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Abstract

Applications of Harmonic Maass Forms

By Michael John Gri�n

In this thesis, we prove various results in the theory of modular forms and

harmonic Maass forms, representation theory, elliptic curves and di�erential

geometry. In particular, we give a broad framework of Rogers�Ramanujan

identities and algebraic values; we prove that Ramanujan's mock theta func-

tions satisfy his original conjectured de�nition; and we show that certain

harmonic Maass forms which arise naturally from the arithmetic of elliptic

curves encode central L-values and L-derivatives involved in the Birch and

Swinnerton-Dyer conjecture. We also prove a conjecture of Moore and Wit-

ten connecting the regularized u-plane integral on the complex projective

plane with Donaldson invariants for the SU(2)-gauge theory. In our �nal

two applications, we turn to moonshine phenomena. Monstrous Moonshine

relates the Fourier coe�cients of certain modular functions to values of the

irreducible characters of the Monster group�the largest of the sporadic sim-

ple groups. We give the asymptotic distribution of these character values,

answering a question of Witten with applications to mathematical physics.

The Umbral Moonshine conjectures relate the the values of irreducible char-

acters of prescribed �nite groups with the Fourier coe�cients of distinguished

mock modular forms. Gannon has proved this for the special case involving

the largest sporadic simple Mathieu group. We complete the proof in the

remaining cases.
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Chapter 1

Introduction

In 1913, The mathematician G. H. Hardy received a letter from a young

and unknown Indian clerk named Srinivas Ramanujan. �Dear Sir,� the letter

began, �I beg to introduce myself to you as a clerk in the Accounts Depart-

ment of the Port Trust O�ce at Madras... I am now about 23 years of age...

I have not trodden through the conventional regular course which is followed

in a University course, but I am striking out a new path for myself. I have

made a special investigation of divergent series in general and the results I

get are termed by the local mathematicians as `startling'.� [25] Near the end

of the letter, Ramanujan claimed that

1

1 + e−2π

1+ e−4π

1+ e−6π

1+
...

=

√5 +
√

5

2
−
√

5 + 1

2

 5
√
e2π,

1

1− e−π

1+ e−2π

1− e−3π

1+
...

=

√5−
√

5

2
−
√

5− 1

2

 5
√
eπ,

and that the function
1

1 + e−π
√
n

1+ e−2π
√
n

1+ e−3π
√
n

1+
...

(1.1)
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�can be exactly found if n be any positive rational.�

Speaking of these particular formulas, Hardy later said �They defeated

me completely. I had never seen anything in the least like this before... they

could only be written down by a mathematician of the highest class. They

must be true because no one would have the imagination to invent them.�

The heart of Ramanujan's evaluations of 1.1 are the Rogers�Ramanujan

identities which show that this is essentially a modular function. Modular

functions and more general modular forms have been studied since the early

nineteenth century in connection with elliptic curves. They have since been

shown to connect broadly across mathematics from �elds such as number

theory, class �eld theory, and representation theory, to combinatorics, math-

ematical physics and more.

Many modern advances in the study of modular forms are rooted in an-

other letter from Ramanujan to Hardy�his last one. After returning to India,

Ramanujan wrote to Hardy and introduced an enigmatic collection of func-

tions which he called the mock theta functions. These functions would even-

tually lead to the theory of harmonic Maass forms, special functions which

generalize the notion of a modular form and provide a foundational frame-

work which has lead to a deeper understanding of these important mathe-

matical objects. Through the course of this thesis, we will examine several

new results and applications of the mathematics rooted in Ramanujan's �rst

and last letters.

A framework of Rogers�Ramanujan identities (Joint work with K.

Ono and S. O. Warnaar)

Returning to Ramanujan's �rst letter, the Rogers�Ramanujan (RR) iden-

tities [263] are given by

G(q) :=
∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
(1.2)
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and

H(q) :=
∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
. (1.3)

These are essentially modular functions, and their ratio H(q)/G(q) is the

Rogers�Ramanujan q-continued fraction

H(q)

G(q)
=

1

1 +
q

1 +
q2

1 +
q3

. . .

. (1.4)

Note that when q = e−π
√
n, this is (1.1).

The golden ratio φ satis�esH(1)/G(1) = 1/φ = (−1+
√

5)/2. Ramanujan

computed further values such as

e−
2π
5 · H(e−2π)

G(e−2π)
=

√
5 +
√

5

2
−
√

5 + 1

2
. (1.5)

The minimal polynomial of this value is

x4 + 2x3 − 6x2 − 2x+ 1,

which shows that it is an algebraic integral unit. All of Ramanujan's evalu-

ations are such units.

Ramanujan's evaluations inspired early work by Watson [234, 296, 297]

and Ramanathan [257]. Then in 1996, Berndt, Chan and Zhang [24]1 �nally

obtained general theorems concerning such values. The theory pertains to

values at q := e2πiτ , where the τ are quadratic irrational points in the upper-

half of the complex plane. We refer to such a point τ as a CM point with

1Cais and Conrad [60] and Duke [102] later revisited these results from the perspective

of arithmetic geometry and the symmetries of the regular icosahedron respectively.
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discriminant −D < 0, where −D is the discriminant of the minimal polyno-

mial of τ . The corresponding evaluation is known as a singular value. Berndt,

Chan and Zhang proved that the singular values q−1/60G(q) and q11/60H(q)

are algebraic numbers in abelian extensions of Q(τ) which enjoy the sur-

prising property (see [24, Theorem 6.2]) that their ratio q1/5H(q)/G(q) is an

algebraic integral unit which generates speci�c abelian extensions of Q(τ).

Remark. The individual values of q−1/60G(q) and q11/60H(q) generically are

not algebraic integers. For example, in (1.5) we have τ = i, and the numerator

and denominator

q−
1
60G(q) = −

4

√
1 + 3

√
5− 2

√
10 + 2

√
5

10
and q

11
60H(q) =

−
4

√
1 + 3

√
5 + 2

√
10 + 2

√
5

10

share the minimal polynomial 625x16 − 250x12 − 1025x8 − 90x4 + 1.

In addition to the deep algebraic properties described above, (1.2) and

(1.3) have been related to a large number of di�erent areas of mathematics.

They were were �rst recognized by MacMahon and Schur as identities for

integer partitions [220,266], but have since been linked to algebraic geometry

[59, 140], K-theory [111], conformal �eld theory [22, 186, 209], group theory

[128], Kac�Moody, Virasoro, vertex and double a�ne Hecke algebras [76,120,

206, 207, 211�214], knot theory [159, 160], modular forms [38�40, 43, 46, 250],

orthogonal polynomials [14,35,138], statistical mechanics [10,20], probability

[129] and transcendental number theory [262].

In 1974 Andrews [7] extended (1.2) and (1.3) to an in�nite family of

Rogers�Ramanujan-type identities by proving that∑
r1≥···≥rm≥0

qr
2
1+···+r2

m+ri+···+rm

(q)r1−r2 · · · (q)rm−1−rm(q)rm
=

(q2m+3; q2m+3)∞
(q)∞

· θ(qi; q2m+3),

(1.6)
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where 1 ≤ i ≤ m+ 1. As usual, here we have that

(a)k = (a; q)k :=


(1− a)(1− aq) · · · (1− aqk−1) if k ≥ 0,

∞∏
j=0

(1− aqj) if k =∞,

and

θ(a; q) := (a; q)∞(q/a; q)∞

is a modi�ed theta function. The identities (1.6), which can be viewed as the

analytic counterpart of Gordon's partition theorem [139], are now commonly

referred to as the Andrews�Gordon (AG) identities.

Remark. The specializations of θ(a; q) in (1.6) are (up to powers of q) modular

functions, where q := e2πiτ and τ is any complex point with Im(τ) > 0. It

should be noted that this di�ers from our use of q and τ above where we

required τ to be a quadratic irrational point. Such in�nite product modular

functions were studied extensively by Klein and Siegel.

There are numerous algebraic interpretations of the Rogers�Ramanujan

and Andrews�Gordon identities. For example, the above-cited papers by

Milne, Lepowsky and Wilson show that they arise as principally specialized

characters of integrable highest-weight modules of the a�ne Kac�Moody al-

gebra A(1)
1 . Similarly, Feigin and Frenkel proved the Rogers�Ramanujan and

Andrews�Gordon identities by considering certain irreducible minimal rep-

resentations of the Virasoro algebra [120]. We should also mention the much

larger program by Lepowsky and others on combinatorial and algebraic ex-

tensions of Rogers�Ramanujan-type identities, leading to the introduction

of Z-algebras for all a�ne Lie algebras, vertex-operator-theoretic proofs of

the Rogers�Ramanujan identities, and Rogers�Ramanujan identities for arbi-

trary a�ne Lie algebras in which the sum side is replaced by a combinatorial

sum, see e.g., [126,205,236] and references therein.
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Here we have a similar but distinct aim, namely to �nd a concrete frame-

work of Rogers�Ramanujan type identities in the q-series sense of �In�nite

sum = In�nite product�, where the in�nite products arise as specialized char-

acters of appropriately chosen a�ne Lie algebras X
(r)
N for arbitrary N . Such

a general framework would give new connections between Lie algebras and

the theory of modular functions.

In [11] (see also [119, 292]) some partial results concerning the above

question were obtained, resulting in Rogers�Ramanujan-type identities for

A(1)
2 . Unfortunately, the approach of [11] does not in any obvious manner

extend to A(1)
n for all n, and this paper aims to give a more complete answer.

By using a level-m Rogers�Selberg identity for the root system Cn as recently

obtained by Bartlett and Warnaar [19], we show that the Rogers�Ramanujan

and Andrews�Gordon identities are special cases of a doubly-in�nite family

of q-identities arising from the Kac�Moody algebra A(2)
2n for arbitrary n. In

their most compact form, the �sum-sides� are expressed in terms of Hall�

Littlewood polynomials Pλ(x; q) evaluated at in�nite geometric progressions

(see Section 3.1 for de�nitions and further details), and the �product-sides�

are essentially products of modular theta functions. We shall present four

pairs (a, b) such that for all m,n ≥ 1 we have an identity of the form∑
λ

λ1≤m

qa|λ|P2λ(1, q, q
2, . . . ; q2n+b) = �In�nite product modular function� .

To make this precise, we �x notation for integer partitions, nonincreasing

sequences of nonnegative integers with at most �nitely many nonzero terms.

For a partition λ = (λ1, λ2, . . . ), we let |λ| := λ1 + λ2 + · · · , and we let

2λ := (2λ1, 2λ2, . . . ). We also require λ′, the conjugate of λ, the partition

which is obtained by transposing the Ferrers�Young diagram of λ. Finally,

for convenience we let

θ(a1, . . . , ak; q) := θ(a1; q) · · · θ(ak; q). (1.7)
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Example 1.1. If λ = (5, 3, 3, 1), then we have that |λ| = 12, 2λ = (10, 6, 6, 2)

and λ′ = (4, 3, 3, 1, 1).

Using this notation, we have the following pair of doubly-in�nite Rogers�

Ramanujan type identities which correspond to specialized characters of A(2)
2n .

Theorem 1.2 (A(2)
2n RR and AG identities). If m and n are positive integers

and κ := 2m+ 2n+ 1, then we have that∑
λ

λ1≤m

q|λ|P2λ

(
1, q,q2, . . . ; q2n−1

)
(1.8a)

=
(qκ; qκ)n∞

(q)n∞
·
n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j−1; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j+1; qκ

)
,

and

∑
λ

λ1≤m

q2|λ|P2λ

(
1, q,q2, . . . ; q2n−1

)
(1.8b)

=
(qκ; qκ)n∞

(q)n∞
·
n∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j; qκ

)
.

Four remarks.

(1) When m = n = 1, Theorem 1.2 gives the Rogers�Ramanujan identi-

ties (1.2) and (1.3). The summation de�ning the series is over the empty

partition, λ = 0, and partitions consisting of n copies of 1, i.e., λ = (1n).

Since

q(σ+1)|(1n)|P(2n)(1, q, q
2, . . . ; q) =

qn(n+σ)

(1− q) · · · (1− qn)
,
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identities (1.2) and (1.3) thus follow from Theorem 1.2 by letting σ = 0, 1.

(2) When n = 1, Theorem 1.2 gives the i = 1 and the i = m+ 1 instances of

the Andrews�Gordon identities in a representation due to Stembridge [278]

(see also Fulman [128]). The equivalence with (1.6) follows from the special-

ization formula [219, p. 213]

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; q) =

∏
i≥1

qri(ri+σ)

(q)ri−ri+1

,

where ri := λ′i. Note that λ1 ≤ m implies that λ′i = ri = 0 for i > m.

(3) We note the beautiful level-rank duality exhibited by the products on

the right-hand sides of the expressions in Theorem 1.2 (especially those of

(1.8b)).

(4) In the next section we shall show that the more general series∑
λ

λ1≤m

q(σ+1)|λ|P2λ

(
1, q, q2, . . . ; qn

)
(1.9)

are also expressible in terms of q-shifted factorials, allowing for a formulation

of Theorem 1.2 (see Lemma 3.3) which is independent of Hall�Littlewood

polynomials.

Example 1.3. Here we illustrate Theorem 1.2 when m = n = 2. Then (1.8a)

is ∑
λ

λ1≤2

q|λ|P2λ

(
1, q, q2, . . . ; q3

)
=
∞∏
n=1

(1− q9n)

(1− qn)
,

giving another expression for the q-series in Dyson's favorite identity, as

recalled in his �A walk through Ramanujan's Garden" [112]:

�The end of the war was not in sight. In the evenings of that winter I kept

sane by wandering in Ramanujan's garden. . . . I found a lot of identities of

the sort that Ramanujan would have enjoyed. My favorite one was this one:
∞∑
n=0

xn
2+n · (1 + x+ x2)(1 + x2 + x4) · · · (1 + xn + x2n)

(1− x)(1− x2) · · · (1− x2n+1)
=
∞∏
n=1

(1− x9n)

(1− xn)
.
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In the cold dark evenings, while I was scribbling these beautiful identities

amid the death and destruction of 1944, I felt close to Ramanujan. He had

been scribbling even more beautiful identities amid the death and destruction

of 1917.�

The series in (1.8b) is∑
λ

λ1≤2

q2|λ|P2λ

(
1, q, q2, . . . ; q3

)
=
∞∏
n=1

(1− q9n)(1− q9n−1)(1− q9n−8)

(1− qn)(1− q9n−4)(1− q9n−5)
.

We also have an even modulus analog of Theorem 1.2. Surprisingly, the

a = 1 and a = 2 cases correspond to dual a�ne Lie algebras, namely C(1)
n

and D
(2)
n+1.

Theorem 1.4 (C(1)
n RR and AG identities). If m and n are positive integers

and κ := 2m+ 2n+ 2, then we have that∑
λ

λ1≤m

q|λ|P2λ

(
1,q, q2, . . . ; q2n

)
(1.10)

=
(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1

∞
(q)n+1
∞

·
n∏
i=1

θ
(
qi; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j+1; qκ

)
.

Theorem 1.5 (D(2)
n+1 RR and AG identities). If m and n are positive integers

such that n ≥ 2, and κ := 2m+ 2n, then we have that∑
λ

λ1≤m

q2|λ|P2λ

(
1,q, q2, . . . ; q2n−2

)
(1.11)

=
(qκ; qκ)n∞

(q2; q2)∞(q)n−1
∞
·
∏

1≤i<j≤n

θ
(
qj−i, qi+j−1; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j; qκ

)
.
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Two remarks.

(1) The (m,n) = (1, 2) case of (1.11) is equivalent to Milne's modulus 6

Rogers�Ramanujan identity [238, Theorem 3.26].

(2) If we take m = 1 in (1.10) (with n 7→ n − 1) and (1.11), and apply

formula (3.7) below (with δ = 0), we obtain the i = 1, 2 cases of Bressoud's

even modulus identities [36]∑
r1≥···≥rn≥0

qr
2
1+···+r2

n+ri+···+rn

(q)r1−r2 · · · (q)rn−1−rn(q2; q2)rn
=

(q2n+2; q2n+2)∞
(q)∞

· θ(qi; q2n+2).

(1.12)

By combining (1.8)�(1.11), we obtain an identity of �mixed� type.

Corollary 1.6. If m and n are positive integers and κ := 2m+ n+ 2, then

for σ = 0, 1 we have that∑
λ

λ1≤m

q(σ+1)|λ|P2λ

(
1,q, q2, . . . ; qn

)
(1.13)

=
(qκ; qκ)m∞

(q)m∞
·
m∏
i=1

θ
(
qi−σ+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j−σ+1; qκ

)
.

(1.14)

Identities for A(1)
n−1 also exist, although their formulation is perhaps slightly

less satisfactory. We have the following �limiting� Rogers�Ramanujan type

identities.

Theorem 1.7 (A(1)
n−1 RR and AG identities). If m and n are positive integers

and κ := m+ n, then we have that

lim
r→∞

q−m(r2)P(mr)(1, q, q
2, . . . ; qn) =

(qκ; qκ)n−1
∞

(q)n∞
·
∏

1≤i<j≤n

θ(qj−i; qκ)

=
(qκ; qκ)m−1

∞
(q)m∞

·
∏

1≤i<j≤m

θ(qj−i; qκ).
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Now we turn to the question of whether the new q-series appearing in

these theorems, which arise so simply from the Hall�Littlewood polynomials,

enjoy the same deep algebraic properties as (1.2), (1.3), and the Rogers�

Ramanujan continued fraction. As it turns out they do: their singular values

are algebraic numbers. Moreover, we can characterize those ratios which

simplify to algebraic integral units.

To make this precise, we recall that q = e2πiτ for Im(τ) > 0, and that m

and n are arbitrary positive integers. The auxiliary parameter κ = κ∗(m,n)

in Theorems 1.2, 1.4 and 1.5 is de�ned as follows:

κ =


κ1(m,n) := 2m+ 2n+ 1 for A(2)

2n

κ2(m,n) := 2m+ 2n+ 2 for C(1)
n

κ3(m,n) := 2m+ 2n for D
(2)
n+1.

(1.15)

Remark. The parameter κ has a representation theoretic interpretation aris-

ing from the corresponding a�ne Lie algebra X(r)
N (see Section 3.2). It turns

out that

κ∗(m,n) =
2

r

(
lev(Λ) + h∨

)
,

where lev(Λ) is the level of the corresponding representation, h∨ is the dual

Coxeter number and r is the tier number.

To obtain algebraic values, we require certain normalizations of these

series. The subscripts below correspond to the labelling in the theorems. In

particular, Φ1a and Φ1b appear in Theorem 1.2, Φ2 is in Theorem 1.4, and
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Φ3 is in Theorem 1.5. Using this notation, the series are

Φ1a(m,n; τ) := q
mn(4mn−4m+2n−3)

12κ

∑
λ: λ1≤m

q|λ|P2λ(1, q, q
2, . . . ; q2n−1) (1.16a)

Φ1b(m,n; τ) := q
mn(4mn+2m+2n+3)

12κ

∑
λ: λ1≤m

q2|λ|P2λ(1, q, q
2, . . . ; q2n−1) (1.16b)

Φ2(m,n; τ) := q
m(2n+1)(2mn−m+n−1)

12κ

∑
λ: λ1≤m

q|λ|P2λ(1, q, q
2, . . . ; q2n) (1.16c)

Φ3(m,n; τ) := q
m(2n−1)(2mn+n+1)

12κ

∑
λ: λ1≤m

q2|λ|P2λ(1, q, q
2, . . . ; q2n−2). (1.16d)

Two remarks.

(1) We note that Φ3(m,n; τ) is not well de�ned when n = 1.

(2) We note that the κ∗(m,n) are odd in the A(2)
2n cases, and are even for the

C(1)
n and D

(2)
n+1 cases. This dichotomy will be important when seeking pairs

of Φ∗ whose singular values have ratios that are algebraic integral units.

Our �rst result concerns the algebraicity of these values and their Galois

theoretic properties. We show that these values are in speci�c abelian exten-

sions of imaginary quadratic �elds (see [33,85] for background on the explicit

class �eld theory of imaginary quadratic �elds). For convenience, if −D < 0

is a discriminant, then we de�ne

D0 :=

D
4

if D ≡ 0 (mod 4),

−D−1
4

if −D ≡ 1 (mod 4).

Theorem 1.8. Assume the notation above, and let κ := κ∗(m,n). If κτ is

a CM point with discriminant −D < 0, then the following are true:

1. The singular value Φ∗(m,n; τ) is an algebraic number.

2. The multiset{
Φ∗(m,n, τQ/κ)12κ

(γ·δQ(τ)) : (γ,Q) ∈ Wκ,τ ×QD
}
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(see Section 3.4 for de�nitions) consists of multiple copies of a Galois

orbit over Q.

3. If κ > 10, |−D| > κ4/2, and gcd(D0, κ) = 1, then the multiset in (2)

is a Galois orbit over Q.

Four remarks.

(1) For each pair of positive integers m and n, the inequality in Theorem 1.8

(3) holds for all but �nitely many discriminants.

(2) In Section 3.4 we will show that the values Φ∗(m,n; τ)12κ are in a distin-

guished class �eld over the ring class �eld Q(j(κ2τ)), where j(τ) is the usual

Klein j-function.

(3) The Φ∗ singular values do not in general contain full sets of Galois con-

jugates. In particular, the singular values in the multiset in Theorem 1.8

(2) generally require q-series which are not among the four families Φ∗. For

instance, only the i = 1 and i = m + 1 cases of the Andrews�Gordon iden-

tities arise from specializations of Φ1a and Φ1b respectively. However, the

values associated to the other AG identities arise as Galois conjugates of

these specializations. One then naturally wonders whether there are even

further families of identities, perhaps those which can be uncovered by the

theory of complex multiplication.

(4) Although Theorem 1.8 (3) indicates that the multiset in (2) is generically

a single orbit of Galois conjugates, it turns out that there are indeed situa-

tions where the set is more than a single copy of such an orbit. Indeed, the

two examples in Section 3.6 will be such accidents.

We now address the question of singular values and algebraic integral

units. Although the singular values of q−1/60G(q) and q11/60H(q) are not

generally algebraic integers, their denominators can be determined exactly,
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and their ratios always are algebraic integral units. The series Φ∗ exhibit

similar behavior. The following theorem determines the integrality properties

of the singular values. Moreover, it gives algebraic integral unit ratios in the

case of the A(2)
2n identities, generalizing the case of the Rogers�Ramanujan

continued fraction.

Theorem 1.9. Assume the notation and hypotheses in Theorem 1.8. Then

the following are true:

1. The singular value 1/Φ∗(m,n; τ) is an algebraic integer.

2. The singular value Φ∗(m,n; τ) is a unit over Z[1/κ].

3. The ratio Φ1a(m,n; τ)/Φ1b(m,n; τ) is an algebraic integral unit.

Two remarks.

(1) We have that Φ1a(1, 1; τ) = q−1/60G(q) and Φ1b(1, 1; τ) = q11/60H(q).

Therefore, Theorem 1.15 (3) implies the theorem of Berndt, Chan, and Zhang

that the ratios of these singular values�the singular values of the Rogers�

Ramanujan continued fraction�are algebraic integral units.

(2) It is natural to ask whether Theorem 1.15 (3) is a special property en-

joyed only by the A(2)
2n identities. More precisely, are ratios of singular values

of further pairs of Φ∗ series algebraic integral units? By Theorem 1.15 (2),

it is natural to restrict attention to cases where the κ∗(m,n) integers agree.

Indeed, in these cases the singular values are already integral over the com-

mon ring Z[1/κ]. Due to the parity of the κ∗(m,n), the only other cases to

consider are pairs involving Φ2 and Φ3. In Section 3.6 we give an example

illustrating that such ratios for Φ2 and Φ3 are not generically units.

Example 1.10. In Section 3.6 we shall consider the q-series Φ1a(2, 2; τ) and

Φ1b(2, 2; τ). For τ = i/3, the �rst 100 coe�cients of the q-series respectively
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give the numerical approximations

Φ1a(2, 2; i/3) = 0.577350 · · · ?
=

1√
3

Φ1b(2, 2; i/3) = 0.217095 . . .

Here we have that κ1(2, 2) = 9. Indeed, these values are not algebraic inte-

gers. Respectively, they are roots of

3x2 − 1

19683x18 − 80919x12 − 39366x9 + 11016x6 − 486x3 − 1.

However, Theorem 1.15 (2) applies, and we �nd that
√

3Φ1a(2, 2; i/3) and
√

3Φ1b(2, 2; i/3) are units. Respectively, they are roots of

x− 1

x18 + 6x15 − 93x12 − 304x9 + 420x6 − 102x3 + 1.

Lastly, Theorem 1.15 (3) applies, and so their ratio

Φ1a(2, 2; i/3)

Φ1b(2, 2; i/3)
= 4.60627 . . .

is a unit. Indeed, it is a root of

x18 − 102x15 + 420x12 − 304x9 − 93x6 + 6x3 + 1.

Ramanujan's mock theta functions (Joint work with K. Ono and L.

Rolen)

Ramanujan's collaborations with Hardy were fruitful, but were cut short.

After falling deathly ill, he returned to India in 1919. Near the end of his

life, Ramanujan wrote a �nal letter [25] to Hardy which included a list of

17 enigmatic functions which he referred to mock theta functions. Thanks

to Zwegers [311, 312], it is now known that these functions are essentially
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the holomorphic parts of weight 1/2 harmonic Maass forms (see section

2.1) whose nonholomorphic parts are period integrals of weight 3/2 unary

theta functions. This realization has many applications (e.g. [250,306]).

Here we revisit Ramanujan's original de�nition from his deathbed letter

[25]. After a discussion of the asymptotics of certain modular forms which

are given as Eulerian series, he writes:

�...Suppose there is a function in the Eulerian form and suppose that all

or an in�nity of points q = e2iπm/n are exponential singularities and also

suppose that at these points the asymptotic form of the function closes as

neatly as in the cases of (A) and (B). The question is: - is the function

taken the sum of two functions one of which is an ordinary theta function

and the other a (trivial) function which is O(1) at all the points e2iπm/n?

The answer is it is not necessarily so. When it is not so I call the function

Mock ϑ-function. I have not proved rigorously that it is not necessarily so.

But I have constructed a number of examples in which it is inconceivable to

construct a ϑ-function to cut out the singularities of the original function.�

Remark. By ordinary theta function, Ramanujan meant a meromorphic mod-

ular form with k ∈ 1
2
Z on some Γ1(N) (see [249] for background), whose poles

(if any) are supported at cusps. We refer to such forms as weakly holomorphic

modular forms.

Little attention has been given to Ramanujan's original de�nition, prompt-

ing Berndt to remark [23] that �it has not been proved that any of Ramanu-

jan's mock theta functions are really mock theta functions according to his

de�nition." The following fact �lls in this gap.

Theorem 1.11. Suppose that f(z) = f−(z) + f+(z) is a harmonic Maass

form of weight k ∈ 1
2
Z on Γ1(N), where f−(z) (resp. f+(z)) is the nonholo-

morphic (resp. holomorphic) part of f(z). If f−(z) is nonzero and g(z) is a

weight k weakly holomorphic modular form on any Γ1(N ′), then f+(z)−g(z)
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has exponential singularities as q approaches in�nitely many roots of unity

ζ.

As a corollary, we obtain the following �tting conclusion to Ramanujan's

enigmatic question by proving that his alleged examples indeed satisfy his

original de�nition (Note. Throughout, we let q := e2πiz). More precisely, we

prove the following.

Corollary 1.12. Suppose that M(z) is one of Ramanujan's mock theta func-

tions, and let γ and δ be integers for which qγM(δz) is the holomorphic part

of a weight 1/2 harmonic Maass form. Then there does not exist a weakly

holomorphic modular form g(z) of any weight k ∈ 1
2
Z on any congruence

subgroup Γ1(N ′) such that for every root of unity ζ we have

lim
q→ζ

(qγM(δz)− g(z)) = O(1).

Remark. The limits in Corollary 4.1 are radial limits taken from within the

unit disk.

Example 1.13. Although a weakly holomorphic modular and a mock theta

function cannot cut out each other's singularities, Ramanujan discusses a

near miss. He considers his mock theta function

f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . . , (1.17)

and he compares it to a q-series b(q) which is essentially a weight 1/2 weakly

holomorphic modular form. He then conjectures, as q approaches an even

order 2k primitive root of unity ζ, that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= O(1).

Watson con�rmed this in [294], and Folsom, Ono, and Rhoades went further

by deriving formulas for the O(1) numbers as explicit numbers in Z[ζ].
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Weierstrass mock modular forms (Joint work C. Alfes, K. Ono, and L.

Rolen)

The theory of mock modular forms provides the underlying theoretical

framework for Ramanujan's enigmatic mock theta functions [31,44,309,311].

Here we consider mock modular forms and the arithmetic of elliptic curves.

There is a canonical weight 0 harmonic Maass form which arises from

the analytic realization of an elliptic curve E/Q. This was �rst observed by

Guerzhoy [151, 152]. To de�ne it we recall that E ∼= C/ΛE, where ΛE is a

2-dimensional lattice in C. The parameterization of E is given by z 7→ Pz =

(℘(ΛE; z), ℘′(ΛE; z)), where

℘(ΛE; z) :=
1

z2
+

∑
w∈ΛE\{0}

(
1

(z− w)2
− 1

w2

)
is the usual Weierstrass ℘-function for ΛE. Here E is given by the Weierstrass

equation

E : y2 = 4x3 − 60G4(ΛE)x− 140G6(ΛE),

where G2k(ΛE) :=
∑

w∈ΛE\{0}w
−2k is the classical weight 2k Eisenstein series.

The canonical harmonic Maass form arises from the Weierstrass zeta-function

ζ(ΛE; z) :=
1

z
+

∑
w∈ΛE\{0}

(
1

z− w
+

1

w
+

z

w2

)
=

1

z
−
∞∑
k=1

G2k+2(ΛE)z2k+1.

(1.18)

This function already plays important roles in the theory of elliptic curves.

The �rst role follows from the well-known �addition law�

ζ(ΛE; z1 + z2) = ζ(ΛE; z1) + ζ(ΛE; z2) +
1

2

℘′(ΛE; z1)− ℘′(ΛE; z2)

℘(ΛE; z1)− ℘(ΛE; z2)
, (1.19)

which can be interpreted in terms of the �group law� of E.

To obtain the canonical forms from ζ(ΛE; z), we make use of the modu-

larity of elliptic curves over Q, which gives the modular parameterization

φE : X0(NE)→ C/ΛE
∼= E,
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where NE is the conductor of E. For convenience, we suppose throughout

that E is a strong Weil curve. Let FE(z) =
∑∞

n=1 aE(n)qn ∈ S2(Γ0(NE)) be

the associated newform, and let EE(z) be its Eichler integral

EE(z) := −2πi

∫ i∞

z

FE(τ)dτ =
∞∑
n=1

aE(n)

n
· qn. (1.20)

Using an observation of Eisenstein, we de�ne the function Z+
E (z) by

Z+
E (z) := ζ(ΛE; z)− S(ΛE)z, (1.21)

where

S(ΛE) := lim
s→0+

∑
w∈ΛE\{0}

1

w2|w|2s
. (1.22)

We de�ne the nonholomorphic function ZE(z) by

ZE(z) := Z+
E (z)− deg(φE)

4π||FE||2
· z, (1.23)

where ||FE|| is the Petersson norm of FE. Finally, we de�ne the nonholomor-

phic function ẐE(z) on H by the specialization of this function at z = EE(z)

given by

ẐE(z) = Ẑ+
E(z) + Ẑ−E(z) := ZE(EE(z)). (1.24)

In particular, the holomorphic part of ẐE(z) is Ẑ+
E(z) = Z+

E (EE(z)).

Theorem 1.14. Assume the notation and hypotheses above. The following

are true:

(1) The poles of Ẑ+
E(z) are precisely those points z for which EE(z) ∈ ΛE.

(2) If Ẑ+
E(z) has poles in H, then there is a canonical modular functionME(z)

with algebraic coe�cients on Γ0(NE) for which Ẑ+
E(z)−ME(z) is holomorphic

on H.

(3) We have that ẐE(z) − ME(z) is a weight 0 harmonic Maass form on

Γ0(NE). In particular, Ẑ+
E(z) is a weight 0 mock modular form.
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Remark. Guerzhoy [152] has used such harmonic Maass forms in his work

on the Kaneko-Zagier hypergeometric di�erential equation, and in [151] he

studies their p-adic properties.

Remark. We refer to Ẑ+
E(z) as theWeierstrass mock modular form for E. It is

a simple task to compute this mock modular form. Using the two Eisenstein

numbers G4(ΛE) and G6(ΛE), one then computes the remaining Eisenstein

numbers using the recursion

G2n(ΛE) :=
n−2∑
j=2

3(2j − 1)(2n− 2j − 1)

(2n+ 1)(2n− 1)(n− 3)
·G2j(ΛE)G2n−2j(ΛE).

Armed with the Fourier expansion of FE(z) and S(ΛE), one then simply

applies (1.20)-(1.24).

Remark. The number deg(φE), which appears in (1.23), gives information

about modular form congruences. The congruence number for E is the largest

integer, say rE, with the property that there is a g ∈ S2(Γ0(NE)) ∩ Z[[q]],

which is orthogonal to FE with respect to the Petersson inner product, which

also satis�es FE ≡ g (mod rE). A theorem of Ribet asserts that deg(φE) | rE
(see Theorem 2.2 of [2]).

Many applications require the explicit Fourier expansions of harmonic

Maass forms at cusps. The following theorem gives such expansions for the

forms ẐE(z) in Theorem 1.14 at certain cusps. These expansions follow from

the fact that these forms transform nicely under Γ∗0(NE), the extension of

Γ0(NE) by the Atkin-Lehner involutions. For each positive integer q|NE we

have a determinant qα matrix

Wq :=

(
qαa b

NEc qαd

)
, (1.25)

where qα||NE. By Atkin-Lehner Theory, there is a λq ∈ {±1} for which

FE|2Wq = λqFE. The following result uses these involutions to give the
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Fourier expansions of ẐE(z) at cusps. When the level N is squarefree, the

next theorem gives the expansion at all cusps of Γ0(N), which can be explic-

itly computed using (1.19).

Theorem 1.15. If q|NE, then

ẐE(z)|0Wq = Z+
E (λq(EE(z)− Ωq(FE)))− deg(φE)

4π||FE||2
· λq(EE(z)− Ωq(FE)),

where we have

Ωq(FE) := −2πi

∫ i∞

W−1
q i∞

FE(z)dz.

Remark. In particular, we have ΩNE(FE) = L(FE, 1). By the modular param-

eterization, we have that ℘(ΛE; EE(z)) is a modular function on Γ0(NE). We

then have for each q|NE that Ωq(FE) ∈ rΛE, where r is a rational number.

This can be seen by considering the constant term of ℘(ΛE; EE(z)) at cusps.

The constant term of ℘(ΛE; EE(z)) is ℘(ΛE; Ωq(FE)) (see Section 5.1.2 for

more details). More generally, if NE is square free, then Ωq(FE) maps to a

rational torsion point of E.

As these facts illustrate, the harmonic Maass form ẐE(z) and the mock

modular form Ẑ+
E(z) encode the degree of the modular parameterization φE,

which in turns gives information about the congruence number rE, and it

encodes information about Q-rational torsion.
By the work of Bruinier, Ono, and Rhoades [50] and Candelori [61], the

coe�cients of Ẑ+
E(z) are Q-rational when E has complex multiplication. For

example, consider the elliptic curve E : y2 + y = x3 − 38x+ 90 of conductor

361 with CM in the �eld K = Q(
√
−19). We �nd

FE(z) = q − 2q4 − q5 + 3q7 − 3q9 − 5q11 + 4q16 − 7q17 + . . .

and

ζ(ΛE; EE(z)) = q−1+
1

2
q2− 7

3
q3+

12

5
q5+4q6− 6

7
q7− 27

4
q8− 13

3
q9+

17

2
q10+. . . .
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As an illustration of this Q-rationality, we �nd that S(ΛE) = −2, which in

turns gives

Ẑ+
E(z) = q−1+2q+

1

2
q2− 7

3
q3−q4+2q5+4q6− 27

4
q8−5q9+

17

2
q10+14q11−. . . .

This power series enjoys some deep p-adic properties with respect to Hecke

operators. For example, it turns out that

lim
n→+∞

[
q d
dq
ζ(ΛE; EE(z))

]
|T (5n)

aE(5n)
= −2FE(z)

as a 5-adic limit. To illustrate this phenomenon we o�er:[
q d
dq
ζ(ΛE; EE(z))

]
|T (5)

aE(5)
+ 2FE(z) = 5q−5 − 20q − 85q2 − 430q3 − . . . ≡ 0 (mod 5)

[
q d
dq
ζ(ΛE; EE(z))

]
|T (52)

aE(52)
+ 2FE(z) = 25

4
q−25 − 9525

4
q − 2031975q2 − . . . ≡ 0 (mod 52)

[
q d
dq
ζ(ΛE; EE(z))

]
|T (53)

aE(53)
+ 2FE(z) = −125

9
q−125 − 89698470642375q + . . . ≡ 0 (mod 53) .

Our next result explains this phenomenon. There are such p-adic formulas

for every E provided that p - NE has the property that p - aE(p) (i.e. p is

ordinary). In analogy with recent work of Guerzhoy, Kent, and Ono [153],

we obtain the following formulas.

Theorem 1.16. If p - NE is ordinary, then there is a constant SE(p) for

which

lim
n→+∞

[
q d
dq
ζ(ΛE; EE(z))

]
|T (pn)

aE(pn)
= SE(p)FE(z).

Remark. If E has CM in Theorem 1.16, then SE(p) = S(ΛE) as rational

numbers. In other cases S(ΛE) is expected to be transcendental, and one

can interpret SE(p) as its p-adic expansion.
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The harmonic Maass forms ẐE(z) also encode much information about

Hasse-Weil L-functions. The seminal works by Birch and Swinnerton-Dyer

[26,27] give an indication of this role in the case of CM elliptic curves. They

obtained beautiful formulas for L(E, 1), for certain CM elliptic curves, as

�nite sums of numbers involving special values of ζ(ΛE, s). Such formulas

have been generalized by many authors for CM elliptic curves (for example,

see the famous papers by Damerell [89, 90]), and these generalizations have

played a central role in the study of the arithmetic of CM elliptic curves.

Here we obtain results which show that the arithmetic of Weierstrass

zeta-functions gives rise to deep information which hold for all elliptic curves

E/Q, not just those with CM. We prove that the canonical harmonic Maass

forms ẐE(z) �encode� the vanishing and nonvanishing of the central values

L(ED, 1) and central derivatives L′(ED, 1) for the quadratic twist elliptic

curves ED of all modular elliptic curves.

The connection between these values and the theory of harmonic Maass

forms was �rst made by Bruinier and Ono [47]. Their work proved that

there are weight 1/2 harmonic Maass forms whose coe�cients give exact

formulas for L(ED, 1), and which also encode the vanishing of L′(ED, 1). For

central L-values their work relied on deep previous results of Shimura and

Waldspurger. In the case of central derivatives, they made use of the theory of

generalized Borcherds products and the Gross-Zagier Theorem. Bruinier [52]

has recently re�ned this work by obtaining exact formulas involving periods

of algebraic di�erentials.

The task of computing these weight 1/2 harmonic Maass forms has been

nontrivial. Natural di�culties arise (see [51]). These weight 1/2 forms are

preimages under ξ1/2 of certain weight 3/2 cusp forms, and as mentioned

earlier, there are in�nitely many such preimages. Secondly, the methods

implemented to date for constructing such forms have relied on the theory

of Poincaré series, forms whose coe�cients are described as in�nite sums of
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Kloosterman sums weighted by Bessel functions. Establishing the conver-

gence of these expressions can already pose di�culties. Moreover, there are

in�nitely many linear relations among Poincaré series.

Here we circumvent these issues. We construct canonical weight 1/2

harmonic Maass forms by making use of the canonical weight 0 harmonic

Maass form ẐE(z). More precisely, we de�ne a twisted theta lift using the

usual Siegel theta function modi�ed by a simple polynomial. This function

was studied by Hövel [166] in his Ph.D. thesis. The twisted lift I∆,r(•; z)

(see Section 5.3) then maps weight 0 harmonic Maass forms to weight 1/2

harmonic Maass forms. Here ∆ is a fundamental discriminant and r is an

integer satisfying r2 ≡ ∆ (mod 4NE). For simplicity, we drop the dependence

on ∆ and r in the introduction. The canonical weight 1/2 harmonic Maass

form we de�ne is

fE(z) := I
(
Ẑ∗E(z)−M∗

E(z); z
)
, (1.26)

where Ẑ∗E(z) andM∗
E(z) denote a suitable normalization of ẐE(z) andME(z)

(see Section 5.4). The normalization originates from the fact that we need

the rationality of the principal part of fE and we need to substract constant

terms from the input. Following (2.1), we let

fE(z) = f+
E (z)+f−E (z) =

∑
n�−∞

c+
E(n)qn+

∑
n<0

c−E(n)Γ

(
1

2
, 4π|n|y

)
qn. (1.27)

Although we treat the general case in this paper (see Theorem 5.13), to

simplify exposition, in the remainder of the introduction we shall assume

that NE = p is prime, and we shall assume that the sign of the functional

equation of L(E, s) is ε(E) = −1. Therefore, we have that L(E, 1) = 0. The

coe�cients of fE then satisfy the following theorem.

Theorem 1.17. Suppose that NE = p is prime and that ε(E) = −1. Then we

have that fE(z) is a weight 1/2 harmonic Maass form on Γ0(4p). Moreover,

the following are true:
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(1) If d < 0 is a fundamental discriminant for which
(
d
p

)
= 1, then

L(Ed, 1) = 0 if and only if c−E(d) = 0.

(2) If d > 0 is a fundamental discriminant for which
(
d
p

)
= 1, then

L′(Ed, 1) = 0 if and only if c+
E(d) is in Q.

Remark. Assume that E is as in Theorem 1.17. By work of Kolyvagin [195]

and Gross and Zagier [149] on the Birch and Swinnerton-Dyer Conjecture,

we then have the following for fundamental discriminants d:

1. If d < 0,
(
d
p

)
= 1, and c−E(d) 6= 0, then the rank of Ed(Q) is 0.

2. If d > 0,
(
d
p

)
= 1, and c+

E(d) is transcendental, then the rank of Ed(Q)

is 1.

Criterion (1) is analogous to Tunnell's [289] work on the Congruent Number

Problem.

Remark. Theorem 1.17 follows from exact formulas. In particular, Theo-

rem 1.17 (1) follows from the exact formula

L(Ed, 1) = 8π2||FE||2 · ||gE||2 ·

√
|d|
p
· c−E(d)2.

Here gE is the weight 3/2 cusp form which is the image of fE(z) under the

di�erential operator ξ 1
2
(see (5.9)). More precisely, we require that ξ1/2(fE) =

||gE||−2gE (resp. ξ1/2(fE) ∈ R · gE). Theorem 1.17 (2) is also related to exact

formulas, ones involving periods of algebraic di�erentials. Recent work by

Bruinier [52] establishes that

c+
E(d) =

<
∫
CFE

ζd(fE)
√
d
∫
CFE

ωFE
,
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where ζd(fE) is the normalized di�erential of the third kind for a certain

divisor associated to fE and ωFE = 2πiFE(z)dz. Here CFE is a generator

of the FE-isotypical component of the �rst homology of X. The interested

reader should consult [52] for further details.

Theorem 1.17 follows from a general result on the theta lift I(•, z) we

de�ne in Section 5.3. Earlier work of Bruinier and Funke [55], Alfes and

Ehlen [6], and more recent work of Alfes [4] and of Bruinier and Ono [57],

consider similar theta lifts which implement the Kudla-Millson theta function

as the kernel function. Those works give lifts which map weight −2k forms

to weight 3/2 + k forms when k is even. For odd k, these lifts map to weight

1/2 − k forms. The new theta lift here makes use of the usual Siegel theta

kernel which is modi�ed with a simple polynomial. Using this weight 1/2

function Hövel [166] de�ned a theta lift going in the direction �opposite� to

ours, i.e. from forms for the symplectic group to forms for the orthogonal

group.

We prove that the lift we consider maps weight 0 forms to weight 1/2

forms. Moreover, it satis�es Hecke equivariant commutative diagrams, in-

volving ξ0, ξ1/2 and the Shintani lift, of the form:

Ẑ∗E(z)−ME(z)

I
��

ξ0 //FE

Shin

��
I(Ẑ∗E(z)−M∗

E(z); τ)
ξ1/2 //R · gE.

Here gE is the weight 3/2 cusp form in Remark 8.

Remark. It turns out that the coe�cients c+
E(n) of fE(τ) are �twisted traces�

of the singular moduli for the weight 0 harmonic Maass form Ẑ∗E(z)−M∗
E(z).

This is Theorem 5.10. This phenomenon is not new. Seminal works by

Zagier [308] and Katok and Sarnak [185], followed by subsequent works by

Bringmann, Bruinier, Duke, Funke, Imamo	glu, Jenkins, Miller, Pixton, and

Tóth [42, 55, 56, 102�105, 237], among many others, give situations where
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Fourier coe�cients are such traces. In particular, we obtain (vector valued

versions of) the generating functions for the twisted traces of the j-invariant

that Zagier called fd, where d is a fundamental discriminant, in [308]. We

explain this in more detail in Example 5.16.

Example 1.18. In Section 5.5 we shall consider the conductor 37 elliptic curve

E : y2 − y = x3 − x.

The sign of the functional equation of L(E, s) is −1, and E(Q) has rank 1.

The table below illustrates Theorem 1.17, and its implications for ranks

of elliptic curves.

d c+(d) L′(Ed, 1) rk(Ed(Q))

1 −0.2817617849 . . . 0.3059997738 . . . 1

12 −0.4885272382 . . . 4.2986147986 . . . 1

21 −0.1727392572 . . . 9.0023868003 . . . 1

28 −0.6781939953 . . . 4.3272602496 . . . 1

33 0.5663023201 . . . 3.6219567911 . . . 1
...

...
...

...

1489 9 0 3
...

...
...

...

4393 66 0 3

For the d in the table we have that the sign of the functional equa-

tion of L(Ed, s) is −1. Therefore, if L′(Ed, 1) 6= 0, then we have that

ords=1(L(Ed, s)) = 1, which then implies that rk(Ed(Q)) = 1 by Kolyva-

gin's Theorem. For such d, Theorem 1.17 asserts that L′(Ed, 1) = 0 if and

only if c+
E(d) ∈ Q. Therefore, for these d the Birch and Swinnerton-Dyer

Conjecture implies that rk(Ed(Q)) ≥ 3 is odd if and only if c+
E(d) ∈ Q. We
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note that for d ∈ {1489, 4393}, we �nd2 that the curves have rank 3.

SU(2)-Donaldson invariants (Joint work with A. Malmendier and K. Ono)

Maass forms have also found deep applications to the study of di�erential

topology. Donaldson invariants of smooth simply connected four-dimensional

manifolds [97] are di�eomorphism class invariants which play a central role

in di�erential topology and mathematical physics. There are two families

of Donaldson invariants, corresponding to the SU(2)-gauge theory and the

SO(3)-gauge theory with non-trivial Stiefel-Whitney class. In each case, the

invariants are graded homogeneous polynomials on the homology H0(CP2)⊕
H2(CP2), where Hi(CP2) is considered to have degree (4−i)/2, de�ned using
the fundamental homology classes of the corresponding moduli spaces of anti-

selfdual instantons arising in gauge theory. These invariants are typically

very di�cult to calculate.

Here we consider the simplest manifold to which Donaldson's de�nition

applies, the complex projective plane CP2 with the Fubini-Study metric. In

earlier work, Göttsche and Zagier [144] gave a formula for the Donaldson

invariants of rational surfaces in terms of theta functions of inde�nite lat-

tices. As an application, Göttsche [141] derived closed expressions for the

two families of the Donaldson invariants of CP2 assuming the truth of the

Kotschick-Morgan conjecture. Recently, Göttsche, Nakajima, Hiraku, and

Yoshioka [143] have unconditionally proved these formulas.

Deep conjectures exist which relate these formulas to constructions in the-

oretical physics. From the viewpoint of theoretical physics [301], these two

families of Donaldson invariants and the related Seiberg-Witten invariants

are the correlation functions of a supersymmetric topological gauge theory

with gauge group SU(2) and SO(3). Witten [300] argued that one should be

2These computations were done using Sage [277] by Bruinier and Strömberg in [51].

Stephan Ehlen obtained the same numbers using our results (also using Sage).
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able to compute these correlation functions in a so called low energy e�ec-

tive �eld theory. This theory has the advantage of being an abelian N = 2

supersymmetric topological gauge theory, and the data required to de�ne

the theory only involves line bundles of even (resp. odd) �rst Chern class

on CP2 if the gauge group is SU(2) (resp. SO(3)). The vacua of the low

energy e�ective �eld theory are parametrized by the u-plane which Seiberg

and Witten [268] describe in terms of the classical modular curve H/Γ0(4),

together with a meromorphic one-form. Finally, Moore and Witten [241]

obtained the correlation functions as regularized integrals over the u-plane,

where the integrands are modular functions which are determined by the

gauge group. These regularized u-plane integrals de�ne a way of extract-

ing certain contributions for each boundary component near the cusps at

τ = 0, 2,∞ of the modular curve, and Moore and Witten observed [241] that

the cuspidal contributions at τ = 0, 2 vanish trivially. This vanishing corre-

sponds to the mathematical statement that the Seiberg-Witten invariants on

CP2 vanish due to the presence of a Fubini-Study metric of positive scalar

curvature [302].

Concerning the contribution from the cusp τ = ∞, Moore and Witten

made the following deep conjecture which relates the u-plane integral to

Donaldson invariants.

Conjecture 1.19 (Moore and Witten [241]). The contribution at τ = ∞ to

the regularized u-plane integral is the generating function for the Donaldson

invariants of CP2.

As evidence for this conjecture, in the case of the gauge group SU(2),

Moore and Witten [241] computed the �rst 40 invariants and found them to

be in agreement with the results of Ellingsrud and Göttsche [115]. In recent

work, Ono and Malmendier [227] proved this conjecture in the SO(3) case.

Here we complete the proof of the conjecture by con�rming the claim for the

gauge group SU(2). We prove the following theorem.
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Theorem 1.20. The conjecture of Moore and Witten in the case of the

SU(2)-gauge theory on CP2 is true.

Moonshine (Joint work with J. F. Duncan and K. Ono)

Our �nal application of the theory of harmonic Maass forms is to the

theory of monstrous moonshine which once again connects the theory of

modular and mock modular forms with representation theory, and in recent

years, with important applications to mathematical physics.

The classi�cation of �nite simple groups [13] distinguishes twenty-six ex-

amples above the others; namely, the sporadic simple groups, which are those

that belong to none of the naturally occurring in�nite families: cyclic groups,

alternating groups, or �nite groups of Lie type. Distinguished amongst the

sporadic simple groups is the Fischer�Griess monster M, on account of its

size, which is

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 (1.28)

(cf. [145]). Note that the margin is not small, for the order of the monster is

25 · 37 · 53 · 74 · 11 · 132 · 29 · 41 · 59 · 71 (1.29)

times that of the next largest sporadic simple group, the baby monster (cf.

[203]).

Fischer and Griess independently produced evidence for the monster

group in 1973 (cf. [145]). Well before it was proven to exist, Tits gave a

lecture on its conjectural properties at the Collège de France in 1975. In

particular, he described its order (1.28). Around this time, Ogg had been

considering the automorphism groups of certain algebraic curves, and had

arrived at the set of primes

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71} (1.30)
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in a purely geometric way (cf. the Corollaire of [248]). Making what may now

be identi�ed as the �rst observation of monstrous moonshine, Ogg o�ered a

bottle of Jack Daniels 3 for an explanation of this coincidence (cf. Remarque

1 of [248]).

Ogg's observation would ultimately be recognized as re�ecting another re-

spect in which the monster is distinguished amongst �nite simple groups: as

demonstrated by the pioneering construction of Frenkel�Lepowsky�Meurman

[125�127], following the astonishing work of Griess [146,147], the �most nat-

ural� representation of the monster, is in�nite-dimensional.

The explanation of this statement takes us back to McKay's famous ob-

servation, that

196884 = 1 + 196883 (1.31)

(cf. [81, 284]), and the generalizations of this observed by Thompson [284],

including

21493760 = 1 + 196883 + 21296876,

864299970 = 2× 1 + 2× 196883 + 21296876 + 842609326,

20245856256 = 3× 1 + 3× 196883 + 21296876 + 2× 842609326 + 18538750076.

(1.32)

Of course the left hand sides of (1.31) and (1.32) are familiar to number

theorists and algebraic geometers, as coe�cients in the Fourier coe�cients

of the normalized elliptic modular invariant

J(τ) :=
1728g2(τ)3

g2(τ)3 − 27g3(τ)2
− 744

= q−1 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + . . .

(1.33)

3We refer the reader to [109] for a recent analysis of the Jack Daniels problem.
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Here q := e2πiτ , and we set g2(τ) := 60G4(τ) and g3(τ) := 140G6(τ), where

G2k(τ) denotes the Eisenstein series of weight 2k,

G2k(τ) :=
∑

(m,n)6=(0,0)

(m+ nτ)−2k, (1.34)

for k ≥ 2. The functions g2 and g3 serve to translate between the two

most common parameterizations of a complex elliptic curve: as a quotient

C/(Z + Zτ) for τ in the upper-half plane, H := {τ ∈ C | =(τ) > 0}, and as

the locus of a Weierstrass equation, y2 = 4x3 − g2x− g3.

The fundamental property of J(τ), from both the number theoretic and

algebro-geometric points of view, is that it is a modular function for SL2(Z).

In fact, and importantly for the monster's natural in�nite-dimensional rep-

resentation, J(τ) is a generator for the �eld of SL2(Z)-invariant holomorphic

functions on H that have at most exponential growth as =(τ)→∞.

The right hand sides of (1.31) and (1.32) are familiar to �nite group

theorists, as simple sums of dimensions of irreducible representations of the

monster M. In fact, the irreducible representations appearing in (1.31) and

(1.32) are just the �rst �ve, of a total of 194, in the character table of M
(cf. [80]), when ordered by size. We have that

χ1(e) = 1

χ2(e) = 196883

χ3(e) = 21296876

χ4(e) = 842609326

χ5(e) = 18538750076

...

χ194(e) = 258823477531055064045234375.

(1.35)

Here e denotes the identity element of M, so χi(e) is just the dimension of

the irreducible representation of M with character χi.
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The coincidences (1.31) and (1.32) led Thompson to make the follow-

ing conjecture [284] which realizes the natural representation of the monster

alluded to above.

Conjecture 1.21 (Thompson). There is a naturally de�ned graded in�nite-

dimensional monster module, denoted V \ =
⊕∞

n=−1 V
\
n , which satis�es

dim(V \
n) = c(n) (1.36)

for n ≥ −1 (Cf. (1.33)), such that the decompositions into irreducible repre-

sentations of the monster satisfy (1.31) and (1.32) for n = 1, 2, 3 and 4 (and

a similar condition for n = 5).

At the time that Thompson's conjecture was made, the monster had

not yet been proven to exist, but Griess [145], and Conway�Norton [81], had

independently conjectured the existence of a faithful representation of dimen-

sion 196883, and Fischer�Livingstone�Thorne had constructed the character

table of M, by assuming the validity of this claim (cf. [81]) together with

conjectural statements (cf. [145]) about the structure of M.

Thompson also suggested [283] to investigate the properties of the graded-

trace functions

Tg(τ) :=
∞∑

n=−1

tr(g|V \
n)qn, (1.37)

for g ∈ M, now called the monstrous McKay�Thompson series, that would

arise from the conjectural monster module V \. Using the character table

constructed by Fischer�Livingstone�Thorne, it was observed [81, 283] that

the functions Tg are in many cases directly similar to J in the following

respect: the �rst few coe�cients of each Tg coincide with those of a generator

for the function �eld of a discrete group4 Γg < SL2(R), commensurable with

4The relevant groups Γg shall be discussed in detail in Section 7.6.1.
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SL2(Z), containing −I, and having width one at in�nity, meaning that the

subgroup of upper-triangular matrices in Γg coincides with

Γ∞ :=

{
±

(
1 n

0 1

)
| n ∈ Z

}
, (1.38)

for all g ∈M.

This observation was re�ned and developed by Conway�Norton [81], lead-

ing to their famous monstrous moonshine conjectures:.

Conjecture 1.22 (Monstrous Moonshine: Conway�Norton). For each g ∈ M
there is a speci�c group Γg < SL2(R) such that Tg is the unique normalized

principal modulus5 for Γg.

This means that each Tg is the unique Γg-invariant holomorphic function on

H which satis�es

Tg(τ) = q−1 +O(q), (1.39)

as =(τ) → ∞, and remains bounded as τ approaches any non-in�nite cusp

of Γg. We refer to this feature of the Tg as the principal modulus property of

monstrous moonshine.

The hypothesis that Tg is Γg-invariant, satisfying (1.39) near the in�nite

cusp of Γg but having no other poles, implies that Tg generates the �eld

of Γg-invariant holomorphic functions on H that have at most exponential

growth at cusps, in direct analogy with J . In particular, the natural Riemann

surface structure on Γg\H (cf. e.g. [272]) must be that of the Riemann sphere

Ĉ = C ∪ {∞} with �nitely many points removed, and for this reason the

groups Γg are said to have genus zero, and the principal modulus property

is often referred to as the genus zero property of monstrous moonshine.

The reader will note the astonishing predictive power that the principal

modulus property of monstrous moonshine bestows: the fact that a normal-

ized principal modulus for a genus zero group Γg is unique, means that we

5A principal modulus is also referred to as a Hauptmodul.
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can compute the trace of an element g ∈M, on any homogeneous subspace of

the monster's natural in�nite-dimensional representation V \, without any in-

formation about the monster, as soon as we can guess correctly the discrete

group Γg. The analysis of Conway�Norton in [81] establishes very strong

guidelines for the determination of Γg, and once Γg has been chosen, the

�theory of replicability� (cf. [3, 81, 245]) allows for e�cient computation of

the coe�cients of the normalized principal modulus Tg, given the knowledge

of just a few of them (cf. [122], or (7.6)).

It was veri�ed by Atkin�Fong�Smith [275], using results of Thompson

[283] (cf. also [261]), that a graded (possibly virtual) in�nite-dimensional

monster module V \, such that the functions Tg of (1.37) are exactly those

predicted by Conway�Norton in [81], exists.

Theorem 1.23 (Atkin�Fong�Smith). There exists a (possibly virtual) graded

M-module V \ =
⊕∞

n=−1 V
\
n such that if Tg is de�ned by (1.37), then Tg is the

Fourier expansion of the unique Γg-invariant holomorphic function on H that

satis�es Tg(τ) = q−1 + O(q) as τ approaches the in�nite cusp, and has no

poles at any non-in�nite cusps of Γg, where Γg is the discrete subgroup of

SL2(R) speci�ed by Conway�Norton in [81].

Thus Thompson's conjecture was con�rmed, albeit indirectly. By this

point in time, Griess, in an astonishing tour de force, had constructed the

monster explicitly, by hand, by realizing it as the automorphism group of a

commutative but non-associative algebra of dimension 196884 [146,147]. (See

also [79, 285].) Inspired by Griess' construction, and by the representation

theory of a�ne Lie algebras, which also involves graded in�nite-dimensional

vector spaces whose graded dimensions enjoy good modular properties (cf.

e.g. [178�180, 184]), Frenkel�Lepowsky�Meurman established Thompson's

conjecture in a strong sense.

Theorem 1.24 (Frenkel�Lepowsky�Meurman). Thompson's Conjecture is
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true. In particular, the moonshine module V \ is constructed in [125,127].

Frenkel�Lepowsky�Meurman generalized the homogeneous realization of

the basic representation of an a�ne Lie algebra ĝ due, independently, to

Frenkel�Kac [124] and Segal [267], in such a way that Leech's lattice Λ [201,

202]�the unique [78] even self-dual positive-de�nite lattice of rank 24 with no

roots�could take on the role played by the root lattice of g in the Lie algebra

case. In particular, their construction came equipped with rich algebraic

structure, furnished by vertex operators, which had appeared �rst in the

physics literature in the late 1960's.

We refer to [124], and also the introduction to [126] for accounts of the

role played by vertex operators in physics (up to 1988) along with a de-

tailed description of their application to the representation theory of a�ne

Lie algebras. The �rst application of vertex operators to a�ne Lie algebra

representations was obtained by Lepowsky�Wilson in [210].

Borcherds described a powerful axiomatic formalism for vertex operators

in [29]. In particular, he introduced the notion of a vertex algebra, which

can be regarded as similar to a commutative associative algebra, except that

multiplications depend upon formal variables zi, and can be singular, in a

certain formal sense, along the canonical divisors {zi = 0}, {zi = zj} (cf.
[32,123]). This lead eventually to Borcherds' proof of monstrous moonshine.

Theorem 1.25 (Borcherds). Let V \ be the moonshine module vertex opera-

tor algebra constructed by Frenkel�Lepowsky�Meurman, whose automorphism

group is M. If Tg is de�ned by (1.37) for g ∈ M, and if Γg is the discrete

subgroup of SL2(R) speci�ed by Conway�Norton in [81], then Tg is the unique

normalized principal modulus for Γg.

For more on vertex operator algebras and the proof of Frenkel�Lepowsky�

Meurman theorem and Borcherd's theorem, see section 7.1.
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Witten was the �rst to predict a role for the monster in quantum gravity.

In [304] Witten considered pure quantum gravity in three dimensions with

negative cosmological constant, and presented evidence that the moonshine

module V \ is a chiral half of the conformal �eld theory dual to such a quan-

tum gravity theory, at the most negative possible value of the cosmological

constant.

To explain some of the content of this statement, note that the action in

pure three-dimensional quantum gravity is given explicitly by

IEG :=
1

16πG

∫
d3x
√
−g(R− 2Λ), (1.40)

where G is the Newton or gravitational constant, R denotes the Ricci scalar,

and the cosmological constant is the scalar denoted by Λ.

The case that the cosmological constant Λ is negative is distinguished,

since then there exist black hole solutions to the action (1.40), as was discov-

ered by Bañados�Teitelboim�Zanelli [18]. These black hole solutions�the

BTZ black holes�are locally isomorphic to three-dimensional anti-de Sitter

space [17], which is a Lorentzian analogue of hyperbolic space, and may be

realized explicitly as the universal cover of a hyperboloid

−X2
−1 −X2

0 +X2
1 +X2

2 +X3
3 = −`2 (1.41)

in R2,3 (cf. e.g. [222]). The parameter ` in (1.41) is called the radius of

curvature. For a locally anti-de Sitter (AdS) solution to (1.40), the radius of

curvature is determined by the cosmological constant, according to

`2 = −1/Λ. (1.42)

In what has become the most cited6 paper in the history of high energy

physics, Maldacena opened the door on a new, and powerful approach to

6Maldacena's groundbreaking paper [223] on the gauge/gravity duality has over 10,000

citations at the time of writing, according to inspirehep.net.
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quantum gravity in [223], by presenting evidence for a gauge/gravity duality,

in which gauge theories serve as duals to gravity theories in one dimension

higher. (See [222] for a recent review.) In the simplest examples, the gauge

theories are conformal �eld theories, and the gravity theories involve locally

AdS spacetimes. The gauge/gravity duality for these cases is now known as

the AdS/CFT correspondence.

Maldacena's duality furnishes a concrete realization of the holographic

principle, introduced by 't Hooft [12], and elaborated on by Susskind [282].

For following re�nements to Maldacena's proposal due to Gubser�Klebanov�

Polyakov [150], and Witten [303], it is expected that gravity theories with

(d + 1)-dimensional locally AdS spacetimes can be understood through the

analysis of d-dimensional conformal �eld theories de�ned on the boundaries

of these AdS spaces. Thus in the case of AdS solutions to three-dimensional

quantum gravity, a governing role may be played by two-dimensional con-

formal theories, which can be accessed mathematically via vertex operator

algebras (as we have mentioned previously).

The conjecture of [304] is that the two-dimensional conformal �eld theory

corresponding to a tensor product of two copies of the moonshine module V \

(one �left-moving,� the other �right-moving�) is the holographic dual to pure

three-dimensional quantum gravity with ` = 16G, and therefore

Λ = − 1

256G2
. (1.43)

It is also argued that the only physically consistent values of ` are ` = 16Gm,

for m a positive integer, so that (1.43) is the most negative possible value for

Λ, by force of (1.42).

Shortly after this conjecture was formulated, problems with the quan-

tum mechanical interpretation were identi�ed by Maloney�Witten in [229].

Moreover, Gaiotto [134] and Höhn [163] cast doubt on the relevance of the

monster to gravity by demonstrating that it cannot act on a holographically
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dual conformal �eld theory corresponding to ` = 32G (i.e. m = 2), at least

under the hypotheses (namely, an extremality condition, and holomorphic

factorization) presented in [304].

Interestingly, the physical problems with the analysis of [304] seem to

disappear in the context of chiral three-dimensional gravity, which was in-

troduced and discussed in detail by Li�Song�Strominger in [215] (cf. also

[228, 279]). This is the gravity theory which motivates much of the discus-

sion in �7 of [110].

In order to de�ne chiral three-dimensional gravity, we �rst describe topo-

logically massive gravity, which was introduced in 1982 by Deser�Jackiw�

Templeton [92, 265]. (See also [91].) The action for topologically massive

gravity is given by

ITMG := IEG + ICSG, (1.44)

where IEG is the Einstein�Hilbert action (cf. (1.40)) of pure quantum gravity,

and ICSG denotes the gravitational Chern�Simons term

ICSG :=
1

32πGµ

∫
d3x
√
−gελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµτΓ

τ
νρ

)
. (1.45)

The Γ∗∗∗ are Christo�el symbols, and the parameter µ is called the Chern�

Simons coupling constant.

Chiral three-dimensional gravity is the special case of topologically mas-

sive gravity in which the Chern�Simons coupling constant is set to µ =

1/` =
√
−Λ. It is shown in [215] that at this special value of µ, the left-

moving central charges of the boundary conformal �eld theories vanish, and

the right-moving central charges are

c =
3`

2G
= 24m, (1.46)

for m a positive integer, ` = 16Gm.
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Much of the analysis of [304] still applies in this setting, and the natural

analogue of the conjecture mentioned above states that V \ is holographically

dual to chiral three-dimensional quantum gravity at ` = 16G, i.e. m =

1. However, as argued in detail in [228], the problem of quantizing chiral

three-dimensional gravity may be regarded as equivalent to the problem of

constructing a sequence of extremal chiral two-dimensional conformal �eld

theories (i.e. vertex operator algebras), one for each central charge c = 24m,

for m a positive integer. Here, a vertex operator algebra V =
⊕

n Vn with

central charge c = 24m is called extremal, if its graded7 dimension function

satis�es ∑
n∈Z

dim(Vn)qn = q−m
1∏

n>1(1− qn)
+O(q). (1.47)

The moonshine module is the natural candidate for m = 1 (indeed, it is

the only candidate if we assume the uniqueness conjecture of [126]), as the

right hand side of (1.47) reduces to q−1 +O(q) in this case, but the analysis

of [134, 163] also applies here, indicating that the monster cannot act non-

trivially on any candidate8 for m = 2. Thus the role of the monster in

quantum gravity is still unclear, even in the more physically promising chiral

gravity setting.

Nonetheless, the moonshine module V \ may still serve as the holographic

dual to chiral three-dimensional quantum gravity at ` = 16G, m = 1. In

this interpretation, the graded dimension, or genus one partition function for

V \�namely, the elliptic modular invariant J�serves as the exact spectrum

of physical states of chiral three-dimensional gravity at µ =
√
−Λ = 1/16G,

in spacetime asymptotic to the three-dimensional anti-de Sitter space (cf.

(1.41)).

7We regard all vertex operator algebras as graded by L(0)− c/24. Cf. (7.1).
8The existence of extremal vertex operator algebras with central charge c = 24m for

m > 1 remains an open question. We refer to [133, 135, 163, 305] for analyses of this

problem.
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Recall that if V is a representation of the Virasoro algebra V (cf. (7.1)),

then v ∈ V is called a Virasoro highest weight vector with highest weight

h ∈ C if L(m)v = hδm,0v whenever m ≥ 0. A Virasoro descendant is a vector

of the form

L(m1) · · ·L(mk)v, (1.48)

where v is a Virasoro highest weight vector, and m1 ≤ · · · ≤ mk ≤ −1.

Assuming that V \ is dual to chiral three-dimensional gravity atm = 1, the

Virasoro highest weight vectors in V \ de�ne operators that create black holes,

and the Virasoro descendants of a highest weight vector describe black holes

embellished by boundary excitations. In particular, the 196883-dimensional

representation of the monster which is contained in the 196884-dimensional

homogenous subspace V \
1 < V \ (cf. (1.31) and (1.36)), represents an 196883-

dimensional space of black hole states in the chiral gravity theory.

More generally, the black hole states in the theory are classi�ed, by the

monster, into 194 di�erent kinds, according to which monster irreducible

representation they belong to.

Question 1.26. Assuming that the moonshine module V \ serves as the holo-

graphic dual to chiral three-dimensional quantum gravity at m = 1, how

are the 194 di�erent kinds of black hole states distributed amongst the ho-

mogeneous subspaces V \
n < V \. Are some kinds of black holes more or less

common than others?

This question will be answered precisely by Corollary 1.28. Monstrous

moonshine implies that the McKay�Thompson series can be written as

Tg(τ) = q−1 +
∞∑
n=1

194∑
i=1

mi(n)χi(g)qn,

where the χi range over the 194 irreducible characters for the monster. In

section 7.6, we �nd exact formulas for the multiplicities mi(n), which lead

to the following asymptotics.
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Theorem 1.27. If 1 ≤ i ≤ 194, then as n→ +∞ we have

mi(n) ∼ dim(χi)|m|1/4√
2|n|3/4|M|

· e4π
√
|mn|

These asymptotics immediately imply that the following limits are well-

de�ned

δ (mi) := lim
n→+∞

mi(n)∑194
i=1 mi(n)

(1.49)

Corollary 1.28. In particular, we have that

δ (mi) =
dim(χi)∑194
j=1 dim(χj)

=
dim(χi)

5844076785304502808013602136
.

Remark. Theorem 1.27 and Corollary 1.28 are the m = 1 cases of Theorem

7.10 and Corollary 7.11 respectively.

We illustrate these asymptotics explicitly, for χ1, χ2, and χ194 in Table

1.1. The precise values given in the bottom row of Table 1.1 admit the

following decimal approximations:

δ (m1) =
1

5844076785304502808013602136
≈ 1.711 . . .× 10−28

δ (m2) =
196883

5844076785304502808013602136
≈ 3.368 . . .× 10−23

δ (m194) =
258823477531055064045234375

5844076785304502808013602136
≈ 4.428 . . .× 10−2

(1.50)

Umbral Moonshine (Joint work with J. F. Duncan and K. Ono)

In 2010, Eguchi, Ooguri, and Tachikawa reignited moonshine with their

observation [114] that dimensions of some representations ofM24, the largest

sporadic simple Mathieu group (cf. e.g. [80, 83]), are multiplicities of su-

perconformal algebra characters in the K3 elliptic genus. This observation
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Table 1.1
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suggested a manifestation of moonshine forM24: Namely, there should be an

in�nite-dimensional graded M24-module whose McKay-Thompson series are

holomorphic parts of harmonic Maass forms, or mock modular forms.

Following the work of Cheng [70], Eguchi and Hikami [113], and Gab-

erdiel, Hohenegger, and Volpato [132,217], Gannon established the existence

of this in�nite-dimensional graded M24-module in [136].

It is natural to seek a general mathematical and physical setting for these

results. Here we consider the mathematical setting, which develops from the

close relationship between the monster group M and the Leech lattice Λ24.

Recall (cf. e.g. [83]) that the Leech lattice is even, unimodular, and positive-

de�nite of rank 24. It turns out that M24 is closely related to another such

lattice. Such observations led Cheng, Duncan and Harvey to further instances

of moonshine within the setting of even unimodular positive-de�nite lattices

of rank 24. In this way they arrived at the Umbral Moonshine Conjectures

(cf. �5 of [75], �6 of [68], and �2 of [69]), predicting the existence of 22

further, graded in�nite-dimensional modules, relating certain �nite groups

to distinguished mock modular forms.

To explain this prediction in more detail we recall Niemeier's result [244]

that there are 24 (up to isomorphism) even unimodular positive-de�nite lat-

tices of rank 24. The Leech lattice is the unique one with no root vectors

(i.e. lattice vectors with norm-square 2), while the other 23 have root sys-

tems with full rank, 24. These Niemeier root systems are unions of simple

simply-laced root systems with the same Coxeter numbers, and are given

explicitly as

A24
1 , A

12
2 , A

8
3, A

6
4, A

4
6, A

2
12,

A4
5D4, A

2
7D

2
5, A

3
8, A

2
9D6, A11D7E6, A15D9, A17E7, A24,

D6
4, D

4
6, D

3
8, D10E

2
7 , D

2
12, D16E8, D24, E

4
6 , E

3
8 ,

(1.51)

in terms of the standard ADE notation. (Cf. e.g. [83] or [167] for more on
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root systems.)

For each Niemeier root system X let NX denote the corresponding uni-

modular lattice, letWX denote the (normal) subgroup of Aut(NX) generated

by re�ections in roots, and de�ne the umbral group of X by setting

GX := Aut(NX)/WX . (1.52)

(See �A.2.1 for explicit descriptions of the groups GX .)

LetmX denote the Coxeter number of any simple component ofX. An as-

sociation of distinguished 2mX-vector-valued mock modular forms HX
g (τ) =

(HX
g,r(τ))�called umbral McKay-Thompson series�to elements g ∈ GX is

described and analyzed in [68,69,75].

For X = A24
1 we have GX 'M24 and mX = 2, and the functions HX

g,1(τ)

are precisely the mock modular forms assigned to elements g ∈ M24 in the

works [70, 113, 132, 217] mentioned above. Generalizing the M24 moonshine

initiated by Eguchi, Ooguri and Tachikawa, we have the following conjecture

of Cheng, Duncan and Harvey (cf. �2 of [69] or �9.3 of [106]).

Conjecture 1.29 (Umbral Moonshine Modules). Let X be a Niemeier root

system X and set m := mX . There is a naturally de�ned bi-graded in�nite-

dimensional GX-module

ǨX =
⊕
r∈IX

⊕
D∈Z, D≤0,

D=r2(mod 4m)

ǨX
r,−D/4m (1.53)

such that the vector-valued mock modular form HX
g = (HX

g,r) is related
9 to

9In the statement of Conjecture 6.1 of [68] the function HX
g,r in (1.54) is replaced

with 3HX
g,r in the case that X = A3

8. This is now known to be an error, arising from

a misspeci�cation of some of the functions HX
g for X = A3

8. Our treatment of the case

X = A3
8 in this work re�ects the corrected speci�cation of the corresponding HX

g which is

described and discussed in detail in [69].
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the graded trace of g on ǨX by

HX
g,r(τ) = −2q−1/4mδr,1 +

∑
D∈Z, D≤0,

D=r2(mod 4m)

tr(g|ǨX
r,−D/4m)q−D/4m (1.54)

for r ∈ IX .

In (1.53) and (1.54) the set IX ⊂ Z/2mZ is de�ned in the following way.

If X has an A-type component then IX := {1, 2, 3, . . . ,m− 1}. If X has no

A-type component but does have a D-type component then m = 2 mod 4,

and IX := {1, 3, 5, . . . ,m/2}. The remaining cases are X = E4
6 and X = E3

8 .

In the former of these, IX := {1, 4, 5}, and in the latter case IX := {1, 7}.
The functions HX

g (τ) are described explicitly in �A.3.4.

Here we prove the following theorem.

Theorem 1.30. The umbral moonshine modules exist.

Two remarks.

1) Theorem 1.30 for X = A24
1 is the main result of Gannon's work [136].

2) The vector-valued mock modular forms HX = (HX
g,r) have �minimal"

principal parts. This minimality is analogous to the fact that the original

McKay-Thompson series Tg(τ) for the Monster are hauptmoduln, and plays

an important role in our proof.

Example 1.31. Many of Ramanujan's mock theta functions [258] are com-

ponents of the vector-valued umbral McKay-Thompson series HX
g = (HX

g,r).

For example, consider the root system X = A12
2 , whose umbral group is a

double cover 2.M12 of the sporadic simple Mathieu group M12. In terms of
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Ramanujan's 3rd order mock theta functions

f(q) = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

φ(q) = 1 +
∞∑
n=1

qn
2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

χ(q) = 1 +
∞∑
n=1

qn
2

(1− q + q2)(1− q2 + q4) · · · (1− qn + q2n)

ω(q) =
∞∑
n=0

q2n(n+1)

(1− q)2(1− q3)2 · · · (1− q2n+1)2
,

ρ(q) =
∞∑
n=0

q2n(n+1)

(1 + q + q2)(1 + q3 + q6) · · · (1 + q2n+1 + q4n+2)
,

we have that

HX
2B,1(τ) = HX

2C,1(τ) = HX
4C,1(τ) = −2q−

1
12 · f(q2),

HX
6C,1(τ) = HX

6D,1(τ) = −2q−
1
12 · χ(q2),

HX
8C,1(τ) = HX

8D,1(τ) = −2q−
1
12 · φ(−q2),

HX
2B,2(τ) = −HX

2C,2(τ) = −4q
2
3 · ω(−q),

HX
6C,2(τ) = −HX

6D,2(τ) = 2q
2
3 · ρ(−q).

See �5.4 of [68] for more coincidences between umbral McKay-Thompson

series and mock theta functions identi�ed by Ramanujan almost a hundred

years ago.

Our proof of Theorem 1.30 involves the explicit determination of eachGX-

module ǨX by computing the multiplicity of each irreducible component for

each homogeneous subspace. It guarantees the existence and uniqueness of a

ǨX which is compatible with the representation theory of GX and the Fourier

expansions of the vector-valued mock modular forms HX
g (τ) = (HX

g,r(τ)).

At �rst glance our methods do not appear to shed light on any deeper

algebraic properties of the ǨX , such as might correspond to the vertex op-

erator algebra structure on V \, or the monster Lie algebra introduced by
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Borcherds in [30]. However, we do determine, and utilize, speci�c recursion

relations for the coe�cients of the umbral McKay-Thompson series which are

analogous to the replicability properties of monstrous moonshine formulated

by Conway and Norton in �8 of [81] (cf. also [3]). More speci�cally, we use

recent work [168] of Imamo§lu, Raum and Richter, as generalized [235] by

Mertens, to obtain such recursions. These results are based on the process

of holomorphic projection.

Theorem 1.32. For each g ∈ GX and 0 < r < m, the McKay-Thompson

series HX
g,r(τ) is replicable in the mock modular sense.

A key step in Borcherds' proof [30] of the monstrous moonshine conjecture

is the reformulation of replicability in Lie theoretic terms. We may speculate

that the mock modular replicability utilized in this work will ultimately admit

an analogous algebraic interpretation. Such a result remains an important

goal for future work.

In the statement of Theorem 1.32, replicable means that there are explicit

recursion relations for the coe�cients of the vector-valued mock modular form

in question. For example, we recall the recurrence formula for Ramanujan's

third order mock theta function f(q) =
∑∞

n=0 cf (n)qn that was obtained

recently by Imamo§lu, Raum and Richter [168]. If n ∈ Q, then let

σ1(n) :=


∑

d|n d if n ∈ Z,

0 otherwise,

sgn+(n) :=

sgn(n) if n 6= 0,

1 if n = 0,

and then de�ne

d(N, Ñ, t, t̃) := sgn+(N) · sgn+(Ñ) ·
(
|N + t| − |Ñ + t̃|

)
.
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Then for positive integers n, we have that∑
m∈Z

3m2+m≤2n

(
m+

1

6

)
cf

(
n− 3

2
m2 − 1

2
m

)

=
4

3
σ(n)− 16

3
σ
(n

2

)
− 2

∑
a,b∈Z
2n=ab

d

(
N, Ñ,

1

6
,
1

6

)
,

where N := 1
6
(−3a+b−1) and Ñ := 1

6
(3a+b−1), and the sum is over integers

a, b for which N, Ñ ∈ Z. This is easily seen to be a recurrence relation for the
coe�cients cf (n). The replicability formulas for all of the HX

g,r(τ) are similar

(although some of these relations are slightly more complicated and involve

the coe�cients of weight 2 cusp forms).

It is important to emphasize that, despite the progress which is repre-

sented by our main results, Theorems 1.30 and 1.32, the following important

question remains open in general.

Question 1.33. Is there a �natural" construction of ǨX? Is ǨX equipped

with a deeper algebra structure as in the case of the monster module V \ of

Frenkel, Lepowsky and Meurman?

We remark that this question has been answered positively, recently, in

one special case: A vertex operator algebra structure underlying the umbral

moonshine module ǨX for X = E3
8 has been described explicitly in [107].

See also [74,108], where the problem of constructing algebraic structures that

illuminate the umbral moonshine observations is addressed from a di�erent

point of view.

The proof of Theorem 1.30 is not di�cult. It is essentially a collection

of tedious calculations. We use the theory of mock modular forms and the

character table for each GX (cf. �A.2.2) to solve for the multiplicities of the

irreducible GX-module constituents of each homogeneous subspace in the

alleged GX-module ǨX . To prove Theorem 1.30 it su�ces to prove that
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these multiplicities are non-negative integers. To prove Theorem 1.32 we

apply recent work [235] of Mertens on the holomorphic projection of weight
1
2
mock modular forms, which generalizes earlier work [168] of Imamo§lu,

Raum and Richter.

In �1.24 we recall the facts about mock modular forms that we require,

and we prove Theorem 1.32. We prove Theorem 1.30 in �8.2. The appendices

furnish all the data that our method requires. In particular, the umbral

groups GX are described in detail in �A.2, and the umbral McKay-Thompson

series HX
g (τ) are given explicitly in �A.3.
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Chapter 2

Background

2.1 Harmonic Maass forms

We begin by brie�y recalling the de�nition of a harmonic Maass form of

weight k ∈ 1
2
Z and multiplier ν (a generalization of the notion of a Neben-

typus). If τ = x + iy with x and y real, we de�ne the weight k hyperbolic

Laplacian by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
, (2.1)

and if γ =

(
a b

c d

)
∈ SL2(Z), de�ne

(γ : τ) := (cτ + d).

Suppose Γ is a subgroup of �nite index in SL2(Z) and 3
2
≤ k ∈ 1

2
Z. Then a

real analytic function F (τ) is a harmonic Maass form of weight k on Γ with

multiplier ν if:

(a) The function F (τ) satis�es the modular transformation with respect to

the weight k slash operation,

F (τ)|kγ := (γ : τ)−kF (γτ) = ν(γ)F (τ)
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for every matrix γ ∈ Γ, where if k ∈ Z + 1
2
, the square root is taken to

be the principal branch. In particular, if ν is trivial, then F is invariant

under the action of the slash operator.

(b) We have that ∆kF (τ) = 0,

(c) The singularities of F (if any) are supported at the cusps of Γ, and for

each cusp ρ there is a polynomial PF,ρ(q−1) ∈ C[q−1/tρ ] and a constant

c > 0 such that F (τ) − PF,ρ(e−2πiτ ) = O(e−cy) as τ → ρ from inside

a fundamental domain. Here tρ is the width of the cusp ρ. If ρ is not

speci�ed, we assume ρ =∞.

Remark. The polynomial PF,ρ above is referred to as the principal part of F

at ρ. In certain applications, condition (c) of the de�nition may be relaxed

to admit larger classes of harmonic Maass forms. However, for our purposes

we will only be interested in those satisfying the given de�nition, having a

holomorphic principal part.

We denote the complex vector space of such functions by Hk(Γ, ν), and

note that in order for Hk(Γ, ν) to be nonzero, ν must satisfy

(γ : δτ)k(δ : τ)kν(γ)ν(δ) = (γδ : τ)kν(γδ)

for every γ, δ ∈ Γ.

Let S(Γ) denote some �xed complete set of inequivalent representatives

of the cusps of Γ. For each representative ρ = α
γ
with (α, γ) = 1, �x a matrix

Lρ =

(
−δ β

γ −α

)
∈ SL2(Z)

so that ρ = L−1
ρ ∞. Following Rankin [259], let tρ be the cusp width and let

κρ be the cusp parameter, de�ned as the least nonnegative integer so that

ν(LρT
tρL−1

ρ ) = e2πiκρ , where T :=

(
1 1

0 1

)
. The stabilizer of ρ in Γ is given
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by Γρ := 〈±T tρ〉 , so for example Γ∞ = 〈±T 〉. Given F (τ) ∈ H2−k(Γ, ν), we

refer to Fρ(τ) := F (τ)|2−kLρ as the expansion of F at the cusp ρ. We note

that this expansion depends on the choice of Lρ. These facts imply that the

expansion of Fρ can be given as a Fourier series of the form

Fρ(τ) =
∑
n

a(n, y)e2πix(n+κρ)/tρ .

More precisely, we have the following. The Fourier expansion of harmonic

Maass forms F at a cusp ρ (see Proposition 3.2 of [54]) splits into two com-

ponents. As before, we let q := e2πiτ .

Lemma 2.1. If F (τ) is a harmonic Maass form of weight 2− k for Γ where
3
2
≤ k ∈ 1

2
Z, and if ρ is a cusp of Γ, then

Fρ(τ) = F+
ρ (τ) + F−ρ (τ)

where F+
ρ is the holomorphic part of Fρ, given by

F+
ρ (τ) :=

∑
n�−∞

c+
F,ρ(n)q(n+κρ)/tρ ,

and F−ρ is the nonholomorphic part, given by

F−ρ (τ) +
∑
n<0

c−Fρ(n)Γ(k − 1, 4πy|(n+ κρ)/tρ|)q(n+κρ)/tρ .

The holomorphic part of a harmonic Maass form is referred to as a mock

modular form. By inspection, we see that weakly holomorphic modular forms

are themselves harmonic Maass forms. In fact, under the given de�nition,

all harmonic Maass forms of positive weight are weakly holomorphic.

The ξ-operator is a di�erential operator on harmonic Maass forms which

is useful for understanding the nonholomorphic part. It is de�ned as ξk :=

2iyk · ∂
∂z
.

Zagier calls the image under ξ of f the shadow of f , and we note that the

shadow is nonzero if and only if f has a nonzero non-holomorphic part. We
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further note that for our de�nition of a harmonic Maass form, the shadow is

always a cusp form of weight 2− k.
Suppose F (τ) is a harmonic Maass form of weight 2− k as in Lemma 2.1

with shadow h(τ) := ξ2−kF (τ). Then if ρ is a cusp, we have that

F−ρ (τ) =

∫ i∞

−τ
hρ(z)(−i(τ + z))k−2dz. (2.2)

Bruinier and Funke used the ξ operator to de�ne a bilinear pairing {·, ·} :

Mk ×H2−k → C by

{g, f} := (g, ξ2−kf)k , (2.3)

where (·, ·)k is the regularized Petersson scalar product. Proposition (3.5)

of [53] gives this pairing in terms of the Fourier coe�cients of g and the

holomorphic part of f . In particular, suppose at a cusp h, g has an expansion∑
n a(h, n)qn and f has an expansion with holomorphic part

∑
n b(h, n)qn.

They then show that

{g, f} =
∑
h

∑
n≤0

a(−n)b(n). (2.4)

The �rst sum here is over the components of a vector-valued form. In

their notation, all Maass forms are level 1, and higher level forms may be

viewed as level 1 vector-valued forms if we sum over the cusps.

This pairing is important to us primarily because of the following obser-

vation: {ξkf, f} 6= 0. This follows from the properties of the Peterson scalar

product. However, since ξkf is a cusp form, (2.4) gives us the following

theorem:

Theorem 2.2 (Bruinier, Funke). If f(z) is a harmonic weak Maass form

with a nonzero non-holomorphic part, then f must have a non-zero principal

part at at least one cusp.
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2.2 Maass-Poincaré series

The Maass�Poincaré series de�ne a basis for a space of harmonic Maass forms

and provide exact formulae for their coe�cients. The following construction

of the Maass�Poincaré series follows the method and notation of Bringmann

and Ono [45] which builds on the early work of Rademacher, followed by

more contemporary work of Fay, Niebur, among many others [117,242,243].

The Poincaré series we construct in this section are modular for congruence

subgroups Γ0(N).

For s ∈ C, w ∈ R \ {0}, and k ≥ 3/2, k ∈ 1
2
Z, let

Ms(w) := |y|
k
2
−1Msign(w)(1−k/2),s− 1

2
(|w|), (2.5)

where Mν,µ(z) is the M -Whittaker function which is a solution to the di�er-

ential equation
∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0,

and (here and throughout this paper) τ = x+ iy. Using this function, let

φs(τ) :=Ms(4πy)e2πix. (2.6)

Given a positive integer m and a cusp ρ, Maass�Poincaré series provide

a form with principal part equal to q(−m+κρ)/tρ plus a constant at the cusp ρ,

and constant at all other cusps, thereby forming a basis for H2−k(Γ, ν).

Suppose m > 0 and L ∈ SL2(Z) with ρ = L−1∞. Then we have the

Maass�Poincaré series

PL(τ,m,Γ, 2− k, s, ν) :=
∑

M∈Γρ\Γ

φs

(
−m+κρ

tρ
· L−1Mτ

)
(L−1 : Mτ)2−k(M : τ)2−kν(M)

. (2.7)

It is easy to check that φs(τ) is an eigenfunction of ∆2−k with eigenvalue

s(1− s) +
k2 − 2k

4
.
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The right hand side of (2.7) converges absolutely for <(s) > 1, however

Bringmann and Ono establish conditional convergence when s ≥ 3/4 [45],

giving Theorem 2.3 below. The theorem is stated for the speci�c case Γ =

Γ0(N) for some N and k ≥ 3/2, in which case we modify the notation slightly

and de�ne

PL(τ,m,N, 2− k, ν) :=
1

Γ(k)
PL(τ,m,Γ0(N), 2− k, k

2
, ν) (2.8)

In the statement of the theorem below, Kc is a modi�ed Kloosterman sum

given by

Kc(2− k, L, ν,m, n) :=

∑
0≤a<ctρ

a≡− c·(α,N)
αγ (mod N

(γ,N))
ad≡1(mod c)

(S : τ)2−k exp

(
2πi

(
a· (−m+κρ)

tρ
+d· (n+κ∞)

t∞
c

))
(L−1 : LSτ)2−k(LS : τ)2−kν(LS)

, (2.9)

where S =

(
a b

c d

)
∈ SL2(Z). If ν is trivial, we omit it from the notation.

We also have that δL,S(m) is an indicator function for the cusps ρ = L−1∞
and µ = S−1∞ given by

δL,S(m) :=

ν(M)−1e
2πir

−m+κρ
tρ if M = LT rS−1 ∈ Γ0(N),

0 if µ 6∼ ρ in Γ0(N).

Using this notation, we have the following theorem which gives exact formulae

for the coe�cients and principal part of PL(τ,m,N, 2 − k, ν), which is a

generalization of Theorem 3.2 of [45].

Theorem 2.3. Suppose that 3
2
≤ k ∈ 1

2
Z, and suppose ρ = L−1∞ is a

cusp of Γ0(N). If m is a positive integer, then PL(τ,m,N, 2 − k, ν) is in

H2−k(Γ0(N), ν). Moreover, the following are true:
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1. We have

P+
L (τ,m,N, 2− k, ν) = δρ,I(m) · q−m+κ∞ +

∑
n≥0

a+(n)qn.

Moreover, if n > 0, then a+(n) is given by

− ik2π
∣∣∣∣ −m+ κρ
tρ(n+ κ∞)

∣∣∣∣ k−1
2 ∑

c>0
(c,N)=(γ,N)

Kc(2− k, L, ν,−m,n)

c
·

Ik−1

(
4π

c

√
|−m+ κρ| |n+ κ∞|

tρ

)
,

where Ik is the usual I-Bessel function.

2. If S ∈ SL2(Z), then there is some c ∈ C so that the principal part of

PL(τ,m,N, 2− k) at the cusp µ = S−1∞ is given by

δL,S(m)q
−m+κρ
tρ + c

Sketch of the proof. Writing ρ = α
γ
, Bringmann and Ono prove this theorem

for the case that γ | N and (α,N) = 1, along with the assumption that µ

and ρ are in a �xed complete set of inequivalent cusps, so that δµ,ρ = 1 or 0.

This general form is useful to us particularly since it works equally well for

the cusps ∞ with L taken to be the identity, and for 0 with L taken to be(
0 −1

1 0

)
.

Here and throughout, we let SN denote any complete set of inequivalent

cusps of Γ0(N), and for each ρ ∈ SN , we �x some Lρ with ρ = L−1
ρ ∞. Rankin

notes [259] (Proof of Theorem 4.1.1(iii)) that given some choice of SN , each
right coset of Γ0(N)\ SL2(Z) is in Γ0(N) · LρT r for some unique ρ ∈ SN .
Moreover, the r in the statement is unique modulo tρ, so the function δL,S(m)

given above is well-de�ned on all matrices in SLq(Z).
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In the proof given by Bringmann and Ono, the sum of Kloosterman sums∑
c>0

(c,N)=(γ,N)

Kc(2− k, L, ν,−m,n)

c
. . . is written as a sum over representatives

of the double coset Γρ\L−1Γ0(N)/Γ∞ (omitting the identity if present). Fol-

lowing similar arguments, but without the assumptions on α and γ, we �nd

the indices of summation given in (2.9) and Theorem 2.3. As in their case,

we �nd that the principal part of PLρ(τ,m,N, 2− k) at a cusp µ is constant

if µ 6∼ ρ and is δLρ,Lµq
−m
tρ + c for some constant if µ = ρ. Therefore, if µ is a

cusp with Lµ = M−1LρT
r for some M ∈ Γ0(N, ), then the principal part of

PLρ(τ,m,N, 2− k, ν) at µ is clearly ν(M)−1e
2πir−m+κ

tρ q
−m+κρ
tρ + c.

Since harmonic Maass forms with a nonholomorphic part have a non-

constant principal part at some cusp, we have the following theorem.

Theorem 2.4. [45, Theorem 1.1] Assuming the notation above, if 3
2
≤ k ∈

1
2
Z, and F (τ) ∈ H2−k(Γ0(N), ν) has principal part

Pρ(τ) =
∑
m≥0

aρ(−m)q
−m+κρ
tρ

for each cusp ρ ∈ SN , then

F (τ) =
∑
ρ∈SN∑

m>0

aρ(−m)Pρ(τ,m,N, 2− k, ν) + g(τ),

where g(τ) is a holomorphic modular form. Moreover, we have that c = 0

whenever k > 2, and is a constant when k = 2.

2.3 Holomorphic projection

The theory of holomorphic projections provides a way to explicitly relate

the coe�cients of harmonic Maass forms and other nonholomorphic modular



59

forms to classical modular or quasimodular forms1. For instance, given a

weight 1/2 harmonic Maass form, we may multiply by its shadow to obtain a

weight 2 nonholomorphic modular form with simple transformation proper-

ties. The holomorphic projection provides a simple explicit correction term

to convert this nonholomorphic modular form into a weight 2 quasimodular

form with the same transformation properties. In this way, we may essen-

tially reduce many questions about the coe�cients of weight 1
2
mock modular

forms to questions about weight 2 holomorphic modular forms.

Although holomorphic projections may be applied more generally, we will

restrict our attention in this section to weight 1/2 Harmonic Maass forms

multiplied by weight 3/2 theta series. The following theorem is a special

case of a more general theorem due to Mertens (cf. Theorem 6.3 of [235]).

Theorem 2.5 (Mertens). Suppose g(τ) and h(τ) are both theta functions

of weight 3
2
contained in S 3

2
(Γ, νg) and S 3

2
(Γ, νh) respectively, with Fourier

expansions

g(τ) : =
s∑
i=1

∑
n∈Z

nχi(n)qn
2

,

h(τ) :=
t∑

j=1

∑
n∈Z

nψj(n)qn
2

,

where each χi and ψi is a Dirichlet character. Moreover, suppose h(τ) is the

shadow of a weight 1
2
harmonic Maass form f(τ) ∈ H 1

2
(Γ, νh). De�ne the

function

Df,g(τ) := 2
∞∑
r=1

∑
χi,ψj

∑
m,n∈Z+

m2−n2=r

χi(m)ψj(n)(m− n)qr.

If f(τ)g(τ) has no singularity at any cusp, then f+(τ)g(τ) + Df,g(τ) is a

weight 2 quasimodular form. In other words, it lies in the space CE2(τ) ⊕
M2(Γ, νgνh).

1By quasimodular forms here, we mean spaces of the form CE2(τ)⊕M2(Γ, ν).
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Two Remarks.

1) These identities give recurrence relations for the weight 1
2
mock modular

form f+ in terms of the weight 2 quasimodular form which equals f+(τ)g(τ)+

Df,g(τ). The example after Theorem 1.32 for Ramanujan's third order mock

theta function f is an explicit example of such a relation.

2) Theorem 2.5 extends to vector-valued mock modular forms in the natural

way by acting on components.
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Chapter 3

Rogers�Ramanujan identities

3.1 The Hall�Littlewood polynomials

Let λ = (λ1, λ2, . . . ) be an integer partition [9], a nonincreasing sequence of

nonnegative integers λ1 ≥ λ2 ≥ . . . with only �nitely nonzero terms. The

positive λi are called the parts of λ, and the number of parts, denoted l(λ),

is the length of λ. The size |λ| of λ is the sum of its parts. The Ferrers�

Young diagram of λ consists of l(λ) left-aligned rows of squares such that

the ith row contains λi squares. For example, the Ferrers�Young diagram of

ν = (6, 4, 4, 2) of length 4 and size 16 is

The conjugate partition λ′ corresponds to the transpose of the Ferrers�Young

diagram of λ. For example, we have ν ′ = (4, 4, 3, 3, 1, 1). We de�ne nonneg-

ative integers mi = mi(λ), for i ≥ 1, to be the multiplicities of parts of size

i, so that |λ| =
∑

i imi. It is easy to see that mi = λ′i − λ′i+1. We say that

a partition is even if its parts are all even. Note that λ′ is even if all multi-

plicities mi(λ) are even. The partition ν above is an even partition. Given
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two partitions λ, µ we write µ ⊆ λ if the diagram of µ is contained in the

diagram of λ, or, equivalently, if µi ≤ λi for all i. To conclude our discussion

of partitions, we de�ne the generalized q-shifted factorial

bλ(q) :=
∏
i≥1

(q)mi =
∏
i≥1

(q)λ′i−λ′i+1
. (3.1)

Hence, for ν as above we have bν(q) = (q)2
1(q)2.

For a �xed positive integer n, let x = (x1, . . . , xn). Given a partition λ

such that l(λ) ≤ n, write xλ for the monomial xλ1
1 . . . xλnn , and de�ne

vλ(q) =
n∏
i=0

(q)mi
(1− q)mi

, (3.2)

where m0 := n− l(λ). The Hall�Littlewood polynomial Pλ(x; q) is de�ned as

the symmetric function [219]

Pλ(x; q) =
1

vλ(q)

∑
w∈Sn

w

(
xλ
∏
i<j

xi − qxj
xi − xj

)
, (3.3)

where the symmetric group Sn acts on x by permuting the xi. It follows from

the de�nition that Pλ(x; q) is a homogeneous polynomial of degree |λ|, a fact
used repeatedly in the rest of this paper. Pλ(x; q) is de�ned to be identically

0 if l(λ) > n. The Hall�Littlewood polynomials may be extended in the

usual way to symmetric functions in countably-many variables, see [219].

Here we make this precise when x is specialized to an in�nite geometric

progression. For x = (x1, x2, . . . ) not necessarily �nite, let pr be the r-th

power sum symmetric function

pr(x) = xr1 + xr2 + · · · ,

and pλ =
∏

i≥1 pλi . The power sums {pλ(x1, . . . , xn)}l(λ)≤n form a Q-basis of
the ring of symmetric functions in n variables. If φq denotes the ring homo-

morphism φq(pr) = pr/(1−qr), then themodi�ed Hall�Littlewood polynomials
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P ′λ(x; q) are de�ned as the image of the Pλ(x; q) under φq:

P ′λ = φq
(
Pλ
)
.

We note that as stated, this homomorphism is well de�ned only if n

is at least the degree of Pλ (i.e. |λ|). Otherwise nontrivial relations exist

among products of the pr(x) with degree greater than n. However if n ≥
|λ|, then Pλ can be expressed uniquely as terms of the pr. Moreover this

expression is otherwise independent of n. Therefore for the purposes of this

homomorphism, we identify Pλ with this expansion.

We also require the Hall�Littlewood polynomials Qλ and Q′λ de�ned by

Qλ(x; q) := bλ(q)Pλ(x; q) and Q′λ(x; q) := bλ(q)P
′
λ(x; q). (3.4)

Clearly, Q′λ = φq
(
Qλ

)
.

Up to the point where the x-variables are specialized, our proof of The-

orems 1.2�1.5 will make use of the modi�ed Hall�Littlewood polynomials,

rather than the ordinary Hall�Littlewood polynomials. Through specializa-

tion, we arrive at Pλ evaluated at a geometric progression thanks to

Pλ(1, q, q
2, . . . ; qn) = P ′λ(1, q, . . . , q

n−1; qn), (3.5)

which readily follows from

φqn
(
pr(1, q, . . . , q

n−1)
)

=
1− qnr

1− qr
· 1

1− qnr
= pr(1, q, q

2, . . . ).

Example 3.1. Let λ = (2). If we take n = 1, then Pλ(x; q) = x2
1, whereas if

n = 2, then Pλ(x; q) = x2
1 + (1− q) · x1x2 + x2

2, from which we can �nd

Pλ(x; q) =
1− q

2
p1(x)2 +

(
1− 1− q

2

)
p2(x).

In order to �nd Pλ(1, q, q
2, . . . ; q) we replace p1(x) in the expression above

with 1
1−q , and p2(x) with 1

1−q2 to get

Pλ(1, q, q
2, . . . ; q) =

1− q
2

1

(1− q)2
+

(
1− 1− q

2

)
1

1− q2
=

1

1− q
.
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Example 3.2. Let λ = (2, 2). The table below gives values of Pλ(1, q, q2, . . . qn−1; q)

for various choices of n.

n Pλ(1, q, q
2, . . . qn−1; q)

2 q2

3 q2 + q3 + q4

4 q2 + q3 + 2q4 + q5 + q6

5 q2 + q3 + 2q4 + 2q5 + 2q6 + q7 + q8.

The limiting value Pλ(1, q, q2, . . . ; q) can be found exactly as described above.

We �nd that

Pλ(x; q) =
2− 3q + q3

24
p1(x)4+

q − q3

4
p2(x)p1(x)2 +

2 + q + q3

8
p2(x)2

− 1− q3

3
p3(x)p1(x)− q + q3

4
p4(x),

which implies

Pλ(1, q, q
2, . . . ; q) =

q2

(1− q)(1− q2)
.

From [187,293] we may infer the following combinatorial formula for the

modi�ed Hall�Littlewood polynomials:

Q′λ(x; q) =
∑ λ1∏

i=1

n∏
a=1

x
µ

(a−1)
i −µ(a)

i
a q(

µ
(a−1)
i

−µ(a)
i

2 )
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
q

,

where the sum is over partitions 0 = µ(n) ⊆ · · · ⊆ µ(1) ⊆ µ(0) = λ′ and

[
n

m

]
q

=


(q)n

(q)m(q)n−m
if m ∈ {0, 1, . . . , n}

0 otherwise

is the usual q-binomial coe�cient. Therefore, by (3.1)�(3.5), we have ob-

tained the following combinatorial description of the q-series we have assem-

bled from the Hall�Littlewood polynomials.
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Lemma 3.3. If m and n are positive integers, then∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; qn)

=
∑ 2m∏

i=1

{
q

1
2

(σ+1)µ
(0)
i

(qn; qn)
µ

(0)
i −µ

(0)
i+1

n∏
a=1

qµ
(a)
i +n(µ

(a−1)
i

−µ(a)
i

2 )
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
qn

}
, (3.6)

where the sum on the right is over partitions 0 = µ(n) ⊆ · · · ⊆ µ(1) ⊆ µ(0)

such that (µ(0))′ is even and l(µ(0)) ≤ 2m.

Lemma 3.3 may be used to express the sum sides of (1.8)�(1.13) combi-

natorially. Moreover, we have that (3.6) generalizes the sums in (1.2), (1.3),

and (1.6). To see this, we note that the above simpli�es for n = 1 to

∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; q) =

∑ 2m∏
i=1

q
1
2
µi(µi+σ)

(q)µi−µi+1

summed on the right over partitions µ of length at most 2m whose conjugates

are even. Such partitions are characterized by the restriction µ2i = µ2i−1 =: ri

so that we get∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; q) =

∑
r1≥···≥rm≥0

m∏
i=1

qri(ri+σ)

(q)ri−ri+1

in accordance with (1.6).

If instead we consider m = 1 and replace µ(j) by (rj, sj) for j ≥ 0, we �nd

∞∑
r=0

q(σ+1)rP(2r)(1, q, q
2, . . . ; qn)

=
∑ q(σ+1)r0

(qn; qn)r0

n∏
j=1

qrj+sj+n(
rj−1−rj

2 )+n(sj−1−sj
2 )

[
rj−1 − sj
rj−1 − rj

]
qn

[
sj−1

sj

]
qn

=
(qn+4; qn+4)∞

(q)∞
· θ
(
q2−σ; qn+4

)
,
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where the second sum is over r0, s0, . . . , rn−1, sn−1 such that r0 = s0, and

rn = sn := 0.

We conclude this section with a remark about Theorem 1.7. Due to the

occurrence of the limit, the left-hand side does not take the form of the

usual sum-side of a Rogers�Ramanujan-type identity. For special cases it is,

however, possible to eliminate the limit. For example, for partitions of the

form (2r) we found that

P(2r)(1, q, q
2, . . . ; q2n+δ) =

∑
r≥r1≥···≥rn≥0

qr
2−r+r2

1+···+r2
n+r1+···+rn

(q)r−r1(q)r1−r2 · · · (q)rn−1−rn(q2−δ; q2−δ)rn

(3.7)

for δ = 0, 1. This turns the m = 2 case of Theorem 1.7 into

∑
r1≥···≥rn≥0

qr
2
1+···+r2

n+r1+···+rn

(q)r1−r2 · · · (q)rn−1−rn(q2−δ; q2−δ)rn
=

(q2n+2+δ; q2n+2+δ)∞
(q)∞

·θ(q; q2n+2+δ).

For δ = 1 this is the i = 1 case of the Andrews�Gordon identity (1.6) (with

m replaced by n). For δ = 0 it corresponds to the i = 1 case of (1.12). We

do not know how to generalize (3.7) to arbitrary rectangular shapes.

3.2 Proof of Theorems 1.2�1.5

Here we prove Theorems 1.2�1.5. We begin by recalling key aspects of the

classical works of Andrews and Watson which give hints of the generalizations

we obtain.

3.2.1 The Watson�Andrews approach

In 1929 Watson proved the Rogers�Ramanujan identities (1.2) and (1.3) by

�rst proving a new basic hypergeometric series transformation between a

terminating balanced 4φ3 series and a terminating very-well-poised 8φ7 series
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[295]

(aq, aq/bc)N
(aq/b, aq/c)N

N∑
r=0

(b, c, aq/de, q−N)r
(q, aq/d, aq/e, bcq−N/a)r

qr

=
N∑
r=0

1− aq2r

1− a
· (a, b, c, d, e, q−N)r

(q, aq/b, aq/c, aq/d, aq/e)r
·
(
a2qN+2

bcde

)r
. (3.8)

Here a, b, c, d, e are indeterminates, N is a nonnegative integer and

(a1, . . . , am)k := (a1, . . . , qm; q) = (a1; q)k · · · (am; q)k.

By letting b, c, d, e tend to in�nity and taking the nonterminating limit N →
∞, Watson arrived at what is known as the Rogers�Selberg identity [264,

269]1
∞∑
r=0

arqr
2

(q)r
=

1

(aq)∞

∞∑
r=0

1− aq2r

1− a
· (a)r

(q)r
· (−1)ra2rq5(r2)+2r. (3.9)

For a = 1 or a = q the sum on the right can be expressed in product-form

by the Jacobi triple-product identity

∞∑
r=−∞

(−1)rxrq(
r
2) = (q)∞ · θ(x; q),

resulting in (1.2) and (1.3).

Almost 50 years after Watson's work, Andrews showed that the Andrews�

Gordon identities (1.6) for i = 1 and i = m+ 1 follow in a similar way from

a multiple series generalization of (3.8) in which the 8φ7 series on the right

is replaced by a terminating very-well-poised 2m+6φ2m+5 series depending on

1Here and elsewhere in the paper we ignore questions of convergence. From an ana-

lytic point of view, the transition from (3.8) to (3.9) requires the use of the dominated

convergence theorem, imposing the restriction |q| < 1 on the Rogers�Selberg identity.

We however choose to view this identity as an identity between formal power series in

q, in line with the combinatorial and representation-theoretic interpretations of Rogers�

Ramanujan-type identities.
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2m + 2 parameters instead of b, c, d, e [8]. Again the key steps are to let all

these parameters tend to in�nity, to take the nonterminating limit, and to

then express the a = 1 or a = q instances of the resulting sum as a product

by the Jacobi triple-product identity.

Recently, Bartlett and Warnaar obtained an analog of Andrews' multiple

series transformation for the Cn root system [19, Theorem 4.2]. Apart from

the variables (x1, . . . , xn)�which play the role of a in (3.8), and are related to

the underlying root system�the Cn Andrews transformation again contains

2m + 2 parameters. Unfortunately, simply following the Andrews�Watson

procedure is no longer su�cient. In [238] Milne already obtained the Cn

analogue of the Rogers�Selberg identity (3.9) (them = 1 case of (3.10) below)

and considered specializations along the lines of Andrews and Watson. Only

for C2 did this result in a Rogers�Ramanujan-type identity: the modulus 6

case of (1.11) mentioned previously.

The �rst two steps towards a proof of (1.8)�(1.13), however, are the same

as those of Watson and Andrews: we let all 2m + 2 parameters in the Cn

Andrews transformation tend to in�nity and take the nonterminating limit.

Then, as shown in [19], the right-hand side can be expressed in terms of

modi�ed Hall�Littlewood polynomials, resulting in the level-m Cn Rogers�

Selberg identity ∑
λ

λ1≤m

q|λ|P ′2λ(x; q) = L(0)
m (x; q), (3.10)

where

L(0)
m (x; q) :=

∑
r∈Zn+

∆C(xqr)

∆C(x)

n∏
i=1

x
2(m+1)ri
i q(m+1)r2

i+n(ri2 )·
n∏

i,j=1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

.

Here we have that

∆C(x) :=
n∏
i=1

(1− x2
i )

∏
1≤i<j≤n

(xi − xj)(xixj − 1)

is the Cn Vandermonde product, and f(xqr) is shorthand for f(x1q
r1 , . . . , xnq

rn).
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Remark. As mentioned previously, (3.10) for m = 1 is Milne's Cn Rogers�

Selberg formula [238, Corollary 2.21].

The strategy for the proofs of Theorems 1.2�1.5 is now simple to describe.

By comparing the left-hand side of (3.10) with that of (1.8)�(1.11), it follows

that we should make the simultaneous substitutions

q 7→ qn, xi 7→ q(n+σ+1)/2−i (1 ≤ i ≤ n). (3.11)

Then, by the homogeneity and symmetry of the (modi�ed) Hall�Littlewood

polynomials and (3.5), we have∑
λ

λ1≤m

q|λ|P ′2λ(x; q) 7−→
∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; qn).

Therefore, we wish to carry out these maneuvers and prove that the

resulting right-hand side can be described as a product of modi�ed theta

functions in the four families in the theorems. The problem we face is that

making the substitutions (3.11) in the right-hand side of (3.10) and then

writing the resulting q-series in product form is very di�cult.

To get around this problem, we take a rather di�erent route and (up to

a small constant) �rst double the rank of the underlying Cn root system and

then take a limit in which products of pairs of x-variables tend to one. To

do so we require another result from [19].

First we extend our earlier de�nition of the q-shifted factorial to

(a)k = (a)∞/(aq
k)∞. (3.12)

Importantly, we note that 1/(q)k = 0 for k a negative integer. Then, for

x = (x1, . . . , xn), p an integer such that 0 ≤ p ≤ n and r ∈ Zn, we have

L(p)
m (x; q) :=

∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

x
2(m+p+1)ri
i q(m+1)r2

i+(n+p)(ri2 )

×
n∏
i=1

n∏
j=p+1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

. (3.13)
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Note that the summand of L(p)
m (x; q) vanishes if one of rp+1, . . . , rn < 0.

The following key lemma will be crucial for our strategy to work.

Lemma 3.4 ( [19, Lemma A.1]). For 1 ≤ p ≤ n− 1,

lim
xp+1→x−1

p

L(p−1)
m (x; q) = L(p)

m (x1, . . . , xp−1, xp+1, . . . , xn; q). (3.14)

This will be the key to the proof of all four generalized Rogers�Ramanujan

identities, although the level of di�culty varies considerably from case to case.

We begin with the simplest proof, that of Theorem 1.4 (i.e.equation (1.10)).

3.2.2 Proof of Theorem 1.4

Here we carry out the strategy described in the previous section by making

use of the Cn and Bn Weyl denominator formulas, and the D
(2)
n+1 Macdonald

identity.

Proof of Theorem 1.4. By iterating (3.14), we have

lim
y1→x−1

1

. . . lim
yn→x−1

n

L(0)
m (x1, y1, . . . , xn, yn) = L(n)

m (x1, . . . , xn).

Hence, after replacing x 7→ (x1, y1, . . . , xn, yn) in (3.10) (which corresponds

to the doubling of the rank mentioned previously) and taking the yi → x−1
i

limit for 1 ≤ i ≤ n, we �nd∑
λ

λ1≤m

q|λ|P ′2λ(x
±; q) =

1

(q)n∞
∏n

i=1 θ(x
2
i ; q)

∏
1≤i<j≤n θ(xi/xj, xixj; q)

×
∑
r∈Zn

∆C(xqr)
n∏
i=1

xκri−i+1
i q

1
2
κr2
i−nri , (3.15)

where κ = 2m + 2n + 2 and f(x±) = f(x1, x
−1
1 , . . . , xn, x

−1
n ). Next we make

the simultaneous substitutions

q 7→ q2n, xi 7→ qn−i+1/2 =: x̂i (1 ≤ i ≤ n), (3.16)



71

which corresponds to (3.11) with (n, σ) 7→ (2n, 0). By the identity

(q2n; q2n)n∞ ·
n∏
i=1

θ(q2n−2i+1; q2n) ·
∏

1≤i<j≤n

θ(qj−i, q2n−i−j+1; q2n) =
(q)n+1
∞

(q2; q2)∞
,

and

q2n|λ|P ′2λ(q
n−1/2, q1/2−n, . . . , q1/2, q−1/2; q2n)

= q2n|λ|P ′2λ(q
1/2−n, q3/2−n, . . . , qn−1/2; q2n) by symmetry

= q|λ|P ′2λ(1, q, . . . , q
2n−1; q2n) by homogeneity

= q|λ|P2λ(1, q, q
2, . . . ; q2n) by (3.5),

we obtain ∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n

)
=

(q2; q2)∞
(q)n+1
∞

M, (3.17)

where

M :=
∑
r∈Zn

∆C(x̂q2nr)
n∏
i=1

x̂κri−i+1
i qnr

2
i−2n2ri .

We must expressM in product form. As a �rst step, we use the Cn Weyl

denominator formula [198, Lemma 2]

∆C(x) = det
1≤i,j≤n

(
xj−1
i − x2n−j+1

i

)
, (3.18)

as well as multilinearity, to writeM as

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i qnκr

2−2n2r
(

(x̂iq
2nr)j−1 − (x̂iq

2nr)2n−j+1
))

. (3.19)

We now replace (i, j) 7→ (n − j + 1, n − i + 1) and, viewing the resulting

determinant as being of the form det
(∑

r uij;r −
∑

r vij;r
)
, we change the

summation index r 7→ −r − 1 in the sum over vij;r. Then we �nd that

M = det
1≤i,j≤n

(
qaij

∑
r∈Z

y2nr−i+1
i q2nκ(r2)+ 1

2
κr
(

(yiq
κr)j−1− (yiq

κr)2n−j
))

, (3.20)
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where yi = qκ/2−i and aij = j2−i2 +(i−j)(κ+1)/2. Since the factor qaij does

not contribute to the determinant, we can apply the Bn Weyl denominator

formula [198]

det
1≤i,j≤n

(
xj−1
i −x

2n−j
i

)
=

n∏
i=1

(1−xi)
∏

1≤i<j≤n

(xi−xj)(xixj−1) =: ∆B(x) (3.21)

to obtain

M =
∑
r∈Zn

∆B(yqκr)
n∏
i=1

y2nri−i+1
i q2nκ(ri2 )+ 1

2
κri .

By the D
(2)
n+1 Macdonald identity [218]

∑
r∈Zn

∆B(xqr)
n∏
i=1

x2nri−i+1
i q2n(ri2 )+ 1

2
ri

= (q1/2; q1/2)∞(q)n−1
∞

n∏
i=1

θ(xi; q
1/2)∞

∏
1≤i<j≤n

θ(xi/xj, xixj; q)

with (q, x) 7→ (qκ, y), we obtain

M = (qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

n∏
i=1

θ
(
qi; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
, (3.22)

where we have also used the simple symmetry θ(qa−b; qa) = θ(qb; qa). Substi-

tuting (3.22) into (3.17) proves the �rst equality of (1.10).

Establishing the second equality is a straightforward exercise in manipu-

lating in�nite products, and we omit the details.

There is a somewhat di�erent approach to (1.10) based on the representa-

tion theory of the a�ne Kac�Moody algebra C
(1)
n [183]. Let I = {0, 1, . . . , n},

and αi, α∨i and Λi for i ∈ I the simple roots, simple coroots and fundamen-

tal weights of C
(1)
n . Let 〈·, ·〉 denote the usual pairing between the Cartan

subalgebra h and its dual h∗, so that 〈Λi, α
∨
j 〉 = δij. Finally, let V (Λ) be the



73

integrable highest-weight module of C
(1)
n of highest weight Λ with character

chV (Λ).

The homomorphism

F1 : C[[e−α0 , . . . , e−αn ]]→ C[[q]], F1(e−αi) = q for all i ∈ I (3.23)

is known as principal specialization [204]. Subject to this specialization,

chV (Λ) admits a simple product form as follows. Let ρ be the Weyl vector

(that is 〈ρ, α∨i 〉 = 1 for i ∈ I) and mult(α) the multiplicity of α. Then

[179,205] we have

F1
(
e−Λ chV (Λ)

)
=
∏
α∈∆∨+

(
1− q〈Λ+ρ,α〉

1− q〈ρ,α〉

)mult(α)

, (3.24)

where ∆∨+ is the set of positive coroots. This result, which is valid for all

types X
(r)
N , can be rewritten in terms of theta functions. Assuming C

(1)
n and

setting

Λ = (λ0 − λ1)Λ0 + (λ1 − λ2)Λ1 + · · ·+ (λn−1 − λn)Λn−1 + λnΛn,

for λ = (λ0, λ1, . . . , λn) a partition, this rewriting takes the form

F1
(
e−Λ chV (Λ)

)
=

(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

(q; q)n+1
∞

×
n∏
i=1

θ
(
qλi+n−i+1; qκ/2

) ∏
1≤i<j≤n

θ
(
qλi−λj−i+j, qλi+λj+2n+2−i−j; qκ

)
, (3.25)

where κ = 2n+ 2λ0 + 2.

The earlier product form now arises by recognizing (see e.g., [19, Lemma

2.1]) the right-hand side of (3.15) as

e−mΛ0 chV (mΛ0)

upon the identi�cation

q = e−α0−2α1−···−2αn−1−αn and xi = e−αi−···−αn−1−αn/2 (1 ≤ i ≤ n).
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Since (3.16) corresponds exactly to the principal specialization (3.23), it fol-

lows from (3.25) with λ = (m, 0n), that

F1
(
e−mΛ0 chV (mΛ0)

)
=

(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

(q; q)n+1
∞

×
n∏
i=1

θ
(
qn−i+1; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
.

We should remark that this representation-theoretic approach is not essen-

tially di�erent from our earlier q-series proof. Indeed, the principal specializa-

tion formula (3.25) itself is an immediate consequence of the D
(2)
n+1 Macdonald

identity, and if, instead of the right-hand side of (3.15), we consider the more

general

e−Λ chV (Λ) =
1

(q)n∞
∏n

i=1 θ(x
2
i ; q)

∏
1≤i<j≤n θ(xi/xj, xixj; q)

×
∑
r∈Zn

det
1≤i,j≤n

(
(xiq

ri)j−λi−1 − (xiq
ri)2n−j+λi+1

) n∏
i=1

xκri+λi−i+1
i q

1
2
κr2
i−nri

for κ = 2n + 2λ0 + 2, then all of the steps carried out between (3.15) and

(3.22) carry over to this more general setting. The only notable changes are

that (3.19) generalizes to

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr+λi−i+1
i qnκr

2−2n2r ·
(

(x̂iq
2nr)j−λi−1−(x̂iq

2nr)2n−j+λi+1
))

,

and that in (3.20) we have to rede�ne yi as qκ/2−λn−i+1−i, and aij as

j2 − i2 + (i− j)(κ+ 1)/2 + (j − 1/2)λn−j+1 − (i− 1/2)λn−i+1.

3.2.3 Proof of Theorem 1.2 (1.8a)

Here we prove (1.8a) by making use of the B
(1)
n Macdonald identity.
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Proof of Theorem 1.2(1.8a). Again we iterate (3.14), but this time the vari-

able xn, remains unpaired:

lim
y1→x−1

1

. . . lim
yn−1→x−1

n−1

L(0)
m (x1, y1, . . . , xn−1, yn−1, xn) = L(n−1)

m (x1, . . . , xn).

Therefore, if we replace x 7→ (x1, y1, . . . , xn−1, yn−1, xn) in (3.10) (changing

the rank from n to 2n− 1) and take the yi → x−1
i limit for 1 ≤ i ≤ n− 1, we

obtain∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, xn; q

)
(3.26)

=
1

(q)n−1
∞ (qx2

n)∞
∏n−1

i=1 (qx±i xn, qx
±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

(
−x

κ
i

xn

)ri
q

1
2
κr2
i−

1
2

(2n−1)ri
(xixn)ri

(qxi/xn)ri
,

where κ = 2m+ 2n+ 1, (ax±i )∞ := (axi)∞(ax−1
i )∞ and

(ax±i x
±
j )∞ := (axixj)∞(ax−1

i xj)∞(axix
−1
j )∞(ax−1

i x−1
j )∞.

Recalling the comment immediately after (3.13), the summand of (3.26) van-

ishes unless rn ≥ 0.

Let x̂ := (−x1, . . . ,−xn−1,−1) and

φr =

1 if r = 0

2 if r = 1, 2, . . . .
(3.27)

Letting xn tend to 1 in (3.26), and using

lim
xn→1

∆C(xqr)

∆C(x)

n∏
i=1

(xixn)ri
(qxi/xn)ri

= φrn
∆B(x̂qr)

∆B(x̂)
,
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we �nd that∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, 1; q

)
=

1

(q)n∞
∏n−1

i=1 (qx±i , qx
±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∞∑

r1,...,rn−1=−∞

∞∑
rn=0

φrn
∆B(x̂qr)

∆B(x̂)

n∏
i=1

x̂κrii q
1
2
κr2
i−

1
2

(2n−1)ri .

It is easily checked that the summand on the right (without the factor φrn)

is invariant under the variable change rn 7→ −rn. Using the elementary

relations

θ(−1; q) = 2(−q)2
∞, (−q)∞(q; q2)∞ = 1, θ(z,−z; q)θ(qz2; q2) = θ(z2),

(3.28)

we can then simplify the above to obtain∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, 1; q

)
(3.29)

=
1

(q)n∞
∏n

i=1 θ(x̂i; q)θ(qx̂
2
i ; q

2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j; q)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2
i−

1
2

(2n−1)ri .

The remainder of the proof is similar to that of (1.10). We make the

simultaneous substitutions

q 7→ q2n−1, xi 7→ qn−i (1 ≤ i ≤ n), (3.30)

so that from here on x̂i := −qn−i. By the identity

(q2n−1; q2n−1)n∞

n∏
i=1

θ(−qn−i; q2n−1)θ(q2n−2i+1; q4n−2)

×
∏

1≤i<j≤n

θ(qj−i, q2n−i−j; q2n−1) = 2(q)n∞
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and (3.5), we �nd that∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
=
M

2(q)n∞
,

where we have that

M :=
∑
r∈Zn

∆B

(
x̂q(2n−1)r

) n∏
i=1

x̂κri−i+1
i q

1
2

(2n−1)κr2
i−

1
2

(2n−1)2ri .

By (3.21) and multilinearity,M can be rewritten in the form

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i q

1
2

(2n−1)κr2− 1
2

(2n−1)2r

×
((
x̂iq

(2n−1)r
)j−1 −

(
x̂iq

(2n−1)r
)2n−j

))
.

Following the same steps that led from (3.19) to (3.20), we obtain

M = det
1≤i,j≤n

(
(−1)i−jqbij

∑
r∈Z

(−1)ry
(2n−1)r−i+1
i q(2n−1)κ(r2)

×
(

(yiq
κr)j−1 − (yiq

κr)2n−j
))

, (3.31)

where

yi = q
1
2

(κ+1)−i and bij := j2 − i2 +
1

2
(i− j)(κ+ 3). (3.32)

Again, the factor (−1)i−jqbij does not contribute, and so (3.21) then gives

M =
∑
r∈Zn

∆B(yiq
κr)

n∏
i=1

(−1)riy
(2n−1)ri−i+1
i q(2n−1)κ(ri2 ).

To complete the proof, we apply the following variant of the B
(1)
n Macdonald
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identity2

∑
r∈Zn

∆B(xqr)
n∏
i=1

(−1)rix
(2n−1)ri−i+1
i q(2n−1)(ri2 )

= 2(q)n∞

n∏
i=1

θ(xi; q)
∏

1≤i<j≤n

θ(xi/xj, xixj; q), (3.33)

with (q, x) 7→ (qκ, y).

Identity (1.8a) can be understood representation-theoretically, but this

time the relevant Kac�Moody algebra is A(2)
2n . According to [19, Lemma 2.3]

the right-hand side of (3.29), with x̂ interpreted as

x̂i = e−α0−···−αn−i (1 ≤ i ≤ n)

and q as

q = e−2α0−···−2αn−1−αn , (3.34)

is the A(2)
2n character

e−mΛn chV (mΛn).

The substitution (3.30) corresponds to

e−α0 7→ −1 and e−αi 7→ q (1 ≤ i ≤ n). (3.35)

Denoting this by F , we have the general specialization formula

F
(
e−Λ chV (Λ)

)
=

(qκ; qκ)n∞
(q)n∞

n∏
i=1

θ
(
qλ0−λi+i; qκ

) ∏
1≤i<j≤n

θ
(
qλi−λj−i+j, qλi+λj−i−j+2n+1; qκ

)
,

(3.36)

2The actual B
(1)
n Macdonald identity has the restriction |r| ≡ 0 (mod 2) in the sum over

r ∈ Zn, which eliminates the factor 2 on the right. To prove the form used here it su�ces

to take the a1, . . . , a2n−1 → 0 and a2n → −1 limit in Gustafson's multiple 6ψ6 summation

for the a�ne root system A(2)
2n−1, see [154].
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where κ = 2n+ 2λ0 + 1 and

Λ = 2λnΛ0 + (λn−1 − λn)Λ1 + · · ·+ (λ1 − λ2)Λn−1 + (λ0 − λ1)Λn

for λ = (λ0, λ1, . . . , λn) a partition. If we let λ = (m, 0n) (so that Λ = mΛn),

then this is in accordance with (1.8a).

3.2.4 Proof of Theorem 1.2 (1.8b)

Here we prove the companion result to (1.8a).

Proof of Theorem 1.2 (1.8b). In (3.26) we set xn = q1/2 so that∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, q

1/2; q
)

=
1

(q)n−1
∞ (q2)∞

∏n−1
i=1 (q3/2x±i , qx

±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∞∑

r1,...,rn−1=−∞

∞∑
rn=0

∆C(x̂qr)

∆C(x̂)

n∏
i=1

(−1)rix̂κrii q
1
2
κr2
i−nri ,

where κ = 2m+ 2n+ 1 and x̂ = (x1, . . . , xn−1, q
1/2). The rn-dependent part

of the summand is

(−1)rnqκ(
rn+1

2 )−nrn 1− q2rn+1

1− q

n−1∏
i=1

xiq
ri − qrn+1/2

xi − q1/2
· xiq

rn+ri+1/2 − 1

xiq1/2 − 1
,

which is readily checked to be invariant under the substitution rn 7→ −rn−1.

Hence∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, q

1/2; q
)

=
1

2(q)n∞
∏n−1

i=1 (−1)θ(q1/2xi, x2
i ; q)

∏
1≤i<j≤n−1 θ(xi/xj, xixj; q)

×
∑
r∈Zn

∆C(x̂qr)
n∏
i=1

(−1)rix̂κri−ii q
1
2
κr2
i−nri+

1
2 .
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Our next step is to replace xi 7→ xn−i+1 and ri 7→ rn−i+1. By θ(x; q) =

−xθ(x−1; q) and (3.28), this leads to∑
λ

λ1≤m

q|λ|P ′2λ
(
q1/2, x±2 , . . . , x

±
n ; q
)

(3.37)

=
1

(q)n∞
∏n

i=1 θ(−q1/2x̂i; q)θ(x̂2
i ; q

2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j; q)

×
∑
r∈Zn

∆C(x̂qr)
n∏
i=1

(−1)rix̂κri−i+1
i q

1
2
κr2
i−nri ,

where now x̂ = (q1/2, x2, . . . , xn). Again we are at the point where we can

specialize, letting

q 7→ q2n−1, xi 7→ qn−i+1/2 =: x̂i (1 ≤ i ≤ n). (3.38)

This is consistent, since x1 = q1/2 7→ qn−1/2. By the identity

(q2n−1; q2n−1)n∞

n∏
i=1

θ(−q2n−i; q2n−1)θ(q2n−2i+1; q4n−2)

×
∏

1≤i<j≤n

θ(qj−i, q2n−i−j+1; q2n−1) = 2(q)n∞,

we obtain ∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
=
M

2(q)n∞
,

where

M :=
∑
r∈Zn

∆C(x̂q(2n−1)r)
n∏
i=1

(−1)rix̂κri−i+1
i q

1
2

(2n−1)κr2
i−(2n−1)nri .

ExpressingM in determinantal form using (3.18) yields

M = det
1≤i,j≤n

(∑
r∈Z

(−1)rx̂κr−i+1
i q

1
2

(2n−1)κr2−(2n−1)nr

×
(

(x̂iq
(2n−1)r)j−1 − (x̂iq

(2n−1)r)2n−j+1
))

.
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We now replace (i, j) 7→ (j, i) and, viewing the resulting determinant as of

the form det
(∑

r uij;r −
∑

r vij;r
)
, we change the summation index r 7→ −r

in the sum over uij;r. The expression for M we obtain is exactly (3.31)

except that (−1)i−jqbij is replaced by qcij and yi is given by qn−i+1 instead of

q(κ+1)/2−i. Following the previous proof results in (1.8b).

To interpret (1.8b) in terms of A(2)
2n , we note that by [19, Lemma 2.2] the

right-hand side of (3.37) in which x̂ is interpreted as

x̂i = −q1/2eα0+···+αi−1 (1 ≤ i ≤ n)

(and q again as (3.34)) corresponds to the A(2)
2n character

e−2mΛ0 chV (2mΛ0).

The specialization (3.38) is then again consistent with (3.35). From (3.36)

with λ = (mn+1), the �rst product-form on the right of (1.8b) immediately

follows. By level-rank duality, we can also identify (1.8b) as a specialization

of the A(2)
2m character e−2nΛ0 chV (2nΛ0).

3.2.5 Proof of Theorem 1.5

This proof, which uses the D
(1)
n Macdonald identity, is the most complicated

of the four.

Proof of Theorem 1.5. Once again we iterate (3.14), but now both xn−1 and

xn remain unpaired:

lim
y1→x−1

1

. . . lim
yn−2→x−1

n−2

L(0)
m (x1, y1, . . . , xn−2, yn−2, xn−1, xn)

= L(n−2)
m (x1, . . . , xn).



82

Accordingly, if we replace x 7→ (x1, y1, . . . , xn−2, yn−2, xn−1, xn) in (3.10)

(thereby changing the rank from n to 2n − 2) and take the yi → x−1
i limit,

for 1 ≤ i ≤ n− 2, we obtain∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, xn−1, xn; q

)
=

1

(q)n−2
∞ (qx2

n−1, qxn−1xn, qx2
n)∞

× 1∏n−2
i=1 (qx±2

i , qx±i xn−1, qx
±
i xn)∞

∏
1≤i<j≤n−2(qx±i x

±
j )∞

×
∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

(
xκi

xn−1xn

)ri
q

1
2
κr2
i−(n−1)ri

(xixn−1, xixn)ri
(qxi/xn−1, qxi/xn)ri

,

where κ = 2m + 2n. It is important to note that the summand vanishes

unless rn−1 and rn are both nonnegative. Next we let (xn−1, xn) tend to

(q1/2, 1) using

lim
(xn−1,xn)→(q1/2,1)

∆C(xqr)

∆C(x)

n∏
i=1

(xixn−1, xixn)ri
(qxi/xn−1, qxi/xn)ri

= φrn
∆B(x̂qr)

∆B(x̂)
,

with φr as in (3.27) and x̂ := (−x1, . . . ,−xn−2,−q1/2,−1). Hence we �nd

that∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, q

1/2, 1; q
)

=
1

(q)n−1
∞ (q3/2; q1/2)∞

∏n−2
i=1 (qx±i ; q1/2)∞(qx±2

i )∞
∏

1≤i<j≤n−2(qx±i x
±
j )∞

×
∞∑

r1,...,rn−2=−∞

∞∑
rn−1,rn=0

φrn
∆B(x̂qr)

∆B(x̂)

n∏
i=1

x̂κrii q
1
2
κr2
i−

1
2

(2n−1)ri .

Since the summand (without the factor φrn) is invariant under the variable

change rn 7→ −rn, as well as the change rn−1 7→ −rn−1 − 1, we can rewrite
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this as ∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, q

1/2, 1; q
)

=
1

(q)n−1
∞ (q1/2; q1/2)∞

∏n
i=1 θ(x̂i; q

1/2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2
i−

1
2

(2n−1)ri ,

where, once again, we have used (3.28) to clean up the in�nite products. Be-

fore we can carry out the usual specialization, we need to relabel x1, . . . , xn−2

as x2, . . . , xn−1 and, accordingly, we rede�ne x̂ as

(−q1/2,−x2, . . . ,−xn−1,−1.

For n ≥ 2, we then �nd that∑
λ

λ1≤m

q|λ|P ′2λ
(
q1/2, x±2 , . . . , x

±
n−1, 1; q

)
(3.39)

=
1

(q)n−1
∞ (q1/2; q1/2)∞

∏n
i=1 θ(x̂i; q

1/2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2
i−

1
2

(2n−1)ri .

We are now ready to make the substitutions

q 7→ q2n−2, xi 7→ qn−i (2 ≤ i ≤ n− 1), (3.40)

so that x̂i := −qn−i for 1 ≤ i ≤ n. By the identity

(q2n−2; q2n−2)n−1
∞ (qn−1; qn−1)∞

n∏
i=1

θ(−qn−i; qn−1)

×
∏

1≤i<j≤n

θ(qj−i, q2n−i−j; q2n−2) = 4(q2; q2)∞(q)n−1
∞
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and (3.5), we obtain∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−3

)
=

M
4(q2; q2)∞(q)n−1

∞
,

whereM is given by

M :=
∑
r∈Zn

∆B(x̂q2(n−1)r)
n∏
i=1

x̂κri−i+1
i q(n−1)κr2

i−(n−1)(2n−1)ri .

By the Bn determinant (3.21), we �nd that

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i q(n−1)κr2−(n−1)(2n−1)r ·

((
x̂iq

2(n−1)r
)j−1

−
(
x̂iq

2(n−1)r
)2n−j

))
.

By the same substitutions that transformed (3.19) into (3.20), we obtain

M = det
1≤i,j≤n

(
(−1)i−jqbij

∑
r∈Z

y
2(n−1)r−i+1
i q2(n−1)κ(r2) ·

((
yiq

κr
)j−1

+
(
yiq

κr
)2n−j−1

))
,

where yi and bij are as in (3.32). Recalling the Weyl denominator formula

for Dn [198]

1

2
det

1≤i,j≤n

(
xj−1
i + x2n−j−1

i

)
=

∏
1≤i<j≤n

(xi − xj)(xixj − 1) =: ∆D(x)

we can rewriteM in the form

M = 2
∑
r∈Zn

∆D(xqr)
n∏
i=1

y
2(n−1)ri−i+1
i q2(n−1)κ(ri2 ).

Taking the a1, . . . , a2n−2 → 0, a2n−1 → 1 and a2n → −1 limit in Gustafson's

multiple 6ψ6 summation for the a�ne root system A(2)
2n−1 [154] leads to the
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following variant of the D
(1)
n Macdonald identity3

∑
r∈Zn

∆D(xqr)
n∏
i=1

x
2(n−1)ri−i+1
i q2(n−1)(ri2 ) = 2(q)n∞

∏
1≤i<j≤n

θ(xi/xj, xixj; q).

This implies the claimed product form forM and completes our proof.

Identity (1.11) has a representation-theoretic interpretation. By [19,

Lemma 2.4], the right-hand side of (3.39) in which x̂ is interpreted as

x̂i = e−αi−···−αn (1 ≤ i ≤ n)

and q as

q = e−2α0−···−2αn

yields the D
(2)
n+1 character

e−2mΛ0 chV (2mΛ0).

The specialization (3.40) then corresponds to

e−α0 , e−αn 7→ −1 and e−αi 7→ q (2 ≤ i ≤ n− 1).

Denoting this by F , we have

F
(
e−Λ chV (Λ)

)
=

(qκ; qκ)n∞
(q2; q2)∞(q)n−1

∞

∏
1≤i<j≤n

θ
(
qλi−λj−i+j, qλi+λj−i−j+2n+1; qκ

)
,

where κ = 2n+ 2λ0 and

Λ = 2(λ0 − λ1)Λ0 + (λ1 − λ2)Λ1 + · · ·+ (λn−1 − λn)Λn−1 + 2λnΛn,

for λ = (λ0, λ1, . . . , λn) a partition or half-partition (i.e., all λi ∈ Z + 1/2).

For λ = (m, 0n) this agrees with (1.11).

3As in the B
(1)
n case, the actual D

(1)
n Macdonald identity contains the restriction |r| ≡

0 (mod 2) on the sum over r.
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3.3 Proof of Theorem 1.7

For integers k and m, where 0 ≤ k ≤ m, we denote the the nearly-rectangular

partition (m, . . . ,m︸ ︷︷ ︸
r times

, k) as (mr, k). Using these partitions, we have the follow-

ing �limiting� Rogers�Ramanujan-type identities, which imply Theorem 1.7

when k = 0 or k = m.

Theorem 3.5 (A(1)
n−1 RR and AG identities). If m and n are positive integers

and 0 ≤ k ≤ m, then we have

lim
r→∞

q−m(r2)−krQ(mr,k)(1, q, q
2, . . . ; qn)

=
(qn; qn)∞(qκ; qκ)n−1

∞
(q)n∞

·
n−1∏
i=1

θ(qi+k; qκ) ·
∏

1≤i<j≤n−1

θ(qj−i; qκ), (3.41)

where κ = m+ n.

Remark. A similar calculation when k ≥ m gives

lim
r→∞

q−m(r+1
2 )Q(k,mr)(1, q, q

2, . . . ; qn)

=

[
k −m+ n− 1

n− 1

]
q

(qn; qn)∞(qκ; qκ)n−1
∞

(q)n∞

∏
1≤i<j≤n

θ(qj−i; qκ).

Proof of Theorem 3.5. It su�ces to prove the identity for 0 ≤ k < m, and

below assume that k satis�es this inequality.

The following identity for the modi�ed Hall�Littlewood polynomials in-

dexed by near-rectangular partitions is a special case of [19, Corollary 3.2]:

Q′(mr,k)(x; q) = (q)r(q)1

∑
u∈Zn+
|u|=r+1

∑
v∈Zn+
|v|=r

n∏
i=1

x
kui+(m−k)vi
i qk(

ui
2 )+(m−k)(vi2 )

×
n∏

i,j=1

(qxi/xj)ui−uj
(qxi/xj)ui−vj

·
(qxi/xj)vi−vj

(qxi/xj)vi
.
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It is enough to compute the limit on the left-hand side of (3.41) for r a

multiple of n. Hence we replace r by nr in the above expression, and then

shift ui 7→ ui + r and vi 7→ vi + r, for all 1 ≤ i ≤ n, to obtain

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr(q)1

×
∑
u∈Zn
|u|=1

∑
v∈Zn
|v|=0

n∏
i=1

x
kui+(m−k)vi
i qk(

ui
2 )+(m−k)(vi2 )

n∏
i,j=1

(qxi/xj)ui−uj
(qxi/xj)ui−vj

·
(qxi/xj)vi−vj
(qxi/xj)r+vi

.

Since the summand vanishes unless ui ≥ vi for all i and |u| = |v| + 1, it

follows that u = v + ε`, for some ` = 1, . . . , n, where (ε`)i = δ`i. Hence we

�nd that

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr

×
∑
v∈Zn
|v|=0

n∏
i=1

xmvii qm(vi2 )
n∏

i,j=1

(qxi/xj)vi−vj
(qxi/xj)r+vi

n∑
`=1

(
x`q

v`
)k n∏

i=1
i 6=k

1

1− qvi−v`xi/x`
.

Next we use
n∏

i,j=1

(qxi/xj)vi−vj =
∆(xqv)

∆(x)
(−1)(n−1)|v|q−(|v|2 )

n∏
i=1

x
nvi−|v|
i qn(

vi
2 )+(i−1)vi ,

where ∆(x) :=
∏

1≤i<j≤n(1− xi/xj), and

n∑
`=1

xk`

n∏
i=1
i 6=k

1

1− xi/x`
=

∑
1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik = hk(x) = s(k)(x),

where hk and sλ are the complete symmetric and Schur function, respectively.

Thus we have

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr

×
∑
v∈Zn
|v|=0

s(k)(xq
v)

∆(xqv)

∆(x)

n∏
i=1

xκvii q
1
2
κv2
i+ivi

n∏
i,j=1

1

(qxi/xj)r+vi
,
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where κ := m+n. Note that the summand vanishes unless vi ≥ −r for all i.
This implies the limit

lim
r→∞

q−mn(
r
2)−kr

Q′(mnr,k)(x; q)

(x1 · · ·xn)mr

=
1

(q)n−1
∞
∏

1≤i<j≤n θ(xi/xj; q)

∑
v∈Zn
|v|=0

s(k)(xq
v)∆(xqv)

n∏
i=1

xκvii q
1
2
κv2
i+ivi .

The expression on the right is exactly the Weyl�Kac formula for the level-m

A(1)
n−1 character [183]

e−Λ chV (Λ), Λ = (m− k)Λ0 + kΛ1,

provided we identify

q = e−α0−α1−···−αn−1 and xi/xi+1 = e−αi (1 ≤ i ≤ n− 1).

Hence

lim
r→∞

q−mn(
r
2)−kr

Q′(mnr,k)(x; q)

(x1 · · ·xn)mr
= e−Λ chV (Λ),

with Λ as above. For m = 1 and k = 0 this was obtained in [187] by more

elementary means. The simultaneous substitutions q 7→ qn and xi 7→ qn−i

correspond to the principal specialization (3.23). From (3.24) we can then

read o� the product form claimed in (3.41).

3.4 Siegel Functions

The normalizations for the series Φ∗ were chosen so that the resulting q-series

are modular functions on the congruence subgroups Γ(N), where

Γ(N) :=
{(

a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (modN) , b ≡ c ≡ 0 (modN)

}
.
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These groups act on H, the upper-half of the complex plane, by γτ := aτ+b
cτ+d

,

where γ =
(
a b
c d

)
. If f is a meromorphic function on H and γ ∈ SL2(Z), then

we de�ne

(f |kγ)(τ) := (cτ + d)−kf(γτ).

Modular functions are meromorphic functions which are invariant with re-

spect to this action. More precisely, a meromorphic function f on H is a

modular function on Γ(N) if for every γ ∈ Γ(N) we have

f(γτ) = (f |0γ)(τ) = f(τ).

The set of such functions form a �eld. We let FN denote the canonical

sub�eld of those modular functions on Γ(N) whose Fourier expansions are

de�ned over Q(ζN), where ζN := e2πi/N .

The important work of Kubert and Lang [199] plays a central role in the

study of these modular function �elds. Their work, which is built around the

Siegel ga functions and the Klein ta functions, allows us to understand the

�elds FN , as well as the Galois theoretic properties of the extensions FN/F1.

These results will be fundamental tools in the proofs of Theorems 1.8 and

1.15.

3.4.1 Basic Facts about Siegel functions

We begin by recalling the de�nitions of the Siegel and Klein functions. Let

B2(x) := x2− x+ 1
6
be the second Bernoulli polynomial and e(x) := e2πix. If

a = (a1, a2) ∈ Q2, then Siegel function ga is de�ned as

ga(τ) := −q
1
2
B2(a1)e

(
a2(a1 − 1)/2

) ∞∏
n=1

(
1− qn−1+a1e(a2)

)(
1− qn−a1e(−a2)

)
,

(3.42)

and the Klein function ta is de�ned as

ta(τ) :=
ga(τ)

η(τ)2
(3.43)
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where η(τ) := q1/24
∏∞

n=1(1− qn) is the Dedekind η-function.

Neither ga nor ta are modular on Γ(N), however if N · a ∈ Z2, then t2Na is

on Γ(N) (or tNa if N is odd). Therefore if glcm(12,2N)
a ∈ FN , and if N · a′ ∈ Z2,

then
( ga(τ)
ga′ (τ)

)2N ∈ FN if N is even and
( ga(τ)
ga′ (τ)

)N ∈ FN if N is odd. Given

a ∈ Q2, we denote the smallest N ∈ N such that N · a ∈ Z2 by Den(a).

Theorem 3.6 ( [199, Ch. 2 of K1 and K2]). Assuming the notation above,

the following are true:

1. If γ ∈ SL2(Z), then

(ta|−1γ)(τ) = taγ(τ).

2. If b = (b1, b2), then

ta+b(τ) = e
(
(b1b2 + b1 + b2 − b1a2 + b2a1)

)
taγ(τ).

These properties for ta, (3.42), and the fact that η(τ)24 = ∆(τ) is modular

on SL2(Z), lead to the following properties for ga.

Theorem 3.7 ( [199, Ch. 2, Thm 1.2]). If a ∈ Z2/N and Den(a) = N , then

the following are true:

1. If γ ∈ SL2(Z), then

(g12
a |0γ)(τ) = g12

aγ(τ).

2. If b = (b1, b2) ∈ Z2, then

ga+b(τ) = e
(
1/2 · (b1b2 + b1 + b2 − b1a2 + b2a1)

)
ga(τ).

3. We have that g−a(τ) = −ga(τ).

4. The ga(τ)12N are modular functions on Γ(N). Moreover, if γ ∈ SL2(Z),

then we have

(g12
a |0γ)(τ) = g12

aγ(τ).
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The following theorem addresses the modularity properties of products

and quotients of Siegel functions.

Theorem 3.8 ( [199, Ch. 3, Lemma 5.2, Thm 5.3]). Let N ≥ 2 be an

integer, and let {m(a)}r∈ 1
N
Z2/Z2 be a set of integers. Then the product of

Siegel functions ∏
a∈ 1

N
Z2/Z2

gm(a)
a (τ)

belongs to FN if {m(a)} satis�es the following:

1. We have that
∑

am(a)(Na1)2 ≡
∑

am(a)(Na2)2 ≡ 0 (mod gcd(2, N) ·N).

2. We have that
∑

am(a)(Na1)(Na2) ≡ 0 (modN).

3. We have that gcd(12, N) ·
∑

am(a) ≡ 0 (mod 12).

Additionally, we have the following important results about the algebraic-

ity of the singular values of the Siegel functions in relation to the singular

values of the SL2(Z) modular function

j(τ) :=

(
1 + 240

∑∞
n=1

∑
d|n d

3qn
)3

q
∏∞

n=1(1− qn)24

=
η(τ)24

η(2τ)24
+ 3 · 28 + 3 · 216 η(2τ)24

η(τ)24
+ 224 η(2τ)48

η(τ)48

= q−1 + 744 + 196884q + · · · ,

which are well known to be algebraic by the theory of complex multiplication

(for example, see [33, 85]).

Theorem 3.9 ( [199, Ch. 1, Thm. 2.2]). If τ is a CM point and N = Den(a),

then the following are true:

1. We have that ga(τ) is an algebraic integer.
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2. If N has at least two prime factors, then ga(τ) is a unit over Z[j(τ)].

3. If N = pr is a prime power, then ga(τ) is a unit over Z[1/p][j(τ)].

4. If c ∈ Z and (c,N) = 1, then (gca/ga) is a unit over Z[j(τ)].

3.4.2 Galois theory of singular values of Siegel functions

We now recall the Galois-theoretic properties of extensions of modular func-

tion �elds, and we then relate these properties to the Siegel and Klein func-

tions.

The Galois group Gal(FN/F1) is isomorphic toGL2(N)/{±I} = GL2(Z/NZ)/{±I}
(see [199, Ch. 3, Lemma 2.1]), where I is the identity matrix. This group

factors naturally as{(
1 0

0 d

)
: d ∈ (Z/NZ)×

}
× SL2(N)/{±I},

where an element ( 1 0
0 d ) acts on the Fourier coe�cients by sending ζN → ζdN ,

and a matrix γ ∈ SL2(Z) acts by the standard fractional linear transformation

on τ . If f(τ) ∈ FN and γ ∈ GL2(N), then we use the notation f(τ)(γ) := (γ ◦
f)(τ). Applying these facts to the Siegel functions, we obtain the following.

Proposition 3.10. If a ∈ Q2, and Den(a) divides N , then the multiset{
g12N
a (τ)(γ) := g12N

aγ (τ) : γ ∈ GL2(N)
}

is a union of Galois orbits for g12N
a (τ) over F1.

If θ is a CM point of discriminant −D, we de�ne the �eld

K(N)(θ) := Q(θ)
(
f(θ) : f ∈ FN s.t. f is de�ned and �nite at θ

)
,
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and H := Q(θ, j(θ)) be the Hilbert class �eld over Q(θ). The Galois group

K(N)(θ)/H is isomorphic to the matrix group WN,θ (see [274]) de�ned by

WN,θ =

{(
t− sB −sC
sA t

)
∈ GL2(Z/NZ)

}
/

{
±

(
1 0

0 1

)}
,

where Ax2 + Bx + C is a minimal polynomial for θ over Z. The Galois

group Gal(H/Q) is isomorphic to the groupQD of primitive reduced positive-

de�nite integer binary quadratic forms of negative discriminant −D. For

each Q = ax2 + bxy + cy2 ∈ QD, we de�ne the corresponding CM point

τQ = −b+
√
−D

2a
. In order to de�ne the action of this group, we must also

de�ne corresponding matrices βQ ∈ GL2(Z/NZ) which we may build up

by way of the Chinese Remainder Theorem and the following congruences.

For each prime p dividing N , we have the following congruences which hold(
mod pordp(N)

)
:

βQ ≡



a b
2

0 1

 if p - a− b
2 −c

1 0

 if p|a, and p - c− b
2 − a − b

2 − c

1 −1

 if p|a, and p|c

if −D ≡ 0 (mod 4), and

βQ ≡



a b−1
2

0 1

 if p - a− b+1
2 −c

1 0

 if p|a, and p - c− b+1
2 − a

1−b
2 − c

1 −1

 if p|a, and p|c



94

if −D ≡ 1 (mod 4). Then given θ = τQ′ for some Q′ ∈ QD, de�ne δQ(θ) :=

β−1
Q′ βQ. The Galois group Gal(H/Q) can be extended into Gal(K(N)(θ)/Q)

by taking the action of a quadratic form Q on the element f(θ) ∈ K(N)(θ) to

be given by

Q ◦ f(θ) = f(τQ)(δQ(θ)).

We combine these facts into the following theorem.

Theorem 3.11. Let F (τ) be in FN and let θ be a CM point of discriminant

−D < 0. Then the multiset{
F (τQ)(γ·δQ(θ)) : (γ,Q) ∈ Wκ,τ ×QD

}
is a union of the Galois orbits of F (θ) over Q.

3.5 Proofs of Theorems 1.8 and 1.15

Here we prove Theorems 1.8 and 1.15. We shall prove these theorems using

the results of the previous section.

3.5.1 Reformulation of the Φ∗(m,n; τ) series

To ease the proofs of Theorems 1.8 and 1.15, we begin by reformulating each

of the Φ∗(m,n; τ) series, as well as

Φ1a(m,n; τ)

Φ1b(m,n; τ)
,

as pure products of modi�ed theta functions. These factorizations will be

more useful for our purposes. In order to ease notation, for a �xed κ, if

1 ≤ j < κ/2, then we let

θj,κ := θ(qj; qκ),
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If κ is even, then we let

θκ/2,κ := (qκ/2; qκ)∞ = θ(qκ/2; q2κ),

which is a square root of θ(qκ/2; qκ).

The reformulations below follow directly from (1.16) by making use of

the fact that
(qκ; qκ)∞

(q)∞
=

bκ/2c∏
j=1

θj,κ.

Lemma 3.12. Let m and n be positive integers and κ∗ = κ∗(m,n) as in

(1.15). Then the following are true:

(1a) With κ = κ1,

Φ1a(m,n; τ) = q
mn(4mn−4m+2n−3)

12κ

m∏
j=1

θ−1
j,κ

m+n∏
j=1

θ
−min(m,n−1,dj/2e−1)
j,κ .

(1a) With κ = κ1,

Φ1b(m,n; τ) = q
mn(4mn+2m+2n+3)

12κ

m+n∏
j=1

θ
−min(m,n,bj/2c)
j,κ .

(2) With κ = κ2,

Φ2(m,n; τ) = q
m(2n+1)(2mn−m+n−1)

12κ

m∏
j=1

θ−1
j,κ

m+n+1∏
j=1

θ
−min(m,n−1,dj/2e−1)
j,κ

b(m+n)/2c∏
j=n

θ−1
2j+1,κ.

(3) For n ≥ 2 and κ = κ3,

Φ3(m,n; τ) = q
m(2n−1)(2mn+n+1)

12κ

m+n∏
j=1

θ
−min(m,n−1,bj/2c)
j,κ

b(m+n)/2c∏
j=n

θ−1
2j,κ.
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Moreover, with κ = κ1(m,n),

Ψ1(m,n; τ) :=
Φ1a(m,n; τ)

Φ1b(m,n; τ)
= q−

mn(m+1)
2κ

m∏
j=1

θ(q2j; qκ)

θ(qj; qκ)
,

and with κ = κ2(m,n) = κ3(m,n+ 1),

Ψ2(m,n; τ) :=
Φ2(m,n; τ)

Φ3(m,n; τ)
= q−

m(m+1)(2n+1)
4κ

m∏
j=1

θ(q2j; qκ)

θ(qj; qκ)
.

Proof. Since the proofs of the four cases are essentially the same, we only

prove Lemma 3.12 (1a).

Let ϕ = mn(4mn− 4m+ 2n− 3)/(12κ1). By Theorem 1.2, we have that

Φ1a(m,n; τ) = qϕ · (qκ; qκ)n∞
(q)n∞

n∏
i=1

θ(qi+m; qκ)
∏

1≤i<j≤n

θ(qj−i, qi+j−1; qκ)

= qϕ · (qκ; qκ)m∞
(q)m∞

m∏
i=1

θ(qi+1; qκ)
∏

1≤i<j≤m

θ(qj−i, qi+j+1; qκ).

Using the simple identity

(qκ; qκ)∞
(q)∞

=
m+n∏
j=1

θ(qj; qκ)−1,

we can rewrite these two forms as

Φ1a(m,n; τ) = qϕ ·
∏n

i=1 θ(q
i+m; qκ)∏m+n

i=1 θ(qj; qκ)
·
n∏
j=2

∏j−1
i=1 θ(q

j−i, qi+j−1; qκ)∏m+n
i=1 θ(qi, qκ)

= qϕ ·
∏m

i=1 θ(q
i+1; qκ)∏m+n

i=1 θ(qj; qκ)
·
m∏
j=2

∏j−1
i=1 θ(q

j−i, qi+j+1; qκ)∏m+n
i=1 θ(qi; qκ)

.

If m ≥ n− 1 then the �rst identity reduces to

Φ1a(m,n; τ) = qϕ ·
( m∏

j=1

θ(qj; qκ)

)−1 n∏
j=2

( m+n∏
i=2j−1

θ(qi; qκ)

)−1

= qϕ ·
( m∏

j=1

θ(qj; qκ)

)−1 n−1∏
j=1

( m+n∏
i=2j+1

θ(qi; qκ)

)−1

.
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If m ≤ n− 1 then the second identity reduces to

Φ1a(m,n; τ) = qϕ ·
(
θ(q; qκ)

m+n∏
j=m+2

θ(qj; qκ)

)−1

×
m∏
j=2

(
θ(qj, qj+1; qκ)

m+n∏
i=2j+1

θ(qi; qκ)

)−1

= qϕ ·
( m∏

j=1

θ(qj; qκ)

)−1 m∏
j=1

( m+n∏
i=2j+1

θ(qi; qκ)

)−1

.

Together these imply Lemma 3.12 (1a).

Since the modi�ed θ-functions θ(q`; qκ) are essentially Siegel functions (up

to powers of q), we can immediately rewrite Lemma 3.12 in terms of modular

functions. We shall omit the proofs for brevity.

Lemma 3.13. Let m and n be positive integers and κ∗ = κ∗(m,n) as in

(1.15). Then the following are true:

(1a) With κ = κ1,

Φ1a(m,n; τ) =
m∏
j=1

gj/κ,0(κτ)−1

m+n∏
j=1

gj/κ,0(κτ)−min(m,n−1,dj/2e−1).

(1b) With κ = κ1,

Φ1b(m,n; τ) =
m+n∏
j=1

gj/κ,0(κτ)−min(m,n,bj/2c).

(2) With κ = κ2,

Φ2(m,n; τ) = g 1
4
,0(2κτ)−min(m,n−1)−δ1

m∏
j=1

g j
κ
,0(κτ)−1

×
m+n∏
j=1

g j
κ
,0(κτ)−min(m,n−1,dj/2e−1)

b(m+n−1)/2c∏
j=n

g (2j+1)
κ

,0
(κτ)−1.
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(3) For n ≥ 2 and κ = κ3,

Φ3(m,n; τ) = g 1
4
,0(2κτ)−min(m,n−1)−δ2

×
m+n−1∏
j=1

g j
κ
,0(κτ)−min(m,n−1,bj/2c)

b(m+n−1)/2c∏
j=n

g 2j
κ
,0(κτ)−1.

(4) With κ = κ1,

Ψ1(m,n; τ) :=
Φ1a(m,n; τ)

Φ1b(m,n; τ)
=

m∏
j=1

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

.

(5) With κ = κ2(m,n) = κ3(m,n+ 1),

Ψ2(m,n; τ) :=
Φ2(m,n; τ)

Φ3(m,n; τ)
=

m∏
j=1

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

.

3.5.2 Proofs of Theorems 1.8 and 1.15

We now apply the results in Section 3.4 to prove Theorems 1.8 and 1.15.

Proof of Theorem 1.8 (1) and (2). Lemma 3.13 shows that each of the Φ∗(m,n; τ)

is exactly a pure product of Siegel functions. Therefore, we may apply The-

orem 3.7 directly to each of the Siegel function factors, and as a consequence

to each Φ∗(m,n; τ).

Since by Theorem 3.7 (4), ga(τ)12N is in FN if N = Den(a), we may take

N = κ∗(m,n), and so we have that Φ∗(m,n; τ)12κ ∈ Fκ∗(m,n). We now apply

Theorem 3.11 to obtain Theorem 1.8 (1) and (2).

Sketch of the Proof of Theorem 1.8 (3). By Theorem 1.8 (2), we have that

this multiset consists of multiple copies of a single Galois orbit of conjugates

over Q. Therefore to complete the proof, it su�ces to show that the given

conditions imply that there are singular values which are not repeated. To

this end, we focus on those CM points with maximal imaginary parts. Indeed,
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because each Φ∗(m,n; τ) begins with a negative power of q, one generically

expects that these corresponding singular values will be the one with maximal

complex absolute value.

To make this argument precise requires some cumbersome but unenlight-

ening details (which we omit)4. One begins by observing why the given con-

ditions are necessary. For small κ it can happen that the matrices in Wκ,τ

permute the Siegel functions in the factorizations of Φ∗(m,n; τ) obtained in

Lemma 3.13. However, if κ > 9, then this does not happen. The condition

that gcd(D0, κ) = 1 is required for a similar reason. More precisely, the group

does not act faithfully. However, under these conditions, the only obstruc-

tion to the conclusion would be a nontrivial identity between the evaluations

of two di�erent modular functions. In particular, under the given assump-

tions, we may view these functions as a product of distinct Siegel functions.

Therefore, the proof follows by studying the asymptotic properties of the CM

values of individual Siegel functions, and then considering the Φ∗ functions

as a product of these values.

The relevant asymptotics arise by considering, for each −D, a canonical

CM point with discriminant −D. Namely, we let

τ∗ :=


√
−D
2

if −D ≡ 0 (mod 4),

1+
√
−D

2
if −D ≡ 1 (mod 4).

By the theory of reduced binary quadratic forms, these points are the CM

points with maximal imaginary parts corresponding to reduced forms with

discriminant −D. Moreover, every other CM point with discriminant −D
has imaginary part less than |

√
−D|/3. Now the singular values of each

Siegel function then essentially arise from the values of the second Bernoulli

polynomial. The point is that one can uniformly estimate the in�nite product

portion of each singular value, and it turns out that they are exponentially

4A similar analysis is carried out in detail by Jung, Koo, and Shin in [172, Sec. 4].
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close to the number 1. By assembling these estimates carefully, one obtains

the result.

Proof of Theorem 1.15. Lemma 3.13 reformulates each Φ∗ function in terms

of products of negative powers of Siegel functions of the form gj/κ,0(κτ),

where 1 ≤ j ≤ κ/2, and g1/4,0(2κτ), when κ is even. Theorem 3.9 (1) then

implies Theorem 1.15 (1).

Since Den(j/κ, 0) may be any divisor of κ, and since j(τ) is an algebraic

integer [33, 85], Theorem 3.9 (2) and (3) imply Theorem 1.15 (2).

Using Theorem 3.13 (5), we have that

Φ1a(m,n; τ)

Φ1b(m,n; τ)
=

m∏
j=1

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

,

where κ = κ1 = 2m + 2n + 1. Since κ is odd, Theorem 3.9 (4) implies that

each term
g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

in the product is a unit. Therefore, Theorem 1.15 (3) follows.

3.6 Examples

Here we give two examples of the main results in this paper.

Example 3.14. This is a detailed discussion of the example in the introduc-

tion.

Consider the q-series

Φ1a(2, 2; τ) = q1/3

∞∏
n=1

(1− q9n)

(1− qn)

= q1/3 + q4/3 + 2q7/3 + 3q10/3 + 5q13/3 + 7q16/3 + · · · ,
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and

Φ1b(2, 2; τ) = q
∞∏
n=1

(1− q9n)(1− q9n−1)(1− q9n−8)

(1− qn)(1− q9n−4)(1− q9n−5)

= q + q3 + q4 + 3q5 + 3q6 + 5q7 + 6q8 + · · ·

For τ = i/3, the �rst 100 coe�cients of the q-series respectively give the

numerical approximations

Φ1a(2, 2; i/3) = 0.577350 · · · ?
=

1√
3

Φ1b(2, 2; i/3) = 0.217095 . . .

Here we have that κ1(2, 2) = 9. Theorem 3.8 tells us that Φ1a(2, 2; τ)3 and

Φ1b(2, 2; τ)3 are in F9, so we may use Theorem 3.11 to �nd the conjugates of

the values of the functions at τ = i/3. We have κ1(2, 2) · i/3 = 3i and

W9,3i =

{(
t 0

s t

)
∈ GL2(Z/9Z)

}
/

{
±

(
1 0

0 1

)}
,

which has 27 elements. However each of these acts like the identity on

Φ1a(2, 2; τ), and the group has an orbit of size three when acting on Φ1b(2, 2; τ).

The set Q36 has two elements Q1 = x2 +9y2 and Q2 = 2x2 +2xy+5y2. These

qive us βQ1 which is the identity, and βQ2 =
(

2 1
0 1

)
. Therefore Φ1a(2, 2; i/3)3

has only one other conjugate,(
g2/9,1/9

(−1 + 3i
2

)
g4/9,2/9

(−1 + 3i
2

)
g6/9,3/9

(−1 + 3i
2

)
g8/9,4/9

(−1 + 3i
2

))−3

,

although the multiset described in Theorem 1.8 (2) contains 27 copies of

these two numbers. On the other hand, Φ1b(2, 2; i/3)3 has an orbit of six

conjugates, and the multiset from Theorem 1.8 (2) contains nine copies of

this orbit. Theorem 1.15 (2) tells us that Φ1a(2, 2; i/3) and Φ1b(2, 2; i/3) may

have denominators which are powers of three, whereas Theorem 1.15 (1)
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tells us that their inverses are algebraic integers. Therefore, we �nd the

minimal polynomials for the inverses and then invert the polynomials. In this

way, we �nd that Φ1a(2, 2; i/3) and Φ1b(2, 2; i/3) are roots of the irreducible

polynomials

3x2 − 1

19683x18 − 80919x12 − 39366x9 + 11016x6 − 486x3 − 1.

The full polynomials whose roots are the elements of the multisets corre-

sponding to Φ1a(2, 2; i/3)3 and Φ1b(2, 2; i/3)3, counting multiplicity are

(27x2 − 1)27

(19683x6 − 80919x4 − 39366x3 + 11016x2 − 486x2 − 1)9.

Applying Theorem 1.15(2), we �nd that
√

3Φ1a(2, 2; i/3) and
√

3Φ1b(2, 2; i/3)

are units and roots of the polynomials

x− 1

x18 + 6x15 − 93x12 − 304x9 + 420x6 − 102x3 + 1.

Lastly, Theorem 1.15 (3) applies, and we know that the ratio

Φ1a(2, 2; τ)

Φ1b(2, 2; τ)
= q−2/3

∞∏
n=1

(1− q9n−4)(1− q9n−5)

(1− q9n−1)(1− q9n−8)

= q−2/3(1 + q + q2 + q3 − q5 − q6 − q7 + · · · )

evaluates to a unit at τ = i/3. In fact we �nd that

Φ1a(2, 2; i/3)

Φ1b(2, 2; i/3)
= 4.60627 . . .

is a unit. Indeed, it is a root of

x18 − 102x15 + 420x12 − 304x9 − 93x6 + 6x3 + 1.
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Example 3.15. Here we give an example which illustrates the second remark

after Theorem 1.15. This is the discussion concerning ratios of singular values

of Φ2 and Φ3 with the same κ∗. Here we show that these ratios are not

generically algebraic integral units as Theorem 1.15(3) guarantees for the

A(2)
2n cases.

We consider Φ2(1, 1; τ) and Φ3(1, 2; τ), with τ =
√
−1/3. For these

example we have κ2(1, 1) = κ3(1, 2) = 6. A short computation by way of the

q-series shows that

Φ2

(
1, 1;

√
−1/3

)
= 0.883210 . . . ,

and

Φ3

(
1, 2;

√
−1/3

)
= 0.347384 . . . .

Since Φ2(1, 1; τ)24 and Φ3(1, 2; τ)24 are in F12, we �nd that

Φ2

(
1, 1;

√
−1/3

)24
and Φ3

(
1, 2;

√
−1/3

)24

each have one other conjugate, namely(
g1/2,1/3

(√
−4/3

)
·g1/4,0

(
2
√
−4/3

))−24

and
(
g0,1/3

(√
−4/3

)
·g1/2,0

(
2
√
−4/3

))−24

respectively, and the corresponding multisets described in Theorem 1.8 (2)

each contain six copies of the respective orbits. In this way we �nd that

Φ2

(
1, 1;

√
−1/3

)
is a root of

220 x48 − 212 · 13x24 + 1

and Φ3(1, 2;
√
−1/3) is a root of

220312x48 − 126 · 35113x24 + 1.

Therefore, their ratio

Φ2(1, 1;
√
−1/3)

Φ3(1, 2;
√
−1/3)

= 2.542459 . . .

is not a unit. Its minimal polynomial is

x4 − 6x2 − 3.
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Chapter 4

Ramanujan's mock theta

functions

4.1 Proof of Theorem 1.11

Proof. Suppose that g is such weakly holomorphic modular form on Γ1(m)

which cuts out the singularities of a mock modular form F+ on Γ1(n) which

has a non-zero shadow. Moreover, suppose that both are of weight k ∈ 1
2
Z.

Then the di�erence F−g is also a Maass form of weight k on Γ1(GCD(m,n))

with non-zero shadow. Due to the growth condition required in by the def-

inition of a harmonic Maass form given in 2.1, the non-holomorphic part of

F− exhibits exponential decay as τ → ∞. Suppose h(τ) = ξkF , and pick

γ =

(
a b

c d

)
with c 6= 0, and let ζ = e(a/c) and ρ be the cusp d/c. The

growth of F−(τ) as q → ζ is bounded, as can be seen by taking the following

limit.
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lim
τ→+i∞

(F−) (γτ) = lim
τ→+i∞

F− (γτ)− F−ρ (τ)

= lim
τ→+i∞

∫ i∞

−γτ
h(z)(−i(γτ + z))k−2dz − F−ρ (τ)

= lim
τ→+i∞

∫ d
c

−τ
h(γ∗z)(−i(γτ + γ∗z))k−2d(γ∗z)− F−ρ (τ)

= lim
τ→+i∞

−
∫ i∞

d
c

hρ(z)

(
−i(τ + z)

cτ + d

)k−2

dz.

Here γ∗ =

(
a −b
−c d

)
. Thus F+ − g is O(1) if and only if F − g is as well.

Suppose that F − g has a non-trivial principal part at the expansion at

in�nity (a similar arguments works if we have a non-trivial principal part at

any other cusp). Then take γ =

(
a b

c d

)
∈ Γ1(GCD(m,n)), with ζ as above.

The radial limit lim
q→ζ

F − g may be computed by taking

lim
z→+i∞

(F − g)

(
az + b

cz + d

)
= (cz + d)k(F − g)(z).

Since the principal part is nontrivial, we observe exponential growth on (cz+

d)k(F+ − g)(z), while (cz + d)kF−(z) must approach 0. Thus, neither F − g
nor F+ − g is O(1) as q → ζ.

Therefore, if g cuts out the singularities at roots of unity, it must also

cut out the principal part of F at all cusps. Then F − g is a weak Maass

form with no principal part at any cusp, but has a non-zero non-holomorphic

part. This, however, contradicts Theorem 2.2.
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4.2 Proof of Corollary 4.1

The corollary follows immediately from a stronger corollary which we state

here.

Corollary 4.1. Suppose that F (τ) ∈ Hk1(Γ1(N)). Then there does not exist

a weakly holomorphic modular form g(z) of any weight k2 ∈ 1
2
Z on any

congruence subgroup Γ1(N ′) such that for every root of unity ζ we have

lim
q→ζ

(
F+(τ)− g(τ)

)
= O(1).

Proof. As noted in the previous section, F−(τ) is O(1) as τ approaches cusps,

therefore this is equivalent to the statement that no such g(τ) exists such that

lim
q→ζ

(F (τ)− g(τ)) = O(1).

Suppose such a g(τ) existed. Following the argument in the previous

section, if such a g(τ) existed then both F (τ) and g(τ) must have the same

principal parts at all cusps. Due to Theorem 2.2, at least one of these must

be non constant. Without loss of generality, suppose there is a non-constant

principal part at the cusp in�nity. Consider the function h(τ) := F (τ)−g(τ).

By hypothesis, h(τ) has bounded radial limits as q approaches every root of

unity. We note that F (τ) and g(τ) are modular on some common subgroup

Γ1(M). If we take γ = ( a bc d ) ∈ Γ1(M) with c 6= 0, then we have

h
(
aτ+b
cτ+d

)
= F

(
aτ+b
cτ+d

)
− g

(
aτ+b
cτ+d

)
= (cτ + d)k1F (τ)− (cτ + d)k2g(τ). (4.1)

Letting z → i∞, we see that g(τ) cannot cut out the exponential singularity

of F (τ) due to the di�erence between the weights, thus contradicting the

assumption.
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4.3 The f (q) example

Having proven that the poles of a mock theta function cannot mirror those of

a weakly holomorphic modular form at every cusp, we return to Ramanujan's

example of a subtler way in which a modular form may imitate a mock theta

function at the cusps. Namely, Ramanujan conjectures for the mock theta

function

f(q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . .

and for the q-series b(q) (which is a weakly holomorphic modular form up to

a q−
1
24 )

b(q) := (1− q)(1− q3)(1− q5) · · · (1− 2q + 2q4 − . . .)

that as q approaches an even 2k order root of unity ζ, b(q) is a �near miss� to

f(q), in that half the time one must subtract, and half of the time one must

add the values. More speci�cally, he conjectures that

f(q)− (−1)kb(q) = O(1).

Folsom, Ono, and Rhoades show this conjecture and moreover prove the

following:

Theorem 4.2 (Theorem 1.1 of [121]). If ζ is a primitive, even order 2k root

of unity, then, as q approaches ζ radially in the unit disk, we have that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4 ·

k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1.
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Chapter 5

Weierstrass mock modular forms

5.1 Weierstrass Theory and the proof of Theo-

rems 1.14, 1.15 and 1.16

Here we recall the essential features of the Weierstrass theory of elliptic

curves. After recalling these facts, we then prove Theorems 1.14 and 1.15.

5.1.1 Basic facts about Weierstrass theory

As noted in the introduction, the analytic parameterization C/ΛE
∼= E of an

elliptic curve is given by z → Pz = (℘(ΛE; z), ℘′(ΛE; z)). By evaluating the

Weierstrass ℘-function at the Eichler integral given in (1.20), this analytic pa-

rameterization becomes the modular parameterization. The Eichler integral

is not modular, however its obstruction to modularity is easily characterized.

The map ΨE : Γ0(N)→ C given by

ΨE(γ) := EE(z)− EE(γz) (5.1)

is a homomorphism of groups. Its image in C turns out to be the lattice

ΛE. Hence, since ℘(ΛE; z) is invariant on the lattice, the map ℘(ΛE; EE(z))

parameterizes E and is also a modular function.
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Theorems 1.14 and 1.15 rely on a similar observation, but in this case

involving the Weierstrass ζ-function. Unlike the Weierstrass ℘-function, the

ζ-function itself is not lattice-invariant. However, Eisenstein [298] observed

that it could be modi�ed to become lattice-invariant but this modi�cation

necessarily sacri�ces holomorphicity.

5.1.2 Proofs of Theorems 1.14 and 1.15

We now prove Theorems 1.14 and 1.15.

Proof of Theorem 1.14. Eisenstein's modi�cation to the ζ-function is given

by

ζ(ΛE; z)− S(ΛE)z− π

a(ΛE)
z. (5.2)

Here S is as in (1.22) and a(ΛE) is the area of a fundamental parallelogram

for ΛE.

Using the formula

a(ΛE) =
4π2||FE||2

deg(φE)
, (5.3)

we have that the function ZE(z) de�ned in (1.23) above is Eisenstein's cor-

rected ζ-function and is lattice-invariant. Formula (5.3) was �rst given by

Zagier [307] for prime conductor and generalized by Cremona for general

level [86]. Since ZE(z) is lattice-invariant, ẐE(z), de�ned by (1.24), is modu-

lar.

Part (1) of Theorem 1.14 follows by noting that ZE(z) diverges precisely

for z ∈ ΛE. This divergence must result from a pole in the holomorphic part,

Z+
E(z).

In order to establish part (2), we consider the modular function ℘(ΛE; EE(z)).

We observe that ℘(ΛE; EE(z)) is meromorphic with poles precisely for those

z such that EE(z) ∈ ΛE. Therefore ℘(ΛE; EE(z)) may be decomposed into

modular functions with algebraic coe�cients, each with only a simple pole
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at one such z and possibly at cusps. These simple modular functions may be

combined appropriately to construct the function ME(z) to cancel the poles

of Ẑ+
E(z).

The proof of (3) follows from straightforward calculations.

Using the theory of Atkin-Lehner involutions, we now prove Theorem 1.15.

Proof of Theorem 1.15. Recall that by classical theory of Atkin-Lehner, ev-

ery newform of level NE is an eigenform of the Atkin-Lehner involution

Wq =

(
qαa b

Nc qαd

)
,

for every prime power q||NE, with eigenvalue ±1. We note that

ẐE(z)|0Wq = ZE(ΛE; EE(z)|0Wq).

It su�ces to show EE(z)− λqEE(z)|Wq is equal to Ωq(FE). To this end note

that

EE(z)− λqEE(z)|Wq = −2πi

[∫ i∞

z

FE(z)dz − λq
∫ i∞

Wqz

FE(z)dz

]
(5.4)

= −2πi

[∫ i∞

z

FE(z)dz − λq
∫ W−1

q i∞

z

det(Wq)

(Ncz + qαd)2
FE(Wqz)dz

]

= −2πi

[∫ i∞

z

FE(z)dz + λ2
q

∫ z

W−1
q i∞

FE(z)dz

]

= −2πi

∫ i∞

W−1
q i∞

FE(z)dz.

We note that if Ωq(FE) is in the lattice, then we may ignore this term, and

we see that ẐE(z) is an eigenfunction for the involution Wq. Otherwise,

ẐE(z)|0Wq has a constant term equal to ZE(Ωq(FE)).
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5.1.3 Proof of Theorem 1.16

The proof of Theorem 1.16 is similar to recent work of Guerzhoy, Kent, and

Ono [153]. We will need the following proposition.

Proposition 5.1. Suppose that R(z) is a meromorphic modular function on

Γ0(N) with Q-rational coe�cients. If p - N is prime, then there is an A such

that

ordp

(
q
d

dq
R|T (pn)

)
≥ n− A.

Proof. For convenience, we let R(z) =
∑

n�−∞ a(n)qn. We �rst show that

the coe�cients a(n) of R have bounded denominators. In other words, we

have that A := infn(ordp(a(n))) < ∞. Indeed, we can always multiply

R with an appropriate power of (z) and a monic polynomial in j(z) with

rational coe�cients to obtain a cusp form of positive integer weight and

rational coe�cients. The resulting Fourier coe�cients will have bounded

denominators by Theorem 3.52 of [274]. One easily checks that dividing by

the power of ∆(z) and this polynomial in j(z) preserves the boundedness.

The proposition now follows easily from(
q
d

dq
R

)
|T (pn) =

∑
m�∞

min{ordp(m),n}∑
j=0

pn−jma(pn−2jm)qm.

Remark. Proposition 5.1 is analogous to Proposition 2.1 of [153] which con-

cerns Atkin's U(p) operator.

Proof of Theorem 1.16. We �rst consider the case where E has CM. Suppose

D < 0 is the discriminant of the imaginary quadratic �eld K. The nonzero

coe�cients of FE(z) are supported on powers qn with χD(n) :=
(
D
n

)
6= −1.

Let ϕD be the trivial character modulo |D|. We construct the modular

function

ZE(z) =
1

2

(
ẐE|ϕD + ẐE|χD

)
. (5.5)
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Since the coe�cients of the nonholomorphic part of ẐE(z) are supported on

powers q−n with χD(−n) 6= 1, we see that the twisting action in the de�nition

of ZE(z) kills the nonholomorphic part. Therefore, ZE(z) is a meromorphic

modular function on Γ0(ND2) whose nonzero coe�cients are supported on

qm where χD(m) = 1, and are equal to the original coe�cients of Ẑ+
E(z).

We now aim to prove the following p-adic limits:

lim
n→+∞

[
q
d

dq
(ẐE(z))

]
|T (pn) = lim

n→+∞

[
q
d

dq
(ẐE(z)−ZE(z))

]
|T (pn) = 0.

(5.6)

By Proposition 5.1, the two limits are equal, and so it su�ces to prove the

vanishing of the second limit.

Since χD(pn) = 1, it follows that the coe�cients of qp
n
(including q1) in

Ẑ+
E(z) − ZE(z) all vanish. Therefore the coe�cient of q1 for each n in the

second limit of (5.6) is zero. Since the principal part of ẐE(z) − ZE(z) is

q−1, the principal parts in the second limit p-adically tend to 0 thanks to the

de�nition of the Hecke operators T (pn).

Suppose that m > 1 is coprime to NE. Then note that FE is an eigen-

function for the Hecke operator T (m) with eigenvalue aE(m). Since the non-

holomorphic part of ẐE(z) is the period integral of FE(z), it follows that

Qm(z) := mẐE(z)|T (m) − aE(m)ẐE(z) = mẐ+
E(z)|T (m) − aE(m)Ẑ+

E(z) is

a meromorphic modular function. Note that the functions q d
dq
Qm(z) have

denominators that are bounded independently of m. This follows from the

proof of Proposition 5.1 and the fact that (see Theorem 1.1 of [50]) q d
dq
ẐE(z)

is a weight 2 meromorphic modular form. Since Hecke operators commute,

we have[
q
d

dq
Ẑ+
E(z)

]
|T (pn)T (m) =

[
q
d

dq
(aE(m)Ẑ+

E(z) +Qm(z))

]
|T (pn).

Modulo any �xed power of p, say pt, Proposition 5.1 then implies that[
q
d

dq
Ẑ+
E(z)

]
|T (pn)T (m) ≡ aE(m) ·

[
q
d

dq
Ẑ+
E(z)

]
|T (pn)

(
mod pt

)
,
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for su�ciently large n. In other words, we have that
[
q d
dq
Ẑ+
E(z)

]
|T (pn) is

congruent to a Hecke eigenform for T (m) modulo pt for su�ciently large

n. By Proposition 5.1 again, we have that
[
q d
dq

(Ẑ+
E(z)−ZE(z))

]
|T (pn) is

an eigenform of T (m) modulo pt for su�ciently large n. Obviously, this

conclusion holds uniformly in n for all T (m) with gcd(m,NE) = 1.

Generalizing this argument in the obvious way to incorporate Atkin's U -

operators (as in [153]), we conclude that these forms are eigenforms of all the

Hecke operators. By the discussion above, combined with the fact that the

constant terms vanish after applying q d
dq
, these eigenforms are congruent to

0+O(q2) (mod pt). Such an eigenform must be identically 0 (mod pt), thereby

establishing (5.6).

To complete the proof in this case, we observe that p - aE(pn) for any n.

This follows from the recurrence relation on aE(pn) in n, combined with the

fact that p - aE(p) since p is split in K. By (5.6) we have that

lim
n→+∞

[
q d
dq

(Ẑ+
E(z))

]
|T (pn)

aE(pn)
= 0. (5.7)

The proof now follows from the identities

Ẑ+
E(z) = ζ(ΛE; EE(z))− S(ΛE)EE(z) and FE(z) = q

d

dq
EE(z).

The proof for E without CM is nearly identical. We replace Ẑ+
E(z) by

Ẑ+
E(z) + S(ΛE)EE(z), which has Q-rational coe�cients. In (5.7) the limiting

value of 0 is replaced by a constant multiple of FE(z).

5.2 Vector valued harmonic Maass forms

To ease exposition, the results in the introduction were stated using the

classical language of half-integral weight modular forms. To treat the case of

general levels and functional equations, it will be more convenient to work
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with vector-valued forms and certain Weil representations. Here we recall this

framework, and we discuss important theta functions which will be required

in the section to de�ne the theta lift I(•; τ). We shall let q := e2πiτ . The

modular parameter will always be clear in context. The need for multiple

modular variables arises from the structure of the theta lift. As a rule of

thumb, τ shall be the modular variable for all the half-integral weight forms

in the remainder of this paper.

For a positive integer N we consider the rational quadratic space of sig-

nature (1, 2) given by

V :=

{
λ =

(
λ1 λ2

λ3 −λ1

)
;λ1, λ2, λ3 ∈ Q

}
and the quadratic form Q(λ) := Ndet(λ). The associated bilinear form is

(λ, µ) = −Ntr(λµ) for λ, µ ∈ V .
We let G = Spin(V ) ' SL2, viewed as an algebraic group over Q and

write Γ for its image in SO(V ) ' PSL2. By D we denote the associated

symmetric space. It can be realized as the Grassmannian of lines in V (R) on

which the quadratic form Q is positive de�nite,

D ' {z ⊂ V (R); dim z = 1 and Q|z > 0} .

Then the group SL2(Q) acts on V by conjugation

g.λ := gλg−1,

for λ ∈ V and g ∈ SL2(Q). In particular, G(Q) ' SL2(Q).

We identify the symmetric space D with the upper-half of the complex

plane H in the usual way, and obtain an isomorphism between H and D by

z 7→ Rλ(z),

where, for z = x+ iy, we pick as a generator for the associated positive line

λ(z) :=
1√
Ny

(
−(z + z̄)/2 zz̄

−1 (z + z̄)/2

)
.
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The group G acts on H by linear fractional transformations and the isomor-

phism above is G-equivariant. Note that Q (λ(z)) = 1 and g.λ(z) = λ(gz)

for g ∈ G(R). Let (λ, λ)z = (λ, λ(z))2− (λ, λ). This is the minimal majorant

of (·, ·) associated with z ∈ D.

We can view Γ0(N) as a discrete subgroup of Spin(V ) and we write M =

Γ0(N) \D for the attached locally symmetric space.

We identify the set of isotropic lines Iso(V ) in V (Q) with P 1(Q) = Q ∪
{∞} via

ψ : P 1(Q)→ Iso(V ), ψ((α : β)) = span

((
αβ α2

−β2 −αβ

))
.

The map ψ is a bijection and ψ(g(α : β)) = g.ψ((α : β)). Thus, the cusps of

M (i.e. the Γ0(N)-classes of P 1(Q)) can be identi�ed with the Γ0(N)-classes

of Iso(V ).

If we set `∞ := ψ(∞), then `∞ is spanned byλ∞ = ( 0 1
0 0 ). For ` ∈ Iso(V )

we pick σ` ∈ SL2(Z) such that σ``∞ = `.

Heegner points are given as follows. For λ ∈ V (Q) with Q(λ) > 0 we let

Dλ = span(λ) ∈ D.

For Q(λ) ≤ 0 we set Dλ = ∅. We denote the image of Dλ in M by Z(λ).

5.2.1 A lattice related to Γ0(N)

We consider the lattice

L :=

{(
b −a/N
c −b

)
; a, b, c ∈ Z

}
.

The dual lattice corresponding to the bilinear form (·, ·) is given by

L′ :=

{(
b/2N −a/N
c −b/2N

)
; a, b, c ∈ Z

}
.



116

We identify the discriminant group L′/L =: D with Z/2NZ, together with
the Q/Z valued quadratic form x 7→ −x2/4N . The level of L is 4N .

For a fundamental discriminant ∆ ∈ Z we will consider the rescaled lattice

∆L together with the quadratic form Q∆(λ) := Q(λ)
|∆| . The corresponding

bilinear form is then given by (·, ·)∆ = 1
|∆|(·, ·). The dual lattice of ∆L with

respect to (·, ·)∆ is equal to L′. We denote the discriminant group L′/∆L by

D(∆).

For m ∈ Q and h ∈ D, we let

Lm,h = {λ ∈ L+ h;Q(λ) = m} .

By reduction theory, if m 6= 0 the group Γ0(N) acts on Lm,h with �nitely

many orbits.

We will also consider the one-dimensional lattice K = Z ( 1 0
0 −1 ) ⊂ L. We

have L = K + Z`+ Z`′ where ` and `′ are the primitive isotropic vectors

` =

(
0 1/N

0 0

)
, `′ =

(
0 0

−1 0

)
.

Then K ′/K ' L′/L.

5.2.2 The Weil representation and vector-valued auto-

morphic forms

By Mp2(Z) we denote the integral metaplectic group. It consists of pairs

(γ, φ), where γ = ( a bc d ) ∈ SL2(Z) and φ : H → C is a holomorphic function

with φ2(τ) = cτ+d. The group Γ̃ = Mp2(Z) is generated by S = (( 0 −1
1 0 ) ,

√
τ)

and T = (( 1 1
0 1 ) , 1). We let Γ̃∞ := 〈T 〉 ⊂ Γ̃. We consider the Weil repre-

sentation ρ∆ of Mp2(Z) corresponding to the discriminant group D(∆) on

the group ring C[D(∆)], equipped with the standard scalar product 〈·, ·〉,
conjugate-linear in the second variable. We simply write ρ for ρ1.
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Let e(a) := e2πia. We write eδ for the standard basis element of C[D(∆)]

corresponding to δ ∈ D(∆). The action of ρ∆ on basis vectors of C[D(∆)] is

given by the following formulas for the generators S and T of Mp2(Z)

ρ∆(T )eδ = e(Q∆(δ))eδ,

and

ρ∆(S)eδ =

√
i√

|D(∆)|

∑
δ′∈D(∆)

e(−(δ′, δ)∆)eδ′ .

Let k ∈ 1
2
Z, and let Ak,ρ∆

be the vector space of functions f : H→ C[D(∆)],

such that for (γ, φ) ∈ Mp2(Z) we have

f(γτ) = φ(τ)2kρ∆(γ, φ)f(τ).

A smooth function f ∈ Ak,ρ∆
is called a harmonic (weak) Maass form of

weight k with respect to the representation ρ∆ if it satis�es in addition (see [53,

Section 3]):

1. ∆kf = 0,

2. the singularity at ∞ is locally given by the pole of a meromorphic

function.

Here we write τ = u+ iv with u, v ∈ R, and

∆k = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
(5.8)

is the weight k Laplace operator. We denote the space of such functions by

Hk,ρ∆
.

By M !
k,ρ∆
⊂ Hk,ρ∆

we denote the subspace of weakly holomorphic modu-

lar forms. Recall that weakly holomorphic modular forms are meromorphic

modular forms whose poles (if any) are supported at cusps.
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Similarly, we can de�ne scalar-valued analogs of these spaces of auto-

morphic forms. In this case, we require analogous conditions at all cusps of

Γ0(N) in (ii). We denote these spaces by H+
k (N) and M !

k(N).

Note that the Fourier expansion of any harmonic Maass form uniquely

decomposes into a holomorphic and a nonholomorphic part [53, Section 3]

f+(τ) =
∑

h∈L′/L

∑
n∈Q

n�−∞

c+(n, h)qneh

f−(τ) =
∑

h∈L′/L

∑
n∈Q

c−(n, h)Γ(1− k, 4π|n|v)qneh,

where Γ(a, x) denotes the incomplete Γ-function. The �rst summand is called

the holomorphic part of f , the second one the nonholomorphic part.

We de�ne a di�erential operator ξk by

ξk(f) := −2ivk
∂

∂τ̄
f . (5.9)

We then have the following exact sequence [53, Corollary 3.8]

0 −→M !
k,ρ∆
−→ Hk,ρ∆

ξk−→ S2−k,ρ̄∆
−→ 0.

5.2.3 Poincaré series and Whittaker functions

We recall some facts on Poincaré series with exponential growth at the cusps

following Section 2.6 of [57].

We let k ∈ 1
2
Z, and Mν,µ(z) and Wν,µ(z) denote the usual Whittaker

functions (see p. 190 of [1]). For s ∈ C and y ∈ R>0 we put

Ms,k(y) = y−k/2M− k
2
,s− 1

2
(y).

We let Γ∞ be the subgroup of Γ0(N) generated by ( 1 1
0 1 ). For k ∈ Z, m ∈ N,

z = x+ iy ∈ H and s ∈ C with <(s) > 1, we de�ne

Fm(z, s, k) =
1

2Γ(2s)

∑
γ∈Γ∞\Γ0(N)

[Ms,k(4πmy)e(−mx)] |k γ. (5.10)
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This Poincaré series converges for <(s) > 1, and it is an eigenfunction of ∆k

with eigenvalue s(1− s) + (k2− 2k)/4. Its specialization at s0 = 1− k/2 is a

harmonic Maass form [48, Proposition 1.10]. The principal part at the cusp

∞ is given by q−m +C for some constant C ∈ C. The principal parts at the
other cusps are constant.

We now de�ne C[L′/L]-valued analogs of these series. Let h ∈ L′/L and

m ∈ Z−Q(h) be positive. For k ∈
(
Z− 1

2

)
<1

we let

Fm,h(τ, s, k) =
1

2Γ(2s)

∑
γ∈Γ̃∞\Γ̃

[Ms,k(4πmy)e(−mx)eh]|k,ρ γ.

The series Fm,h(τ, s, k) converges for <(s) > 1 and it de�nes a harmonic

Maass form of weight k for Γ̃ with representation ρ. The special value at

s = 1− k/2 is harmonic [48, Proposition 1.10]. For k ∈ Z− 1
2
the principal

part is given by q−meh + q−me−h + C for some constant C ∈ C[L′/L].

Remark. If we let (in the same setting as above)

Fm,h(τ, s, k) =
1

2Γ(2s)

∑
γ∈Γ̃∞\Γ̃

[Ms,k(4πmy)e(−mx)eh]|k,ρ̄ γ,

then this has the same convergence properties. But for the special value at

s = 1 − k/2, the principal part is given by q−meh − q−me−h + C for some

constant C ∈ C[L′/L].

5.2.4 Twisted theta series

We de�ne a generalized genus character for δ =
(
b/2N −a/N
c −b/2N

)
∈ L′. From

now on let ∆ ∈ Z be a fundamental discriminant and r ∈ Z such that

∆ ≡ r2 (mod 4N).
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Then

χ∆(δ) = χ∆([a, b,Nc]) :=


(

∆
n

)
, if ∆|b2 − 4Nac and (b2 − 4Nac)/∆ is a

square mod 4N and gcd(a, b, c,∆) = 1,

0, otherwise.

Here [a, b,Nc] is the integral binary quadratic form corresponding to δ, and

n is any integer prime to ∆ represented by [a, b,Nc].

The function χ∆ is invariant under the action of Γ0(N) and under the

action of all Atkin-Lehner involutions. It can be computed by the following

formula [148, Section I.2, Proposition 1]: If ∆ = ∆1∆2 is a factorization of ∆

into discriminants and N = N1N2 is a factorization of N into positive factors

such that (∆1, N1a) = (∆2, N2c) = 1, then

χ∆([a, b,Nc]) =

(
∆1

N1a

)(
∆2

N2c

)
.

If no such factorizations of ∆ and N exist, we have χ∆([a, b,Nc]) = 0.

Since χ∆(δ) depends only on δ ∈ L′ modulo ∆L, we can view it as a

function on the discriminant group D(∆).

We now let

ϕ0
∆(λ, z) = pz(λ)e−2πR(λ,z)/|∆|, (5.11)

where pz(λ) = (λ, λ(z)) and R(λ, z) := 1
2
(λ, λ(z))2−(λ, λ). This function was

recently studied extensively by Hövel [166]. From now on, if ∆ = 1, we omit

the index ∆ and simply write ϕ0(λ, z). Let ϕ(λ, τ, z) = e2πiQ∆(λ)τϕ0
∆(
√
vλ, z)

(for notational purposes we drop the dependence on Delta). By π we denote

the canonical projection π : D(∆)→ D.
Moreover, we let ρ̃ = ρ, if ∆ > 0, and ρ̃ = ρ̄, if ∆ < 0.

Theorem 5.2. The theta function

Θ∆,r(τ, z, ϕ) := v1/2
∑
h∈D

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)
∑

λ∈∆L+δ

ϕ(λ, τ, z)eh (5.12)
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is a nonholomorphic C[D]-valued modular form of weight 1/2 for the repre-

sentation ρ̃ in the variable τ . Furthermore, it is a nonholomorphic automor-

phic form of weight 0 for Γ0(N) in the variable z ∈ D.

Proof. This follows from [166, Satz 2.8] and the results in [6].

We use the following representation for Θ∆,r(τ, z, ϕ) as a Poincaré series

using the lattice K. We let ε = 1, when ∆ > 0, and ε = i, when ∆ < 0. The

following proposition can be found in [166, Satz 2.22].

Proposition 5.3. We have

Θ∆,r(τ, z, ϕ) = −Ny
2ε̄

2i

∞∑
n=1

n

(
∆

n

)

×
∑

γ∈Γ̃∞\Γ̃

[
1

v1/2
e

(
−Nn

2y2

2i|∆|v

)∑
λ∈K′

e

(
λ2

2
|∆|τ̄ − 2nNλx

)
erλ

]
|1/2,ρ̃K γ.

Now we de�ne the theta kernel of the Shintani lift. Recall that for a

lattice element λ ∈ L′/L we write λ =
(
b/2N −a/N
c −b/2N

)
. Let

ϕSh(λ, τ, z) = −cNz̄
2 − bz̄ + a

4Ny2
e−2πvR(λ,z)/|∆|e2πiQ∆(λ)τ .

The Shintani theta function then transforms as follows.

Theorem 5.4. The theta function

Θ∆,r(τ, z, ϕSh) = v1/2
∑
h∈D

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)
∑

λ∈∆L+δ

ϕSh(λ, τ, z)eh

(5.13)

is a nonholomorphic automorphic form of weight 2 for Γ0(N) in the variable

z ∈ D. Moreover, Θ∆,r,h(τ, z, ϕSh) is a nonholomorphic C[D]-valued modular

form of weight 3/2 for the representation ρ̃ in the variable τ .
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Proof. This follows from the results in [58, p. 142] and the results in [6].

We have the following relation between the two theta functions. This was

already investigated in [53] and [37].

Lemma 5.5. We have

ξ1/2,τΘ∆,r(τ, z, ϕ) = 4i
√
Ny2 ∂

∂z
Θ∆,r(τ, z, ϕSh).

Proof. We �rst compute

ξ1/2,τv
1/2ϕ(λ, τ, z) = −v1/2pz(λ)e−2πvR(λ,z)/|∆|e(−Q∆(λ)τ̄)

(
1− 2πv

R(λ, z)

|∆|

)
.

For the derivative of complex conjugate of the Shintanti theta kernel we

obtain

− 1

4N
v1/2e−2πvR(λ,z)/|∆|e(−Q∆(λ)τ̄)

×
(
∂

∂z
y−2(cNz2 − bz + a) + y−2(cNz2 − bz + a)(−2πv)

1

|∆|
∂

∂z
R(λ, z)

)
=

i

4
√
Ny2

v1/2pz(λ)e−2πvR(λ,z)/|∆|e(−Q∆(λ)τ̄)

(
1− 2πv

R(λ, z)

|∆|

)
,

using that

∂

∂z
y−2(cNz2 − bz + a) = −i

√
Ny−2pz(λ),

∂

∂z
R(λ, z) = − i

2
√
N
y−2pz(λ)(cNz̄2 − bz̄ + a),

y−2(cNz2 − bz + a)(cNz̄2 − bz̄ + a) = 2NR(λ, z).

5.3 Theta lifts of harmonic Maass forms

Recall that ∆ is a fundamental discriminant and that r ∈ Z is such that

r2 ≡ ∆ (mod 4N). Let F be a harmonic Maass form in H+
0 (N). We de�ne
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the twisted theta lift of F as follows

I∆,r(τ, F ) =

∫
M

F (z)Θ∆,r(τ, z, ϕ)dµ(z).

Theorem 5.6. Let ∆ 6= 1 and let F be a harmonic Maass form in H+
0 (N)

with vanishing constant term at all cusps. Then I∆,r(τ, F ) is a harmonic

Maass form of weight 1/2 transforming with respect to the representation ρ̃.

Moreover, the theta lift is equivariant with respect to the action of O(L′/L).

To prove the theorem we establish a couple of results. Note that the

transformation properties of the twisted theta function Θ∆,r(τ, z, ϕ) directly

imply that the lift transforms with representation ρ̃. The equivariance follows

from [166, Proposition 2.7]. First we show that the lift is annihilated by

the Laplace operator. Together with a result relating this theta lift to the

Shintani lift, these results imply Theorem 5.6. We also compute the lift of

Poincaré series and the constant function since this will be useful in Section

5.4. Further properties of this lift will be investigated in a forthcoming

paper [5].

Proposition 5.7. Let F be a harmonic Maass form in H+
0 (N). Then

I∆,r(τ, F ) is well-de�ned and

∆1/2,τ I∆,r(τ, F ) = 0.

Proof. We �rst investigate the growth of the theta function Θ∆,r(τ, z, ϕ) =∑
h∈L′/L θh(τ, z, ϕ) in the cusps of M . For simplicity we let ∆ = N = 1.

Then L = Z3 and h =
(
h′ 0
0 h′

)
with h′ = 0 or h′ = 1/2. So we consider

θh(τ, z, ϕ) =
∑
a,c∈Z
b∈Z+h′

−v
y

(c|z|2 − bx+ a)e−
πv
y

(c|z|2−bx+a)2

e2πiτ̄(−b2/4+ac).

We apply Poisson summation on the sum over a. We consider the summands
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as a function of a and compute the Fourier transform, i.e.

−
∫ ∞
−∞

v

y
(c|z|2 − bx+ a)e−

πv
y

(c|z|2−bx+a)2

e2πiτ̄(−b2/4+ac)e2πiwada

= −ye−πiτ̄b2/2e2πi(cτ̄+w)(bx−c|z|2)

∫ ∞
−∞

te−πt
2

e
2πit y√

v
(cτ̄+w)

dt,

where we set t =
√
v
y

(c|z|2− bx+ a). Since the Fourier transform of xe−πx
2
is

ixe−πx
2
this equals

− i y
2

√
v
e−πiτ̄b

2/2e2πi(cτ̄+w)(bx−c|z|2)(cτ̄ + w)e−
πy2

v
(cτ̄+w)2

= −i y
2

√
v

(cτ̄ + w)e−2πiτ̄(b/2−cx)2

e2πi(bxw−cx2w)e−
πy2

v
|cτ+w|2 .

We obtain that

θh(τ, z, ϕ) = − y2

√
v

∑
w,c∈Z
b∈Z+h′

(cτ̄ + w)e−2πiτ̄(b/2−cx)2

e2πi(bxw−cx2w)e−
πy2

v
|cτ+w|2 .

If c and w are non-zero this decays exponentially, and if c = w = 0 it vanishes.

In general we obtain for h ∈ L′/L and at each cusp `

θh(τ, σ`z, ϕ) = O(e−Cy
2

), as y →∞,

uniformly in x, for some constant C > 0.

Thus, the growth of Θ∆,r(τ, z, ϕ) o�sets the growth of F and the integral

converges. By [166, Proposition 3.10] we have

∆1/2,τI∆,r(τ, F ) =

∫
M

F (z)∆1/2,τΘ∆,r(τ, z, ϕ)dµ(z)

=
1

4

∫
M

F (z)∆0,zΘ∆,r(τ, z, ϕ)dµ(z).

By the rapid decay of the theta function we may move the Laplacian to F .

Since F ∈ H+
0 (N) we have ∆0,zF = 0, which implies the vanishing of the

integral.
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By ISh∆,r(τ,G) we denote the Shintani lifting of a cusp form G of weight 2

for Γ0(N). It is de�ned as

ISh∆,r(τ,G) =

∫
M

G(z)Θ∆,r(τ, z, ϕSh)y2dµ(z).

We then have the following relation between the two theta lifts.

Theorem 5.8. Let F ∈ H+
0 (N) with vanishing constant term at all cusps.

Then we have that

ξ1/2,τ (I∆,r(τ, F )) =
1

2
√
N
ISh∆,r(τ, ξ0,z(F )).

Proof. By Stokes' theorem we have that

ISh∆,r(τ, ξ0,z(F )) =

∫
M

ξ0(F (z))Θ∆,r(τ, z, ϕSh)y2dµ(z)

= −
∫
M

F (z)ξ2,z(Θ∆,r(τ, z, ϕSh))dµ(z) + lim
t→∞

∫
∂Ft

F (z)Θ∆,r(τ, z, ϕSh)dz̄,

where Ft = {z ∈ H : =(z) ≤ t} denotes the truncated fundamental domain.

Lemma 5.5 implies that

−
∫
M

F (z)ξ2,z(Θ∆,r(τ, z, ϕSh))dµ(z)

=
1

2
√
N

∫
M

F (z)ξ1/2,τ (Θ∆,r(τ, z, ϕ))dµ(z) =
1

2
√
N
ξ1/2,τ (I∆,r(τ, F )) .

It remains to show that

lim
t→∞

∫
∂Ft

F (z)Θ∆,r(τ, z, ϕSh)dz̄ = 0.

As in the proof of Proposition 5.7 we have to investigate the growth of the

theta function in the cusps. We have (again, ∆ = N = 1, L = Z3, and

h′ = 0, 1/2)

Θ∆,r(τ, z, ϕSh) =
∑
a,c∈Z
b∈Z+h′

−cz̄
2 − bz̄ + a

4y2
e
−πv
y2 (c|z|2−bx+a)

e2πiτ̄(−b2/4+ac),
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and apply Poisson summation to the sum on a. Thus, we consider∫ ∞
−∞
−cz̄

2 − bz̄ + a

4y2
e
−πv
y2 (c|z|2−bx+a)

e2πiτ̄(−b2/4+ac)e2πiwada.

Proceeding as before, we obtain

θh(τ, z, ϕSh) = − 1

4
√
vy

∑
w,c∈Z
b∈Z+h′

e−2πiτ̄(b/2−cx)2

e2πi(bxw−cx2w)

×
(
cz̄2 + biy − c|z|2 + i

y2

v
(cτ̄ + w)

)
e−

πy2

v
|cτ+w|2 .

If c and w are not both equal to 0 this vanishes in the limit as y → ∞. In

this case, the whole integral vanishes. But if c = w = 0 we have

− i

4
√
v

∑
b∈Z+h′

beπiτ̄b
2/2.

Thus, we are left with (the complex conjugate of)∫
∂FT

F (z)Θ∆,r(τ, z, ϕSh)dz =
i

4
√
v

∑
b∈Z+h′

beπiτ̄b
2/2

∫ T

1

∫ 1

0

F (z)dxdy.

We see that

lim
T→∞

∫ T

1

∫ 1

0

F (z)dxdy = 0,

since the constant coe�cient of F vanishes. Therefore,

lim
T→∞

∫
∂MT

F (z)Θ∆,r(τ, z, ϕSh)dz̄ = 0.

Generalizing to arbitrary N , a similar result holds for the other cusps of M .

For a cusp form G =
∑∞

n=1 b(n)qn ∈ Snew
2 (N) we let L(G,∆, s) be its

twisted L-function

L(G,∆, s) =
∞∑
n=1

(
∆

n

)
b(n)n−s.

The relation to the Shintani lifting directly implies
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Proposition 5.9. Let F ∈ H+
0 (N) with vanishing constant term at all cusps

and let ξ0,z(F ) = FE ∈ Snew

2 (N). The lift I∆,r(τ, F ) is weakly holomorphic if

and only if

L(FE,∆, 1) = 0.

In particular, this happens if F is weakly holomorphic.

Proof. Clearly, the lift is weakly holomorphic if and only if the Shintani

li�ting of FE vanishes. This is trivially the case when FE = ξ0(F ) = 0, i.e.

when F is weakly holomorphic. In the other case, the coe�cients of the

Shintani lifting are given by (in terms of Jacobi forms; for the de�nition of

Jacobi forms and the cycle integral r see [148])

ISh∆,r(τ, ξ0,z(F )) =
∑
n,r0∈Z
r2
0<4nN

r1,N,∆(r2
0−4nN),rr0,∆(FE)qnζr0 .

Now by the Theorem and Corollary in Section II.4 in [148] we have

|r1,N,∆(r2
0−4nN),rr0,∆(FE)|2

=
1

4π2
|∆|1/2|r2

0 − 4nN |1/2 L(FE,∆, 1)L(FE, r
2
0 − 4nN, 1).

Since r0 and n vary this expression vanishes if and only if L(FE,∆, 1) van-

ishes.

Proof of Theorem 5.6. Proposition 5.7 implies that an F ∈ H+
0 (N) with van-

ishing constant term at all cusps maps to a form of weight 1/2 transforming

with representation ρ̃ that is annihilated by the Laplace operator ∆1/2,τ . The-

orem 5.8 then implies, that the lift satis�es the correct growth conditions at

all cusps.

5.3.1 Fourier expansion of the holomorphic part

Now we turn to the computation of the Fourier coe�cients of positive index

of the holomorphic part of the theta lift.
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Let h ∈ L′/L and m ∈ Q>0 with m ≡ sgn(∆)Q(h) (Z). We de�ne a

twisted Heegner divisor on M by

Z∆,r(m,h) =
∑

λ∈Γ0(N)\Lrh,m|∆|

χ∆(λ)∣∣Γλ∣∣ Z(λ).

Here Γλ denotes the stabilizer of λ in Γ0(N).

Let F be a harmonic Maass form of weight 0 in H+
0 (N). Then the twisted

modular trace function is de�ned as follows

tr∆,r(F ;m,h) =
∑

z∈Z∆,r(m,h)

F (z) =
∑

λ∈Γ\L|∆|m,rh

χ∆(λ)

|Γ̄λ|
f(Dλ). (5.14)

Here we need to de�ne a re�ned modular trace function. We let

L+
|∆|m,rh =

{
λ =

(
b

2N
− a
N

c − b
2N

)
∈ L|∆|m,rh ; a ≥ 0

}
,

and similarly

L−|∆|m,rh =

{
λ =

(
b

2N
− a
N

c − b
2N

)
∈ L|∆|m,rh ; −a > 0

}
,

and de�ne modular trace functions

tr+
∆,r(F ;m,h) =

∑
λ∈Γ\L+

|∆|m,rh

χ∆(λ)

|Γ̄λ|
f(Dλ)

and

tr−∆,r(F ;m,h) =
∑

λ∈Γ\L−|∆|m,rh

sgn(∆)χ∆(λ)

|Γ̄λ|
f(Dλ).

Theorem 5.10. Let F be a harmonic Maass form of weight 0 in H+
0 (N),

m > 0, and h ∈ L′/L. The coe�cients of index (m,h) of the holomorphic

part of the lift I∆,r(τ, F ) are given by
√

∆

2
√
m

(
tr+

∆,r(F ;m,h)− tr−∆,r(F ;m,h)
)
. (5.15)
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Proof. To ease notation we start proving the result when ∆ = 1. Using the

arguments of the proof of Theorem 5.5 in [6] it is straightforward to later

generalize to the case ∆ 6= 1.

We consider the Fourier expansion of
∫
M
F (z)Θ(τ, z, ϕ)dµ(z), namely

∑
h∈L′/L

∑
m∈Q

 ∑
λ∈Lm,h

∫
M

F (z)v1/2ϕ0(
√
vλ, z)dµ(z)

 e2πimτ . (5.16)

We denote the (m,h)-th coe�cient of the holomorphic part of (5.16) by

C(m,h). Using the usual unfolding argument implies that

C(m,h) =
∑

λ∈Γ\Lm,h

1

|Γ̄λ|

∫
D

F (z)v1/2ϕ0(
√
vλ, z)dµ(z)

=
∑

λ∈Γ\L+
m,h

1

|Γ̄λ|

∫
D

F (z)v1/2ϕ0(
√
vλ, z)dµ(z)

+
∑

λ∈Γ\L−m,h

1

|Γ̄λ|

∫
D

F (z)v1/2ϕ0(
√
vλ, z)dµ(z).

Since ϕ0(−
√
vλ, z) = −ϕ0(

√
vλ, z) the latter summand equals

−
∑

λ∈Γ\L−m,h

1

|Γ̄−λ|

∫
D

F (z)v1/2ϕ0(−
√
vλ, z)dµ(z).

As in [185] and [57] we rewrite the integral over D as an integral over G(R) =

SL2(R). We normalize the Haar measure such that the maximal compact

subgroup SO(2) has volume 1. We then have∫
D

F (z)ϕ0(
√
vλ, z)dµ(z) =

∫
G(R)

F (gi)ϕ0(±
√
vλ, gi)dg, for λ ∈ Γ \ L±m,h.

Note that in [185] it is assumed that SL2(R) acts transitively on vectors of the

same norm. This is not true. However, SL2(R) acts transitively on vectors

of the same norm satisfying a > 0. Therefore, there is a g1 ∈ SL2(R) such
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that g−1
1 .λ =

√
mλ(i) for λ ∈ L+

m,h. Similarly, there is a g1 ∈ SL2(R) such

that g−1
1 .(−λ) =

√
mλ(i) for λ ∈ L−m,h. So, we have

C(m,h) =
∑

λ∈Γ\L+
m,h

1

|Γ̄λ|
v1/2

∫
G(R)

F (gg1i)ϕ
0
(√

v
√
mg−1.λ(i), i

)
dg

−
∑

λ∈Γ\L−m,h

1

|Γ̄−λ|
v1/2

∫
G(R)

F (gg1i)ϕ
0
(√

v
√
mg−1.λ(i), i

)
dg.

Using the Cartan decomposition of SL2(R) we �nd proceeding as in [185]

that

C(m,h) =∑
λ∈Γ\L+

m,h

1

|Γ̄λ|
F (Dλ)v

1/2Y (
√
mv)−

∑
λ∈Γ\L−m,h

1

|Γ̄−λ|
F (D−λ)v

1/2Y (
√
mv),

(5.17)

where

Y (t) = 4π

∫ ∞
1

ϕ0(tα(a)−1.λ(i), i)
a2 − a−2

2

da

a
. (5.18)

Here α(a) =
(
a 0
0 a−1

)
. We have that

ϕ0(tα(a)−1.λ(i), i) = t(a2 + a−2)e−πt
2(a2−a−2)2

.

Substituting a = er/2 we obtain that (5.18) equals

4πt

∫ ∞
0

cosh(r) sinh(r)e−4πt2 sinh(r)2

dr =
1

2t
.

Thus, we have Y (
√
mv) = 1

2
√
mv

which implies that

C(m,h) =
1

2
√
m

 ∑
λ∈Γ\L+

m,h

1

|Γ̄λ|
F (Dλ)−

∑
λ∈Γ\L−m,h

1

|Γ̄λ|
F (Dλ)

 ,

since |Γ̄λ| = |Γ̄−λ| and Dλ = D−λ.
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Using the methods of [6] it is not hard to see that the (m,h)-th coe�cient

of the twisted lift is equal to

√
∆

2
√
m

 ∑
λ∈Γ\L+

m|∆|,rh

χ∆(λ)

|Γ̄λ|
F (Dλ)−

∑
λ∈Γ\L−

m|∆|,rh

χ∆(−λ)

|Γ̄λ|
F (Dλ)

 .

We have that χ∆(−λ) = sgn(∆)χ∆(λ) which implies the result.

5.3.2 Lift of Poincaré series and constants

In this section we compute the lift of Poincaré series and the constant function

in the case ∆ 6= 1. This will be useful for the computation of the principal

part of the theta lift.

Theorem 5.11. We have

I∆,r(τ, Fm(z, s, 0)) =
2−s+1i

Γ(s/2)

√
πN |∆|ε̄

∑
n|m

(
∆

n

)
F m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2

)
.

Remark. In particular, we have

I∆,r(τ, Fm(z, 1, 0)) = iε̄
√
N |∆|

∑
n|m

(
∆

n

)
F m2

4Nn2 |∆|,−
m
n
r

(
τ,

3

4
,
1

2

)
.

Proof. The proof follows the one in [47, Theorem 3.3] or [4, Theorem 4.3].

Using the de�nition of the Poincaré series (5.10) and an unfolding argument

we obtain

I∆,r(τ, Fm(z, s, 0)) =
1

Γ(2s)

∫
Γ∞\H

Ms,0(4πmy)e(−mx)Θ∆,r(τ, z, ϕ)dµ(z).

By Proposition 5.3 this equals

− ε̄ N

Γ(2s)2i

∞∑
n=1

(
∆

n

)
n
∑

γ∈Γ̃∞\Γ̃

I(τ, s,m, n)|1/2,ρ̃K γ,
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where

I(τ, s,m, n) =

∫ ∞
y=0

∫ 1

x=0

y2Ms,0(4πmy)e(−mx) exp

(
−πn

2Ny2

|∆|v

)
× v−1/2

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλ
dxdy

y2
.

Identifying K ′ = Z
(

1/2N 0
0 −1/2N

)
we �nd that

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλ =
∑
b∈Z

e

(
−|∆| b

2

4N
τ̄ − nbx

)
erb.

Inserting this in the formula for I(τ, s,m, n), and integrating over x, we see

that I(τ, s,m, n) vanishes whenever n - m and the only summand occurs for

b = −m/n, when n | m. Thus, I(τ, s,m, n) equals

v−1/2e

(
−|∆| m

2

4Nn2
τ̄

)
·
∫ ∞
y=0

Ms,0(4πmy) exp

(
−πn

2Ny2

|∆|v

)
dy e−rm/n.

(5.19)

To evaluate the integral in (5.19) note that (see for example (13.6.3) in [1])

Ms,0(4πmy) = 22s−1Γ

(
s+

1

2

)√
4πmy · Is−1/2(2πmy).

Substituting t = y2 yields∫ ∞
y=0

Ms,0(4πmy) exp

(
−πn

2Ny2

|∆|v

)
dy

= 22s−1Γ

(
s+

1

2

)∫ ∞
y=0

√
4πmy Is−1/2(2πmy) exp

(
−πn

2Ny2

|∆|v

)
dy

= 22s−1Γ

(
s+

1

2

)√
mπ

∫ ∞
t=0

t−1/4Is−1/2(2πmt1/2) exp

(
−πn

2Nt

|∆|v

)
dt.

The last integral is a Laplace transform and is computed in [116] (see (20)

on p. 197). It equals

Γ
(
s
2

+ 1
2

)
Γ
(
s+ 1

2

) (πm)−1

(
πn2N

|∆|v

)−1/4

exp

(
πm2|∆|v

2n2N

)
M− 1

4
, s
2
− 1

4

(
πm2|∆|v
n2N

)
.
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Therefore, we have that I(τ, s,m, n) equals

22s−1Γ

(
s

2
+

1

2

)√
|∆|
πNn2

e

(
−m

2|∆|u
4n2N

)
Ms/2+1/4,1/2

(
πm2|∆|v
n2N

)
e−rm/n.

Putting everything together we obtain the following for the lift of Fm(z, s, 0)

− 22s−2Γ(s/2 + 1/2)ε̄

Γ(2s)i

√
N |∆|
π

∑
n|m

(
∆

n

)

×
∑

γ∈Γ̃∞\Γ̃

[
e

(
−m

2|∆|u
4Nn2

)
Ms/2+1/4,1/2

(
πm2|∆|v
n2N

)
e−rm/n

]
|1/2,ρ̃K γ

= − 2−s+1

iΓ(s/2)

√
πN |∆|ε̄

∑
n|m

(
∆

n

)
F m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2

)
.

We de�ne

ΘK(τ) =
∑
λ∈K′

e(Q(λ)τ)eλ+K .

Theorem 5.12. Let N = 1 and ∆ < 0 (for ∆ > 0 and N = 1 the lift

vanishes), ε∆(n) =
(

∆
n

)
and L (ε∆, s) be the Dirichlet L-series associated

with ε∆. We have

I∆,r(τ, 1) =
ε̄ i

π
|∆|L (ε∆, 1) ΘK(τ).

Proof. This result follows analogously to [55, Theorem 7.1, Corollary 7.2]

and [6, Theorem 6.1]. We compute the lift of the nonholomorphic weight 0

Eisenstein series and then take residues at s = 1/2. Let z ∈ H, s ∈ C and

E0(z, s) =
1

2
ζ∗(2s+ 1)

∑
γ∈Γ∞\SL2(Z)

(=(γz))s+
1
2 ,

where ζ∗(s) is the completed Riemann Zeta function. The Eisenstein series

E0(z, s) has a simple pole at s = 1
2
with residue 1

2
. Using the standard
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unfolding trick we obtain

I∆,r(τ, E0(z, s)) = ζ∗(2s+ 1)

∫
Γ∞\H

Θ∆,r(τ, z, ϕ)ys+
1
2dµ(z).

By Proposition 5.3 we have that this equals

− ζ∗(2s+ 1)
ε̄

2i

∑
n≥1

n

(
∆

n

) ∑
γ∈Γ̃∞\Γ̃

φ(τ)−1ρ̃−1
K (γ)

1

=(γτ)1/2

×
∫ ∞
y=0

ys+
1
2 exp

(
− πn2y2

|∆|=(γτ)

)
dy

×
∫ 1

x=0

∑
λ∈K′

e

(
λ2τ̄

2|∆|
− 2λnx

)
erλdx.

The integral over x equals e0 and the one over y equals

1

2
Γ

(
s

2
+

3

4

)
(|∆|=(γτ))

s
2

+ 3
4π−

s
2
− 3

4n−s−
3
2 .

Thus, we have

I∆,r(τ, E0(z, s)) = −ζ∗(2s+ 1)
ε̄

2i
Γ

(
s

2
+

3

4

)
|∆|

s
2

+ 3
4π−

s
2
− 3

4

× L
(
ε∆, s+

1

2

)
1

2

∑
γ∈Γ̃∞\Γ̃

(v
1
2

(s+ 1
2

)e0)|1/2,Kγ.

We now take residues at s = 1/2 on both sides. Note that the residue of the

weight 1/2 Eisenstein series is given by (see [171, Proof of Proposition 5.14])

ress=1/2

1

2

∑
γ∈Γ̃∞\Γ̃

(v
1
2

(s+ 1
2

)e0)|1/2,Kγ

 =
6

π
ΘK(τ).

We have ζ∗(2) = π/6 which concludes the proof of the theorem.
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5.4 General version of Theorem 1.17 and its

proof

Here we give the general version of Theorem 1.17, give its proof, and then

conclude with some numerical examples.

We begin with some notation. Let L be the lattice of discriminant 2N

de�ned in Section 5.2.1 and let ρ = ρ1 be as in Section 5.2.2. Let FE ∈
Snew2 (Γ0(NE)) be a normalized newform of weight 2 associated to the elliptic

curve E/Q. Let ε ∈ {±1} be the eigenvalue of the Fricke involution on

FG. If ε = 1, we put ρ = ρ̄ and assume that ∆ is a negative fundamental

disriminant. If ε = −1 we put ρ = ρ and assume that ∆ is a positive

fundamental discriminant. There is a newform gE ∈ Snew3/2,ρ mapping to FE

under the Shimura correspondence. We may normalize gE such that all its

coe�cients are contained in Q.
Recall that

ẐE(z) = ζ(ΛE; EE(z))− S(ΛE)EE(z)− deg(φE)

4π||FE||2
EE(z),

and ME(z) is chosen such that ẐE(z) − ME(z) is holomorphic on H. By

a`,ẐE(0) and a`,ME
(0) we denote the constant terms of these two functions at

the cusp `.

We then let

Ẑ∗E(z) =
1√
|∆|N

ẐE(z)−
∑

`∈Γ\Iso(V )

a`,ẐE(0)

 .

Analogously, we let

M∗
E(z) =

1√
|∆|N

ME(z)−
∑

`∈Γ\Iso(V )

a`,ME
(0))

 .

Then Ẑ∗E(z)−M∗
E(z) is a harmonic Maass form of weight 0.
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By fE,∆,r = fE we denote the twisted theta lift of Ẑ∗E(z) −M∗
E(z) as in

Section 5.3.

We begin with some notation. Let L be the lattice of discriminant 2N

de�ned in Section 5.2.1 and let ρ = ρ1 be as in Section 5.2.2. Let k ∈ 1
2
Z\Z.

The space of vector-valued holomorphic modular formsMk,ρ̄ is isomorphic to

the space of skew holomorphic Jacobi forms Jskewk+1/2,N of weight k + 1/2 and

index N . Moreover, Mk,ρ is isomorphic to the space of holomorphic Jacobi

forms Jk+1/2,N . The subspace Snewk,ρ̄ of newforms of the cusp forms Sk,ρ̄ is

isomorphic as a module over the Hecke algebra to the space of newforms

Snew,+2k−1 (Γ0(N)) of weight 2k−1 for Γ0(N) on which the Fricke involution acts

by multiplication with (−1)k−1/2. The isomorphism is given by the Shimura

correspondence [273]. Similarly, the subspace Snewk,ρ of newforms of Sk,ρ is

isomorphic as a module over the Hecke algebra to the space of newforms

Snew,−2k−1 (Γ0(N)) of weight 2k−1 for Γ0(N) on which the Fricke involution acts

by multiplication with (−1)k+1/2 [148]. Let ε be the eigenvalue of the Fricke

involution on G.

The Hecke L-series of any G ∈ Snew,±2k−1 (Γ0(N)) satis�es a functional equa-

tion under s 7→ 2k − 1− s with root number −ε. If G ∈ Snew,±2k−1 (Γ0(N)) is a

normalized newform (in particular a common eigenform of all Hecke opera-

tors), we denote by FG the number �eld generated by the Hecke eigenvalues

of G. It is well known that we may normalize the preimage of G under the

Shimura correspondence such that all its Fourier coe�cients are contained in

FG.

Theorem 5.13. Assume that E/Q is an elliptic curve of square free conduc-

tor NE, and suppose that FE|2WNE = εFE. Denote the coe�cients of fE(τ)

by c±E(h, n). Then the following are true:

(i) If d 6= 1 is a fundamental discriminant and r ∈ Z such that d ≡
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r2 (mod 4NE), and εd < 0, then

L(Ed, 1) = 8π2||FE||2||gE||2
√
|d|
NE

· c−E(εd, r)2.

(ii) If d 6= 1 is a fundamental discriminant and r ∈ Z such that d ≡
r2 (mod 4NE) and εd > 0, then

L′(Ed, 1) = 0 ⇐⇒ c+
E(εd, r) ∈ Q ⇐⇒ c+

E(εd, r) ∈ Q.

Remark. In contrast to Bruinier and Ono in [47] we are able to relate the

weight 1/2 form to the elliptic curve in a direct way.

Proof. To prove Theorem 5.13, we shall employ the results in Section 7 in [47].

It su�ces to prove that fE can be taken for f in Theorem 7.6 and 7.8 in [47].

Therefore, we need to prove that fE has rational principal part and that

ξ1/2(fE) ∈ Rg, where g is the preimage of FE under the Shimura lift. (In

the case we consider it su�ces to require that ξ1/2(f) ∈ Rg in [47, Theorem

7.6].)

We �rst prove that fE has rational principal part at the cusp∞. We write

Ẑ∗E(z)−M∗
E(z) as a linear combination of Poincaré series and constants, i.e.

Ẑ∗E(z)−M∗
E(z) = C +

1√
|∆|N

∑
m>0

aẐE(−m)Fm(z, 1, 0)

+
1√
|∆|N

∑
k>0

aME
(−k)Fk(z, 1, 0).

Here C is a constant and the coe�cients aẐE(−m) and aME
(−k) are rational

by construction.

Then, by Theorem 5.11 and Theorem 5.12 the coe�cients of the principal

part of fE are rational. For the other cusps of Γ0(N) this follows by the

equivariance of the theta lift under O(L′/L) and the fact that we can identify

O(L′/L) with the group generated by the Atkin-Lehner involutions.
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By construction we have

ξ0

(
Ẑ∗E(z)−M∗

E(z)
)

=
−deg(φE)√
|∆|N ||FE||2

FE.

At the same time Theorem 5.8 implies that

ISh∆,r

(
−deg(φE)√
|∆|N ||FE||2

FE

)
= 2
√
Nξ1/2(fE).

Thus, we have that ξ1/2(fE) ∈ Rg.

5.5 Examples

Here we give examples which illustrate the results proved in this paper.

Example 5.14. For X0(11), we have a single isogeny class. The strong Weil

curve

E : y2 + y = x3 − x2 − 10x− 20,

has sign of the functional equation equal to +1 and the Mordell-Weil group

E(Q) has rank 0. In terms of Dedekind's eta-function, we have that

FE(z) = η2(z)η2(11z) = q−2q2−q3+2q4+q5+2q6−2q7−2q9−2q10+q11−. . . .

We �nd that the corresponding mock modular form Ẑ+
E(z) is

Ẑ+
E(z) = q−1 + 1 + 0.9520...q + 1.5479...q2 + 0.3493...q3 + 1.9760...q4 −O(q5).

The apparent transcendence of these coe�cients arise from S(ΛE) = 0.381246 . . . .

We �nd that Ω11(FE) = 0.2538418... which is 1/5 of the real period of E.

This 1/5 is related to the fact that the Mordell-Weil group has a cyclic tor-

sion subgroup of order 5. A short calculation shows that the expansion of

ZE(z) at the cusp zero is given by

Ẑ+
E(z)|0

(
0 −1

11 0

)
= Ẑ+

E(z)|U(11) +
12

5
.



139

In particular, the constant term is 17/5.

We see that p = 5 is ordinary forX0(11). Here we illustrate Theorem 1.16.

As a 5-adic expansion we have that

SE(5) = 4 + 2 · 52 + 4 · 53 + . . .

which can be thought of as a 5-adic expansion of S(ΛE) given above. It turns

out that

lim
n→+∞

[
q d
dq
ζ(ΛE; EE(z))

]
|T (5n)

aE(5n)
= SE(5)FE(z)

as a 5-adic limit. To illustrate this phenomenon, we let

Tn(E, z) :=

[
q d
dq
ζ(ΛE; EE(z))

]
|T (5n)

aE(5n)
.

We then have that

T1(E, z)− 4FE(z) = −5q−5 − 50
3
q − 65

3
q2 + . . . ≡ 0 (mod 5)

T2(E, z)− (4 + 0 · 5)FE(z) = 25
4
q−25 − 25

6
q + 925

3
q2 − . . . ≡ 0 (mod 52)

...

T4(E, z)− (4 + 2 · 52 + 4 · 53)FE(z) = −625
11
q−625 + 54·61301717918

33
q + . . . ≡ 0 (mod 54) .

Example 5.15. Here we illustrate Theorem 1.17 using the following numerical

example computed by Strömberg [51]. We consider the elliptic curve 37a1

given by the Weierstrass model

E : y2 + y = x3 − x.

The sign of the functional equation of L(E, s) is −1, and E(Q) has rank 1.

The q-expansion of FE(z) begins with the terms

FE(z) = q−2q2−3q3 +2q4−2q5 +6q6−q7 +6q9 +4q10−· · · ∈ Snew2 (Γ0(37)) .
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Using Remark 3, we �nd that the corresponding mock modular form is

Ẑ+
E(z) = q−1+1+2.1132...q+2.3867...q2+4.2201...q3+5.5566...q4+8.3547...q5+O(q6).

It turns out that the weight 1/2 harmonic Maass form fE(z) = I−3(τ, Ẑ+
E(z))

corresponds to the Poincaré series M−3/148,21 (see Section 5.2.3)). Using

Sage [277], Strömberg and Bruinier computed all values of L′(Ed, 1) for fun-

damental discriminants d > 0 such that
(
d
37

)
= 1 and |d| ≤ 15000. The

following table illustrates Theorem 1.17.

d c+(d) L′(Ed, 1) rk(Ed(Q))

1 −0.2817617849 . . . 0.3059997738 . . . 1

12 −0.4885272382 . . . 4.2986147986 . . . 1

21 −0.1727392572 . . . 9.0023868003 . . . 1

28 −0.6781939953 . . . 4.3272602496 . . . 1

33 0.5663023201 . . . 3.6219567911 . . . 1
...

...
...

...

1489 9 0 3
...

...
...

...

4393 66 0 3

Stephan Ehlen numerically con�rmed that c+(d) = 1
2
√
d

(
tr+
−3(Ẑ+

E(z); d)− tr−−3(Ẑ+
E(z); d)

)
using Sage [277].

Example 5.16. In [308] Zagier de�nes the generating functions for the twisted

traces of the modular invariant. For coprime fundamental discriminants d <

0 and D > 1, he sets

fd = q−d +
∑
D>0

 1√
D

∑
Q∈QdD\Γ

χ(Q)j(αQ)

 qD,

where QdD are the quadratic forms of discriminant dD, χ(Q) =
(
D
p

)
, where

p is a prime represented by Q and αQ is the corresponding CM-point.
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With d = −∆ and D = m we rediscover a vector-valued version of his

results. For example

I−3(τ, j−744) = f3 = q−3−248q+26752q4−85995q5+1707264q8−4096248q9+· · · .
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Chapter 6

SU(2)-Donaldson Invariants

6.1 Some relevant classical functions

Here we �x notation concerning theta functions, and we recall a few standard

facts about Dedekind's eta-function and the nearly modular Eisenstein series

E2(τ). We use the following normalization for the Jacobi theta function

ϑab(v|τ) =
∑
n∈Z

q
(2n+a)2

8 eπi (2n+a)(v+ b
2

), (6.1)

where a, b ∈ {0, 1}, v ∈ C, q = exp(2πiτ), τ = x + iy ∈ H, and H is

the complex upper half-plane. The relation to the standard Jacobi theta

functions is summarized in the following table:

ϑ1(v|τ) = ϑ11(v|τ) ϑ1(0|τ) = 0 ϑ′1(0|τ) = −2πη3(τ)

ϑ2(v|τ) = ϑ10(v|τ) ϑ2(0|τ) =
∑

n∈Z q
(2n+1)2

8 ϑ′2(0|τ) = 0

ϑ3(v|τ) = ϑ00(v|τ) ϑ3(0|τ) =
∑

n∈Z q
n2

2 ϑ′3(0|τ) = 0

ϑ4(v|τ) = ϑ01(v|τ) ϑ4(0|τ) =
∑

n∈Z(−1)n q
n2

2 ϑ′4(0|τ) = 0

(6.2)
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Here η(τ) is the Dedekind eta-function with

η3(τ) =
∞∑
n=0

(−1)n (2n+ 1) q
(2n+1)2

8 . (6.3)

We will also use the notation ϑj(τ) = ϑj(0|τ) for j = 2, 3, 4, and

ϑ2(τ) = 2 Θ2

(τ
8

)
, ϑ3(τ) = Θ3

(τ
8

)
, ϑ4(τ) = Θ4

(τ
8

)
. (6.4)

Also, we have that E2(τ) is the normalized nearly modular weight 2 Eisenstein

series

E2(τ) := 1− 24
∞∑
n=1

∑
d|n

d qn . (6.5)

6.2 SU(2)-Donaldson invariants on CP2

Here we recall a closed formula expression for these Donaldson invariants

which is due to Göttsche and his collaborators [141, 143], and we recall the

conjecture of Moore and Witten in this case. We then conclude this section

with Theorem 6.5 which we shall use to prove Theorem 1.20.

The Donaldson invariants of a smooth, compact, oriented, simply con-

nected Riemannian four-manifold (X, g) without boundary are de�ned by

using intersection theory on the moduli space of anti-self-dual instantons

for the gauge groups SU(2) and SO(3) [142]. Given a homology orientation

some cohomology classes on the instanton moduli space can be associated to

homology classes of X through the slant product and then evaluated on a

fundamental class. We de�ne

A(X) := Sym(H0(X,Z)⊕H2(X,Z)),

and we regard the Donaldson invariants as the functional

DX,gw2(E) : A(X)→ Q , (6.6)
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where w2(E) ∈ H2(X,Z2) is the second Stiefel-Whitney class of the gauge

bundles which are considered. Since X is simply connected, there is an

integer class 2λ0 ∈ H2(CP2,Z) that is not divisible by two and whose mod-

two reduction is w2(E). Let {si}i=1,...,b2 be a basis of the two-cycles of X.

We introduce the formal sum S =
∑b2

i=1 κ
i si, where κi are complex numbers.

The generator of the zero-class of X will be denoted by x ∈ H0(X,Z). The

Donaldson-Witten generating function is

ZDW(p, κ) = DX,gw2(E)(e
p x+S) , (6.7)

so that the Donaldson invariants are read o� from the expansion of (6.7) as

the coe�cients of powers of p and κ = (κ1, . . . , κb2).

In the case of the complex projective plane CP2, we have b2 = b+
2 = 1. The

Fubini-Study metric g on CP2 is Kähler with the Kähler form K = i
2
gab̄ dz

a∧
dzb̄. We denote the �rst Chern class of the dual of the hyperplane bundle

over CP2 by H = K/π, so that
∫
CP2 H2 = 1, c1(CP2) = 3 H, and p1(CP2) =

3 H2. The Poincaré dual h of H is a generator of the rank-one homology

group H2(CP2,Z). The SO(3)-bundles on four-dimensional manifolds are

classi�ed by the second Stiefel-Whitney class w2(E) ∈ H2(CP2,Z2), and the

�rst Pontrjagin class p1(E) ∈ H4(CP2,Z), such that

p1(E)[CP2] ≡ w2
2(E)[CP2] (mod 4) .

Since CP2 is simply connected, there is an integer class 2λ0 ∈ H2(CP2,Z)

whose mod-two reduction is w2(E). Then, there is a smooth complex two-

dimensional vector bundle ξ → CP2 with the Chern classes c1(ξ) = 2λ0 and

c2(ξ), such that c2
1(ξ)− 4 c2(ξ) = p1(E). We denote by M(c1, c2) the moduli

space of rank-two vector bundles ξ over CP2 with Chern classes c1, c2. It

is known that M(c1, c2) only depends on the discriminant c2
1 − 4c2 with the

discriminant being negative for stable bundles. The bundle ξ can be reduced

to an SU(2)-bundle if and only if c1(ξ) = 0 and a SO(3)-bundle, which does
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not arise as the associated bundle for the adjoint representation of a SU(2)-

bundle, satis�es w2(E) 6= 0.

From now on, we will restrict ourselves to w2(E) = 0, i.e., the case of

SU(2)-bundles and where c1(ξ) = 0 and c2(ξ) = kH2 with k ∈ N . The mod-

uli space of anti-selfdual irreducible SU(2)-connections with c2(ξ)[CP2] = k

modulo gauge transformations is then the smooth, projective variety M(0, k)

of dimension 2dk = 8k − 6 [280]. The generating function (6.7) can be de-

scribed as follows

ZDW(p, κ) =
∑
m,n≥0

Φm,n
pm

m!

κn

n!
, (6.8)

where S = κ h. Here Φm,n is the intersection number obtained by evaluating

the top-dimensional cup product of the mth power of a universal four-form

and the nth power of a two-form on the fundamental class of the Uhlenbeck

compacti�cation of M(0, k) such that 4m + 2n = 8k − 6 with k ∈ N. Thus,
for dimensional reasons we have Φm,n = 0 for 2m+ n 6≡ 1 (mod 4)

6.2.1 The work of Göttsche and his collaborators

The work of Göttsche and his collaborators [141,143] gives a closed expression

for the SU(2) Donaldson invariants for the complex projective plane. Using

the blowup formula for the Donaldson invariants, Göttsche [141] derived

a closed formula expression for Φm,n assuming the truth of the Kotschick-

Morgan Conjecture. Recently, Göttsche, Nakajima, Hiraku, and Yoshioka

[143] have unconditionally proved these formulas. His work was based on

earlier work with Ellingsrud [115] and it extended the results previously ob-

tained by Kotschick and Lisca [197] up to an overall sign convention. His

work with Zagier [144] was an application of [141]. We state [141, Thm. 3.5,

(1)] using the original sign convention of [115, 197]. We write the result

in terms of the Jacobi theta-functions ϑ2, ϑ3, ϑ4. In this way, we obtain a

closed formula expression for Φm,n, which we shall later show equals the the
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Moore-Witten prediction based on the u-plane integral.

Theorem 6.1 (Göttsche [141]). Assuming the notation and hypotheses above,

then we have that the only non-vanishing coe�cients in the generating func-

tion in (6.8) satisfy

Φm,2n+1 =
n∑
l=0

l∑
j=0

(−1)n+j+1 22n−3l+4

3l
(2n+ 1)!

(2n− 2l + 1)! j! (l − j)!

×Coeffq0

(
ϑ8

4(τ) [ϑ4
2(τ) + ϑ4

3(τ)]
m+j

[ϑ2(τ)ϑ3(τ)]2m+2n+5 El−j
2 (τ) K2(n−l)(τ)

)
,

(6.9)

where m,n ∈ N0, Coeffq0 is the constant term of a series expansion in q =

exp (2πiτ). The series Kt(τ) is

Kt(τ) := q
1
8

∞∑
β=1

∞∑
α=β

(−1)α+β (2α + 1) βt+1 q
α(α+1)−β2

2 . (6.10)

Proof. The following table summarizes the quantities used by Göttsche [141,

Thm. 3.5, (1)] and in this article:

Göttsche Present Paper Göttsche Present Paper

z S θ(τ) ϑ4(τ)

x p f(τ) 1
2
√
i
ϑ2(τ)ϑ3(τ)

n 2β + 1, β ≥ 0 ∆2(2τ)
∆(τ) ∆(4τ) −16

ϑ8
4(τ)

[ϑ2(τ)ϑ3(τ)]4

a 2α, α ≥ β + 1 G2(2τ) − 1
24 E2(τ)

τ τ−1
2 e3(2τ) 1

12

[
ϑ4

2(τ) + ϑ4
3(τ)

]
q −q 1

2
−3i e3(2τ)
f(τ)2

ϑ4
2(τ)+ϑ4

3(τ)

[ϑ2(τ)ϑ3(τ)]2
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We use (
n

2

√
i

f(τ)

)2(n−l) (
− i

2 f(τ)2
(2G2(2τ) + e3(2τ))

)l
=

(−1)n+l

2l 3l
(2β + 1)2(n−l) (−E2(τ) + [ϑ4

2(τ) + ϑ4
3(τ)])

l

[ϑ2(τ)ϑ3(τ)]2n
.

An expansion of the exponential in [141, Thm. 3.5, (1)] then yields (6.9).

6.2.2 The u-plane integral and the work of Moore and

Witten

Here we recall the theory of the u-plane and the work of Moore and Witten.

From now on we will assume that (X, g) is a smooth, compact, oriented,

simply connected Riemannian four-manifold without boundary and b+
2 = 1.

The u-plane integral Z is a generating function in the variables p and κ

whose coe�cients are the integrals of certain modular forms over the funda-

mental domain of the group Γ0(4). It depends on the period point ω, the

lattice H2(X,Z) together with the intersection form (. , .), the second Stiefel-

Whitney classes of the gauge bundle w2(E), and the tangent bundle w2(X),

whose integral liftings are denoted by 2λ0 and w2 respectively. The u-plane

integral is non-vanishing only for manifolds with b+
2 = 1. The explicit form

of Z for simply connected four-manifolds was �rst introduced in [241]. For

the reader's convenience, we quickly review the explicit construction of the

u-plane in this chapter. Our approach to the u-plane integral, as well as its

normalization, closely follows the approach in [200,216,232].

We will denote the self-dual and anti-self-dual projections of any two-form

λ ∈ H2(X, Z) + λ0 by λ+ = (λ, ω)ω and λ− = λ− λ+ respectively. We �rst
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introduce the integral

G(ρ) =

∫ reg

Γ0(4)\H

dxdy

y
3
2

f̂(p, κ) Θ̄(ξ) . (6.11)

In this expression f̂(p, κ) is the almost holomorphic modular form given by

f̂(p, κ) =

√
2

64π

ϑσ4
h3 · f2

e2 p u+S2T̂ , (6.12)

where σ is the signature of X and S2 = (S, S) =
∑

i,j κ
iκj(si, sj). Also, Θ̄ is

the Siegel-Narain theta function

Θ̄(ξ) = exp

[
π

2 y

(
ξ̄2

+ − ξ̄2
−

)]
×

∑
λ∈H2+λ0

exp
[
− iπτ̄(λ+)2 − iπτ(λ−)2 − 2πi (λ, ξ̄) + πi (λ,w2)

]
,

(6.13)

where ξ̄ = ξ̄+ + ξ̄−, ξ̄+ = ρ y hω, ξ̄− = S−/(2πh), and ρ ∈ R. The Siegel-

Narain theta function only depends on the lattice data (H2(X), ω, λ0, w2).

We have denoted the intersection form in two-cohomology by (. , .), and we

used Poincaré duality to convert cohomology classes into homology classes.

In the above expressions, u, T , h, and f2 are the modular forms de�ned as

follows:

u =
ϑ4

2 + ϑ4
3

2 (ϑ2ϑ3)2
, h = 1

2
ϑ2 ϑ3 ,

T = − 1

24

(
E2

h2
− 8u

)
, f2 =

ϑ2 ϑ3

2ϑ8
4

.

(6.14)

Note that T does not transform well under modular transformations, due to

the presence of the second normalized Eisenstein series E2 = E2(τ). There-

fore, in (6.12) we have used the related form T̂ = T + 1/(8πyh2) which is

not holomorphic but transforms well under modular transformations. We

also de�ne the related holomorphic function f(p, κ) as in (6.12), but with T

instead of T̂ . The u-plane integral is de�ned to be

Z
(
X,ω, λ0, w2

)
=

[
(S, ω) + 2

d

dρ

]∣∣∣∣
ρ=0

G(ρ) . (6.15)
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If there is no danger of confusion we suppress the arguments (X,ω, λ0, w2)

of Z.

Two remarks.

1) This regularized u-plane integral can be thought of as the regularized

Peterson inner product of two half-integral weight modular forms on Γ0(4),

where the regularization is obtained by integrating over the truncated fun-

damental domain for Γ0(4) where neighborhoods of the cusps are removed.

2) De�nition (6.15) agrees with the de�nition given in [216]. However, com-

pared to the original de�nition in [241], a factor of exp [2πi(λ0, λ0) + πi(λ0, w2)]

is missing. For the case considered in this article, this factor is equal to one.

The regularization procedure applied in the de�nition of the integral

(6.11) was described in detail in [241]. It de�nes a way of extracting cer-

tain contributions for each boundary component near the cusps of Γ0(4)\H.
Since the cusps are located at τ =∞, τ = 0, and τ = 2, we obtain Zu as the

sum of these contributions from the cusps:

Zu = Zτ=0 + Zτ=2 + Zτ=∞ . (6.16)

We now apply the construction of the u-plane integral to X = CP2. We

denote the integral lifting of w2(E) by 2λ0 = aH ∈ H2(CP2,Z), and the

integral lifting of w2(CP2) by w2 = −bH ∈ H2(CP2,Z). The following

lemma then follows immediately from the de�nition:

Lemma 6.2. On X = CP2 let ω = H be the period point of the metric. Let

2λ0 = aH with a ∈ {0, 1} be an integral lifting of w2(E). For (X,ω, λ0, w2 =

−H), the Siegel-Narain theta function is

Θ̄ = exp

(
π

2 y
ξ̄2

+

)
ϑa1

(
(ξ+,H)

∣∣∣τ), (6.17)

where ξ̄ = ξ̄+ = ρ y hω.
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It was shown in [241] that for σ = b+
2 − b−2 = 1 and any value of a, we have

Zτ=0 = Zτ=2 = 0 , (6.18)

and so Zu = Zτ=∞. We restrict ourselves to the case a = 0, i.e., the case of

SU(2)-bundles on CP2. The u-plane integral in (6.15) can be expanded as

follows

Zτ=∞ =
∑

m,n∈N0

pm

m!

κ2n+1

(2n+ 1)!
Dm,n, (6.19)

where

Dm,n := −
√

2

32π

n∑
l=0

∫ reg

Γ0(4)\H

dx dy

y
3
2

Rmnl Ê
l
2 ϑ01(0|τ) . (6.20)

For m,n ∈ N0 and 0 ≤ l ≤ n we have set

Rmnl := (−1)l+1 (2n+ 1)!

l! (n− l)!
2m−3l−1

3n
ϑ4 · um+n−l

h3+2l · f2

, (6.21)

where u, h, and f2 were de�ned in (6.14). To evaluate the regularized u-

plane integral we introduce the non-holomorphic modular form Qab(τ) =

Q+
ab(τ) +Q−ab(τ) of weight 3/2 such that

8
√

2π i
d

dτ̄
Qab (τ) = y−

3
2 ϑab(0|τ), (6.22)

where a or b must be zero. These non-holomorphic modular forms were con-

structed by Zagier [306] and reviewed in [241]. The holomorphic parts of

Zagier's weight 3/2 Maass-Eisenstein series, which �rst arose [161] in con-

nection with intersection theory for certain Hilbert modular surfaces, are

generating functions for Hurwitz class numbers. The holomorphic part of

Zagier's weight 3/2 Maass-Eisenstein series is the generating function for

Hurwitz class numbers. They have series expansions of the form

Q+
10 (τ) =

1

q
1
8

∑
l>0

H4l−1 q
l
2 ,

Q+
00 (τ) =

∑
l≥0

H4l q
l
2 ,

(6.23)
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where Hα are the Hurwitz class numbers. The �rst nonvanishing Hurwitz

class numbers are as follows:

H0 H3 H4 H7 H8 H11 H12 . . .

−1/12 1/3 1/2 1 1 1 4/3 . . .

The non-holomorphic parts have series expansions of the form

Q−10 (τ) =
1

8
√

2π

∞∑
l=−∞

(l +
1

2
) · Γ

(
−1

2
, 2 π

(
l +

1

2

)2

y

)
q−

(l+1/2)2

2 ,

Q−00 (τ) =
1

8
√

2π

∞∑
l=−∞

l · Γ
(
−1

2
, 2π l2 y

)
q−

l2

2 ,

(6.24)

where Γ(3/2, x) is the incomplete gamma function

Γ(α, x) =

∫ ∞
x

e−t tα−1 dt . (6.25)

The forms Q10 and Q00 combine to form a weight 3/2 form for the modular

group. As explained in [241] the form Q01(τ) = Q00(4τ)−Q10(4τ)+ 1
2
Q00(τ+

1) is modular for Γ0(4) of weight 3/2. We write the holomorphic part as

Q+
01 (τ) =

∑
n≥0

Rn q
n
2 . (6.26)

The �rst nonvanishing coe�cients in the series expansion are as follows:

R0 R1 R2 R3 R4 . . .

−1/8 −1/4 1/2 −1 5/4 . . .

All non-holomorphic parts have an exponential decay since

Γ (α, t) = tα−1 e−t
(
1 +O(t−1)

)
(t→∞) . (6.27)

The following lemma was proved in [241, (9.18)]:
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Lemma 6.3. The weakly holomorphic function

E l [Q01] =
l∑

j=0

(−1)j
(
l

j

)
Γ
(

3
2

)
Γ
(

3
2

+ j
) 22j 3j El−j

2 (τ)

(
q
d

dq

)j
Q01 (τ) (6.28)

is modular for Γ0(4) of weight 2l + 3/2 and satis�es

8
√

2π i
d

dτ̄
E l [Q01] = y−

3
2 Êl

2(τ) ϑ01(0|τ) . (6.29)

The evaluation of the u-plane integral.

It was shown in [241] that the cusp contribution at τ = ∞ to the regular-

ized u-plane integral can be evaluated as follows: in (6.31) we integrate by

parts using the modular forms constructed in Lemma 6.3, i.e., we rewrite an

integrand f as a total derivative using

dx ∧ dy ∂τ̄f =
1

2
dx ∧ dy (∂x + i ∂y) f = − i

2
d
(
f dx+ i f dy

)
.

We carry out the integral along the boundary x = Re(τ) ∈ [0, 4] and y � 1

�xed. This extracts the constant term coe�cient. We then take the limit

y →∞. Since all non-holomorphic parts have an exponential decay, the non-

holomorphic dependence drops out. The following expression for the u-plane

integral was obtained for the gauge group SU(2) in [241]. Additional infor-

mation about the evaluation of the u-plane integral as well as the geometry

of the Seiberg-Witten curve can be found in [225,226].

Theorem 6.4. On X = CP2, let ω = H be the period point of the metric. For

(X,ω, λ0 = 0, w2 = −H), the u-plane integral in the variables p x ∈ H0(X,Z),

S = κ h ∈ H2(X,Z) is

Zu = Zτ=∞ =
∑

m,n∈N0

pm

m!

κ2n+1

(2n+ 1)!
Dm,n, (6.30)

where

Dm,n =
n∑
l=0

Coeffq0

(
Rmnl E l[Q+

01(τ)]
)

(6.31)
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and where Rmnl and E l[Q01(τ)] are de�ned in (6.21) and (6.28) respectively.

For concreteness, we list the �rst nonvanishing coe�cients of the generating

function in Theorem 6.4, i.e., if m+ n = 2(k − 1) for some k ∈ N.

k m n Dm,n Dm,n

1 0 0 −3
2

−1
2
R1 + 13R0

2 0 2 1 −2R2 + 7R1 − 30R0

2 1 1 −1 −1
4
R2 + 1

2
R1 + 6R0

2 2 0 −13
8

− 1
32
R2 − 7

16
R1 + 55

4
R0

6.2.3 Criterion for proving Theorem 1.20

Here we combine the results of the previous two subsections to obtain a

criterion for proving Theorem 1.20.

From a physics point of view, at a high energy scale, the SU(2)-Donaldson

theory is described by the low energy e�ective �eld theory. Thus, the cuspi-

dal contributions to the generating function of the low energy e�ective �eld

theory should be equal to the generating function of the SU(2)-Donaldson

theories The conjecture is equivalent to the assertion that the generating

functions ZDW in (6.8) and Zu in (6.30) are equal. This amounts to proving

that for all m,n ∈ N0 we have

Φm,2n+1 = Dm,n . (6.32)

In particular, the coe�cients in (6.32) vanish for m+n ≡ 1 (mod 2). We will

prove (6.32) by proving:

Theorem 6.5. Theorem 1.20 is equivalent to the vanishing of constant terms,
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for every pair of non-negative integers m and n, of the series

n∑
l=0

l∑
j=0

(−1)j+1 (2n+ 1)!

(n− l)! j! (l − j)!
ϑ8

4(τ) [ϑ4
2(τ) + ϑ4

3(τ)]
m

[ϑ2(τ)ϑ3(τ)]2m+2n+4 El−j
2 (τ)

×

[
(−1)n 22n−3l+4

3l
(n− l)!

(2n− 2l + 1)!

[ϑ4
2(τ) + ϑ4

3(τ)]
j

ϑ2(τ)ϑ3(τ)
K2(n−l)(τ)

− (−1)l 22j−n+3

3n−j
Γ
(

3
2

)
Γ
(
j + 3

2

) ϑ4(τ)
[
ϑ4

2(τ) + ϑ4
3(τ)

]n−l (
q
d

dq

)j
Q+

01 (τ)

]
,

(6.33)

where the series Kt(τ) are de�ned in (6.10).

6.3 The proof of Theorem 1.20

Here we prove Theorem 1.20 by using the theory of non-holomorphic modular

forms and meromorphic Jacobi forms to check the condition in Theorem 6.5.

To this end, we recall the important q-series

Kt(τ) := q
1
8

∞∑
β=1

∞∑
α=β

(−1)α+β (2α + 1) βt+1 q
α(α+1)−β2

2 (6.34)

from (6.10). In the following section we relate K2t(τ) to derivatives of im-

portant power series.

6.3.1 q-series identities

Here we begin with the following elementary identity.

Proposition 6.6. Let ρ = e2πiu and ω = e2πiv, and let Dz = 1
2πi

d
dz
, where z

is one of u, v, or τ . Then we have that

K2t(8τ) = 2−2t−1 D2t+1
u Dv

∑
n∈Z

(−1)nω2n+1q(2n+1)2

1− ρ2ω2q8n+4

∣∣∣∣∣
u=v=0

.
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Proof. By rearranging terms, it is not di�cult to see that the summation on

the right (prior to taking derivatives) is equal to

∑
n≥0

(−1)nω2n+1q(2n+1)2

1− ρ2ω2q4(2n+1)
− ρ−2ω−2q4(2n+1) (−1)nω−(2n+1)q(2n+1)2

1− ρ−2ω−2q4(2n+1)

=
∑
n≥0

(−1)nω2n+1q(2n+1)2

+
∑
n≥0

∑
m≥1

(−1)n
(
ω2n+1+2mρ2m + ω−(2n+1+2m)ρ−2m

)
q(2n+1)2+4m(2n+1).

(6.35)

We then set α = n + m, and β = m. After applying the derivatives,

evaluating at u = v = 0, and factoring out the powers of 2, this becomes

∞∑
β=1

∞∑
α=β

(−1)α+β (2α + 1) β2t+1 q4α2+4α−4β2+1 = K2t(8τ). (6.36)

The summation in the right hand side of the equation in Proposition 6.6

is in the form of an Appell-Lerch function. In the next section, we show how

to write this in terms of Zwegers's µ-function, from which we can infer its

modularity properties.

6.3.2 Work of Zwegers

In his Ph.D. thesis on mock theta functions [311], Zwegers constructs weight

1/2 harmonic weak Maass forms by making use of the transformation prop-

erties of functions which were investigated earlier by Appell and Lerch. Here

we brie�y recall some of his results.

For τ in H and u, v ∈ C \ (Zτ + Z), Zwegers de�nes the function

µ(u, v; τ) :=
ρ1/2

θ(v; τ)
·
∑
n∈Z

(−ω)nqn(n+1)/2

1− ρqn
, (6.37)
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where ρ = e2πiu and ω = e2πiv as above, and

θ(v; τ) :=
∑
ν∈Z+ 1

2

(−1)ν−
1
2ωνqν

2/2. (6.38)

Zwegers's (see Section 1.3 of [311]) proves that µ(u, v, τ) satis�es the following

important properties.

Lemma 6.7. Assuming the notation above, we have that

(1) µ(u, v; τ) = µ(v, u, τ),

(2) µ(u+ 1, v, τ) = −µ(u, v; τ),

(3) ρ−1ωq−
1
2µ(u+ τ, v; τ) = −µ(u, v; τ) + ρ−

1
2ω

1
2 q−

1
8 ,

(4) µ(u, v; τ + 1) = ζ−1
8 µ(u, v; τ) (ζN := e2πi/N)

(5) (τ/i)−
1
2 eπi(u−v)2/τµ(u

τ
, v
τ
;− 1

τ
) = −µ(u, v; τ) + 1

2
h(u− v; τ),

where

h(z; τ) :=

∫ ∞
−∞

eπix
2τ−2πxzdx

cosh πx

Remark. The integral h(z, τ) is known as a Mordell integral.

Lemma 6.7 shows that µ(u, v; τ) is nearly a weight 1/2 Jacobi form, where

τ is the modular variable. Zwegers then uses µ to construct weight 1/2

harmonic weak Maass forms. He achieves this by modifying µ to obtain a

function µ̂ which he then uses as a building block for such Maass forms. To

make this precise, for τ ∈ H and u ∈ C, let

c := Im(u)/Im(τ),
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and let

R(u; τ) :=
∑
ν∈Z+ 1

2

(−1)ν−
1
2

{
sgn(ν)− E

(
(v + c)

√
2Im(τ)

)}
e−2πiνuq−ν

2/2,

(6.39)

where E(z) is the odd function

E(z) := 2

∫ z

0

e−πu
2

du.

Using µ and R, we let

µ̂(u, v; τ) := µ(u, v; τ)− 1

2
R(u− v; τ). (6.40)

Zwegers's construction of weight 1/2 harmonic weak Maass forms depends

on the following theorem (see Section 1.4 of [311]).

Theorem 6.8. Assuming the notation above, we have that
(1) µ̂(u, v; τ) = µ̂(v, u, τ),

(2) µ̂(u+ 1, v, τ) = ρ−1ωq−
1
2µ(u+ τ, v; τ) = −µ̂(u, v; τ),

(3) ζ−1
8 µ̂(u, v; τ + 1) = −(τ/i)−

1
2 eπi(u−v)2/τ µ̂(u

τ
, v
τ
;− 1

τ
) = µ̂(u, v; τ),

(4) µ̂
(

u
cτ+d

, v
cτ+d

; aτ+b
cτ+d

)
= χ(A)−3(cτ + d)

1
2 e−πic(u−v)2/(cτ+d) · µ̂(u, v; τ),

where A =

(
a b

c d

)
, and χ(A) := η(Aτ)/

(
(cτ + d)

1
2η(τ)

)
.

Theorem 6.8 gives the modular transformation properties for µ̂. In the

following section we will writeK2t in terms of µ, and we then use its properties

to complete K0(τ) as a nonholomorphic modular form on Γ0(8).
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6.3.3 Modularity Properties of K0(τ)

We begin with the following proposition.

Proposition 6.9. We have that

K2t(8τ) = 2−2t−1 D2t+1
u Dv

(
ρ−1q−1µ(2u+ 2v + 4τ, 2v; 8τ)θ(2v; 8τ)

)∣∣
u=v=0

.

Moreover, K0(8τ)
η3(8τ)

is the holomorphic part of a weight 3/2 weak Maass which

is modular on Γ0(8), and whose non-holomorphic part is the period integral

of Θ4(τ).

Proof. The �rst statement follows directly from Proposition 6.6 and the def-

inition of the µ function de�ned in (6.37).

To prove the remainder of the proposition, let

K̂0(τ) = 2−1 DuDv

(
ρ−1q−1µ̂(2u+ 2v + 4τ, 2v; 8τ)θ(2v; 8τ)

)∣∣
u=v=0

, (6.41)

so that the holomorphic part of K̂0(τ) is K0(8τ). Suppose A =

(
a b

8c d

)
∈

Γ0(8). Then we note A =

(
a 8b

c d

)
∈ SL2(Z). Using the transformation laws

for µ̂ found in Lemma 6.8, we have

e2πi−u−aτ−b
8cτ+d µ̂

(
2u+ 2v + 4(aτ + b)

8cτ + d
,

2v

8cτ + b
;
a8τ + 8b

c8τ + d

)
=χ(A)−3(−1)

a−1
2 (8cτ + d)1/2e(2πi)−1

4
8cu2

8cτ+d · µ̂(2u+ 2v + 4τ, 2v, 8τ),

(6.42)

which is obtained by substituting u→ u
8cτ+d

, v → v
8cτ+d

, and τ → aτ+b
8cτ+d

into

the expression on the right hand side of (6.41), before taking derivatives.

With a little more algebra, we �nd that

K̂0

(
aτ + b

8cτ + d

)
= χ(A)−3(−1)

a−1
2 (8cτ + d)3K̂0(τ). (6.43)
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Therefore K̂0(τ) is modular on Γ0(8) with weight 3/2. The non-holomorphic

part of K̂0(τ) is

−1

4
DuDvR(2u+ 4τ ; 8τ)θ(2v; 8τ)|u=v=0 =

−1

4
η3(8τ) DuR(2u+ 4τ ; 8τ)|u=0 .

(6.44)

After factoring out η3(8τ), a straightforward calculation gives us that

∂

∂τ̄

−1

4
DuR(2u+ 4τ ; 8τ)|u=0 =

−1

32πy
3
2

Θ4(τ). (6.45)

6.3.4 The proof of Theorem 1.20

Thanks to Theorem 6.5, it su�ces to prove that the di�erences between cer-

tain q-series have vanishing constant term. We shall derive these conclusions

by using di�erential operators, using methods very similar to those found

in Section 8.1 of [227]. For brevity, we describe the n = 0 cases in detail,

and then provide general remarks which are required to justify the remaining

cases.

By (6.26) and Proposition 6.9, we have

8Q+
01(8q) = −1− 2q4 + 4q8 − 8q12 + 10q16 + . . . , (6.46)

and

8
K̂0(τ)

η3(8τ)
= 24q4 + 80q8 + 240q12 + 528q16 . . . . (6.47)

Comparing (6.22) (with 8τ substituted for τ) and (6.45), we see that both of

these are the holomorphic parts of weight 3/2 harmonic weak Maass forms

with equal non-holomorphic parts. Therefore, it follows that

8
K̂0(τ)

η3(8τ)
− 8Q01(8τ) = 1 + 26q4 + 76q8 + 248q12 + 518q16 + . . . (6.48)
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is a modular form. A short calculation shows that

K̂0(τ)

η3(8τ)
−Q01(8τ) =

E∗(4τ)

8Θ4(τ)
(6.49)

where E∗(τ) is the weight 2 Eisenstein series

E∗(τ) := −E2(τ) + 2E2(2τ) = 1 + 24
∞∑
n=1

σodd(n)qn, (6.50)

and σodd(n) denotes the sum of the positive odd divisors of n. Noting that

η3(8τ) = Θ2(τ)Θ3(τ)Θ4(τ), (6.51)

where Θ1, Θ2, and Θ3 are de�ned in (6.4), we can rewrite this as

8K̂0(τ)

Θ2(τ)Θ3(τ)
− 8Θ4(τ)Q01(8τ) = E∗(4τ). (6.52)

For n = 0, Theorem 1.20 is equivalent to the claim, for every m ≥ 0, that

the constant term vanishes in the expression

Θ4(τ)8(16Θ2(τ)4 + Θ3(τ)4)mE∗(4τ)

Θ2(τ)2m+4Θ3(τ)2m+4
. (6.53)

In order to verify this claim, we will �nd if helpful to de�ne

Z(q) :=
E∗(4τ)

Θ2(τ)2Θ3(τ)2
. (6.54)

which has the derivative

q
d

dq
Z(q) =

−2 Θ4(τ)8

Θ2(τ)2Θ3(τ)2
. (6.55)

Here Z(q) is the same as Ẑ0(q) de�ned in Section 8.1 of [227]. We also note

that

16Θ2(τ)4 + Θ3(τ)4 = 1 + 24q4 + 24q2 + · · · = E∗(4τ).
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Using this notation, (6.53) becomes

−1

2(m+ 2)
q
d

dq
Z(q)m+2,

which has a vanishing constant term.

In fact, for each m,n ≥ 0, we �nd a similar phenomenon. For every

non-negative k, de�ne

G`(q) :=
∑̀
j=0

(
`

j

)
(−12)jE2(8τ)`−jΓ(3

2
)

(Θ2(τ)Θ3(τ))2`+2 8jΓ
(

3
2

+ j
)

×

[
(−4)j8K2j(8τ)

Θ2(τ)Θ3(τ)
− 8Θ4(τ)

(
q
d

dq

)j
Q+

01(8τ)

]
.

(6.56)

Using this notation, the criterion given in Theorem 6.5 is equivalent to the

claim that the constant coe�cient of(
q
d

dq
Z(q)

)
Z(q)m

n∑
`=0

(
n

`

)
(−Z(q))n−` G`(τ) (6.57)

is zero for each non-negative m and n. It su�ces to show that G`(q) is a

polynomial in Z(q). We de�ne M∗
0 (Γ0(8)) to be the space of modular func-

tions on Γ0(8) which are holomorphic away from in�nity, and is a subspace

of C((q2)). One can easily verify that M∗
0 (Γ0(8)) is precisely the set of poly-

nomials in Z(q). In order to show that G`(τ) is in M∗
0 (Γ0(8)), we �rst show

that a similar function, H`(q) is in M∗
0 (Γ0(8)). We de�ne the function

H`(q) :=
Θ4(τ)

(Θ2(τ)Θ3(τ))2`+2

∑̀
j=0

(
`

j

)
Γ(3

2
)(−12)jE2(8τ)`−j

Γ
(

3
2

+ j
)

8j

(
q
d

dq

)j
E∗(8τ)

Θ4(τ)
.

(6.58)

We can observe that H`(q) is modular on Γ0(8) with weight 0 by compar-

ing the summation to the expression E `
[
E∗(8τ)
Θ4(τ)

]
, where the bracket operator

E `[f ] :=
∑̀
j=0

(
`

j

)
Γ
(

3
2

)
Γ
(

3
2

+ j
)(−12)jE`−j

2 (τ)

(
q
d

dq

)j
f(τ)
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is de�ned as in equation (9.18) of [241] (See also [77]). This is the bracket

operator used in Lemma 6.3 and, as noted, preserves modularity, but changes

the weight from 3
2
to 3

2
+ 2`. A calculation shows that (Θ2(τ)Θ3(τ))−2 and

Θ4(τ)−1 are holomorphic away from in�nity, which, combined with the fact

that Θ2(τ)Θ3(τ) ∈ Z[[q2]], shows thatH`(τ) is inM∗
0 (Γ0(8)). Hence it su�ces

to show that G`(q)−H`(q) is in M∗
0 (Γ0(8)) as well. From (6.49), we see that

G`(q)−H`(q) =∑̀
j=0

(
`

j

)
Γ(3

2
)(−12)jE2(8τ)`−jΘ4(τ)

(Θ2(τ)Θ3(τ))2`+2 Γ
(

3
2

+ j
)

8j

[
(−4)j8K2j(8τ)

η3(8τ)
−
(
q
d

dq

)j
8K0(8τ)

η3(8τ)

]
.

(6.59)

Using Theorem 6.9, this can be written as

G`(q)−H`(q)

=
Θ4(τ)

(Θ2(τ)Θ3(τ))2`+2

∑̀
j=0

(
`

j

)
Γ(3

2
)(−12)jE2(8τ)`−j

Γ
(

3
2

+ j
)

8j−1

×
[
(−1)jD2j+1

u Dv −Dj
τDuDv

] ρ−1q−1µ(2u+ 2v + 4τ, 2v; 8τ)θ(2v; 4τ)

2η3(8τ)

∣∣∣∣
u=v=0

.

(6.60)

Paying particular attention to the derivatives of the µ-function above, we

use the transformation laws for µ found in Lemma 6.7, and observe that the

Mordel integrals that arise as obstructions to the modular transformation of

(6.60) cancel directly. Therefore an argument similar to the proof that the

bracket operator preserves modularity su�ces to show that G`(q)−H`(q) is

modular with respect to Γ0(8). Some simple accounting shows that G`(q)−
H`(q) is supported on even exponents of q, and hence G`(q) − H`(q) is in

M∗
0 (Γ0(8)). This completes the proof.
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6.3.5 Examples

In the table below, we give the polynomial Pn(x) such that the expression in

the statement of Theorem 6.5 can be written as(
q
d

dq
Z(q1/8)

)(
Z(q1/8)

2

)m
Pn(Z(q1/8)). (6.61)

n Pn(x)

0 1
32
x

1 −1/2

2 13
16
x

3 −11
16
x2 − 87

4 13
16
x3 + 4175

8
x

5 −11
16
x4 − 9607

4
x2 − 80662

6 13
16
x5 + 80153

8
x3 + 5958039

4
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Chapter 7

Moonshine

We brie�y return to a discussion of the history of classical moonshine,

building up to the moonshine towers and the proofs of Theorem 7.10 and

Corollary 7.11 which generalize Theorem 1.27 and Corollary 1.28 form the

introduction.

7.1 Vertex operators and the proof of classical

moonshine

In order to prove Thompson's conjecture, Frenkel�Lepowsky�Meurman gen-

eralized the homogeneous realization of the basic representation of an a�ne

Lie algebra ĝ due, independently, to Frenkel�Kac [124] and Segal [267], in

such a way that Leech's lattice Λ [201, 202]�the unique [78] even self-dual

positive-de�nite lattice of rank 24 with no roots�could take on the role

played by the root lattice of g in the Lie algebra case. In particular, their

construction came equipped with rich algebraic structure, furnished by ver-

tex operators, which had appeared �rst in the physics literature in the late

1960's.

We refer to [124], and also the introduction to [126] for accounts of the

role played by vertex operators in physics (up to 1988) along with a de-

tailed description of their application to the representation theory of a�ne
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Lie algebras. The �rst application of vertex operators to a�ne Lie algebra

representations was obtained by Lepowsky�Wilson in [210].

Borcherds described a powerful axiomatic formalism for vertex operators

in [29]. In particular, he introduced the notion of a vertex algebra, which

can be regarded as similar to a commutative associative algebra, except that

multiplications depend upon formal variables zi, and can be singular, in

a certain formal sense, along the canonical divisors {zi = 0}, {zi = zj}
(cf. [32, 123]).

The appearance of a�ne Lie algebras above, as a conceptual ingredient

for the Frenkel�Lepowsky�Meurman construction of V \ hints at an analogy

between complex Lie groups and the monster. Borcherds' vertex algebra

theory makes this concrete, for Borcherds showed [29] that both in the case

of the basic representation of an a�ne Lie algebra, and in the case of the

moonshine module V \, the vertex operators de�ned by Frenkel�Kac, Segal,

and Frenkel�Lepowsky�Meurmann, extend naturally to vertex algebra struc-

tures.

In all of these examples the Virasoro algebra, V =
⊕

n CL(n) ⊕ Cc, be-

ing the unique universal central extension of the Lie algebra C[t, t−1] d
dt

of

polynomial vector �elds on the circle,

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0c, [L(m), c] = 0, (7.1)

acts naturally on the underlying vector space. (See [181] for a detailed anal-

ysis of V . The generator L(m) lies above the vector �eld −tm+1 d
dt
.) This Vi-

rasoro structure, which has powerful applications, was axiomatized in [126],

with the introduction of the notion of a vertex operator algebra. If V is a

vertex operator algebra and the central element c of the Virasoro algebra

acts as c times the identity on V , for some c ∈ C, then V is said to have

central charge c.

For the basic representation of an a�ne Lie algebra ĝ, the group of vertex
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operator algebra automorphisms�i.e. those vertex algebra automorphisms

that commute with the Virasoro action�is the adjoint complex Lie group

associated to g. For the moonshine module V \, it was shown by Frenkel�

Lepowsky�Meurman in [126], that the group of vertex operator algebra au-

tomorphisms is precisely the monster.

Theorem 7.1 (Frenkel�Lepowsky�Meurman). The moonshine module V \ =⊕∞
n=−1 V

\
n is a vertex operator algebra of central charge 24 whose graded

dimension is given by J(τ), and whose automorphism group is M.

Vertex operator algebras are of relevance to physics, for we now recognize

them as �chiral halves� of two-dimensional conformal �eld theories (cf. [130,

131]). From this point of view, the construction of V \ by Frenkel�Lepowsky�

Meurman constitutes one of the �rst examples of an orbifold conformal �eld

theory (cf. [94�96]). In the case of V \, the underlying geometric orbifold is

the quotient (
R24/Λ

)
/(Z/2Z), (7.2)

of the 24-dimensional torus Λ ⊗Z R/Λ ' R24/Λ by the Kummer involution

x 7→ −x, where Λ denotes the Leech lattice. So in a certain sense, V \

furnishes a �24-dimensional� construction ofM. We refer to [123,126,182,208]

for excellent introductions to vertex algebra, and vertex operator algebra

theory.

A�ne Lie algebras are special cases of Kac�Moody algebras, �rst consid-

ered by Kac [177] and Moody [239, 240], independently. Roughly speaking,

a Kac�Moody algebra is �built� from copies of sl2, in such a way that most

examples are in�nite-dimensional, but much of the �nite-dimensional theory

carries through (cf. [183]). Borcherds generalized this further, allowing also

copies of the three-dimensional Heisenberg Lie algebra to serve as building

blocks, and thus arrived [28] at the notion of generalized Kac�Moody alge-
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bra, or Borcherds�Kac�Moody (BKM) algebra, which has subsequently found

many applications in mathematics and mathematical physics (cf. [164,260]).

One of the most powerful such applications occurred in moonshine, when

Borcherds introduced a particular example�the monster Lie algebra m�

and used it to prove [30] the moonshine conjectures of Conway�Norton. His

method entailed using monster-equivariant versions of the denominator iden-

tity for m to verify that the coe�cients of the McKay�Thompson series Tg,

de�ned by (1.37) according to the Frenkel�Lepowsky�Meurman construc-

tion of V \, satisfy the replication formulas conjectured by Conway�Norton

in [81]. This powerful result reduced the proof of the moonshine conjectures

to a small, �nite number of identities, that he could easily check by hand.

Theorem 7.2 (Borcherds). Let V \ be the moonshine module vertex opera-

tor algebra constructed by Frenkel�Lepowsky�Meurman, whose automorphism

group is M. If Tg is de�ned by (1.37) for g ∈ M, and if Γg is the discrete

subgroup of SL2(R) speci�ed by Conway�Norton in [81], then Tg is the unique

normalized principal modulus for Γg.

Recall that an even self-dual lattice of signature (m,n) exists if and only if

m−n = 0 (mod 8) (cf. e.g. [83]). Such a lattice is unique up to isomorphism

if mn > 0, and is typically denoted IIm,n. In the case that m = n = 1 we

may take

II1,1 := Ze+ Zf, (7.3)

where e and f are isotropic, 〈e, e〉 = 〈f, f〉 = 0, and 〈e, f〉 = 1. Then

me + nf ∈ II1,1 has square-length 2mn. Note that II25,1 and Λ ⊕ II1,1 are

isomorphic, for Λ the Leech lattice, since both lattices are even and self-dual,

with signature (25, 1).

In physical terms the monster Lie algebra m is (�about half� of) the space
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of �physical states� of a bosonic string moving in the quotient(
R24/Λ⊕ R1,1/II1,1

)
/(Z/2Z) (7.4)

of the 26-dimensional torus II25,1 ⊗Z R/II25,1 ' R24/Λ ⊕ R1,1/II1,1 by the

Kummer involution x 7→ −x. The monster Lie algebra m is constructed in a

functorial way from V \ (cf. [66]), inherits an action by the monster from V \,

and admits a monster-invariant grading by II1,1.

The denominator identity for a Kac�Moody algebra g equates a product

indexed by the positive roots of g with a sum indexed by the Weyl group of

g. A BKM algebra also admits a denominator identity, which for the case of

the monster Lie algebra m is the beautiful Koike�Norton�Zagier formula

p−1
∏
m,n∈Z
m>0

(1− pmqn)c(mn) = J(σ)− J(τ), (7.5)

where σ ∈ H and p = e2πiσ (and c(n) is the coe�cient of qn in J(τ), cf.

(1.33)). Since the right hand side of (7.5) implies that the left hand side

has no terms pmqn with mn 6= 0, this identity imposes many non-trivial

polynomial relations upon the coe�cients of J(τ). Among these is

c(4n+ 2) = c(2n+ 2) +
n∑
k=1

c(k)c(2n− k + 1), (7.6)

which was �rst found by Mahler [221] by a di�erent method, along with

similar expressions for c(4n), c(4n+1), and c(4n+3), which are also entailed

in (7.5). Taken together these relations allow us to compute the coe�cients

of J(τ) recursively, given just the values

c(1) = 196884,

c(2) = 21493760,

c(3) = 864299970,

c(5) = 333202640600.

(7.7)
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To recover the replication formulas of [81, 245] we require to replace J

with Tg, and c(n) = dim(V \
n) with tr(g|V \

n) in (7.5), and for this we require

a categori�cation of the denominator identity, whereby the positive integers

c(mn) are replaced with M-modules of dimension c(mn).

A categori�cation of the denominator formula for a �nite-dimensional

simple complex Lie algebra was obtained by Kostant [196], following an obser-

vation of Bott [34]. This was generalized to Kac�Moody algebras by Garland�

Lepowsky [137], and generalized further to BKM algebras by Borcherds

in [30]. In its most compact form, it is the identity of virtual vector spaces∧
−1

(e) = H(e), (7.8)

where e is the sub Lie algebra of a BKM algebra corresponding to its positive

roots (cf. [174,175,183]).

In (7.8) we understand
∧
−1(e) to be the specialization of the formal series∧
t
(e) :=

∑
k≥0

∧k(e)tk (7.9)

to t = −1, where ∧k(e) is the k-th exterior power of e, and we write

H(e) :=
∑
k≥0

(−1)kHk(e) (7.10)

for the alternating sum of the Lie algebra homology groups of e.

In the case of the monster Lie algebra m, the spaces ∧k(e) and Hk(e) are

graded by II1,1, and acted on naturally by the monster. If we use the variables

p and q to keep track of the II1,1-gradings, then the equality of (7.8) holds in

the ring R(M)[[p, q]][q−1] of formal power series in p and q (allowing �nitely

many negative powers of q), with coe�cients in the (integral) representation

ring of M. More precisely, (7.8) becomes

∧
−1

 ∑
m,n∈Z
m>0

V \
mnp

mqn

 =
∑
m∈Z

V \
mp

m+1 −
∑
n∈Z

V \
npq

n, (7.11)
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which returns (7.5), once we replace V \
k everywhere with dim(V \

k ) = c(k),

and divide both sides by p. More generally, replacing V \
k with tr(g|V \

k ) for

g ∈M, the identity (7.11) implies

p−1 exp

−∑
k>0

∑
m,n∈Z
m>0

1

k
tr(gk|V \

mn)pmkqnk

 = Tg(σ)− Tg(τ) (7.12)

(cf. [30], and also [173]), which, in turn, implies the replication formulas

formulated in [81, 245]. Taking g = e in (7.12) we recover (7.5), so (7.12)

furnishes a natural, monster-indexed family of analogues of the identity (7.5).

7.2 Modularity

Despite the power of the BKM algebra theory developed by Borcherds, and

despite some conceptual improvements (cf. [87, 175, 176]) upon Borcherds'

original proof of the moonshine conjectures, a conceptual explanation for the

principal modulus property of monstrous moonshine is yet to be established.

Indeed, there are generalizations and analogs of the notion of replicability

which hold for generic modular functions and forms (for example, see [49]),

not just those modular functions which are principal moduli.

Zhu explained the modularity of the graded dimension
∑

n dim(V \
n)qn of

V \ in [310], by proving that this is typical for vertex operator algebras sat-

isfying quite general hypotheses, and Dong�Li�Mason extended Zhu's work

in [100], obtaining modular invariance results for graded trace functions aris-

ing from the action of a �nite group of automorphisms.

To prepare for a statement of the results of Zhu and Dong�Li�Mason,

we mention that the module theory for vertex operators algebras includes

so-called twisted modules, associated to �nite order automorphisms. If g is

a �nite order automorphism of V , then V is called g-rational in case every
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g-twisted V -module is a direct sum of simple g-twisted V -modules. Dong�Li�

Mason proved [99] that a g-rational vertex operator algebra has �nitely many

simple g-twisted modules up to isomorphism. So in particular, a rational

vertex operator algebra has �nitely many simple (untwisted) modules.

Theorem 7.3 (Zhu, Dong�Li�Mason). Let V be rational C2-co�nite vertex op-

erator algebra. Then the generating functions
∑

n dim(M i
n)qn, of the graded

dimensions of its simple modules M i =
⊕

nM
i
n, span a �nite-dimensional

representation of SL2(Z). More generally, if G is a �nite subgroup of Aut(V )

and V is g-rational for every g ∈ G, then the graded trace functions
∑

n tr(h̃|Mn)qn,

attached to the triples (g, h̃,M), where g, h ∈ G commute, M is a simple

h-stable g-twisted module for V , and h̃ is a lift of h to GL(M), span a �nite-

dimensional representation of SL2(Z).

We refer to the Introduction of [100] (see also �2 of [101]) for a discus-

sion of h-stable twisted modules, and the relevant notion of lift. Note that

any two lifts for h di�er only up to multiplication by a non-zero scalar, so∑
n tr(h̃|Mn)qn is uniquely de�ned by (g, h,M), up to a non-zero scalar.

In the case of V \, there is a unique simple g-twisted module V \
g =⊕

n(V \
g )n for every g ∈ M = Aut(V \) (cf. Theorem 1.2 of [99]), and V \

g

is necessarily h-stable for any h ∈ M that commutes with g. Therefore,

Theorem 7.3 suggests that the functions

T(g,h̃)(τ) :=
∑
n

tr(h̃|(V \
g )n)qn, (7.13)

associated to pairs (g, h) of commuting elements of M, may be of interest.

Indeed, this was anticipated a decade earlier by Norton, following obser-

vations of Conway�Norton [81] and Queen [252], which associated principal

moduli to elements of groups that appear as centralizers of cyclic subgroups

in the monster. Norton formulated his generalized moonshine conjectures

in [246] (cf. also [247], and the Appendix to [233]).
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Conjecture 7.4 (Generalized Moonshine: Norton). There is an assignment

of holomorphic functions T(g,h̃) : H → C to every pair (g, h) of commuting

elements in the monster, such that the following are true:

1. For every x ∈M we have T(x−1gx,x−1h̃x) = T(g,h̃).

2. For every γ ∈ SL2(Z) we have that T(g,h̃)γ(τ) is a scalar multiple of

T(g,h̃)(γτ).

3. The coe�cient functions h̃ 7→ tr(h̃|(V \
g )n), for �xed g and n, de�ne

characters of a projective representation of the centralizer of g in M,

4. We have that T(g,h̃) is either constant or a generator for the function

�eld of a genus zero group Γ(g,h) < SL2(R).

5. We have that T(g,h̃) is a scalar multiple of J if and only if g = h = e.

Remark. In Conjecture 7.4 (2) above, the right-action of SL2(Z) on commut-

ing pairs of elements of the monster is given by

(g, h)γ := (gahc, gbhd) (7.14)

for γ = ( a bc d ). The (slightly ambiguous) T(g,h̃)γ denotes the graded trace of a

lift of gbhd to GL(V \
gahc). Norton's generalized moonshine conjectures reduce

to the original Conway�Norton moonshine conjectures of [81] when g = e.

Conjecture 7.4 is yet to be proven in full, but has been established for a

number of special cases. Theorem 7.3 was used by Dong�Li�Mason in [100],

following an observation of Tuite (cf. [98], and [286�288] for broader context),

to prove Norton's conjecture for the case that g and h generate a cyclic

subgroup of M, and this approach, via twisted modules for V \, has been

extended by Ivanov�Tuite in [169, 170]. Höhn obtained a generalization of

Borcherds' method by using a particular twisted module for V \ to construct
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a BKM algebra adapted to the case that g is in the class named 2A in [80]�

the smaller of the two conjugacy class of involutions in M�and in so doing

established [162] generalized moonshine for the functions T(g,h̃) with g ∈ 2A.

So far the most general results in generalized moonshine have been obtained

by Carnahan [64�66]. (See [67] for a recent summary.)

Theorem 7.3 explains why the McKay�Thompson series Tg(τ) of (1.37),

and the T(g,h̃)(τ) of (7.13) more generally, should be invariant under the

actions of (�nite index) subgroups of SL2(Z), but it does not explain the

surprising predictive power of monstrous moonshine. That is, it does not

explain why the full invariance groups Γg of the Tg should be so large that

they admit normalized principal moduli, nor does it explain why the Tg

should actually be these normalized principal moduli.

A program to establish a conceptual foundation for the principal mod-

ulus property of monstrous moonshine, via Rademacher sums and three-

dimensional gravity, was initiated in [110] by Duncan and Frenkel.

7.3 Rademacher Sums

To explain the conjectural connection between gravity and moonshine, we

�rst recall some history. The roots of the approach of [110] extend back al-

most a hundred years, to Einstein's theory of general relativity, formulated

in 1915, and the introduction of the circle method in analytic number theory,

by Hardy�Ramanujan [158]. At the same time that pre-war e�orts to quan-

tize Einstein's theory of gravity were gaining steam (see [276] for a review),

the circle method was being re�ned and developed, by Hardy�Littlewood

(cf. [157]), and Rademacher [254], among others. (See [290] for a detailed

account of what is now known as the Hardy�Littlewood circle method.) De-

spite being contemporaneous, these works were unrelated in science until

this century: as we will explain presently, Rademacher's analysis led to a
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Poincaré series-like expression�the prototypical Rademacher sum�for the

elliptic modular invariant J(τ). It was suggested �rst in [253] (see also [231])

that this kind of expression might be useful for the computation of partition

functions in quantum gravity.

Rademacher �perfected� the circle method introduced by Hardy�Ramanujan,

and he obtained an exact convergent series expression for the combinato-

rial partition function p(n). In 1938 he generalized this work [255] and ob-

tained such exact formulas for the Fourier coe�cients of general modular

functions. For the elliptic modular invariant J(τ) =
∑

n c(n)qn (cf. (1.33)),

Rademacher's formula (which was obtained earlier by Petersson [251], via a

di�erent method) may be written as

c(n) = 4π2
∑
c>0

∑
0<a<c
(a,c)=1

e−2πia
c e2πin d

c

c2

∑
k≥0

(4π2)k

c2k

1

(k + 1)!

nk

k!
, (7.15)

where d, in each summand, is a multiplicative inverse for a modulo c, and

(a, c) is the greatest common divisor of a and c. Having established the

formula (7.15), Rademacher sought to reverse the process, and use it to

derive the modular invariance of J(τ). That is, he set out to prove directly

that J0(τ + 1) = J0(−1/τ) = J0(τ), when J0(τ) is de�ned by setting J0(τ) =

q−1 +
∑

n>0 c(n)qn, with c(n) de�ned by (7.15).

Rademacher achieved this goal in [256], by reorganizing the summation∑
n>0

c(n)qn = 4π2
∑
n>0

∑
c>0

∑
0<a<c
(a,c)=1

e−2πia
c e2πin(τ+ d

c
)

c2

∑
k≥0

(4π2)k

c2k

1

(k + 1)!

nk

k!

(7.16)

into a Poincaré series-like expression for J . More precisely, Rademacher

proved that

J(τ) + 12 = e−2πiτ + lim
K→∞

∑
0<c<K

−K2<d<K2

(c,d)=1

e−2πiaτ+b
cτ+d − e−2πia

c , (7.17)



175

where a, b ∈ Z are chosen arbitrarily, in each summand, so that ad− bc = 1.

We call the right hand side of (7.17) the �rst Rademacher sum.

Rademacher's expression (7.17) for the elliptic modular invariant J is to

be compared to the formal sum∑
c,d∈Z

(c,d)=1

e−2πimaτ+b
cτ+d , (7.18)

for m a positive integer, which we may regard as a (formal) Poincaré series

of weight zero for SL2(Z). In particular, (7.18) is (formally) invariant for the

action of SL2(Z), as we see by recognizing the matrices ( a bc d ) as representa-

tives for the right coset space Γ∞\Γ, where Γ = SL2(Z) and Γ∞ is de�ned in

(1.38): for a �xed bottom row (c, d) of matrices in SL2(Z), any two choices

for the top row (a, b) are related by left-multiplication by some element of

Γ∞.

The formal sum (7.18) does not converge for any τ ∈ H, so a regularization
procedure is required. Rademacher's sum (7.17) achieves this, for m = 1, by

constraining the order of summation, and subtracting the limit as =(τ)→∞
of each summand e−2πiaτ+b

cτ+d , whenever this limit makes sense. Rademacher's

method has by now been generalized in various ways by a number of authors.

The earliest generalizations are due to Knopp [189�192], and a very general

negative weight version of the Rademacher construction was given by Niebur

in [243]. We refer to [71] for a detailed review and further references. A nice

account of the original approach of Rademacher appears in [188].

We note here that one of the main di�culties in establishing formulas

like (7.17) is the demonstration of convergence. When the weight w of the

Rademacher sum under consideration lies in the range 0 ≤ w ≤ 2, then one

requires non-trivial estimates on sums of Kloosterman sums, like∑
c>0

∑
0<a<c
(a,c)=1

e−2πima
c e2πin d

c

c2
(7.19)
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(for the case that w = 0 or w = 2). The demonstration of convergence

generally becomes more delicate as w approaches 1.

In [110] the convergence of a weight zero Rademacher sum R
(−m)
Γ (τ) is

shown, for m a positive integer and Γ an arbitrary subgroup of SL2(R) that

is commensurable with SL2(Z). Assuming that Γ contains −I and has width

one at in�nity (cf. (1.38)), we have

R
(−m)
Γ (τ) = e−2πimτ + lim

K→∞

∑
(Γ∞\Γ)×<K

e−2πimaτ+b
cτ+d − e−2πima

c , (7.20)

where the summation, for �xed K, is over non-trivial right cosets of Γ∞ in Γ

(cf. (1.38)), having representatives ( a bc d ) such that 0 < c < K and |d| < K2.

The modular properties of the R(−m)
Γ are also considered in [110], and

it is at this point that the signi�cance of Rademacher sums in monstrous

moonshine appears. To state the relevant result we give the natural gener-

alization (cf. �3.2 of [110]) of the Rademacher�Petersson formula (7.15) for

c(n), which is

cΓ(−m,n) = 4π2 lim
K→∞

∑
(Γ∞\Γ/Γ∞)×<K

e−2πima
c e2πin d

c

c2

∑
k≥0

(4π2)k

c2k

mk+1

(k + 1)!

nk

k!
,

(7.21)

where the summation, for �xed K, is over non-trivial double cosets of Γ∞ in

Γ (cf. (1.38)), having representatives ( a bc d ) such that 0 < c < K. Note that

this formula simpli�es for n = 0, to

cΓ(−m, 0) = 4π2m lim
K→∞

∑
(Γ∞\Γ/Γ∞)×<K

e−2πima
c

c2
. (7.22)

The value cΓ(−1, 0) is the Rademacher constant attached to Γ. (Cf. �6

of [245] and �5.1 of [110].)

A normalized Rademacher sum T
(−m)
Γ (τ) is de�ned in �4.1 of [110] by

introducing an extra complex variable and taking a limit. It is shown in �4.4
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of [110] that

T
(−m)
Γ (τ) = R

(−m)
Γ (τ)− 1

2
cΓ(−m, 0) (7.23)

for any group Γ < SL2(R) that is commensurable with SL2(Z). If Γ has

width one at in�nity (cf. (1.38)), then also

T
(−m)
Γ (τ) = q−m +

∑
n>0

cΓ(−m,n)qn, (7.24)

so in particular, T (−m)
Γ (τ) = q−m+O(q) as =(τ)→∞. The following theorem

by Duncan and Frenkel summarizes the central role of Rademacher sums and

the principal modulus property.

Theorem 7.5 (Duncan�Frenkel [110]). Let Γ be a subgroup of SL2(R) that is

commensurable with SL2(Z). Then the normalized Rademacher sum T
(−m)
Γ

is Γ-invariant if and only if Γ has genus zero. Furthermore, if Γ has genus

zero then T (−1)
Γ is the normalized principal modulus for Γ.

In the case that the normalized Rademacher sum T
(−1)
Γ is not Γ-invariant,

T
(−m)
Γ is an abelian integral of the second kind for Γ, in the sense that it has

at most exponential growth at the cusps of Γ, and satis�es T (−m)
Γ (γτ) =

T
(−m)
Γ (τ) + ω(γ) for γ ∈ Γ, for some function ω : Γ→ C (depending on m).

Theorem 7.5 is used as a basis for the formulation of a characterization

of the discrete groups Γg of monstrous moonshine in terms of Rademacher

sums in �6.5 of [110], following earlier work [84] of Conway�McKay�Sebbar.

It also facilitates a proof of the following result, which constitutes a uniform

construction of the McKay�Thompson series of monstrous moonshine.

Theorem 7.6 (Duncan�Frenkel [110]). Let g ∈M. Then the McKay�Thompson

series Tg coincides with the normalized Rademacher sum T
(−1)
Γg

.

Proof. Theorem 7.2 states that Tg is a normalized principal modulus for Γg,

and in particular, all the Γg have genus zero. Given this, it follows from
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Theorem 7.5 that T (−1)
Γg

is also a normalized principal modulus for Γg. A

normalized principal modulus is unique if it exists, so we conclude Tg = T
(−1)
Γg

for all g ∈M, as we required to show.

Perhaps most importantly, Theorem 7.5 is an indication of how the princi-

pal modulus property of monstrous moonshine can be explained conceptually.

For if we can develop a mathematical theory in which the underlying objects

are graded with graded traces that are provably

1. modular invariant, for subgroups of SL2(R) that are commensurable

with SL2(Z), and

2. given explicitly by Rademacher sums, such as (7.20),

then these graded trace functions are necessarily normalized principal moduli,

according to Theorem 7.5.

We are now led to ask: what kind of mathematical theory can support

such results? As we have alluded to above, Rademacher sums have been

related to quantum gravity by articles in the physics literature. Also, a pos-

sible connection between the monster and three-dimensional quantum gravity

was discussed in [304]. This suggests the possibility that three-dimensional

quantum gravity and moonshine are related via Rademacher sums, and was

a strong motivation for the work [110]. In the next section we will give a brief

review of quantum gravity, since it is an important area of physical inquiry

which has played a role in the development of moonshine, but we must �rst

warn the reader: problems have been identi�ed with the existing conjectures

that relate the monster to gravity, and the current status of this connection

is uncertain.
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7.4 Quantum Gravity

A positive solution to the conjecture that V \ is dual to chiral three-dimensional

gravity at m = 1 may furnish a conceptual explanation for why the graded

dimension of V \ is the normalized principal modulus for SL2(Z). For on the

one hand, modular invariance is a consistency requirement of the physical

theory�the genus one partition function function is really de�ned on the

moduli space SL2(Z)\H of genus one curves, rather than on H�and on the

other hand, the genus one partition function of chiral three-dimensional grav-

ity is given by a Rademacher sum, as explained by Manschot�Moore [231],

following earlier work [253] by Dijkgraaf�Maldacena�Moore�Verlinde. (Cf.

also [228�230].) So, as we discussed in �7.3, the genus one partition func-

tion must be the normalized principal modulus J(τ) for SL2(Z), according

to Theorem 7.5.

In the analysis of [230, 231], the genus one partition function of chiral

three-dimensional gravity is a Rademacher sum (7.20), because it is obtained

as a sum over three-dimensional hyperbolic structures on a solid torus with

genus one boundary, and such structures are naturally parameterized by

the coset space Γ∞\ SL2(Z) (cf. (1.38)), as explained in [224] (see also �5.1

of [253]). The terms e−2πimaτ+b
cτ+d in (7.20) are obtained by evaluating e−ITMG ,

with µ =
√
−Λ = 1/16Gm, on a solution with boundary curve C/(Z + τZ),

and the subtraction of e−2πima
c represents quantum corrections to the classical

action.

In [110], the above conjecture is extended so as to encompass the principal

modulus property for all elements of the monster, with a view to establishing

a conceptual foundation for monstrous moonshine. More speci�cally, the �rst

main conjecture of [110] states the following.

Conjecture 7.7 (Duncan�Frenkel). There exists a monster-indexed family of

twisted chiral three-dimensional gravity theories, whose genus one partition



180

functions at

µ =
√
−Λ = 1/16G (7.25)

are given by T (−1)
Γg

(−1/τ), where T (−1)
Γg

(τ) is the normalized Rademacher sum

attached to Γg, satisfying (7.23).

From the point of view of vertex operator algebra theory, Tg(−1/τ)�

which coincides with T (−1)
Γg

(−1/τ) according to Theorems 7.2 and 7.5�is the

graded dimension of the unique simple g-twisted V \-module V \
g (cf. �7.2).

This non-trivial fact about the functions Tg(−1/τ) is proven by Carnahan in

Theorem 5.1.4 of [66].

Geometrically, the twists of the above conjecture are de�ned by impos-

ing (generalized) spin structure conditions on solutions to the chiral gravity

equations, and allowing orbifold solutions of certain kinds. See �7.1 of [110]

for a more complete discussion. The corresponding sums over geometries are

then indexed by coset spaces Γ∞\Γ, for various groups Γ < SL2(R), com-

mensurable with SL2(Z). According to Theorem 7.5, the genus one partition

function corresponding to such a twist, expected to be a Rademacher sum

on physical grounds, will only satisfy the basic physical consistency condi-

tion of Γ-invariance if Γ is a genus zero group. One may speculate that a

�ner analysis of physical consistency will lead to the list of conditions given

in �6.5 of [110], which characterize the groups Γg for g ∈ M, according to

Theorem 6.5.1 of [110]. Thus the discrete groups Γg of monstrous moonshine

may ultimately be recovered as those de�ning physically consistent twists of

chiral three-dimensional gravity.

On the other hand, it is reasonable to expect that twisted chiral grav-

ity theories are determined by symmetries of the underlying untwisted the-

ory. Conceptually then, but still conjecturally, the monster group appears

as the symmetry group of chiral three-dimensional gravity, for which the

corresponding twists exist. The principal modulus property of monstrous
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moonshine may then be explained: as a consequence of Theorem 7.5, to-

gether with the statement that the genus one partition function of a twisted

theory is T (−1)
Γ (−1/τ), where T (−1)

Γ (τ) is the normalized Rademacher sum

attached to the subgroup Γ < SL2(R) that parameterizes the geometries of

the twist.

For more background on the mathematics and physics of black holes we

refer the reader to [88]. We refer to [62, 63] for reviews that focus on the

particular role of conformal �eld theory in understanding quantum gravity.

7.5 Moonshine Tower

An optimistic view on the relationship between moonshine and gravity is

adopted in �7 of [110]. In particular, in �7.2 of [110] the consequences of

Conjecture 7.7 for the second quantization of chiral three-dimensional gravity

are explored. (We warn the reader that the notion of second quantized gravity

is very speculative at this stage.)

Motivated in part by the results on second quantized string theory in [93],

the existence of a tower of monster modules

V (−m) =
∞⊕

n=−m

V (−m)
n , (7.26)

parameterized by positive integer values of m, is predicted in �7.2 of [110].

Moreover, it is suggested that the graded dimension of V (−m) should be given

by

J (−m) := mT̂ (m)J, (7.27)

where T̂ (m) denotes the (orderm) Hecke operator, acting on SL2(Z)-invariant

holomorphic functions on H according to the rule

(T̂ (m)f)(τ) :=
1

m

∑
ad=m
0≤b<d

f

(
aτ + b

d

)
. (7.28)
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Standard calculations (cf. e.g. Chp.VII, �5 of [270]) determine that

mT̂ (m)J is an SL2(Z)-invariant holomorphic function on H, whose Fourier

coe�cients

J (−m)(τ) =
∑
n

c(−m,n)qn (7.29)

are expressed in terms of those of J(τ) =
∑∞

n=−1 c(n)qn, by c(−m,n) = δ−m,n

for n ≤ 0, and

c(−m,n) =
∑
k>0

k|(m,n)

m

k
c(mn/k2), (7.30)

for n > 0, where (m,n) denotes the greatest common divisor of m and n. In

particular, J (−m)(τ) = q−m + O(q) as =(τ) → ∞. There is only one such

SL2(Z)-invariant holomorphic function on H, so we have

J (−m)(τ) =
∞∑

n=−m

dim(V (−m))qn = T
(−m)
Γ (τ) (7.31)

according to (7.24) and Theorem 7.5, when Γ = SL2(Z). So the graded

dimension of V (−m) is also a normalized Rademacher sum.

We would like to investigate the higher order analogues of the McKay�

Thompson series Tg (cf. (1.37)), encoding the graded traces of monster ele-

ments on V (−m), but for this we must �rst determine theM-module structure

on each homogeneous subspace V (−m)
n .

A solution to this problem is entailed in Borcherds' proof [30] of the

monstrous moonshine conjectures, and the identity (7.11), in particular. To

explain this, recall the Adams operation ψk on virtual G-modules, de�ned,

for k ≥ 0 and G a �nite group, by requiring that

tr(g|ψk(V )) = tr(gk|V ) (7.32)

for g ∈ G. (Cf. [16, 193] for more details on Adams operations.) Using

the ψk we may equip V (−m) with a virtual M-module structure (we will
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see momentarily that it is actually an M-module, cf. Proposition 7.9) by

de�ning V (−m)
−m := C to be the one-dimensional trivial M-module, V (−m)

n := 0

for −m < n ≤ 0, and

V (−m)
n :=

⊕
k>0

k|(m,n)

Cm/k ⊗ ψk(V \
mn/k2) (7.33)

for n > 0, where Cm/k denotes the trivial M-module of dimension m/k. For

convenience later on, we also de�ne V (0) = V
(0)

0 := C to be the trivial, one-

dimensional M-module, regarded as graded, with grading concentrated in

degree n = 0.

Evidently ψk preserves dimension, so the graded dimension of V (−m)

is still given by J (−m), according to (7.30). De�ne the order m McKay�

Thompson series T (−m)
g , for m ≥ 0 and g ∈M, by setting

T (−m)
g (τ) := q−m +

∑
n>0

tr(g|V (−m)
n )qn. (7.34)

Then T
(0)
g = 1 for all g ∈ M, and T

(−1)
g is the original McKay�Thompson

series Tg. More generally, we have the following result, which constructs the

T
(−m)
g uniformly and explicitly as Rademacher sums.

Theorem 7.8. For m > 0 and g ∈M we have T (−m)
g (τ) = T

(−m)
Γg

(τ), where Γg

is the invariance group of Tg(τ), and T (−m)
Γ denotes the normalized Rademacher

sum of order m attached to Γ, as in (7.23). In particular, T (−m)
g (τ) is a monic

integral polynomial of degree m in Tg(τ).

Proof. We will use Borcherds' identity (7.11). To begin, note that T (−m)
g is

given explicitly in terms of traces on V \ by

T (−m)
g (τ) = q−m +

∑
n>0

∑
k|(m,n)

m

k
tr(g|ψk(V \

mn/k2))qn (7.35)

according to (7.33) and (7.34). Recall that R(G) denotes the integral repre-

sentation ring of a �nite groupG. Extend the ψk fromR(G) toR(G)[[p, q]][q−1],
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by setting ψk(Mpmqn) = ψk(M)pkmqkm for M ∈ R(G). Then it is a general

property of the Adams operations (cf. �5.2 of [173]) that

log
∧
−1

(X) = −
∑
k>0

1

k
ψk(X) (7.36)

inR(G)[[p, q]][q−1]⊗ZQ, forX ∈ R(G)[[p, q]][q−1]. So takingX =
∑

m,n∈Z
m>0

V \
mnp

mqn

we obtain

log
∧
−1

 ∑
m,n∈Z
m>0

V \
mnp

mqn

 = −
∑
k>0

∑
m,n∈Z
m>0

1

k
ψk(V \

mn)pkmqkn

= −
∑
m,n∈Z
m>0

∑
k|(m,n)

1

k
ψk(V \

mn/k2)pmqn

(7.37)

for the logarithm of the left hand side of (7.11). If we now de�ne V (−m)(q) :=∑
n V

(−m)
n qn, an element ofR(M)[[q]][q−1], then the generating series

∑
m>0 p

mV (−m)(q)

is obtained when we apply −p∂p to (7.37), according to the de�nition (7.33)

of the V (−m)
n as elements of R(M). So apply −p∂p log( · ) to both sides of

(7.11) to obtain the identity∑
m>0

V (−m)(q)pm = −1− (p∂pV
\(p))

∑
k≥0

V \(q)kV \(p)−k−1 (7.38)

in R(M)[[p, q]][q−1], where V \(q) = V (−1)(q) = q−1 +
∑

n>0 V
\
nq

n. The right

hand side of (7.38) really is a taylor series in p, for we use V \(p)−1 as a short

hand for
∑

k≥0(−1)kpk+1V \
+(p), where V \

+(p) :=
∑

n>0 V
\
np

n is the regular

part of V \(p).

The McKay�Thompson series T (−m)
g (τ) is just the trace of g on V (−m)(q),

so an application of tr(g| · ) to (7.38) replaces V (−m)(q) with T (−m)
g (τ), and

V \(q) with Tg(τ), etc. and shows that T (−m)
g is indeed a polynomial in Tg, of

degree m since the leading term of T (−m)
g is q−m by de�nition. In particular,

T
(−m)
g is a modular function for Γg, with no poles away from the in�nite
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cusp. Since Γg has genus zero, such a function is uniquely determined (up

to an additive constant) by the polar terms in its Fourier expansion. The

McKay�Thompson series T (−m)
g and the Rademacher sum T

(−m)
Γg

both satisfy

q−m +O(q) as =(τ)→∞ (cf. (7.24)), and neither have poles away from the

in�nite cusp, so they must coincide. This completes the proof.

Remark. The identity obtained by taking the trace of g ∈ M on (7.38) may

be compactly rewritten∑
m≥0

T (−m)
g (τ)pm =

p∂pTg(σ)

Tg(τ)− Tg(σ)
, (7.39)

where p = e2πiσ and Tg(σ) =
∑

m tr(g|V \
m)pm. This expression (7.39) is

proven for some special cases by a di�erent method in [21].

Recall that the monster group has 194 irreducible ordinary representa-

tions, up to equivalence. Let us denote these by Mi, for 1 ≤ i ≤ 194, where

the ordering is as in [80], so that the character of Mi is the function denoted

χi in [80]. De�ne mi(−m,n) to be the multiplicity of Mi in V
(−m)
n , so that

V (−m)
n ≈

194⊕
i=1

M
⊕mi(−m,n)
i (7.40)

as M-modules, and c(−m,n) =
∑194

i=1 mi(−m,n)χi(e).

A priori, the M-modules V (−m)
n may be virtual, meaning that some of the

integers mi(−m,n) are negative.

Proposition 7.9. The V (−m)
n are all (non-virtual) modules for the monster.

In particular, the integers mi(−m,n) are all non-negative.

Proof. The claim follows from the modi�cation of Borcherds' proof of Theo-

rem 7.2 presented by Jurisich�Lepowsky�Wilson in [173]. In [173] a certain

free Lie sub algebra u− of the monster Lie algebra m is identi�ed, for which
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the identity Λ(u−) = H(u−) (or rather, the logarithm of this) yields

∑
m,n>0

∑
k|(m,n)

1

k
ψk(V \

mn/k2)pmqn =
∑
k>0

1

k

( ∑
m,n>0

V \
m+n−1p

mqn

)k

(7.41)

in R(M)[[p, q]][q−1]⊗Q. (Notice the di�erent range of summation, compared

to (7.11).) We apply p∂p to (7.41), and recall the de�nition (7.33) of V (−m)
n

to obtain

∑
m,n>0

V (−m)
n pmqn =

∑
k>0

( ∑
m,n>0

mV \
m+n−1p

mqn

)( ∑
m,n>0

V \
m+n−1p

mqn

)k−1

.

(7.42)

The coe�cient of pmqn in the right hand side of (7.42) is evidently a non-

negative integer combination of the M-modules V \
n , so the proof of the claim

is complete.

In �7.6 we will determine the behavior of the multiplicity functions mi(−m,n)

(cf. (7.40)) as n→∞. For applications to gravity a slightly di�erent statis-

tic is more relevant. Recall from �7.4 that it is the Virasoro highest weight

vectors�i.e. those v ∈ V \
n with L(k)v = 0 for k > 0�that represent black

hole states in chiral three-dimensional gravity at m = 1. Such vectors gener-

ate highest weight modules for V , the structure of which has been determined

by Feigin�Fuchs in [118]. (See [15] for an alternative treatment.) Specializing

to the case that the central element c (cf. (7.1)) acts as c = 24m times the

identity, for some positive integer m, we obtain from the results of [118] that

the isomorphism type of an irreducible highest weight module for V depends

only on the L(0)-eigenvalue of a generating highest weight vector, v, and if

L(0)v = hv for h a non-negative integer, then

∑
n

dim(L(h, c)n)qn =

q−m(1− q)(q)−1
∞ if h = 0,

qh−m(q)−1
∞ if h > 0,

(7.43)
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where L(h, c) denotes the irreducible highest weight V-module generated by

v. We write L(h, c)n for the subspace of L(h, c) with L(0)-eigenvalue h−m
in (7.43), and

(q)∞ :=
∏
n>0

(1− qn). (7.44)

(See [156] for details of the calculation that returns (7.43) in the case that

m = 1.)

Remark. We may now recognize the leading terms in (1.47) as exactly those

of the graded dimension of the Virasoro module L(0, 24m).

It is known that V \ is a direct sum of highest weight modules for the

Virasoro algebra (cf. e.g. [156]). Since the Virasoro and monster actions on

V \ commute, we have an isomorphism

V \ ' L(0, 24)⊗W \
−1 ⊕

⊕
n>0

L(n+ 1, 24)⊗W \
n (7.45)

of modules for V × M, where W \
n denotes the subspace of V \

n spanned by

Virasoro highest weight vectors. To investigate how the black hole states

in V \ are organized by the representation theory of the monster, we de�ne

non-negative integers ni(n) by requiring that

W \
n '

194⊕
i=1

M
⊕ni(n)
i , (7.46)

for n ≥ −1.

Evidently ni(n) ≤ mi(−1, n) for all i and n since W \
n is a subspace of

V \
n . To determine the precise relationship between the ni(n) and mi(−1, n),

de�ne Ug(τ) for g ∈M by setting

Ug(τ) :=
∞∑

n=−1

tr(g|W \
n)qn, (7.47)
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so that Ug(τ) = q−1 +
∑

n>0

∑194
i=1 ni(n)χi(g)qn (cf. (7.46)). Combining

(7.43), (7.45) and (7.46), together with the de�nitions (1.37) of Tg and (7.47)

of Ug, we obtain

Tg(τ) = q−1 (1− q)
(q)∞

+
∑
n>0

qn
1

(q)∞

194∑
i=1

ni(n)χi(g), (7.48)

or equivalently,

Ug(τ) = (q)∞Tg(τ) + 1 (7.49)

for all g ∈M. (This computation also appears in [156].)

In �7.6 we will use (7.49) to determine the asymptotic behavior of the

ni(n) (cf. Theorem 7.10), and thus the statistics of black hole states, at

` = 16G, in the conjectural chiral three-dimensional gravity theory dual to

V \.

Remark. Note that we may easily construct modules for V×M satisfying the

extremal condition (1.47), for each positive integer m, by considering direct

sums of the monster modules V (−m) constructed in Proposition 7.9. A very

slight generalization of the argument just given will then yield formulas for

the graded traces of monster elements on the corresponding Virasoro highest

weight spaces. Since it has been shown [134, 163] that such modules cannot

admit vertex operator algebra structure, we do not pursue this here.

7.6 Monstrous Moonshine's Distributions

We now address the problem of determining exact formulas and asymptotic

distributions of irreducible components. This work will rely heavily on the

modularity of the underlying McKay�Thompson series (i.e. Theorems 1.23

and 7.8).

We prove formulas for the multiplicities mi(−m,n) and ni(n) which in

turn imply the following asymptotics.
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Theorem 7.10. If m is a positive integer and 1 ≤ i ≤ 194, then as n→ +∞
we have

mi(−m,n) ∼ dim(χi)|m|1/4√
2|n|3/4|M|

· e4π
√
|mn|

ni(n) ∼
√

12 dim(χi)

|24n+ 1|1/2|M|
· e

π
6

√
23|24n+1|

These asymptotics immediately imply that the following limits are well-

de�ned

δ (mi(−m)) := lim
n→+∞

mi(−m,n)∑194
i=1 mi(−m,n)

δ (ni) := lim
n→+∞

ni(n)∑194
i=1 ni(n)

.

(7.50)

Corollary 7.11. In particular, we have that

δ (mi(−m)) = δ (ni) =
dim(χi)∑194
j=1 dim(χj)

=
dim(χi)

5844076785304502808013602136
.

7.6.1 The modular groups in monstrous moonshine

To obtain exact formulas, we begin by recalling the modular groups which

arise in monstrous moonshine. Suppose Γ∗ < GL2(R) is a discrete group

which is commensurable with SL2(Z). If Γ∗ de�nes a genus zero quotient of H,
then the �eld of modular functions which are invariant under Γ∗ is generated

by a single element, the principal modulus (cf. (1.39)). Theorem 7.2 implies

that the Tg (de�ned by (1.37)) are principal moduli for certain groups Γg.

We can describe these groups in terms of groups Eg which in turn may be

described in terms of the congruence subgroups

Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (modN)

}
, (7.51)
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and the Atkin�Lehner involutions We for Γ0(N) given by

We :=

(
ae b

cN de

)
, (7.52)

where e is an exact divisor of N (i.e. e|N , and (e,N/e) = 1), and a, b, c, and

d are integers chosen so that We has determinant e.

Following Conway�Norton [81] and Conway�McKay�Sebbar [84], we de-

note the groups Eg by symbols of the form Γ0(N |h) + e, f, . . . (or simply

N |h+ e, f, . . . ), where h divides (N, 24), and each of e, f, etc. exactly divide

N/h. This symbol represents the group

Γ0(N |h) + e, f, · · · :=

(
1/h 0

0 1

)
〈Γ0(N/h),We,Wf , . . . 〉

(
h 0

0 1

)
,

whereWe,Wf , etc. are representative of Atkin�Lehner involutions on Γ0(N/h).

We use the notation Wg := {1, e, f, . . . } to denote this list of Atkin�Lehner

involutions contained in Eg. We also note that Γ0(N |h) + e, f, . . . contains

Γ0(Nh).

The groups Eg are eigengroups for the Tg, so that if γ ∈ Eg, then Tg(γτ) =

σg(γ)Tg, where σg is a multiplicative group homomorphism from Eg to the

group of h-th roots of unity. Conway and Norton [81] give the following

values for σg evaluated on generators of N |h+ e, f, . . . .

Lemma 7.12 (Conway�Norton). Assuming the notation above, the following

are true:

(a) σg(γ) = 1 if γ ∈ Γ0(Nh)

(b) σg(γ) = 1 if γ is an Atkin�Lehner involution of Γ0(Nh) inside Eg

(c) σg(γ) = e
−2πi
h if γ =

(
1 1/h

0 1

)

(d) σg(γ) = e−λg
2πi
h if γ =

(
1 0

N 1

)
,

where λg in (d) is −1 if N/h ∈ Wg, and +1 otherwise.
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This information is su�cient to properly describe the modularity of the

series T (−m)
g (τ) on Eg. In section 7.6.2, we give an explicit procedure for

evaluating σg. The invariance group Γg, denoted by Γ0(N ||h) + e, f, . . . (or

by the symbol N ||h+ e, f, . . . ), is de�ned as the kernel of σg. A complete list

of the groups Γg can be found in the Appendix (�A.1) of this paper, or in

table 2 of [81].

Theorems 1.23 and 7.8 are summarized by the following uniform state-

ment.

Theorem 7.13. Let g ∈M and m ≥ 1. Then T (−m)
g is the unique weakly holo-

morphic modular form of weight zero for Γg that satis�es T
(−m)
g = q−m+O(q)

as τ approaches the in�nite cusp, and has no poles at any cusps inequivalent

to the in�nite one.

Remark. A weakly holomorphicmodular form is a meromorphic modular form

whose poles (if any) are supported at cusps.

7.6.2 Exact formulas for T
(−m)
g

Using Theorems 2.3 and 2.4, we can write exact formulas for the coe�cients

of the T (−m)
g provided we know its principal parts at all cusps of Γ0(Nh).

With this in mind, we now regard Tg as a modular function on Γ0(Nh) with

trivial multiplier. The location and orders of the poles were determined by

Harada and Lang [155].

Lemma 7.14. [155, Lemma 7, 9] Suppose the Γg is given by the symbol

N ||h + e, f..., and let L =

(
−δ β

γ −α

)
∈ SL2(Z). Then Tg|0L has a pole if

and only if
(

γ
(γ,h)

, N
h

)
= N

eh
, for some e ∈ Wg (Note, here we allow e = 1).

The order of the pole is given by (h,γ)2

eh2 .
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Harada and Lang prove this lemma by showing that if u is an integer

chosen such uγ−α·(h,γ)
h

is integeral and divisible by e and U =

(
e·h

(h,γ)
u
h

0 (h,γ)
h

)
,

then LU is an Atkin�Lehner involution We ∈ Eg. Therefore, we have that

Tg|0L = σg(LU)Tg

(
(h, γ)2

eh2
τ − u · (h, γ)

eh2

)
. (7.53)

Harada and Lang do not compute σg(LU), however we will need these values

in order to apply Theorem 2.4. Using Lemma 7.12, the following procedure

allows us to compute σg(M) for any matrix M ∈ Eg.

Given a matrix M ∈ Eg, we may write M as M =

(
ae b

h

cN de

)
with

e ∈ Wg and ade − bcNeh = 1. We may also write h = he · he, where he is the
largest divisor of h co-prime to e. Since cN

eh
is co-prime to both d and e, we

may chose integers A,B, and C (modh) such that:

• cN
eh
A+ d is co-prime to he but is divisible by he,

• B ≡ −(eaA+ b)(cN
h
A+ ed)−1 (modhe) and BcNeh + b ≡ 0 (modhe),

• C ≡ −c(cN
h
A+ ed)−1 (modhe), and C ≡ 0 (modhe) .

A calculation shows that M̂ :=

(
1 B

h

0 1

)
M

(
1 A

h

0 1

)(
1 0

CN 1

)(
he 0

0 he

)
is an Atkin�Lehner involutionWE for Γ0(Nh) where E = e·h2

e. By Lemma 7.12,

this implies σg(M̂) = 1, and therefore

σg(M) = exp

(
2πi

h
(A+B + λgC)

)
.

Combined with Lemma 7.14, this leads us to the following proposition.

Proposition 7.15. Given a matrix L =

(
−δ β

γ −α

)
∈ SL2(Z), let u and U be

chosen as above, and de�ne

εg(L) := σg (LU) · e2πi
u·(h,γ)

eh2 .
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Then by (7.53), we have that

Tg|0L = εg(L)q−
(h,γ)2

eh2 +O(q).

Using this notation, we are equipped to �nd exact formulas for the T (−m)
g .

Theorem 7.16. Let g ∈ M, with Γg = N |h + e, f, . . . , and let SNh and Wg

be as above. if m and n are positive integers, then there is a constant c for

which

T (−m)
g (τ) = c+

∑
e∈Wg

∑
α
γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)
mP+

α/γ(τ,m,Nh, 0).

The n-th coe�cient of T (−m)
g (τ) is given by

∑
e∈Wg

∑
ρ=α

γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)
m2π

∣∣∣∣−mn · (h, γ)2

eh2

∣∣∣∣ 1
2

×

∑
c>0

(c,Nh)=(γ,Nh)

Kc(0, L,−m,n)

c
· I1

(
4π

c

√∣∣∣∣−mn · (h, γ)2

eh2

∣∣∣∣
)
.

Proof. Every modular function is a harmonic Maass form. Therefore, the

idea is to exhibit a linear combination of Maass�Poincaré series with exactly

the same principal parts at all cusps as T (−m)
g . By Lemma 2.2 and Theo-

rem 2.4, this form equals T (−m)
g up to an additive constant. Lemma 7.12

(c) implies that the coe�cients cg(n) of Tg are supported on the arithmetic

progression n ≡ −1 (modh) . The function T (−m)
g is a polynomial in Tg, and

as such must be the sum of powers of Tg each of which is congruent to

m (modh) . Therefore, if M ∈ Γg, then T (−m)|0M = σg(M)mT (−m). Given

L ∈ SL2(Z), let U be a matrix as in (7.53) so that LU ∈ Γg. By applying

Proposition 7.15, we �nd

T (−m)
g |0L = σg(LU)mT (−m)

g |0U−1 = εg(L)mq−m
(h,γ)2

eh2 +O(q).
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Theorem 2.4, along with the observations that tρ = (h,γ)2

eh2 and κρ = 0 for

every ρ = α
γ

= L−1
ρ ∞, implies the �rst part of the theorem. The formula for

the coe�cients follows by Theorem 2.3.

7.6.3 Exact formulas for Ug up to a theta function

Following a similar process to that in the previous section, we may construct a

series Ûg(τ) = q−
23
24 +O(q

1
24 ) with principal parts matching those of η(τ)Tg(τ)

at all cusps. Then according to (7.49), the di�erence q
1
24 (Ug − 1) − Ûg is a

weight 1
2
holomorphic modular form, which by a celebrated result [271] of

Serre�Stark, is a �nite linear combination of unary theta functions. This

will not a�ect the asymptotics in Theorem 7.10. The functions Tg and Ûg

di�er primarily in their weight, and in that Ûg has a non-trivial multiplier

νη : M → η(Mτ)

(M :τ)1/2η(τ)
. They also have slightly di�erent orders of poles, which

is accounted for by the fact that the multiplier νη implies that κρ = tρ/24 at

every cusp ρ for the Ûg, rather than 0 for the Tg. The proof of the following

theorem is the same as that of Theorem 7.16, mutatis mutandis.

Theorem 7.17. Let g ∈M, with Γg = N |h+ e, f, . . . , and let SNh and Wg be

as above. If m is a positive integer then

Ûg =
∑
e∈Wg

∑
ρ=α

γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)P+
Lρ

(τ, 1, Nh, 1/2, νη).

For n a non-negative integer, the coe�cient of qn+ 1
24 in Ûg is given by

∑
e∈Wg

∑
ρ=α

γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)
1− i√

2
2π

∣∣∣∣∣− (h,γ)2

eh2 + 1
24

n+ 1
24

∣∣∣∣∣
1
4

×

∑
c>0

(c,Nh)=(γ,Nh)

Kc(
1
2
, L, νη,−1, n)

c
· I 1

2

(
4π

c

√∣∣∣∣−(h, γ)2

eh2
+

1

24

∣∣∣∣ ∣∣∣∣n+
1

24

∣∣∣∣
)
.
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This immediately admits the following corollary.

Corollary 7.18. Given the notation above, there is a weight 1
2
linear combina-

tion of theta functions hg(τ) for which the coe�cient qn in Ug(τ)−q− 1
24hg(τ)

coincides with the coe�cient of qn+ 1
24 in Ûg, given explicitly in Theorem 7.17.

7.6.4 Proof of Theorem 7.10

Proof of Theorem 7.10. Following Harada and Lang [155], we begin by de�n-

ing the functions

T (−m)
χi

(τ) :=
1

|M|
∑
g∈M

χi(g)T (−m)
g (τ). (7.54)

The orthogonality of characters imply that for g and h ∈M,

194∑
i=1

χi(g)χi(h) =

|CM(g)| if g and h are conjugate,

0 otherwise.
(7.55)

Here |CM(g)| is the order of the centralizer of g in M. Since the order of the

centralizer times the order of the conjugacy class of an element is the order

of the group, (7.55) and (7.54) together imply the inverse relation

T (−m)
g (τ) =

194∑
i=1

χi(g)T (−m)
χi

(τ).

In particular we have that T (−m)
e (τ) =

194∑
i=1

dim(χi)T
(−m)
χi

(τ), and therefore

we can identify the mi(−m,n) as the Fourier coe�cients of the T (−m)
χi (τ) =

∞∑
n=−m

mi(−m,n)qn.

Using Theorem 7.16, we obtain exact formulas for the coe�cients of

T
(−m)
χi (τ). Let g ∈ M with Γg = Ng||hg + eg, fg, . . . . If m and n are pos-
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itive integers, then the nth coe�cient is given exactly by

1

|M|
∑
g∈M

χi(g)
∑
e∈Wg

∑
α
γ
∈SNghg(

γ
(γ,hg)

,
Ng
hg

)
=
Ng
ehg

εg(Lρ)
m2π

∣∣∣∣−mn · (hg, γ)2

eh2
g

∣∣∣∣ 1
2

∑
c>0

(c,Nghg)=(γ,Nghg)

Kc(2− k, L, ν,−m,n)

c
· I1

(
4π

c

√∣∣∣∣−mn · (hg, γ)2

eh2
g

∣∣∣∣
)
,

where SNghg and Wg are given as above.

Using the well-known asymptotics for the I-Bessel function

Ik(x) ∼ ex√
2πx

(
1− 4k2 − 1

8x
+ . . .

)
,

we see that the formula for mi(−m,n) is dominated by the c = 1 term

which appears only for g = e (so that Ne = he = 1). This term yields the

asymptotic

mi(−m,n) ∼ χi(e) · |m|1/4√
2n3/4|M|

· e4π
√
|mn|

as in the statement of the theorem.

The asymptotics for ni(n) follows similarly, using the formula

Uχi(τ) :=
1

|M|
∑
g∈M

χi(g)U (−m)
g (τ).

We note that the coe�cients of the theta functions hg(τ) in Corollary 7.18

are bounded by constants and so do not a�ect the asymptotics. This yields

ni(n) ∼
√

12 χi(e)

|24n+ 1|1/2|M|
· e

π
6

√
23|24n+1|

as in the theorem.
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7.6.5 Examples of the exact formulas

We conclude with a few examples illustrating the exact formulas for the

McKay�Thompson series. These formulas for the coe�cients generally con-

verge rapidly. However the rate of convergence is not uniform and often

requires many more terms to converge to a given precision.

Example 7.19. We �rst consider the example g = e. In this case we have

Γg = SL2(Z), which has only the cusp in�nity. In this case Theorem 7.16

reduces to the well known expansion

Te = J(τ)− 744 = q−1 +
∑
n≥1

2π√
n
·
∑
c>0

Kc(∞,−m,n)

c
· I1

(
4π
√
n

c

)
qn.

Table 7.1 below contains several approximations made by bounding the size

of the c term in the summation.

Table 7.1

n = 1 n = 5 n = 10

c ≤ 25 196883.661 . . . 333202640598.254 . . . 22567393309593598.047 . . .

≤ 50 196883.881 . . . 333202640599.429 . . . 22567393309593598.660 . . .

≤ 75 196883.840 . . . 333202640599.828 . . . 22567393309593599.369 . . .

≤ 100 196883.958 . . . 333202640599.827 . . . 22567393309593599.681 . . .

∞ 196884 333202640600 22567393309593600

Example 7.20. The second example we consider is g in the conjugacy class

4B. In this case we have Γg = 4||2 + 2 ⊃ Γ0(8). The function Tg has a pole

at each of the four cusps of Γ0(8):

1. The cusp ∞ has e = 1, width t = 1, and coe�cient ε(L∞) = 1.

2. The cusp 0 has e = 2, width t = 8, and coe�cient ε(L0) = 1.
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3. The cusp 1/2 has e = 2, width t = 2, and coe�cient ε(L1/2) = i.

4. The cusp 1/4 has e = 1, width t = 1, and ε(L1/4) = −1.

Table 7.2 below contains several approximations as in Table 7.1.

Table 7.2

n = 1 n = 5 n = 10

c ≤ 25 51.975 . . . 4760.372 . . . 0.107 . . .

≤ 50 52.003 . . . 4759.860 . . . 0.117 . . .

≤ 75 52.041 . . . 4760.066 . . . 0.092 . . .

≤ 100 51.894 . . . 4760.049 . . . 0.040 . . .

∞ 52 4760 0
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Chapter 8

Umbral Moonshine

8.1 Proof of Theorem 1.32

We now prove the replicability formula as described in Theorem 1.32.

Proof. Fix a Niemeier lattice and its root system X, and letM = mX denote

its Coxeter number. Each HX
g,r(τ) is the holomorphic part of a weight 1

2

harmonic Maass form ĤX
g,r(τ). To simplify the exposition in the following

section, we will emphasize the case that the root system X is of pure A-type.

If the root system X is of pure A-type, the shadow function SXg,r(τ) is given

by χ̂XAg,r SM,r(τ) (see �A.3.2), where

SM,r(τ) =
∑
n∈Z

m≡r(mod 2M)

n q
n2

4M ,

and χ̂XAg,r = χXAg or χ̄XAg depending on the parity of r is the twisted Euler

character given in the appropriate table in �A.2.3, a character of GX . (If X

is not of pure A-type, then the shadow function SXg,r(τ) is a linear combination

of similar functions as described in �A.3.2.)

Given X and g, the symbol ng|hg given in the corresponding table in

�A.2.3 de�nes the modularity for the vector-valued function (ĤX
g,r(τ)). In
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particular, if the shadow (SXg,r(τ)) is nonzero, and if for γ ∈ Γ0(ng) we have

that

(SXg,r(τ))|3/2γ = σg,γ(S
X
g,r(τ)),

then

(ĤX
g,r(τ))|1/2γ = σg,γ(Ĥ

X
g,r(τ)).

Here, for γ ∈ Γ0(ng), we have σg,γ = νg(γ)σe,γ where νg(γ) is a multiplier

which is trivial on Γ0(nghg). This identity holds even in the case that the

shadow SXg,r vanishes.

The vector-valued function (HX
g,r(τ)) has poles only at the in�nite cusp of

Γ0(ng), and only at the component HX
g,r(τ) where r = 1 if X has pure A-type,

or at components where r2 ≡ 1 (mod 2M) otherwise. These poles may only

have order 1
4M
. This implies that the function (ĤX

g,r(τ)SXg,r(τ)) has no pole at

any cusp, and is therefore a candidate for an application of Theorem 2.5.

The modular transformation of SM,r(τ) implies that

(σe,S)2 = (σe,T )4M = IM−1,

where S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
, and IM−1 is the (M −1)× (M −1) iden-

tity matrix. Therefore SXM,r(τ), viewed as a scalar-valued modular function,

is modular on Γ(4M), and so (ĤX
g,r(τ)SXg,r(τ)) is a weight 2 nonholomorphic

scalar-valued modular form for the group Γ(4M)∩Γ0(ng) with trivial multi-

plier.

Applying Theorem 2.5, we obtain a function FX
g,r(τ)�call it the holomor-

phic projection of ĤX
g,r(τ)SXe,r(τ)�which is a weight 2 quasimodular form on

Γ(4M) ∩ Γ0(ng). In the case that SXg,r(τ) is zero, we substitute SXe,r(τ) in

its place to obtain a function F̃X
g,r(τ) = HX

g,r(τ)SXe,r(τ) which is a weight 2

holomorphic scalar-valued modular form for the group Γ(4M) ∩ Γ0(ng) with

multiplier νg (or alternatively, modular for the group Γ(4M)∩Γ0(nghg) with

trivial multiplier).
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The function FX
g,r(τ) may be determined explicitly as the sum of Eisen-

stein series and cusp forms on Γ(4M)∩Γ0(nghg) using the standard arguments

from the theory of holomorphic modular forms (i.e. the ��rst few" coe�cients

determine such a form). Therefore, we have the identity

FX
g,r(τ) = HX

g,r(τ) · SXg,r(τ) +DX
g,r(τ),

where the function DX
g,r(τ) is the correction term arising in Theorem 2.5. If

X has pure A-type, then

DX
g,r(τ) = (χ̂XAg,r )2

∞∑
N=1

∑
m,n∈Z+

m2−n2=N

φr(m)φr(n)(m− n)q
N

4M , (8.1)

where

φr(`) =

±1 if ` ≡ ±r (mod 2M)

0 otherwise.

Suppose HX
g,r(τ) =

∞∑
n=0

AXg,r(n)qn−
D

4M where 0 < D < 4M and D ≡

r2 (mod 4M) , and FX
g,r(τ) =

∞∑
N=0

BX
g,r(n)qn. Then by Theorem 2.5, we �nd

that

BX
g,r(N) =χ̂XAg,r

∑
m∈Z

m≡r(mod 2M)

m · AXg,r
(
N +

D −m2

4M

)
+ (χ̂XAg,r )2

∑
m,n∈Z+

m2−n2=N

φr(m)φr(n)(m− n).

(8.2)

The function FX
g,r(τ) may be found by considering its �rst few coe�cients

as determined using the explicit prescriptions given in �A.3.4. It may also

be found exactly as a sum of Eisenstein series and cusp forms in the follow-

ing manner. The Eisenstein component is determined by the constant terms

at cusps. Since DX
g,r(τ) (and the corresponding correction terms at other
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cusps) has no constant term, these are the same as the constant terms of

ĤX
g,r(τ)SXg,r(τ), which are determined by the poles of ĤX

g,r. The cuspidal com-

ponent can be found by considering the order of vanishing of ĤX
g,r(τ)SXg,r(τ)

at cusps.

Once the BX
g,r(N) are known, equation (8.2) provides a recursion relation

which may be used to calculate the coe�cients of HX
g,r(τ). If the shadows

SXg,r(τ) are zero, then we may apply a similar procedure in order to determine

F̃X
g,r(τ). For example, suppose F̃X

g,r(τ) =
∞∑
N=0

B̃X
g,r(n)qn, and X has pure A-

type. Then we �nd that the coe�cients B̃X
g,r(N) satisfy

B̃X
g,r(N) = χ̂XAg,r

∑
m∈Z

m≡s(mod 2M)

m · AXg,r
(
N +

D −m2

4M

)
(8.3)

Proceeding in this way we obtain the claimed results.

8.2 Proof of Theorem 1.30

Here we prove Theorem 1.30. The idea is as follows. For each Niemeier root

system X we begin with the vector-valued mock modular forms (HX
g (τ)) for

g ∈ GX . We use their q-expansions to solve for the q-series whose coe�cients

are the alleged multiplicities of the irreducible components of the alleged

in�nite-dimensional GX-module

ǨX =
⊕

r(mod 2m)

⊕
D∈Z, D≤0,

D=r2(mod 4m)

ǨX
r,−D/4m.

These q-series turn out to be mock modular forms. The proof requires that

we establish that these mock modular forms have non-negative integer coef-

�cients.
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Proof of Theorem 1.30. As in the previous section, we �x a root system X

and set M := mX , and we emphasize the case when X is of pure A-type.

The umbral moonshine conjecture asserts that

HX
g,r(τ) =

∞∑
n=0

∑
χ

mX
χ,r(n)χ(g)qn−

r2

4M

where the second sum is over the irreducible characters of GX , and the

mX
χ,r(n) are non-negative integers which are the multiplicities of the irre-

ducible GX-modules in the graded components of the alleged GX-module

ǨX . Moreover, the umbral moonshine conjecture is true if and only if the

coe�cients of certain weight 1
2
mock modular forms are non-negative inte-

gers. Indeed, it turns out that the multiplicities mX
χ,r(n) are the Fourier

coe�cients of

HX
χ,r(τ) :=

1

|GX |
∑
g

χ(g)HX
g,r(τ) (8.4)

if and only if the conjecture is true. To see this, we recall the orthogonality

of characters. We have that for irreducible characters χi and χj,

1

|GX |
∑
g∈GX

χi(g)χj(g) =

1 if χi = χj,

0 otherwise.
(8.5)

We also have the relation for g and h ∈ GX ,

∑
χ

χi(g)χi(h) =

|CGX (g)| if g and h are conjugate,

0 otherwise.
(8.6)

Here |CGX (g)| is the order of the centralizer of g in GX . Since the order of

the centralizer times the order of the conjugacy class of an element is the

order of the group, (8.4) and (8.6) together imply the inverse relation

HX
g,r(τ) =

∑
χ

χ(g)HX
χ,r(τ).
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These lead to the key identity

HX
χ,r(τ) =

∞∑
n=0

mX
χ,r(n)qn−

r2

4M .

Therefore, in order to prove the theorem it su�ces to prove that the

coe�cients of the mock modular forms HX
χ,r(τ) are all non-negative integers.

For holomorphic modular forms, we may answer questions of this type by

making use of Sturm's theorem [281] (see also Theorem 2.58 of [249]). This

theorem provides a bound B associated to a space of modular forms such

that a modular form f(τ) is uniquely identi�ed by it's �rst B coe�cients.

This bound reduces many questions about the Fourier coe�cients of modular

forms to �nite calculations. In particular, because of the existence of integral

bases, this bound B may be used to show that if the �rst B coe�cients of

the form f(τ) are integral, then all coe�cients of f(τ) must be integral.

Sturm's Theorem relies on the �nite dimensionality of certain spaces of

modular forms, and so it can not be applied directly to spaces of mock

modular forms. However, by making use of holomorphic projection we can

adapt Sturm's theorem to this setting.

Let HX
χ,r(τ) be de�ned as above. Recall that the transformation matrix

for the vector-valued function ĤX
g,r(τ)) is σg,γ, the conjugate of the transfor-

mation matrix for (SXe,r(τ)) when γ ∈ Γ0(nghg), and σg,γ is the identity for

γ ∈ Γ(4M). Therefore if

Nχ := lcm{nghg | g ∈ G,χ(g) 6= 0},

then the scalar-valued functions ĤX
χ,r(τ) are modular on Γ(4M)∩ Γ0(NX

χ ).

Suppose that HX
χ,r(τ) has integral coe�cients up to the Sturm bound for

Γ(4M) ∩ Γ0(NX
χ ). Formulas for the shadow functions (cf. �A.3.2) show that

the leading coe�cient of SXe,1(τ) is 1 and has integral coe�cients. This implies

that the function

Aχ,r(τ) := HX
χ,r(τ)SXe,1(τ)
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also has integral coe�cients up to the Sturm bound for Γ(4M)∩Γ0(NX
χ ) and

that every coe�cient of Aχ,r(τ) is integral if and only if every coe�cient of

HX
χ,r is integral. The shadow of HX

χ,r(τ) is given by

SXχ,r(τ) :=
1

|GX |
∑
g

χ(g)SXg,r(τ).

If X is pure A-type, then SXg,r(τ) = χXAg,r SM,r(τ) = (χ′(g) + χ′′(g))SM,r(τ)

for some irreducible characters χ′ and χ′′, according to �A.2.3 and �A.3.2.

Therefore,

SXχ,r(τ) =

SM,r(τ) if χ = χ′ or χ′′,

0 otherwise.

When X is not of pure A-type the shadow is some sum of such functions,

but in every case has integer coe�cients, and so, applying Theorem 2.5 to

Aχ,r(τ), we �nd that the holomorphic projection of this function has only

integer coe�cients if and only if Aχ,r(τ) has only integer coe�cients. But

the holomorphic projection is modular on Γ(4M) ∩ Γ0(NX
χ ) and has integer

coe�cients up to the Sturm bound for Γ(4M)∩Γ0(NX
χ ). Therefore, in order

to check that HX
χ,r(τ) has only integer coe�cients, it su�ces to check up to

the Sturm bound for Γ(4M) ∩ Γ0(Nχ). These calculations were carried out

using the sage mathematical software [277].

To complete the proof, it su�ces to check that the multiplicities mX
χ,r(n)

are non-negative. The proof of this claim follows easily by modifying step-by-

step the argument in Gannon's proof of non negativity in the M24 case [136]

(i.e. X = A24
1 ). Here we describe how this is done.

Conjectural expressions for the alleged McKay-Thompson series HX
g,r(τ)

in terms of Rademacher sums and unary theta functions are given in �A.3.3.

These expressions are known to hold in many cases, but in any case, the dif-

ference between HX
g,r(τ) and the corresponding Rademacher sum (cf. (A.27),

(A.28)) is a unary theta function of bounded level, according to the Serre�

Stark theorem [271] on modular forms of weight 1
2
. The unary theta functions
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have bounded coe�cients, and so the non-negativity depends on the asymp-

totic growth of the coe�cients of the Rademacher sums.

Exact formulas are known for all the coe�cients of Rademacher sums be-

cause they are de�ned by averaging the special function r
[α]
1/2(γ, τ) (see (A.23))

over cosets of a speci�c modular group modulo Γ∞, the subgroup of trans-

lations. Therefore, Rademacher sums are standard Maass-Poincaré series,

and as a result we have formulas for each of their coe�cients as convergent

in�nite sums of Kloosterman-type sums weighted by values of the I1/2 mod-

i�ed Bessel function. (For example, see [45] for the general theory, and [73]

for the speci�c case that X = A24
1 .) More importantly, this means also that

the generating function for the multiplicities mX
χ,r(n) is a weight 1

2
harmonic

Maass form, which in turn means that exact formulas (modulo the unary

theta functions) are also available in similar terms. For positive integers n,

this then means that (cf. Theorem 1.1 of [45])

mX
χ,r(n) =

∑
ρ

∑
m<0

aXρ (m)

n
1
4

∞∑
c=1

KX
ρ (m,n, c)

c
· IX

(
4π
√
|nm|
c

)
, (8.7)

where the sums are over the cusps ρ of the group Γ0(NX
g ), and �nitely many

explicit negative rational numbers m. The constants aXρ (m) are essentially

the coe�cients which describe the generating function in terms of Maass-

Poincaré series. Here I is a suitable normalization and change of variable for

the standard I1/2 modi�ed Bessel-function.

The Kloosterman-type sums KX
ρ (m,n, c) are well known to be related to

Salié-type sums (for example see Proposition 5 of [194]). These Salié-type

sums are of the form

SXρ (m,n, c) =
∑

x(mod c)
x2≡−D(m,n)(mod c)

εXρ (m,n) · e
(
βXx

c

)
,

where εXρ (m,n) is a root of unity, −D(m,n) is a discriminant of a positive

de�nite binary quadratic form, and βX is a nonzero positive rational number.
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These Salié sums may then be estimated using the equidistribution of

CM points with discriminant −D(m,n). This process was �rst introduced

by Hooley [165], and it was �rst applied to the coe�cients of weight 1
2
mock

modular forms by Bringmann and Ono [41]. Gannon explains how to make

e�ective the estimates for sums of this shape in �4 of [136], thereby reduc-

ing the proof of the M24 case of umbral moonshine to a �nite calculation.

In particular, in equations (4.6-4.10) of [136] Gannon shows how to bound

coe�cients of the form (8.7) in terms of the Selberg�Kloosterman zeta func-

tion, which is bounded in turn in his proof of Theorem 3 of [136]. We follow

Gannon's proof mutatis mutandis. We �nd, for each root system, that the

coe�cients of each multiplicity generating function are positive beyond the

390th coe�cient. Moreover, the coe�cients exhibit subexponential growth.

A �nite computer calculation in sage has veri�ed the non-negativity of the

�nitely many remaining coe�cients.

Remark. It turns out that the estimates required for proving nonnegativity

are the worst for the M24 case considered by Gannon.
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Appendix

A.1 Monstrous Groups

The table below contains the symbols Γg = N ||h+e, f, . . . , for each conjugacy

class of the monster. Following [84], if h = 1, we omit the `||1' from the

symbol. If Wg = {1}, then we write N ||h, whereas if it contains every exact

divisor of N/h, we write N ||h+.

1A 1

2A 2+

2B 2

3A 3+

3B 3

3C 3||3
4A 4+

4B 4||2+

4C 4

4D 4||2
5A 5+

5B 5

6A 6+

6B 6 + 6

6C 6 + 3

6D 6 + 2

6E 6

6F 6||3
7A 7+

7B 7

8A 8+

8B 8||2+

8C 8||4+

8D 8||2
8E 8

8F 8||4
9A 9+

9B 9

10A 10+

10B 10 + 5

10C 10 + 2

10D 10 + 10

10E 10

11A 11+

12A 12+

12B 12 + 4

12C 12||2+

12D 12||3+

12E 12 + 3

12F 12||2 + 6

12G 12||2 + 2

12H 12 + 12

12I 12

12J 12||6
13A 13+

13B 13

14A 14+

14B 14 + 7

14C 14 + 14

15A 15+

15B 15 + 5

15C 15 + 15

15D 15||3
16A 16||2+

16B 16

16C 16+

17A 17+

18A 18 + 2

18B 18+

18C 18 + 9

18D 18

18E 18 + 18

19A 19+

20A 20+

20B 20||2+

20C 20 + 4

20D 20||2 + 5

20E 20||2 + 10

20F 20 + 20

21A 21+

21B 21 + 3

21C 21||3+

21D 21 + 21

22A 22+

22B 22 + 11

23AB 23+

24A 24||2+

24B 24+

24C 24 + 8

24D 24||2 + 3

24E 24||6+

24F 24||4 + 6

24G 24||4 + 2

24H 24||2 + 12

24I 24 + 24

24J 24||12

25A 25+

26A 26+

26B 26 + 26

27A 27+

27B 27+

28A 28||2+

28B 28+

28C 28 + 7

28D 28||2 + 14

29A 29+

30A 30 + 6, 10, 15

30B 30+

30C 30 + 3, 5, 15

30D 30 + 5, 6, 30

30E 30||3 + 10

30F 30 + 2, 15, 30

30G 30 + 15

31AB 31+

32A 32+

32B 32||2+

33A 33 + 11

33B 33+
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34A 34+

35A 35+

35B 35 + 35

36A 36+

36B 36 + 4

36C 36||2+

36D 36 + 36

38A 38+

39A 39+

39B 39||3+

39CD 39 + 39

40A 40||4+

40B 40||2+

40CD 40||2 + 20

41A 41+

42A 42+

42B 42 + 6, 14, 21

42C 42||3 + 7

42D 42 + 3, 14, 42

44AB 44+

45A 45+

46AB 46 + 23

46CD 46+

47AB 47+

48A 48||2+

50A 50+

51A 51+

52A 52||2+

52B 52||2 + 26

54A 54+

55A 55+

56A 56+

56BC 56||4 + 14

57A 57||3+

59AB 59+

60A 60||2+

60B 60+

60C 60 + 4, 15, 60

60D 60 + 12, 15, 20

60E 60||2 + 5, 6, 30

60F 60||6 + 10

62AB 62+

66A 66+

66B 66 + 6, 11, 66

68A 68||2+

69AB 69+

70A 70+

70B 70 + 10, 14, 35

71AB 71+

78A 78+

78BC 78 + 6, 26, 39

84A 84||2+

84B 84||2 + 6, 14, 21

84C 84||3+

87AB 87+

88AB 88||2+

92AB 92+

93AB 93||3+

94AB 94+

95AB 95+

104AB 104||4+

105A 105+

110A 110+

119AB 119+

A.2 The Umbral Groups

In this section we present the facts about the umbral groups that we have

used in establishing the main results of this paper. We recall (from [68]) their

construction in terms of Niemeier root systems in �A.2.1, and we reproduce

their character tables (appearing also in [68]) in �A.2.2. Note that we use the
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abbreviations an :=
√
−n and bn := (−1 +

√
−n)/2 in the tables of �A.2.2.

The root system description of the umbral groups (cf. �A.2.1) gives rise to

certain characters called twisted Euler characters which we recall (from [68])

in �A.2.3. The data appearing in �A.2.3 plays an important role in �A.3.2,

where we use it to describe the shadows SXg of the umbral McKay-Thompson

series HX
g explicitly.

A.2.1 Construction

As mentioned in the introduction, there are exactly 24 self-dual even positive-

de�nite lattices of rank 24 up to isomorphism, according to the classi�cation

of Niemeier [244] (cf. also [82, 291]). Such a lattice L is determined up to

isomorphism by its root system L2 := {α ∈ L | 〈α, α〉 = 2}. The unique

example without roots is the Leech lattice. We refer to the remaining 23 as

the Niemeier lattices, and we call a root system X a Niemeier root system if

it occurs as the root system of a Niemeier lattice.

The simple components of Niemeier root systems are root systems of ADE

type, and it turns out that the simple components of a Niemeier root system

X all have the same Coxeter number. De�ne mX to be the Coxeter number

of any simple component of X, and call this the Coxeter number of X.

For X a Niemeier root system write NX for the corresponding Niemeier

lattice. The umbral group attached to X is de�ned by setting

GX := Aut(NX)/WX (A.1)

where WX is the normal subgroup of Aut(NX) generated by re�ections in

root vectors.

Observe that GX acts as permutations on the simple components of X.

In general this action is not faithful, so de�ne G
X
to be the quotient of GX by

its kernel. It turns out that the level of the mock modular form HX
g attached
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to g ∈ GX is given by the order, denoted ng, of the image of g in ḠX . (Cf.

�A.2.3 for the values ng.)

The Niemeier root systems and their corresponding umbral groups are

described in Table A.1. The root systems are given in terms of their simple

components of ADE type. Here D10E
2
7 , for example, means the direct sum of

one copy of the D10 root system and two copies of the E7 root system. The

symbol ` is called the lambency of X, and the Coxeter number mX appears

as the �rst summand of `.

In the descriptions of the umbral groups GX , and their permutation group

quotients ḠX , we writeM24 andM12 for the sporadic simple groups of Math-

ieu which act quintuply transitively on 24 and 12 points, respectively. (Cf.

e.g. [80].) We write GLn(q) for the general linear group of a vector space of

dimension n over a �eld with q elements, and SLn(q) is the subgroup of lin-

ear transformations with determinant 1, &c. The symbols AGL3(2) denote

the a�ne general linear group, obtained by adjoining translations to GL3(2).

We write Dihn for the dihedral group of order 2n, and Symn denotes the

symmetric group on n symbols. We use n as a shorthand for a cyclic group

of order n.

We also use the notational convention of writing A.B to denote the mid-

dle term in a short exact sequence 1→ A→ A.B → B → 1. This introduces

some ambiguity which is nonetheless easily navigated in practice. For ex-

ample, 2.M12 is the unique (up to isomorphism) double cover of M12 which

is not 2 ×M12. The group AGL3(2) naturally embeds in GL4(2), which in

turn admits a unique (up to isomorphism) double cover 2.GL4(2) which is

not a direct product. The group we denote 2.AGL3(2) is the preimage of

AGL3(2) < GL4(2) in 2.GL4(2) under the natural projection.
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Table A.1: The Umbral Groups

X A24
1 A12

2 A8
3 A6

4 A4
5D4 A4

6 A2
7D

2
5

� 2 3 4 5 6 7 8

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4

ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22

X A3
8 A2

9D6 A11D7E6 A2
12 A15D9 A17E7 A24

� 9 10 12 13 16 18 25

GX Dih6 4 2 4 2 2 2

ḠX Sym3 2 1 2 1 1 1

X D6
4 D4

6 D3
8 D10E

2
7 D2

12 D16E8 D24

� 6+3 10+5 14+7 18+9 22+11 30+15 46+23

GX 3.Sym6 Sym4 Sym3 2 2 1 1

ḠX Sym6 Sym4 Sym3 2 2 1 1

X E4
6 E3

8

� 12+4 30+6,10,15

GX GL2(3) Sym3

ḠX PGL2(3) Sym3
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Table A.4: Character table of GX ' 2.AGL3(2), X = A8
3

[g] FS 1A 2A 2B 4A 4B 2C 3A 6A 6B 6C 8A 4C 7A 14A 7B 14B

[g2] 1A 1A 1A 2A 2B 1A 3A 3A 3A 3A 4A 2C 7A 7A 7B 7B

[g3] 1A 2A 2B 4A 4B 2C 1A 2A 2B 2B 8A 4C 7B 14B 7A 14A

[g7] 1A 2A 2B 4A 4B 2C 3A 6A 6B 6C 8A 4C 1A 2A 1A 2A

χ1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 ◦ 3 3 3 −1 −1 −1 0 0 0 0 1 1 b7 b7 b7 b7

χ3 ◦ 3 3 3 −1 −1 −1 0 0 0 0 1 1 b7 b7 b7 b7

χ4 + 6 6 6 2 2 2 0 0 0 0 0 0 −1 −1 −1 −1

χ5 + 7 7 7 −1 −1 −1 1 1 1 1 −1 −1 0 0 0 0

χ6 + 8 8 8 0 0 0 −1 −1 −1 −1 0 0 1 1 1 1

χ7 + 7 7 −1 3 −1 −1 1 1 −1 −1 1 −1 0 0 0 0

χ8 + 7 7 −1 −1 −1 3 1 1 −1 −1 −1 1 0 0 0 0

χ9 + 14 14 −2 2 −2 2 −1 −1 1 1 0 0 0 0 0 0

χ10 + 21 21 −3 1 1 −3 0 0 0 0 −1 1 0 0 0 0

χ11 + 21 21 −3 −3 1 1 0 0 0 0 1 −1 0 0 0 0

χ12 + 8 −8 0 0 0 0 2 −2 0 0 0 0 1 −1 1 −1

χ13 ◦ 8 −8 0 0 0 0 −1 1 a3 a3 0 0 1 −1 1 −1

χ14 ◦ 8 −8 0 0 0 0 −1 1 a3 a3 0 0 1 −1 1 −1

χ15 ◦ 24 −24 0 0 0 0 0 0 0 0 0 0 b7 −b7 b7 −b7
χ16 ◦ 24 −24 0 0 0 0 0 0 0 0 0 0 b7 −b7 b7 −b7

Table A.5: Character table of GX ' GL2(5)/2, X = A6
4

[g] FS 1A 2A 2B 2C 3A 6A 5A 10A 4A 4B 4C 4D 12A 12B

[g2] 1A 1A 1A 1A 3A 3A 5A 5A 2A 2A 2C 2C 6A 6A

[g3] 1A 2A 2B 2C 1A 2A 5A 10A 4B 4A 4D 4C 4B 4A

[g5] 1A 2A 2B 2C 3A 6A 1A 2A 4A 4B 4C 4D 12A 12B

χ1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 + 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

χ3 + 4 4 0 0 1 1 −1 −1 2 2 0 0 −1 −1

χ4 + 4 4 0 0 1 1 −1 −1 −2 −2 0 0 1 1

χ5 + 5 5 1 1 −1 −1 0 0 1 1 −1 −1 1 1

χ6 + 5 5 1 1 −1 −1 0 0 −1 −1 1 1 −1 −1

χ7 + 6 6 −2 −2 0 0 1 1 0 0 0 0 0 0

χ8 ◦ 1 −1 1 −1 1 −1 1 −1 a1 −a1 a1 −a1 a1 −a1

χ9 ◦ 1 −1 1 −1 1 −1 1 −1 −a1 a1 −a1 a1 −a1 a1

χ10 ◦ 4 −4 0 0 1 −1 −1 1 2a1 −2a1 0 0 −a1 a1

χ11 ◦ 4 −4 0 0 1 −1 −1 1 −2a1 2a1 0 0 a1 −a1

χ12 ◦ 5 −5 1 −1 −1 1 0 0 a1 −a1 −a1 a1 a1 −a1

χ13 ◦ 5 −5 1 −1 −1 1 0 0 −a1 a1 a1 −a1 −a1 a1

χ14 + 6 −6 −2 2 0 0 1 −1 0 0 0 0 0 0
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Table A.6: Character table of GX ' GL2(3), X ∈ {A4
5D4, E

4
6}

[g] FS 1A 2A 2B 4A 3A 6A 8A 8B

[g2] 1A 1A 1A 2A 3A 3A 4A 4A

[g3] 1A 2A 2B 4A 1A 2A 8A 8B

χ1 + 1 1 1 1 1 1 1 1

χ2 + 1 1 −1 1 1 1 −1 −1

χ3 + 2 2 0 2 −1 −1 0 0

χ4 + 3 3 −1 −1 0 0 1 1

χ5 + 3 3 1 −1 0 0 −1 −1

χ6 ◦ 2 −2 0 0 −1 1 a2 a2

χ7 ◦ 2 −2 0 0 −1 1 a2 a2

χ8 + 4 −4 0 0 1 −1 0 0
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Table A.7: Character table of GX ' 3.Sym6, X = D6
4

[g] FS 1A 3A 2A 6A 3B 3C 4A 12A 5A 15A 15B 2B 2C 4B 6B 6C

[g2] 1A 3A 1A 3A 3B 3C 2A 6A 5A 15A 15B 1A 1A 2A 3B 3C

[g3] 1A 1A 2A 2A 1A 1A 4A 4A 5A 5A 5A 2B 2C 4B 2B 2C

[g5] 1A 3A 2A 6A 3B 3C 4A 12A 1A 3A 3A 2B 2C 4B 6B 6C

χ1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 + 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1

χ3 + 5 5 1 1 2 −1 −1 −1 0 0 0 3 −1 1 0 −1

χ4 + 5 5 1 1 2 −1 −1 −1 0 0 0 −3 1 −1 0 1

χ5 + 5 5 1 1 −1 2 −1 −1 0 0 0 −1 3 1 −1 0

χ6 + 5 5 1 1 −1 2 −1 −1 0 0 0 1 −3 −1 1 0

χ7 + 16 16 0 0 −2 −2 0 0 1 1 1 0 0 0 0 0

χ8 + 9 9 1 1 0 0 1 1 −1 −1 −1 3 3 −1 0 0

χ9 + 9 9 1 1 0 0 1 1 −1 −1 −1 −3 −3 1 0 0

χ10 + 10 10 −2 −2 1 1 0 0 0 0 0 2 −2 0 −1 1

χ11 + 10 10 −2 −2 1 1 0 0 0 0 0 −2 2 0 1 −1

χ12 ◦ 6 −3 −2 1 0 0 2 −1 1 b15 b15 0 0 0 0 0

χ13 ◦ 6 −3 −2 1 0 0 2 −1 1 b15 b15 0 0 0 0 0

χ14 + 12 −6 4 −2 0 0 0 0 2 −1 −1 0 0 0 0 0

χ15 + 18 −9 2 −1 0 0 2 −1 −2 1 1 0 0 0 0 0

χ16 + 30 −15 −2 1 0 0 −2 1 0 0 0 0 0 0 0 0
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Table A.8: Character table of GX ' SL2(3), X = A4
6

[g] FS 1A 2A 4A 3A 6A 3B 6B

[g2] 1A 1A 2A 3B 3A 3A 3B

[g3] 1A 2A 4A 1A 2A 1A 2A

χ1 + 1 1 1 1 1 1 1

χ2 ◦ 1 1 1 b3 b3 b3 b3

χ3 ◦ 1 1 1 b3 b3 b3 b3

χ4 + 3 3 −1 0 0 0 0

χ5 − 2 −2 0 −1 1 −1 1

χ6 ◦ 2 −2 0 −b3 b3 −b3 b3

χ7 ◦ 2 −2 0 −b3 b3 −b3 b3

Table A.9: Character table of GX ' Dih4, X = A2
7D

2
5

[g] FS 1A 2A 2B 2C 4A

[g2] 1A 1A 1A 1A 2A

χ1 + 1 1 1 1 1

χ2 + 1 1 −1 −1 1

χ3 + 1 1 −1 1 −1

χ4 + 1 1 1 −1 −1

χ5 + 2 −2 0 0 0
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Table A.10: Character table of GX ' Dih6, X = A3
8

[g] FS 1A 2A 2B 2C 3A 6A

[g2] 1A 1A 1A 1A 3A 3A

[g3] 1A 2A 2B 2C 1A 2A

χ1 + 1 1 1 1 1 1

χ2 + 1 1 −1 −1 1 1

χ3 + 2 2 0 0 −1 −1

χ4 + 1 −1 −1 1 1 −1

χ5 + 1 −1 1 −1 1 −1

χ6 + 2 −2 0 0 −1 1

Table A.11: Character table of GX ' 4, for X ∈ {A2
9D6, A

2
12}

[g] FS 1A 2A 4A 4B

[g2] 1A 1A 2A 2A

χ1 + 1 1 1 1

χ2 + 1 1 −1 −1

χ3 ◦ 1 −1 a1 a1

χ4 ◦ 1 −1 a1 a1
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Table A.12: Character table of GX ' PGL2(3) ' Sym4, X = D4
6

[g] FS 1A 2A 3A 2B 4A

[g2] 1A 1A 3A 1A 2A

[g3] 1A 2A 1A 2B 4A

χ1 + 1 1 1 1 1

χ2 + 1 1 1 −1 −1

χ3 + 2 2 −1 0 0

χ4 + 3 −1 0 1 −1

χ5 + 3 −1 0 −1 1

Table A.13: Character table of GX ' 2, for X ∈
{A11D7E6, A15D9, A17E7, A24, D10E

2
7 , D

2
12}

[g] FS 1A 2A

[g2] 1A 1A

χ1 + 1 1

χ2 + 1 −1

Table A.14: Character table of GX ' Sym3, X ∈ {D3
8, E

3
8}

[g] FS 1A 2A 3A

[g2] 1A 1A 3A

[g3] 1A 2A 1A

χ1 + 1 1 1

χ2 + 1 −1 1

χ3 + 2 0 −1
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A.2.3 Twisted Euler Characters

In this section we reproduce certain characters�the twisted Euler characters�

which are attached to each group GX , via its action on the root system X.

(Their construction is described in detail in �2.4 of [68].)

To interpret the tables, write XA for the (possibly empty) union of type

A components of X, and interpret XD and XE similarly, so that if m = mX

Then X = Adm−1 for some d, and X = XA ∪ XD ∪ XE, for example. Then

g 7→ χ̄XAg denotes the character of the permutation representation attached to

the action of ḠX on the simple components of XA. The characters g 7→ χ̄XDg

and g 7→ χ̄XEg are de�ned similarly. The characters χXAg , χXDg , χXEg and

χ̌XDg incorporate outer automorphisms of simple root systems induced by the

action GX on X. We refer to �2.4 of [68] for full details of the construction.

For the purposes of this work, it su�ces to have the explicit descriptions in

the tables in this section. The twisted Euler characters presented here will

be used to specify the umbral shadow functions in �A.3.2.

The twisted Euler character tables also attach integers ng and hg to each

g ∈ GX . By de�nition, ng is the order of the image of g ∈ GX in ḠX (cf.

�A.2.1). The integer hg may be de�ned by setting hg := Ng/ng where Ng is

the product of the shortest and longest cycle lengths appearing in the cycle

shape attached to g by the action of GX on a (suitable) set of simple roots

for X.
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Table A.15: Twisted Euler characters at �= 2, X = A24
1

[g] 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B

ng|hg 1|1 2|1 2|2 3|1 3|3 4|2 4|1 4|4 5|1 6|1 6|6
χ̄XAg 24 8 0 6 0 0 4 0 4 2 0

[g] 7AB 8A 10A 11A 12A 12B 14AB 15AB 21AB 23AB

ng|hg 7|1 8|1 10|2 11|1 12|2 12|12 14|1 15|1 21|3 23|1
χ̄XAg 3 2 0 2 0 0 1 1 0 1

Table A.16: Twisted Euler characters at �= 3, X = A12
2

[g] 1A 2A 4A 2B 2C 3A 6A 3B 6B 4B 4C 5A10A 12A 6C 6D8AB8CD20AB11AB22AB

ng|hg 1|1 1|4 2|8 2|1 2|2 3|1 3|4 3|3 3|12 4|2 4|1 5|1 5|4 6|24 6|1 6|2 8|4 8|1 10|8 11|1 11|4
χ̄XAg 12 12 0 4 4 3 3 0 0 0 4 2 2 0 1 1 0 2 0 1 1

χXAg 12−12 0 4−4 3−3 0 0 0 0 2 −2 0 1−1 0 0 0 1 −1

Table A.17: Twisted Euler characters at �= 4, X = A8
3

[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

ng|hg 1|1 1|2 2|2 2|4 4|4 2|1 3|1 3|2 6|2 4|8 4|1 7|1 7|2
χ̄XAg 8 8 0 0 0 4 2 2 0 0 2 1 1

χXAg 8 −8 0 0 0 0 2 −2 0 0 0 1 −1
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Table A.18: Twisted Euler characters at �= 5, X = A6
4

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

ng|hg 1|1 1|4 2|2 2|1 3|3 3|12 5|1 5|4 2|8 4|1 6|24

χ̄XAg 6 6 2 2 0 0 1 1 0 2 0

χXAg 6 −6 −2 2 0 0 1 −1 0 0 0

Table A.19: Twisted Euler characters at �= 6, X = A4
5D4

[g] 1A 2A 2B 4A 3A 6A 8AB

ng|hg 1|1 1|2 2|1 2|2 3|1 3|2 4|2
χ̄XAg 4 4 2 0 1 1 0

χXAg 4 −4 0 0 1 −1 0

χ̄XDg 1 1 1 1 1 1 1

χXDg 1 1 −1 1 1 1 −1

χ̌XDg 2 2 0 2 −1 −1 0

Table A.20: Twisted Euler characters at �= 6 + 3, X = D6
4

[g] 1A 3A 2A 6A 3B 6C 4A 12A 5A 15AB 2B 2C 4B 6B 6C

ng|hg 1|1 1|3 2|1 2|3 3|1 3|3 4|2 4|6 5|1 5|3 2|1 2|2 4|1 6|1 6|6
χ̄XDg 6 6 2 2 3 0 0 0 1 1 4 0 2 1 0

χXDg 6 6 2 2 3 0 0 0 1 1 −4 0 −2 −1 0

χ̌XDg 12 −6 4 −2 0 0 0 0 2 −1 0 0 0 0 0
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Table A.21: Twisted Euler characters at �= 7, X = A4
6

[g] 1A 2A 4A 3AB 6AB

ng|hg 1|1 1|4 2|8 3|1 3|4
χ̄XAg 4 4 0 1 1

χXAg 4 -4 0 1 -1

Table A.22: Twisted Euler characters at �= 8, X = A2
7D

2
5

[g] 1A 2A 2B 2C 4A

ng|hg 1|1 1|2 2|1 2|1 2|4
χ̄XAg 2 2 0 2 0

χXAg 2 -2 0 0 0

χ̄XDg 2 2 2 0 0

χXDg 2 -2 0 0 0

Table A.23: Twisted Euler characters at �= 9, X = A3
8

[g] 1A 2A 2B 2C 3A 6A

ng|hg 1|1 1|4 2|1 2|2 3|3 3|12

χ̄XAg 3 3 1 1 0 0

χXAg 3 -3 1 -1 0 0
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Table A.24: Twisted Euler characters at �= 10, X = A2
9D6

[g] 1A 2A 4AB

ng|hg 1|1 1|2 2|2
χ̄XAg 2 2 0

χXAg 2 -2 0

χ̄XDg 1 1 1

χXDg 1 1 −1

Table A.25: Twisted Euler characters at �= 10 + 5, X = D4
6

[g] 1A 2A 3A 2B 4A

ng|hg 1|1 2|2 3|1 2|1 4|4
χ̄XDg 4 0 1 2 0

χXDg 4 0 1 −2 0

Table A.26: Twisted Euler characters at �= 12, X = A11D7E6

[g] 1A 2A

ng|hg 1|1 1|2
χ̄XAg 1 1

χXAg 1 −1

χ̄XDg 1 1

χXDg 1 −1

χ̄XEg 1 1

χXEg 1 −1
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Table A.27: Twisted Euler characters at �= 12 + 4, X = E4
6

[g] 1A 2A 2B 4A 3A 6A 8AB

ng|hg 1|1 1|2 2|1 2|4 3|1 3|2 4|8
χ̄XEg 4 4 2 0 1 1 0

χXEg 4 −4 0 0 1 −1 0

Table A.28: Twisted Euler characters at �= 13, X = A2
12

[g] 1A 2A 4AB

ng|hg 1|1 1|4 2|8
χ̄XAg 2 2 0

χXAg 2 -2 0
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Table A.29: Twisted Euler characters at �= 14 + 7, X = D3
8

[g] 1A 2A 3A

ng|hg 1|1 2|1 3|3
χ̄XDg 3 1 0

χXDg 3 1 0

Table A.30: Twisted Euler characters at �= 16, X = A15D9

[g] 1A 2A

ng|hg 1|1 1|2
χ̄XAg 1 1

χXAg 1 −1

χ̄XDg 1 1

χXDg 1 −1

Table A.31: Twisted Euler characters at �= 18, X = A17E7

[g] 1A 2A

ng|hg 1|1 1|2
χ̄XAg 1 1

χXAg 1 −1

χ̄XEg 1 1
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Table A.32: Twisted Euler characters at �= 18 + 9, X = D10E
2
7

[g] 1A 2A

ng|hg 1|1 2|1
χ̄XDg 1 1

χXDg 1 −1

χ̄XEg 2 0

Table A.33: Twisted Euler characters at �= 22 + 11, X = D2
12

[g] 1A 2A

ng|hg 1|1 2|2
χ̄XDg 2 0

χXDg 2 0

Table A.34: Twisted Euler characters at �= 25, X = A24

[g] 1A 2A

ng|hg 1|1 1|4
χ̄XAg 1 1

χXAg 1 −1

Table A.35: Twisted Euler characters at �= 30 + 6, 10, 15, X = E3
8

[g] 1A 2A 3A

ng|hg 1|1 2|1 3|3
χ̄XEg 3 1 0
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A.3 The Umbral McKay-Thompson Series

In this section we describe the umbral McKay-Thompson series in com-

plete detail. In particular, we present explicit formulas for all the McKay-

Thompson series attached to elements of the umbral groups by umbral moon-

shine in �A.3.4. Most of these expressions appeared �rst in [68,75], but some

appear for the �rst time in this work.

In order to facilitate explicit formulations we recall certain standard func-

tions in �A.3.1. We then, using the twisted Euler characters of �A.2.3, ex-

plicitly describe the shadow functions of umbral moonshine in �A.3.2. The

Rademacher sum construction of the umbral McKay-Thompson series is de-

scribed in �A.3.3.

A.3.1 Special Functions

The Dedekind eta function is η(τ) := q1/24
∏

n>0(1 − qn), where q = e2πiτ .

Write ΛM(τ) for the function

ΛM(τ) := Mq
d

dq

(
log

H(Mτ)

H(τ)

)
=
M(M − 1)

24
+M

∑
k>0

∑
d|k

d
(
qk −MqMk

)
,

which is a modular form of weight two for Γ0(N) if M |N .

De�ne the Jacobi theta function θ1(τ, z) by setting

θ1(τ, z) := iq1/8y−1/2
∑
n∈Z

(−1)nynqn(n−1)/2. (A.2)

According to the Jacobi triple product identity we have

θ1(τ, z) = −iq1/8y1/2
∏
n>0

(1− y−1qn−1)(1− yqn)(1− qn). (A.3)
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The other Jacobi theta functions are

2(τ, z) := q1/8y1/2
∏
n>0

(1 + y−1qn−1)(1 + yqn)(1− qn),

3(τ, z) :=
∏
n>0

(1 + y−1qn−1/2)(1 + yqn−1/2)(1− qn),

4(τ, z) :=
∏
n>0

(1− y−1qn−1/2)(1− yqn−1/2)(1− qn).

(A.4)

De�ne Ψ1,1 and Ψ1,−1/2 by setting

Ψ1,1(τ, z) := −iθ1(τ, 2z)η(τ)3

θ1(τ, z)2
,

Ψ1,−1/2(τ, z) := −i η(τ)3

θ1(τ, z)
.

(A.5)

These are meromorphic Jacobi forms of weight one, with indexes 1 and −1/2,

respectively. Here, the term meromorphic refers to the presence of simple

poles in the functions z 7→ Ψ1,∗(τ, z), for �xed τ ∈ H, at lattice points

z ∈ Zτ + Z.
The standard indexm theta functions, form a positive integer, are de�ned

by

θm,r(τ, z) :=
∑
k∈Z

y2mk+rq(2mk+r)2/4m, (A.6)

where r ∈ Z. Evidently, θm,r only depends on r mod 2m. Set Sm,r(τ) :=
1

2πi
∂zθm,r(τ, z)|z=0, so that

Sm,r(τ) =
∑
k∈Z

(2mk + r)q(2mk+r)2/4m. (A.7)

For a m a positive integer de�ne

µm,0(τ, z) =
∑
k∈Z

y2kmqmk
2 yqk + 1

yqk − 1
=
y + 1

y − 1
+O(q). (A.8)
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We recover Ψ1,1 upon specializing to m = 1. Observe that

µm,0(τ, z + 1/2) =
∑
k∈Z

y2kmqmk
2 yqk − 1

yqk + 1
=
y − 1

y + 1
+O(q). (A.9)

De�ne the even and odd parts of µm,0 by setting

µkm,0(τ, z) :=
1

2
(µm,0(τ, z) + (−1)kµm,0(τ, z + 1/2)) (A.10)

for k mod 2.

For m, r ∈ Z+ 1
2
with m > 0 de�ne the half-integral index theta functions

θm,r(τ, z) :=
∑
k∈Z

e(mk + r/2)y2mk+rq(2mk+r)2/4m, (A.11)

and de�ne also Sm,r(τ) := 1
2πi
∂zθm,r(τ, z)|z=0, so that

Sm,r(τ) =
∑
k∈Z

e(mk + r/2)(2mk + r)q(2mk+r)2/4m. (A.12)

As in the integral index case, θm,r depends only on r mod 2m. We recover

−θ1 upon specializing θm,r to m = r = 1/2.

For m ∈ Z + 1/2, m > 0, de�ne

µm,0(τ, z) := i
∑
k∈Z

(−1)ky2mk+1/2qmk
2+k/2 1

1− yqk
=
−iy1/2

y − 1
+O(q). (A.13)

Given α ∈ Q write [α] for the operator on q-series (in rational, possibility

negative powers of q) that eliminates exponents not contained in Z + α, so

that if f =
∑

β∈Q c(β)qβ then

[α]f :=
∑
n∈Z

c(n+ α)qn+α (A.14)
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A.3.2 Shadows

Let X be a Niemeier root system and let m = mX be the Coxeter number

of X. For g ∈ GX we de�ne the associated shadow function SXg = (SXg,r) by

setting

SXg := SXAg + SXDg + SXEg (A.15)

where the SXAg , &c., are de�ned in the following way, in terms of the twisted

Euler characters χXAg , &c. given in �A.2.3, and the unary theta series Sm,r

(cf. (A.7)).

Note that if m = mX then SXg,r = SXg,r+2m = −SXg,−r for all g ∈ GX , so we

need specify the SXAg,r , &c., only for 0 < r < m.

If XA = ∅ then SXAg := 0. Otherwise, we de�ne SXAg,r for 0 < r < m by

setting

SXAg,r :=

χXAg Sm,r if r = 0 mod 2,

χ̄XAg Sm,r if r = 1 mod 2.
(A.16)

If XD = ∅ then SXDg := 0. If XD 6= ∅ then m is even and m ≥ 6. If m = 6

then set

SXDg,r :=


0 if r = 0 mod 2,

χ̄XDg S6,r + χXDg S6,6−r if r = 1, 5 mod 6,

χ̌XDg S6,r if r = 3 mod 6.

(A.17)

If m > 6 and m = 2 mod 4 then set

SXDg,r :=

0 if r = 0 mod 2,

χ̄XDg Sm,r + χXDg Sm,m−r if r = 1 mod 2.
(A.18)

If m > 6 and m = 0 mod 4 then set

SXDg,r :=

χXDg Sm,m−r if r = 0 mod 2,

χ̄XDg Sm,r if r = 1 mod 2.
(A.19)
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If XE = ∅ then SXEg := 0. Otherwise, m is 12 or 18 or 30. In case m = 12

de�ne SXEg,r for 0 < r < 12 by setting

SXEg,r =



χ̄XEg (S12,1 + S12,7) if r ∈ {1, 7},

χ̄XEg (S12,5 + S12,11) if r ∈ {5, 11},

χXEg (S12,4 + S12,8) if r ∈ {4, 8},

0 else.

(A.20)

In case m = 18 de�ne SXEg,r for 0 < r < 18 by setting

SXEg,r =



χ̄XEg (S18,r + S18,18−r) if r ∈ {1, 5, 7, 11, 13, 17},

χ̄XEg S18,9 if r ∈ {3, 15},

χ̄XEg (S18,3 + S18,9 + S18,15) if r = 9,

0 else.

(A.21)

In case m = 30 de�ne SXEg,r for 0 < r < 30 by setting

SXEg,r =


χ̄XEg (S30,1 + S30,11 + S30,19 + S30,29) if r ∈ {1, 11, 19, 29},

χ̄XEg (S30,7 + S30,13 + S30,17 + S30,23) if r ∈ {7, 13, 17, 23},

0 else.

(A.22)

A.3.3 Rademacher Sums

Let Γ∞ denote the subgroup of upper-triangular matrices in SL2(Z). Given

α ∈ R and γ ∈ SL2(Z), de�ne r
[α]
1/2(γ, τ) := 1 if γ ∈ Γ∞. Otherwise, set

r
[α]
1/2(γ, τ) := e(−α(γτ − γ∞))

∑
k≥0

(2πiα(γτ − γ∞))n+1/2

Γ(n+ 3/2)
, (A.23)

where e(x) := e2πix. Let n be a positive integer, and suppose that ν is

a multiplier system for vector-valued modular forms of weight 1/2 on Γ =
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Γ0(n). Assume that ν = (νij) satis�es ν11(T ) = eπi/2m, for some basis {ei},
for some positive integer m, where T = ( 1 1

0 1 ). To this data, attach the

Rademacher sum

RΓ,ν(τ) := lim
K→∞

∑
γ∈Γ∞\ΓK,K2

ν(γ)e
(
− γτ

4m

)
e1 j(γ, τ)1/2 r

[−1/4m]
1/2 (γ, τ), (A.24)

where ΓK,K2 := {( a bc d ) ∈ Γ | 0 ≤ c < K, |d| < K2}, and j(γ, τ) := (cτ + d)−1

for γ = ( a bc d ). (See [299] for a more general and detailed discussion of vector-

valued Rademacher sums.)

For the special case that X = A3
8 we require 8-vector-valued functions

ť
(9)
g = (ť

(9)
g,r) for g ∈ GX with order 3 or 6. For such g, de�ne ť(9)

g,r, for

0 < r < 9, by setting

ť
(9)
3A,r(τ) :=


0, if r 6= 0 mod 3,

−θ3,3(τ, 0), if r = 3,

θ3,0(τ, 0), if r = 6,

(A.25)

in the case that g has order 3, and

ť
(9)
6A,r(τ) :=


0, if r 6= 0 mod 3,

−θ3,3(τ, 0), if r = 3,

−θ3,0(τ, 0), if r = 6,

(A.26)

when o(g) = 6. Here θm,r(τ, z) is as de�ned in (A.6).

The following conjecture is formulated in [69].

Conjecture A.1. Let X be a Niemeier root system and let g ∈ GX . If X 6= A3
8

and g ∈ GX , or if X = A3
8 and g ∈ GX does not satisfy o(g) = 0 mod 3,

then we have

ȞX
g (τ) = −2RX

Γ0(ng),ν̌Xg
. (A.27)
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If X = A3
8 and g ∈ GX satis�es o(g) = 0 mod 3 then

ȞX
g,r(τ) = −2RX

Γ0(ng),ν̌Xg
(τ) + ť(9)

g (τ). (A.28)

Conjecture A.1 is a theorem in the case that X = A24
1 . This is the main

result of [73]. A number of other cases of Conjecture A.1 are proved in [69].

A.3.4 Explicit Prescriptions

Here we give explicit expressions for all the umbral McKay-Thompson series

HX
g . Most of these appeared �rst in [68, 75]. The expressions in ��A.3.4,

A.3.4, A.3.4, A.3.4 are taken from [108]. The expressions in ��A.3.4, A.3.4,

A.3.4, A.3.4 are taken from [74]. The expressions for HX
g with X = E3

8 ap-

peared �rst in [107]. The expression for H(6+3)
2B,1 in �A.3.4, and the expressions

for H(12+4)
4A,r and H(12+4)

8AB,r in �A.3.4, appear here for the �rst time.

The labels for conjugacy classes in GX are as in �A.2.2.

` = 2, X = A24
1

We have G(2) = GX ' M24 and mX = 2. So for g ∈ M24, the associated

umbral McKay-Thompson series H(2)
g = (H

(2)
g,r ) is a 4-vector-valued function,

with components indexed by r ∈ Z/4Z, satisfying H(2)
g,r = −H(2)

g,−r, and in

particular, H(2)
g,r = 0 for r = 0 mod 2. So it su�ces to specify the H(2)

g,1

explicitly.

De�ne H(2)
g = (H

(2)
g,r ) for g = e by requiring that

−2Ψ1,1(τ, z)ϕ
(2)
1 (τ, z) = −24µ2,0(τ, z) +

∑
r mod 4

H(2)
e,r (τ)θ2,r(τ, z), (A.29)

where

ϕ
(2)
1 (τ, z) := 4

(
2(τ, z)2

2(τ, 0)2
+

3(τ, z)2

3(τ, 0)2
+

4(τ, z)2

4(τ, 0)2

)
. (A.30)
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More generally, for g ∈ G(2) de�ne

H
(2)
g,1(τ) :=

χ̄
(2)
g

24
H

(2)
e,1 (τ)− F (2)

g (τ)
1

S2,1(τ)
, (A.31)

where χ̄(2)
g and F (2)

g are as speci�ed in Table A.36. Note that χ̄(2)
g = χ̄XAg , the

latter appearing in Table A.15. Also, S2,1(τ) = η(τ)3.

The functions f23,a and f23,b in Table A.36 are cusp forms of weight two

for Γ0(23), de�ned by

f23,a(τ) :=
η(τ)3η(23τ)3

η(2τ)η(46τ)
+ 3H(τ)2H(23τ)2 + 4η(τ)η(2τ)η(23τ)η(46τ) + 4η(2τ)2η(46τ)2,

f23,b(τ) := H(τ)2H(23τ)2.

(A.32)

Note that the de�nition of F (2)
g appearing here for g ∈ 23A ∪ 23B corrects

errors in [72,73].

` = 3, X = A12
2

We have G(3) = GX ' 2.M12 and mX = 3. So for g ∈ 2.M12, the associated

umbral McKay-Thompson series H(3)
g = (H

(3)
g,r ) is a 6-vector-valued function,

with components indexed by r ∈ Z/6Z, satisfying H(3)
g,r = −H(3)

g,−r, and in

particular, H(3)
g,r = 0 for r = 0 mod 3. So it su�ces to specify the H(3)

g,1 and

H
(3)
g,2 explicitly.

De�ne H(3)
g = (H

(3)
g,r ) for g = e by requiring that

−2Ψ1,1(τ, z)ϕ
(3)
1 (τ, z) = −12µ3,0(τ, z) +

∑
r mod 6

H(3)
e,r (τ)θ3,r(τ, z), (A.33)

where

ϕ
(3)
1 (τ, z) := 2

(
3(τ, z)2

3(τ, 0)2

4(τ, z)2

4(τ, 0)2
+

4(τ, z)2

4(τ, 0)2

2(τ, z)2

2(τ, 0)2
+

2(τ, z)2

2(τ, 0)2

3(τ, z)2

3(τ, 0)2

)
.

(A.34)
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Table A.36: Character Values and Weight Two Forms for ` = 2, X = A24
1

[g] χ̄
(2)
g F

(2)
g (τ)

1A 24 0

2A 8 16Λ2(τ)

2B 0 2η(τ)8η(2τ)−4

3A 6 6Λ3(τ)

3B 0 2η(τ)6η(3τ)−2

4A 0 2η(2τ)8η(4τ)−4

4B 4 4(−Λ2(τ) + Λ4(τ))

4C 0 2η(τ)4η(2τ)2η(4τ)−2

5A 4 2Λ5(τ)

6A 2 2(−Λ2(τ)− Λ3(τ) + Λ6(τ))

6B 0 2η(τ)2η(2τ)2η(3τ)2η(6τ)−2

7AB 3 Λ7(τ)

8A 2 −Λ4(τ) + Λ8(τ)

10A 0 2η(τ)3η(2τ)η(5τ)η(10τ)−1

11A 2 2(Λ11(τ)− 11η(τ)2η(11τ)2)/5

12A 0 2η(τ)3η(4τ)2η(6τ)3

η(2τ)η(3τ)η(12τ)2

12B 0 2η(τ)4η(4τ)η(6τ)η(2τ)−1η(12τ)−1

14AB 1 (−Λ2(τ)− Λ7(τ) + Λ14(τ))/3

−14η(τ)η(2τ)η(7τ)η(14τ)/3

15AB 1 (−Λ3(τ)− Λ5(τ) + Λ15(τ))/4

−15η(τ)η(3τ)η(5τ)η(15τ)/4

21AB 0 7η(τ)3η(7τ)3

3η(3τ)η(21τ)
− η(τ)6

3η(3τ)2

23AB 1 (Λ23(τ)− 23f23,a(τ)− 69f23,b(τ))/11
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More generally, for g ∈ G(3) de�ne

H
(3)
g,1(τ) :=

χ̄
(3)
g

12
H

(3)
e,1 (τ) +

1

2

(
F (3)
g + F (3)

zg

) 1

S3,1(τ)
, (A.35)

H
(3)
g,2(τ) :=

χ
(3)
g

12
H

(3)
e,1 (τ) +

1

2

(
F (3)
g − F (3)

zg

) 1

S3,2(τ)
, (A.36)

where χ(3)
g and F (3)

g are as speci�ed in Table A.37, and z is the non-trivial

central element of G(3). The action of g 7→ zg on conjugacy classes can be

read o� Table A.37, for the horizontal lines indicate the sets [g] ∪ [zg].

Note the eta product identities, S3,1(τ) = η(2τ)5/η(4τ)2, and S3,2(τ) =

2η(τ)2η(4τ)2/η(2τ). Note also that χ̄(3)
g = χ̄XAg and χ

(3)
g = χXAg , the latter

appearing in Table A.16.

The function f44 is the unique new cusp form of weight 2 for Γ0(44),

normalized so that f44(τ) = q + O(q3) as =(τ) → ∞. The coe�cients cg(d)

and c′g(d) for g ∈ 10A ∪ 22A ∪ 22B are given by

c10A(2) = −5, c10A(4) = −5

3
, c10A(5) = −2

3
, c10A(10) = 1, c10A(20) = −1

3
,

(A.37)

c22AB(2) = −11

5
, c22AB(4) =

11

5
, c22AB(11) = − 2

15
, c22AB(22) =

1

5
, c22AB(44) = − 1

15
,

(A.38)

c′22AB(1) = 1, c′22AB(2) = 4, c′22AB(4) = 8. (A.39)

` = 4, X = A8
3

We have mX = 4, so the umbral McKay-Thompson series H(4)
g = (H

(4)
g,r ) as-

sociated to g ∈ G(4) is an 8-vector-valued function, with components indexed

by r ∈ Z/8Z.
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Table A.37: Character Values and Weight Two Forms for ` = 3, X = A12
2

[g] χ̄
(3)
g χ

(3)
g F

(3)
g (τ)

1A 12 12 0

2A 12 −12 0

4A 0 0 −2H(τ)4H(2τ)2/H(4τ)2

2B 4 4 −162(τ)

2C 4 −4 162(τ)− 16
3 4(τ)

3A 3 3 −63(τ)

6A 3 −3 −92(τ)− 23(τ) + 34(τ) + 36(τ)− 12(τ)

3B 0 0 83(τ)− 29(τ) + 2H6(τ)/H2(3τ)

6B 0 0 −2η(τ)5η(3τ)/η(2τ)η(6τ)

4B 0 0 −2H(2τ)8/H(4τ)4

4C 4 0 −84(τ)/3

5A 2 2 −25(τ)

10A 2 −2
∑

d|20 c10A(d)d(τ) + 20
3
η(2τ)2η(10τ)2

12A 0 0 −2H(τ)H(2τ)5H(3τ)/H(4τ)2H(6τ)

6C 1 1 2(2(τ) + 3(τ)− 6(τ))

6D 1 −1 −52(τ)− 23(τ) + 5
3 4(τ) + 36(τ)− 12(τ)

8AB 0 0 −2H(2τ)4H(4τ)2/H(8τ)2

8CD 2 0 −22(τ) + 5
3 4(τ)− 8(τ)

20AB 0 0 −2H(2τ)7H(5τ)/H(τ)H(4τ)2H(10τ)

11AB 1 1 −2
5 11(τ)− 33

5
η(τ)2η(11τ)2

22AB 1 −1
∑

d|44 cg(d)d(τ)− 11
5

∑
d|4 c

′
g(d)η(dτ)2η(11dτ)2 + 22

3
f44(τ)
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De�ne H(4)
g = (H

(4)
g,r ) for g ∈ G(4), g /∈ 4C, by requiring that

ψ(4)
g (τ, z) = −χ(4)

g µ0
4,0(τ, z)− χ̄(4)

g µ1
4,0(τ, z) +

∑
r mod 8

H(4)
g,r (τ)θ4,r(τ, z),

(A.40)

where χ(4)
g := χXAg and χ̄

(4)
g := χ̄XAg (cf. Table A.17), and the ψ(4)

g are

meromorphic Jacobi forms of weight 1 and index 4 given explicitly in Table

A.38.

Table A.38: Character Values and Meromorphic Jacobi Forms for ` = 4,

X = A8
3

[g] χ
(4)
g χ̄

(4)
g ψ

(4)
g (τ, z)

1A 8 8 2i1(τ, 2z)3
1(τ, z)−4η(τ)3

2A −8 8 2i1(τ, 2z)3
2(τ, z)−4η(τ)3

2B 0 0 −2i1(τ, 2z)3
1(τ, z)−2

2(τ, z)−2η(τ)3

4A 0 0 −2i1(τ, 2z)2(τ, 2z)2
2(2τ, 2z)−2η(2τ)2η(τ)−1

4B 0 0 −2i1(2τ, 2z)3(2τ, 2z)2
4(2τ, 2z)η(2τ)2η(τ)−2η(4τ)−2

2C 0 4 2i1(τ, 2z)2(τ, 2z)2
1(τ, z)−2

2(τ, z)−2η(τ)3

3A 2 2 2i1(3τ, 6z)1(τ, z)−1
1(3τ, 3z)−1η(τ)3

6A −2 2 −2i1(3τ, 6z)2(τ, z)−1
2(3τ, 3z)−1η(τ)3

6BC 0 0 cf. (A.41)

8A 0 0 −2i1(τ, 2z)2(2τ, 4z)2(4τ, 4z)−1η(τ)η(4τ)η(2τ)−1

4C 0 2 2i1(τ, 2z)2(2τ, 4z)1(2τ, 2z)−2η(2τ)7η(τ)−3η(4τ)−2

7AB 1 1 cf. (A.41)

14AB −1 1 cf. (A.41)
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ψ
(4)
6BC :=

(
1(τ, z + 1

3
)1(τ, z + 1

6
)− 1(τ, z − 1

3
)1(τ, z − 1

6
)
) −i1(3τ, 6z)

1(3τ, 3z)2(3τ, 3z)
η(3τ)

ψ
(4)
7AB :=

(
3∏
j=1

1(τ, 2z + j2

7
)1(τ, z − j2

7
) +

3∏
j=1

1(τ, 2z − j2

7
)1(τ, z + j2

7
)

)
−i

1(7τ, 7z)

η(7τ)

η(τ)4

ψ
(4)
14AB :=

(
3∏
j=1

1(τ, 2z + j2

7
)2(τ, z − j2

7
) +

3∏
j=1

1(τ, 2z − j2

7
)2(τ, z + j2

7
)

)
i

2(7τ, 7z)

η(7τ)

η(τ)4

(A.41)

For use later on, note that ψ(4)
1A = −2Ψ1,1ϕ

(4)
1 , where

ϕ
(4)
1 (τ, z) :=

1(τ, 2z)2

1(τ, z)2
. (A.42)

` = 5, X = A6
4

We have mX = 5, so the umbral McKay-Thompson series H(5)
g = (H

(5)
g,r ) as-

sociated to g ∈ G(5) is a 10-vector-valued function, with components indexed

by r ∈ Z/10Z.
De�ne H(5)

g = (H
(5)
g,r ) for g ∈ G(5), g /∈ 5A ∪ 10A, by requiring that

ψ(5)
g (τ, z) = −χ(5)

g µ0
5,0(τ, z)− χ̄(5)

g µ1
5,0(τ, z) +

∑
r mod 10

H(5)
g,r (τ)θ5,r(τ, z),

(A.43)

where χ(5)
g := χXAg and χ̄

(5)
g := χ̄XAg (cf. Table A.18), and the ψ(5)

g are

meromorphic Jacobi forms of weight 1 and index 5 given explicitly in Table

A.39.
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Table A.39: Character Values and Meromorphic Jacobi Forms for ` = 5,

X = A6
4

[g] χ
(5)
g χ̄

(5)
g ψ

(5)
g (τ, z)

1A 6 6 2i1(τ, 2z)1(τ, 3z)1(τ, z)−3η(τ)3

2A −6 6 −2i1(τ, 2z)2(τ, 3z)2(τ, z)−3η(τ)3

2B −2 2 −2i1(τ, 2z)1(τ, 3z)1(τ, z)−1
2(τ, z)−2η(τ)3

2C 2 2 2i1(τ, 2z)2(τ, 3z)1(τ, z)−2
2(τ, z)−1η(τ)3

3A 0 0 −2i1(τ, 2z)1(τ, 3z)1(3τ, 3z)−1η(3τ)

6A 0 0 −2i1(τ, 2z)2(τ, 3z)2(3τ, 3z)−1η(3τ)

4AB 0 0 cf. (A.44)

4CD 0 2 cf. (A.44)

12AB 0 0 cf. (A.44)

ψ
(5)
4AB(τ, z) := −i2(τ, 2z)

1(τ, z + 1
4
)1(τ, 3z + 1

4
)− 1(τ, z − 1

4
)1(τ, 3z − 1

4
)

2(2τ, 2z)2

η(2τ)2

η(τ)

ψ
(5)
4CD(τ, z) := −i2(τ, 2z)

1(τ, z + 1
4
)1(τ, 3z − 1

4
) + 1(τ, z − 1

4
)1(τ, 3z + 1

4
)

1(2τ, 2z)2(2τ, 2z)

η(2τ)2

η(τ)

ψ
(5)
12AB(τ, z) := i

2(τ, 2z)

2(6τ, 6z)

(
1(τ, z + 1

12
)1(τ, z + 1

4
)1(τ, z + 5

12
)1(τ, 3z − 1

4
)

− 1(τ, z − 1
12

)1(τ, z − 1
4
)1(τ, z − 5

12
)1(τ, 3z + 1

4
)
) η(6τ)

η(τ)3

(A.44)

For g ∈ 5A use the formulas of �A.3.4 to de�ne

H
(5)
5A,r(τ) := H

(25)
1A,r(τ/5)−H(25)

1A,10−r(τ/5) +H
(25)
1A,10+r(τ/5)−H(25)

1A,20−r(τ/5) +H
(25)
1A,20+r(τ/5).

(A.45)

For g ∈ 10A set H(5)
10A,r(τ) := −(−1)rH

(5)
5A,r(τ).
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For use later on we note that ψ(5)
1A = −2Ψ1,1ϕ

(5)
1 , where

ϕ
(5)
1 (τ, z) :=

1(τ, 3z)

1(τ, z)
. (A.46)

` = 6, X = A4
5D4

We have mX = 6, so the umbral McKay-Thompson series H(6)
g = (H

(6)
g,r ) as-

sociated to g ∈ G(6) is a 12-vector-valued function with components indexed

by r ∈ Z/12Z. We have H(6)
g,r = −H(6)

g,−r, so it su�ces to specify the H(6)
g,r for

r ∈ {1, 2, 3, 4, 5}.
To de�ne H(6)

g = (H
(6)
g,r ) for g = e, �rst de�ne h(τ) = (hr(τ)) by requiring

that

−2Ψ1,1(τ, z)ϕ
(6)
1 (τ, z) = −24µ6,0(τ, z) +

∑
r mod 12

hr(τ)θ6,r(τ, z), (A.47)

where

ϕ
(6)
1 (τ, z) := ϕ

(2)
1 (τ, z)ϕ

(5)
1 (τ, z)− ϕ(3)

1 (τ, z)ϕ
(4)
1 (τ, z). (A.48)

(Cf. (A.30), (A.34), (A.42), (A.46).) Now de�ne the H(6)
1A,r by setting

H
(6)
1A,1(τ) :=

1

24
(5h1(τ) + h5(τ)) ,

H
(6)
1A,2(τ) :=

1

6
h2(τ),

H
(6)
1A,3(τ) :=

1

4
h3(τ),

H
(6)
1A,4(τ) :=

1

6
h4(τ),

H
(6)
1A,5(τ) :=

1

24
(h1(τ) + 5h5(τ)) .

(A.49)

De�ne H(6)
2A,r by requiring

H
(6)
2A,r(τ) := −(−1)rH

(6)
1A,r(τ). (A.50)
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For the remaining g, recall (A.14). The H(6)
g,r for g /∈ 1A ∪ 2A are de�ned

as follows for r = 2 and r = 4, noting that H(3)
g,4 = H

(3)
g,−2 = −H(3)

g,2 .

H
(6)
2B,r(τ) := [− r2

24
]H

(3)
4C,r(τ/2)

H
(6)
4A,r(τ) := [− r2

24
]H

(3)
4B,r(τ/2)

H
(6)
3A,r(τ) := [− r2

24
]H

(3)
6C,r(τ/2)

H
(6)
6A,r(τ) := [− r2

24
]H

(3)
6D,r(τ/2)

H
(6)
8AB,r(τ) := [− r2

24
]H

(3)
8CD,r(τ/2)

(A.51)

For the H(6)
g,3 we de�ne

H
(6)
2B,3(τ), H

(6)
4A,3(τ) := −[− 9

24
]H

(2)
6A,1(τ/3),

H
(6)
3A,3(τ), H

(6)
6A,3(τ) := 0,

H
(6)
8AB,3(τ) := −[− 9

24
]H

(2)
12A,1(τ/3).

(A.52)

Noting that H(2)
g,5 = H

(2)
g,1 and H(3)

g,5 = −H(3)
g,1 , the H

(6)
g,1 and H(6)

g,5 are de�ned

for o(g) 6= 0 mod 3 by setting

H
(6)
2B,r(τ) := [− 1

24
]
1

2

(
H

(2)
6A,r(τ/3) +H

(3)
4C,r(τ/2)

)
H

(6)
4A,r(τ) := [− 1

24
]
1

2

(
H

(2)
6A,r(τ/3) +H

(3)
4B,r(τ/2)

)
H

(6)
8AB,r(τ) := [− 1

24
]
1

2

(
H

(2)
12A,r(τ/3) +H

(3)
8CD,r(τ/2)

) (A.53)

It remains to specify the H(6)
g,r when g ∈ 3A∪ 6A and r is 1 or 5. These cases

are determined by using the formulas of �A.3.4 to set

H
(6)
3A,1(τ), H

(6)
6A,1(τ) := H

(18)
1A,1(3τ)−H(18)

1A,11(3τ) +H
(18)
1A,13(3τ),

H
(6)
3A,5(τ), H

(6)
6A,5(τ) := H

(18)
1A,5(3τ)−H(18)

1A,7(3τ) +H
(18)
1A,17(3τ).

(A.54)

` = 6 + 3, X = D6
4

We have mX = 6, so the umbral McKay-Thompson series H(6+3)
g = (H

(6+3)
g,r )

associated to g ∈ G(6+3) is a 12-vector-valued function with components
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indexed by r ∈ Z/12Z. In addition to the identity H(6+3)
g,r = −H(6+3)

g,−r , we

have H(6+3)
g,r = 0 for r = 0 mod 2. Thus it su�ces to specify the H(6+3)

g,r for

r ∈ {1, 3, 5}.
Recall (A.14). For r = 1, de�ne

H
(6+3)
1A,1 (τ), H

(6+3)
3A,1 (τ) := H

(6)
1A,1(τ) +H

(6)
1A,5(τ),

H
(6+3)
2A,1 (τ), H

(6+3)
6A,1 (τ) := H

(6)
2B,1(τ) +H

(6)
2B,5(τ),

H
(6+3)
3B,1 (τ) := H

(6)
3A,1(τ) +H

(6)
3A,5(τ),

H
(6+3)
3C,1 (τ) := −2

η(τ)2

η(3τ)
,

H
(6+3)
4A,1 (τ), H

(6+3)
12A,1 (τ) := H

(6)
8AB,1(τ) +H

(6)
8AB,5(τ),

H
(6+3)
5A,1 (τ), H

(6+3)
15A,1 (τ) := [− 1

24
]H

(2)
15AB,1(τ/3),

H
(6+3)
2C,1 (τ) := H

(6)
4A,1(τ)−H(6)

4A,5(τ),

H
(6+3)
4B,1 (τ) := H

(6)
8AB,1(τ)−H(6)

8AB,5(τ),

H
(6+3)
6B,1 (τ) := H

(6)
6A,1(τ)−H(6)

6A,5(τ),

H
(6+3)
6C,1 (τ) := −2

η(2τ) η(3τ)

η(6τ)
.

(A.55)

Then de�ne H(6+3)
2B,1 by setting

H
(6+3)
2B,1 (τ) := 2H

(6+3)
4B,1 (τ) + 2

η(τ)3

η(2τ)2
. (A.56)
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For r = 3 set

H
(6+3)
1A,3 (τ) := 2H

(6)
1A,3(τ),

H
(6+3)
3A,3 (τ) := −H(6)

1A,3(τ),

H
(6+3)
2A,3 (τ) := 2H

(6)
2B,3(τ),

H
(6+3)
6A,3 (τ) := −H(6)

2B,3(τ),

H
(6+3)
4A,3 (τ) := 2H

(6)
8AB,3(τ),

H
(6+3)
12A,3 (τ) := −H(6)

8AB,3(τ),

H
(6+3)
5A,3 (τ) := −2[− 9

24
]H

(2)
15AB,1(τ),

H
(6+3)
15A,3 (τ) := [− 9

24
]H

(2)
15AB,1(τ),

(A.57)

and

H
(6+3)
3B,3 (τ), H

(6+3)
3C,3 (τ), H

(6+3)
2B,3 (τ), H

(6+3)
2C,3 (τ), H

(6+3)
4B,3 (τ), H

(6+3)
6B,3 (τ), H

(6+3)
6C,3 (τ) := 0.

(A.58)

For r = 5 de�neH(6+3)
g,5 (τ) := H

(6+3)
g,1 (τ) for [g] ∈ {1A, 3A, 2A, 6A, 3B, 3C, 4A, 12A, 5A, 15AB},

and setH(6+3)
g,5 (τ) := −H(6+3)

g,1 (τ) for the remaining cases, [g] ∈ {2B, 2C, 4B, 6B, 6C}.

` = 7, X = A4
6

We have mX = 7, so the umbral McKay-Thompson series H(7)
g = (H

(7)
g,r )

associated to g ∈ G(7) = GX ' SL2(3) is a 14-vector-valued function, with

components indexed by r ∈ Z/14Z.
De�ne H(7)

g = (H
(7)
g,r ) for g ∈ G(7) by requiring that

ψ(7)
g (τ, z) = −χ(7)

g µ0
7,0(τ, z)− χ̄(7)

g µ1
7,0(τ, z) +

∑
r mod 14

H(7)
g,r (τ)θ7,r(τ, z),

(A.59)

where χ(7)
g := χXAg and χ̄

(7)
g := χ̄XAg (cf. Table A.21), and the ψ(7)

g are

meromorphic Jacobi forms of weight 1 and index 7 given explicitly in Table

A.40.
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Table A.40: Character Values and Meromorphic Jacobi Forms for ` = 7,

X = A4
6

[g] χ
(7)
g χ̄

(7)
g ψ

(7)
g (τ, z)

1A 4 4 2i1(τ, 4z)1(τ, z)−2η(τ)3

2A −4 4 −2i1(τ, 4z)2(τ, z)−2η(τ)3

4A 0 0 −2i1(τ, 4z)2(2τ, 2z)−1η(2τ)η(τ)

3A 1 1 cf. (A.60)

6A −1 1 cf. (A.60)

ψ
(7)
3A(τ, z) := −i1(τ, 4z + 1

3
)1(τ, z − 1

3
) + 1(τ, 4z − 1

3
)1(τ, z + 1

3
)

1(3τ, 3z)
η(3τ)

ψ
(7)
6A(τ, z) := −i1(τ, 4z + 1

3
)1(τ, z − 1

6
)− 1(τ, 4z − 1

3
)1(τ, z + 1

6
)

2(3τ, 3z)
η(3τ)

(A.60)

For use later on we note that ψ(7)
1A = −2Ψ1,1ϕ

(7)
1 , where

ϕ
(7)
1 (τ, z) :=

1(τ, 4z)

1(τ, 2z)
. (A.61)

` = 8, X = A2
7D

2
5

We have mX = 8, so the umbral McKay-Thompson series H(8)
g = (H

(8)
g,r ) as-

sociated to g ∈ G(8) is a 16-vector-valued function with components indexed

by r ∈ Z/16Z. We have H(8)
g,r = −H(8)

g,−r, so it su�ces to specify the H(8)
g,r for

r ∈ {1, 2, 3, 4, 5, 6, 7}.
To de�ne H(8)

g = (H
(8)
g,r ) for g = e, �rst de�ne h(τ) = (hr(τ)) by requiring

that

−2Ψ1,1(τ, z)

(
ϕ

(8)
1 (τ, z) +

1

2
ϕ

(8)
2 (τ, z)

)
= −24µ8,0(τ, z) +

∑
r mod 16

hr(τ)θ8,r(τ, z),

(A.62)
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where

ϕ
(8)
1 (τ, z) := ϕ

(3)
1 (τ, z)ϕ

(6)
1 (τ, z)− 5ϕ

(4)
1 (τ, z)ϕ

(5)
1 (τ, z),

ϕ
(8)
2 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(5)
1 (τ, z)− ϕ(8)

1 (τ, z).
(A.63)

(Cf. (A.34), (A.42), (A.46), (A.48).) Now de�ne the H(8)
1A,r by setting

H
(8)
1A,r(τ) :=

1

6
hr(τ), (A.64)

for r ∈ {1, 3, 4, 5, 7}, and

H
(8)
1A,2(τ), H

(8)
1A,6(τ) :=

1

12
(h2(τ) + h6(τ)) . (A.65)

De�ne H(8)
2A,r for 1 ≤ r ≤ 7 by requiring

H
(8)
2A,r(τ) := −(−1)rH

(8)
1A,r(τ). (A.66)

For the remaining g, recall (A.14). The H(8)
g,r for g ∈ 2B ∪ 2C ∪ 4A are

de�ned as follows for r ∈ {1, 3, 5, 7}, noting that H(4)
g,7 = H

(4)
g,−1 = −H(4)

g,1 , &c.

H
(8)
2BC,r(τ) := [− r2

32
]H

(4)
4C,r(τ/2)

H
(8)
4A,r(τ) := [− r2

32
]H

(4)
4B,r(τ/2)

(A.67)

The H(8)
2BC,r and H

(8)
4A,r vanish for r = 0 mod 2.

` = 9, X = A3
8

We have mX = 9, so for g ∈ G(9) the associated umbral McKay-Thompson

series H(9)
g = (H

(9)
g,r ) is a 18-vector-valued function, with components indexed

by r ∈ Z/18Z, satisfying H(9)
g,r = −H(9)

g,−r, and in particular, H(9)
g,r = 0 for

r = 0 mod 9. So it su�ces to specify the H(9)
g,r for r ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

De�ne H(9)
g = (H

(9)
g,r ) for g = e by requiring that

−Ψ1,1(τ, z)ϕ
(9)
1 (τ, z) = −3µ9,0(τ, z) +

∑
r mod 18

H(9)
e,r (τ)θ9,r(τ, z), (A.68)
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where

ϕ
(9)
1 (τ, z) := ϕ

(3)
1 (τ, z)ϕ

(7)
1 (τ, z)− ϕ(5)

1 (τ, z)2. (A.69)

(Cf. (A.34), (A.46), (A.61).)

Recall (A.14). The H(9)
2B,r are de�ned for r ∈ {1, 2, 4, 5, 7, 8} by setting

H
(9)
2B,r(τ) := [− r2

36
]H

(3)
6C,r(τ/3), (A.70)

where we note that H(3)
g,4 = H

(3)
g,−2 = −H(3)

g,2 , &c. We determine H(9)
2B,3 and

H
(9)
2B,6 by using �A.3.4 to set

H
(9)
2B,r(τ) := H

(18)
1A,r(2τ)−H(18)

1A,18−r(2τ) (A.71)

for r ∈ {3, 6}.
The H(9)

3A,r are de�ned by the explicit formulas

H
(9)
3A,1(τ) := [− 1

36
]f

(9)
1 (τ/3),

H
(9)
3A,2(τ) := [− 4

36
]f

(9)
2 (τ/3),

H
(9)
3A,3(τ) := −θ3,3(τ, 0),

H
(9)
3A,4(τ) := −[−16

36
]f

(9)
2 (τ/3),

H
(9)
3A,5(τ) := −[−25

36
]f

(9)
1 (τ/3),

H
(9)
3A,6(τ) := θ3,0(τ, 0),

H
(9)
3A,7(τ) := [−13

36
]f

(9)
1 (τ/3),

H
(9)
3A,8(τ) := [−28

36
]f

(9)
2 (τ/3),

(A.72)

where

f
(9)
1 (τ) := −2

H(τ)H(12τ)H(18τ)2

H(6τ)H(9τ)H(36τ)
,

f
(9)
2 (τ) :=

H(2τ)6H(12τ)H(18τ)2

H(τ)H(4τ)4H(6τ)H(9τ)H(36τ)
− H(τ)H(2τ)H(3τ)2

H(4τ)2H(9τ)
.

(A.73)
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Finally, the H(9)
g,r are determined for g ∈ 2A ∪ 2C ∪ 6A by setting

H
(9)
2A,r(τ) := (−1)r+1H

(9)
1A,r(τ),

H
(9)
2C,r(τ) := (−1)r+1H

(9)
2B,r(τ),

H
(9)
6A,r(τ) := (−1)r+1H

(9)
3A,r(τ).

(A.74)

` = 10, X = A2
9D6

We have mX = 10, so the umbral McKay-Thompson series H(10)
g = (H

(10)
g,r )

associated to g ∈ G(10) is a 20-vector-valued function with components in-

dexed by r ∈ Z/20Z. We have H(10)
g,r = −H(10)

g,−r, so it su�ces to specify the

H
(10)
g,r for 1 ≤ r ≤ 9.

To de�neH(10)
g = (H

(10)
g,r ) for g = e, �rst de�ne h(τ) = (hr(τ)) by requiring

that

−6Ψ1,1(τ, z)ϕ
(10)
1 (τ, z) = −24µ10,0(τ, z) +

∑
r mod 20

hr(τ)θ10,r(τ, z), (A.75)

where

ϕ
(10)
1 (τ, z) := 5ϕ

(4)
1 (τ, z)ϕ

(7)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(6)
1 (τ, z). (A.76)

(Cf. (A.42), (A.46), (A.48), (A.61).) Now de�ne the H(10)
1A,r for r odd by

setting

H
(10)
1A,1(τ) :=

1

24
(3h1(τ) + h9(τ)) ,

H
(10)
1A,3(τ) :=

1

24
(3h3(τ) + h7(τ)) ,

H
(10)
1A,5(τ) :=

1

6
h5(τ),

H
(10)
1A,3(τ) :=

1

24
(h3(τ) + 3h7(τ)) ,

H
(10)
1A,9(τ) :=

1

24
(h1(τ) + 3h9(τ)) .

(A.77)
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For r = 0 mod 2 set

H
(10)
1A,r(τ) :=

1

12
hr(τ), (A.78)

and de�ne H(10)
2A,r for 1 ≤ r ≤ 9 by requiring

H
(10)
2A,r(τ) := −(−1)rH

(10)
1A,r(τ). (A.79)

It remains to specify H(10)
g,r for g ∈ 4A ∪ 4B. For r = 0 mod 2 set

H
(10)
4AB,r(τ) := 0. (A.80)

For r odd, recall (A.14), and de�ne

H
(10)
4A,r(τ) := [− r2

40
]
1

2

(
H

(2)
10A,r(τ/5) +H

(5)
4CD,r(τ/2)

)
. (A.81)

` = 10 + 5, X = D4
6

We havemX = 10, so the umbral McKay-Thompson seriesH(10+5)
g = (H

(10+5)
g,r )

associated to g ∈ G(10+5) is a 20-vector-valued function with components in-

dexed by r ∈ Z/20Z. We have H(10+5)
g,r = 0 for r = 0 mod 2, so it su�ces

to specify the H(10+5)
g,r for r odd. Observing that H(10+5)

g,r = −H(10+5)
g,−r we may

determine H(10+5)
g by requiring that

ψ(5/2)
g (τ, z) = −2χ(5/2)

g iµ5/2,0(τ, z) +
∑

r∈Z+1/2
r mod 5

e(−r/2)H
(10+5)
g,2r (τ)θ5/2,r(τ, z),

(A.82)

where χ(5/2)
g := χ̄XDg as in Table A.25, and the ψ(5/2)

g are the meromorphic

Jacobi forms of weight 1 and index 5/2 de�ned as follows.

` = 12, X = A11D7E6

We have mX = 12, so the umbral McKay-Thompson series H(12)
g = (H

(12)
g,r )

associated to g ∈ G(12) ' Z/2Z is a 24-vector-valued function with com-

ponents indexed by r ∈ Z/24Z. We have H(12)
g,r = −H(12)

g,−r, so it su�ces to

specify the H(12)
g,r for 1 ≤ r ≤ 11.
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Table A.41: Character Values and Meromorphic Jacobi Forms for ` = 10+5,

X = D4
6

[g] χ̄
(5/2)
g ψ

(5/2)
g (τ, z)

1A 4 2iθ1(τ, 2z)2θ1(τ, z)−3η(τ)3

2A 0 −2iθ1(τ, 2z)2θ1(τ, z)−1θ2(τ, z)−2η(τ)3

3A 1 2iθ1(3τ, 6z)θ1(τ, 2z)−1θ1(3τ, 3z)−1η(τ)3

2B 2 2iθ1(τ, 2z)θ2(τ, 2z)θ1(τ, z)−2θ2(τ, z)−1η(τ)3

4A 0 −2iθ1(τ, 2z)θ2(τ, 2z)θ2(2τ, 2z)−1η(τ)η(2τ)

To de�ne H(12)
e = (H

(12)
e,r ), �rst de�ne h(τ) = (hr(τ)) by requiring that

−2Ψ1,1(τ, z)
(
ϕ

(12)
1 (τ, z) + ϕ

(12)
2 (τ, z)

)
= −24µ12,0(τ, z) +

∑
r mod 24

hr(τ)θ12,r(τ, z),

(A.83)

where

ϕ
(12)
1 (τ, z) := 3ϕ

(3)
1 (τ, z)ϕ

(10)
1 (τ, z)− 8ϕ

(4)
1 (τ, z)ϕ

(9)
1 (τ, z) + ϕ

(5)
1 (τ, z)ϕ

(8)
1 (τ, z),

ϕ
(12)
2 (τ, z) := 4ϕ

(4)
1 (τ, z)ϕ

(9)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(8)
1 (τ, z)− ϕ(12)

1 (τ, z).

(A.84)

(Cf. (A.34), (A.42), (A.46), (A.61), (A.63), (A.69), (A.76).) Now de�ne the

H
(12)
1A,r for r 6= 0 mod 3 by setting

H
(12)
1A,1(τ) :=

1

24
(3h1(τ) + h7(τ)) ,

H
(12)
1A,2(τ), H

(12)
1A,10(τ) :=

1

24
(h2(τ) + h10(τ)) ,

H
(12)
1A,4(τ), H

(12)
1A,8(τ) :=

1

12
(h4(τ) + h8(τ)) ,

H
(12)
1A,5(τ) :=

1

24
(3h5(τ) + h11(τ)) ,

H
(12)
1A,7(τ) :=

1

24
(h1(τ) + 3h7(τ)) ,

H
(12)
1A,11(τ) :=

1

24
(h5(τ) + 3h11(τ)) .

(A.85)
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For r = 0 mod 3 set

H
(12)
1A,r(τ) :=

1

12
hr(τ), (A.86)

and de�ne H(12)
2A,r by requiring

H
(12)
2A,r(τ) := −(−1)rH

(12)
1A,r(τ). (A.87)

` = 12 + 4, X = E4
6

We havemX = 12, so the umbral McKay-Thompson seriesH(12+4)
g = (H

(12+4)
g,r )

associated to g ∈ G(12+4) is a 24-vector-valued function with components

indexed by r ∈ Z/24Z. In addition to the identity H(12+4)
g,r = −H(12+4)

g,−r , we

have H(12+4)
g,r = 0 for r ∈ {2, 3, 6, 9, 10}, H(12+4)

g,1 = H
(12+4)
g,7 , H(12+4)

g,4 = H
(12+4)
g,8 ,

and H(12+4)
g,5 = H

(12+4)
g,11 . Thus it su�ces to specify the H(12+4)

g,1 , H(12+4)
g,4 and

H
(12+4)
g,5 .

Recall (A.14). Also, set SE6
1 (τ) := S12,1(τ) + S12,7(τ), and SE6

5 (τ) :=

S12,5(τ) + S12,11(τ). For r = 1 de�ne

H
(12+4)
1A,1 (τ) := H

(12)
1A,1(τ) +H

(12)
1A,7(τ),

H
(12+4)
2B,1 (τ) := [− 1

48
]
(
H

(6)
8AB,1(τ/2)−H(6)

8AB,5(τ/2)
)
,

H
(12+4)
4A,1 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
−2

η(2τ)8

η(τ)4
SE6

1 (τ) + 8
η(τ)4η(4τ)4

η(2τ)4
SE6

5 (τ)

)
,

H
(12+4)
3A,1 (τ) := [− 1

48
]
(
H

(6)
3A,1(τ/2)−H(6)

3A,5(τ/2)
)
,

H
(12+4)
8AB,1 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
−2F

(12+4)
8AB,1 (τ)SE6

1 (τ) + 12F
(12+4)
8AB,5 (τ/2)SE6

5 (τ)
)
.

(A.88)

In the expression for g ∈ 8AB, we write F (12+4)
8AB,1 for the unique modular form

of weight 2 for Γ0(32) such that

F
(12+4)
8AB,1 (τ) = 1 + 12q + 4q2 − 24q5 − 16q6 − 8q8 +O(q9), (A.89)
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and we write F (12+4)
8AB,5 for the unique modular form of weight 2 for Γ0(64) such

that

F
(12+4)
8AB,5 (τ) = 3q + 4q3 + 6q5 − 8q7 − 9q9 + 12q11 − 18q13 − 24q15 +O(q17).

(A.90)

For r = 4 de�ne

H
(12+4)
1A,4 (τ) := H

(12)
1A,4(τ) +H

(12)
1A,8(τ),

H
(12+4)
3A,4 (τ) := H

(6)
3A,2(τ/2) +H

(6)
3A,4(τ/2),

(A.91)

and set H(12+4)
g,4 (τ) := 0 for g ∈ 2B ∪ 4A ∪ 8AB.

For r = 5 de�ne

H
(12+4)
1A,5 (τ) := H

(12)
1A,5(τ) +H

(12)
1A,11(τ),

H
(12+4)
2B,5 (τ) := [−25

48
]
(
H

(6)
8AB,5(τ/2)−H(6)

8AB,1(τ/2)
)
,

H
(12+4)
4A,5 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
2
η(2τ)8

η(τ)4
SE6

5 (τ)− 8
η(τ)4η(4τ)4

η(2τ)4
SE6

1 (τ)

)
,

H
(12+4)
3A,5 (τ) := [−25

48
]
(
H

(6)
3A,5(τ/2)−H(6)

3A,1(τ/2)
)
,

H
(12+4)
8AB,5 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
2F

(12+4)
8AB,1 (τ)SE6

5 (τ)− 12F
(12+4)
8AB,5 (τ/2)SE6

1 (τ)
)
.

(A.92)

Finally, de�ne H(12+4)
g,r for g ∈ 2A ∪ 6A by setting

H
(12+4)
2A,r (τ) := −(−1)rH

(12+4)
1A,r (τ),

H
(12+4)
6A,r (τ) := −(−1)rH

(12+4)
3A,r (τ).

(A.93)

` = 13, X = A2
12

We have mX = 13, so the umbral McKay-Thompson series H(13)
g = (H

(13)
g,r )

associated to g ∈ G(13) = GX ' Z/4Z is a 26-vector-valued function, with

components indexed by r ∈ Z/26Z.
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De�ne H(13)
g = (H

(13)
g,r ) for g ∈ G(13) by requiring that

ψ(13)
g (τ, z) = −χ(13)

g µ0
13,0(τ, z)− χ̄(13)

g µ1
13,0(τ, z) +

∑
r mod 26

H(13)
g,r (τ)θ13,r(τ, z),

(A.94)

where χ(13)
g := χXAg and χ̄

(13)
g := χ̄XAg (cf. Table A.28), and the ψ(13)

g are

meromorphic Jacobi forms of weight 1 and index 13 given explicitly in Table

A.42.

Table A.42: Character Values and Meromorphic Jacobi Forms for ` = 13,

X = A2
12

[g] χ
(13)
g χ̄

(13)
g ψ

(13)
g (τ, z)

1A 2 2 2i1(τ, 6z)1(τ, z)−1
1(τ, 3z)−1η(τ)3

2A −2 2 −2i1(τ, 6z)2(τ, z)−1
2(τ, 3z)−1η(τ)3

4A 0 0 cf. (A.95)

ψ
(13)
4AB(τ, z) := −i2(τ, 6z)

1(τ, z + 1
4
)1(τ, 3z + 1

4
)− 1(τ, z − 1

4
)1(τ, 3z − 1

4
)

2(2τ, 2z)2(2τ, 6z)

η(2τ)2

η(τ)

(A.95)

For use later on we note that ψ(13)
1A = −2Ψ1,1ϕ

(13)
1 , where

ϕ
(13)
1 (τ, z) :=

1(τ, z)1(τ, 6z)

1(τ, 2z)1(τ, 3z)
. (A.96)

` = 14 + 7, X = D3
8

We havemX = 14, so the umbral McKay-Thompson seriesH(14+7)
g = (H

(14+7)
g,r )

associated to g ∈ G(14+7) is a 28-vector-valued function with components in-

dexed by r ∈ Z/28Z. We have H(14+7)
g,r = 0 for r = 0 mod 2, so it su�ces
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to specify the H(14+7)
g,r for r odd. Observing that H(14+7)

g,r = −H(14+7)
g,−r we may

determine H(14+7)
g by requiring that

ψ(7/2)
g (τ, z) = −2χ̄(7/2)

g iµ7/2,0(τ, z) +
∑

r∈Z+1/2
r mod 7

e(−r/2)H
(14+7)
g,2r (τ)θ7/2,r(τ, z),

(A.97)

where χ̄(7/2)
g := χ̄XDg is the number of �xed points of g ∈ G(14+7) ' S3

in the de�ning permutation representation on 3 points. The ψ(7/2)
g are the

meromorphic Jacobi forms of weight 1 and index 7/2 de�ned in Table A.43.

Table A.43: Character Values and Meromorphic Jacobi Forms for ` = 14+7,

X = D3
8

[g] χ̄
(7/2)
g ψ

(7/2)
g (τ, z)

1A 3 2iθ1(τ, 3z)θ1(τ, z)−2η(τ)3

2A 1 2iθ2(τ, 3z)θ1(τ, z)−1θ2(τ, z)−1η(τ)3

3A 0 −2i1(τ, z)1(τ, 3z)1(3τ, 3z)−1η(3τ)

` = 16, X = A15D9

We have mX = 16, so the umbral McKay-Thompson series H(16)
g = (H

(16)
g,r )

associated to g ∈ G(16) ' Z/2Z is a 32-vector-valued function with com-

ponents indexed by r ∈ Z/32Z. We have H(16)
g,r = −H(16)

g,−r, so it su�ces to

specify the H(16)
g,r for 1 ≤ r ≤ 15.

To de�neH(16)
g = (H

(16)
g,r ) for g = e, �rst de�ne h(τ) = (hr(τ)) by requiring

that

−6Ψ1,1(τ, z)

(
ϕ

(16)
1 (τ, z) +

1

2
ϕ

(16)
2 (τ, z)

)
= −24µ16,0(τ, z) +

∑
r mod 32

hr(τ)θ16,r(τ, z),

(A.98)
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where

ϕ
(16)
1 (τ, z) := 8ϕ

(4)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(12)
1 (τ, z) + ϕ

(7)
1 (τ, z)ϕ

(10)
1 (τ, z),

ϕ
(16)
2 (τ, z) := 12ϕ

(4)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(12)
1 (τ, z)− 3ϕ

(16)
1 (τ, z).

(A.99)

(Cf. (A.42), (A.46), (A.61), (A.76), (A.84), (A.96).) Now de�ne the H(16)
1A,r

by setting

H
(16)
1A,r(τ) :=

1

12
hr(τ) (A.100)

for r odd. For r even, 2 ≤ r ≤ 14, use

H
(16)
1A,r(τ) :=

1

24
(hr(τ) + h16−r(τ)) . (A.101)

De�ne H(16)
2A,r by requiring

H
(16)
2A,r(τ) := −(−1)rH

(16)
1A,r(τ). (A.102)

` = 18, X = A17E7

We have mX = 18, so the umbral McKay-Thompson series H(18)
g = (H

(18)
g,r )

associated to g ∈ G(18) ' Z/2Z is a 36-vector-valued function with com-

ponents indexed by r ∈ Z/36Z. We have H(18)
g,r = −H(18)

g,−r, so it su�ces to

specify the H(18)
g,r for 1 ≤ r ≤ 17.

To de�neH(18)
g = (H

(18)
g,r ) for g = e, �rst de�ne h(τ) = (hr(τ)) by requiring

that

−24Ψ1,1(τ, z)φ(18)(τ, z) = −24µ18,0(τ, z) +
∑

r mod 36

hr(τ)θ18,r(τ, z), (A.103)

where

φ(18) :=
1

12

(
ϕ

(18)
1 +

1

3
ϕ

(18)
3 + 4

12
1

η12

(
ϕ

(12)
1 + 2ϕ

(12)
2 +

1

3
ϕ

(12)
3

))
. (A.104)
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For the de�nition of φ(18) we require

ϕ
(9)
2 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(6)
1 (τ, z)− 4ϕ

(5)
1 (τ, z)2 − 4ϕ

(9)
1 (τ, z),

ϕ
(11)
1 (τ, z) := 3ϕ

(5)
1 (τ, z)ϕ

(7)
1 (τ, z) + 2ϕ

(3)
1 (τ, z)ϕ

(9)
1 (τ, z)− ϕ(4)

1 (τ, z)ϕ
(8)
1 (τ, z),

ϕ
(12)
3 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(9)
2 (τ, z),

ϕ
(14)
1 (τ, z) := 3ϕ

(5)
1 (τ, z)ϕ

(10)
1 (τ, z) + ϕ

(3)
1 (τ, z)ϕ

(12)
1 (τ, z)− 4ϕ

(4)
1 (τ, z)ϕ

(11)
1 (τ, z),

ϕ
(15)
1 (τ, z) := ϕ

(5)
1 (τ, z)ϕ

(11)
1 (τ, z) + 6ϕ

(3)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(4)

1 (τ, z)ϕ
(12)
1 (τ, z),

ϕ
(15)
2 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(12)
1 (τ, z)− 2ϕ

(5)
1 (τ, z)ϕ

(11)
1 (τ, z)− 2ϕ

(15)
1 (τ, z),

ϕ
(18)
1 (τ, z) := ϕ

(5)
1 (τ, z)ϕ

(14)
1 (τ, z) + 3ϕ

(3)
1 (τ, z)ϕ

(16)
1 (τ, z)− 4ϕ

(4)
1 (τ, z)ϕ

(15)
1 (τ, z),

ϕ
(18)
3 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(15)
2 (τ, z),

(A.105)

in addition to the other ϕ(m)
k that have appeared already. Now de�ne the

H
(18)
1A,r by setting

H
(18)
1A,r(τ) :=

1

24
hr(τ) (A.106)
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for r even. For r odd, use

H
(18)
1A,1(τ) :=

1

24
(2h1(τ) + h17(τ)) ,

H
(18)
1A,3(τ) :=

1

24
(h3(τ) + h9(τ)) ,

H
(18)
1A,5(τ) :=

1

24
(2h5(τ) + h13(τ)) ,

H
(18)
1A,7(τ) :=

1

24
(2h7(τ) + h11(τ)) ,

H
(18)
1A,9(τ) :=

1

24
(h3(τ) + 2h9(τ) + h15(τ)) ,

H
(18)
1A,11(τ) :=

1

24
(h7(τ) + 2h11(τ)) ,

H
(18)
1A,13(τ) :=

1

24
(h5(τ) + 2h13(τ)) ,

H
(18)
1A,15(τ) :=

1

24
(h15(τ) + h9(τ)) ,

H
(18)
1A,17(τ) :=

1

24
(h1(τ) + 2h17(τ)) .

(A.107)

De�ne H(18)
2A,r in the usual way for root systems with a type A component, by

requiring

H
(18)
2A,r(τ) := −(−1)rH

(18)
1A,r(τ). (A.108)

` = 18 + 9, X = D10E
2
7

We havemX = 18, so the umbral McKay-Thompson seriesH(18+9)
g = (H

(18+9)
g,r )

associated to g ∈ G(18+9) ' Z/2Z is a 36-vector-valued function with compo-

nents indexed by r ∈ Z/36Z. We haveH(18+9)
g,r = −H(18+9)

g,−r , H(18+9)
g,r = H

(18+9)
g,18−r

for 1 ≤ r ≤ 17, and H(18+9)
g,r = 0 for r = 0 mod 2, so it su�ces to specify the

H
(18+9)
g,r for r ∈ {1, 3, 5, 7, 9}.
De�ne

H
(18+9)
1A,r (τ) := H

(18)
1A,r(τ) +H

(18)
1A,18−r(τ),

H
(18+9)
2A,r (τ) := H

(18)
1A,r(τ)−H(18)

1A,18−r(τ),
(A.109)

for r ∈ {1, 3, 5, 7, 9}.
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` = 22 + 11, X = D2
12

We have mX = 22, so the umbral McKay-Thompson series H(22+11)
g =

(H
(22+11)
g,r ) associated to g ∈ G(22+11) ' Z/2Z is a 44-vector-valued func-

tion with components indexed by r ∈ Z/44Z. We have H(22+11)
g,r = −H(22+11)

g,−r

and H(22+11)
g,r = 0 for r = 0 mod 2, so it su�ces to specify the H(22+11)

g,r for

r odd. Observing that H(22+11)
g,r = −H(22+11)

g,−r we may determine H(22+11)
g by

requiring that

ψ(11/2)
g (τ, z) = −2χ̄(11/2)

g iµ11/2,0(τ, z) +
∑

r∈Z+1/2
r mod 11

e(−r/2)H
(22+11)
g,2r (τ)θ11/2,r(τ, z),

(A.110)

where χ̄(11/2)
1A := 2, χ̄(11/2)

2A := 0, and the ψ(11/2)
g are the meromorphic Jacobi

forms of weight 1 and index 11/2 de�ned as follows.

ψ
(11/2)
1A (τ, z) := 2i

θ1(τ, 4z)

θ1(τ, z)θ1(τ, 2z)
η(τ)3

ψ
(11/2)
2A (τ, z) := −2i

θ1(τ, 4z)

θ2(τ, z)θ2(τ, 2z)
η(τ)3

(A.111)

` = 25, X = A24

We have mX = 25, so for g ∈ G(25) ' Z/2Z, the associated umbral McKay-

Thompson series H(25)
g = (H

(25)
g,r ) is a 50-vector-valued function, with compo-

nents indexed by r ∈ Z/50Z, satisfying H(25)
g,r = −H(25)

g,−r, and in particular,

H
(25)
g,r = 0 for r = 0 mod 25. So it su�ces to specify the H(25)

g,r for 1 ≤ r ≤ 24.

De�ne H(25)
g = (H

(25)
g,r ) for g = e by requiring that

−Ψ1,1(τ, z)ϕ
(25)
1 (τ, z) = −µ25,0(τ, z) +

∑
r mod 50

H(25)
e,r (τ)θ25,r(τ, z), (A.112)

where

ϕ
(25)
1 (τ, z) :=

1

2
ϕ

(5)
1 (τ, z)ϕ

(21)
1 (τ, z)− ϕ(7)

1 (τ, z)ϕ
(19)
1 (τ, z) +

1

2
ϕ

(13)
1 (τ, z)2.

(A.113)
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For the de�nition of ϕ(25)
1 we require

ϕ
(17)
1 (τ, z) := 4ϕ

(5)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(9)

1 (τ, z)2,

ϕ
(19)
1 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(16)
1 (τ, z) + 2ϕ

(7)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(15)
1 (τ, z),

ϕ
(21)
1 (τ, z) := ϕ

(5)
1 (τ, z)ϕ

(17)
1 (τ, z)− 2ϕ

(9)
1 (τ, z)ϕ

(13)
1 (τ, z),

(A.114)

in addition to the other ϕ(m)
k that have appeared already. De�ne H(25)

2A,r in the

usual way for root systems with a type A component, by requiring

H
(18)
2A,r(τ) := −(−1)rH

(18)
1A,r(τ). (A.115)

` = 30 + 15, X = D16E8

We have mX = 30, so the umbral McKay-Thompson series H(30+15)
g =

(H
(30+15)
g,r ) associated to g ∈ G(30+15) = {e} is a 60-vector-valued function

with components indexed by r ∈ Z/60Z. We have H(30+15)
e,r = −H(30+15)

e,−r ,

H
(30+15)
e,r = H

(30+15)
e,30−r for 1 ≤ r ≤ 29, and H(30+15)

e,r = 0 for r = 0 mod 2, so it

su�ces to specify the H(30+15)
e,r for r ∈ {1, 3, 5, 7, 9, 11, 13, 15}.

De�ne

H
(30+15)
1A,1 (τ) :=

1

2

(
H

(30+6,10,15)
1A,1 + [− 1

120
]H

(10+5)
3A,1 (τ/3)

)
,

H
(30+15)
1A,3 (τ) := [− 9

120
]H

(10+5)
3A,3 (τ/3),

H
(30+15)
1A,5 (τ) := [− 25

120
]H

(10+5)
3A,5 (τ/3),

H
(30+15)
1A,7 (τ) :=

1

2

(
H

(30+6,10,15)
1A,7 + [− 49

120
]H

(10+5)
3A,3 (τ/3)

)
,

H
(30+15)
1A,11 (τ) :=

1

2

(
H

(30+6,10,15)
1A,1 − [− 1

120
]H

(10+5)
3A,1 (τ/3)

)
,

H
(30+15)
1A,13 (τ) :=

1

2

(
H

(30+6,10,15)
1A,7 − [− 49

120
]H

(10+5)
3A,3 (τ/3)

)
,

H
(30+15)
1A,15 (τ) := −[−105

120
]H

(10+5)
3A,5 (τ/3).

(A.116)
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` = 30 + 6, 10, 15, X = E3
8

We have mX = 30, and G(30+6,10,15) = GX ' S3. The umbral McKay-

Thompson series H(30+6,10,15) is a 60-vector-valued function with components

indexed by r ∈ Z/60Z. We have

H(30+6,10,15)
g,r (τ) =


±H(30+6,10,15)

g,1 if r = ±1,±11,±19,±29 mod 60,

±H(30+6,10,15)
g,7 if r = ±7,±13,±17,±27 mod 60,

0 else,

(A.117)

so it su�ces to specify the H(30+6,10,15)
g,r for r = 1 and r = 7. These functions

may be de�ned as follows.

H
(30+6,10,15)
1A,1 := −2

1

η(τ)2

( ∑
k,l,m≥0

+
∑

k,l,m<0

)
(−1)k+l+mq(k2+l2+m2)/2+2(kl+lm+mk)+(k+l+m)/2+3/40

H
(30+6,10,15)
2A,1 := −2

1

η(2τ)

(∑
k,m≥0

−
∑
k,m<0

)
(−1)k+mq3k2+m2/2+4km+(2k+m)/2+3/40

H
(30+6,10,15)
3A,1 := −2

η(τ)

η(3τ)

∑
k∈Z

(−1)kq15k2/2+3k/2+3/40

H
(30+6,10,15)
1A,7 = −2

1

η(τ)2

( ∑
k,l,m≥0

+
∑

k,l,m<0

)
(−1)k+l+mq(k2+l2+m2)/2+2(kl+lm+mk)+3(k+l+m)/2+27/40

H
(30+6,10,15)
2A,7 = 2

1

η(2τ)

(∑
k,m≥0

−
∑
k,m<0

)
(−1)k+mq3k2+m2/2+4km+3(2k+m)/2+27/40

H
(30+6,10,15)
3A,7 = −2

η(τ)

η(3τ)

∑
k∈Z

(−1)kq15k2/2+9k/2+27/40

(A.118)

` = 46 + 23, X = D24

We have mX = 22, and G(46+23) = {e}. The umbral McKay-Thompson

series H(46+23)
e = (H

(46+23)
e,r ) is a 92-vector-valued function with components
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indexed by r ∈ Z/92Z. We have H(46+23)
e,r = −H(46+23)

e,−r and H(46+23)
e,r = 0 for

r = 0 mod 2, so it su�ces to specify the H(46+23)
e,r for r odd. Observing that

H
(46+23)
e,r = −H(46+23)

e,−r we may determine H(46+23)
e by requiring that

ψ(23/2)
e (τ, z) = −2iµ23/2,0(τ, z) +

∑
r∈Z+1/2
r mod 23

e(−r/2)H
(46+23)
g,2r (τ)θ23/2,r(τ, z),

(A.119)

where ψ(23/2)
e is the meromorphic Jacobi forms of weight 1 and index 23/2

de�ned by setting

ψ(23/2)
e (τ, z) := 2i

θ1(τ, 6z)

θ1(τ, 2z)θ1(τ, 3z)
η(τ)3. (A.120)
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