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Abstract

Advances in Causal Inference to Support Vaccine Development and Evaluation
By Yutong Jin

Communicable disease outbreaks continue to present significant challenges to human
society. The incidence of various infectious diseases remains alarmingly high globally.
Consequently, developing preventive vaccines has become a pivotal objective in mitigating
infectious disease burden. This dissertation centers on the creation of statistical methods
that support the design and evaluation of potential vaccines.

In the first section, we devise methods to identify key genetic mutations in the HIV
envelope protein linked to antibody resistance. This task proves complex due to the high-
dimensional and strongly correlated nature of genetic sequence data. We propose a so-
lution using an outcome-adaptive, collaborative targeted minimum loss-based estimation
approach combined with random forests, which enjoys significant advantages over existing
methods. We apply this approach to the Compile, Analyze and Tally Nab Panels (CAT-
NAP) database to identify amino acid positions causally related to resistance to neutraliza-
tion by various antibodies.

In the second section, we develop methods for standardized comparisons of immuno-
genicity across diverse vaccine trials, involving different populations and study designs.
To address this, we introduce a causal framework capable of identifying suitable causal
estimands and estimators to bridge the immunogenicity of one vaccine from the trial pop-
ulation where it was evaluated to other trial populations. We apply the proposed technique
to compare vaccine effectiveness using data from four recent HIV vaccine trials.

In the third section, we create methods to generate standardized versions of causal ef-
fects that can be used to compare the impact of vaccines on various outcomes that are
measured on different scales. For example, we may wish to compare the difference in im-
munogenicity between two vaccines in terms of two different immunologic assays. If these
assay readouts have substantially different variability, then a comparison of relative vaccine
performance across assays can be challenging. To rectify this, we develop a general frame-
work for defining standardized causal effect sizes. We develop nonparametric efficient
estimators of these quantities and evaluate the estimators’ performance in comprehensive
numerical studies.
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Chapter 1

Introduction

1.1 Overview

Outbreaks of various communicable diseases remain a major concern in human society.

For example, HIV incidence remains stubbornly high - in 2019 36,801 new HIV diagnoses

were reported in the United States and at year-end an estimated 1.1 million individuals were

living with HIV in the United States [9]. To reduce incidence further, the development of

safe and effective preventive vaccines is crucial. In general, vaccines operate by introduc-

ing a so-called antigen to the host immune system. This antigen could be a fragment of

viral genetic material or a protein expressed on a virus. Once the antigen is introduced,

the host’s immune system is activated, initiating a biological response against the antigen.

Subsequently, when the host is later exposed to the real form of the virus, the immune sys-

tem can recognize it and initiate a range of immune responses aimed at protecting the host

from breakthrough infection and disease. There are myriad immune responses generated

in response to vaccine antigens. Among these responses, one that is believed to play a vital

role in effective vaccines are antibody responses. Antibodies are proteins that circulate in

the blood and are designed to bind to specific foreign substances, like viruses, thereby neu-

tralizing the substance. If a vaccine can successfully stimulate antibodies that are capable
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of neutralizing many forms of a particular pathogen (e.g., different strains of a virus), it

can be regarded as a promising vaccine for providing robust protection. However, eliciting

such broad protection can be challenging for many pathogens including HIV. Thus, the

development of broadly effective vaccines remains a considerable challenge.

This dissertation explores several important statistical topics that arise in the vaccine de-

velopment process. Typically, vaccine development includes three key stages: pre-clinical

research, early-phase trials and late-phase trials. The first topic of the dissertation is aimed

at challenges that can arise in the pre-clinical stage. We utilize existing observational data

sources to identify HIV viruses that may escape neutralization by specific antibodies by

estimating the causal effect of an amino acid substitution in the HIV Envelope protein on

antibody neutralization. Details are provided in Chapter 2. The second and third topics

address practical challenges encountered during clinical trials of vaccines. In the second

topic, we propose a framework to identify appropriate causal estimands and estimators that

enable objective comparisons of vaccine immunogenicity across trials with different pop-

ulations and sampling designs. Further information is available in Chapter 3. To facilitate

more robust comparisons of immune responses across candidate vaccines, in the third topic,

we introduce the idea of a standardized causal effect size that may be useful to this end. We

also provide nonparametric efficient estimators of the proposed causal estimands. Refer to

Chapter 4 for more comprehensive details.

The remainder of this Introduction provides relevant background information for each

topic, while specific details of the statistical methods are included in later Sections.

1.2 Targeted Machine Learning for Understanding HIV

Resistance to Neutralizing Antibodies

To understand how antibodies are thought to neutralize HIV, it is first important to under-

stand the structure of the virus itself. A simple diagram of HIV is illustrated in Figure
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Due to the hyper-
mutated nature of HIV, 
we can safely assume 

these observed pseudo-
viruses are independent 

and identically 
distributed.

Due to the hyper-
mutated nature of HIV, 
we can safely assume 

these observed 
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independent and 
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Viral RNA

Lipid membrane

Matrix protein

Capsid

Figure 1.1: Illustration of the structure of HIV. The envelope protein, which includes the
gp120 and gp40 sub-proteins, is the putative binding site for antibodies and other immune
responses.

1.1. The green spikes protruding from the virus are called envelope (Env) proteins and are

used by the virus to bind to and subsequently infect host CD4 T-cells. The Env protein is

also the putative site for antibody binding. If enough antibodies bind to these Env proteins,

they may block the virus from infecting cells, effectively neutralizing the virus. However,

HIV can and does evolve specifically to avoid such immune responses and may be able to

adapt the geometric shape and/or their physio-chemical makeup of the Env protein to make

it more difficult for antibodies to recognize. This presents a challenge for HIV vaccine

development – vaccines must induce antibody responses that are capable of binding to and

neutralizing a wide variety of Env proteins.

Due to the challenges associated with selecting an antigen capable of inducing such

antibodies, an alternative paradigm has emerged for HIV prevention – rather than relying

on vaccine antigens to induce neutralizing antibodies, we can instead identify and man-

ufacture such antibodies in a laboratory. This mode of prevention is currently of great

interest in the field of HIV prevention. Using sera from HIV-infected humans and/or non-

human primates, scientists have identified several so-called broadly neutralizing antibodies
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(bnAbs), single antibodies that are capable of neutralizing a wide variety of Env proteins.

These antibodies can be manufactured at scale and be given to individuals at risk of HIV

acquisition to prevent future HIV infection. Several prevention trials along these lines are

being conducted [31], including HVTN-704, a Phase 2b study of a bnAb named VRC01

[14]. This trial showed modest overall efficacy for preventing HIV, with a multiplicative

reduction in risk of infection of about 20%. However, further analysis for this trial revealed

a crucial result – individuals given VRC01 were indeed protected from some types of HIV,

but were susceptible to others. In particular, individuals who were given VRC01 were pro-

tected from viruses that were capable of being neutralized by the antibody VRC01, but

remained susceptible to infection by HIV viruses that were able to escape VRC01. Investi-

gators demonstrated this effect by sequencing the Env protein from viruses of HIV-infected

individuals in the trial. Laboratory experiments were then conducted to measure how well

these Env proteins could be neutralized by VRC01. We refer to this outcome measure as the

neutralization sensitivity of the virus [38]. Combining these data with the clinical data from

the randomized trial, researchers estimated prevention efficacy of VRC01 as a function of

neutralization sensitivity, demonstrating that receipt of VRC01 was associated with almost

no protection from infection with viruses with low neutralization sensitivity, but provided

high efficacy against viruses that were highly sensitive to neutralization by VRC01. These

results highlighted that bNAbs should be considered a highly promising means of HIV pre-

vention, but, as with vaccines, the key obstacle is how to select antibodies that are capable

of neutralizing genetically diverse HIV Env proteins.

Overcoming this challenge will require careful interaction of randomized studies, like

HVTN 704 described above, and observational laboratory studies. In the latter, HIV Env

sequences isolated from infected participants around the globe are used to measure neutral-

ization sensitivity to various candidate bnAbs. The CATNAP database collates data from

these neutralization studies into a central, publicly available repository [45]. However, the

number of sequences available for some antibodies is limited and moreover, databases such
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as these are not exhaustive in covering all possible configurations of the Env protein that

may be observed in the population. Therefore, it is of great interest to develop methods

that use observational databases, like CATNAP, to learn the causal effect of mutations in

the Env protein on antibody resistance.

Figure 1.2 illustrates the interplay between observational neutralization studies and ran-

domized controlled trials of bnAb therapies. Randomized experiments are generally time-

consuming and expensive, and thus we must take care to only advance the most promising

bnAbs to randomized trails. One common practice is using neutralization studies to iden-

tify promising bnAbs that can be advanced to randomized trials, like HVTN704. If low

overall efficacy but significant efficacy against sensitive viruses is found, we may view

the trial a partial success in that the bnAb successfully neutralized viruses that it was bio-

logically capable of neutralizing. Then we may consider adding one or several additional

bnAbs to create a cocktail of multiple bnAbs. The question then arises as how to select

these additional bnAbs. The first valuable source of data are the randomized trials, where

we can perform a so-called sieve analysis [16].

Sieve analysis quantifies prevention efficacy of the bnAb regimen studied in the ran-

domized trial as a function of characteristics of the Env protein. Because this analysis is

based on randomized trial data, it can identify causal effects of Env protein mutations on

prevention efficacy under minimal assumptions. However, with more than 800 amino acid

(AA) residues in the Env protein, the search space for mutations that may be causally re-

lated to antibody resistance is huge. With few observed HIV infections in a randomized

trial, sieve analyses that are forced to consider a large number of potential mutations will

suffer from low statistical power after accounting for multiple testing. Therefore, it is cru-

cial to utilize observational neutralization data to identify potentially interesting mutations

a-priori in order to reduce the impact of multiple testing adjustments.

Causal analysis of neutralization studies can also be used to identify “gaps” in one bnAb

– mutations that allow the virus to escape neutralization. If such gaps are identified, we may
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Neutralization studies
(observational)

Identify 
promising 

bnAbs Randomized 
controlled trial

Sieve analysis

Select multiple 
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Identify gaps
in one bnAb that 
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Prospective 
neutralization studies

Low overall efficacy, but 

high efficacy against 

sensitive viruses

Suggest Env sequences that 
may be resistant to 
one/multiple bnAbs

Identify gaps in 
bnAb evaluated in RCT

High overall efficacy

Approval of 
bnAb therapy for 
HIV prevention

Reduce search space
for sieve analysis

Figure 1.2: Illustration of the interplay between observational neutralization studies and
randomized controlled trials of bnAb therapies for prevention. Green arrows illustrate
where our proposed method may contribute to the process.

search for additional bnAbs that are robust to these mutations. These results, together with

the results of the sieve analysis can be used to select a multi-bnAb cocktail to be evaluated

in a future randomized trial.

If and when a successful bnAb or combination of bnAbs are identified, it will also be

important to subject such regimen to various “stress tests”. That is, we may wish to use

observational neutralization studies to suggest mutations that may be particularly difficult

for the therapy to neutralize. Neutralization capability of viruses with these mutation pat-

terns can be studied prospectively to suggest whether and to what extent the bnAb therapy

will remain effective against new mutations. Such studies may aid in regulatory decision

making on the approval of bnAb therapies. For example, during the COVID-19 pandemic,

previously approved monoclonal antibody therapies saw their use restricted after the emer-

gence of new variants against which their neutralization capacity was diminished [8]. The

above points to a clear need to learn causal relationships between mutations in the Env

protein and sensitivity to neutralization by antibodies. Such is the focus of the first chapter

of this dissertation and we refer readers to Chapter 2 for further details.
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1.3 Comparing HIV Vaccine Immunogenicity across Tri-

als with Different Populations and Study Designs

Vaccine efficacy (VE) is typically quantified as one minus a relative risk, comparing risk of

infection or disease under vaccination to risk under a placebo or control vaccine. However,

VE is often time-consuming and expensive to assess directly, as randomized trials must

wait until a sufficient number of clinical endpoints have been observed. For rare diseases,

it can take months and sometimes years to complete such a trial. To avoid this long-lasting

and costly process, it is sometimes possible to identify immune responses occurring in re-

sponse to vaccination that are predictive of VE. Such responses, termed vaccine correlates

of protection (CoP), may serve as surrogate endpoints in lieu of a formal evaluation of clini-

cal VE. Therefore, in many contexts it is often of interest to study immunological endpoints

and compare vaccine immunogenicity across different vaccines. The most common statis-

tical approach to quantifying differences in immune responses across various vaccines is to

use a t-test or Wilcoxon Signed-Rank test to test for differences in average immunogenicity

or the distribution of immune responses across different vaccines. Sometimes these simple

procedures must be extended to account for sampling design, for example by using inverse

probability of sampling weighted estimators [4, 11, 15]. However, these approaches are in-

sufficient to provide an objective comparison of vaccine immunogenicity between different

vaccines that are evaluated in different studies. These studies may be conducted at differ-

ent geographic sites and may additionally have discrepant enrollment criteria. This can be

problematic for standard approaches to immunogenicity comparison. If there are differ-

ences in clinical and/or demographic characteristics across the various trials’ populations,

and these characteristics also impact immune responses, then confounding is present and

simple approaches may yield biased inference regarding differences in vaccine immuno-

genicity.

Our motivation for studying this problem arises from the field of HIV vaccines. Over
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the past decade, there have been many small, and several large studies of preventive HIV

vaccines. These trials have been conducted across South East Asia, Sub-Saharan Africa,

and in the Americas, each with their own specific set of enrollment criteria. Much of the

recent work in HIV vaccine development has been motivated by the results of the RV144

trial, which demonstrated modest but significant efficacy against HIV-1 infection[34]. A

key consideration for HIV vaccine development is selection of immunogens for vaccines.

Immunogens are molecules that are capable of eliciting a host immune response and must

be carefully selected in order for vaccines to generate protective immune responses. The

vaccine studied in the RV144 trial consisted of two immunogens, with one based on re-

gionally circulating strains in Thailand. While the study demonstrated modest preventive

efficacy with an estimated 31.2% reduction of the cumulative incidence of HIV-1 infec-

tion, the vaccine was not licensed for broad use. Nevertheless, the result was encouraging

and prompted several smaller follow-up trials including the HVTN097 trial, which was

designed to evaluate immunogenicity of the same vaccine regimen in South Africa [18].

The results indicated that response rates and magnitudes of putatively protective immune

responses in South Africa were at least as good as those observed in Thailand provid-

ing support for continuing with this vaccine platform for research in Sub-Saharan Africa.

A subsequent study, HVTN100, investigated a form of the RV144 vaccine but updated

with immunogens based on HIV-1 subtypes prevalent in South Africa. This trial also con-

cluded that the South African-adapted vaccine successfully met all pre-specified immuno-

logical criteria [5]. Based on these results, a larger phase IIb/III randomized efficacy trial,

HVTN702, was conducted to characterize the clinical efficacy of the adapted vaccine for

preventing HIV-1 infection in South Africa. Unfortunately, this study was halted during an

interim review according to a pre-specified futility criteria, demonstrating no evidence of

clinical efficacy to prevent HIV-1 infection [19]. To help identify potential explanations for

the lack of efficacy in HVTN702 and to determine the next directions for the HIV vaccine

field, it is critical to examine possible difference in immunogenicity between the vaccines
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used across RV144, HVTN097, HVTN100, and HVTN702. However, this may be chal-

lenging due to the fact that the vaccines were evaluated in different study populations and

using trials with a variety of designs.

The need for a comparison of vaccine-induced immune responses across vaccines that

are evaluated in trials is not unique to HIV vaccines. Indeed, this is a common and im-

portant problem in many domains of vaccine research, including in recent evaluations of

preventive COVID-19 vaccines. Several large randomized studies were launched to eval-

uate efficacy of COVID-19 vaccines. However, the design and enrollment characteris-

tics of these trials differed considerably. For example, the Coronavirus Efficacy (COVE)

study evaluated the Moderna mRNA1273 vaccine and used a case-cohort design to sam-

ple immune responses in participants, while the Phase 3 study of the the Pfizer/bioNtech

BNT162b2 vaccine used random sampling. Moreover, participants in the COVE study

were considerably older and more racially diverse than those enrolled in the Pfizer/bioNtech

study. Typically, vaccines elicit weaker immune responses in older adults, such that directly

comparing the immunogenicity of two vaccines based on these studies’ results is challeng-

ing. Similar issues arise in studies of dengue vaccines, where past dengue exposure may

be a key modifier of the immunogenicity and efficacy of the vaccines[33]. Thus, compar-

ing immunogenicity of the vaccine in populations with differing distributions of exposure

histories is a key challenge.

The above scientific context highlights a clear need for understanding causal relation-

ship between a vaccine regimen and the immunogenicity in a particular population. Such

information can guide the design of new vaccines, as well as for prioritize current vaccines

for further research. This is the aim of the second topic of this dissertation, with details

included in Chapter 3.
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1.4 Standardized Causal Effect Sizes in Biomedical Re-

search

In many quantitative disciplines, there is a growing interest in estimating causal effects of

interventions using observational data [24, 27, 1]. Causal effects are typically formulated

as a comparison between potential outcomes [36]. In this framework, we conceptualize

that each individual would have experienced different outcomes had they received different

interventions. The difference between these outcomes is then summarized to represent the

causal impact of certain intervention. A common approach to quantifying causal effects

is to consider the average potential outcomes under each intervention. The comparison

of these averages across different interventions is commonly referred to as the average

treatment effect (ATE).

In many fields of research it is often of interest to compare the magnitude of interven-

tion effects across multiple outcomes. For example, in vaccine research, it is common to

study the impact of different vaccine formulations on several distinct immune responses,

including antibody responses and T-cell responses. In such settings, it is natural to inquire

as to how the relative impact of one intervention versus another differs across outcomes. If

the distribution of outcomes differs considerably, comparison of the ATE across outcomes

may not always be informative to this end. Returning to the vaccine example, consider

a T-cell assay that typically outputs values approximately uniformly over the range 1-10,

and an antibody assay that typically outputs values approximately uniformly over the range

1-103. A comparison of two vaccines may yield an ATE of 5 for both immune responses.

However, we expect that this ATE represents a far more dramatic impact on the T-cell

response than it does on the antibody response. Thus, reporting the ATE alone does not

always appropriately elucidate the impact of interventions when variability of outcomes is

ignored.

This discussion underscores the need to develop additional causal estimands beyond
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ATE that appropriately reflect the impact of interventions in a maximally interpretable and

comparable way. This idea has existed in the associational literature for sometime, where it

is widely recognized that associations should somehow account for the inherent variability

of an outcome in order to accurately reflect the strength of an association. Such estimands

are often referred to as standardized effect sizes. These measures typically consist of a

ratio of some measure of association in the numerator versus some measure of outcome

variability in the denominator. A wide array of estimators has been proposed for estimating

standardized effect sizes. Perhaps the most commonly used is Cohen’s d, which equals

the difference of in average responses between two populations divided by some form of

standard deviation (SD) of the response [12]. Exactly which SD should be used is the matter

of some debate, with various options proposed for settings where the two populations have

equal/unequal outcome variability and where outcomes are/are not normally distributed.

Glass’s delta proposes to divide by the SD of the control group [17], while Hedge’s g

focuses on the issue of uneven population sizes [22]. These three measures may be most

useful when outcomes are normally distributed and the assumption of equal variances holds

[20].

In spite of the name, standardized effect sizes are rarely dealt with in an explicit causal

framework and there has been little exploration of whether and how such measures could

be adopted to an explicit causal framework. In the third project of this dissertation, we

propose an explicit adaptation of these measures to a causal setting and discuss relevant

issues in defining appropriate standardized causal effect sizes. For details, see Chapter 4.



12

Chapter 2

Identifying HIV sequences that escape

antibody neutralization using random

forests and collaborative targeted

learning
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2.1 Introduction

In this chapter, we aim to identify complementary bnAbs that target the residues where

some existing antibodies show modest protection. Additionally, we provide a useful hy-

pothesis test that guides downstream sieve analysis by reducing the search space. To

achieve these goals, we thus discuss whether and how the causal effect of a mutation at a

single AA residue in the Env protein on antibody sensitivity can be identified and estimated

from observational neutralization data. We discuss the plausibility of the assumptions in

the context of known HIV biology and the data that are typically available in observational

neutralization studies. We also propose an approach for dealing with the challenges as-

sociated with practical violations of the positivity assumption. In particular, we develop

a random forest-based, outcome-adaptive, collaborative targeted minimum loss-based es-

timation (CTMLE) approach. Our estimation and inference is built on two models. The

first is a model of the probability of sensitivity as a function of Env AA residues and other

measured viral characteristics, or the so-called outcome regression (OR). The second is a

model of the distribution of AAs at a particular residue as a function of other sequence fea-

tures, or the so-called generalized propensity score (GPS). For both models, in this work

we focus on the random forest algorithm [7], which has been shown to predict well in this

setting [30].

A typical CTMLE implementation uses a greedy forward selection algorithm that se-

quentially seeks best next candidate feature to be included in each iteration [44]. However,

this approach yields heavy computational burden and it motivates us to pursue a method

that is able to reduce time complexity. Our work is similar, yet distinct from the partial-

correlation-based pre-ordering of covariates suggested by Ju et al. [29]. Rather than pre-

ordering covariates, we instead adopt an explicitly outcome-adaptive approach along the

lines of [39]. That is, we advance the most relevant features identified in the outcome

regression for inclusion in the model for the generalized propensity score. We show that

this stabilizes inference relative to procedures that include all features in the generalized
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propensity model. The modification results in significant time savings relative to [29],

which is particularly important given the high-throughput nature of the scientific context.

Whereas Ju et al. [29] were focused on methods for estimating the effect of a single treat-

ment, our analysis requires estimation of an effect for each of several hundreds of AA

residues. We demonstrate that our tests based on our CTMLE estimates appropriately con-

trols type I error in realistic sample sizes, even in the presence of highly correlated residues,

while maintaining power to detect effects of AA mutations in Env on antibody sensitivity.

2.2 Methods

2.2.1 Counterfactual antibody resistance probability

We assume that we have access to a database like the CATNAP database, described in

Chapter 1. An example illustration of one such data set is given in Table 2.1. The data

consist of n HIV Env sequences. For each sequence, we have a measure of sensitivity to

an antibody of interest (e.g., 1 = can effectively be neutralized by the antibody, 0 = cannot)

and basic information about the origin of the sequence. The remaining columns represent

the amino acids that make up the Env proteins of the sequence. Each amino acid (AA) po-

sition, or residue, of the Env protein can assume one of 22 different values – one of the 20

amino acids that build proteins, a frameshift mutation (indicating an insertion or deletion of

nucleotide bases), or a gap (an artefact of the sequencing technology to maintain alignment

with a referent HIV sequence). For our purposes, it suffices to think of each AA residue as a

categorical variable that theoretically could assume up to 22 different values, while in prac-

tice we generally observe between two and four unique AAs at each residue. We treat the

n sequences as independent, which may be reasonable because (i) almost all sequences in

CATNAP are isolated from different individuals and (ii) HIV replicates extremely rapidly,

such that any two isolated sequences, even if close in geographic proximity, are likely to

be distant ancestors of one another.
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Sequence ID Sensitive (Y ) Origin (W0) AA1 (W1) AA2 (W2) . . . AA856 (WJ)
1 1 Africa N R . . . L
2 0 Europe N K . . . Q
...

...
...

...
...

...
...

n 1 N. America S R . . . L

Table 2.1: Example data set illustrating structure of CATNAP data for a given antibody.
Sensitive is a binary read out from the assay indicating whether the sequence was effec-
tively neutralized by the antibody. AA j = amino acid at residue j of the Env protein.

We denote the sensitivity outcome by Y , where Y = 1 indicates that the virus is effec-

tively neutralized by the antibody, and Y = 0 indicates the virus is not effectively neutral-

ized by the antibody. We denote the origin of the virus together with the vector of AA

information on the Env sequence as W . For simplification, basic information about the

origin is encoded as W0. Below, we consider methods for analyzing the causal impact of

mutations at each of the J AA residues in turn. It is therefore convenient to introduce the

notation W− j to denote the origins and the vector of all Env characteristics with the j-th

residue removed, where j = 1, . . . ,J. Thus, the data that we use for the analysis of the j-th

residue can be considered n copies of the triplets O j = (Wj,W− j,Y ).

For each AA residue, we define a counterfactual resistance outcome Y (Wj = w), which

is the binary resistance indicator that would be observed under a hypothetical intervention

that fixes the AA at residue j to w ∈W j, the set of possible AAs at residue j that could be

observed in the entire population of virus Env sequences. We also define p j(w)=P[Y (Wj =

w) = 1] as the proportion of virus Env sequences in this counterfactual world that would be

sensitive to neutralization by the bnAb of interest.

To achieve the goals outlined in Figure 1.2, we may be interested in estimation and in-

ference about p j(w). For example, to identify gaps in one bnAb, we would be interested in

identifying ( j,w) combinations for which p j(w) is low. To complement such a bnAb in a

multiple bnAb cocktail, we would look for other antibodies such that the same counterfac-

tual sensitivity probability is high. On the other hand, if the scientific goal of the analysis

of the observational neutralization data is to reduce the search space for a sieve analysis,
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we may instead wish to test the null hypothesis that an AA substitution at residue j has

no impact on average bnAb resistance, that is, H0 : p j(w) is constant in w. AA residues

for which this null hypothesis is rejected may be advanced for further consideration in a

sieve analysis using data from a randomized trial. Regardless of the ultimate scientific goal,

the problem of identification and estimation of counterfactual sensitivity probabilities is an

important problem.

2.2.2 Causal Identification

We require two main conditions for identifiability of p j(w): (i) conditional exchangeability

and (ii) positivity. If these conditions hold then p j(w) is identified by the G-functional

p j(w) = E[E(Y |Wj = w,W− j)]. We discuss these conditions in detail below and conclude

with a discussion of their plausibility in the present context.

Figure 2.1: DAG for HIV resistance. The DAG on the left shows a pipeline of gene
expression, which defines how gene regulates downstream activities and further affect the
antibody sensitivity through Envelope amino acids of interest.

Exchangeability

A DAG is displayed in Figure 2.1. On the left, we display a DAG that is useful for dis-

cussing the biology of antibody neutralization. On the right, we display a DAG that is
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useful for describing backdoor pathways and types of unmeasured confounders that may

prove problematic for our proposal.

Beginning with the DAG on the left, the nodes labeled G represent genes on the viral

genome. Certain genes on the genome correspond with AA residues on the Env protein

(nodes labeled AA). These AA configurations result in certain physiochemical properties

of the Env protein. The DAG lists several Env characteristic that are putatively important

for antibody binding and neutralization. These characteristics act as mediators of AA con-

figuration on antibody sensitivity. The structure (or shape) of the Env protein is determined

by the AAs present; this in turn determines which portions of the protein are “exposed” to

antibodies. There are other physiochemical properties that are also impacted by the Env

protein AA sequence that could impact affinity of antibodies for binding the protein. One

particular process that may be important for HIV infectivity and antibody sensitivity is the

presence of glycosylated regions of the Env protein. Such regions can play a key role in

binding, both of the virus to the host CD4 T-cells, as well as antibodies to the virus. There-

fore these regions are expected to play an especially important causal role in neutralization

of viruses via antibodies.

A simplified DAG is shown on the right with nodes collapsed by the role they play

in opening/closing backdoor paths between the outcome and AA residues in the protein.

As mentioned above, our approach considers each AA in turn. So for a particular residue

j, Wj is acting as the “exposure” of interest, while all other AA residues are acting as

potential “confounders” Wk. The genes are unmeasured and play the role of potential

unmeasured confounders, while the origin of the virus can be considered another potential

confounder W0. The mediators in this problem, here collapsed to a single node M, are the

aforementioned structural or physiochemical properties of the Env protein. The DAG on

the left suffices to discuss the biological plausibility of causal identification in this problem.

In particular, there are three types of pathways arising to be relevant to identification. The

first are pathways of the form Wj ← G2 →Wk → M → Y . In such pathways, there is
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a gene responsible for coding both the AA residue of interest, as well as other residues

that are associated with mediators of antibody sensitivity. In this case, controlling for Wk

suffices to block the pathway. The second type of pathway is one of the form Wj← G2←

W0→ G1→ M→ Y . Here, the geographic region (W0) is associated with two genes that

code separate residues on the Env protein. This pathway can be blocked by conditioning

on W0. Finally, there are pathways of the form Wj ← G3→M→ Y . Here, there is a gene

that codes the AA residue of interest, but is also associated with some other mediating

pathway of antibody sensitivity. For example, it is possible that having more Env proteins

expressed reduces antibody sensitivity of viruses. If a particular gene was associated with

the number of Env proteins that are expressed and also associated with the AA residue

of interest, then there would be no way to block this pathway, since the gene information

is unavailable. Thus, in order to formally establish causal identification, we would need

to assume that no such genes exist. If not, then the DAG implies exchangeability, that is

Y (Wj = w)⊥Wj |W− j.

Positivity

Causal identification would additionally require that P[P(Wj = w |W− j) > 0] = 1 for all

w ∈W j. That is, we require that there be a positive probability of observing AA w at posi-

tion j given the AA present at other positions and the country of origin. This assumption

could be satisfied by a careful selection of W j. In practice, we will establish W j empiri-

cally by looking at the observed support of each Wj. However, this alone is insufficient to

ensure the positivity condition holds. We must additionally assume that any observed AA

substitution is plausible, regardless of the other amino acids present in the Env sequence.

This assumption may be plausible for some residues, but implausible for others depending

on the physio-chemical properties of the amino acids in question. Thus, in practice it may

be possible to have structural violations of this assumption. We also expect practical viola-

tions of this assumption, with some combinations of amino acid configurations only rarely
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observed in the source population.

Plausibility of assumptions

The above discussion highlights the tenuous nature of causal interpretations in the context

of antibody sensitivity. We generally do not yet possess a strong enough understanding

of HIV biology to fully justify the exchangeability condition, and it is also possible that

structural violations of the positivity assumption may be present. If the scientific context

of an analysis demands a confirmatory causal conclusion to be drawn, then we may re-

quire additional causal sensitivity analysis to determine the robustness of the estimated

effects to the presence of unmeasured confounding pathways. However, we argue that a

causally-oriented analysis may still provide a useful framework for hypothesis generation

and exploratory analysis in the context of the research process described in Figure 1.2. In

this case, we may prefer to interpret the G-functional identification parameter more cau-

tiously, and summarize the “variable importance” measures of particular AA residues, as in

[40]. In this case, follow up experiments should be recommended to validate the findings.

2.2.3 Motivation for novel method

There are many methods available that could in principle be applied in a non-causal context

in this setting. For example, we could first conduct an analysis using LASSO on half of

samples. The best value of the tuning parameter λ can be determined via cross-validation

to arrive at a final model. The AA residues included in the final model can be included

in a logistic regression on the withheld half of samples for formal inference. Another

approach would be to use random forest “variable importance” measures, for which we may

obtain p-values using a fast variable importance test [28]. However, we argue that methods

that have a causal interpretation, even if under limited circumstances, are appealing in this

setting since causal inference is fundamentally at the core of the scientific question. Thus,

we are motivated to explore causal inference-inspired methodology for estimating the G-
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functional E[E(Y |Wj = w,W− j)] and associated significance tests for AA residues.

There are two related challenges associated with causal inference methods in this con-

text: (i) the dimensionality of the covariates and (ii) practical violations of the positivity

assumption. The dimensionality of the covariates presents challenges to estimation. The

discussion of exchangeability above highlights the need to potentially adjust for a high-

dimensional W j, with a limited number of sequences available for a given analysis. Thus,

we may be motivated to consider flexible machine learning algorithms that are built specif-

ically for modelling high-dimensional covariates. It would be natural to couple these mod-

elling strategies with doubly-robust methods for inference, as these methods typically allow

for regular, parametric-rate inference, under certain statistical assumptions. However, these

methods can be susceptible to erratic behavior in the presence of practical positivity vio-

lations. One approach to improving behavior of doubly robust estimators in the presence

of positivity violations involves a careful pre-selection of adjustment covariates, informed

by background knowledge [32]. However, this would appear difficult in the present set-

ting due to imperfect understanding of the relationships between AA residues on the Env

protein and their relationship with antibody neutralization. Moreover, for a method to be

successfully employed to scan the entire Env protein for significant residues, it would need

to be a high throughput method that is capable of delivering stable inference on hundreds of

AA residues. An analysis that involves deliberate pre-selection of covariates AA residue-

by-residue is infeasible. Therefore, we are motivated to develop an automated procedure

for covariate selection in this context. In the subsequent sections, we propose a solution for

this problem using collaborative TMLE (CTMLE).

2.2.4 TMLE

Our CTMLE builds on targeted minimum loss-based estimators (TMLE) of the average

treatment effects [42]. TMLEs are constructed using estimates of two key quantities: the

outcome regression and the generalized propensity score. The OR is defined as the condi-
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tional mean of the outcome given the treatment and confounding factors, which we denote

by Q̄(Wj,W− j) = P(Y = 1 |Wj,W− j). The GPS is the conditional distribution of AAs

at residue j given all other AA residues and sequence information, which we denote by

g j(w |W− j) = P(Wj = w |W− j) for w ∈W j. A TMLE for estimating E[Y (Wj = w)] for a

particular j and w can be constructed in two steps. In step one, initial estimator Q̄n of the

OR can be obtained using any learning technique for classification of a binary outcome.

Similarly, the estimator gn, j of GPS could be estimated using any multi-class classification

technique. In step two, a single iteration of boosting is used to update the initial OR. For a

given OR estimate, Q̄, we can compute its empirical risk,

Ln, j(Q̄) =
1
n

n

∑
i=1
−
[
Yi log{Q̄(Wj,i,W− j,i)}+(1−Yi) log{1− Q̄(Wj,i,W− j,i)}

]
. (2.1)

Next, we update Q̄n by minimizing empirical loss (2.1) along a particular univariate regres-

sion model indexed by Q̄n. For each w, we define the logistic regression model

Q̄n,ε(w)(Wj,W− j) = expit
[

logit{Q̄n(Wj,W− j)}+ ε(w)
I(Wj = w)

gn, j(w |W− j)

]
, ε(w) ∈ R .

We can obtain a maximum likelihood estimate εn(w) = arg minε(w)Ln, j(Q̄n,ε(w)) and define

the updated OR estimate

Q̄∗n(w,W− j) = expit
[

logit{Q̄n(w,W− j)}+
εn(w)

gn, j(w |W− j)

]
. (2.2)

The final estimate is computed as

p̂ j(w) =
1
n

n

∑
i=1

Q̄∗n(w,W− j,i) .

The key idea motivating the second step of the TMLE is that the bias of the revised OR

estimator Q̄∗n is generally smaller than that of Q̄n with respect to estimating p j(w).
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This procedure can be repeated for each w ∈ W j. With a minor abuse of notation, we

define the implied updated estimate of E{Y |Wj,W− j} as

Q̄∗n(Wj,W− j) = expit

[
logit{Q̄n(Wj,W− j)}+ ∑

w∈W j

εn(w)
I(Wj = w)

gn, j(w |W− j)

]
.

Recalling our null hypothesis of interest that E[Y (Wj = w)] is constant in w, a TMLE-

based test based on these estimates can be derived as follows. For w ∈W j, we define

D j,i(w) =
I(Wj,i = w)

gn, j(w |W− j,i)
{Y − Q̄n(Wj,i,W− j,i)}+ Q̄n(Wj,i,W− j,i)− p̂ j(w) ,

and let D j,i be a |W j|-length row vector consisting of D j,i(w) for each w ∈W j. Let D j be

a n×|W j| matrix formed by stacking the row vectors D j,i, i = 1, . . . ,n. The estimates p̂ j =

{p̂ j(w) : w∈W j} of p j = {p j(w) : w∈W j} have asymptotic covariance that is consistently

estimated by Σ̂= n−1D⊤j D j.

We propose to test H0 using a
(|W j|

2

)
−1 degree-of-freedom Wald test. Specifically, we

define a contrast matrix A, where each row defines a contrast between p̂ j(w) and p̂ j(w′)

for w,w′ ∈W j. For example, if |W j|= 4, then

A=


1 −1 0 0

0 1 −1 0

0 0 1 −1

 ,

and our null hypothesis can be written as H0 : Ap j = 0.

If instead inference on a single p j(w) is desired, the standard error of p̂ j(w) is given

by the square root of the ( j, j) element of Σ̂. Assuming n is large enough, a two-sided

Wald-style hypothesis test that rejects H0 : p̂ j(w) = β whenever |p̂ j(w)−β |/σ̂n is greater

than the 1−α/2 quantile of a standard normal distribution will have type I error no larger

than α .
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2.2.5 CTMLE

A challenge with utilizing TMLE in the present setting is that the estimated GPS may be

extremely small for some virus sequences due to high correlations between residues in

the Env protein. This can lead to erratic estimates εn(w) of ε(w), which can degrade the

OR estimate Q̄∗n in (2.2) considerably. The resulting ATE estimate could be highly biased,

with correspondingly inflated type I errors and poor confidence interval coverage. There

are fixes available [32]; however, the approaches require manual manipulation from the

analysts (e.g., to identify overlapping covariate regions and redefine the causal parameter

accordingly). Unfortunately, in our motivating example we wish to consider hundreds of

AA residues. This motivates the pursuit of a more high throughput analysis approach that

maintains stability even in rather extreme scenarios.

Recently, data-driven PS model-building strategies have emerged [39, 29]. A key in-

sight of these approaches is that PS models should adjust only for variables that are related

to the outcome. Thus, estimated ORs can be used to inform variable inclusion in propen-

sity score models. By appropriately screening so-called instrumental variables (those that

impact only the GPS but not the OR), we may generate less extreme estimates of the GPS

and thereby attain more stable behavior of TMLE.

In particular, we propose using variable importance measures from an OR model to

select variables to include in the GPS model. We focus on random forest models explicitly,

for estimation of both the OR and GPS, though the methods theoretically extend to any ma-

chine learning framework that has associated variable importance measures. We focus on

random forests in particular for two reasons: (i) robust and fast software implementations

with variable importance measures are readily available; (ii) past work has shown that

random forests perform extremely well in predicting antibody neutralization, even when

compared with other state-of-the-art approaches like deep learning [30, 10].

Our approach entails first using random forests to estimate the OR. During the random

forest construction, variable importance for each AA residue is summarized by the mean
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decrease in Gini index. The Gini index quantifies how much each feature contributes to

the decline of node impurities on average. We select a fixed number of the top-ranked

features to include into GPS model. The OR and GPS are then combined into estimates

of E[Y (Wj = w)] for each j and w and a test of the significance of each AA residue. We

propose a CTMLE algorithm for selecting the optimal number of features to include in the

GPS model.

Details of CTMLE

A CTMLE-based estimate of p j(w) can be obtained in a sequential algorithm as follows.

• Fit OR model using random forests to get an initial estimator Q̄(1)
n . All covariates

should be included in this model. The covariates are ranked by their feature impor-

tance.

• Propose K potential values, r1, . . . ,rK , of the number of covariates to be included in

the GPS model. We assume rK = J, though that need not be the case. A sequence

of GPS estimators can be constructed as g(1)n, j , . . . ,g
(K)
n, j . The k-th estimator in this

sequence is an estimate of the conditional distribution of AAs at residue j given the

rk top-ranked features in the feature importance list specified in the previous step. If

residue j is included in the rk top-ranked features, it will be excluded and only (k−1)

features will be used in GPS estimation.

• If k = 1, an initial triplet is built as
(

g(1)n, j , Q̄
(1)
n, j , Q̄

∗,(1)
n, j

)
, where Q̄∗,(1)n, j is a fluctuation

of Q̄(1)
n, j = Q̄(1)

n using TMLE algorithm presented in Section 2.2.4. For k = 2, . . . ,K:

1. Assign Q̄(k)
n, j = Q̄(k−1)

n, j .

2. Obtain a corresponding Q̄∗,(k)n, j by performing similar TMLE steps using Q̄(k)
n, j

and g(k)n, j.

3. Evaluate Ln, j(Q̄
∗,(k)
n, j ) as defined in equation (2.1). If Ln, j(Q̄

∗,(k)
n, j )≤Ln, j(Q̄

∗,(k−1)
n, j ),

then set the k-th triplet to
(

g(k)n, j, Q̄
(k)
n, j, Q̄

∗,(k)
n, j

)
; otherwise, set Q̄(k)

n, j = Q̄∗,(k−1)
n, j and



25

repeat steps 2-3. In this case, by the construction of the TMLE, it must be true

that Ln(Q̄
∗,(k)
n, j ) ≤ Ln(Q̄

∗,(k−1)
n, j ), since the TMLE Q̄∗,(k)n, j uses Q̄∗,(k−1)

n, j as initial

estimate.

Once K triplets have been derived using the full data, the above procedure is repeated

in V training samples to get K training-sample specific triplets, denoted for the v-th training

sample by
(

g(k)n, j,v, Q̄
(k)
n, j,v, Q̄

∗,(k)
n, j,v

)
. Let Sv ⊆ {1, . . . ,n} denote the indices of observations in

the v-th validation sample. For v = 1, . . . ,V and k = 1, . . . ,K, we compute

Ln,v(Q̄
∗,(k)
n, j,v)=

1
|Sv| ∑i∈Sv

−
[
Yi log{Q̄∗,(k)n, j,v(Wj,i,W− j,i)}+(1−Yi) log{1− Q̄∗,(k)n, j,v(Wj,i,W− j,i)}

]
,

and select the choice of k that minimizes the cross-validated risk, kn = arg mink ∑
V
v=1 Ln,v(Q̄

∗,(k)
n, j,v).

The final CTMLE estimate is

p̂ j,CTMLE(w) =
1
n

n

∑
i=1

Q̄∗,(kn)
n, j (w,W− j,i).

Asymptotic properties of this estimator follow from general results pertaining to CTMLE

[44].

2.3 Simulation study

2.3.1 Design

We conducted Monte-Carlo simulation studies to compare the performance of the proposed

CTMLE to several implementations of TMLE. The first, was a standard implementation of

TMLE, where all features were included in the GPS model, while the other TMLEs used

reduced numbers of features (either 5, 10, 50, or 100) based on their estimated importance

in the OR model. For all estimators, GPS estimates were truncated at 0.01. We considered

two sample sizes n ∈ {500,1000}, which are similar to the sample sizes of the CATNAP
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data. For each sample size, 1000 data sets were generated as follows. To represent a

sequence of AA residues, we simulated 200 moderately correlated categorical variables,

W1,W2, . . . ,W200, each containing 4 levels, Wj ∈ {1,2,3,4}. To generate a realization of

W = (W1, . . . ,W200)
⊤, we drew a random variable X = (X1, . . . ,X200)

⊤ from a multivariate

normal distribution N(µ0,Σ0) with µ0 = (0,0,0,0)⊤ and an autoregressive-1 covariance

structure, Σ0 = σ2Σ(ρ), where Σ(ρ) is a matrix with ( j,k)-th entry equal to ρ | j−k|. In our

example, σ and ρ were fixed at 0.9 and 0.75, indicating a moderate correlation between

adjacent features. Next, we set Wj = 1 if X j < q0.25, Wj = 2 if q0.25 < X j < q0.50, Wj = 3

if q0.50 < X j < q0.75, and Wj = 4 if X j > q0.75, where qp is the p-th quantile of a standard

normal random variable. Five true signals were randomly selected among all features (Wj :

j ∈J , where J = {37,87,94,135,151}). Given W =Wi, the outcome Yi was generated

from a Bernoulli distribution with success probability = expit{∑ j∈J ∑
4
ℓ=1 β jlI(Wj,i = ℓ)}

(Table 2.2).

β j1 β j2 β j3 β j4
W37 0.160 -0.321 -0.492 0.214
W87 0.181 0.521 -0.612 0.321
W94 0.104 0.414 -0.789 -0.117
W135 0.178 0.350 -0.453 -0.433
W151 0.072 0.311 0.638 -0.320

Table 2.2: True coefficients (β ) used in simulation study

We focused on evaluating operating characteristics for three specific AA residues: (i)

position 10, a position unrelated to the outcome and essentially uncorrelated with any

true signals; (ii) position 85, a position unrelated to the outcome, but highly correlated

a true signal; and (iii) position 87, a position that is truly related to the outcome (p87(1) =

0.514, p87(2)= 0.588, p87(3)= 0.342, p87(4)= 0.545). For each of these sites, the C/TMLE

point estimates were evaluated by their bias and mean-squared error (MSE) and we com-

pared the power of the Wald test for rejecting the null hypothesis of no relationship between

AAs and outcome.
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2.3.2 Results

We found that the bias and MSE of the TMLE estimators tended to increase as more vari-

ables were included in the GPS model (Figure 1, left/middle column), with the largest bias

seen for the true signal (position 87, blue plus). The CTMLE had considerably reduced bias

and MSE relative to the standard TMLE that included all 200 features in the GPS model.

Moreover, in the two null scenarios (positions 10 and 85), the standard TMLE had dras-

tically inflated type I error (Figure 2.2, right column). For example, the tests incorrectly

rejected the null hypothesis more than 60% of the time when n = 1000. On the other hand,

CTMLE-based tests appropriately rejected the null hypothesis about 5% of the time for the

null positions. For the position exhibiting a true signal (position 87), CTMLE rejected the

null hypothesis 57% of the time at n = 500 and 82% of the time at n = 1000.

2.3.3 Comparison with non-causal approach

We also compared our CTMLE-based test for identifying residues causally related to an-

tibody neutralization to a test developed for random forest-based importance measures.

Using the simulation design above, we compared the tests’ type I error rates (proportion of

tests in which the null hypothesis was rejected for W10 and W85) and power under the al-

ternative (proportion of tests in which the null hypothesis was rejected for W87). We found

that both tests controlled the type I error rate for the uncorrelated residue (W10); however,

for the correlated residue (W85), the type I error for the random forest-based test was in-

flated relative to 0.05. The inflation remained at larger sample sizes. On the other hand, the

random forest-based test exhibited higher power under the alternative (W87).
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Sample Size Methods W10 W85 W87
500 RF 0.048 0.072 0.746
500 CTMLE 0.029 0.04 0.57

1000 RF 0.056 0.079 0.971
1000 CTMLE 0.041 0.058 0.82

Table 2.3: Proportion of null hypotheses rejected using a random forest (RF)-based test
and the proposed CTMLE-based test. W10 is a residue that has low correlation with other
residues that are causally related to antibody neutralization; W85 is a residue that has strong
correlation with W87, which is causally related to antibody neutralization.

2.4 Data analyses

2.4.1 CATNAP datasets

The proposed methods were applied to the Compile, Analyze and Tally NAb Panels (CAT-

NAP) database [45]. This database contains information on HIV virus sequences including

the HIV envelope AA sequence (the features of interest), other key variables describing

structural and biological information (e.g., geographic origin), and a binary measure of

whether the virus can be neutralized by a particular antibody (our outcome of interest). We

analyzed five antibodies: VRC01, VRC26.08, PGT145, PGT121 and 10-1074. For each

antibody, a pre-screening step was applied to exclude AA positions that were nearly con-

stant across all virus sequences. In practice, some residues in Env may exhibit little or no

variation. For these residues, we wish to avoid hypothesis testing since there is no hope of

garnering sufficient statistical evidence for signal detection. In particular, at each position,

AAs that were observed in fewer than 30 total virus sequences were combined into a single

AA category. After the combination, only residues still with smallest level count greater

than 30 were retained for analysis. Since the number of remaining AA residues that pass

this variable screen procedure is still large, we used a Bonferroni correction to control the

chance of falsely rejecting null hypotheses. Namely, we tested each individual residue at a

significance level of α/NAA(post-screening), where NAA(post-screening) is the number of

AA residues passing the screening above.



29

2.4.2 Results

The number of AA residues that passed the screening process are summarized in Table

2.4 and the plots of −log10(p-value) for each residue are shown in Figure 2.3. For each

antibody, the figure highlights functional regions of the gp120 protein that are putatively

associated with antibody activity. Our analysis revealed that many significant residues fell

within known regions – the V1/V2 loop in particular contained many significant residues –

however, there were also many significant residues in gp41, particularly for VRC01.

Antibody Nobs NAA (pre-screening) NAA (post-screening) Nsig (%)
VRC01 828 784 328 23 (7.0%)
VRC26.08 407 726 229 3 (1.3%)
PGT145 581 755 294 3 (1.0%)
PGT121 581 755 313 8 (2.6%)
10-1074 581 755 303 8 (2.6%)

Table 2.4: Summary of CATNAP data; Nobs = number of virus sequences; NAA = number
of amino acid residues

2.4.3 Comparison with other approaches

We compared our results for the VRC01 antibody to the LASSO and random forest ap-

proach by feature selection described above. For LASSO-based approach, there were more

than 15 multi-level features selected in the CV-selected model, so the inference from the

GLM in the held-out data was highly unstable. This illustrates a potential difficulty of

this approach, which requires the analyst to make arbitrary, post-hoc modeling decisions to

stabilize inference. On the other hand, our proposed CTMLE provides a fully automated

procedure that balances type I and II errors.

The random forest-based approach provided greater stability and identified 76 signifi-

cant residues. However, less than half (16/76) were sites in gp120, which has been iden-

tified through other experiments as the likely region of importance for neutralization by

VRC01. This result raises the possibility of a high false positive rate of the random forest

procedure in this context. Additionally, the associated variable importance measures have



30

dubious relevance in terms of their scientific interpretation. In contrast, our CTMLE is able

to provide biologically meaningful interpretations of estimated parameters.

2.5 Discussion

In this study, we designed a test capable of detecting AA residues along the HIV Env protein

that are significantly associated with antibody resistance. To that end, we introduced a

CTMLE-based test that is able to cope with the high-dimensional and correlated nature of

the data. Our simulation study showed only a relatively modest impact of correlation on

performance. In particular, we found the type I error rate was appropriately controlled for

null AA residues, regardless of how correlated they were with a true residue. In contrast,

the standard TMLE approach tended to have inflated type I error that increased with the

strength of correlation. On the other hand, outcome-adaptive approaches tended to better

control the type I error of the test. Among outcome-adaptive TMLE estimators, the type I

error was generally better controlled when fewer features were included in the GPS model.

However, including too few features led to overly conservative tests, where type I error

was properly controlled, but power to detect true signals suffered as a result. We found

that CTMLE can be used to appropriately determine the best number of features to include

resulting in a test that balances type I and type II errors.

An important area for future research is the performance of the method in settings where

there is less sparsity in the set of predictors. Understanding the extent to which the CTMLE

is able to adapt to this setting is an open question. There is also room for the optimization

in this work along other dimensions. First, the method could in theory be extended to

other machine learning frameworks beyond random forest that provide suitable rankings of

feature importance. Another potential for improving on this work is in considering other

multiplicity corrections while performing hypothesis testing, such as Holm’s method and

Hochberg’s method [26, 25]. Finally, the random forest simulation results point to a need
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for a more extensive comparison of available methods suited to this problem.
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Figure 2.2: Bias, mean-squared error (MSE), type I error rate for null cases and power
for true signals. Simulation results with sample size of 500 (first row) and 1000 (second
row) were visualized for two null cases and one true signal. Comparing with standard
TMLE aproach using all 200 features, CTMLE largely reduced bias and MSE, especially
for the non-signals; it also maintained a relatively high power with better controlled type
I error as good as the best model among five proposed TMLE scenarios. As sample size
increases, the power for CTMLE increased from 0.57 to 0.82.
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Figure 2.3: Significant amino acid residues for five antibodies. Orange highlights denote
V1/V2/V3 loop regions that are putatively associated with these antibodies; purple regions
highlight additional functional regions of the gp120 protein. Gray points denote residues
that did not pass variability screening.
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Chapter 3

Comparing HIV Vaccine

Immunogenicity across Trials with

Different Populations and Study Designs
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3.1 Introduction

In this chapter, we develop a framework that identifies appropriate causal estimands and

estimators that can be used to provide standardized comparison of vaccine immunogenicity.

We propose estimators of these causal estimands and establish theory that dictates the large

sample behavior of the estimators. Our estimators account for two practical difficulties that

arise in the study of vaccines. First, we propose methodology that accounts for the fact that

the measurement of immune responses across trials may be subject to different sampling

designs. For example, HVTN100 and HVTN097 were randomized trials where immune

responses were measured in all participants; however, in RV144 and HVTN702 immune

responses were measured using case-control sampling. Second, our methodology allows

for pooling of trial data to gain efficiency when the same vaccine is evaluated in multiple

trials. For example, an identical vaccine was evaluated in HVTN100 and HVTN702 and

therefore, we may wish to pool data from these trials when evaluating immunogenicity.

We clarify the formal causal assumptions and semiparametric efficiency theory that allows

such pooling.

The rest of this paper is organized as follows. In Section 3.2, we detail the estimation

and inference procedure using TMLE. Section 3.3 presents extensive simulation studies

to evaluate the performance of the proposed estimands in terms of bias, variance, mean

squared error (MSE), and the coverage and width of confidence intervals (CIs). In Sec-

tion 3.4, we apply our method to data from four typical trials in HIV Vaccine Trials Net-

work (HVTN) and compare the proposed estimators to the standard approach.
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3.2 Materials and Method

3.2.1 Notation and Data Structure

Vaccine trials can be generally categorized as being phase I/IIa or phase IIb/III design.

Phase I/IIa studies are early phase trials, often designed specifically to evaluate immuno-

genicity of one or several vaccine candidates and/or candidate doses of vaccine. These trials

typically have smaller sample sizes, on the order of several hundred participants, and are

not powered to provide an assessment of VE on a clinical endpoint of interest. They may in-

clude one or several doses of a single vaccine, or one or several variations of a vaccine (e.g.,

different adjuvants). We use the variable T ∈T = {1,2, . . . ,NT} to denote an arbitrary nu-

meric label applied to the various trials considered in a particular application. Data in each

of these trials contains a possibly categorical variable indicating which of the vaccine for-

mulations/doses a participant receives denoted by the label A ∈ A = {0,1,2, . . . ,NA}. A

given vaccine a ∈A could be evaluated in multiple trials; however, in our notation we use

only a single, unique label for each vaccine and we denote by Ta ⊆ T the trials in which

the immunogenicity of vaccine a was evaluated. The observed data also include measure-

ments of one or several immune responses of interest S. In practice S may be a vector, but

we focus here only on scalar-valued S, as we can separately apply our methods to each im-

mune response of interest. As a concrete example, we may consider HVTN702, a phase III

trial where participants were randomized to receive either an active vaccine or a placebo,

and the immune responses of interest included various T cell polyfunctionality scores and

IgG binding antibody responses/magnitudes.

Each trial’s data will also generally include other participant-level information collected

prior to vaccine assignment. The specific baseline characteristics measured may vary across

trials, and we introduce W (t) to denote covariates measured in trial t = {1,2, ...,τ}. We

use W =W (1)∪W (2)∪ ...∪W (τ) to denote the superset of covariates consisting of all

covariates collected in at least one of the trials considered. In our HIV vaccine example,
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participants in HVTN100 and 702, participants had their age, gender, body mass index

(BMI), region of enrollment and educational level recorded, while in RV144 participants

had their age and gender recorded. Thus, in this example W would include five traits that

were present in at least one of the three trials.

In addition to vaccine, immune response, and covariates, some trials will also have data

available on clinical endpoints of interest. This will almost always be the case for larger

phase IIb/III trials that are designed explicitly to evaluate VE. For example, in HVTN702,

the primary outcome was time to first detection of HIV-1 infection and this information is

recorded for most all participants in the trial. Thus, we can assume that for some trials,

the observed data will also include a clinical outcome of interest, which we denote by Y .

The outcome could be binary (e.g., indicator of disease by a fixed time-point) or it may

be a time-to-event endpoint (e.g., time since vaccination until first occurrence of clinical

disease). Our methods apply readily to both situations; however, for simplicity we hence

assume Y is binary. In early phase trials, Y may be missing or right-censored for most or

all individuals. This missingness pattern has no adverse impact on our developments, since

we are primarily interested in comparing S across vaccines and Y occurs after S. If Y is

subject to missingness it will be entirely appropriate for our developments to consider this

variable as a three-level categorical variable with levels 0, 1, and missing.

An interesting aspect of the design of many vaccine trials is that S may not be measured

on every participant. Therefore, we introduce two versions of the data structure that allow

us to differentiate between settings where S is measured on every participant in every trial

and settings where S is only measured on a subset of participants in at least some of the

trials considered. We refer to a datum collected in the former setting as a full data unit and

in the latter setting as a observed data unit. Explicitly considering the full data unit in this

setting is useful mathematically for describing requisite assumptions for identification of

our causal estimands of interest. In the full data setting, for each participant in each trial,

we record X = (T,A,W ,S,Y )∼ PX , while recalling that without loss of generality, Y will
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generally be coded as right-censored or missing for most or all individuals enrolled in early

phase trials. In our notation, we use PX to denote the probability distribution X , which is

assumed to fall in a statistical model MX that is nonparametric up to certain assumptions

detailed in Section 3.2.3 below. We use EX to denote expectation of a random variable

under sampling from PX .

We now turn to the observed data unit, where S may not be measured on some individ-

uals by design due to time and budgetary considerations. Many phase IIb/III trials employ

a two-stage sampling design to determine the subset of participants in which S should be

measured. In HVTN702, a case-control design was used, wherein vaccinated participants

who were observed to be HIV-1 infected during follow up uniformly had S measured. A

matched set of controls also had S measured. Thus, while 1168 participants were en-

rolled in HVTN702, S was only measured on 130 of these individuals. To accommodate

the potential for the presence of two-stage sampling, we introduce the observed data unit

O = (T,A,W ,∆,∆S,Y )∼ P, which is a coarsened version of the full data unit X . A typical

observed data unit includes T , A, W and Y (possibly subject to missingness) as above;

however, the immune response S is measured only in a subset of participants. The random

variable ∆ takes value 1 if the immune response S is measured and zero otherwise. In the

data unit O, without loss of generality we represent the observed value of S by ∆S, thereby

arbitrarily recording a value of 0 for S in individuals not selected for two-phase sampling.

We note that for early phase trials generally we will have ∆ = 1 for all participants, while

for late phase trials, ∆ = 1 for only a subset of participants. The statistical model M for P

is implied by the model for the distribution of the full data unit PX and the model for the

sampling variable ∆, where these sampling probabilities are generally known by design.

We use E to denote the expectation of random variable under sampling for P.

Table 3.1 provides an example visualization of the type of coarsened data that is used

in our motivating example. In this example, our data set consists of data from four trials

pooled into a single data set. Our two covariates W of interest are categorical participant
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Table 3.1: Example data set showing data structure for typical HIV vaccine trials.
T Y S ∆ A W1 W2

HVTN702 1 1.2 1 1 ≤ 20 F
HVTN702 0 - 0 1 ≤ 20 F

...
...

...
...

...
...

...
HVTN702 0 0 1 0 > 20 M
HVTN702 0 - 0 0 > 20 M

RV144 1 - 0 0 ≤ 20 F
RV144 0 2.1 1 2 > 20 M

...
...

...
...

...
...

...
RV144 0 0 1 0 > 20 M
RV144 0 - 0 2 ≤ 20 F

HVTN100 - 1.8 1 3 ≤ 20 F
HVTN100 - 2.8 1 3 ≤ 20 F

...
...

...
...

...
...

...
HVTN100 - 4.2 1 3 > 20 M
HVTN100 - 2.8 1 3 ≤ 20 F
HVTN097 - 0 1 1 ≤ 20 F
HVTN097 - 0 1 1 ≤ 20 F

...
...

...
...

...
...

...
HVTN097 - 0 1 1 ≤ 20 F
HVTN097 - 1.3 1 1 > 20 M

age (W1) and sex (W2). There are two late phase trials, HVTN702 and RV144 and two

early phase trials HVTN100 and HVTN097. In the late phase trials, HIV-1 infection status

Y is recorded for all participants (for simplicity, we present an idealization of the actual

data where we ignore right-censoring of Y ). However, the immune response S of interest is

only measured in a subset of participants in these trials, as indicated by rows where ∆ = 1;

S is missing for all rows in which ∆ = 0. On the other hand, in the early phase trials, S

is measured for everyone, while Y is generally missing. At times, we will refer back to

Table 3.1 to make concrete our general estimation strategies.
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3.2.2 Causal Estimands

Traditionally, the average immune response induced by each vaccine is estimated in each

trial separately. This approach targets the estimand µa := EX(S | A = a,T = t) for various

combinations of a and t. However, in some situations, there may be certain components

of W that are correlated with both trial enrollment T , as well as immune responses S. For

example, age distributions of participants may vary across trials, while age also commonly

correlates with the magnitude of vaccine-induced immune responses. Thus, a comparison

of µa and µa′ for two vaccine candidates a and a′ evaluated in different trials t and t ′ may

be biased for a causal estimand that is truly of interest.

To address this concern, we propose a causal framework to provide such comparisons

in an appropriate way. In particular, we can consider a counterfactual variable S(a) that

corresponds to the immune response that would be observed if an individual were given

vaccine a. We assume that causal consistency holds and that there is no interference be-

tween individuals [37]. Both assumptions are reasonable in the present context, where

causal consistency stipulates that there are not “multiple formulations” of a single vaccine.

This assumption is generally reasonable for most vaccines, where often a key goal of pre-

clinical vaccine development process is developing consistent manufacturing processes to

ensure comparable vaccines across lots. No interference is also likely to be plausible in the

present context as the immune response of one individual is unlikely to depend on vaccines

received by other individuals in the study.

In this counterfactual scenario, it is possible for all individuals who could potentially

enroll in any of the trials to receive any of the NA vaccines considered. Thus, we can

conceptualize a counterfactual data unit X= (T,W ,{S(a),Y (a) : a ∈ {1, . . . ,NA}})∼ PX,

where for completeness we define Y (a) as the counterfactual clinical endpoint that would

be observed under vaccination with a, though this quantity does not play a role in our

development. As above, we denote by EX expectation of a random variable under PX.

We are ultimately interested in comparing immunogenicity, for example, by comparing
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the average value of S(a) vs. S(a′) for vaccines a,a′ that were evaluated across different

trials. However, when these vaccines are evaluated across different trials that enroll from

different populations, there are several such comparisons that could be of interest. In the

context of HIV vaccines, a series of trials were conducted in several countries across sev-

eral years. As described in the introduction, in our motivating example, the population of

HVTN702 was of primary interest, as our goal is to compare the immunogenicity across

vaccines to aid in the interpretation of the null signal in the primary vaccine efficacy anal-

ysis of the HVTN702. Thus, we may be interested in understanding whether and how the

immunogenicity of the vaccine formulation studied in the earlier RV144 trial compares to

the formulation studied in HVTN702, while making this comparison in the HVTN702 trial

population. That is, we are asking a hypothetical question about the immunogenicity that

would have been observed had we evaluated the RV144 vaccine alongside the HVTN702

vaccine, in the HVTN702 study population. Using the labels from Table 3.1, this estimand

would be denoted EX[S(1)−S(2) | T = HVTN702]. We label this type of causal estimand

a standardized comparison of immunogenicity.

While our motivating example focuses on a setting where a single trial’s population

is of interest, more generally we could consider standardized comparisons of the form

EX[S(a)−S(a′) | T ∈ Tref], where Tref ⊆ T may include multiple trials. We refer to Tref

as the referent trial(s) to which we are standardizing our comparison. The choice of refer-

ent trial should be dictated by the scientific context. While we generally expect that Tref

will consist of a single trial, in some situations we may wish to include multiple trials in

our referent. For example, if vaccines a and a′ are evaluated in trials that enroll from very

similar or identical populations, then we may wish for Tref = Ta∪Ta′ . A trivial situation

where this might occur is when vaccines a and a′ are evaluated in the same trial and we are

interested in inference on their immunogenicity in that trial’s study population. However,

we may also have settings where vaccines are evaluated in different trials, but the distri-

bution of common baseline covariates are largely similar among trials Ta and Ta′ . This
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could happen when vaccines are evaluated at the same study sites using trials with simi-

lar enrollment criteria. For example, multiple COVID-19 vaccines were evaluated in 2020

using randomized clinical trials that leveraged shared study sites as part of the COVID-19

Prevention Trials Network [13]. These trials enrolled from largely similar populations and

we may wish to compare immunogenicity of the various vaccines across the pooled study

population. In the absence of effect heterogeneity by covariates, inference on this quantity

may enjoy greater precision than inference based on an estimand standardized to either Ta

or Ta′ alone.

Remark: Another potential setting is one where there exists a common referent popu-

lation that is not sampled directly from any of the observed trials. For example, we may

wish to compare immunogenicity of two vaccines in an age- and sex-standardized way

against a known referent population distribution (e.g., the age-, sex-distribution of all in-

dividuals in a particular country or available as part of the electronic medical records for

some healthcare system). Letting QW ∗ denote the cumulative distribution function of W

in the referent population, we may be interested in
∫

EX[S(a′)−S(a) |W =w]dQW ∗(w).

Such a comparison may be particularly useful for national modeling studies of vaccination

impact, where we need to understand immunogenicity at the level of a specific population

that is not specific to one trial.

3.2.3 Identification of standardized immunogenicity using full data

To identify the standardized immunogenicity comparison described in our motivating ex-

ample, we require certain causal assumptions regarding the distribution of X, in addition to

assumptions pertaining to the sampling design of S as encoded in the distribution of O. Key

to both sets of assumptions is the consideration of which baseline covariates are available

across the various trials.

We introduce the general notation W∩(T0) to denote covariates that are available across

all of a given set of trials T0 ⊆T . Thus, W∩(Tref)⊆W refers to the covariates common
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to all referent trial(s) and W∩(Ta) denotes covariates common to all trials where vaccine

a is evaluated. We denote by W∩(Tref)∩W∩(Ta) the set of covariates that are available

in all referent trials and all trials where vaccine a is evaluated. This set of covariates is

particularly important for identification. As we presently show, we must be able to identify

a subset of these covariates that is sufficient to control for differences in counterfactual im-

munogenicity between the individuals receiving vaccine a and individuals in the referent

population. We make the simplifying assumption that such covariates must be available in

all of the trials where the immunogenicity of vaccine a is actually measured, so that we

can identify the vaccine’s expected immunogenicity conditional on this set of covariates.

Moreover, we also need the same set of covariates to be available in the referent trial(s)

so that the covariate-conditional immunogenicity can be properly standardized to the ref-

erent trial. Future work will be devoted to identifying under the weaker assumption that

covariates are only available in at least one trial where vaccine a is evaluated.

Formally, identification of ψX(a) = EX[S(a) | T ∈Tref] for an arbitrary vaccine a using

the full data requires the following assumptions.

(A1) Ignorability of trial enrollment and vaccine assignment conditional on common co-

variates. There exists a set of common baseline covariates WS⊆W∩(Tref)∩W∩(Ta)

such that:

(A1.1) S(a)⊥ A |WS

(A1.2) S(a)⊥ T |WS

(A2) Positivity of vaccine assignment

(A2.1) PX{PX(A = a |WS)> 0 | T ∈Tref}= 1

Assumption (A1.1) stipulates that we must be able to identify a set of covariates that

are measured in both the referent trial and the trial(s) where vaccine a is evaluated such

that conditional on this set of covariates, the vaccine which a participant is observed to
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receive provides no additional information about their potential outcome S(a). This condi-

tion will generally hold by design if vaccines are randomly assigned in all trials included

as part of Ta. However, if Ta includes one or more observational studies, this assumption

would require additional scrutiny. Assumption (A1.2) stipulates that conditional on WS,

the particular trial in which vaccine a was evaluated provides no additional information

about the potential outcome S(a). Generally, we can think about two sub-assumptions that

are needed to satisfy this assumption. First, there can not be a direct effect of trial on

vaccine immunogenicity. This assumption would be violated if, for example, one trial in

Ta had inappropriate cold storage procedures for a vaccine thereby causing weakened im-

munogenicity of the vaccine. Second, we require that WS includes all characteristics that

are related to both vaccine immunogenicity and that may differ across trial populations.

For example, consider a scenario where certain compositions of the gut microbiome have

a positive impact on vaccine immunogenicity and microbiome data are not available as

part of WS. If microbiome composition differs across trials in Ta, then assumption (A1.2)

would be violated. Graphical approaches may be useful for scrutinizing this assumption in

each specific scientific context. We remark that our notation WS indicates that the choice

of covariates may differ depending on the particular immune response that is being studied,

as different responses may have different biological drivers. The choice of covariates WS

may also differ depending on the particular vaccine a and the particular choice of refer-

ent trial Tref. However, for simplicity we have elected to suppress this dependency in our

notation.

Assumption (A2.1) stipulates that there is a positive probability of receiving vaccine a

for all values of WS that are observable in Tref. This assumption would be violated if, for

example, there were certain combinations of covariates that are observable in the referent

trials Tref, but not in any of the trials in which vaccine a was studied. This condition could

be scrutinized empirically using standard methods for evaluating propensity score overlap,

for example by evaluating an estimate of PX(A = a |WS) using observations in Tref [2].
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Theorem 1. If (A1) and (A2) hold, then

ψX(a) = EX
[
EX(S | A = a,WS) | T ∈Tref

]
.

A detailed proof can be found in Appendix A. We hence use ψX(a) = EX [EX(S | A =

a,WS) | T ∈ Tref] to refer to the identifying estimand as distinct from the causal estimand

ψX(a). The implication of Theorem 1 is that if (A1) and (A2) hold then ψX(a) =ψX(a) and

a causal standardized immunogenicity comparison is possible using data sampled from PX .

However, even in the ideal context where Ta consists of only randomized trials, assumption

(A1.2) may yet be considered unreasonable. For example, the various trials in Ta may

collect different sets of key covariates, rendering this assumption difficult to satisfy based

on the set of covariates common to Tref and Ta. In this case, ψX(a) does not have a causal

interpretation. Nevertheless, we argue that a comparison of ψX(a) and ψX(a′) still retains

a useful non-causal interpretation as a covariate-adjusted comparison of vaccines a and a′,

standardizing the set of available common covariates to their distribution in the referent

trial(s). So long as WS contains at least some covariates that are prognostic of immune

response and whose distributions differ across trials, we argue that a comparison of ψX(a)

and ψX(a′) may still be preferred over a naı̈ve estimand that compares µa and µa′ .

3.2.4 Identification of standardized immunogenicity using observed

data

We now describe how ψX(a) can be identified in the coarsened data setting, where we are

sampling data from P rather than PX . In a particular trial t, sampling probabilities for S

could be determined based on A (e.g., we may over-sample vaccine recipients and under-

sample placebo recipients), Y (e.g., it is common to sample all cases and only a subset

of the remaining trial participants), and/or a subset of available covariates W (t) (e.g., we

may over-sample minority or elderly populations to ensure appropriate representation in
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the observed data). We denote by W∆(t) ⊆W (t) the set of covariates, if any, that are

used to determine sampling probabilities in trial t. Here, to simplify the exposition, we

make the simplifying assumption that all trials in Ta use two-stage sampling and that the

covariates used for sampling, W∆(t) are the same for all such trials. We refer to this set

of covariates as W∆, suppressing the dependence on a for simplicity. In future work, we

will demonstrate how this assumption may be relaxed to allow different sampling designs

across Ta; we expect this generalization to be straightforward.

To identify ψX(a) using the observed data we require the following assumptions.

(A3) Coarsening at random

(A3.1) S⊥ ∆ | T,A,W∆,Y

(A4) Positivity of sampling probability. For all t ∈Ta,

(A4.1) P{P(∆ = 1 | T = t,A = a,W∆,Y )> 0 | T ∈Tref}= 1

Assumption (A3.1) stipulates that given (T,A,W∆,Y ) the probability of having immune

responses measured cannot depend on the underlying immune response itself. Sampling

probabilities are generally selected a-priori by design in late phase vaccine trials, so we

expect this assumption will typically be satisfied. If instead, trials are designed such that

immune responses are measured subject to some form of convenience sampling (e.g., par-

ticipants can self-select into an immunogenicity sub-study), then this assumption would

require further scrutiny. Assumption (A4.1) stipulates that there is a positive probability

of sampling immune responses for measurement for each available profile existing in Tref,

which again can generally be ensured by design. We define W∆,S = WS ∪W∆ to be the

union of covariates required to satisfy (A1) and (A3). We have the following identification

result for ψX(a).

Theorem 2. If Assumptions (A3)-(A4) hold then

ψX(a) = E{E[E(S | ∆ = 1,A = a,T ∈Ta,Y,W∆,S) | A = a,T ∈Ta,WS] | T ∈Tref} .
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3.2.5 Towards estimation: efficiency theory for identifying estimands

In this section, we provide the efficient influence function of ψX(a) and ψ(a) in models

that assume (A1)-(A4). We recall that an estimator’s influence function is a function of

the data unit that has mean zero and finite variance. In particular, an estimator ψn(a) of

ψ(a) is said to have influence function D if ψn(a) = ψ(a)+ n−1
∑

n
i=1 D(Oi)+ oP(n−1/2).

Influence functions are particularly useful for so-called regular estimators, as they can also

be used to characterize the efficiency bound of all such estimators of a given parameter. The

influence function of the regular estimator with the smallest asymptotic variance is called

the efficient influence function. Influence functions are often indexed by so-called nuisance

parameters, parameters of the data generating distribution that are not directly of interest,

but are useful for constructing and studying the large sample behavior of estimators of the

estimand of interest. Thus, influence functions can provide hints as to what quantities must

be estimated to generate estimates with desirable large sample behavior.

We introduce some additional notation to represent the nuisance parameters indexing

our efficient influence function. We define Q̄X(Wi,S) = EX(S | A = a,WS =Wi,S) as the

conditional mean immune response, gA(a |Wi,S) = PX(A = a |WS =Wi,S) as the condi-

tional probability of vaccine a given covariates Wi,S, gT (T0 |Wi,S) = PX(T ∈ T0 |WS =

Wi,S) as the conditional probability of enrollment in one of the trials in a given set T0 ⊆T

given covariates Wi,S, and gT (Tref) = PX(T ∈ Tref) as the marginal probability of enroll-

ment in one of the trials in Tref.

Theorem 3. The efficient influence function for ψX(a) in a model for PX that only assumes

(A1)-(A2) is

DX(Xi) =
1a(Ai)

gA(a |Wi,S)

gT (Tref |Wi,S)

gT (Tref)
{Si− Q̄X(Wi,S)}

+
1Tref(Ti)

gT (Tref)
{Q̄X(Wi,S)−ψX(a)} .

We can also define the efficient influence function for ψ(a), which is indexed by the
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following additional nuisance parameters:

Q̄2(Yi,Wi,∆,S) = E(S | ∆ = 1,A = a,T ∈Ta,Y = Yi,W∆,S =Wi,∆,S) ,

Q̄1(Wi,S) = E[Q̄2(Y,W∆,S) | A = a,T ∈Ta,WS =Wi,S] ,

g∆(1 | Ti,Ai,Yi,Wi,∆,S) = P(∆ = 1 | T = Ti,A = Ai,Y = Yi,W∆,S =Wi,∆,S) .

Theorem 4. The efficient influence function for ψ(a) in a model for P that assumes (A1)-

(A4) is

D(Oi) =
11(∆)

g∆(1 | Ti,Ai,Yi,Wi,∆,S)

1a(Ai)

gA(a |Wi,S)

gT (Tref |Wi,S)

gT (Tref)
{Si− Q̄2(Yi,Wi,∆,S)}

+
1a(Ai)

gA(a |Wi,S)

gT (Tref |Wi,S)

gT (Tref)
{Q̄2(Yi,Wi,∆,S)− Q̄1(Wi,S)}

+
1Tref(Ti)

gT (Tref)
{Q̄1(Wi,S)−ψ(a)} .

3.2.6 Targeted minimum loss estimation

The form of the efficient influence function suggests a natural targeted minimum loss-

based estimation (TMLE) approach involving sequential regression [35, 3, 42, 41]. TMLE

in general consists of two major steps that are sometimes implemented iteratively. In the

first step, estimators of nuisance parameters indexing the efficient influence function are

obtained. TMLE is agnostic as to how such parameters are estimated, though regression

stacking or super learning is commonly used towards this end in practice [43]. The second

step of TMLE improves by using empirical risk minimization in a low-dimensional para-

metric model to simultaneously (i) improve the fit of initial nuisance parameter estimates

and (ii) ensure that, at the end of the TMLE procedure, the so-called efficient influence

function estimating equation is solved. For example, if we denote by Dn the efficient in-

fluence function presented in Theorem 2 but where nuisance parameters are replaced by

estimated counterparts, then the second step of TMLE ensures that n−1
∑

n
i=1 Dn(Oi) ≈ 0.
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In many problems, including the present, the second step of TMLE can be performed using

a simple univariate logistic regression and maximum likelihood estimation, as described

below.

A TMLE for ψ(a) may be implemented in the following specific steps.

1. Estimate the probability of enrollment in referent trial(s) given covariates. To

estimate gT (Tref |WS), we can use data from all observed trials to fit a regression

with the outcome equal to 1Tref(T ) and predictors WS. This regression could be esti-

mated using approach that is appropriate for binary outcome regression. Denote the

estimate by gn,T (Tref | ·) and define the estimated marginal probability of enrollment

in Tref as gn,T (Tref) = n−1
∑

n
i=11Tref(Ti).

2. Estimate the pooled probability of receiving vaccine a given covariates. To esti-

mate gA(a |WS), we can use all the data to fit a regression with the outcome equal to

1a(A), an indicator of receiving vaccine a (versus any other vaccine). The predictors

of the regression are WS. This regression could be estimated using approach that is

appropriate for binary outcome regression. Denote the estimate by gn,A.

3. Compute sampling probabilities for each individual. Next, we need to evaluate

sampling probabilities g∆(1 | Ti,Ai,Yi,Wi,∆,S) for each individual who received vac-

cine a and who were enrolled in one of the trials included in Ta. These probabilities

are generally known by design; if unknown, then they could be estimated separately

for each trial in Ta using regression of the binary outcome ∆ on predictors A,Y,W∆,S.

Denote by gn,∆ the estimates (or true values) of the conditional sampling probabili-

ties.

4. Estimate vaccine-specific conditional mean immunogenicity given sampling and

other covariates. To obtain an estimate of Q̄2, we can use data from individuals who

received vaccine a across all trials in Ta to fit a regression with the outcome S and
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predictors Y,W∆,S. As above, any suitable regression technique can be used and we

denote by Q̄n,2 the estimate of the conditional mean immunogenicity.

5. Target the vaccine-specific conditional mean immunogenicity given sampling

and other covariates. For simplicity, suppose S ∈ (0,1). If this assumption does

not hold, then S can be re-scaled to fall in this interval and the same approach can be

adopted [21]. Using all individuals with measured immune response ∆ = 1 that re-

ceived vaccine a in trials Ta, fit a logistic regression with outcome S, an offset equal

to logit[Q̄n,2(Y,W∆,S)], and a single covariate, defined as

Hn,2(T,A,Y,W∆,S) =
gn,T (Tref |WS)

gn,∆(1 | T,A,Y,W∆,S)gn,A(a |WS)gn,T (Tref)
.

Note that this regression model for Q̄2 has a single coefficient β2 and the model

can be expressed as Q̄2,β2 = expit[logit(Q̄n,2)+β2Hn,2],β2 ∈ R. Let βn,2 denote the

maximum likelihood estimate of β2 and define Q̄∗n,2 as an estimate of Q̄2,β2 .

6. Estimate vaccine-specific conditional mean immunogenicity excluding sampling

covariates. To estimate Q̄1, we regress the pseudo-outcome Q̄∗n,2(T,A,Y,W∆,S) onto

WS using observations that received vaccine a. As above, any suitable regression

technique can be used and we denote by Q̄n,1 the estimate of conditional mean im-

munogenicity, now conditioning only on baseline covariates WS.

7. Target the vaccine-specific conditional mean immunogenicity excluding sam-

pling covariates. For simplicity, we again suppose that our initial estimates ob-

tained in the previous step are such that Q̄n,1(WS) ∈ (0,1) for all WS, while re-

scaling can again be applied as needed. Now, using all individuals that received

vaccine a, fit a logistic regression with outcome Q̄∗n,2(T,A,Y,W∆,S), an offset equal
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to logit[Q̄n,1(WS)], and a single covariate, defined as

Hn,1(WS) =
gn,T (Tref |WS)

gn,A(a |Wi,S)gn,T (Tref)
.

Note that this regression model for Q̄1 has a single coefficient β1 and the model

can be expressed as Q̄1,β1 = expit[logit(Q̄n,1)+β1Hn,1],β1 ∈ R. Let βn,1 denote the

maximum likelihood estimate of β1 and define Q̄∗n,1 as an estimate of Q̄1,β1 .

8. Construct the final TMLE estimate. The final estimate is

ψ
∗
n (a) =

1
∑ j1Tref(Tj)

n

∑
i=1

1Tref(Ti)Q̄∗n,1(Wi,S) .

3.2.7 Hypothesis Testings and Confidence Intervals

Under standard regularity conditions [23], our TMLE estimator ψn(a) is asymptotically lin-

ear and locally efficient. Additionally, the central limit theorem indicates that this estimator

converges to a random variable with a mean-zero Gaussian distribution and variance equal

to the variance of D(O). This limiting distribution immediately suggests a closed-form,

Wald-type confidence intervals (CIs) and hypothesis tests. Specifically, we can construct

an asymptotically valid (1−α) Wald-type confidence interval as ψn(a)± z(1−α/2)σ̂n/
√

n,

where σ̂2
n is the empirical variance of D(O) evaluated at the estimated nuisance parameters

and z(1−α/2) is the 1−α/2 quantile of a standard normal distribution. These asymptotic

results can also be extended to construct Wald-style hypothesis test for differences between

immunogenicity of different vaccines by using the delta method and carefully defined con-

trast matrices.



53

3.3 Simulation Studies

We evaluated the proposed estimators via two simulation studies. In the first, we design

a scenario that is common observed in vaccine trials where we wish to compare immuno-

genicity of vaccines across early and late phase trials. In the second, we tailor the data

generating mechanism specifically to the HIV vaccine setting described above. In each

simulation study, we evaluate estimators in terms of bias, variance, mean squared error

(MSE), coverage probability of 95% Wald-type confidence intervals and mean width of

confidence intervals.

3.3.1 Comparing within and across early and late phase trials

In this simulation, we wished to compare the immunogenicity of vaccines evaluated in two

different studies where the studies had an imbalance of key covariates. In this context,

we considered three scenarios: (i) comparing vaccines evaluated in separate early phase

trials; (ii) comparing vaccines where one is evaluated in an early phase trial and the other

in a late-phase trial that used two-phase sampling for measurement of immune responses;

(iii) comparing vaccines evaluated in separate late phase trials that both used two-phase

sampling for measurement of immune responses. In each setting, we simulated two binary

covariates W1 | T ∼ Bernoulli(0.65+0.1512(T )) and W2 | T ∼ Bernoulli(0.5−0.212(T )).

We use A = 1 to denote the vaccine evaluated in trial T = 1 and A = 2 to denote the vaccine

evaluated in trial T = 2. Both trials 1 and 2 were simulated to have 1:1 randomization to

either their respective active vaccines or a control vaccine (arbitrarily labeled A = 3). The

immune response was simulated as S | A,W ∼Normal((W1−W2+21{1,2}(A)),1) and the

clinical outcome Y was simulated as Y | S,A,W ∼Bernoulli(expit(−2+1{1,2}(A)+W1/2−

S/2)). To simulate two-phase sampling, we allowed sampling probabilities to depend on

vaccine A and outcome Y . In early-phase trials P(∆ = 1 | A = a,Y = y) = 1 for all a,y,

consistent with the standard design of measuring immunogenicity in all participants in
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Table 3.2: Details of generating scheme for each simulated trial set. n is the sample size
and Py,a is the sampling probability in the sub-population Y = y and A = a

Scenario Trial Vaccine n P(W1) P(W2) P1,0 P1,1 P0,0 P0,1
1 1 1 200 0.65 0.80 1 1 1 1

2 2 150 0.5 0.30 1 1 1 1
2 1 1 5000 0.65 0.80 0.05 0.1 0.05 0.1

2 2 150 0.5 0.30 1 1 1 1
3 1 1 2000 0.65 0.80 0.05 0.1 0.05 0.1

2 2 1500 0.5 0.30 0.05 0.1 0.05 0.1

Table 3.3: Bias, variance, mean-squared error (MSE), coverage probability and width
of 95% CI for first simulation. Simulation results of three scenarios are summarized for
two choices of referent populations. Our methods have consistent performance with small
biases, low MSE and well-defined coverage probability of 95% confidence intervals. CIc:
CI coverage; CIw: CI width.

Case Tref Vaccine Truth Bias Variance MSE CIc CIw
1 {1, 2} 1 2.0000 0.0058 0.0155 0.0171 0.9430 0.4820
1 {1, 2} 2 2.0000 -0.0068 0.0224 0.0218 0.9430 0.5779
1 {2} 1 1.8500 0.0009 0.0123 0.0122 0.9480 0.4341
1 {2} 2 1.8500 -0.0116 0.0371 0.0366 0.9390 0.7380
2 {1, 2} 1 1.8602 -0.0021 0.0041 0.0043 0.9450 0.2502
2 {1, 2} 2 1.8602 0.0021 0.0342 0.0314 0.9430 0.7078
2 {2} 1 1.8500 -0.0021 0.0041 0.0042 0.9460 0.2499
2 {2} 2 1.8500 0.0023 0.0354 0.0326 0.9370 0.7199
3 {1, 2} 1 2.0000 -0.0001 0.0140 0.0140 0.9450 0.4597
3 {1, 2} 2 2.0000 -0.0007 0.0206 0.0214 0.9230 0.5555
3 {2} 1 1.8500 -0.0008 0.0107 0.0102 0.9500 0.4034
3 {2} 2 1.8500 0.0001 0.0337 0.0349 0.9220 0.7058

such trials. For late-phase trials, we generated data with two-phase sampling according to

probabilities listed in Table 3.2.

Our estimators exhibited low bias and reasonable MSE in all proposed scenarios (Ta-

ble 3.3). They also achieve nominal confidence interval coverage with reasonable width of

confidence intervals.
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Table 3.4: Details of generating scheme for the HVTN-inspired simulation. N is the
total sample size for each trial. Py is the sampling probability given Y = y.

Trial Vaccine N {P(Wj) : j = 1, . . . ,10} P1 P0
1 1 1168 {0.546,0.501,0.443,0.551,0.537, 0.57 0.06

0.474,0.409,0.587,0.468,0.515}
2 2 200 {0.540,0.432,0.491,0.444,0.442, 1 1

0.503,0.535,0.532,0.575,0.576}
2 3 73 {0.534,0.440,0.420,0.480,0.498, 1 1

0.569,0.506,0.574,0.432,0.570}

3.3.2 Simulations inspired by HVTN trials

In the second simulation, we simulated three trials similar to the HVTN trials of interest:

HVTN702 (T = 1), RV144 (T = 2) and HVTN097 (T = 3). For each trial, 10 binary

covariates, Wj ( j = 1, . . . ,10) were generated, Wj | T ∼ Bernoulli(p j(T )) with different

generating probabilities p j. For each trial t, the probabilities p j(t) were drawn at random

from a Uniform(0.4,0.6) distribution; these probabilities are shown in Table 3.4. The

sample sizes for each trial are fixed at the same level as the real trials (n1 = 1168,n2 =

200,n3 = 73). In trial 1, 594 out of 1168 participants are observed in the active vaccine

group, whereas for all the other three trials, only vaccinated subjects are documented and

the vaccines used in HVTN702 (A = 1) is different than that used in either RV144 (A = 2)

and in HVTN097 (A = 3). Next, we generated immune marker from Gaussian distribution,

S | A,W ∼ Normal(0.1131>0(A)+ 0.025W3 + 0.062W5,0.16832). The primary outcome

Y in HVTN702 was simulated as Y | S,A,W ∼ Bernoulli(expit(0.061S+ 0.1321>0(A)+

0.086W3+0.265W5)). A case-control sampling design was applied for T = 1, where P(∆=

1 | Y = 1,A = 1,W ) = 0.57 for all W and P(∆ = 1 | Y = 0,A = 1,W ) = 0.06 for all W .

For each set of simulated trials, we estimated the average immunogenicity of each of the

three vaccines standardized to the T = 1 population using our proposed estimators. This

process was repeated 1000 times.

Our estimators again exhibited low bias, small MSE and well-calibrated 95% Wald-type

confidence intervals in all scenarios (Table 3.5).
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Table 3.5: Results of HVTN inspired simulations in terms of bias, variance, mean-
squared error (MSE), coverage probability and width of 95% CI. Sample size reflects
the number of participants in each trial. N: trial size; NS: the number of participants having
S measured; CIc: CI coverage; CIw: CI width.
Tref Vaccine N NS Truth Bias Variance MSE CIc CIw

1 1 1354 120 0.15735 0.00024 0.00025 0.00008 0.997 0.060
1 2 200 200 0.15735 0.00061 0.00017 0.00018 0.944 0.051
1 3 73 73 0.15735 -0.00181 0.00044 0.00043 0.947 0.081

3.4 Application to RV144 and HVTN Trials

The proposed methods were applied to three investigational HIV vaccine trials: HVTN702

[19], HVTN097 [18] and RV144 [34]. The vaccine regimen used in RV144 and HVTN097

is ALVAC-HIV-vCP1521 carrying clade 92TH023-AE, clade B gag, and clade B protease

with adjuvant Alum, labeled as PAE/B/alum; the vaccine regimen used in HVTN702 is

ALVAC-vCP2438 carrying clade ZM96.C, clade B gag and clade B protease with adjuvant

MF59, labeled as PC/MF59. Our analysis characterized the immunogenicity of these vac-

cines in terms of their impact on CD4+ T cells expressing cytokines in response to ZM96.

We evaluated the readout of this assay as both a continuous response magnitude (capped at

22000) and a binary response (0: Yes, 1: No), the latter indicating that the assay readout

was greater than a positivity cutoff.

Baseline participant characteristics adjusted for in the analysis included age, sex, BMI,

region of enrollment, and educational level.In HVTN702, the immune responses were mea-

sured subject to a case-control sampling scheme with known sampling weights. Partici-

pants who get vaccinated in any other two trials are naturally assigned weight one since the

target immune markers are all measured.

We present results that compare the difference between vaccines evaluated in HVTN097

and RV144 (PAE/B/alum) versus the vaccine evaluated in HVTN702 (PC/MF59) stan-

dardized to the HVTN702 population. Results show for both naı̈ve unadjusted estimator

and our proposed TMLE estimator of mean difference in average response rate (RR) of

CD4+ T cells expressing two cytokines (Table 3.6). The TMLE analysis indicated that
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Table 3.6: The difference in average immune responses of CD4+ cells between referent
population HVTN702 and earlier trial population HVTN097 and RV144. Comparisons
were summarized for unadjusted approaches and our proposed method for both contrasts.
ICS: Intracellular cytokine staining; RR: response rate; GM: geometric mean.

HVTN702 HVTN097 RV144
Location South Africa South Africa Thailand
Prevalent Clade C Clade C Clade B
Vaccine PC/MF59 PAE/B/alum PAE/B/alum
RR difference (unadj) Ref 0.122 (-0.010, 0.254) -0.207 (-0.316, -0.098)
p value – 0.071 < 0.001
RR difference (TMLE) Ref 0.170 (-0.026, 0.353) -0.183 (-0.329, -0.028)
p value – 0.088 0.021
GM ratio (unadj) Ref 1.258 (0.945, 1.674) 0.728 (0.578, 0.918)
p value – 0.116 0.007
GM ratio (TMLE) Ref 1.455 (0.954, 2.218) 0.703 (0.519, 0.953)
p value – 0.082 0.023

the HVTN702 vaccine had significantly higher RR and geometric mean values of the im-

mune response when compared to RV144, with no evidence of difference in response rates

comparing to the HVTN097 vaccine. The TMLE estimates were largely similar to the un-

adjusted estimates. These results may help explain the discrepant results between RV144

and HVTN702.



58

Chapter 4

Standardized Causal Effect Sizes in

Vaccine Research
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4.1 Introduction

The primary goal of this chapter is to explicitly discuss the considerations for defining

standardized causal effect sizes across a wide range of scenarios. We also provide nonpara-

metric efficient estimators accompanied by theory that elucidates the asymptotic properties.

The remainder of this chapter is structured as follows. In Section 4.2, we discuss the

definition of effect sizes in a causal context in various scenarios. In Section 4.3 we first

introduce one of novel standardized causal ES’s, which presents an opportunity to dif-

ferentiate the impact of effects beyond ATE. Next, we outline a detailed procedure of the

estimation and inference for the proposed estimators. In Section 4.4 we assess finite sample

performances of our estimators via extensive simulations.

4.2 Considerations for defining standardized causal effect

sizes

4.2.1 Causal effects

We introduce the following general notation. We are interested in describing the im-

pact of a binary intervention A ∈ {0,1} on one or several outcomes. We denote a sin-

gle outcome of interest by Y ∈ R. We also assume that a set of contextual covariates

W ∈ W is available, where W denotes the support of the random variable W . We use

O1, . . . ,On to denote n independent and identically distributed copies of a random variable

O = (A,W,Y ) ∼ P ∈M . Additionally, we define a counterfactual variable Y (a), which

corresponds to the outcome that would be observed if an individual were exposed to a spe-

cific intervention a ∈ {0,1}. We use Pa to denote the distribution of the counterfactual

data unit (W,A,Y (a)) for a = 0,1. Formulation of such potential outcomes generally re-

quires the stable treatment value assumption (SUTVA), which stipulates that (i) there is

only a single form of each intervention a and (ii) the potential outcomes for any given
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individual do not depend on the interventions received by others. The additive ATE is de-

fined as EP1[Y (1)]−EP0[Y (0)], which is a common target for inference when evaluating an

intervention. Here, we use the notation EPa to denote the expectation operator under dis-

tribution Pa. Other common targets for inference include the subgroup-specific ATE, e.g.,

EP1[Y (1) |W = w]−EP0[Y (0) |W = w] for a specific covariate strata w and the average

treatment effect amongst the treated EP1[Y (1) | A = 1]−EP0[Y (0) | A = 1].

4.2.2 Standardized causal effect sizes

Similarly as with standardized effect sizes, we can define a standardized causal effect size

by considering dividing the causal effect of interest by a relevant measure of variability of

potential outcomes. In the most general form, we may consider estimands of the form

ψ =
µ(P0,P1)

σ(P0,P1)
,

where µ(P0,P1) is some causal contrast of interest summarizing a difference in the central

tendency of the distributions of counterfactuals under intervention A = 0 versus A = 1

and σ(P0,P1) is some measure of the spread of the counterfactuals under intervention

A = 0 and/or A = 1. For simplicity, we restrict attention to additive causal contrasts so that

µ(P0,P1) is assumed to be interpretable as an impact of the intervention in the units of the

outcome. For example, if the ATE is of interest, then we may take µ(P0,P1) = EP1 [Y (1)]−

EP0[Y (0)]. If instead, the ATT is of interest then we may take µ(P0,P1) = EP1[Y (1) | A =

1]−EP0 [Y (0) | A = 1]. However, it is not immediately clear what an appropriate choice of

σ should be. In particular, we must clarify whether and how the choice of σ should vary by

the choice of µ and the overarching scientific context of the experiment. In the following

section, we discuss several scenarios and provide considerations for selection of σ in each

case.
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4.2.3 Choices of measure of counterfactual variability

Standardizing by the variability Y (a). A natural choice for standardizing a causal effect

is to select σ as the standard deviation of Y (a), where a can be either 0 or 1. We use

Var1/2(Y (a)) to denote this quantity. The interpretation of the standardized causal effect

size is thus as the mean difference in the outcomes presented in units of standard devia-

tion of Y (a). The choice of a in this context should be dictated by the scientific context

depending on the desired interpretation. In many situations a control or a standard of care

intervention is represented by one of the levels of a, say a = 0. In these situations, we

suggest that standardization by Var1/2(Y (0)) is a natural choice. For example, suppose we

are interested in summarizing the effectiveness of a novel drug for cancer treatment relative

to an existent and commonly-used therapy in terms of the therapies’ impact on restricted

mean survival time. It is important to note that the distribution of potential outcomes Y (0)

is closer to the real-world population, where the standard therapy is routinely given. Thus,

the standardized causal effect size meaningfully captures the expected impact of adoption

of the new therapy versus the standard therapy relative to the current variability of survival

times.

Standardizing using a pooled counterfactual variance. More generally, we could take

σ(P0,P1)= [βVar(Y (0))+(1−β )Var(Y (1))]1/2 for some fixed choice of weight β ∈ [0,1].

A natural choice is to set β = P(A = 0), i.e., to weight counterfactual variances according

to how frequently the associated intervention occurs in the natural world. In the context of

a randomized trial, this estimand exactly corresponds to the estimand of Cohen’s D statis-

tic. However, this more general formulation allows for the possibility that intervention

is confounded by other factors. We note that this form of σ can also be interpreted as

[Var(Y (A∗))−Var(E[Y (A∗) | A∗])]1/2 where A∗ ∼ Bernoulli(P(A = 1)). That is, we can

conceptualize a world in which the intervention A = 1 is given to exactly the same frac-

tion of the population as in the observed world P(A = 1); however, that fraction of the

population is selected at random, rather than being influenced by confounding factors W .
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Here is an example, we may be interested in evaluating the total cholesterol levels across

different socioeconomic groups. It is not surprising that socioeconomic status (SES) can

affect individuals’ dietary habits, which in turn significantly influence their total cholesterol

levels. However, real-world societies are diverse and always comprise multiple layers of

socioeconomic patterns, which makes it unrealistic to assume all individuals are within one

specific stratum. In this case, a meaningful choice of the measurement of variability would

be a pooled variance based on sample proportions of subpopulations with each SES.

Standardizing by the variability Y (a) in a subpopulation. If the chosen causal effect

that constitutes the numerator of ψ is a subpopulation-specific effect (e.g., the ATT), then

standardization by the variability of one of the potential outcomes in the entire population

may not have a desirable interpretation. Instead, we may wish to align the choice of σ

with the same subpopulation selected for µ . For example, we may consider σ(P0,P1) =

Var1/2(Y (a) | A = 1) for either a = 0 or 1. In situations where the ATT is of primary

interest, we suggest that choose a = 1 will often lead to the greatest interpretability. In this

case ψ has an interpretation in terms of standardized units in the observed outcome since

Var1/2(Y (1) | A = 1) equals the standard deviation of the observed outcome Y amongst

individuals who naturally receive intervention level A = 1.

Special considerations for evaluating treatment effect heterogeneity using standardized

causal effect sizes. If a fixed subpopulation defined by a particular covariate value w is of

interest, then as above, we likely would wish to standardize the causal effect by the standard

deviation of counterfactual outcomes in that subpopulation. Such a standardization would

allow a natural comparison of, for example, the impact of an intervention in a subpopulation

across several distinct outcomes. However, in studies that attempt to elucidate treatment

effect heterogeneity, special consideration may be required. We generally say that treatment

effect heterogeneity on the additive scale is present if the conditional ATE E[Y (1)−Y (0) |

W = w] is not constant in w. However, when comparing the magnitude of the impact of

treatment across subpopulations defined by W is of interest, it may be more relevant in
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some situations to define treatment effect heterogeneity on the standardized causal effect

scale. That is, we could study

ψ(w) =
E[Y (1)−Y (0) |W = w]

Var1/2(Y (a) |W = w)
,

and ask whether ψ(w) is constant in w. If the goal of an effect heterogeneity analysis is

to describe whether the impact of an intervention varies by subgroup, then searching for

effect modification on the scale of the ATE may mask relevant differences in subgroups if

the variability of potential outcomes varies substantially across those subgroups. That is,

the same ATE in two (or more) subgroups may yet reflect a meaningfully different real-

world impact of the intervention in those subgroups.

The choice of causal effect sizes should be motivated by the specific context of stud-

ies. Different effect sizes may be appropriate depending on the nature of the research and

underlying hypotheses. Moreover, it is crucial to choose a causal effect size that is inter-

pretable and meaningful for real-world implications. The optimal option of causal effect

size to report is not fixed. It varies depending on a combination of these factors, allowing

us to offer distinct perspectives on the magnitude of a causal relationship.

4.3 Identification, estimation, and inference for standard

causal effect sizes

Identification of standardized causal effect sizes must proceed on a case-by-case basis, de-

pending on the choice of µ and σ . In this section, we present an in-depth analysis of

one particular choice, with µ given by the ATE and σ equal to the standard deviation

of Y (0). We note that the variance of Y (0) can be further decomposed into two com-

ponents, Var[Y (0)] = E[Y (0)2]−E[Y (0)]2. We define ψ0 = E[Y (0)], ψ1 = E[Y (1)] and

ψ2 = E[Y (0)2], respectively. Hence, the ultimate causal estimand we are interested in iden-
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tifying and estimating is

ψ =
E[Y (1)]−E[Y (0)]√
E[Y (0)2]−E[Y (0)]2

=
ψ1−ψ0√
ψ2−ψ2

0

.

There are multiple sets of assumptions under which we may be able to identify ψ0, ψ1,

and ψ2. The following set is sufficient for identification, while noting that other identifying

assumptions exist.

Assumption 1 (Unconfoundedness): The assignment mechanism is independent of the po-

tential outcomes conditional on observed covariates: Y (a)⊥ A |W .

Assumption 2 (Positivity): For all possible values of w, the conditional probability of re-

ceiving intervention A = 1 is bounded between 0 and 1 δ < P(A = a |W )< 1−δ for some

constant δ > 0.

Essentially, Assumption 1 implies that there are no unobserved confounders that af-

fect both the treatment assignment and the outcomes. This assumption can be supported

by careful study design and data collection strategies. Sensitivity analysis and graphi-

cal checks are often employed to assess the potential impact of violations. Assumption 2

bounds the values of the propensity score away from zero. This assumption may be vi-

olated in observational studies due to contraindications to treatment. If both assumptions

hold, then EPa[Y (a)] = E[E(Y | A = a,W )] and EPa[Y (a)2] = E[E(Y 2 | A = a,W )], where

we use E to denote expectation under the observed data distribution P. Thus, we have the

following identification for ψ:

ψ =
E[E(Y | A = 1,W )]−E[E(Y | A = 0,W )]√

E[E(Y 2 | A = 1,W )]− (E[E(Y | A = 0,W )])2
.

We use the short hand notation Q̄(A,W ) = E(Y | A,W ) and Q̄2(A,W ) = E(Y 2 | A,W ) to

denote relevant components of this identification result.
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4.3.1 Efficiency theory

It is straightforward to show that the efficient influence function in a nonparametric model

for a parameter of the form E[E( f (Y ) | A = a,W )] for a some non-degenerate transforma-

tion f of Y is

D f (Oi) =
I(Ai = a)

P(A = a |W =Wi)
{Yi−E[ f (Y ) | A = a,W ]}

+E[ f (Y ) | A = a,W ]−E {E[ f (Y ) | A = a,W ]} .

This result can be directly applied to establish the EIF for ψ0,ψ1, and ψ2. The delta

method then implies that the EIF for ψ is:

D(Oi) =
ψ1ψ0−ψ2

(ψ2−ψ2
0 )

3/2
I(Ai = 0)

P(A = 0 |W =Wi)

[
Yi− Q̄(0,Wi)

]
+

1
(ψ2−ψ2

0 )
1/2

I(Ai = 1)
P(A = 1 |W =Wi)

[
Yi− Q̄(1,Wi)

]
− ψ1−ψ0

2(ψ2−ψ2
0 )

3/2
I(Ai = 0)

P(A = 0 |W =Wi)

[
Y 2

i − Q̄2(0,Wi)
]

+
ψ1ψ0−ψ2

(ψ2−ψ2
0 )

3/2

[
Q̄(0,Wi)−ψ0

]
+

1
(ψ2−ψ2

0 )
1/2

[
Q̄(1,Wi)−ψ1

]
+

ψ1−ψ0

2(ψ2−ψ2
0 )

3/2

[
Q̄2(0,Wi)−ψ2

]

4.3.2 Plug-in estimation

We propose a plug-in estimator of ψ that is based on estimators of (i) the conditional

density of Y given A and W and (ii) the marginal distribution of W . We denote the estimated

conditional density of Y evaluated at y given A = a and W = w by qn(y | A = a,W = w).

We note that given such a conditional density estimate, estimates Q̄n(a,w) and Q̄n,2(a,w)
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of Q̄(a,w) and Q̄2(a,w), respectively are implied for any given values (a,w):

Q̄n(a,w) =
∫

y qn(y | a,w)dy (4.1)

Q̄n,2(a,w) =
∫

y2 qn(y | a,w)dy . (4.2)

We propose to use the empirical distribution of W to estimate its marginal distribution.

Thus, a plug-in estimator may be computed as

ψn =
1
n ∑

n
i=1[Q̄n(1,Wi)− Q̄n(0,Wi)]√

1
n ∑

n
i=1 Q̄n,2(0,Wi)− [1

n ∑
n
i=1 Q̄n(0,Wi)]2

. (4.3)

4.3.3 One-step corrected estimation

If flexible estimators of the conditional density of Y are used in construction of the plug-

in estimator then it will have non-standard asymptotic behavior. In particular, we expect

that the plug-in estimator will have large finite-sample bias that will not shrink to zero at

an appropriate rate. To facilitate the usage of flexible density estimators, we consider a

one-step correction [6]. This estimator can be implemented in the following steps.

Estimate the probability of receiving intervention a given covariates. Use either para-

metric (e.g., logistic regression) or a nonparametric regression (e.g., kernel regression) to

regress the A onto W . Based on the model fit, evaluate the estimated probability that A = a

given W =Wi for i = 1, . . . ,n. Denote this estimate by gn(a |Wi).

Estimate the conditional density of outcome given intervention and covariates. Use

a conditional density estimation technique (e.g., kernel density estimation) to obtain an

estimate qn of the conditional density of Y given A,W .

Use numeric integration to obtain estimates of conditional means. Evaluate (4.1) for

a = 0,1 and for w =W1, . . . ,Wn to obtain Q̄n(a,Wi) for i = 1, . . . ,n. Evaluate (4.2) for a = 0

and w =W1, . . . ,Wn to obtain Q̄n,2(0,Wi) for i = 1, . . . ,n.

Construct plug-in estimate of standardized causal effect size. Evaluate plug-in estima-
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tor in (4.3) based on estimates obtained in previous step.

Evaluate efficient influence function using estimated quantities. Evaluate

Dn(Oi) =
ψn,1ψn,0−ψn,2

(ψn,2−ψ2
n,0)

3/2
I(Ai = 0)
gn(0 |Wi)

[
Yi− Q̄n(0,Wi)

]
+

1
(ψn,2−ψ2

n,0)
1/2

I(Ai = 1)
gn(1 |Wi)

[
Yi− Q̄n(1,Wi)

]
−

ψn,1−ψn,0

2(ψn,2−ψ2
n,0)

3/2
I(Ai = 0)
gn(0 |Wi)

[
Y 2

i − Q̄n,2(0,Wi)
]

+
ψn,1ψn,0−ψn,2

(ψn,2−ψ2
n,0)

3/2

[
Q̄n(0,Wi)−ψn,0

]
+

1
(ψn,2−ψ2

n,0)
1/2

[
Q̄n(1,Wi)−ψn,1

]
+

ψn,1−ψn,0

2(ψn,2−ψ2
n,0)

3/2

[
Q̄n,2(0,Wi)−ψn,2

]
,

for i = 1, . . . ,n, where ψn,0 = n−1
∑

n
i=1 Q̄n(0,Wi), ψn,1 = n−1

∑
n
i=1 Q̄n(1,Wi), and ψn,2 =

n−1
∑

n
i=1 Q̄n,2(0,Wi).

Compute the final one-step estimate of standardized causal effect size. The one-step

estimate is defined as ψ+
n = ψn +n−1

∑
n
i=1 Dn(Oi).

4.3.4 Asymptotic study of one-step estimator

We have the following theorem pertaining to the one-step estimator. We use || fn|| =∫
fn(o)dP(o) to denote the L2(P) norm of a given P-measurable function fn. We adopt

the shorthand g(a |W ) = P(A = a |W ).

Theorem 5. Suppose that

(A1) ||gn−g|| ||Q̄n− Q̄||= oP(n−1/2)

(A2) ||gn(0 | ·)−g(0 | ·)|| ||Q̄n,2− Q̄2||= oP(n−1/2)

(A3) ||Dn−D||2 = oP(1) and Dn falls in a P-Donsker class with probability tending to 1

as n tends to infinity
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Then ψ+
n = ψ +n−1

∑
n
i=1 D(Oi)+oP(n−1/2).

The proof of the theorem follows using standard analysis of one-step estimators. An

immediate implication of Theorem 5 is that n1/2ψ+
n has a Normal limiting distribution with

mean ψ and variance equal to the variance of the random variable D(O). This asymptotic

variance can be consistently estimated by n−1
∑

n
i=1[Dn(Oi)−n−1

∑
n
j=1 Dn(O j)]

2. Another

implication of the theorem is double robustness of the one-step estimator, which states that

if either (i) ||gn− g|| = oP(1) or (ii) both ||Q̄n− Q̄|| = oP(1) and ||Q̄2,n(0, ·)− Q̄(0, ·)|| =

oP(1), then ψ+
n −ψ = oP(1).

4.4 Simulation study

We investigated the finite-sample performance of plug-in and one-step corrected estimators

of the proposed estimand described in Section 4.3. For this study, 1000 datasets were gen-

erated at four sample sizes n ∈ {250,500,1000,2000} under the following data-generating

mechanism. One normally distributed covariate W iid∼ N(3,1) was generated. Given W

the intervention A was simulated as a Bernoulli random variable with P(A = 1 |W ) =

expit(1.2−0.3W ). Given A and W , the outcome Y was simluated as Y |A,W iid∼N(−1.3W +

2A,1+2A). Based on this data generating process, the true value of ψ = 1.2187.

We considered constructing our estimates in two different ways. The first used maxi-

mum likelihood estimation to estimate the density of Y given A,W ; the second used non-

parametric kernel methods for density estimation. Leave-one-out cross-validation was

used to select the bandwidth of the kernel density estimation method. All estimators

are assessed in terms of bias, variance, mean squared error (MSE) and relative efficiency

(RE = MSEone-step/MSEplug-in). RE < 1 indicates the one-step estimator has better finite

sample efficiency than plug-in estimator.

Results are reported in Table 4.1. The one-step estimator outperformed the plug-in

estimator in most of the scenarios that we evaluated. In the smallest sample size, the plug-
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in estimator enjoyed minor improvements in MSE relative to the one-step, owing primarily

to reduced bias. However, as the sample size increased, the relative performance of the

one-step improved. When sample size is greater than 500, efficiency gains of the one-step

estimator were between 3.66 and 5.39 percent. As expected based on theory, we found that

the plug-in estimator when coupled with nonparametric kernel density estimation exhibited

large bias that decreased to zero slowly and that, when scaled by n1/2, diverges. On the

other hand, the one-step correction appropriately removes bias from the plug-in estimate

and recovers standard n1/2-asymptotic behavior.

Type Method n Estimates Bias Variance MSE RE
parametric plug-in 250 1.2221 0.0035 0.0376 0.0376 1.0000
parametric plug-in 500 1.2191 0.0004 0.0172 0.0172 1.0000
parametric plug-in 1000 1.2190 0.0004 0.0083 0.0083 1.0000
parametric plug-in 2000 1.2192 0.0006 0.0043 0.0042 1.0000
parametric CDE 250 1.2293 0.0106 0.0380 0.0381 1.0146
parametric CDE 500 1.2225 0.0039 0.0174 0.0174 1.0132
parametric CDE 1000 1.2207 0.0020 0.0083 0.0083 1.0046
parametric CDE 2000 1.2201 0.0015 0.0043 0.0043 1.0003

nonparametric plug-in 250 1.1612 -0.0574 0.0332 0.0365 1.0000
nonparametric plug-in 500 1.1863 -0.0323 0.0171 0.0181 1.0000
nonparametric plug-in 1000 1.1992 -0.0194 0.0084 0.0088 1.0000
nonparametric plug-in 2000 1.2074 -0.0112 0.0043 0.0045 1.0000
nonparametric CDE 250 1.2287 0.0101 0.0371 0.0372 1.0181
nonparametric CDE 500 1.2239 0.0052 0.0171 0.0171 0.9461
nonparametric CDE 1000 1.2224 0.0038 0.0085 0.0085 0.9634
nonparametric CDE 2000 1.2212 0.0026 0.0043 0.0043 0.9616

Table 4.1: Simulation study: bias, variance, mean squared error (MSE) and relative
efficiency (RE) of one-step and plug-in estimators over 1000 Monte Carlo simulations
(n ∈ {250,500,1000,2000}).

4.5 Discussion

In this study, we present a framework for defining and standardizing effect sizes in a causal

context. We address the challenges associated with evaluating causal effects across dif-

ferent outcome scales and studies, and propose a fresh perspective that enables fair com-
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parisons. Particularly, we go beyond relying solely on difference-based causal estimands

by standardizing them with respect to the standard deviation of counterfactuals within a

specific population of interest. The choice of such population depends on the research

objectives. Additionally, we introduce nonparametric estimators for causal effect sizes,

providing a rigorous methodology for their estimation. We believe that our approach offers

a promising tool for researchers and practitioners seeking to assess causal effects in a ro-

bust and consistent manner. One open challenge lies in the potential application of targeted

learning to enhance estimation techniques and integrate modern machine learning methods

for estimating high dimensional nuisance parameters.
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Appendix A

Appendix for Chapter 3

A.1 Proof of Theorem 1

Proof. If (A1) and (A2) hold then

ψX(a) = EX[S(a) | T = Tref]

= EX {EX [S(a) | T ∈Tref,WS)] | T ∈Tref} tower rule

= EX {EX [S(a) |WS] | T ∈Tref} S(a)⊥ T |WS

= EX {EX [S(a) | A = a,WS] | T ∈Tref} S(a)⊥ A |WS

= EX {EX (S | A = a,WS) | T ∈Tref} consistency
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