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Abstract 

 

A High Resolution Metabolomics Study of Prostate Cancer 

By Mikhail Melomed 

 
Background: Although it has been the subject of a multitude of sustained research 

endeavors, prostate cancer continues to be a major cause of morbidity and mortality in 

men. Examination of the metabolic profiles of men with prostate cancer could contribute 

to the identification of novel biomarkers of prostate cancer, thereby enhancing public 

health interventions and clinical practices.  

Study Design: Cases (n=113) and controls (n=258) were selected from an existing, 

community-based case-control study conducted in the Piedmont Triadarea of North 

Carolina. Cases were over 50 years old, spoke English, and were newly diagnosed with 

prostate cancer. Cases and controls were frequency matched by age and race. 

Results: Metabolomics analysis yielded 17697 metabolites, and 4485 metabolites with a 

median coefficient of variation value > 30 remained for statistical analysis. Of these, 27 

metabolites, including aspartic acid, were associated with the presence of prostate cancer 

compared to matched controls.  

Conclusion: The metabolic pathway of aspartic acid is significantly disturbed in men 

with prostate cancer. This finding suggests that aspartic acid may play a role in the 

disease mechanisms of prostate cancer.  
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Chapter	I:	Background	
 

1.1:	Descriptive	Epidemiology	
Prostate cancer is the most frequently diagnosed type of cancer and is currently 

the second most common cause of cancer death in American men [1]. According to the 

American Cancer Society (ACS), in 2011, 240,890 men were diagnosed with prostate 

cancer and 33,720 men died because of it [1]. The ACS estimates that 16.2% of 

American men who are alive today will be diagnosed with prostate cancer, and an 

estimate 3.0% of these men will die because of it [1]. 

The high morbidity and mortality associated with prostate cancer underlies its 

status as a major public health concern. Prostate cancer is most commonly diagnosed in 

men over the age of 65 [1]. Americans who identify as African-American or of Black 

African heritage exhibit higher incidence of and mortality due to prostate cancer, as 

compared to Americans of European descent [1].  

For men diagnosed with local or regional prostate cancer, estimated 5, 10, and 15-

year survival rates are 100%, 95%, and 82%, respectively [1]. It is estimated that less 

than one-third of men who are diagnosed with metastatic prostate cancer survive 5 years 

after diagnosis [1]. 

The successful implementation of prostate cancer screening programs is 

imperative, given that prognosis tends to be best when this condition is detected early. 

Accepted prostate screening methods include the prostate-specific antigen test (PSA) [1] 

and magnetic resonance imaging (MRI) [2]. Although an endorectal MRI provides 
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clinicians with better visualization of the zonal anatomy of the prostate, its use is less 

common than the PSA because few men present with locoregional or metastatic disease 

[3]. A variety of prostate cancer diagnostic methods are currently being studied, including 

the use of serological prostate cancer biomarkers with cancer antigen arrays [4], 

transrectal ultrasound and contrast enhanced transrectal ultrasound [5], and the use of 

computer-aided bone scan evaluation systems to render a diagnosis based on bone scan 

index [6].  

Benign prostate hyperplasia (BPH) is a non-cancerous enlargement of the 

prostate, whereas adenocarcinoma is cancer of the glandular epithelium. Elevated levels 

of PSA may be indicative of either BPH or prostate cancer. Such a screening method is of 

limited utility because it can only help to identify a potential prostate cancer case; 

unfortunately, it does not identify cases that are at an elevated risk of their prostate cancer 

progressing. Thus, there is a need to develop, validate, and implement screening and 

diagnostic methods that are highly sensitive, highly specific, and capable of identifying 

men in whom prostate cancer will progress. 

 

1.2:	Prostate	Cancer	Carcinogenesis	
 During a human’s lifespan, genetic control systems regulate cell birth and death. 

Such control systems modulate cell birth and death rates by responding to growth signals, 

growth-inhibiting signals, and death signals. The rates of cell birth and death determine 

both the size of an adult human and the rate at which that size is achieved. Some adult 

tissues require continuous cellular proliferation to facilitate constant tissue renewal. 

However, in many other adult tissues, cellular proliferation is a process employed by 
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stable cells to support healing processes. When the mechanisms responsible for 

maintaining normal cellular growth rates malfunction, excess cellular division results and 

cancer is said to occur. 

 The aberrant cellular behavior that typifies cancer is a manifestation of genetic 

damage. Thus, the induction of cancer may occur through mutations in three classes of 

genes: proto-oncogenes, tumor-suppressor genes, and caretaker genes. Proto-oncogenes 

are normally responsible for promoting cellular growth. Proto-oncogenes become 

oncogenes by four mechanisms: point mutation, in which a change in a single base pair 

activates proto-oncogenic products; chromosomal translocation, which results in the 

production of chimeric proteins; chromosomal translocation, which results in re-

assignment of different promoters to growth-regulatory genes; and the over-production of 

proto-oncogenic proteins through DNA amplification.   

Tumor-suppressor genes are normally responsible for restrained cellular growth. 

Thus, mutations that deactivate tumor-suppressor genes facilitate aberrant cellular 

division. Caretaker genes are normally responsible for ensuring genomic integrity. 

Inactivation of caretaker genes increases the rate at which cells acquire mutations. Such 

mutations disrupt cellular growth control and lead to cancer. Proto-oncogenes, tumor-

suppressor genes, and caretaker genes encode proteins that are responsible for regulation 

of the cellular cycle, cellular death by apoptosis, and repair of damaged DNA.  

 Advances in the fields of molecular biology, genetics, epigenetics, and 

biotechnology have improved our understanding of the events associated with associated 

with the initiation and progression of prostate cancer [7]. Multiple genes have now been 

identified and are thought to be germane to prostate cancer carcinogenesis. Contemporary 
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models of prostate cancer progression often incorporate mechanisms that describe the 

role of inflammation in the development of preneoplastic and neoplastic lesions [7]. An 

alternative pathway to prostate cancer -- in addition to aneuploidy, loss of heterozygosity, 

and genetic mutation – is thought to include abnormal methylation of growth regulatory 

genes or caretaker genes [7]. 

 Previous studies have shown that the mechanism of growth control for prostate 

cancer cells is likely to involve the biological interaction of these cells and the 

microenvironment at the secondary site, which influences the occurrence of growth into 

metastasis [8]. Seven tumor suppressor genes that act to suppress metastasis without 

affecting primary tumor growth have been identified; three of these genes, in particular, 

function as metastasis suppressor genes of prostate cancer and include the following: 

KAI1, CD44, and MAPK kinase 4 [8]. Many metastasis suppressor genes play important 

roles in cellular growth control, cellular adhesion, and cytoskeletal reorganization, 

suggesting the possibility of common mechanism of metastatic suppression [8]. 

 The initiation and progression of prostate cancer is highly associated with proto-

oncogenes [9]. Large sets of genes, which are thought to play a proto-oncogenic role in 

prostate cancer, have been identified; however, few have been characterized in the 

molecular progression of the disease [10]. Examples of proto-oncogenes with known 

roles in the molecular progression of prostate cancer include genes responsible for growth 

factor receptors, proteases, and transcription factors and coactivators [10].  

 Growth factors implicated in prostate cancer carcinogenesis include insulin 

growth factor (IGF), the Wnt signaling pathway, the Her2/neu protein, epidermal growth 

factor receptor (EGFR), and phosphoinositide-3 kinase (PI3K) [10]. Proteases with 
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known roles in prostate cancer carcinogenesis include members of the homologous 

MMP family; in particular: MMP 2, 7, 9, and MT1MMP [10]. Known transcription 

factors and coactivators with roles in prostate cancer include TMPRSS2-ERG, MYC, and 

homologous proteins SRC-1, SRC-2, and SRC-3 of the p160 SRC family [10]. 

  A growing body of evidence suggests that prostate cancer is largely regulated by 

posttranslational modifications (PTMs) and epigenetic alterations [9]. PTMs play 

important roles in cellular functions, gene regulation, tissue development, diseases, 

malignancy, and drug resistance [11]. Examples of PTMs that have been shown to play a 

role in prostate cancer include ubiquitination and SUMOylation [9]. Both ubiquitination 

and SUMOylation pathways can be differentially modulated by a variety of stimuli and 

stressors to produce sustained oncogenic potentials [9]. 

 

1.3:	Prostate	Cancer:	Clinical	Overview	and	Pathogenesis	
  Prostate cancer has been a recognized disorder since it was first described by 

ancient Egyptians, and surgical procedures designed to remove the prostate were 

developed over 100 years ago [12].  

 Men with elevated levels of PSA are typically biopsied to assess for the presence 

of prostate cancer [12]. After a biopsy is performed, histopathological grading of prostate 

tissue is facilitated by Gleason scoring, which allows pathologists to classify tumors from 

a scale of 1-to-5 (i.e. from least to most differentiated) [12]. The diagnosis of prostate 

cancer is predicated upon the status of primary tumors and measured by several spectra: 

T1-4, ranging from organ-confined to fully invasive; N0-1, a measure of lymph node 
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involvement; and M0 and 1a-c, which describes the presence/degree of distant 

metastases [12]. 

 In men, the prostate is a small tissue that surrounds the urethra at the base of the 

bladder, and it functions to produce components of seminal fluid [12]. The human 

prostate is defined in terms of zonal architecture and is comprised of central, periturethral 

transition, peripheral zones, and an anterior fibromuscular stroma [12]. The majority of 

prostate carcinomas occur in the outermost peripheral zone [12].  

 The human prostate contains a pseudo-stratified epithelium, comprised of three 

differentiated cell types: luminal, basal, and neuroendocrine [12]. Prostatic intraepithelial 

neoplasia (PIN) is a precursor to prostate cancer, although this relationship remains to be 

demonstrated conclusively [12]. In general, the histological presentation of PIN is 

characterized by the appearance of luminal epithelial hyperplasia, reduction in basal cells, 

enlargement of nuclei and nucleoli, cytoplasmic hyperchromasia, and nuclear atypia [12]. 

Human prostate cancer exhibits significant phenotypic heterogeneity; however, over 95% 

of prostate cancers are classified as adenocarcinoma, which has a luminal phenotype [12].  

 Common secondary sites of metastasis for prostate cancer include the liver, lung, 

and pleura; however, if prostate cancer does metastasize, it invariably travels to the bone 

and forms osteoblastic lesions [12]. 

 

1.4:	Risk	Factors	
 In 2014, the Continuous Update Project (CUP) Report issued by World Cancer 

Research Fund International/American Institute for Cancer (WCRF/AICR) compiled 

available evidence concerning the association between diet, nutrition, physical activity, 
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and prostate cancer. According to CUP, there is strong evidence to support an 

association between increased body fatness and advanced prostate cancer risk [13]. The 

same report also found limited evidence to support an association between the 

consumption of dairy products, adherence to diets high in calcium, low plasma 

alphatocopherol concentrations, and low plasma selenium concentrations and an 

increased risk for prostate cancer [13].  

In addition to dietary and lifestyle risk factors, there is a growing body of 

evidence describing the association between genetic factors and the risk for prostate 

cancer. Genetic studies have shown that strong familial predisposition plays a role in 5-

to-10% of prostate cancers; for example: BRCA1 or BRCA2 genes, which are known to 

increase risks for breast and ovarian cancer in women, may also increase the risk of 

prostate cancer in men (Brawley, 2012). Over 100 common single nucleotide 

polymorphisms (SNPs) have been identified by genome-wide association studies 

(GWAS), and these SNPs have been shown to be associated with prostate cancer [14]. 

Because most of these SNPs reside in noncoding genomic regions, it is thought that their 

role in prostate cancer etiology is long-range regulation of gene expression (i.e. long-

range chromatin interactions) [14]. Although GWAS have identified multiple SNPs with 

an increased risk for prostate cancer, the identification of functional SNPs poses a 

considerable challenge because risk SNPs are not necessarily causative [14]. 

 

1.5:	Metabolomics	
Endogenous and environmental factors have been shown to be correlated with 

increased risk of prostate cancer [1]. However, for most of them the existing 
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epidemiologic evidence is limited.  For example: there is limited evidence to suggest 

that men who consume high quantities of dairy products or have diets high in calcium are 

at an elevated risk for developing prostate cancer (WCRF Continuous Update Project). 

Also, low plasma alpha-tocopherol and selenium concentrations were suggested to be 

associated with increased risk (WCRF Continuous Update Project).  

Whether endogenous or environmental, factors such as those described above are 

varied in their physical states and are dauntingly numerous [1]. Metabolomic profiling 

could facilitate the identification and characterization of environmental and endogenous 

factors associated with the physiopathology of prostate cancer. Furthermore, 

metabolomic profiling may help elucidate the regulatory circuits that modulate prostate 

cancer pathways, leading to both a better understanding of its etiology and toward the 

development of biomarkers of risk and progression. 

As an emerging technology, metabolomics has enabled investigators to study the 

complex interactions of nutrients in individuals having unique genomes, dietary histories, 

and exposure to various environmental and behavioral factors [15]. Metabolomics is the 

application of small-molecular chemical profiling to complex biosystems, integrating diet 

and nutrition [15]. Nutritional metabolomics is capable of yielding nutritional models 

based on the metabolomic profile, genome, epigenetics, and health phenotyping of an 

individual [15]. Moreover, nutritional metabolomics has been applied to the process of 

discovering novel biomarkers of nutritional exposure, status, and impact on disease [15].  

The rise of metabolomics reflects a paradigm shift from the population average 

focus of comparable biochemical studies [15].  This paradigm shift is the result of three 

conceptual developments; they are: (1) the exposome, which captures information 
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detailing cumulative life exposures; (2) predictive health predicated upon the use of 

nutrition to optimize vitality and well-being; and (3) the development of models that span 

multiple interacting functional networks [15].  

Small-molecular-weight metabolites within organisms are presently beyond 

practical detection methods; however, human metabolic databases hold information on 

approximately 2,500 metabolic intermediates, hormones, and other molecules involved in 

signaling [15]. Furthermore, over 1,000 metabolic components related to the ingestion of 

pharmacologic agents and 3,500 metabolomic components related to the consumption of 

food have been identified [15]. 

Mass spectrometry is currently considered the best method to detect metabolites, 

which can vary widely in their physical and chemical composition [15]. High-resolution 

mass spectrometry enables investigators to measure and differentiate large numbers of 

chemical substances, based on mass resolution and mass accuracy [15]. In turn, this 

information allows for the prediction of chemical elemental composition through 

mass/charge (m/z) values, which are used in human metabolite databases to map 

metabolism [15]. Ultimately, high-resolution mass spectrometry enables metabolome-

wide association studies of nutrition and disease – and these studies are further enhanced 

by chemical and metabolic databases, bioinformatic methods, and various computational 

approaches [15]. 

By examining the metabolic profiles of men with prostate cancer, it may be 

possible to contribute to the identification of novel, modifiable risk factors and 

biomarkers of this disease. This could not only enhance the foundations of numerous 
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public health policies, but could also lead to improvements in clinical practices 

designed to screen for, diagnose, treat, and manage prostate cancer.   

 

 

1.6:	The	Role	of	Metabolomics	in	Biomarker	Discovery	
The discovery of novel biomarkers is a formidable challenge, especially when 

considered against the backdrop of the combinatorics inherent to the human genome. For 

instance: Sarcosine, a compound first isolated in 1847, is an intermediate product in the 

synthetic pathway leading to the formation and degradation of amino acid glycine [16]. In 

2009, a seminal publication describing the association between changes in levels of 

sarcosine and prostate cancer progression was published by Sreekumar et al. in Nature 

[16]. Since then, sarcosine has been the subject of investigation as a new biomarker for 

prostate cancer. Issaaq et al. showed that sarcosine is a metabolite with levels that 

increase throughout the progression of prostate cancer and its metastatic process [17]. 

Moreover, Cavaliere et al. showed that sarcosine could be detected in urine [18].  

However, a 2015 case control study of sarcosine as a potential prostate cancer 

biomarker (N=497) showed that sarcosine levels overlapped between prostate cancer 

cases (median 15.8uM, range 6.2-42.5uM) and controls (median 16.2uM, range 6.4 to 

53.6uM) [19]. Ankerst et al. concluded that serum sarcosine is not an eligible marker for 

the detection of prostate cancer.  

As the search for novel biomarkers of prostate cancer continues to pique the 

interests and resources of academic, medical, and industry researchers, it is clear that a 

multi-disciplinary approach to validating a prospective biomarker is highly necessary.  
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Chapter	II:	Materials	and	Methodology	

 

2.1:	Study	Subjects	
Data was obtained from an existing community-based case-control study of 

incident prostate cancer, which was conducted in the Piedmont Triad area of North 

Carolina. The Committee for Human Research at Wake Forest University, Winston-

Salem, North Carolina, granted approval of the research protocol. Cases for the study 

(n=113) were comprised of black and white men for whom prostate cancer diagnosis was 

pathologically documented. Cases were over 50 years old, spoke English, and were 

newly (and for the first time ever) diagnosed with prostate cancer. Cases were identified 

and recruited from all cases diagnosed with prostate cancer during the study period, in 

area urology and radiation oncology practices within days of diagnosis. Cases were 

studied prior to initiation of treatment for prostate cancer. Controls (n=258) were 

recruited from the same geographic locality as cases and were randomly selected using 

the Polk Directory. Controls were frequency matched to cases by age and race and did 

not have a history of prostate cancer. Participants were excluded due to a history of 

previous cancers (exception: non-melanoma skin cancer), current prostate disease, 

previous prostate surgery, active tuberculosis, or current liver or kidney disease. Of 113 

case subjects who were enrolled into the study, 108 were used in analyses. Of 258 control 

subjects who were enrolled into the study, 256 were used. Attrition was due to missing 

biosamples.  
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2.2:	Data	Collection	

Study participants attended a four-to-five hour study visit at the General Clinical 

Research Center at Wake Forest University. The study visit included informed consent 

procedures, interview, completion of a medical/lifestyle questionnaire and Block Food 

Frequency Questionnaire, anthropometrics, and providing fasting blood, spot, and timed 

urine samples. Participants were compensated for their time and effort with a payment of 

$50. Tumors were staged by the TNM system and pathology information on cases was 

retrieved from hospital tumor registries.  

 

2.3:	Metabolomics	
Plasma samples were extracted and analyzed by liquid chromatography-high-

resolution mass spectrometry (LC-FTMS) as previously described [20]. Briefly, 120-µl 

aliquots of plasma were treated with acetonitrile (2:1, v/v), containing internal standard 

mix, and centrifuged at 14,000×g for 5 min at 4°C and maintained at 4°C until injection. 

Data were collected by a Thermo LTQ-FT mass spectrometer (Thermo Fisher, San 

Diego, CA) from m/z 85 to 850 over 10 min with each sample analyzed in triplicate. Peak 

extraction and quantification of ion intensities were performed by an adaptive processing 

software package (apLCMS) designed for use with LC-FTMS data [21].  The package 

output included tables containing m/z values, retention time, and integrated ion intensity 

for each m/z feature. The metabolite values were averaged for triplicates, and the data 

were log-transformed, median centered, scaled to have unit variance, and quantile 

normalized prior to statistical analyses. Data were also subjected to quality assessment, 

including exclusion of data for technical replicates with overall Pearson correlation (r) 
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<0.70 [22]. Extraction of mass spectral data initially yielded 17697 metabolites. Of 

these, 4485 metabolites had median coefficient of variation values greater than 30 and 

were used for subsequent analysis. For the remaining metabolites, missing values were 

replaced with values equal to half of the minimum value of that metabolite’s relative 

abundance across all samples. 

 

2.4:	Statistical	Analysis	
 Descriptive characteristics of cases and controls were tabulated and analyzed by 

using the t-test for continuous variables Chi-square test for categorical variables.  

The differential expression of plasma metabolites between prostate cancer cases and 

controls was determined using t tests and visualized using Manhattan plots. False 

discovery rate (FDR) was computed using Benjamini-Hochberg method [23]. Since our 

analyses are exploratory, we used a more conservative approach that avoided FDR error 

by including all metabolites that were significant with FDR = 0.2 (raw P value < 0.05) 

and then performing statistical testing of these metabolites for pathway enrichment. The 

27 significant metabolites identified using the LIMMA package in R (Linear Models for 

Microarray Data) in Bioconductor (FDR  = 0.2) were depicted by a heat map and 

subjected to pathway analysis after global network analysis using mummichog [23]. For 

global network analysis, 27 significant metabolites were correlated with other metabolites 

at an absolute correlation threshold of 0.3, and a correlation FDR threshold of 0.1.  

 To complement univariate analyses, we also performed unconditional logistic 

regression to investigate the association between a metabolite of interest (e.g., aspartic 

acid) and prostate cancer risk, adjusting for matching factors (age and race) and potential 
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confounders. In all models, a metabolite of interest was either standardized by 1 

standard deviation or divided into tertiles  (33.3% and 66.6%) based on the distribution of 

relative abundance readings for aspartic acid among the controls. Covariates of interest 

included body mass index, education status, smoking status, drinking status, physical 

activity level, and income, and family history of prostate cancer. 

 Preliminary unconditional logistic regression models contained the 

aforementioned outcome variable, exposure variable, frequency matching variables, 

covariates, and interaction terms. Collinearity was assessed using a SAS-L macro written 

by Mathew Zack, Jim Singleton, and Kristin Wall. Chunk testing using the likelihood 

ratio test was used to compare a full unconditional logistic regression model containing 

all exposure, covariates, and interaction terms to a reduced model with interaction terms 

removed. All interaction terms were found to be non-significant (P>0.26) and were 

removed. Confounding variables were identified if their removal from the model resulted 

in an effect estimate change of greater than 10%. After removal of non-confounding 

variables, a final model was established and included aspartic acid, a metabolite of 

interest, as the exposure, age and race as matching variables, and body mass index (BMI), 

drinking status, physical activity, and family history of prostate cancer as confounders.  

Missing data for BMI was imputed using median values of BMI for cases and controls.  

Analyses were performed using the following: RStudio software, version 

0.99.4466 (RStudio Inc., Boston, MA); SAS software, version 9.1 (SAS Institute, Cary, 

NC); METLIN, v.c1.1 beta (Scripps Center for Metabolomics); and Python software, 

version 3.3.5. R packages dpylr, stringr, and xlsx were used to facilitate RStudio analysis.  
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Chapter	III:	Results	

 

3.1:	Baseline	Characteristics	
The demographics and lifestyle data of the study participants are summarized in 

Table 1. No significant differences were observed between the two groups in terms of 

body mass index, education, smoking status, drinking status, physical activity level, and 

income (Table 1). Cases were more likely than controls to have a family history of 

prostate cancer (Table 1).  

 

3.2:	Metabolites	Distinguishing	Prostate	Cancer	Cases	from	Controls	
Metabolites that were significantly associated with prostate cancer were primarily 

those with a mass-to-charge ratio (m/z) between 200 and 800 (Figure 1, A). Furthermore, 

metabolites significantly associated with prostate cancer had a chromatographic retention 

time of between approximately 40-60 units (Figure 1, B).  

 The average intensities of the 27 significant metabolites are depicted in the heat 

map (Figure 2, A); however, a clear differential expression between cases with prostate 

cancer and frequency-matched controls is not exhibited. Representative plots for select 

significant metabolites comparison between prostate cancer cases and control groups are 

included in Figure 2, A-D as examples (Figure 2, B).   

 A network analysis is visualized by a graph that is representative of 27 significant 

metabolite features (Figure 4, A). Pathways in which the aforesaid metabolites play a role 

in are displayed (Figure 4, B). We decided to focus on 1 of the 27 significant metabolites, 
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which has a confirmed mass-to-charge ratio; that metabolite was aspartic acid (m/z = 

134.04). 

 

3.3:	Association	of	Aspartic	Acid	with	Prostate	Cancer	Risk	
The age- and race-adjusted odds ratio (OR) comparing men in the highest tertile 

of aspartic acid relative to the lowest tertiles was 0.31 (95% CI: 0.18, 0.57; P for trend < 

0.0001) (Table 2). When aspartic acid was standardized by 1 standard deviation, 

participants who were frequency matched by age and race and exposed to increasing 

levels of aspartic acid were at a decreased risk of developing prostate cancer (OR=0.66; 

95% CI: 0.52, 0.84) (Table 2).  

The multivariable adjusted OR comparing comparing men in the highest tertile of 

aspartic acid relative to the lowest tertile was 0.32 (95% CI: 0.17, 0.57; P for trend < 

0.0001) (Table 2). When aspartic acid was standardized by 1 standard deviation and body 

mass index, drinking status, physical activity, and family history of prostate cancer were 

adjusted for, participants exposed to increasing levels of aspartic acid were at a decreased 

risk of developing prostate cancer (OR=0.64; 95% CI: 0.50, 0.82) (Table 2).  

 

3.4:	Stratified	Analyses	by	Potential	Effect	Modifying	Factors	
 No evidence was found to support different effects by BMI, age, alcohol, drinking 

status, and physical activity (Table 3). Although there were suggestions of potentially 

stronger effects among normal weight and those who exercise, our findings were not 

statistically significant (all P > 0.13) (Table 3).  
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Chapter	IV:	Discussion		

4.1:	Biological	Plausibility	of	Findings	
The findings from this study suggest that higher aspartic acid exposure may be 

associated with lower risk for prostate cancer, and this is biologically plausible for 

several reasons. Aspartic acid-phosphorylated proteins facilitate a wide variety of cellular 

functions, including metabolism, protein folding, and cytoskeletal mobility [24]. 

Furthermore, in human prostate cancer progression, aspartic acid phosphorylation plays a 

role in the three states of cancer (e.g. non-tumorigenic, tumorigenic, and metastatic cells) 

[24]. Therefore, it is possible that aspartic acid may exert its effect on prostate cancer 

pathogenesis through pathways involving aspartic acid-phosphorylated proteins. 

In addition to aspartic acid-phosphorylated proteins, the effect of aspartic acid on 

prostate cancer pathogenesis may involve other classes of proteins, such as chaperones. 

Protease inhibitors (PIs) are cellular chaperones that function to target or inhibit protein-

digesting enzymes, which are also known as proteases [25]. Proteases have been shown 

to play a wide variety of roles in biological processes, including apoptosis [25]. 

Classification of PIs is based on the amino acid composition of PIs where protease-PI 

enzymatic reactions occur [25]. With regard to carcinogenesis in humans, PIs have been 

shown to prevent ongoing cellular processes begun by carcinogens by modulating 

metastasis [25]. Moreover, PIs have the potential to reduce carcinogen-induced gene 

amplification to normalized levels [25]. Members of the aspartyl PI family are known to 

be found in sunflower, barley and cardoon flowers, and in potato tubers [25]. 
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4.2:	Our	Work	and	Available	Evidence	

Our findings indicate that higher levels of aspartic acid exposure result in a 

reduced risk of prostate cancer, and that the trend is statistically significant. However, our 

study did not show statistically significant interaction with aspartic acid exposure and 

factors that ought to biologically influence prostate cancer carcinogenesis, such as body 

mass index and physical activity.  

Because of paucity in epidemiological evidence describing the association 

between exposure to aspartic acid and prostate cancer, an epidemiologic consensus 

regarding this particular observation has not yet been achieved. For example, aspartame, 

a methyl ester derivative of aspartic acid, has been examined in numerous 

epidemiological studies as a potential risk factor for cancer. Epidemiologic studies in 

humans on aspartame intake are sparse and have not demonstrated an association 

between this synthetic sweetener and cancer risk [26]. In another example, a 

metabolomics study conducted in 2011 collected and analyzed plasma samples from 200 

patients, each of which were diagnosed with one of five types of cancer – including 

prostate cancer [27]. By measuring plasma free amino acids (PFAA) levels with high-

performance liquid chromatography-electrospray ionization-mass spectrometry and 

performing univariate and multivariate analyses, investigators showed significant 

differences in the PFAA profiles of cases and controls with prostate cancer; however, 

aspartate was excluded due to its instability in blood [27]. Thus, evaluating our results in 

the context of previous, similar studies (e.g. studies that evaluate the association between 

aspartic acid and prostate cancer) is difficult and highlights the need for further research.  
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4.3:	Strengths	and	Limitations	

This study has some strengths and limitations. A strength of this study is its data 

collection procedures, which allowed for collation of high quality information and 

biological samples. Another strength of the study was its community-based design and 

the studying of cases both within days of diagnosis and prior to the initiation of treatment. 

As with most case-control studies, there is a potential for this study to be affected by 

recall biases and ambiguous temporal relationships. Because cases were studied 

immediately after prostate cancer diagnosis and before the initiation of treatment, the 

influence on recall bias on effect estimates is likely mitigated. Furthermore, because 

health conditions that were included in this study likely precede prostate cancer (e.g. 

sexually transmitted diseases, lifetime accumulation of aspartic acid), the internal validity 

of the findings presented herein is likely to be minimally threatened. Self-reported 

information that is sensitive in nature (e.g. alcohol drinking status) may have been subject 

to under-reporting; however, this likely biased associations toward the null. Yet another 

limitation of this study is a lack of prostate biopsies on controls, which would have ruled 

out sub-clinical prostate cancer and helped to reduce possible case-control status 

misclassification. If, however, some controls did have prostate cancer, our effect 

estimates would have likely been biased toward the null.  

 

4.4:	Public	Health	Implications	
 If further studies were to support our own findings, the public health implications 

could be powerful. Aspartic acid is a semi-essential amino acid in humans and is found in 

multiple dietary sources, including animal sources, vegetable sources, dietary 
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supplements, and synthetic sweeteners such as aspartame. If an epidemiologic 

consensus were reached on the direction and magnitude of the effect describing the 

association between aspartic acid and prostate cancer, public health agencies and 

organizations might seek to enact regulatory measures concerning the consumption of 

dietary items containing this amino acid. In turn, this might engender changes 

sustainable, population-level changes in prostate cancer health outcomes in men, leading 

to potential reductions in morbidity and mortality associated with this disease. 

Additionally, characterization of aspartic acid in pathways that are important in the 

prostate cancer disease mechanism may contribute to our collective clinical capacity to 

more accurately diagnose the disease. 

 

4.5:	Future	Directions	
 Future iterations of a study such as the one presented herein might seek to 

improve generalizability of our findings by including men from racial and ethnic 

backgrounds and geographic localities not represented among the cases and controls in 

our study. Additionally, it may be prudent to explore the associations between other 

known metabolites (e.g. amino acids) and prostate cancer. Finally, a prospective study of 

the association between aspartic acid and prostate cancer may provide useful temporal 

information. 

 

4.6:	Conclusion	
In conclusion, our exploratory metabolomics analyses demonstrated that the 

metabolic pathway of aspartic acid is disturbed in adult men with prostate cancer. This 
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suggests that the pathway containing aspartic acid may be an integral component of 

the disease mechanism underlying prostate cancer. These preliminary findings also 

suggest that further exploration of the causal links between amino acid metabolism and 

prostate cancer is warranted and that these pathways could be exploited in the 

development of therapeutic targets for prostate cancer treatment.  
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Tables		
Table 1. Characteristics of Men Diagnosed with Incident Prostate Cancer and Controls, 
Piedmont Triad Area, North Carolina, U.S., 1994-1996 

Characteristics Cases (n=108) Controls (n=256) P Value 
Age 66.85 (7.64) 66.08 (7.57) 0.35 

    Race (%) 
   White 237 (85.56) 101 (84.87) 

 Black 40 (14.44) 18 (15.13) 0.87 

    BMI 26.85 (3.85) 27/25 (3.51) 0.31 

    Education (%) 
   No College 184 (65.95) 81 (67.5) 

 College 95 (34.05) 39 (32.50) 0.16 

    Smoking Status (%) 
   Light  79 (28.62) 35 (29.17) 

 Moderate  171 (61.96) 69 (57.50) 
 Vigorous  26 (9.42) 16 (13.33) 0.47 

    Drinking Status (%) 
   Never 98 (35.64) 42 (35.59) 

 Past 63 (22.91) 34 (28.81) 
 Current 114 (41.45) 42 (35.59) 0.39 

    Physical Activity Level (%) 
   Light  26 (9.63) 17 (14.41) 

 Moderate  165 (61.11) 64 (54.24) 
 Vigorous  79 (29.26) 37 (31.36) 0.29 

    Income (%) 
   Less than $20,000 36 (13.58) 24 (20.69) 

 $20,000 to $50,000 127 (47.92) 58 (50.00) 
 More than $50,000 97 (36.60) 33 (28.45) 
 Don't Know 5 (83.33) 1 (0.86) 0.19 

    Family History (%) 
   Yes 42 (18.42) 186 (81.58) 

 No 26 (32.10) 55 (67.90) 0.01 
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Table 2. Multivariable-Adjusted Associations of Incident Prostate Cancer with Aspartic 
Acid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exposure n (Cases/Controls) Matched OR (95% CI)* Multivariable OR (95% CI)** 
Tertiles 

   1 83 (47/36) 1.0 (Reference) 1.0 (Reference) 
2 95 (59/36) 0.80 (0.43, 1.47) 0.81 (0.44, 1.50) 
3 186 (150/36) 0.31 (0.18, 0.57) 0.32 (0.17, 0.57) 

    P Trend 
 

<.0001 <.0001 

    Count per 1 SD 364 (256/108) 0.66 (0.52, 0.84) 0.64 (0.50, 0.82) 

    *Frequency matched variables: age, race 
**Adjusted variables: body mass index, drinking status, family history of prostate cancer, physical activity 
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Table 3. Multivariable-Adjusted Associations* of Aspartic Acid with Incident Prostate 
Cancer According to Body Mass Index, Age, Drinking Status, and Physical Activity 

Aspartic Acid per 1 
SD 

n 
(Cases/Controls) 

Multivariable** OR 
(95% CI) 

P Value for 
Interaction 

BMI 
  

  
Normal 86 (55/31) 0.42 (0.22, 0.79) 

 Overweight 275 (200/75) 0.69 (0.52, 0.91) 0.23 

    Age* 
   <66.5 180 (122/58) 0.58 (0.41, 0.84) 

 >66.5 184 (134/50) 0.68 (0.48, 0.97) 0.2 

    Drinking status 
   Never 132 (94/38) 0.60 (0.39, 0.91) 

 Past or Current 232 (162/70) 0.69 (0.52, 0.93) 0.13 

    Physical Activity 
   Light 109 (73/36) 0.72 (0.47, 1.11) 

 Moderate 206 (152/54) 0.66 (0.48, 0.92) 
 Vigorous 40 (24/16) 0.45 (0.21, 1.00) 0.13 

    *Age variable is split by median among controls 
**Adjusted variables: body mass index, drinking status, family history of 
prostate cancer, physical activity 
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Figures	and	Figure	Legends		
 
 
 

 
 
 
 

Figure 1. Metabolites that were significantly associated with prostate cancer. A, Type 1 Manhattan plot showing the negative log P (-log 
P) for each metabolite (m/z feature) as a function of the m/z (mass/charge). B, Type 2 Manhattan plot showing the –log P for each 
metabolite as a function of chromatographic retention time. m/z features above the dashed horizontal line are significant after FDR 
adjustment. The blue dashed line indicates FDR of 0.1 (Benjamini-Hochberg correction).  

A B 
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m/z Putative Metlin Match 
382.2705 Sphinganine-phosphate/PE-Cer(d15:1) 
380.2431 Unknown 
801.5817 Unknown 
381.2585 Prostaglandin metabolite 
382.2037 Unknown 
807.3752 Unknown 
974.7502 Ganglioside/Galabiosylceramide 
726.8227 Unknown 
770.851 Unknown 
634.8755 Halogenated fatty acid 
770.936 Unknown 
1110.7869 Sphingolipid 
684.8413 Unknown 
991.7868 Triradylglycerols 
846.8031 Unknown 
432.9164 Unknown 
956.8041 Phosphocholine metabolite (PC[24:0]) 
1246.76 Unknown 
734.981 Unknown 
696.8442 Unknown 
680.8706 Unknown 
272.9595 Unknown 
1462.492 Unknown 
158.0744 Unknown 
500.9359 Inositol phosphate 
478.8549 Unknown 
134.0441 Aspartic acid 

Figure 2. A, Heat map generated using 1-way hierarchal clustering. Metabolite intensities of the significant metabolites that were 
differentially expressed between prostate cancer cases and controls. Each column represents a participant, and each row represents a 
metabolite feature. The top 27 metabolites (raw P < 0.05) are shown. Blue hues indicate lower intensities, and red hues indicate higher 
intensities. B, Significant metabolite features by m/z and putative identity (METLIN Metabolomics Database). 

A 
B 
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Aspartic acid Prostaglandin metabolite 

Sphingolipid Triradylglycerols 

Controls Cases Controls Cases 

Controls Cases Controls Cases 

A	 B	

C	 D	

Figure	3.	A-D,	Examples	of	significant	metabolite	features	shown	in	box	blots.		
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Figure 4. A, Network analysis of 27 significant metabolite features (correlation threshold=0.3, FDR threshold=0.2). Graphics generated 
using RStudio software, version 0.99.4466 and package xmsPANDA. B, Pathway enrichment of 27 significant metabolite features. 
Pathways identified with mummichog version 1.0.3. 

B Pathways P Value 

Vitamin E metabolism 0.00034 
De novo fatty acid biosynthesis 0.00037 
Fatty Acid Metabolism 0.00041 
Fatty acid activation 0.00051 
Glycosphingolipid metabolism 0.00059 
Leukotriene metabolism 0.00073 
Vitamin B5 - CoA biosynthesis from pantothenate 0.00085 
Caffeine metabolism 0.00103 
Polyunsaturated fatty acid biosynthesis 0.00153 
Fatty acid oxidation, peroxisome 0.00153 
CoA Catabolism 0.00153 
Di-unsaturated fatty acid beta-oxidation 0.00153 
Beta-Alanine metabolism 0.00158 
Phytanic acid peroxisomal oxidation 0.00793 
Urea cycle/amino group metabolism 0.00802 
Omega-6 fatty acid metabolism 0.00896 
O-Glycan biosynthesis 0.00896 
Glycosphingolipid biosynthesis - neolactoseries 0.00896 
Saturated fatty acids beta-oxidation 0.00896 
Blood Group Biosynthesis 0.00896 
Alkaloid biosynthesis II 0.00896 
N-Glycan biosynthesis 0.01481 
Putative anti-Inflammatory metabolites formation from EPA 0.02613 
Histidine metabolism 0.02684 
Keratan sulfate degradation 0.03675 
Glutamate metabolism 0.0433 
Lysine metabolism 0.04738 


