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Abstract

Some Quotients of the Boolean Lattice are Symmetric Chain Orders

by

Jeremy McKibben-Sanders

R. Canfield has conjectured that for all subgroups G of the symmetric group

Sn, the quotient Bn/G of the boolean lattice Bn is a symmetric chain order.

We provide a straightforward proof of K. K. Jordan’s result that Bn/G is a

symmetric chain order when G is generated by an n-cycle, and we present a

simple algorithm for finding a symmetric chain decomposition of Bn/G, begin-

ning from the well-known symmetric chain decomposition of Bn obtained by

Greene and Kleitman. We also verify Canfield’s conjecture when G is generated

by a set of pairwise disjoint transpositions, and provide an algorithm for finding

a symmetric chain decomposition of Bn/G in this case as well.
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1 Introduction

Combinatorics is a branch of discrete mathematics that finds many applications in

the areas of algebra, probability, topology, and computer science. Countable dis-

crete structures such as partially ordered sets and lattices play a crucial role in the

study of set systems, leading to many well known results such as Sperner’s theorem

on maximum-sized unordered families in a power set, Dilworth’s max-min theorem

on chain partitions, and Hall’s matching theorem. The study of the properties and

structures found on the Boolean lattice in particular is a fascinating and broad topic,

involving contributions from such diverse areas as graph theory, topology, and linear

algebra.

This thesis concerns an important notion of symmetry in a partially ordered set

- the existence of symmetric chain decompositions. In particular, we are interested

in finding symmetric chain decompositions of certain quotients of the Boolean lattice

structure.

1.1 Basic Terminology

We begin with some important definitions. A partial order is a relation on a set S

which is reflexive, antisymmetric, and transitive. In other words, if we denote the

relation on S by ≤, then it satisfies the following conditions:

(1) ∀x ∈ S, x ≤ x (reflexivity)

(2) ∀x, y ∈ S, if x ≤ y and y ≤ x, then x = y (antisymmetry).
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(3) ∀x, y, z ∈ S, if x ≤ y and y ≤ z then x ≤ z (transitivity).

A set with a partial order ≤ is called a partially ordered set, or poset, and is denoted

(S,≤). Two common examples are the power set of a set under containment, and the

set of positive divisors of a positive number m under divisibility, denoted (D(m), |).

To be more explicit concerning the latter example, let m be a positive integer and

let D(m) be the set of its positive divisors. Then we can define a partial order | on

D(m) in the following way. For a, b ∈ D(m), we say that a divides b, or a|b, if b = ac

for some positive integer c. Then the relation | defines a partial order on D(m), so

(D(m), |) is a poset.

In fact, both of the previous examples of posets (S,≤) have the additional proper-

ties that:

(1) ∀x, y ∈ S, the least upper bound of x, y exists (denoted x ∨ y).

(2) ∀x, y ∈ S, the greatest lower bound of x, y exists (denoted x ∧ y).

Note that x ∨ y is the unique minimum of the elements of S that are greater than

or equal to both x and y. Similarly, x∧ y is the unique maximum of the elements of S

that are less than or equal to both x and y. A poset with the above two properties is

known as a lattice. For example, in the power set of a set ordered by containment, set

union provides the least upper bound of two subsets, and set intersection provides the

greatest lower bound. In (D(m), |), the least common multiple of two divisors of m

provides the least upper bound, and the greatest common divisor provides the greatest

lower bound.
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Let (S,≤) be a poset with x, y ∈ S. We say that x < y if x ≤ y and x 6= y. A

chain in (S,≤) is a set {x1, x2, . . . , xn} ⊆ S such that x1 < x2 < · · · < xn. If x, y ∈ S

and x ≤ y or y ≤ x then x and y are comparable, otherwise x and y are said to be

incomparable. An antichain in S is a non-empty subset of S such that no two of its

elements are comparable. If x < y, then y covers x if there is no z in S such that

x < z < y. A chain x1 < x2 < . . . xn in (S,≤) is said to be saturated if xi+1 covers xi

for i ∈ {1, 2, . . . , n− 1}.

If there exists a unique element x in S such that x ≤ y for all y ∈ S, then we call

x the zero element of (S,≤) and denote it by 0. We define the length of a chain to be

one less than its cardinality, and we consider a poset to be ranked if for any x < y all

saturated chains from x to y have the same length. In a ranked poset, we define the

rank(x) for x ∈ S to be the length of a saturated chain from x to 0. For example,

if the poset in question is the power set of a finite set under containment, then the

empty set is 0 and the rank of a subset is simply the number of elements it contains.

1.2 Symmetric Chain Decompositions

In a ranked poset the saturated chain x1 < x2 < · · · < xk is a symmetric chain if

r(x1) + r(xk) = r(S), where r(S) is the maximum rank in S. A symmetric chain

decomposition or SCD of S is a partition of S into symmetric chains C1, C2, . . . , Ck. A

ranked poset that possesses a symmetric chain decomposition is known as a symmetric

chain order or SCO. A maximal chain in a ranked poset is a chain containing exactly

one element of every rank. Clearly a maximal chain is always saturated, but a saturated
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chain is not necessarily maximal.

Of particular importance to us is the poset known as the Boolean lattice, denoted

Bn, which is the power set of the set [n] = {1, 2, . . . , n} ordered by containment.

Clearly Bn is a ranked poset, with ∅ being the zero element, and rank(A) equal to the

cardinality of A, as noted above.

In fact, it was shown in 1951 by de Bruijn et al. that the lattice (D(m), |) is a

symmetric chain order [1]. This is of special interest to us because it is not hard to

see that Bn is isomorphic to D(m, |) when m is a square-free positive integer with n

distinct prime factors, and hence Bn is a symmetric chain order for all positive integers

n. To see that De Bruijn et al.’s result is true in the case of a square-free positive

integer m, suppose that m has k distinct prime divisors p1, p2, . . . , pk. When k = 1

the result is clear, since 1 and p1 are the only divisors of m and D(p1) = {1, p1} can

be partitioned into a single symmetric chain.

Now assume the theorem is true for some arbitrary number k, and suppose that m

is a square-free number with k + 1 prime divisors. Then m = m1pk+1, where m1 has

k prime divisors. Let d1, d2, . . . , dh be a symmetric chain in the SCD of D(m1). Then

it is clear that d1, d2, . . . , dh, dhpk+1 and d1pk+1, d2pk+1, . . . , dh−1pk+1 form symmetric

chains of D(m), since

r(d1pk+1) + r(dh−1pk+1) = r(d1) + r(dhpk+1)

= r(d1) + r(dh) + r(pk+1)

= r(m1) + r(pk+1)

= r(m)
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It’s also easy to see that every divisor of m will be found in one such symmetric

chain. The proof for all positive integers (including those that are not square-free) is

similar.

1.3 Permutation groups

The symmetric group Sn is the group of all permutations of [n] with function composi-

tion as the group operation. We use the usual cycle notation to denote permutations.

For example, σ = (1 2 . . . n) is an n-cycle, and τ = (i j) is a transposition. We compose

cycles from right to left, for instance, (1 2 3 4)(1 3 2) = (1 4)(3)(2).

Given any subgroup G of the symmetric group Sn of all permutations of [n], the

quotient Bn/G has as its elements the equivalence classes

[A] = {B | B = σ(A), for some σ ∈ G},

A ∈ Bn, ordered by

[A] ≤ [B] ⇐⇒ X ⊆ Y for some X ∈ [A] and Y ∈ [B].

We will not prove that this relation defines a partial ordering on Bn/G, but it may

be useful to at least verify that the relation ≤ on Bn/G is transitive. Let U, V,W be

elements of Bn/G, and suppose U ≤ V and V ≤ W . Then we can produce X ∈ U

and Y1 ∈ V such that X ⊆ Y1, and we can produce Y2 ∈ V and Z ∈ W such that

Y2 ⊆ Z. Since Y1, Y2 ∈ V , we can also produce σ ∈ G such that Y1 = σ(Y2), and

clearly since Y2 ⊆ Z, we have that Y1 = σ(Y2) ⊆ σ(Z), with σ(Z) ∈ W . Therefore,

X ⊆ Y1 ⊆ σ(Z), so U ≤ W , and hence the relation is transitive.
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1.4 The Main Result

In an unpublished manuscript, R. Canfield and S. Mason [2] made the following con-

jecture, which we have sought to prove in a few limited cases.

Conjecture 1. If G is a subgroup of the symmetric group Sn acting on the set [n],

then the quotient poset Bn/G is a symmetric chain order.

The following theorem, first proved by K. K. Jordan [7], shows that the conjecture

is true in one special case.

Theorem 1.1. Let σ ∈ Sn be any n-cycle and let G = 〈σ〉 denote the subgroup of Sn

generated by σ. Then the partially ordered set Bn/G is a symmetric chain order.

In fact, a special case of this result had been proved before Jordan. In [5] Griggs,

Killian, and Savage constructed a SCD of Bp/ 〈σ〉 for p prime and σ = (1 2 . . . p).

They also asked if Bn/ 〈σ〉 is a SCO for all n, which is answered affirmatively by

Theorem 1.1.

We offer a new proof of Theorem 1.1. Our proof also provides a simple, straight-

forward method of finding a symmetric chain decomposition of Bn/G when G is gen-

erated by an n-cycle, beginning from the well-known SCD of Bn obtained by Greene

and Kleitman [4].

1.5 Other Results

In addition to proving Canfield’s conjecture in the case of groups generated by an

n-cycle, we have also made the following observation, concerning groups generated by

pairwise disjoint transpositions.
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Theorem 1.2. Let τ1, τ2, . . . , τk ∈ Sn be k pairwise disjoint transpositions and let

G = 〈τ1, τ2, . . . , τk〉 denote the subgroup of Sn generated by τ1, τ2, . . . , τk. Then the

partially ordered set Bn/G is a symmetric chain order.

Again, our proof provides a straightforward method of finding a symmetric chain

decomposition of the relevant quotient of Bn, with the SCD of Bn obtained by Greene-

Kleitman as the starting point.

2 An Important SCD of Bn

In this thesis, our main concern is the construction of symmetric chain decompositions

for various quotients of Bn. Towards that end, it will be useful to present a construction

of an SCD for Bn due to Greene and Kleitman [4]. But before doing so, we would like

to note that there is another interpretation of elements of Bn, involving sequences of

0’s and 1’s. For each set A ∈ Bn, we associate a binary sequence called Â, where Â

contains a 1 in position i if i ∈ A, and otherwise Â contains a 0 in position i. For

example, if A = {1, 3, 4} ∈ B5, then Â = 10110. This equivalent description of the

elements of Bn will be very useful to us later on.

The Greene-Kleitman SCD is obtained by a “pairing” or “matching” procedure

which can be describe inductively. Fix A ⊆ [n]. If 1 /∈ A and 2 ∈ A, pair 1 and 2;

define pA(2) = 1. Suppose that we considered 1, 2, . . . k − 1. If k ∈ A and there is

some j < k, j /∈ A such that j is unpaired, then let pA(k) be the maximum such j

and say pA(k) and k are paired or matched. Continue for all k in [n]. Let R(A) be

the set of all x for which pA(x) is defined, let L(A) = {pA(x) | x ∈ R(A)}, and let
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P (A) = L(A) ∪R(A).

Now, let us describe the inductive pairing procedure on elements of Bn in terms

of the binary sequences defined above. Let A ∈ Bn, and consider the sequence Â.

Moving from left to right in the sequence, when we come to a 0 it becomes (possibly

temporarily) unmatched. When we come to a 1 it either matches with the rightmost

unmatched 0, or if there are no unmatched 0’s, it becomes permanently unmatched.

At the end of this procedure, matched 1’s in Â will correspond to the elements of

R(A), matched 0’s will correspond to the elements of L(A), the the set of all matched

1’s and 0’s will correspond to P (A).

Now that the pairing procedure has been fully described, the Greene-Kleitman

symmetric chain partition of B(n) can be defined as follows. For all A ∈ Bn, let

τ(A) = A∪ {z} where z = min([n]− (A∪L(A))) provided that [n]− (A∪L(A)) 6= ∅;

otherwise τ(A) is undefined. It is straightforward to argue that the following inverts

this mapping: τ−1(B) = B−{z} where z = max(B−R(B)) provided that B−R(B) 6=

∅; otherwise τ−1(B) is undefined.

For all A ∈ Bn such that R(A) = A, let C(A) = {A, τ(A), τ 2(A), . . . , τ k(A)}, with

|[n] − (A ∪ L(A))| = k. (Examination of Figures 1 and 2 shows that the sets A for

which A = R(A) are exactly the minimum elements of the SCD of B5.) We shall show

that given S = {C(A)|A ∈ Bn, A = R(A)}, S defines a symmetric chain decomposition

of Bn.

We can also describe τ by its action on the binary sequences corresponding to

elements of Bn. Observe that τ acts on A ∈ Bn by replacing the leftmost unmatched

0 in Â with a 1. This is identical to the above description, in which it was said that
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Figure 1: The Greene-Kleitman SCD of B5

τ(A) is the union of A and the minimal element of [n] − (A ∪ L(A)). Also, we can

describe τ−1 as replacing the rightmost unmatched 1 in Â with a 0. We are now ready

to prove the following theorem.

Figure 2: The Greene-Kleitman SCD of B5 in terms of (0, 1)-sequences

Theorem 2. (Greene and Kleitman [4]) For A ∈ Bn with A = R(A), let C(A) =

{A, τ(A), τ 2(A), . . . , τ k(A)} where k = |[n]−(A∪L(A))|. The following is a symmetric

chain decomposition of Bn:
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S = {C(A)|A ∈ Bn, A = R(A)}

Proof of Theorem 2: Pick A ∈ Bn such that A = R(A), so that

C(A) = {A, τ(A), τ 2(A), . . . , τ k(A)} ∈ S.

First we must show that C(A) is symmetric. Observe that

r(A) + r(τ k(A)) = |A|+ |τ k(A)|

= |R(A)|+ (|R(A)|+ k)

= 2|R(A)|+ |[n]− (A ∪ L(A))|

= 2|R(A)|+ n− |A| − |L(A)| = 2|R(A)|+ n− 2|R(A)|

= n

since |A| = |R(A)| = |L(A)|. Hence C(A) is symmetric.

Now we need to show that the elements of S are disjoint, and so it suffices to show

that τ is one-to-one. Here it should be noted that all unmatched 0’s in Â for A ∈ Bn

are to the right of all unmatched 1’s, lest they be matched. Hence if i is the position of

the leftmost unmatched 0 in Â, then i is also the position of the rightmost unmatched

1 in τ(Â). Recall that we described τ−1 as changing the rightmost unmatched 1 to a

0.

Therefore, for all A ∈ Bn such that [n]− (A ∪ L(A)) 6= ∅, τ−1(τ(A)) = A, and for

all A ∈ Bn such that A−R(A) 6= ∅, τ(τ−1(A)) = A. Hence τ and τ−1 are one-to-one,

and so the elements of S are disjoint symmetric chains.
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The last thing we must show is that every element of Bn is in an element of S.

Pick A ∈ Bn, and suppose that Â contains k unmatched 1’s. Then we must have

τ k(R(A)) = A, since P (A) = P (R(A)), and τ k simply replaces the leftmost k un-

matched 0’s in R(A) with unmatched 1’s. Hence A ∈ C(R(A)), so A is contained in

an element of S, and hence S is a symmetric chain decomposition of Bn. �

We would like to show that the following lemma concerning the Greene-Kleitman

pairing procedure is true, since it will be useful to us later on.

Lemma 3. For all A ∈ Bn, for all x ∈ R(A), [pA(x), x] ⊆ P (A); and pA(x) is the

maximum y such that 1 ≤ y < x and precisely half of the elements of the interval [y, x]

are in A.

Proof of Lemma 3. Suppose that the first part of the lemma is not true. That is, there

is a y ∈ [pA(x), x] such that y /∈ P (A). If y /∈ A, then clearly the pairing procedure

has been violated, since pA(x) could not have been the maximum unpaired element

not in A when x was being considered for pairing. If y ∈ A, then pA(x) would have

been unpaired when y was under consideration for pairing, making it impossible for y

to remain unpaired. Hence [pA(x), x] ⊆ P (A).

Suppose it is not true that precisely half of the elements in the interval [pA(x), x]

are in A. If there are more 1’s than 0’s in the interval on Â, then there must be an

unpaired 1, since no 1 in the interval can be paired with a 0 outside of the interval,

because that would imply that pA(x) was already paired before x was considered.

However, it is not possible for an unpaired 1 to be in the interval by the first part of
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the lemma.

Similarly, suppose there are more 0’s than 1’s in the interval on Â. If a 0 is in the

interval it cannot be paired with a 1 outside of the interval, since that would mean

the 0 was unpaired when x was under consideration, so pA(x) would not have been

the rightmost unpaired 0. Hence there must be an unpaired 0 in the interval, which is

impossible by the first part of the lemma. Therefore, exactly half of the elements in

the interval [pA(x), x] are in A.

Now suppose pA(x) is not the maximum y such that half of the elements of the

interval [y, x] are in A. Then there must be a smaller, minimal interval [y, x] such

that half of the elements of the interval are in A. Suppose that y /∈ A. Then, as we

have just shown, y must be paired with some w ∈ [pA(x), x], and exactly half of the

elements of [y, w] must be in A, and hence half of the elements of [w+ 1, x] must be in

A, which is clearly impossible, since [y, x] is the minimal interval with this property.

Suppose that y ∈ A. Then there must be more 0’s than 1’s in the interval [y+ 1, x] on

Â, and so there must be an unpaired 0 in [pA(x), x], which is impossible by the first

part of the lemma. �

We require one additional lemma, concerning the properties of the Greene-Kleitman

SCD itself.

Lemma 4. Let A ∈ Bn, A = R(A).

(1) C(A) = {X ∈ Bn | R(X) = A} and pX(a) = pA(a) for all X ∈ C(A) and for all

a ∈ R(A);

(2) if X ∈ C(A), then |C(A)| = n− |P (X)|+ 1; and,
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(3) min(C(A)) = R(A), max(C(A)) = [n]− L(A); in fact, C(A) is the chain

R(A) ⊂ R(A)∪{a1} ⊂ R(A)∪{a1, a2} ⊂ . . . ⊂ R(A)∪{a1, a2, . . . at} = [n]−L(A),

where [n]− (R(A) ∪ L(A)) = {a1 < a2 < . . . < at}.

Proof of Lemma 3, part (1). Part (1) follows easily from the definition of τ . It has

already been said that τ replaces the leftmost unmatched 0 in Â with a 1, which will

also be unmatched in τ(Â). Hence no paired elements of A are affected by the action

of τ , so if X ∈ Bn and τ(X) is defined, then clearly R(X) = R(τ(X)), and hence part

(1) follows easily from the definition of C(A).

Part (2). Part (2) simply states that |C(A)| in the Greene-Kleitman decomposition

is equal to one plus the number of unpaired elements in any binary sequence X̂ with

X belonging to the chain. This follows from part (1), since by definition of C(A),

|C(A)| = |[n]− (A∪L(A))|+ 1 = n− 2|R(A)|+ 1, and by part (1), n− 2|R(A)|+ 1 =

n− 2|R(X)|+ 1 = n− |P (X)|+ 1.

Part (3). To see that min(C(A)) = R(A) and max(C(A)) = [n]−L(A), observe that

if τ(A) is defined then A ≤ τ(A). Hence out of the set C(A) = {A, τ(A), . . . , τ k(A)},

where |[n] − (A ∪ L(A))| = k and A − R(A) = ∅, it is clear that A is the minimum

element, and A = R(A). Similarly, τ k(A) is the maximum element, and the binary

sequence defined by τ k(A) contains no unpaired 0’s. Hence τ k(A) = [n]− L(A).

The second statement of part (3) follows easily from the definition of τ and C(A).

�
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3 Proof of the Main Result

Without loss of generality, we take the usual order on [n] and let σ = (1 2 . . . n). Now

let C1, C2, . . . , Ct, where t =
(

n
bn/2c

)
, be the symmetric chains in the Greene-Kleitman

decomposition, ordered by decreasing length. Theorem 1.1 is established by finding a

family C = {C ′i1 , C
′
i2
, . . . C ′im}, with (i1, i2, . . . , im) a subsequence of (1, 2, . . . , t), that

satisfies these conditions:

(1) for all 1 ≤ j ≤ m, C ′ij ⊆ Cij and is a symmetric chain in Bn;

(2) for all 1 ≤ r < s ≤ m and for all A ∈ C ′ir , B ∈ C
′
is , A /∈ [B]; and,

(3) for all [X] there is some Y ∈ [X] such that Y ∈ C ′ij for some j.

We see that (1) - (3) imply Theorem 1.1 once we realize that each symmetric

chain of Bn defines a symmetric chain in the quotient Bn/G and that each [X] ∈ Bn/G

belongs to exactly one of the symmetric chains of Bn/G induced by the chains in C.

A procedure that provides a family C satisfying (1) - (3) is based on the following

two lemmas. Before that, note that given a symmetric chain C in Bn and X ∈ C with

|X| ≤ bn/2c, we define X∗ to be the member of C with |X∗| = n− |X|. Also, for any

Y ∈ C, let τ(Y ) denote its successor in C, if it exists, and τ−1(Y ) be its predecessor,

if it exists, as introduced in section 2.

The first lemma was proved in [3].

Lemma 5. For i = 1, 2, . . . , t and for all X ∈ Ci with |X| ≤ bn/2c, (σ(X))∗ = σ(X∗).
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Lemma 6. Let w ∈ {1, 2, . . . , t}, and let A ∈ Cw with |A| ≤ dn/2e. Suppose that

there is some B ∈ [A] such that B ∈ Cj for some j < w. Then there is some k < w

and D ∈ Ck such that D ∈ [τ−1(A)], provided that τ−1(A) is defined.

Let us use these facts to describe an inductive procedure for obtaining the set

C = {C ′i1 , C
′
i2
, . . . C ′im} satisfying (1) - (3).

Figure 3: An illustration of Lemma 5. The vertical lines represent symmetric chains

in the Greene-Kleitman SCD of Bn.

First, let i1 = 1 and C ′i1 = C1. Now suppose that we have already obtained

C ′i1 , C
′
i2
, . . . , C ′ik satisfying (1) and (2), and that we wish to obtain C ′ik+1

. To do so,

attempt to choose i least in {ik + 1, . . . , t} such that for some X ∈ Ci,

[X] ∩ (
k⋃
j=1

Cij ) = ∅ (3.1)
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and set ik+1 = i. If it is not possible to choose such an i then m = k and the procedure

is complete. Now let

C ′ik+1
= {Y ∈ Cik+1

| [Y ] ∩ (
k⋃
j=1

C ′ij ) = ∅}. (3.2)

We know that if Y ∈ C ′ik+1
, with |Y | ≤ bn/2c then Y ∗ ∈ C ′ik+1

, by Lemma 5 (refer

to Figure 3). Also, if Z ∈ Cik+1
and Y ⊆ Z ⊆ Y ∗ where Y ∈ C ′ik+1

then Z ∈ C ′ik+1
by

Lemma 6 and Lemma 5 (refer to Figure 4). Thus, C ′ik+1
is symmetric in Bn and (1)

holds.

Figure 4: An illustration of Lemma 6. The vertical lines represent symmetric chains

in the Greene-Kleitman SCD of Bn.

It is immediate from equation (3.2) that property (2) holds. It is also easily seen

from equation (3.1) and equation (3.2) that property (3) holds.

Proof of Lemma 5. The proof is divided into cases depending upon which of R(X) ⊆

X ⊆ X∗ contain n. It is not possible that n ∈ X − R(X), because |X| ≤ bn/2c

means that for some y < n precisely half the elements of [y, n] are in X, and, hence,
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n ∈ R(X) by Lemma 3. Consequently, we have three cases to consider. In each case,

we argue that

R(σ(X∗)) = R(σ(X)),

apply Lemma 4, part (1) to see that σ(X∗) and (σ(X))∗ are both members of C(σ(X)),

and conclude σ(X∗) = (σ(X))∗ since these sets both have cardinality n− |σ(X)|.

Case 1: n /∈ X∗

Since n ∈ [n]− L(X) = max(C(X)) and n /∈ X∗, X 6= min(C(X)) = R(X). Thus,

we can choose y = min(X − R(X)). If y = 1 then pσ(X)(2) = 1 = pσ(X∗)(2). For each

z ∈ R(X), σ(z) = z + 1 ∈ R(σ(X)) and each z + 1 ∈ R(σ(X)) has z ∈ R(X) apart

from z + 1 = 2. Thus,

R(σ(X)) = σ(R(X)) ∪ {2} since pσ(X)(2) = 1,

= σ(R(X∗)) ∪ {2} by Lemma 4, part (1),

= R(σ(X∗)) since pσ(X∗)(2) = 1.

If y > 1 we claim that [1, y− 1] ⊆ P (X). Note that y− 1 ∈ X as otherwise y ∈ R(X)

with pX(y) = y−1, contradicting the choice of y. By the minimality of y, y−1 ∈ R(X)

and, by Lemma 3, [pX(y − 1), y − 1] ⊆ P (X). Continue in the same manner, with

pX(y − 1)− 1 in place of y and thereby verify the claim that [1, y − 1] ⊆ P (X). The

argument is just about the same except we use the fact that [1, y − 1] ⊆ P (X) and

1 /∈ X, so, pσ(X)(y + 1) = 1:

R(σ(X∗)) = σ(R(X∗)) ∪ {y + 1} = σ(R(X)) ∪ {y + 1} = R(σ(X)).
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Case 2: n ∈ R(X)

Every element of R(σ(X)) is in σ(R(X)) and every element of σ(R(X)), except

for 1, is in R(σ(X). Thus,

R(σ(X)) = σ(R(X))− {1} = σ(R(X∗))− {1} = R(σ(X∗)).

Case 3: n ∈ X∗ −X

Since n ∈ X∗ −X, Lemma 4, part (3) shows that X∗ = max(C(X)) = [n]− L(X)

and, thus, X = min(C(X)) = R(X).

If z + 1 ∈ R(σ(X)) then z ∈ X = R(X), so R(σ(X)) ⊆ σ(R(X)). Con-

versely, 1 /∈ σ(R(X)), and any z + 1 ∈ σ(R(X)) is obviously a member of R(σ(X)).

Thus, R(σ(X)) = σ(R(X)). Similarly, since n /∈ R(X), it follows that R(σ(X∗)) =

σ(R(X∗)). Hence, R(σ(X∗)) = R(σ(X)). �

Proof of Lemma 6. As before, let C1, C2, . . . , Ct, where t =
(

n
bn/2c

)
, be the symmetric

chains in the Greene-Kleitman decomposition, ordered by decreasing length. Let A ∈

Cw with |A| ≤
⌈
n
2

⌉
. Without loss of generality, let σ = (1 2 . . . n), and suppose that

there exists a j < w such that B ∈ Cj and B ∈ [A]. Hence there is an integer m such

that B = σm(A).

It would suffice to show that if τ−1(A) is defined, then there is a k < w such that

D ∈ Ck and D ∈ [τ−1(A)]. As described earlier, it is useful to interpret A as a binary

sequence Â of length n, with 1′s corresponding to elements of [n] contained in A and

0′s corresponding to all other elements of [n]. Clearly by Lemma 4, part (3) Â must

contain unpaired 1’s, since τ−1(A) is defined, so let i be the position of the rightmost
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unpaired 1 in Â. As noted before, B = σm(A), and we will assume without loss of

generality that −(i− 1) ≤ m ≤ n− i, m 6= 0. We must consider two cases:

Case 1: The 1 at position i+m in B̂ is paired.

Clearly m > 0, since in order for the 1 at position i in Â to become paired in B̂ an

additional 0 must have appeared at the beginning of the sequence to pair with it. We

can also observe that by Lemma 3 all of the 1’s to the right of the 1 at position i+m

in B̂ must be paired, since they were paired in A. Now consider the binary sequence

σm(τ−1(Â)) contained in some chain Ck. Clearly σm(τ−1(Â)) can be obtained by

replacing the 1 at position i+m in B̂ with a 0. It follows from this that σm(τ−1(A))

must have one fewer pairs than B, since the additional 0 will be unpaired, while the 1

that it replaced was paired. Hence, by Lemma 4, part (2), |Ck| > |Cj|, so k < j < w,

as desired.

Case 2: The 1 at position i+m in B̂ is unpaired.

If the 1 at position i+m is the rightmost unpaired 1 in B̂ then we are done, since

in that case we have τ−1(B) = σm(τ−1(A)). So suppose instead that the rightmost

unpaired 1 is at a position to the right of i + m, say at position i + m + `, ` > 0.

Clearly m < 0, since the 1 in position i+m+ ` in B̂ must have been in a position to

the left of i in Â.

My claim is that, for some q, σq(A) is the maximum element of its chain, and

its chain is not a singleton, so |σq(A)| >
⌈
n
2

⌉
. This would contradict the fact that

|A| ≤
⌈
n
2

⌉
, since |σq(A)| = |A|.

To see that this is true, we need to take a closer look at the transition from B̂

to Â. We can think of this transition as a sequence of rightward shifts. After each
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“click” rightwards, the 1 at position i + m in B̂ and the 1 at position i + m + ` in B̂

must remain unpaired (since the 1 at position i + m in B̂ is unpaired in Â), at least

until the 1 at position i + m + ` in B̂ moves from position n to position 1. Hence at

some intermediate step from B̂ to Â, the 1 at position i + m + ` in B̂ is in position

n, and is unpaired. Let’s call this intermediate element σq(A). Clearly σq(A) is the

maximum element of its chain, since the rightmost unpaired 1 is in position n, and

hence there are no unpaired 0’s (recall that all unmatched 0’s must occur to the right of

all unmatched 1’s). We can also see that the chain containing σq(A) is not a singleton,

since σq(A) contains an unmatched 1, and the binary sequence in a singleton chain

must contain only pairs, by Lemma 4, part (2). Again, this contradicts the fact that

|A| ≤
⌈
n
2

⌉
, since |σq(A)| = |A|. �

4 Proof of Other Results

We now prove Theorem 1.2, which states that Bn/G is a SCO for G generated by a

set of pairwise disjoint transpositions. As in the proof of Theorem 1.1, we proceed by

removing entire chains from the standard Greene-Kleitman decomposition. We begin

by showing that it holds in case τ1 = (12), τ2 = (34), . . . , τk = (2k−1 2k) and applying

the following lemma concerning permutation groups

Lemma 7. For any positive integer n, these statements hold for the symmetric group

Sn.

(1) Given k pairwise disjoint transpositions τ1, τ2, . . . , τk ∈ Sn, there is a permutation

σ such that τ1 = σ(12)σ−1, τ2 = σ(34)σ−1, . . . , τk = σ(2k − 1 2k)σ−1.
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(2) For any subgroup H of Sn generated by permutations ρ1, ρ2, . . . , ρk, and any

permutation σ, σHσ−1 is generated by σρ1σ
−1, σρ2σ

−1, . . . , σρkσ
−1.

(3) For all subgroups H of Sn and for all σ ∈ Sn, the partially ordered set Bn/H is

order-isomorphic to Bn/σHσ
−1.

Proof of Lemma 7. To see that part (1) is true, suppose that τi = (ui, vi), i = 1, 2, . . . , k,

so that {u1, v1, u2, v2, . . . , uk, vk} is a set of 2k distinct elements in [n]. An elementary

fact about conjugacy in Sn is that for all α, ρ ∈ Sn, ραρ−1 has the same cycle decom-

position as α with a cycle (ρ(i1) ρ(i2) . . . ρ(i`)) for each cycle (i1 i2 . . . i`) of α (see, for

instance, Theorem 2.63 of [9]). To obtain σ ∈ Sn with the required property, we let

σ(1) = u1, σ(2) = v1, σ(3) = u2, σ(4) = v2, . . . σ(2k − 1) = uk, vk,

and let σ(2k + 1), . . . , σ(n) be chosen so that σ is a permutation.

Part (2) is clearly a special case of a general fact about conjugates of finitely

generated subgroups H of any group G.

To justify part (3), we argue that the mapping [A]→ [σ(A)] is an order-isomorphism

of Bn/H onto Bn/σHσ
−1. First, the mapping is well-defined and one-to-one because

of this sequence of equivalences: for all A,B ∈ Bn,

[A] = [B] in Bn/H ⇐⇒ ρ(A) = B [for some ρ ∈ H]

⇐⇒ σρσ−1(σ(A)) = σ(B) [for some σρσ−1 ∈ σHσ−1]

⇐⇒ [σ(A)] = [σ(B)] in Bn/σHσ
−1.

The mapping preserves order, as does its inverse, by almost the same reasoning: for
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all A,B ∈ Bn,

[A] ≤ [B] in Bn/H ⇐⇒ ρ(A) ⊆ B [for some ρ ∈ H]

⇐⇒ σρσ−1(σ(A)) ⊆ σ(B) [for some σρσ−1 ∈ σHσ−1]

⇐⇒ [σ(A)] ≤ [σ(B)] in Bn/σHσ
−1.

The mapping is obviously onto. �

Now, let us see that the quotient Bn/G, where G = 〈τ1, τ2, . . . , τk〉, is a SCO with

τ1 = (12), τ2 = (34), . . . , τk = (2k − 1 2k). First observe that for A ⊆ [n] for which

2i − 1 /∈ A and 2i ∈ A, then 2i ∈ R(A) and pA(2i) = 2i − 1. In words, 2i − 1 and 2i

are paired in A. By Lemma 4, part (2), the same is true for all X ∈ C(R(A)).

We select a subfamily of the Greene-Kleitman family C1, C2, . . . , Ct, of symmetric

chains, with t =
(

n
bn/2c

)
. Let {j1, j2, . . . , jm} be the set of those j ∈ [t] such that: for

all A ∈ Cj, A ∩ {2i− 1, 2i} 6= 2i, for each i = 1, 2, . . . k. For each B /∈
⋃m
l=1Cjl ,

B ∈ [B′] where B′ = (B − {2i | 2i ∈ B, 2i− 1 /∈ B, i = 1, 2, . . . , k})

∪ {2i− 1 | 2i ∈ B, 2i− 1 /∈ B, i = 1, 2, . . . , k}.

Moreover, B′ is the unique element of [B] in
⋃m
l=1Cjl .

Create a symmetric chain decomposition of B(n)/G by replacing each A ∈ Cil by

[A], for l = 1, 2, . . .m.
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5 Closing Remarks

Although some small progress has been made towards proving Canfield’s conjecture, in

the end we have only shown that it is true in a few very special cases, namely, when G

is generated by an n-cycle, and when G is generated by a set of disjoint transpositions.

Other interesting subgroups of Sn for which the conjecture is still unproved include

the 2-element reflection group H = 〈ρ〉, with ρ = (1 n)(2 n− 1)(3 n− 2) . . . , and the

2n-element dihedral group.

While only a few cases have been proven, we believe there is positive evidence to

show that the conjecture is true in general. In 1986, Pouzet and Rosenberg showed in

[8] that the following is true. Let P = Bn/G. Then P is a ranked poset, and define

Pr = {[S] | |S| = r}, the set of elements of P of rank r. Suppose r ≤ n
2
, and pick s ≥ r

such that r ≤ n − s. Then there exists a set of |Pr| disjoint, saturated chains such

that for each chain C in the set, C ∩ Pj 6= ∅,∀j ∈ {r, r + 1, . . . , s}. The existence of

such chains, while not providing the needed symmetric chain decomposition of Bn/G,

gives positive evidence for the possibility of its existence.

There are additional reasons to be hopeful that Bn/G is always a SCO, but pre-

senting these requires some additional terminology. We can partition a ranked poset

P into a set of disjoint subsets P0, P1, . . . , Pn such that if x ∈ Pi and y covers x, then

y ∈ Pi+1. Let pi = |Pi| for i = 0, 1, . . . , n, and say that P is rank symmetric if pi = pn−i

for all i, and rank unimodal if, for some j,

p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 ≥ · · · ≥ pn.

Recall that an antichain is a non-empty subset of P such that no two elements of the
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subset are comparable. Say that P is k-Sperner if there is no union of k antichains

that is larger than the sum of the k largest ranks. Call P strongly Sperner if P is

k-Sperner for all k ∈ [n+ 1].

In 1980, R. Stanley showed in [10] (c.f. [8], [11]) that the quotient Bn/G is rank

symmetric, rank unimodal, and strongly Sperner, all necessary conditions for a ranked

poset to be a SCO. Finally, we say that a ranked poset P has the LYM property if,

given an antichain A in P with mi elements of rank i, we have

∑
i

mi

pi
≤ 1.

Griggs showed in [6] that if P is rank symmetric, rank unimodal, and has the LYM

property, then P is a SCO. In combination with Stanley’s result stated above, we can

conclude that for every G such that Bn/G has the LYM property, Bn/G is a SCO.

As you can see, the evidence has been mounting for some time that Bn/G is always a

SCO.
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