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Abstract 

 

Unregulated Heavy Metals in United States Public Water Systems: An Assessment of 

Contaminant Co-Occurrence and Human Health Risk 

 

By Alesha Thompson 

 

Background: The United States Environmental Protection Agency monitors unregulated 

contaminants in drinking water and consolidates these results in the National Contaminant 

Occurrence Database. Our objective was to assess contaminant co-occurrence and human health 

risk of unregulated metals (chromium, chromium-6, molybdenum, vanadium, cobalt and 

strontium) over 2013-2015. 

Methods: Multilevel Tobit regressions with state and water system random intercepts were used 

to estimate geometric means of each contaminant in public water systems. Human health risk 

was assessed by using the Environmental Protection Agency Regional Screening Level 

calculator. Co-occuring contaminant gene interactions were examined by using the Comparative 

Toxicogenomics Database and the Database for Annotation, Visualization and Integrated 

Discovery. 

Results: Public water supplies’ geometric means of vanadium and chromium were positively 

associated in the water samples recorded (r = 0.45, p < 0.01), and these contaminants co-

occurred in individual water samples. The geospatial maps of these contaminants in the top 5 cm 

of soil in the contiguous United States are similar. There were 24 overlapping genes that interact 

with these chemicals, and the most affected pathway was the HIF-1 pathway. 

Conclusion: This assessment is a preliminary step in toward understanding the potential health 

implications of unregulated contaminants in United States drinking water. Certain public water 

system samples returned values that represented potentially negative health effects and they 

should be examined further to understand what is causing the high values. Further research needs 

to address the cumulative human health risk of ingesting more than one contaminant in the 

drinking water. 
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1. INTRODUCTION 

There are thousands of chemicals in United States drinking water; some are potentially 

beneficial, and some are potentially harmful (Guidotti, 2009). Very few of these contaminants 

are regulated. Some of the chemicals found in drinking water are naturally occurring and 

although human activities can increase the concentrations available, fully eliminating these 

exposures from the environment is impossible (Gong & Schaubel, 2018). A number of heavy 

metals are naturally occurring contaminants and occur frequently in United States public water 

systems at high levels (Simic, 2017). Understanding which heavy metals pose health risks when 

ingested, and at what doses, is a priority for environmental health and environmental engineering 

professionals because these contaminants will be an exposure challenge regardless of polluting 

activities. The scientific community has begun to embrace the challenge of addressing how these 

naturally occurring contaminants may affect human health  (Almada, Golden, Osofsky, & Myers, 

2017; Bundschuh et al., 2017).  

The United States has a surveillance system in place for these unregulated contaminants 

and years of data stored in the National Contaminant Occurrence Database. The Environmental 

Protection Agency (EPA) monitors unregulated contaminants in drinking water through two 

processes: The Contaminant Candidate List (CCL) and the Unregulated Contaminant Monitoring 

Rule (UCMR) (OW US EPA, 2015b). Through a multi-year process, organic contaminants, 

hormones, synthetic compounds and heavy metals are selected on criteria set forth by the Safe 

Drinking Water Act  (OW US EPA, 2015b) for monitoring under the CCL (US EPA, 2015b). 

Contaminants from the CCL are then chosen for monitoring under the UCMR (US EPA, 2015) if 

they satisfy two conditions: first, that the contaminant has potential to cause health effects, and 

second, the contaminant occurs in water systems at concentrations that would constitute a public 
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health concern (OW US EPA, 2015b). This is a three-to-four-year process wherein selected 

public water systems are regularly sampled for the contemporary list of UCMR contaminants 

(The Third Unregulated Contaminant Monitoring Rule (UCMR 3); Searching for Emerging 

Contaminants in Drinking Water, 2015). 

The objective of this secondary data analysis of the heavy metal measurements collected 

for the third wave of the EPA’s UCMR process (UCMR 3) is to assess the co-occurrence of 

contaminants and explore potential dimensions of the health risk that these chemicals may pose. 

 

2. METHODS 

2.1. Data  

The Environmental Protection Agency Unregulated Contaminant Monitoring Rule 3 

dataset contained detailed information about each sample obtained by each water system in the 

National Contaminant Occurrence Database on the US EPA website (OW US EPA, 2015a). The 

third wave of UCMR monitoring took place over 2013-2015, and all water systems serving > 

10,000 people were required to monitor for the assessment list. A number of heavy metals 

[chromium (Cr), chromium-6 (Cr (VI)), strontium (St), molybdenum (Mo), vanadium (V) and 

cobalt (Co)] were included on the UCMR 3 assessment list. Public water systems were required 

to sample groundwater twice in one consecutive 12-month period and these samples were 

obtained five to seven months apart. The water was sampled at the entry point to the distribution 

system as well as distribution system maximum-residence time-sampling locations and resulted 

in over 185,000 water samples for these heavy metals (The Third Unregulated Contaminant 

Monitoring Rule (UCMR 3): Fact Sheet for Assessment Monitoring (List 1 Contaminants), 
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2016). Samples were then distributed to EPA-approved laboratories and results of the monitoring 

are stored in the National Drinking Water Contaminant Occurrence Database (Simic, 2017). 

Public Water System ID and Public Water System Name identify each large water system 

that sampled for the contaminants. There were at least four samples per Public Water System in 

each state. Sample Method identifies the analytical method deemed appropriate for the specific 

contaminant by the EPA. Collection Date and Contaminant Name were recorded for each 

sample. The sample’s chemical concentration value was also documented as whether it was 

above or below the Minimum Reporting Level (MRL) (Simic, 2017). The MRL is based on the 

ability what the specific analytical method for that contaminant can detect (Simic, 2017). For any 

sample below the MRL, it was recorded as missing in the dataset along with the symbol “<”.  

While cleaning the dataset, only the heavy metal samples were selected. Samples were 

also refined to only include results from large water systems (serving > 10,000 people) (Table 

S1). 

2.2. Summary of Individual Contaminant Reported Values 

Box-and-whiskers plots (Krzywinski & Altman, 2014) were used to summarize the 

distribution of reported values for each contaminant separately. Many reported values were 

below the MRL, so these distributions may be unreliable. 

2.3. Assessment of Contaminant Co-Occurrence 

Tobit regression models account for censored data (Gong & Schaubel, 2018) and mixed-

effect Tobit models account for clustering of observations in a dataset (Lu, 2018). Mixed-effect 

Tobit regression models of the log-transformed contaminants, left-censored at the log-

transformed MRL, with normally distributed random intercepts for community water system and 
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state, but no fixed effects, were used to predict the mean log-concentrations of each contaminant 

for each community water system. Models were fitted for each chemical separately. The 

predicted mean log-concentrations were exponentiated to obtain estimated geometric means of 

each chemical for each water system. In order to calculate co-occurrence of contaminants in 

public water systems, the predicted community water system-level geometric means were 

compared pair-wise across chemicals with scatterplots. A Pearson correlation (de Winter, 

Gosling, & Potter, 2016) of the predicted values was estimated to understand the strength of the 

relationships showing in public water systems sampled. Correlations were considered Bonferroni 

significant accounting for 15 hypothesis tests at p < 0.0033 (Dunn, 1961). 

In a secondary analysis, to evaluate whether the associations observed between 

aggregated data summaries for chemicals modeled separately were consistent with the patterns of 

chemical co-occurrence in individual water samples (Sedgwick, 2015), we augmented these 

mixed-effect Tobit regression models with fixed effects allowing quartiles of one chemical to 

predict another chemical. Quartiles of predictor chemicals were used to avoid MRL issues. We 

fit models with vanadium predicting chromium, and of chromium predicting vanadium (Table 2). 

All mixed-effect Tobit regression models were implemented using Stata 15.1 S/E. 

2.4. Non-carcinogenic and Carcinogenic Health Risk Calculations 

To assess human health risk as a result of the exposure to the levels sampled in drinking 

water recorded by the UCMR 3, the EPA Regional Screening Level (RSL) calculator was used in 

the calculations. The RSL calculator is used by EPA risk assessors, Remedial Project Managers 

and On Scene Coordinators to determine to make decisions about CERCLA hazardous waste 

sites and whether the associated levels need further investigation or cleanup (“Regional 
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Screening Levels,” 2018.). The RSL calculator uses updated toxicity information from multiple 

sources and is a strong tool to assess potential human health risk. 

The geometric means for each community water system tested along with the minimum 

and maximum values of samples per state were input into the RSL calculator used by the EPA in 

Superfund risk assessments (“Regional Screening Levels", 2018) . The calculator was set to use 

the resident tap-water equations with reference dose set as chronic which resulted in the 

equations as follows (ORD US EPA, 2015) This was repeated with each value (µg/L) for each 

contaminant by state. 

Noncarcinogenic – Adult Equation for Tapwater (ORD US EPA, 2015): 

SLres-wat-nc-ing-a(µg/L) = 
THQxATres−a(

365 days

year
 x EDres(26 years)xBWres−a(80 kg)x(1000 

µg

mg
) 

EFres−a(
350 days

year
)xEDres(26 years) x (

1

RfD0(
mg
kg

−d)
)xIRWres−a(2.5 

L

day
)
 

Tapwater Ingestion equation for Carcinogenic Effects (ORD US EPA, 2015): 

SLres-wat-ca-ing(µg/L) = 
TRxATres(

365 days

year
 x LT(70 years)x(1000 

µg

mg
) 

CSF0(
mg

kg−day
)

−1
x (IFWres−adj(327.95

L

kg
))

  where: 

IFWres−adj (
327.95 L

kg
) = (

EFres−c(
350 days

year
)xEDres−c(6 years)=IRWres−c(

0.78 L

day
)

BWres−c(15 kg)
+

 
EFres−a(

350 days

year
)x(EDres(26 years)−EDres−c(6 years))xIRWres−a(

2.5 L

day
)

BWres−a(80 kg)
) 

The RSL calculator displayed toxicity information, recommended screening levels, 

hazard indexes for adults and children, and carcinogenic risk when applicable. Using the risk 

information generated, box-and-whisker plots (Krzywinski & Altman, 2014) were created using 
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Stata 15.1 S/E to visually represent the distribution of the human health risks for each 

contaminant. 

Chromium-6 was the only metal included on UCMR 3 with potential carcinogenic risk. A 

separate box-and-whisker plot was generated to visualize the levels associated with the exposure 

levels recorded from the community water systems tested. 

2.5. Toxicogenomic Pathway Investigation 

 The Comparative Toxicogenomic Database (CTD) is a public database created to better 

understand the impact of environmental exposures on human health. It consists of information on 

chemical-gene/protein interactions, chemical-disease and gene-disease relationships. By 

combining this data with genetic pathway information, it helps answer research questions about 

the mechanisms behind diseases linked to environmental exposures (Davis et. al, 2018). The 

Database for Annotation, Visualization and Integrated Discovery (DAVID) was also used to 

understand the information gained from using the CTD (Huang, Sherman, & Lempicki, 2009). 

Genes were input in DAVID with species selected as Homo sapiens.   

 Chemicals with a significant correlating relationship were examined with the Venn 

Viewer tool that compared chemical databases from CTD with each other. The Venn Viewer 

results were presented as genes related to each chemical on its own and as genes that relate to 

both chemicals. The overlapping gene list from CTD was then input in DAVID as official gene 

symbols with species was selected as Homo sapiens. Using the Functional Annotation Tool 

allowed visualization of the toxicogenomic pathways from the KEGG PATHWAY database, 

which is a collection of pathway maps that represent information on the molecular level for 
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processes such as metabolism, genetic information processing and human diseases (Kanehisa & 

Goto, 2000). 

2.6. Mapping of Co-Occurring Contaminants  

 The chemicals that were significantly correlated were mapped using geochemical and 

mineralogical maps for soil in the United States that were publicly available (“Geochemical and 

mineralogical maps for soils of the conterminous United States - Data.gov,” 2019). Files were 

obtained for the specific chemicals and used to create maps in ArcGIS 10.6.  

 

3. RESULTS 

3.1. Assessment of Contaminant Co-Occurrence 

The correlations of community level geometric means are summarized in Table 1 and 

significance was marked by an asterisk. There is a positive relationship between chromium and 

chromium-6 (r = 0.984, p < 0.01). The most noteworthy positive correlations are between 

vanadium and chromium-6 (r = 0.445, p < 0.01) and between vanadium and chromium (r = 

0.448, p < 0.01).  

Four of the six Pearson correlations with cobalt are negative: as cobalt increases, 

chromium (r = -0.017, p < 0.01), strontium (r = -0.024, p < 0.01), chromium-6 (r = -0.021, p < 

0.01) and vanadium (r = -0.046, p < 0.01) decrease slightly.  

Scatterplots of the relationships between each pair of geometric mean of contaminants is 

summarized in Figure 1. The strongest linear relationship visualized in Figure 1 is between 
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chromium and chromium-6. This leads to the conclusion that high levels of chromium-6 would 

indicate high levels of chromium in the same community water system being tested.  

3.2. Non-carcinogenic and Carcinogenic Health Risk Calculations 

The adult hazard indexes for all states were summarized in Figure 2. Extreme outlier 

values were removed from the graphs for simpler visualization which resulted in one result 

deleted from the cobalt graph. Results > 1 are considered indicators of potential non-

carcinogenic health effects. Using the highest contaminant values in tested community water 

systems returns hazard indexes mostly < 1, which means the samples obtained during the UCMR 

testing period do not show hazardous levels of contaminants except for cobalt. Chromium does 

not have toxicity data associated with it in the RSL calculator, so health risk cannot be assessed 

with this tool. 

Chromium-six is the only UCMR 3 heavy metal that has information for carcinogenic 

effects. These results are summarized in Figure 3. Acceptable risk is considered one-in-a-million 

(10-6) (Fewtrell & Bartram, 2001). Most of the results are closer to what is considered acceptable 

risk. However, the highest carcinogenic risk was recorded at 1 in 1,000 (10-3). 

3.5. Toxicogenomic Pathway Investigation 

CTD showed that the correlation between chromium and vanadium also has mutual genes 

that are affected with the two chemicals. There are twenty-four genes affected that overlap 

between the two contaminants (Table 3). These overlapping genes affect several pathways 

according to DAVID and the top pathway that DAVID returned was the Hypoxia-Inducible 

Factor (HIF)-1 Signaling Pathway (p-value = 8.2E-9) which is a crucial process that regulates 
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homeostasis in response to hypoxia (Ziello, Jovin, & Huang, 2007). Figure 4 represents the HIF-

1 pathway with the affected genes signified by red stars. 

3.6. Mapping of Co-Occurring Contaminants  

 Mapping the location of vanadium and chromium in the top 5 cm of soil show very 

similar distributions across the United States and explains the significant correlation seen in the 

analysis (Figure 5) (“Geochemical and mineralogical maps for soils of the conterminous United 

States - Data.gov,” 2019). 

 

4. DISCUSSION  

This paper presents an innovative method of assessing emerging heavy metals in the 

United State community water systems. The extensive datasets available from the EPA UCMR 

have been largely unused in risk assessments so this paper attempted to use the data in a new 

way to understand potential human health risk that results from chronic exposure to the 

unregulated contaminants in United States' drinking water.  

First, geometric means of contaminants were calculated for each community water 

system and they were graphed using scatterplots of each pairwise correlation. This allowed the 

relationship of each contaminant to be assessed by pairing it with each other contaminant. 

Chromium and chromium-six had a strong correlation from the samples collected. There was a 

strong significant relationship between vanadium and chromium and vanadium and chromium-6. 

Previous studies show overlapping health effects between vanadium and chromium. One paper 

by Scibior and Zaporowska (2007) described vanadium increasing kidney and liver weight in 

rats. When these rats were dosed with vanadium and chromium (III) together in their drinking 
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water, there were significantly higher levels of iron and zinc in kidneys and liver which leads to 

substantial decrease in renal L-ascorbic acid concentration, which is a regulator of renal cell 

growth and metabolism. Another interesting finding described in previous studies is how 

vanadium affects hemostasis, which is the physiological process in a body that stops bleeding.  

The studies show common health effects from chromium and vanadium; however, there 

were no identified studies that studied the joint toxicology effects from these two metals. In order 

to further investigate the potential for interaction, the genes that interact with either chemical 

were obtained from the Comparative Toxicogenomic Database and input in DAVID to determine 

genetic interactions. Because vanadium and chromium both have effects on the HIF-1 pathway, 

this can potentially lead to disruption of homeostasis and result in cascading health effects such 

as cardiometabolic disorders (Ziello et al., 2007) and ischemic stroke (Skalny et al., 2017). This 

interaction on the HIF-1 pathway demonstrates the need to examine joint exposure to 

contaminants in drinking water. 

Second, the ranges of values obtained during the UCMR sampling process were used to 

assess human health risk. By using the EPA RSL calculator, the results were translated from 

sample values to hazard indexes which presented a visualization of the potential human health 

risk that exposure to the tap-water in the tested community water systems represent. This method 

shows that the samples obtained during the UCMR 3 monitoring do not represent substantial 

non-carcinogenic health risks according to the EPA RSL calculations. However, this method 

does show that there are chromium-6 values in the tested public water systems that represent 

potentially concerning levels if chromium-6 is eventually classified as a carcinogen via oral 

exposure when ingested via tap-water. 
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4.1 Limitations 

While the included datasets are beneficial, there are limitations for this project. Using the 

CTD is useful; however, it relies on studies that use cell lines and animal models (Davis et. al, 

2018). Using these studies is not always generalizable to the human population due to 

differences in dosing. Also, the fundamental human biological system is different than animal 

models (Sasso & Schlosser, 2015). In the CTD, hexavalent chromium interactions with GJA1 is 

based on evidence that comes from one rat cell line. This gives very limited information for a 

chemical-gene interaction (Carette et al., 2013). It is difficult to make the connection between 

this cell line and a human system because the dose given in the referenced study is different than 

the target organ dose in humans. Also, in the case of hexavalent chromium, systemic biology in 

humans leads to reduction of chromium into the beneficial form of chromium (III) (Sasso & 

Schlosser, 2015). Hexavalent chromium data is largely uncertain because most studies are based 

on animal models. The RSL calculator user’s guide does acknowledge the uncertainty of risk 

calculations based on the CalEPA toxicity data (“Regional Screening Levels", 2015). While the 

CTD is based on studies that are statistically significant and increases specificity, the evidence 

included from studies that do not address human biology can decrease specificity. 

Another limitation for the CTD and the RSL calculator is that gene-environment 

interactions being studied are often determined by the Matthew Effect (Grandjean et. al, 2011). 

For example, certain chemicals, such as chromium, are going to be studied more frequently and 

more in-depth than other chemicals. This effect is also reflected in how laboratories receive 

funding. Larger labs often receive more of the funding that they often use to study the chemicals 

that correspond with their focus (Cristea & Ioannidis, 2018). This results in certain research 

topics receiving more time and funding and the creation of specific communities that address 
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topics such as HIV, cancer and cardio-metabolic disease. So, while these are critical issues for 

public health, they are studied more largely due to the greater resources given to these areas. 

Finally, the CTD only uses papers that were considered statistically significant. Using 

this as a criterium is beneficial; however, this can result in potential selection biases. For 

example, a p-value might be classified as non-significant due to difference in study sample size 

(Cristea & Ioannidis, 2018). An analysis tool like DAVID has potential bias in the algorithm that 

it uses to test for gene interaction in the pathways (Timmons, Szkop, & Gallagher, 2015).  

 

5. CONCLUSIONS 

This study investigates the potential health implications that the unregulated heavy metals 

represent in public water systems. Using Tobit regression (Gong & Schaubel, 2018)  allowed 

assessment of chemicals with large portions of the recorded values under the MRL. The EPA 

RSL calculator was efficient in calculating the potential risks of non-carcinogenic and 

carcinogenic effects while using the most up-to-date toxicity information from many credible 

sources. Results showed that chromium and chromium-6 are frequently present in the same 

samples and showed frequent co-occurrence of vanadium and chromium. The vanadium and 

chromium relationship has implications for more complex health effects on hemostasis as past 

research shows an interaction between the two contaminants (Filler et al., 2017). The calculated 

health risks show potential for negative health effects to occur in select public water systems for 

most of the heavy metals sampled for in the UCMR 3. This study shows a need for further 

research in order to better understand the risk represented by these levels of contaminants 

sampled. 
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5.1 Recommendations for Future Studies 

It is recommended that the methods presented in this paper are replicated with the data 

from the first two UCMRs and any future assessments conducted by the EPA. It would also be 

beneficial to combine an assessment of unregulated contaminants in drinking water with data 

from the United States Geologic Survey (USGS) to gain another perspective on the state of water 

in the United States. Based on the findings of the toxicogenomic interactions, it is highly 

recommended to conduct follow up studies on the effect of these chemicals on genetic pathways 

to fully understand the potential health risk they pose. 
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Table 1 

Pairwise correlations of geometric means of community water systems by contaminant with p-value for 

the correlation on the second line 

 Variables Cr St Cr (VI)  Mo Co V 

  Cr 1.000 
 
  St 0.036* 1.000 
 <0.01 

 
  Cr (VI) 0.984* 0.032* 1.000 
 <0.01 <0.01 

 
  Mo 0.008 0.097* 0.010 1.000 
 0.10 <0.01 0.05 

 
  Co -0.017* -0.024* -0.021* -0.003 1.000 
 <0.01 <0.01 <0.01 0.53 

 
  V 0.448* 0.011 0.445* 0.045* -0.046* 1.000 
 <0.01 0.02 <0.01 <0.01 <0.01 
 

* shows significance at the .0033 level  
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Table 2 

Tobit regression results for Chromium and Vanadium models 

logva Coef. logcr Coef. 

Chromium Quartile 1 0.35 Vanadium  0.35 

Quartile 2 1.31  1.12 

Quartile 3 2.17  2.13 

Constant -0.03  -0.95 

PWSName    

Var(_cons) 0.79  0.44 

PWSName>State    

var (_cons) 0.25  0.18 

var (e.logva) 0.19  0.21 
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Table 3 

Genes that interact with both Vanadium and Chromium 

GENE GENE NAME POSITION 

AHR Aryl Hydrocarbon Receptor Chr 7: 17.30-17.35 

AKT1 AKT Serine/Threonine Kinase 1 Chr 14: 104.77-104.8 

ATP2B1 ATPase Plasma Membrane Ca2+ Transporting 1 Chr 12: 89.59-89.71 

CXCL8 C-X-C Motif Chemokine Ligand 8 Chr 4: 73.74-73.74 

CYP1A1 Cytochrome P450 Family 1 Subfamily A Member 1 Chr 15: 74.72 - 74.73 

CYP1B1 Cytochrome P450 Family 1 Subfamily B Member 1 Chr 2: 38.07-38.11 

GJA1 Gap Junction Protein Alpha 1 Chr 6: 121.44 - 121.45 

HIF1A Hypoxia Inducible Factor 1 Alpha Subunit Chr 14: 61.7-61.75 

IL10 Interleukin 10 Chr 1: 206.77 - 206.77 

IL4 Interleukin 4 Chr 5: 132.67 - 132.68 

IL6 Interleukin 6 leptin Chr 7: 22.73-22.73 

INS1 Insulin 1 Chr 11: 2.16-2.16 

LEP Leptin Chr 7: 128.24-128.26 

MAPK1 Mitogen-activated Protein Kinase 1 Chr 22:21.75 - 21.87 

MAPK3 Mitogen-activated Protein Kinase 3 Chr 16: 30.11 - 30.12 

MMP1 Matrix Metallopeptidase 1 Chr 11: 102.79 - 102.8 

NOS3 Nitric Oxide Synthase 3 Chr 7: 150.99 - 151.01 

NQO1 NAD(P)H Quinone Dehydrogenase 1 Chr 16: 69.71-69.73 

RPS6KB1 Ribosomal Protein S6 Kinase B1 Chr 17: 59.89-59.95 

SLC2A4 Solute Carrier Family 2 Member 4 Chr 17: 7.28-7.29 

TIMP1 TIMP Metallopeptidase Inhibitor 1 Chr X: 47.58-47.59 

TNF Tumor Necrosis Factor Chr 6: 31.58-31.58 

TP53 Tumor Protein p53 Chr 17: 7.66-7.69 

UCP1 Uncoupling Protein 1 Chr 4: 140.56-140.56 
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Fig. 1 

Scatterplot matrix of predicted public water system-level geometric means of contaminants. Water 

system-level geometric means were obtained from mixed-effect Tobit regression models fitted to each 

contaminant separately, with two random intercepts accounting for nesting of water samples within water 

systems within states.
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Fig. 2 

Hazard Index (Adult) by Contaminant. Adult Hazard Indexes were obtained from the EPA Regional 

Screening Level calculator. Results were combined in an Excel file and boxplots were generated for each 

group of metals across all states (n=50). 
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Fig. 3 

Carcinogenic Risk for Chromium-6. Risk of carcinogenic effects were obtained from the EPA Regional 

Screening Level calculator. Results were combined in an Excel file and a boxplot was generated for the 

carcinogenic risk across all states (n=50). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Fig. 4 

Vanadium and Chromium Interaction Pathway. Overlapping genes affected by both 

vanadium and chromium were obtained from the Comparative Toxicogenomic Database (CTD) 

and input in the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

which generated the HIF-1 pathway as affected by the overlapping genes. 
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Fig. 5 

Maps of Vanadium and Chromium in the Top 5 cm of Soil in the contiguous United States. 

These maps were publicly available from the United States Geological Survey (“Geochemical and 

mineralogical maps for soils of the conterminous United States - Data.gov,” 2019.)  

 


