. each color contains

results from 10 configurations along the isomorph. The near collapse shows that the

statistics as probed by these histograms are isomorph invariant to a high degree.

This can be seen more explicitly in the insets of Figs. 4.7(d) and 4.8(d), where the

distributions for the different members of the corresponding isomorph are shown in

different colors, for one particular strain interval. Having demonstrated isomorph

invariance, it is interesting to note some of the other features of these data. One

feature common to both isomorphs and all strain rates is that for sufficiently large

∆ε, over 0.05, the histograms converge to a Gaussian whose variance is twice that of

the stress fluctuations (mostly within 1%, 10% for the slowest two strain rates at the

lower temperature isomorph, where the statistical errors are larger). This is expected

since our analysis of the autocorrelation indicates that correlations vanish by strain

0.05 in all cases (see Fig. 4.5) (the characteristic strain interval for decay is between

0.015 and 0.035, with the functions essentially reaching zero by ∆ε = 0.05). For

smaller intervals ∆ε the distribution is generally narrower and reflects contributions

to stress fluctuations from the mechanical driving as well as from thermal fluctuations.

As noted above, these cannot be necessarily separated, but a reasonably clear picture

emerges from considering the dependence on the isomorph, strain rate, and ∆ε.

Focusing first on the high-temperature isomorph, Figs. 4.7(a)–(d) show stress

change histograms for strain rates 10−2, 10−3, 10−4, and 10−5, respectively. For all

strain rates the distribution converges to the same Gaussian at large intervals ∆ε. This

is consistent with the bottom left panel of Fig. 4.4, which showed that the fluctuations

of the stress-strain curve are independent of the strain rate (as well as being isomorph

invariant) in the high-temperature case, a sign that the fluctuations are dominated

by thermal noise in this regime. For the high strain rate ∆ε = 0.05, so we see no

dependence on the interval here. Some dependence on the strain interval can be seen
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at low strain rate where the width of the distribution appears to converge to a lower

value in the limit of small strain intervals. The timescale for the shortest interval

is of order 5 Lennard-Jones units (at the lowest-density point on the isomorph),

which should be still somewhat longer than the vibrational timescale; therefore this

apparent limit presumably represents the full thermal contribution to the fluctuations

for an undeformed glassy system. The increased width at high intervals can therefore

be interpreted as coming from the sampling of different glassy configurations due

to deformation. Note that this would presumably also happen even without any

deformation by waiting long enough for liquid dynamics to become relevant; in that

case time, rather than strain, becomes the relevant parameter.

Figure 4.8 shows histograms for the lower-temperature isomorph and the same

nominal strain rates as Fig. 4.7. More interesting behavior is apparent at these

low temperatures, particularly at the lowest strain rates, for example (nominal) 10−5:

For the shortest intervals we see a Gaussian, representing purely thermal fluctuations,

which are small at this temperature. In other words, for a strain interval of 0.00005 the

stress change due to driving is hidden by the thermal fluctuations. As discussed above,

we see a Gaussian at the largest intervals where all correlations have decayed. For

intermediate strain intervals, however, a marked deviation from Gaussian behavior

appears in the form of a roughly exponential tail on the negative side. This is a

clear indication of avalanches: correlated aggregations of multiple microscopic flow

events which release the stress, giving large negative stress changes, as studied in the

quasistatic case[92, 93, 94, 3, 83, 84, 85].

An analysis somewhat similar to ours was carried out by Rottler and Robbins[115],

who also found exponential tails at low temperature and strain rate. Note that since

we consider a steady-state situation, the mean of the stress changes must be zero,

implying that the main Gaussian is shifted slightly to positive values. We have checked

this by fitting the Gaussian part. The positive mean of the nonavalanche fluctuations
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Figure 4.9: Fisher-Pearson skewness SFP of (reduced) stress drop distributions as a
function of strain interval for different strain rates for the low-temperature isomorph.
Different curves of the same color correspond to different points on the isomorph.

corresponds to elastic loading which is then released by the avalanches. In the limit

of zero temperature and then infinitely slow deformation[94], the narrow Gaussian

seen at short intervals would converge to a δ function at a small positive value (the

shear modulus times the strain interval).

The asymmetric deviations from Gaussianity can be quantified by the Fisher-

Pearson coefficient of skewness, based on the third moment of the distribution scaled

by the cube of the standard deviation

SFP =
m3

m
3/2
2

(4.7)

where

mi =
1

N
=

N∑
n=1

(xn − x̄)i (4.8)

where x̄ is the sample mean. Figure 4.9 shows SFP as a function of strain interval
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Figure 4.10: Histograms of (reduced) stress changes over strain intervals εs chosen
to minimize skewness for each strain rate, on the low temperature isomorph. Data for
different points on the isomorph are plotted in the same color for each nominal strain
rate. In order of decreasing strain the minimum-skew strain intervals, as judged by
eye from Fig. 4.9, are 0.02, 0.008, 0.004, 0.003.

for four different strain rates along the low temperature isomorph. Different curves

with the same color come from different members of the isomorph for a given strain

rate. The skewness vanishes for short and long strain intervals where, as discussed

above, the distributions become Gaussian. The variations between the distributions

for a given strain rate are not systematic and thus presumably reflect statistical

uncertainty. The variation is relatively small and thus consistent with this measure

of the dynamics being isomorph invariant (this follows of course also from the good

collapse of the distributions in Figs. 4.7 and 4.8). The minimum (most negative)

value of the skewness parameter identifies a strain interval εs at which the deviation

from Gaussianity is most pronounced. Histograms for this strain interval are plotted

in Fig. 4.10 for the low-temperature isomorph and different strain rates, with the

values of εs given. These values are a factor of 2 − 3 smaller than the characteristic

strain intervals identified from the autocorrelation functions (see Fig. 4.6). For the
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lowest strain rate it is an order of magnitude larger than the strain interval at which

the exponential tail indicating avalanche behavior is seen, 5 × 10−4 (see Fig. 4.8).

Denoting the latter by εa (where a denotes avalanche), we can tentatively identify,

in the low-temperature low strain-rate limit at least, a broad hierarchy of strain

scales which characterize different physical processes: (i) the smallest strain scales

where stress fluctuations are purely thermal or vibrational; (ii) the avalanche strain

εa over which stress changes show signs of correlated avalanche-type behavior, of

order 5 × 10−4; (iii) the strain over which stress change distributions deviate most

from Gaussianity εs an order of magnitude larger than εa, where the exponential tails

of the avalanches and the changes due elastic loading between them merge to make a

broader distribution, but signs of correlation remain; (iv) the characteristic strain εc

identified via the stress autocorrelation function, where εc is of order 2× 10−2, which

is a small factor (2 − 3) larger than εs; and (v) the strain interval around 5 × 10−2

beyond which all correlation has vanished (though this is not physically independent

of εc; rather it represents where the autocorrelation function is small compared to

1/e).

4.3.2 Particle Dynamics under Shear

We also check the invariance of particle dynamics under shear in the steady state by

looking at the transverse diffusivity. Accounting for the contribution to a particle’s

displacement in the shearing direction when using Lees-Edwards boundary conditions

is nontrivial[79], so we consider only the components of a particles displacement

transverse to the shearing direction. Based on these displacements, we compute

the self-intermediate scattering function (ISF ) and the mean square displacement

(MSD). For the ISF one must choose a wave number q, which, as is conventional,

we choose to be near the first peak in the structure factor S(q). This must be of

course scaled according to ρ1/3 along an isomorph such that the reduced wave number
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q̃ ≡ qρ−1/3 is constant [this is compatible with choosing q to be near the first peak,

as S(q) is invariant in reduced units][51]. We restrict consideration to the larger (A)

particles for brevity. The ISF is shown in Fig. 4.11.

For both isomorphs and all strain rates we find a good collapse, though slightly

less so for the lowest strain rates. Fitting of the curves to a stretched exponential

form [Eq. 4.6, where β < 1 and with τ instead of εc], indicates at most a slight

systematic variation in relaxation time τ , suggesting the apparent failure to collapse

perfectly is mostly due to statistical error. From the fits, for the high-temperature

isomorph we find near-exponential behavior (β ' 1) for the highest strain rates

and mildly stretched exponential behavior as the strain rate decreases (β ' 0.85 at

the lowest strain rate). For the low-temperature isomorph we find near-exponential

behavior for all strain rates. Stretched exponential behavior is typical of dynamics

in the supercooled, highly viscous liquid. The vanishing of stretching, i.e., the near-

exponential behavior, at low temperatures and slow shearing indicates that the nature

of particle dynamics is different in this regime. Exponential behavior of the self-

intermediate scattering function for the same system under shear in the limit of zero

temperature was also reported by Berthier and Barrat[11].

Plots of the mean-square transverse displacement in reduced units are shown in

Fig. 4.12. The form of the curves is reminiscent of what is seen for equilibrium

viscous liquids: a ballistic regime at short times (where the slope is 2), a plateau of

varying extent, followed by a transition to diffusive behavior (slope 1). The collapse

is good in all cases, although again some deviations are apparent for the lowest strain

rates, particularly around the crossover to diffusive behavior. Superficially, not much

difference can be seen between the low- and high-temperature isomorphs, but upon

closer examination one can see some physically relevant differences (see Fig. 4.13).

On the higher-temperature isomorph thermal motion is greater; thus the height of

the plateau (in units of the interparticle spacing) is larger. More interestingly, in
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Figure 4.11: Self-part of the intermediate scattering function for larger (A) particles
based on particle displacements transverse to the shearing direction for (a) the high
temperature isomorph and (b) the low temperature isomorph, for different strain
rates.
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Figure 4.12: Mean squared transverse displacement plotted in reduced units for
(a) high temperature isomorph and (b) low temperature isomorph. The horizontal
arrows indicate a factor of ten in the time axis, and can be used to judge by what
factor the curves can be shifted onto each other in time.
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Figure 4.13: The MSD curves from Fig. 4.12 (a) and (b) plotted together, though
without the short-time parts. At low strain rates the MSD appears to become in-
dependent of isomorph, as well as which point on the isomorph. The definition of
reduced units means that the curves for the different isomorphs are plotted in terms
of different time scales, so caution is required when drawing conclusions from the
apparent collapse.

the low-temperature case, the diffusivity curves are essentially a factor of 10 apart

in the time axis, corresponding to the factor 10 change in strain rate, while for the

high-temperature case the diffusivity curves are shifted by a factor smaller than 10

on the time axis. The interpretation is that thermal activation plays a noticeable

role in particle diffusion in the high-temperature case, but almost no role in the

low-temperature case. In the latter the diffusive motion is determined entirely by

the strain rate at the lowest temperatures. Figure 4.13 emphasizes the long-time

parts of the MSD for both isomorphs. In this plot the difference at long times

between the two isomorphs appears minimal; the MSD is determined much more

by the strain rate than by which isomorph is considered (and almost not at all by

which point on the isomorph, which is the essence of isomorph invariance). It must

be noted, however, that direct numerical comparison of the MSD curves at different

temperatures (isomorphs) for the same nominal strain rate can be difficult to interpret

due to the use of reduced units; thus it appears that at nominal strain rate 10−2 the
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diffusivity, counterintuitively, is greater on the lower temperature isomorph. Recall,

though, that this is in reduced units, i.e., with respect to a timescale defined by

the thermal velocity. A meaningful comparison would first of all involve identical

reduced (rather than nominal) strain rates; the reduced strain rates for the low-

temperature isomorph are a factor of 2.3 higher than the corresponding ones for the

high-temperature isomorph. Second, there is a further complication already alluded

to, which will be discussed further below, namely, that the definition of reduced units

is not unique and a different choice could in principle be more relevant, and elucidate

the physics better, in the limit of low temperatures. We emphasize that the most

important result in this section is the near perfect collapse of the MSD for different

state points along a given isomorph (and given reduced strain rate), when reduced

units are used.

Lemâıtre and co-workers have studied over several papers the effect of finite tem-

peratures and strain rates on avalanche dynamics[80, 17, 18]. They found that study-

ing transverse particle diffusivity is useful for disentangling the effects of strain and

temperature. In particular, Chattoraj et al.[18] used the transverse diffusivity D de-

termined from the long-time limit of theMSD curves and its strain-normalized analog

D/γ̇. Their Fig. 5 shows nicely the crossover from strain-dominated to temperature-

dominated diffusion. As they pointed out, the strain-normalized diffusivity is the

more relevant one in the strain-driven regime (low temperatures and strain rates),

while normal diffusivity is relevant at high temperatures. Moreover, they showed

that the crossover strain rate as a function of temperature tracks more or less the in-

verse relaxation time: Strain begins to have a pronounced effect on particle diffusion

once the strain per relaxation time exceeds an amount of order 10−3 − 10−2. Our

results are consistent with theirs in terms of the interplay of strain-driven and ther-

mal contributions to particle motion. They did not consider density as a parameter,

but our results show that it can be simply accounted for through isomorph invariance
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and by remembering that “at high temperature” really means “on high-temperature

isomorphs.”

4.4 Implication for Alternative Reduced Units

Our definition of reduced units, apart from the length unit, is based on thermal mo-

tion; thus the energy scale is e0 = kBT , the velocity scale is v0 = (kBT/m)1/2, and

the timescale is the time for a particle with such a constant velocity v0 to cross the

interparticle spacing, t0 = ρ−1/3(kBT/m)−1/2. This choice has the advantage of us-

ing only macroscopic parameters; apart from the particle mass, no knowledge about

the system under consideration (its Hamiltonian, phase diagram, or isomorphs) is

needed. However, as noted above, this definition becomes problematic as temper-

ature approaches zero; it is natural at finite temperature but not in the limit of

zero temperature, where the thermal timescale diverges. A vibrational timescale

which is well defined in that limit is preferable. Noting that the definition of reduced

units must satisfy the condition that the reduced quantity is still constant along iso-

morphs, we can define a new energy scale e1 = e0h(ρ)/kBT = h(ρ) and timescale

t1 = t0(h(ρ)/kBT )−1/2 = ρ−1/3[h(ρ)/m]−1/2. These are independent of T and there-

fore suitable for use in the limit T → 0. From the interpretation of h(ρ) in terms of

the curvature of the pair potential at the nearest-neighbor distance[14], we can inter-

pret t1 as a vibrational timescale for a single neighbor pair. Thus we can introduce

an alternative reduced stress, denoted by a circumflex,

σ̂ ≡ σ

ρh(ρ)
= σ̃

kBT

h(ρ)
(4.9)

and alternative reduced strain rate

ˆ̇γ ≡ γ̇ρ−1/3[h(ρ)/m]−1/2 = ˜̇γ(
kBT

h(ρ)
)1/2 (4.10)
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We stress that for the purpose of checking for isomorph invariance of a quantity the

choice of which system of reduced units is not important except for practical pur-

poses, e.g., when T = 0. However, it can become relevant when comparing different

isomorphs in order to identify the relevant physics. Another example is the compari-

son of flow stress shown in Fig. 4.4, where the strong temperature dependence of the

reduced flow stress was partly ascribed to our choice of reduced units. Using ρh(ρ)

instead of ρkBT would probably reduce this variation and is potentially therefore

more relevant for the glassy regime. Thus the advantages of one choice over the other

are potentially greater clarity, insight, or ease of interpretation.

Lerner and Procaccia studied the flow stress for simulated glasses under steady-

state conditions covering both finite temperatures and the athermal limit [82], using a

scaling theory based on the approximation of their pair potential by an inverse power

law. Their system is modeled using an approximate inverse power law potential,

which means that h(ρ) is approximately a power law ργ , in their notation ρν−1.

Noting that their exponent ν corresponds to our γ + 1, all their scaling expressions

are in fact compatible with isomorph theory, once one recognizes that their choice of

time scaling is equivalent to our alternative reduced units. Our point in the present

discussion is that there is a choice of which system of reduced units to use and

that that choice is related to how relevant physics is best revealed. It is analogous

to the choice of whether we study the standard diffusivity based on mean square

displacement as a function of time or the strain normalized diffusivity based on the

mean square displacement as a function of strain[18]. We note again, however, that

using h(ρ)[62, 13] is less straightforward than kBT because it depends on the potential

and is not directly available in the simulation. In some cases, including the Kob-

Andersen system used here, it is known analytically[62, 14]; otherwise it must be

identified from the shape of the numerically determined isomorph before conversion

into reduced units can take place.
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4.5 Conclusion

We have simulated isomorphs for the Kob-Andersen binary Lennard-Jones glass and

compared their static structure and their dynamics under steady-state shearing de-

formation. Two isomorphs were generated using the potential energy and virial fluc-

tuations during an NVT simulation (no shear), assuming that aging effects could be

ignored. This is probably a reasonable assumption for the lower-temperature iso-

morph, but this is less clear for the high-temperature one, which is only a few percent

below the conventional mode-coupling temperature for this system and therefore can

be equilibrated as a liquid with longer (but still feasible) simulation times than we

have used here. Nevertheless, excellent collapse of the radial distribution function is

observed and good collapse for most of the dynamical measures. The worst collapse

is observed for the shear stress autocorrelation function, which exhibited a systematic

variation of the characteristic decay strain along an isomorph. Better statistics, i.e.,

longer runs, would probably help, but a more careful determination of the correct

isomorph might be necessary, as it could be that this quantity is simply more sen-

sitive to deviations from the correct isomorph than the others we have investigated.

Going beyond simply checking for isomorph invariance, we have analyzed the dis-

tributions of stress changes over different strain intervals. We showed that different

features emerge according to whether purely thermal effects are visible or avalanches,

as indicated by an exponential tail in the distribution, or more complex and ex-

tremely non-Gaussian distributions at larger strain intervals which include multiple

avalanches. Isomorph invariance is clear in all the data presented for this analysis. In

comparing the mean square transverse particle displacements, in addition to almost

perfect isomorph invariance, we noted how the MSD curves apparently become inde-

pendent of temperature in the limit of long times, but also that one has to be careful

to compare the same reduced strain rates. We note that no noticeable difference

in the quality of the isomorphs is observed, despite the lower-temperature isomorph
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showing lower values of the correlation coefficient R (see Table 4.1). We also showed

how the existence of isomorphs can inform and constrain the development of analyti-

cal theories for how, for example, the flow stress can depend on density, temperature,

and strain rate. In addition, an alternative definition of reduced units emerged, the

full implications of which are left for future work.
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Chapter 5

Isomorph theory on sheared glassy

systems: Part II

After chapter 4, we also investigate the extent to which the transient part of the

stress strain curves is invariant when the thermodynamic state point is varied along

an isomorph. In this chapter, the shear deformations are carried out on glass samples

of varying stability, determined by cooling rate, and at varying strain rates, at a

state point deep in the glass. Density changes up to and exceeding a factor of two are

made this time (10% in previous chapter). The temperatures for these higher densities

were chosen to give state points isomorphic to the starting state point by requiring

the steady state flow stress for isomorphic state points to be invariant in reduced

units. We compare the performance of different methods to obtain the isomorphic

temperatures for such a large density span. After finding the corresponding isomorph,

we show however that the peak stress on the stress strain curve is not invariant, but

decreases by a few percent for each ten percent increase in density, although the

differences decrease with increasing density. We can rationalize this behavior by

considering how different parts of the potential energy landscape scale differently

under changes of density.
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Same RUMD package discussed previously is used for simulation in this chapter.

5.1 Introduction

Background information can be found in chapter 1 and 4. We here are more ambitious

in terms of density changes since unlike the standard numerical method we used in

chapter 4, a recently defined “force method” (defined below in section 5.3) is able

to allow for large changes in density without having to simulate many small density

changes in between. Our second investigation here thus involves a much larger density

range so as to perform a systematic check on the performance of various methods to

find the isomorph. We compare five methods by checking the matching of reduced

mean steady state stress, i.e. the reduced flow stress. Although they all give similar

results for a small density change, the difference between them grows with increasing

density. None of them can match the reference reduced flow stress within errors for

the largest density. We hence turn to a pragmatic approach to determine isomorphic

temperatures, which is the best empirically determined isomorph whose reduced flow

stress matches that at the reference density.

With the isomorph we find, shear then is applied in the same way as in last chapter.

But here one important feature of the non-steady state regime is that the thermal

history of the glass prior to deformation becomes relevant. Therefore, our glasses are

now prepared by cooling at different fixed cooling rates, and at fixed density from a

given temperature at the lowest density considered. Any deformation simulation is

characterized by four parameters: the density ρ, temperature T , cooling rate Rc and

strain rate ε̇. Since we focus on trying to identify isomorphs, density and temperature

are varied according to the (putative) isomorph, and cooling rate always refers to the

initial (low) density in real units, while strain rate is referred to using reduced units

(isomorph invariance can only be expected when the strain rate is fixed in reduced
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units). Each glassy configuration is sheared with various strain rates. We find that

the isomorph works well for all cooling rates in terms of matching the reduced flow

stress. While good invariance is verified for the reduced flow stress, the peak stress

shows a decreasing trend against density along the isomorph for all cooling rates and

strain rates we check. We explain such non-isomorphic behavior through checking

the local spatial homogeneity of strain profile at the transient state.

5.2 Simulation

First some details of our simulation. It should be noted here that one important

feature of working on the transient part of the stress and strain curve is that the

fluctuations cannot just be averaged out by running longer simulations. Even though

the temperature we study here is not as low as in chapter 4, the fluctuations in the

stress are still quite severe and avalanche-like. To manage the fluctuations we use 10

times larger system size and run multiple independent runs, starting from an ensemble

configurations generated by separate cooling runs. Studying the run-to-run deviations

also allows us to determine errors on flow stress and peak stress quite precisely.

The details are the following. We work on the same KABLJ system as last chapter

but with 10000 particles. Here we cool the system after equilibrium at T = 1 using

three different cooling rates 10−5, 10−6, and 10−7 with NVT simulation instead of

NPT. Note that here the cooling rate Ṫ is in Lennard Jones (LJ) units (see previ-

ous chapter for definition). We focus on one starting temperature 0.3 here that is

not too deep in glassy state nor close to the liquid state, as shown in Fig. 4.1. For

these three cooling rates, we create an ensemble containing 40 similar configurations

at T = 1 (picked from one NVT simulation at T = 1 in equilibrium but are well

separated in time so that the 40 can be considered equivalent but nonetheless sta-

tistically independent) and then cool them in the same way. Therefore, we have 120
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configurations at T = 0.3, 40 for each of the three cooling rates. Unlike chapter 4,

here we compare different methods to generate isomorph and choose one that works

best for our purpose for all cooling rates. Again, the isomorph contains 10 points,

along which the density of each point is 1.1 times of the previous point (1.01 in the

previous chapter). For each configuration, we then apply shear with three different

reduced strain rates ˜̇γ = 10−3, 10−4, 10−5 and simulate up to strain ε = 4, for all 10

isomorph points. We also choose the time step to be fixed in reduced units, which is

practical–it automatically ensures that a time step which is stable at one density and

temperature will be stable along the isomorph. The time step is 0.004 (LJ units) at

the lowest density 1.183.
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Figure 5.1: Examples of reduced-unit shear stress (top panels) and potential en-
ergy per particle (bottom panels) versus strain, from shear deformation of a binary
Lennard-Jones glass with density 1.183 at temperature 0.3. The glass was prepared
by cooling at the rate 10−7 (LJ units), while the deformation was carried out at re-
duced strain rate 10−5, meaning the real strain rate was 10−5ρ1/3(T )1/2 ' 5.8× 10−6.
The left panels show curves from a single run, while the right panels show the average
of 40 independent runs.

Figure 5.1 shows examples of stress strain curves generated in similar ways as in
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the last chapter at density 1.183 and temperature 0.3. In this case the cooling rate

for the glasses was 10−7 in LJ units. While ideally we are interested in investigating

to what extent the entire stress-strain curve collapses along a given isomorph (with

given cooling and strain rates), for many purposes as well as limitations, it is sufficient

to consider (or at least start with) the flow stress and the peak stress, which give us

two quantities (always in reduced units) that we can plot as a function of density

along isomorphs.

The definitions of the two quantities are the following. Similar to previous study,

the shear stress seems to be essentially at its steady-state value by strain 0.5 judged

by eyes. However, as shown in panel (d) in Fig. 5.1, for this slowly cooled system

the potential energy has not converged to the steady-state value until around strain

2.0 [125]. We hence define steady state as strain between 2 − 4 from now on. Our

observation on the reduced potential energy versus strain curves confirms this choice

for steady state. We find that the potential energy of the slowest cooled configuration

under slowest shear gradually reaches the steady state value at a strain between 1 to

2, see Fig. 5.2.

Figure 5.2 shows the potential energy versus strain up to strain 2 for the three

cooling rates and the fastest and slowest strain rates. The potential energy can be

rather slow in converging to its steady state value, especially for the highest strain rate

and lowest cooling rate, where it appears to converge around strain 2. This is despite

that the shear stress has typically converged before strain 1. The fact that potential

energy must also be monitored to ensure steady state conditions was discussed by

Singh et al. [125].

We calculate the average of reduced stress in the steady state for each shear simu-

lation. We then use the average of 40 shear runs as the flow stress at the corresponding

density, temperature, strain rate, and cooling rate. Error bars is computed as sample

standard deviation of the 40 independent flow-stress values divided by
√

40. The
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Figure 5.2: Reduced potential energy against strain sheared with the ˜̇ε = 10−3, 10−5

for the three cooling rates |Ṫ | = 10−5 (blue and orange), 10−6 (green and red), 10−7

(purple and brown) at ρ = 1.183 and T = 0.3. Each curve is an average of 40
simulations.

height of the peak that precedes the steady state, in reduced units, σ̃p is determined

by fitting the region of the averaged stress-strain curve around the peak to a fourth-

degree polynomial. The interval for fitting is the strain with the numerically largest

shear stress, plus or minus 0.05. We check that our main results do not vary with

this choice of fitting range as long as reasonable amount of data points are included.

To estimate the error on the peak height the 40 independent runs were averaged 8 at

a time to give five independent stress strain curves, for which the fitting procedure

was used to estimate the peak height. The error was then estimated as the sampled

standard deviation of the 5 groups divided by
√

5.

Here to set the stage we show flow stress and peak stress at the starting state

point first for different strain rates and cooling rates. Let us recall from our results in

previous chapter that we do not expect perfect isomorphs, both because isomorphs

are never perfect, especially over large density changes, and because the intrinsic

fluctuations in the stress can obscure the degree of collapse. Therefore, we need to



98

1.5

2.0

2.5

3.0

p

(a) (b)

10 5 10 4 10 3

1.05

1.10

1.15

1.20

f

(c)

10 7 10 6 10 5

|T|

(d)

Figure 5.3: Reduced peak stress σ̃p and flow stress σ̃f as function of reduced
strain rate ˜̇ε (a,c) and cooling rate |Ṫ | (b,d). Black, red, and blue are for |Ṫ | =
10−5, 10−6, 10−7; sphere, square, and up triangle are for ˜̇ε = 10−3, 10−4, 10−5. The σ̃f
is within errors independent of |Ṫ | but increases with ˜̇ε. Each point of σ̃f is an aver-
age of 40 independent shear simulations and we estimate the errors as the standard
deviation divided by

√
40. For the peak stress we divide the 40 simulations into 5

groups randomly and obtain 5 averaged stress and strain curves. We then find the
strain εp of the maximum σ̃p and use εp ± 0.05 as the fitting range. A 4th order
polynomial is fit and we identify the maximum value of the fit as σ̃p. Each point of σ̃p
is an average of the 5 subgroups and we use the standard deviation divided by

√
5 as

the error. The three horizontal lines in panel (d) are the average of the corresponding
three points of the same ˜̇ε.
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be able to compare “approximate invariance” with the variation observed when non-

isomorphic changes of parameters are considered. In equilibrium situations varying

the temperature and density separately while keeping the other fixed are the only

possibilities. In the non-equilibrium case more interesting possibilities arise, namely

varying the cooling and strain rates. To show how much variation in rheological

properties results from varying these rates we plot the peak and flow stresses in

Fig. 5.3, first as a function of strain rate for different cooling rates, and then as a

function of cooling rate for different strain rates. It can be seen that an order of

magnitude increase in strain rate increases the peak stress by 25-30% [panel (a)] and

the flow stress by 5-15% [panel (c)] while an order of magnitude increase in cooling

rate decreases the peak stress also 15-20% [panel (b)] but has no effect on the flow

stress [panel (d)]. These dependencies are expected in glassy rheology. In particular

a lower cooling rate generates a more stable glass, which requires a larger stress to

initiate deformation (i.e. it has a larger yield stress).

With this preliminary check on the influence of cooling rate and strain rate in

mind, we then move on to generate the isomorph.

5.3 Methods to generate isomorph

In the previous chapter, we only check a small density span such as 1.265 − 1.384.

Here we are much more ambitious and check a density span 1.183−2.789. Here 1.183

is close to the density 1.2 studied by Kob and Andersen and most often by others. We

trace the isomorph with an increment of 1% of density at each step before and 10%

here. For such large density changes, the accuracy of isomorph generating method

becomes important. It is thus of particular significance to evaluate various methods

to generate isomorphs first.

In the following we compare different methods, using as a test case glasses cooled
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Method Ensemble T-ratio T2
γ NVT 1.593 0.4779
γ SSS 1.609 0.4828

DIC-pe NVT 1.593 0.4779
DIC-pe SSS 1.609 0.4827
DIC-sts NVT 1.595 0.4786
DIC-sts SSS 1.597 0.4791

FM NVT 1.653 0.4959
FM SSS 1.649 0.4947

FM-mod NVT 1.647 0.4940
FM-mod SSS 1.637 0.4911

Table 5.1: Comparison of methods for identifying isomorphic temperature upon rais-
ing density by 10% from 1.183 to 1.301, for glasses cooled at rate 10−5. SSS refers to
steady state shearing, data taken between strains 2 and 4, with reduced strain rate
10−3; NVT refers to NVT simulations of 107 steps.

at 10−5 (LJ units) and then we apply both NVT at T = 0.3 and shearing at ˜̇ε = 10−3

(reduced units), and the case of a density increase of 10% from 1.183 to 1.301. We

give a quick summary of the results here first and then go through each method one by

one below. The results for the temperature scaling factor and estimated temperature

at the latter density are summarized in the Table 5.1. Results from NVT simulation

data are labeled with “NVT” and from shearing simulation are labeled “SSS”, short

for “steady state stress”.

5.3.1 Integration using the density scaling exponent γ

In the previous chapter, we introduced one method to identify isomorph. A brief

summary here is that in equilibrium situations, determining isomorphic state points

involves studying fluctuations, in particular of the potential energy U , and the virial

W . The latter is essentially (apart from a factor of the volume) the part of the

pressure associated with the interactions. It can be defined as the derivative of U

for a configuration with respect to ln ρ, where ρ ≡ N/V is the number density of

the system with N particles in a volume V . When taking the derivative it should

be understood that the relative positions of the particles are kept fixed and only
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Figure 5.4: Various methods to obtain the temperature ratio T2/T1 used to identify
the state point ρ2, T2 isomorphic to state point ρ1, T1 from simulations at the latter.
The example here uses reference density and temperature ρ1 = 1.183 and T1 = 0.3
and a starting configuration cooled at |Ṫ | = 10−5. We consider a new density ρ2 =
1.1ρ1 = 1.301. Black indicates results from NVT simulations and red is for the steady
state from a shear simulation with the highest (reduced) strain rate ˜̇ε = 10−3. During
the simulations the system was rescaled to ρ2 at regular intervals and the potential
energy, forces, and shear stress were calculated on the scaled configurations. Panel
(a), scatter-plot of the virial W versus potential energy U . The slopes (correlation
coefficient) of the two fits are 5.014 (0.869) and 5.143 (0.859) respectively, where the
slopes can be considered estimates of the density scaling exponent γ, which yields
the temperature factor via Eqs. (5.6) and (5.8). Panel (b), scatter-plot of U2 against
U1 (DIC-pe). The slopes (correlation coefficient) are 1.593 (0.975) and 1.609 (0.972)
respectively. Here the slopes correspond directly to the temperature ratios. Panel (c),
scatter-plot of σ2 against σ1. The slopes (correlation coefficient) are 1.755 (1.00) and
1.757 (0.999). Here the temperature ratio is the slope divided by the density ratio 1.1.
Panel (d) shows the temperature ratio given by the force method FM (blue), Eq. (5.3),
and modified force method (green), Eq. (5.4) from the same shear simulation. The
dotted horizontal lines indicate the corresponding temperature ratios from the NVT
simulation. Table 5.1 gives the results of the different methods.
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a uniform scaling is involved. As elaborated below, strong equilibrium correlations

between U and W allow isomorphs to be identified via the slope in the W,U -scatter

plot, called the density scaling exponent and denoted γ. The latter is the local

slope of an isomorph in the ln ρ, lnT plane, also defined generally as the slope of

configurational adiabats–curves along which the excess entropy is constant[53].

(
∂T

∂ρ

)
Sex

= γ(ρ, T ) =
〈∆U∆W 〉
〈(∆U)2〉

(5.1)

where the second equality indicates how γ is determined from fluctuations at a partic-

ular state point. Angle brackets represent NVT ensemble averages, and the expression

is simply the linear regression slope of a scatter plot of W against U . From the same

linear regression fit a correlation coefficient R may be extracted, which is used to

gauge the expected quality of the isomorphs. By determining γ from fluctuations

an isomorph in equilibrium may be traced by simple numerical integration (explicit

Euler method) of Eq. (5.1), taking one small step in density (typically 1% although

larger jumps are possible with higher order integration techniques). In summary, we

perform this method through NVT simulations at one density and temperature point

to obtain the γ and solve for the isomorphic new density and temperature. The same

process is repeated at the new density and temperature so that an isomorph can be

traced.

In the present work we include some glasses cooled relatively quickly; in these cases

γ determined from NVT fluctuations could be sensitive to aging effects and thus hard

to define precisely. Nevertheless for comparison we have determined γ from NVT

simulations in the less stable glasses (cooled with the fastest cooling rate). In the

absence of true equilibrium the next best thing is steady-state deformation. Thus one

could look at U,W fluctuations in the steady state and identify an exponent γ from

the slope there. An example of this is shown in Fig. 5.4 (a). Here U,W correlations are

shown both for the static NVT simulation and the steady-state regime of the shearing
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simulation. The NVT value for γ is 2.5% lower than the value from the steady state

fluctuations. With a γ value we can generate isomorph curves analytically. This

difference in γ translates to a difference in the estimated isomorphic temperature T2

for the density ρ2 = 1.1ρ1 as shown in Table 5.1; for this density change of 1.1 the

temperatures differ by 1% but the difference will increase with larger density jumps.

5.3.2 Direct isomorph check

For Lennard-Jones systems a simple analytic formula for isomorphs exists which in

principle only requires a single evaluation of the exponent γ. This avoids the many

simulations needed for numerical integration. For systems where an analytic expres-

sion is not available, a method involving scaling configurations sampled at one state

point to another density allows the corresponding temperature to be identified from

a plot of potential energies at scaled density versus at unscaled configurations. This

is known as the direct isomorph check and can give accurate estimates of isomorphic

temperatures up to fairly large density changes. Such formulation of two state points

being isomorphic is equal to involving the proportionality of Boltzmann factors of

corresponding microscopic states. Here corresponding means all particles being the

same in reduced coordinates, i.e., one configuration is obtained from the other by a

uniform scaling. A consequence of this proportionality, obtained simply by taking

logarithms, is a proportionality between scaled and unscaled potential energies

U2(R) =
T2
T1
U1(R) + const., (5.2)

where subscripts 1 and 2 indicate potential energies evaluated at densities ρ1 and

density ρ2, respectively for any configuration with given reduced coordinates. Here we

use the upper case boldface R to represent the entire 3N-vector of particle coordinates,

for convenience. This was originally considered a simple check of the basic isomorph
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concept of proportional energy fluctuations, hence the name direct isomorph check

(DIC), but it also suggests that given two densities, and the temperature of the first,

T1, the second temperature T2 may be identified by sampling configurations from an

equilibrium simulation at the first state point, scaling them to density ρ2, calculating

the potential energies of the scaled configurations, and making a scatter plot of the

scaled versus unscaled potential energies. Furthermore, when considering infinitesimal

density changes the DIC reduces to the method of integrating Eq. (5.1).

Here the DIC data is shown in Fig. 5.4 (b), containing both “SSS” and corre-

sponding “NV T” data. Determining the slope gives a direct estimate of the temper-

ature factor, 1.609 from the steady-state and 1.593 in NV T . These are equal to the

estimates from combining γ and the analytical formula (consistent with γ being the

infinitesimal version of the DIC). Both these methods are based on the full fluctua-

tions of potential energy during the steady state or NV T , and how these fluctuations

change as density is changed.

5.3.3 Stress-based direct isomorph check

One can interpret the DIC as choosing the temperature T2 by requiring the reduced-

unit energy fluctuations to be as close as possible between the two state points, where

“as close as possible” involves a linear regression fit. One can in principle make a

similar requirement for other quantities, for example the virial, whose fluctuations

should also be related by being the same in reduced units. Or the more related

quantity we care about: the shear stress (configurational part). The latter leads to

an alternative version of the direct isomorph check where the shear stress for scaled

configurations is plotted against that for the unscaled ones. In this case, in view of

σ̃f ≡ σf
ρkBT

, the slope of the linear regression should be ρ2T2/ρ1T1. This suggests an

alternative method for identifying an isomorphic temperature which may be relevant

in deformation simulations.
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Fig. 5.4 (c) shows the related data. The observed slope when plotted the scaled

versus unscaled shear stresses is not the temperature-factor, but includes also a factor

of the density ratio ρ2/ρ1 = 1.1. After dividing the latter out the temperature ratio

(T2/T1) estimate from steady state fluctuations is slightly lower (0.7%) than the

corresponding energy-based DIC estimate, see Table 5.1. Interestingly, the correlation

coefficient is much closer to unity for the stress-based DIC than for the energy-based

DIC, and the difference between NVT and SSS estimates is much smaller than that

for the energy-based DIC, at only 0.1%. These two estimates are also very close to

the NVT energy-based DIC estimate.

5.3.4 Force method

Another recent development is the introduction of the “force-method (FM)” which

rather than examining fluctuations in the global potential energy during a simula-

tion, examines the forces on all particles, from a single configuration, and how these

change upon a uniform scaling (density change)[? ]. The great advantage of being

able to work with a single configuration is that equilibrium fluctuations are no longer

needed, and non-equilibrium states can also be mapped to isomorphic states at differ-

ent densities. Given, as before densities ρ1 and ρ2, and temperature T1, the estimated

isomorphic T2 is given using the force method by

T2 = T1

(
ρ1
ρ2

)1/3 |F2|
|F1|

(5.3)

The above expression was derived by minimizing a certain mismatch function

between reduced forces at the two densities, but it can be interpreted quite simply: it

is the temperature for which the magnitude of the force vector is the same in reduced

units for both densities. Note that the concept of temperature may not be well defined

for an isolated configuration when non-equilibrium, i.e., T1 could be unknown if only
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one single configuration is provided. Dyre has shown, however, that a temperature

can be defined for individual configurations, based on their potential energy, called

the systemic temperature.[43, 44] The force method can then also be interpreted as

giving the ratio of systemic temperatures upon a change of density.

Yet another interpretation of the force method is that it is analogous to the DIC,

but considering energy fluctuations associated with infinitesimal displacements of all

3N coordinates from a given configuration. However in that case, expression (5.3)

corresponds not to the linear regression slope of the DIC plot but to a symmetric

slope equal to the ratio of standard deviations of the two variables. A version of the

force method more directly analogous to the DIC would involve the asymmetric linear

regression slope, giving the following “modified force method (FMMOD)” expression

for the new temperature

T2 = T1

(
ρ1
ρ2

)1/3
F1 · F2

F1 · F1

(5.4)

The modified force method gives a slightly lower temperature estimate. Since both

force methods only require a single configuration to give a temperature ratio T2/T1,

they can be applied repeatedly through a simulation, giving an immediate estimate of

statistical errors and possible systematic changes. Fig. 5.4(d) shows the temperature

ratios for both force methods for a simulation carried out at density 1.183 and a den-

sity increase of 1.1. There is a clear systematic decrease in the estimated temperature

ratio for the original force method as the strain increases from zero to steady state

conditions, from 1.653 to 1.649. The former value coincides with the estimate from

an NVT simulation, shown with a short horizontal line. It is also clear that the sta-

tistical fluctuations are rather small in the steady state–the differences appear only

in the fourth decimal, so that the estimate from a single configuration would indeed

give a precise estimate of the ensemble average. The figure shows also the estimate

from the modified force method, which is systematically lower by about 0.7%. The
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SSS values are lower than the NVT values for both force methods, opposite to what

is seen in the γ and DIC methods, and the differences are small, of order 0.25%.

Note here that even apart from the ability in principle to do large density changes,

the standard numerical methods for generating isomorphs (integration of the equation

of a configurational adiabat and the direct isomorph check) are both technically based

on sampling from an equilibrium ensemble. The appeal of the force method is that it

requires in principle only a single configuration, though averaging over (relatively) few

independent configurations gives more precise estimates. Thus it allows generation

of isomorphic state points without erasing the thermal history.

5.3.5 Comparison of above methods

In this subsection we compare the methods described so far. We have seen in the

example shown in the figures above that for the initial density 1.183 and a density

increase of 10%, slightly different estimates of the temperature ratio are given by

the different methods, which are summarized in Table 5.1. The largest temperature

factor is given by the force method in the steady state flow, while the smallest is

given by either the γ method or DIC using NVT data or the stress-based DIC using

either NVT or SSS data. Concentrating from now on on the SSS estimates, the spread

between highest and lowest corresponds to 3.5%. We next consider how this variation

depends on the size of the density jump.

What we do is the following. First of all, for the results from the NVT simulation,

we run one NVT simulation at the starting density ρ = 1.183 and temperature Tstart =

0.3 (cooled with the fastest rate). At each simulation time step, the configuration is

scaled to other nine densities and the needed quantities such as potential energy, force

method temperature factor as well as the stress are then calculated at these scaled

densities. We label the densities with subscripts starting from zero, as ρ0 = 1.183,

ρ1 = 1.1ρ0, . . . , ρ9 = (1.1)9ρ0. The temperature factors of all methods can then
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Figure 5.5: Top panel: temperature factors from different methods against density
for starting density 1.183. Solid lines are for NVT simulation (NVT) 107 steps and
dashed lines are for steady state (SSS). Inset zooms in for the largest two densities.
Bottom panel: the ratio between the highest and lowest temperature factors of the
SSS from the top panel versus density. Solid line starts at ρ = 1.183, and dashed line
starts at ρ = 1.301.
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be obtained. Similar for the steady state results (SSS). We shear the same starting

configuration with the fastest strain rate ˜̇ε = 10−3. At each simulation time step, same

procedure is performed and the corresponding SSS results are acquired. Fig. 5.5 (a)

shows the temperature factors from the aforementioned methods versus density. For

small density changes, all these methods return similar results with little discrepancy,

even for our non-equilibrium state. This discrepancy increases with larger density

spans, indicating that one needs to be more cautious when finding isomorphs under

such situations. On the other hand, the same calculation of temperature factors but

at a 10% higher starting density shows much less difference between various methods,

as shown in Fig. 5.5 (b). The higher the starting density is, the closer the system

is to the inverse power law potential (IPL) system, the more accurate the isomorph

approximation is, leading to the overall smaller Tmax/Tmin in Fig. 5.5. Note here that

the IPL system is generally considered to be isomorphically exact. For our lowest

density the value of the correlation coefficient R, is around 0.86-0.87 (see the caption

of Fig. 5.4), lower than the typical criterion of 0.9 for good isomorphs, therefore it is

not surprising that the methods give diverging estimates. For the next lowest density,

1.301, the value of R is 0.972, substantially higher, and therefore one can expect less

divergence between the different methods, as the potential energy landscape becomes

increasingly well approximated by that of an IPL.

5.3.6 Matching the flow stress

We are primarily interested in identifying isomorphs as curves along which physically

relevant quantities, a key example being the flow stress, are invariant (in reduced

units). Therefore the question is now which of the above methods actually yields the

most invariant flow stress?

Figure. 5.6(a) shows for density 1.301 the reduced flow stress obtained by simu-

lating at several temperatures, corresponding to the temperature estimates using the
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Figure 5.6: The reduced flow stress σ̃f and reduced peak stress σ̃p against temperature
near the point of matching stress at ρ = 1.301 (left two panels) and ρ = 2.789 (right
two panels). Same cooling rate and strain rate as in Fig. 5.1. Solid black lines are
linear fits. Gray horizontal lines indicate the σ̃f in panel (a) and (b), and σ̃p in (c)
and (d) at the reference density with shaded region indicating error. Arrows in panel
(a) and (b) point to T estimated using: (i) DIC stress method; (ii) DIC PE method;
(iii) Analytical gamma method; (iv) FMMOD; (v) FM.
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five methods mentioned above. Panel (b) of the figure shows a similar plot for the

highest simulated density; here the trial temperatures were not those given by the

other methods, but chosen to span a similar range. To obtain precise estimates of

flow and peak stresses, averaging of the 40 independent runs is necessary. The errors

on the flow stress can be made reasonably small by averaging over strains 2− 4 and

over the 40 runs. The errors on the peak stress are necessarily larger because long

runs do not help here, although averaging independent runs still helps. There is a

clear negative linear dependence of the reduced flow stress on temperature, reflecting

that barriers to flow can be crossed more easily at higher temperature (thus requiring

smaller external driving). The arrows indicate the temperatures determined by the

various methods, which clearly don’t match the reference flow stress within errors.

The method that comes closest is the modified force method.

Panels (c) and (d) of Fig. 5.6 show the measured reduced peak stresses at the

same two densities and and the same temperatures as the flow stress in panels (a)

and (b). Like the flow stress, the peak stress also has a negative linear correlation

with temperature, although the larger errors combined with the limited temperature

range in panel reduced the apparent correlation in (c) . Comparison with the value

at the reference density indicated by the gray bars presages one of our main results,

that for high density changes no temperature can be found which matches both the

flow and peak stresses with their values at the reference state point.

We then decide to determine the isomorphic temperatures pragmatically for each

density using the linear relation in Fig. 5.6(a) and (b). The ultimate criteria is to

match the flow stress at each density to the reference one ρ0. Assuming the linear

relation in Fig. 5.6 is generally true near all densities, the rigorous way is to follow

what we do in Fig. 5.6, which is to simulate several temperatures in a small range

and calculate the slope of stress against temperature. Then the Ti at density ρi can

be obtained by simply solving the linear equation provided the stress at ρ0. However,
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this procedure of simulating several temperatures at each density would be very time

consuming if it should be done at all densities of interest.

Let’s recall that for pair potentials, an analytic formula describing the shapes

of isomorphs is available[62], which for the Lennard-Jones potential takes the form

T (ρ) ∝ h(ρ), where the density scaling function h(ρ) is given by

h(ρ) = Aρ4 −Bρ2 (5.5)

The analytic form of h(ρ) is directly related to that of the potential (indeed it is

essentially the second derivative of the pair potential, evaluated at r = ρ−1/3 and

expressed in reduced units)[14]. The overall normalization of h(ρ) is undefined since

there is a proportionality constant in the relation between it and the temperature, so

there is in fact only one free parameter, which can be taken to be the ratio B/A. If

this is known then given two densities, ρ1 and ρ2, and a temperature T1 corresponding

to density ρ1, the temperature T2 corresponding to density ρ2 is given by

T2 = T1
h(ρ2)

h(ρ1)
= T1

ρ42 − (B/A)ρ22
ρ41 − (B/A)ρ21

(5.6)

To fix the parameter B/A, two options are available. One can note that the logarith-

mic derivative of h(ρ) must also be equal to the density scaling exponent γ,

γ(ρ) =
d lnh(ρ)

d ln ρ
=

4ρ4 − 2(B/A)ρ2

ρ4 − (B/A)ρ2
, (5.7)

where here the approximation of γ depending only on density is explicit. Considering

a particular reference density ρref at which γ is to be evaluated (for example by

simulation), isolating B/A gives

B

A
=
γ(ρref − 4)ρ2ref
γ(ρref − 2)

(5.8)
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In principle, if isomorph theory was exact, one could run a single simulation at the

reference density, evaluate γ from the U,W fluctuations there, use Eq. (5.8) to deter-

mine B/A and generate the whole isomorph using Eq. (5.6). This works reasonably

well for small density jumps, say 10%–so certainly better than integration method

with steps of 1%, but it does not give accurate temperatures for very large density

jumps. Rather, the greatest utility of the analytic isomorph expression is its use in

interpolating between points known to be isomorphic to get the points between[13].

That is, if both densities and temperatures for two state points, ρ1, T1 and ρ2, T2 are

known, Eq. (5.6) can be solved for B/A, giving

B

A
=
ρ42 − ρ41 T2T1
ρ22 − ρ21 T2T1

(5.9)

Then temperatures for densities between ρ1 and ρ2 can readily be found. This is the

manner in which we use the analytical formula here–note that it does not explicitly

depend on having equilibrium. In order to use this interpolation, two isomorphic

points are needed in prior. In this way, instead of all nine densities, we only need to

obtain two temperatures at the starting and ending densities.

It should be noted here that in applying the analytic expression for isomorphs,

we have to treat ρ0 separately. Related to its somewhat low value of the correlation

coefficient R (Fig. 5.4) and the fact that methods for determining isomorphic tem-

perature starting from this density diverge rather quickly (Fig. 5.5), it turns out that

no parameterisation of the analytic formula can match the reduced flow stress over

the full range from ρ0 up to ρ9. Such a parameterization can be found for the range

ρ1 to ρ9, however. Thus we work as follows: Given the reduced flow stress at ρ0 (and

T0 = 0.3) we use the linear fits in Fig. 5.6 (a) and (b) to determine the temperatures

of matching reduced flow stress at densities ρ1 and ρ9, respectively. From Eq. (5.9)

with ρ2 replaced by ρ9, and using these fit-determined temperatures T1 and T9 we fix

the parameter B/A. Finally for the remaining densities ρ2, . . . , ρ8 we determine the
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isomorphic temperatures from Eq. (5.6) in the form

Ti = T1
h(ρi)

h(ρ1)
= T1

ρ4i − (B/A)ρ2i
ρ41 − (B/A)ρ21

. (5.10)

Figure 5.7: The isomorph determined by matching flow stress. The large black di-
amond indicates the reference state point. The two black squares represent points
whose temperatures were identified by matching the reduced flow stress to that of
the reference, using the linear fits in Fig. 5.6, and the red diamonds are points whose
temperatures have been determined by interpolation between the black squares, using
Eq. (5.10).

Figure 5.7 illustrates the construction of the isomorph using the interpolation

method. The resulting densities and temperatures are listed in Table 5.2. These val-

ues were determined by matching the flow stress using the highest strain rate (reduced

value 10−3) (and fastest cooling-note though that cooling-rate should not matter for

the flow stress). Rather than separately repeat this procedure for identifying isomor-

phic temperatures for the other strain rates and cooling rates, we take as a working

hypothesis that the isomorphs in the ρ − T plane determined by matching reduced
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Density Temperature
1.183 0.3

1.301299 0.487031
1.431428 0.774540
1.574571 1.208396
1.732028 1.859225
1.905231 2.831010
2.095754 4.276669
2.305330 6.420943
2.535863 9.593855
2.789449 14.279829

Table 5.2: The densities and temperatures along the isomorph identified through
matching the flow stress at the first, second, and last densities, and then using the
analytical method to obtain the temperatures in between.

flow stress do not depend on which reduced strain rate and which cooling rate was

used. The validity of this hypothesis will be investigated in the next section. The

next step is the shearing deformation simulations along this isomorph. These are still

very time-consuming, because at each density, and the corresponding temperature

determined by the above procedure, 40 independent runs were carried out. This was

repeated for all three cooling rates and all three strain rates. From these simulations,

stress strain curves in reduced units are plotted, and the flow stress and peak stress

are extracted as described above.

5.4 Invariance of flow stress and peak stress

With the protocol for determining the putative isomorph established, we now present

our main results. Figure 5.8 shows the full (reduced) stress strain curves for all densi-

ties along the isomorph generated as described above, using reduced strain rate 10−3

and initial configurations cooled at rate 10−5 (at the reference density; configurations

were scaled to the indicated densities before shearing). The initial elastic parts of the

curves overlay, showing that the elastic shear modulus is invariant in reduced units

along the isomorph. Also it is clear that the steady state flow stresses match, at least
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within the fluctuations–this is expected since the isomorph was constructed to have

invariant flow stress. Nevertheless it serves as a check that the analytic formula for

constructing the isomorph is reliable. However, the peak in the stress-strain curve

is clearly not invariant–it decreases systematically with increasing density, by about

20%, as the density rises to 2.8. Thus we have a clear deviation from isomorph invari-

ance when the transient response to shearing is considered. It is worth recalling that

the change in real (no reduced) shear stress over the density range studied involves a

factor of ρkBT which changes by over two orders of magnitude.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

= 1.183
= 1.301
= 1.431
= 1.575
= 1.732
= 1.905
= 2.096
= 2.305
= 2.536
= 2.789

Figure 5.8: Stress-strain curves along isomorph determined by matching flow stress
(in reduced units) of the largest density and second density to that of the first density
(indicated by dashed line), and then using analytical formula to calculate correspond-
ing T in between. Glasses at cooled (at lowest density) at rate |Ṫ | = 10−5 and sheared
at reduced strain rate ˙̃ε = 10−3.

We find similar results for the other strain rates and cooling rates. Rather than

show all of those stress-strain curves here, we instead extract the flow stress and

peak stress from each stress strain curve, and plot these as a function of density in

Fig. 5.9(a) and (b), respectively.
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Figure 5.9: (a) σ̃f and (b) σ̃p against density along the isomorph for |Ṫ | =
10−5, 10−6, 10−7 (black, red, blue), and ˜̇ε = 10−3, 10−4, 10−5 (circle, square, triangle).
Each point in (a) is an average of 40 shear simulations (on 40 individual configu-
rations) and we use the standard deviation divided by

√
40 as the error (

√
30 for

˜̇ε = 10−5). For the peak stress (panel (b)), we first divide the 40 shear runs into 5
groups and obtain 5 averaged stress and strain curves. We then fit the data for 10%
strain around the maximum stress using a fourth-degree polynomial and identify the
maximum of the fit as the σ̃p. The error is the standard deviation of the 5 values
divided by

√
5. The three families in (a) correspond to ˜̇ε = 10−3, 10−4, 10−5 from top

to bottom respectively. The errors are all smaller than the marker size. The position
of the gray bars in (a) are the reference σ̃f (at ρ1 cooled with |Ṫ | = 10−5 and sheared
with ˜̇ε = 10−3) and the width of the bar indicates the reference σ̃f plus or minus the
error (standard deviation divided by

√
40 or

√
30 for the slowest strain rate).
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Before considering the isomorphic behavior, we note that as expected, slower

strain rates decrease both the peak stress and the flow stress; and slower cooling rates

increase the peak stress but leave the flow stress unchanged. The isomorphic behavior

is understood through the dependence (or non-dependence) of these quantities on

density. In part (a) of the figure we see that the flow stresses are indeed flat within

errors, as they have been constructed to be (the errors are comparable to, though

smaller than, the symbol sizes). This plot also confirms our hypothesis that the

isomorph determined by requiring invariant flow stress at one cooling rate and reduced

strain rate is valid also for the others. Part (b) of the figure shows the evolution of

the reduced peak stress as a function of density along the isomorph. The trend is

similar for all cooling and strain rates, with more or less similar relative drops of

peak stress as density increases. In all cases the bulk of the drop occurs over densities

ρ1 ' 1.3 to ρ5 ' 1.9, after which the change in reduced peak stress for each 10%

increase in density is reduced. Interestingly the change between densities ρ0 and ρ1 is

also smaller. Above density 1.9, σ̃p apparently continues to decrease linearly, which

is surprising, since one would expect it to flatten out in the high-density limit as

pure-IPL behavior begins to dominate. The magnitudes of the relative stress drops

over the full density range for all strain and cooling rates are given in Table 5.3. The

only apparent trend here is that both faster cooling and faster shearing tend to give

slightly smaller drops, around 20% instead of around 24%. An apparent outlier is the

value for the highest cooling rate and the lowest strain rate (black triangles), where

the change in reduced peak stress is quite limited, only 11%. This case corresponds

to the least stable glass being very slowly deformed, and has the lowest peak stress

to start with. Table 5.4 shows the ratio between peak stress and flow stress at the

lowest density. This indicates indeed that that same case of lowest strain rate and

fastest cooling has the lowest ratio of peak to flow stress at the lowest density, 1.31.

However there does not seem to be, upon comparing Tables 5.3 and 5.4, a general
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˜̇ε = 10−3 ˜̇ε = 10−4 ˜̇ε = 10−5

|Ṫ | = 10−5 0.204± 0.011 0.213± 0.014 0.114± 0.009

|Ṫ | = 10−6 0.211± 0.006 0.243± 0.008 0.236± 0.012

|Ṫ | = 10−7 0.207± 0.010 0.242± 0.006 0.236± 0.008

Table 5.3: Fractional change of σ̃p between the highest- and lowest-density isomorph
points for different |Ṫ | and ˜̇ε combinations.

˜̇ε = 10−3 ˜̇ε = 10−4 ˜̇ε = 10−5

|Ṫ | = 10−5 1.87 1.67 1.31

|Ṫ | = 10−6 2.16 1.99 1.71

|Ṫ | = 10−7 2.43 2.37 2.04

Table 5.4: Ratio of σ̃p to σ̃f for the lowest-density isomorph points for different |Ṫ |
and ˜̇ε combinations.

correlation between fractional drop of peak stress with increasing density, and initial

ratio of peak to flow stress. The most that can be said probably is that when the

latter ratio is very low, there is less contrast between the non-flowing and flowing

states, in the sense that the microscopic barriers to be crossed are not much different

to start with and therefore there is less room for variation along the isomorph.

5.5 Invariance of pair structure and single-particle

dynamics in the steady state

The results of the previous subsection concern macroscopic mechanical properties. In

this subsection we consider more microscopic properties, in particular self-diffusion

and structure. To investigate self-diffusion we plot in Fig. 5.10(a) the mean squared

transverse displacement (MSD) in reduced units, as a function of reduced time, for all

densities along the isomorph at reduced shear rate 10−4. By transverse we mean that

only components of displacement orthogonal to the shearing direction are included.

The quality of the collapse is extremely good, so that it is not obvious to the eye

that there are in fact ten curves plotted. This plot is based on data from a single run
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out of 40, since there is sufficient averaging over particles to get good statistics for

single-particle dynamics.
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Figure 5.10: Collapse of (a) 〈∆r̃2yz(t̃)〉 and (b) g(r̃) (for AA pairs) for steady state
only along an isomorph containing 10 points in the phase diagram calculated using
the method described above. The starting configuration is at ρ0 = 1.183 and T0 = 0.3
and was cooled with |Ṫ | = 10−5. Shearing for all state points was with reduced strain
rate ˙̃ε = 10−4.

Fig. 5.10(b) shows the radial distribution function (RDF) for AA pairs along the

same isomorph. The collapse here is also very good, similar to what is seen in equilib-

rium liquids[53]. Both the MSD and RDF are determined from configurations drawn

from the steady state. The quality of the invariance apparent in Fig. 5.10 confirms

that the isomorph has been determined correctly. The non-invariance evidenced by

the failure of the peak stress to collapse seems therefore to be restricted to the tran-

sition from non-flowing to flowing states. This will be discussed more below.

5.6 Investigation on the non-isomorphic peak stress

In attempting to understand the failure of the peak stresses to collapse, an important

question is whether the configurations sampled near the stress peak at different den-

sities are equivalent. Equivalent means (statistically) indistinguishable after scaling

to match densities. The simplest way to answer this question is to take configura-

tions from near the peak in a simulation at one density, scale them to a different
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density and calculate the shear stress at the new density, thus generating a fictional

stress-strain curve based on scaling configurations statically. This is similar to what

is done in the stress-DIC method proposed above, but rather than use it to generate

an isomorph we use it to compare the potential energy surface sampled by the same

reduced configurations at different densities. If the “fake” high-density stress-strain

curve matches that actually simulated at high density, then the conclusion would be

that configurations near peak stress are essentially equivalent to the corresponding

ones at low densities. The interactions are softened more at high densities near peak

stress than for high densities at lower stress (i.e. the steady state). If they do not

match then something different must be happening in the microscopic dynamics dur-

ing the stress peak. Fig. 5.11 shows the result of this check. The curve generated

from configurations sampled at the reference density ρ0 and scaled ρ9 (green) matches

the curve at the reference density well, except for a small difference in normalization,

and does not match the curve obtained from actual simulating at the high density ρ9,

which has the much lower stress peak. This shows that the second possibility men-

tioned above must be the case: the particles undergo non-equivalent motion when

simulated at the higher density. We examine what this non-equivalence is below.

We now present results of analyzing strain profiles and local measures of nonaffine

activity in order to determine whether the variation of peak stress can be associated

with some systematic difference in the spatial organization of the initiation of flow,

for example if flow is more or less localized in the peak at higher densities compared

to lower densities.

The first indicator we consider is the non-affine displacement at the particle level,

same as in chapter 3 except here it is 3D. Recall that shearing motion occurs in the

x-direction, while the gradient is in the y-direction. We first define the affine displace-

ment ∆~rA,i for particle i as ∆~rA,i = ∆ε yix̂, where yi is the position of particle i in the

gradient direction and x̂ is the velocity direction. This is simply the displacement as-
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Figure 5.11: Comparison between stress-strain curves obtained from shearing at the
lowest density (blue), computing the stress from the same configurations scaled to the
highest density (green), and actually shearing at the highest density (orange) with
˙̃ε = 10−3 and |Ṫ | = 10−7.

sociated with the macroscopic strain imposed on the system, which is known. Under

shear, local rearrangements cause deviations from this affine motion. We define such

deviation as the non-affine motion ∆~̃rNA,i = ∆~̃rreal,i −∆~rA,i, where ∆~̃rreal,i is the full

displacement of particle i [78, 54, 19]. We expect that each component of the non-

affine displacement is symmetrically distributed about zero, but it is possible that

the distributions for the different components could be different. Figure 5.12 shows

the variance of the non-affine displacement for each component, in reduced units.

The data in part (a) of the figure are for displacements between undeformed con-

figurations (strain 0) and corresponding configurations deformed to strain 0.12. The

figure thus contains information about particle motions during the transition from the

non-flowing to the flowing state, specifically those associated with the stress peak. As

a function of increasing density the variance for each component increases systemat-

ically, indicating a non-isomorph invariant behavior. In part (b) of the figure, data
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Figure 5.12: Comparison of non-affine particle motion over 12%-strain intervals be-
tween (a) transient state with ε ∈ [0, 0.12] and (b) steady state with ε ∈ [3.65, 3.77].
Data is averaged over all particles and 40 independent runs. Color indicates the three
components of the nonaffine motion squared and shown in the legend in (a).
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for a similar strain interval, but taken from the steady steady regime is shown. Here

no systematic variation as a function of density is apparent. Systematic differences

between components are visible, with the variance for the x-component of non-affine

displacement being highest both in the transient case and in the steady state. Chen et

al. studied distributions of non-affine motion in experiments on colloids[19]; their Fig.

8 shows PDFs of non-affine motion in the three different directions. The distribution

for the out-of-plane direction (their y-direction, corresponding to our z-direction) is

slightly narrower than for the other two directions, which is consistent with what we

see.

This measurement of nonaffine motions indicates increasing possibility for rear-

rangements to occur within systems at larger densities. Such dependence could be one

contribution to the easier initiation of flow along the isomorph. The reason behind

this larger variance of nonaffine motions for larger densities needs further investiga-

tion.

We note here that larger variance does not guarantee stronger spatial hetero-

geneity. The variance can originate either from spatial heterogeneity, i.e. different

positions in the system behave differently; or simply from larger fluctuation, as illus-

trated in Fig. 5.13.

Therefore, we consider another related measure for spatial inhomogeneity which

is the displacement profiles like Fig. 5.13 left panel. We calculate it by first binning

particles according to their y-coordinate and then averaging the x-displacement ∆x

for all particles in a bin. This gives a probe of systematic variation in the gradient

direction, while averaging over other directions.

An example is shown in Fig. 5.14 for a 12% strain interval from the steady state

in a particular run. A clear systematic deviation from the affine profile is visible:

the system exhibits two distinct regions with the strain differing by a factor of two

as indicated by the linear fits (note that the region of the left is connected to that
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Figure 5.13: A sketch to illustrate the two possible origins for nonaffine motion vari-
ance. The left panel shows spatial heterogeneity while the right panel shows simple
fluctuations.
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Figure 5.14: Example of a displacement profile. Displacement is calculated in steady
state between ε = 3.65 and ε = 3.77 from a shear simulation at ˙̃ε = 10−4 from a
configuration originally cooled at |Ṫ | = 10−5, by averaging the x-component of the
particles’ displacements over all particles within a bin defined by their y-coordinate.
The straight line is the affine displacement following the applied strain. Dotted red
lines are linear fits at different regions with two distinct slopes (treating the leftmost
and rightmost regions together due to periodic boundary conditions).
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Figure 5.15: Comparison of norm of non-affine motion in velocity direction averaged
of 40 configurations over 12%-strain intervals between transient state with ε ∈ [0, 0.12]
and steady state with ε ∈ [3.65, 3.77]. Errors are the standard deviation of the 40 runs
divided by square root of 40. The definition of norm is the mean squared deviation
of the displacement profile in Fig. 5.14. Note that the first density points are not
shown here.

on the right via the periodic boundary conditions). This coexistence of regions with

differing strain is akin to shear-banding, whereby strain is localized into a narrow

band [136, 129, 50].

Profiles for different runs exhibit somewhat similar shapes, with mostly a single

region of higher strain, more or less sharply delimited from the rest of the system,

with varying contrast (i.e. difference in strain). To quantify this contrast and look for

systematic variations along the isomorph, we take the mean squared deviation of each

point from the affine line, yielding a norm of the (non-affine) displacement profile. For

the example in Fig. 5.14 the norm is 0.022. Note this measure of non-affine motion

differs from that presented in Fig. 5.12 in the initial averaging within a y-bin before

squaring and further averaging over bins. We calculate the mean norm from the 40

runs at each density, and plot these as a function of density in Fig. 5.15.

As with Fig. 5.12 we see a clear trend in the transient data in panel (a), and
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no discernible trend in the steady state data in panel (b). This suggests that at

lower density there is a greater tendency for quasi-shear-banding to occur during the

stress peak. This decreases with increasing density, particularly over the first three

densities. The steady-state values in panel (b) are mostly below the low-density

transient values; there are a couple of exceptions to this but no overall trend.We have

only looked at a specific interval covering 12% of strain in all cases; an interesting

question for future work is to what extent a given quasi-shear-band persists over

longer amounts of strain. Interestingly, and apparently counterintuitively, the trend

visible in Fig. 5.15(a) is in the opposite direction to those shown in Fig. 5.12(a). An

interpretation which encompasses both behaviors would be that the stress peak at

the lower densities coincides with particles exhibiting less overall non-affine motion

than at higher densities, but where whatever non-affine motion is actually present

is more coherent (less contribution from fluctuation as in Fig. 5.13 right panel), and

gives a larger signal in the displacement profiles.

5.7 Conclusion

The first part of this chapter was concerned with studying different methods for de-

termining isomorphs in out-of-equilibrium situations. Particularly when large density

changes are involved, different methods give varying results for the temperature at

which the new state point should be isomorphic to the starting, or reference state

point. The difference is up to 20%–of an overall variation of temperature up to a fac-

tor of order 50, for density changes of a factor up to about 2.3. For moderate density

changes one can at least argue that any of these methods can give a reasonable esti-

mate of isomorph temperatures; in particular the force method or its modification can

do so with little computational cost. However one cannot be sure about the quality of

the isomorph determined this way. The dream of being able to make directly reliable
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isomorph jumps in non-equilibrium situations is thus not realized. Presumably one

could still make small jumps of 1-2% in density, simulating at each step and using

a fluctuation method to compute the next temperature, as in the original isomorph

paper[53]. This would be time consuming, but perhaps would not require as many

independent runs as we have used here. Given these difficulties our strategy has been

to require the reduced flow stresses to match at all densities as a practical method of

identifying the isomorph.

Although gamma/DIC method can match most of the energy fluctuations very

well, it does not guarantee the flow stress is matched. The latter is a signature of

the energy barriers and what is clear is that the relevant energy barriers scale with a

smaller factor than the more dominant contribution to the energy fluctuations. This

would be worth investigating using barrier finding techniques on small systems to

trace the way an energy barrier scales with increasing density.

Since Fig. 5.15 indicates that shear banding occurs also in the steady state, a vary-

ing tendency towards shear banding depending on density could actually be present

in the steady state. Since we have chosen the isomorph temperatures to match the

reduced steady-state shear stress we do not see this in our data, but this could po-

tentially underlying the failure of the fluctuation methods to predict the steady-state

stress.

Nevertheless, we show that our pragmatical method utilizing the analytical for-

mula which describes the shape of an isomorph is able to match the flow stress to an

excellent degree. The invariance of pair structure and the single-particle dynamics

in the steady state is also verified. However, the peak stress is not invariant. Strain

profiles and dependence of nonaffine activity on the density are examined. We find

that particles in configurations with larger densities in average are more likely to have

larger nonaffine motions, which supports our observation that peak stress decreases

against density along the isomorph (i.e. easier to initiate the flow). More radical ex-
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planations for this non-isomorphic behavior of peak stress needs further investigation

and the barrier finding techniques mentioned above might help.
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Chapter 6

Conclusion

How materials react to externally applied deformation has been studied for centuries

for various purposes. For example, it is of extreme importance for industrial appli-

cation to understand how and when certain brittle materials fail or ductile materials

flow under load. To be more specific, avalanches and earthquake are real life instances

of such but at a huge length scale and understanding the mechanisms of which would

be invaluable. There is no doubt that numerous ways exist to characterize and study

these phenomenon. My interest is to understand them from the microscopic scale,

i.e. what happens to the individual particles that causes the macro-scale behaviors,

specifically for disordered solids. Recall that in the first chapter, the disordered solids

or amorphous solids are defined as materials with disordered structures at any scales

that share both solid and liquid properties.

However, this picture is too big. A metaphor that I used before in the first chap-

ter is that the whole research area mentioned in the previous paragraph is like a tall

building under construction. I work on amorphous solids systems that flow when

deformed, which is like one floor in the building. Different properties or quantities

that people care about are then like rooms in this floor. My first project (chapter 3)

where we investigated the influence of polydispersity is trying to add bricks to these



131

rooms. A reminder that large polydispersity generally means that the systems are

composed of particles of various sizes. We verify that highly polydisperse systems be-

have qualitatively different than low-polydisperse systems that people usually study.

We show that size matters in a way that large particles behave qualitatively different

than small ones and have strong influence on their surroundings. An effective thresh-

old size can be defined to distinguish large from small. We believe these bricks are

significant in the sense that polydispersity is so widely prevalent in both real life and

model systems people study and its effects on the behaviors of different systems are

of great necessity to be understood. In fact, as mentioned in the introduction, indeed

many novel interesting results are found for highly-polydisperse systems. Our results

provide some new “bricks” for this purpose.

Furthermore, polydispersity has been drawing increasing amount of attention re-

cently among the soft matter physics community. An example is that the “Swap

Monte Carlo” simulation method has been applied to probe increasingly low tem-

peratures of the glassy systems. Recall that a glassy system is defined as an out of

equilibrium state where it takes unrealistic amount of time for the system to equilibrite

on its own. In terms of simulation studies on these systems, the cost is indicated by

the required computation power and time. The lower the temperature the harder the

equilibrium process is and the more expensive the computation cost is. For decades

people have been working on trying to reach equilibrium state at as low temperature

as possible for glassy systems. The “Swap Monte Carlo” method has been shown to

have excellent performance for this purpose. The key point here is that the method

crucially relies on having sufficiently broad polydispersity so that Monte Carlo swaps

of particle radii help equilibrate the system. Our results are thus important for this

area and hopefully can raise more interesting studies along this route.

My second project is about a different “room” where the application of isomorph

theory on glassy systems under shear is studied. A reminder here that isomorph the-
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ory shows the existence of a hidden scale invariance for many certain systems. The

invariance here can be simply understood as the following. When the density and

temperature of a system are scaled properly, many structural and dynamical proper-

ties of the system are invariant when expressed in appropriate units. Such a density

and temperature curve is called an isomorph. One particular reason that I think

the isomorph theory is interesting is that it simplifies the description of the state of

matter for isomorphic systems. The two control parameters density and tempera-

ture can be essentially unified as one that determines which isomorph the system is

at, which is the beauty of the theory. It also provides an alternative perspective to

understand the behaviors of glassy systems and many interesting physics have been

learned. For example, new insights have been shown to the understanding of the

density-temperature state diagram. The glass transition line is also an isomorph for

isomorphic systems. Glass transition line separates the glass and liquid states on

the state diagram (see chapter one for more information). Crunching and quenching

are also related through the theory. Crunching an isomorphic system to a different

density is essentially the same as quenching to the final state from a state point with

isomorphic temperature to the starting state and same density as the final state. The

thermal histories of the two different ways are shown to be the same.

We verified the applicability of the isomorph theory on glassy systems at finite

temperature under shear for steady state. Recall that after the elastic response, a

glassy system in general first goes through a transient state where the stress usu-

ally shows an overshoot and then enters the steady state where the stress fluctuates

around a certain value. Invariance of many quantities are verified. More importantly,

we show that the steady state stress is isomorphic while the peak stress at the tran-

sient state is not. There must be some key differences between the transient and

steady states that cause the distinct results. We provide an initial investigation on

the spatial heterogeneity and nonaffinity for the two states which do show some dif-



133

ferences. Nonaffinity quantifies the overall degree of deviation of individual particle

motions to the affine shear motion. More work is needed. In fact, we note that the

finding of the opposite isomorphic behaviors of the two states indeed supports the

“alternative perspective” idea mentioned above, which triggers new questions waiting

to be answered.

In conslusion, we show the effects of polydispersity and application of isomorph

theory on glassy systems under shear. Further studies are required to understand 1)

more other properties of the polydisperse systems and 2) the differences between the

transient and steady state that cause the non-isomorphic peak stress at the transient

state.
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[110] G. Petekidis, A. Moussäıd, and P. N. Pusey. Rearrangements in hard-sphere

glasses under oscillatory shear strain. Phys. Rev. E, 66(5):051402, November

2002. doi: 10.1103/physreve.66.051402.

[111] W. H. Press, S. A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C. Cambridge University Press, second edition, 1992.

[112] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. Numerical Recipes in C: The Art of Scientific Computing, Second Edition.

Cambridge University Press, Cambridge ; New York, 2nd edition, October 1992.

ISBN 978-0-521-43108-8.

[113] Rodney D. Priestley. Physical aging of confined glasses. Soft Matter, 5(5):

919–926, 2009. doi: 10.1039/b816482g.

[114] Douglas Ridgway, Gordon Broderick, Ana Lopez-Campistrous, Melania Ru’aini,

Philip Winter, Matthew Hamilton, Pierre Boulanger, Andriy Kovalenko, and

Michael J. Ellison. Coarse-grained molecular simulation of diffusion and reaction

kinetics in a crowded virtual cytoplasm. Biophys. J., 94(10):3748–3759, May

2008. doi: 10.1529/biophysj.107.116053.

[115] J. Rottler and M. O. Robbins. Shear yielding of amorphous glass solids: Effect

of temperature and strain rate. Phys. Rev. E., 68:011507, 2003. doi: 10.1103/

PhysRevE.68.011507.

[116] J. Rottler and M. O. Robbins. Yield conditions for deformation of amorphous

polymer glasses. Phys. Rev. E, 64:051801, 2005.

https://link.aps.org/doi/10.1103/PhysRevLett.126.228002
https://link.aps.org/doi/10.1103/PhysRevLett.126.228002


150

[117] Peter Schall, David A. Weitz, and Frans Spaepen. Structural rearrangements

that govern flow in colloidal glasses. Science, 318(5858):1895–1899, December

2007. doi: 10.1126/science.1149308.

[118] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J. Liu. A

structural approach to relaxation in glassy liquids. Nature Phys., 12(5):469–471,

February 2016. doi: 10.1038/nphys3644.

[119] T. B. Schrøder and J. C. Dyre. Simplicity of condensed matter at is core:

Generic definition of a Roskilde-simple system. J. Chem. Phys., 141:204502,

2014. doi: 10.1063/1.4901215.

[120] T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre. Pressure-

energy correlations in liquids. III. Statistical Mechanics and thermodynamics

of liquids with hidden scale invariance. J. Chem. Phys., 131:234503, 2009. doi:

10.1063/1.3265955.

[121] T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre. Pressure-

energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones sys-

tems. J. Chem. Phys., 134:164505, 2011. doi: 10.1063/1.3582900.
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