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Abstract
In light of recent technological advancements that have decreased the cost of sequencing, we

have seen a massive increase in publicly available datasets. This increase in quantity has led to

new approaches to be implemented when solving epidemiological studies. With this, I have

created computational pipelines to process and leverage publicly available datasets from

around the world to understand the prevalence and impact of co-infections in the context of this

wealth of data.

In my first research project, I focused on an outbreak of H. influenza (Hi), a pathogen that

typically causes respiratory infections but in this case, was causing severe septic arthritis in

individuals who were also HIV+. It is not clear whether this unusual clinical presentation was

from a change introduction into a vulnerable population of HIV+ individuals, or if there is a

genetic feature of these particular strains that causes increased virulence. In this study, we

performed a comparative genomic analysis of the clinical isolates originally identified in

metropolitan Atlanta in the context of the larger pangenome of over 4,000 Hi strains to identify

potential features that may suggest enhanced virulence in the cluster strains.

In the second research project, I built a computational pipeline to process over 800

metatranscriptomic samples collected from individuals with COVID-19. After establishing this

pipeline, we can ask basic epidemiological questions. With the output of this analysis, we are

able to assess if there are any co-infections of viral, bacterial, or fungal pathogens in the nasal

cavity at the onset of COVID-19. To understand the effect of co-infection, we looked for a

correlation to viral burden and found that none of the pathogens seemed to correlate with an

increased COVID-19 viral load.



To conclude, this dissertation will discuss aspects of co-infection in the larger context of

thousands of isolates, a scale that is unprecedented for these pathogens. From this scale, we

can determine what is unique and what remains common. We generate multiple hypotheses of

what co-infections exist and how they may impact public health.
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Chapter 1: Introduction

BACKGROUND

I have been fortunate to have two projects that have access to sequencing directly from patients

who are affected by ongoing outbreaks in Atlanta. Having access to these patient samples is a

privilege and I am grateful to have been able to work with data that is so directly linked to our

community. With this data and the relevant metadata, we can answer basic questions of

epidemiology which establishes an outbreak and the causative agent. For both of my projects,

this epidemiological work has been done before me. From there, we can transition to a genomic

perspective of disease, leveraging the massive amount of data that sequencing patient samples

provides us. As a foundation, I will talk about the basics of epidemiology in order to understand

how genomic sequencing is revolutionizing the field.

Classic epidemiology

Epidemiology is the study of the incidence, frequency, pattern, and determinants of diseases

and other factors relating to health in a population over time 1. Epidemiological observations can

be traced back to ancient civilizations, typically starting with the father of modern medicine,

Hippocrates, in about 400 BC 2. Historians credit John Graunt, a 17th-century demographer,

with the birth of modern epidemiology 3. Graunt was a largely self-educated person who

pioneered epidemiological analyses that placed a lot of value on the accuracy and nuanced

quantifications of public health 3. In the 19th century, notable advancements in epidemiology

were made by the work of William Farr and John Snow 44–64. There is a lore surrounding the

underdog of the time, John Snow, and how he discovered that the cholera outbreak of 1849 was

fueled by a contaminated water supply 4–6. This laid the groundwork for modern epidemiological

methods and principles.

https://paperpile.com/c/Ivpm6m/XtSf
https://paperpile.com/c/Ivpm6m/FRZn
https://paperpile.com/c/Ivpm6m/v9Xs
https://paperpile.com/c/Ivpm6m/v9Xs
https://paperpile.com/c/Ivpm6m/HVW9
https://paperpile.com/c/Ivpm6m/HVW9+ygvS+0Dag
https://paperpile.com/c/Ivpm6m/HVW9
https://paperpile.com/c/Ivpm6m/HVW9+ygvS+0Dag


Scientists such as John Snow, William Farr, and many other scientists have established the

process of conducting and managing disease outbreak investigations 7. This process starts with

establishing the existence of an outbreak and verifying the diagnosis of the causative pathogen.

Neither of these are trivial. After the outbreak is established, scientists must identify relevant

cases to perform descriptive epidemiology. At this stage, they must set criteria for inclusion,

collect information on each case, and describe the affected people, place, and time. Once this

foundation is laid, scientists can develop a hypothesis of what the source of the pathogen is and

the vector responsible. Then we are left with the work that is common to all fields of science,

which is to evaluate hypotheses and communicate those results. This workflow has been

instrumental in identifying risk factors, understanding disease transmission, and informing public

health interventions to prevent and control diseases. These historical and classic techniques

have laid the foundation for modern epidemiological research and continue to be used

alongside newer methods of molecular and genome-based epidemiology.

Much of the classic epidemiology for Chapter 2 and Chapter 3 of this dissertation was

established and has allowed me to focus on genome-based epidemiology questions. The

epidemiological foundation for Chapter 2, was established by a paper published by Collins et al.

2019 “Invasive Nontypeable Haemophilus influenzae Infection Among Adults With HIV in

Metropolitan Atlanta, Georgia, 2008-2018” 8. These researchers set criteria for inclusion and

information on each case collected, an outbreak was discovered and the place, people affected,

and the timeline of this outbreak was established. They established that there was an outbreak

of Nontypeable Haemophilus (NTHi) that disproportionately affected HIV+ men who have sex

with men living in metro-Atlanta. With the observation of genetic similarity and the close

geospatial location of the infections, a novel mode of transmission was discovered. With the

outbreak discovered, novel transmissibility described, and causative pathogen isolated, the

https://paperpile.com/c/Ivpm6m/N29S
https://paperpile.com/c/Ivpm6m/Fl7w


genomic information of those NTHi infections was sequenced which marked the beginning of

my project. In Chapter 3, I investigate the potential of co-infection in patients infected with

COVID-19, which was already established as a pandemic by the samples being collected9.

Molecular Epidemiology

Molecular epidemiology is the use of molecular laboratory techniques to answer epidemiological

questions 10. With the inclusion of these techniques, the field of epidemiology expands to include

the study of how molecular pathways, metabolites, or novel genes impact the risk of disease

development11. This is a broad field, encompassing many advancements in technology. For

example, in the quest to establish an outbreak and verify diagnoses of the causative pathogen,

PCR-based and serology-based diagnostics have proven to be instrumental10,12. Another way

molecular techniques have broadened epidemiology is in understanding biomarkers of disease

risk, such as increased cholesterol as a biomarker for heart disease11. The genre of molecular

epidemiology that my dissertation focuses on is genome-based epidemiology.

Genome-based epidemiology

In recent decades, next-generation DNA sequencing has emerged as a tool that has

revolutionized the field of infectious disease13. It has transformed how infections are discovered,

understood, diagnosed, and treated. Before the development of this technology, we were limited

by challenging and time-consuming benchwork experiments required to isolate, culture, and

identify pathogens collected from affected people14. While these methods are still valuable for

the advancement of the field, they are not as scalable and precise as next-generation

sequencing. The wide application of DNA sequencing in epidemiology has also given us a basis

to understand the evolution and transmission patterns of pathogens by following the molecular

signature of a population of samples13.

https://paperpile.com/c/Ivpm6m/90Cr
https://paperpile.com/c/Ivpm6m/IKpz
https://paperpile.com/c/Ivpm6m/88yH
https://paperpile.com/c/Ivpm6m/IKpz+5Uwi
https://paperpile.com/c/Ivpm6m/88yH
https://paperpile.com/c/Ivpm6m/A20J
https://paperpile.com/c/Ivpm6m/v6Gc
https://paperpile.com/c/Ivpm6m/A20J


These methods rely on next-generation sequencing, which largely replaced earlier methods in

the 2000s15. In 2000 Lynx Therapeutics, later bought by Illumina, rolled out the first

next-generation sequencing technology called Massively parallel signature sequencing. By

2004, 454 Life Sciences marketed a pyrosequencing technology that could produce up to 20

million base pairs. With this groundwork and a lot of money, time, and resources in 2008 the first

paper studying the human genome using next-generation sequencing was published16. Although

these were all very exciting and important milestones, next-generation sequencing was not

accessible to most scientists because of its prohibitive costs. It was not until 2014 with the new

HiSeq X Ten Sequencer available through Illumina did the cost of a genome dropp to $1000.

With this milestone, we observed a massive uptick in genomes available. Next-generation

sequencing gave way to DNA, RNA, and eventually metagenomic sequencing to become

commonplace.

Sequencing pathogens in the context of an outbreak gives researchers the power to answer a

number of questions that would not be possible with other identification methods13. DNA

sequencing gives researchers information far beyond the organism’s identity because most, if

not all, of the genome is defined by this method. This gives researchers access to all of the

genes and regulatory elements in the organism’s genome. In the context of more than one

genome, researchers can start to discern what makes the pathogen’s genome unique and which

of these changes could lead to increased virulence, altered transmission, or any other biological

factors of interest17. As the databases of sequence information from infection increases, the

complexity of questions and the significance of our conclusions tend to increase, allowing for an

accurate and holistic picture of an outbreak18. This is largely the strength of our NTHi study

which I will discuss in the second chapter of this dissertation, in the wide comparison to

thousands of other samples collected across decades and around the world.

https://paperpile.com/c/Ivpm6m/GwRz
https://paperpile.com/c/Ivpm6m/aOuB
https://paperpile.com/c/Ivpm6m/A20J
https://paperpile.com/c/Ivpm6m/PZDd
https://paperpile.com/c/Ivpm6m/eJJy


Applications of DNA sequencing in Molecular Epidemiology

Building on the impact of next-generation DNA sequencing in the field of infectious disease, it is

essential to consider the practical applications this technology has made possible. One area

where DNA sequencing has significantly contributed to our understanding of infectious diseases

is in the realm of diagnostics. Unlike traditional diagnostic methods that often rely on isolating

and culturing pathogens, which could be time-consuming and yield inconclusive results, DNA

sequencing offers a more efficient alternative. This technology enables the rapid and accurate

identification of infectious agents directly from clinical samples. Notably, it not only expedites the

diagnostic process but also empowers us to detect previously unknown or emerging pathogens,

a capability of utmost importance in addressing emerging infectious diseases. We observed the

power of this technique in the identification of the COVID-19 pathogen as it emerged in 2019.

The advent of metagenomics further exemplifies the transformative potential of DNA

sequencing in diagnostics. With metagenomics, we are no longer constrained by the need to

sequence isolated cultures. Instead, we can sequence the entire microbial landscape present

on the isolating swab, encompassing bacteria, viruses, and fungal organisms. This

technological advancement forms the cornerstone of my work in the COVID-19 study, which

constitutes the third chapter of this dissertation.

The application of DNA sequencing also extends to parts of the genome that do not necessarily

involve the identification of the pathogen. Examples of this could be understanding the state of

antibiotic resistance or the development of vaccines in response to the protein structures visible

to our immune systems. Understanding the genetic makeup of pathogens at a granular level

enables the identification of antigenic targets for vaccine development. This knowledge

empowers scientists to design vaccines that are more effective and can be developed more



rapidly, a vital capability when responding to outbreaks of infectious diseases. The development

of the COVID-19 RNA vaccine is a perfect example of how critical the application of DNA

sequencing can be.

Genomic surveillance

The genomic surveillance that is the foundation of the work done in the NTHi study in chapter 2

of this dissertation was done by the Active Bacterial Core surveillance8,19. This group actively

surveys for a set of invasive pathogens of interest, setting up the infrastructure to study many

epidemiological questions.

Genomic surveillance is an infrastructure to monitor the genetic material of pathogens, tracking

the transmission, evolution, and impact20. In 2022 the Whole Health Organization (WHO) put out

a 10-year plan to implement increased genomic surveillance21,22. This involves tracking cases of

infection, sequencing select samples that represent a portion of the population, and using this

information to answer epidemiological questions. Having this infrastructure in place is invaluable

to identifying outbreaks and real-time tracking of pathogen spread, helping to inform public

health interventions 20.

The Active Bacterial Core surveillance is a component of the CDC’s Emerging Infections

Programs which sets up collaborations between clinicians, university researchers, and health

departments19. They have a set of pathogens that they actively survey for, including

Haemophilus influenzae, group A Streptococcus, group B Streptococcus, Neisseria

meningitidis, and Streptococcus pneumoniae. The CDC uses the ABC surveillance group to

track disease trends and inform public health policy, which is how it has contributed to the

identification of this outbreak and the epidemiological foundation of this project.

https://paperpile.com/c/Ivpm6m/fdM4+Fl7w
https://paperpile.com/c/Ivpm6m/MmZK
https://paperpile.com/c/Ivpm6m/eajF+enVn
https://paperpile.com/c/Ivpm6m/MmZK
https://paperpile.com/c/Ivpm6m/fdM4


Bacterial Pangenomes

As the number of DNA sequencing experiments in the context of disease outbreaks increases

and this information is added to public databases, the power and depth of conclusions we can

make in the context of this information grows18. One of the approaches to come out of this

wealth of information is a pangenome analysis23–25. Pangenomes refer to the complete set of

genes present in a species, including the core genome, which are genes shared by all strains,

and the accessory genome, which are genes present in only some strains23. Unlike traditional

genomics, which focuses on a single reference genome, pangenome analysis takes into

account the genetic diversity within a species by analyzing multiple genomes. This large-scale

comparative genomics allows researchers to identify commonalities and variations among

pathogen genomes giving a more comprehensive understanding of how this outbreak compares

to other individual infections or even how it compares to other outbreaks in the data available in

our public databases. These insights are invaluable for predicting disease trends, understanding

the emergence of drug resistance, and designing public health interventions. It also allows for a

comprehensive picture of niche adaptations and evolutionary trends as they arise in the

population.

Pangenomes offer a technique to understand the components that are common or unique

among the population and how this changes over time, which lends itself to answering biological

which genes in the accessory genome could be contributing to niche adaptations, such as the

rise antibiotic resistance or virulence factors26,27. Pangenomics has revolutionized our

understanding of pathogen evolution by revealing the genetic variations that contribute to their

diversity and adaptation. By comparing the pangenomes of different strains, researchers can

identify genes that are gained or lost during evolution, providing insights into the acquisition of

virulence factors or drug resistance mechanisms26.

https://paperpile.com/c/Ivpm6m/eJJy
https://paperpile.com/c/Ivpm6m/z1dT+7Fcw+rcnu
https://paperpile.com/c/Ivpm6m/z1dT
https://paperpile.com/c/Ivpm6m/mBBM+7y5I
https://paperpile.com/c/Ivpm6m/mBBM


Pangenomic analysis allows for the identification of virulence factors, which are genetic

elements that enhance the ability of pathogens to cause disease27. By comparing the accessory

genomes of pathogenic and non-pathogenic strains, researchers can pinpoint the specific genes

or genetic variations associated with increased virulence. This information is invaluable for

understanding the mechanisms underlying pathogenesis. In a similar way, pangenomic analysis

has also significantly advanced our understanding of drug resistance in infectious diseases.

Again by comparing the pangenomes of drug-resistant and drug-susceptible strains,

researchers can identify genetic variations associated with resistance28. Pangenomic analysis

has been particularly instrumental in studying drug resistance in bacteria, such as

methicillin-resistant Staphylococcus aureus (MRSA)29,30.

We take advantage of this pangenome approach in our NTHi study described in Chapter 2,

which creates a local database of information on nearly 4,000 samples from NTHi infections

across the world. In the next section of this introduction, I will expand on the biology of NTHi and

what is known to date about this pathogen in order to create a foundation to understand the

novelty of the outbreak our research group discovered and I have been fortunate enough to

study alongside them.

Diverse presentation of Hflu

Haemophilus influenzae (H. influenzae) gram-negative bacterium that colonizes the upper

respiratory tract of humans31. In 1892 Richard Pfeiffer isolated H. influenzae from patients during

an outbreak of influenza, believing it was the causative agent32. This is where the bacteria got its

name which is a bit of a misnomer, given that it is not a virus. Despite this misstep, Pfeiffer was

instrumental in its discovery and early understanding of the pathogen. As H. influenzae was

established as a bacterial pathogen and further characterized, it was divided into two groups,

https://paperpile.com/c/Ivpm6m/7y5I
https://paperpile.com/c/Ivpm6m/xFDd
https://paperpile.com/c/Ivpm6m/729l+rOFJ
https://paperpile.com/c/Ivpm6m/bN8s
https://paperpile.com/c/Ivpm6m/Fpea


one defined by the presence of an outer polysaccharide capsule, encapsulate H. influenzae, or

the absence of it, non-typeable H. influenzae (NTHi)31.

Encapsulated H. influenzae depends on its capsule to evade the host immune response and is

typically responsible for more severe clinical presentation33. Clinical presentations of

encapsulated H. influenzae infections can vary depending on the specific strain and the patient's

age and overall health. Encapsulated H. influenzae, particularly type b (Hib), is known for

causing severe diseases, especially in young children34. Common clinical presentations include

invasive diseases like meningitis, bacteremia, and pneumonia. Meningitis caused by Hib can

lead to symptoms such as high fever, severe headaches, neck stiffness, and altered mental

status. Bacteremia, the presence of bacteria in the bloodstream, may manifest with symptoms

like fever, chills, and low energy35. Hib pneumonia can result in respiratory distress, cough, and

fever. In children, these infections can progress rapidly and be life-threatening, underscoring the

importance of vaccination against Hib to prevent these serious clinical manifestations. Prior to

the introduction of the H. influenzae type b (Hib) vaccine, Hib was the leading cause of bacterial

meningitis in children under five years of age36. However, the widespread use of the Hib vaccine

has significantly reduced the incidence of invasive Hib disease. NTHi, on the other hand,

remains a common cause of respiratory tract infections in both children and adults.

Non-typeable Haemophilus influenzae (NTHi) infections present a spectrum of clinical

manifestations that primarily target the respiratory tract and present in sporadic infections in the

very young, elderly, or immunocompromised patients37. Unlike encapsulated H. influenzae

strains, NTHi lacks a protective polysaccharide capsule, making it less virulent but still capable

of causing various illnesses38. Clinical presentations of NTHi infections often include

non-invasive conditions such as otitis media (middle ear infections), sinusitis, and exacerbations

of chronic obstructive pulmonary disease (COPD). Otitis media caused by NTHi can lead to ear

https://paperpile.com/c/Ivpm6m/bN8s
https://paperpile.com/c/Ivpm6m/cwRg
https://paperpile.com/c/Ivpm6m/Ahgz
https://paperpile.com/c/Ivpm6m/PWVr
https://paperpile.com/c/Ivpm6m/1oP0
https://paperpile.com/c/Ivpm6m/nNHN
https://paperpile.com/c/Ivpm6m/O3oC


pain, hearing loss, and fever, particularly in children. Sinusitis symptoms may include facial pain,

nasal congestion, and headache. In adults with underlying respiratory conditions like COPD,

NTHi can exacerbate symptoms39. While NTHi infections are typically less severe than those

caused by encapsulated H. influenzae, they can still significantly impact the quality of life,

particularly in vulnerable populations38.

Haemophilus influenzae and HIV

The interplay between H. influenzae and Human Immunodeficiency Virus (HIV) is an area of

ongoing research and will be the focus of chapter 2 of this dissertation. Both pathogens can

affect the immune system and have the potential to interact in various ways. It is well

documented that people affected by HIV are more susceptible to infections because of the effect

HIV has on CD4 T-cells, and there are clinical publications noting a link between HIV and H.

influenzae and NTHi infections. Some studies have suggested that individuals with HIV may be

more prone to chronic respiratory infections, including chronic obstructive pulmonary disease

(COPD), bronchitis, and pneumonia. H. influenzae, especially non-typeable strains, can

contribute to these respiratory infections, exacerbating the health challenges faced by people

with HIV. Despite some knowledge about the interplay between HIV and H. influenzae, there is

still much to learn. Ongoing research aims to better understand the mechanisms through which

these pathogens interact, the impact on disease progression, and potential strategies for

prevention and treatment.

CHAPTER 2: NTHi OUTBREAK

In the second chapter, we described the genomic components of a particularly unique outbreak

of NTHi that was captured by genomic surveillance.

https://paperpile.com/c/Ivpm6m/JZu6
https://paperpile.com/c/Ivpm6m/O3oC


Still in line with the hypothesis of genomic changes leading to hypervirulence, we could observe

that a set of genes is uniquely gained or lost in the C1 and C2 samples compared to a subset of

all the published Hflu genomes. The strength of this conclusion depends on the scale of the

database that we are working with, and we have conducted this analysis with a uniquely large

database of Hflu samples. To explore the hypothesis in this light, we must conduct a

pangenome analysis. A pangenome analysis allows us to assess if novel genes were acquired

in the C1 and C2 lineages that could contribute to transmission, carriage, or increasing

invasiveness of NTHi infection. The pangenome will allow us to define the core, accessory, and

rare genomes by the relative percentage of each gene family in the population of samples. For

this paper, we will define the core genome as greater than or equal to 95%, accessory as

between 95% and 5% prevalence, and rare as less than 5% prevalence. A gene family is a

group of alleles in the pangenome that are grouped through high sequence similarity by

PIRATE, and will be the unit by which the core, accessory, and rare genomes are defined.

Accessory gene families are found in some, but not all genomes, and can lend fitness

advantages, virulence factors, antibiotic resistance, and other niche adaptations. Focusing on

accessory genes present in the C1/C2 samples, we aim to classify gene families by uniquely

gained or lost in C1/C2 samples compared to a representative subset of the 4,842 samples and

gene families that can distinguish C1 and C2 from each other. With their presence

characterized, we can look into potential niche adaptations the predicted gene function may

confer.

COVID-19 outbreak

From here I will briefly transition to some introductory text that is specialized to only our

COVID-19 study. In March 2020, the novel SAR-CoV-2 virus (COVID-19) was declared a

pandemic by the World Health Organization (WHO)40. As time progressed, it continued to affect

https://paperpile.com/c/Ivpm6m/TYaj


more people around the world, resulting in millions of deaths41. Although COVID-19 was a novel

virus, it is related to other coronaviruses (CoV) that are well-studied and understood42,43. These

viruses are positive-sense RNA viruses, that affect a range of hosts from mammals and birds44.

Because they are positive-sense, they are immediately ready to be translated by the host cell

and create the viral proteins that are important for their replication cycle. These are an

interesting and diverse set of viruses, with large genomes and complex open-reading frames,

making them a very interesting virus to study.

Metagenomics and Metatranscriptomics

Our study in Chapter 3 differs from Chapter 2 because instead of working with cultured bacterial

samples, we are working with metatranscriptomic data. Metagenomics is a DNA library that is

made from a population of cells, representing the microbiome at that site45,46.

Metatranscriptomics is a variation of metagenomics, which is an RNA library that represents the

transcriptome of all of the cells in the microbiome. For the COVID-19 co-infection study,

metatranscriptomic libraries were made since the COVID-19 virus is an RNA virus and we

wanted to detect this. With these libraries we not only get the identification of other cells in the

samples, whether they be host, bacterial, fungal, or viral, but we also get the transcriptome. For

RNA viruses like COVID-19 and many other respiratory viruses, this is their entire genome. For

other eukaryotic and prokaryotic cells, this will be the steady-state RNA levels of genes that

have been expressed. This is very cool and offers a wealth of data that I have only started to tap

into.

https://paperpile.com/c/Ivpm6m/Kbz2
https://paperpile.com/c/Ivpm6m/UqdL+mkGD
https://paperpile.com/c/Ivpm6m/5x3k
https://paperpile.com/c/Ivpm6m/xoHn+3rlw


CHAPTER 3: COVID-19 CO-INFECTION

In chapter 3, I have built a computational pipeline that processes a high volume of COVID-19

metatranscriptomic samples in order to establish if there are any co-infection of interest in these

patients. At the onset of COVID-19 infection, nasal samples from patients were collected and

used as way to diagnose infection. From the same sample, total RNA was isolated and

metatranscriptomic libraries were created. From a computational standpoint, these samples had

to be pre-processed, filtered for read quality, and classified. Downstream analysis looking at

co-infections also needed to be written to parse through a large database of samples. We found

some of the viral candidates present in our samples; however, they were only found in samples

with 0 reads assigned to COVID-19 by Kraken2. Some fungal and bacterial candidates were

also found in samples with ranging levels of COVID-19, but none of these candidates correlated

with increased viral load at the onset of infection.

CONCLUSIONS

As an outline, the second chapter is the NTHi study, the third chapter is the COVID-19

co-infection study, the fourth chapter is the conclusion, followed by an appendix of other

computational resources I wrote during my time at Emory. In the second chapter, we will

investigate the genetic components of NTHi infections in HIV+ men. We find many candidates

for increased virulence, but none that have well-established biological significance. In the third

chapter, I describe a computational pipeline to process metagenomic samples that allow us to

have a picture of the prevalence of co-infection in COVID-19 patients. We find that there are a

few viral co-infection in patients with very low COVID-19 viral burden, and also some bacterial

and fungal co-infections that are prevalent and do not correlate with more severe COVID-19

infections. In the appendix, I have included a tutorial for using local computational resources

and Emory AWS resources.
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Chapter 2: NTHi
Below is an upcoming submission of my work on the NTHi outbreak.
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INTRODUCTION

Haemophilus influenzae (Hi) is a Gram-negative bacterium that can live on human mucosal

surfaces without causing an infection but can also be associated with ear and respiratory

infections or more invasive diseases, such as bacteremia or meningitis. Hi strains expressing

polysaccharide capsule genes a-f, containing capsule genes on the IS1060 transposon, have

historically been associated with more serious invasive disease1,2. Since the routine use of the

Hi serotype b (Hib) vaccine in the 1990s, strains lacking the intact capsule locus (NTHi;

non-typeable Haemophilus influenzae) have replaced encapsulated strains as the leading cause

of invasive Hi disease3,4.

mailto:tread@emory.edu
https://paperpile.com/c/arXyo7/QcoO+Gwor
https://paperpile.com/c/arXyo7/eY9L+GDR9


In recent years, a CDC-funded active population-based surveillance program was leveraged to

evaluate a sharp increase in the rate of iNTHi infection among persons living with HIV in

2017-2018 compared to prior years evaluated 2008-2016, and identified that the cases primarily

occurred in Black men who have sex with men that had a high prevalence of septic arthritis5.

Pulsed-field gel electrophoresis typing among iNTHi cases aged 18-55 years identified two

expanded NTHi clones, named clusters 1 and 2 (“C1” and “C2”) as predominant in the

2017-2018 iNTHi cases. Whole genome shotgun analysis identified C1 and C2 isolates as

corresponding to multilocus sequence types ST164 and ST1714, respectively. None of the

C1/C2 strains contained capsule genes but all C1 contained the IS1016 transposon gene.

Additionally in the C1 isolates, there were 2 genes flanking the IS1016 gene that are homologs

of genes at this locus in encapsulated strains. The presence of these genes suggests ancestry

from an encapsulated strain. Although ST164 and ST1714 were close relatives within the Hi

species phylogeny, their last common ancestor clearly predated the likely timing of the Atlanta

outbreaks, suggesting that two independent outbreaks were occurring concurrently. Geospatial

analysis of iNTHi cases in metropolitan Atlanta revealed temporal-geographic separation

between cases by cluster type as C1 and C2 and further, significant temporal-geographic

aggregation of C1 cases from January-December 2017 in a certain geography compared with

C2 cases 5.

It was not clear whether there were unusual genetic features of the NTHi C1 and C2 isolates

that prompted infection to lead to more serious invasive disease (i.e., septic arthritis) or whether

their expansion reflected chance introduction into a vulnerable population and transmission

within social networks. In this study, we performed a comparative genomic analysis of the NTHi

C1 and C2 isolates originally identified in metropolitan Atlanta in the context of the larger

pangenome of Hi strains globally to identify potential features that may suggest enhanced

virulence in the cluster strains.
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RESULTS

Genetic variation within the C1 and C2 clusters

We obtained Illumina shotgun sequence data of 26 C1 and 23 C2 isolates from the original

Atlanta investigation from 2017-2018. One strain was randomly chosen from each cluster for

hybrid assembly of Oxford Nanopore minIOn and Illumina data to produce complete reference

sequences. The final C1 (GA81666) hybrid assembly included one circular 1.875 Mb contig,

while C2 (GA54827) included one circular 1.885 Mb and one circular 37.6 Kb plasmid.

The C1 isolates were found to be highly related, with a maximum distance of 132 SNPs in the

core genome alignment. Many of the samples had zero SNP distance (Figure 1A). There were

29 deletion regions in the C1 isolates compared to the reference genome, ranging from 1 to 17

kb and encompassing 48 genes (Figure 2A), 6 of which had a significant match to Hi virulence

genes. The C2 isolates were also found to be highly related, all representing the same

sequence type and having a maximum distance of 149 SNPs in the core genome alignment

(Figure 1B). The C2 cluster separates into 2 subclades, with sample SNP distances as low as 1

and as high as 35 SNPs within these sub-groups. In a similar manner to C1 analysis, there were

13 large deletions (~1 to 32 kb), spanning 24 annotated genes (Figure 2B), 6 of these genes

matched suspected virulence genes. Of the genes that had annotated gene names, five

were deleted in at least one sample in both C1 and C2 (eamA, ninG, sRNA-Xcc1,

sRNA-Xcc1, and tolB). None of these genes are found in the virulence factor database.

Few accessory genes distinguish the C1 and C2 clusters

We created a database of 4,842 publicly available Hi genomes to compare to C1 and C2 (see

methods). The public genomes represented 536 distinct MLST sequence types. From this we



selected 536 randomly chosen ST representatives, in addition to 26 C1 isolates, and 23 C2

isolates and created consisted of 6,560 gene families, of which 1368 were core (>= 95%

genomes), 1107 intermediate accessory (95% < x <= 5 %) and 4085 rare accessory (x > 5%)

(Figure 3). In a phylogenetic tree of randomly chosen representative strains of each 536 MLST

sequence types, C1 and C2 were part of a closely related subclade of NTHi strains (Figure 4).

There were few genes in the Hi pangenome that had unusual patterns of gain and loss confined

to C1 and C2 and none that could be linked to a known virulence function. We found that there

were no accessory genes absolutely unique to either C1 or C2, nor both C1/C2 (i.e. present in

one or both clades and not found in other MLSTs). There were also no core genes missing in

only C1 or C2, or both. While there were no genes absent in C1 and/or C2 that were present in

100% of the rest of the Hi pangenome, there was one gene family, identified as pxpB, that was

lost in 100% of the C1 and C2 isolates and present in more the 90% of rest of the population of

strains (Figure 5). There were 20 gene families that were ‘rare’ in the context of the Hi

pangenome (i.e. found in < 10% STs) present in C1 but not C2 isolates (Table 3). Further, there

were 7 ‘rare’ gene families unique to C2, that were not identified in C1 strains (Table 4). There

were no rare genes shared by both C1 and C2. Based on the virulence criteria established

there were no obvious links to virulence in the C1 and C2 unique or rare genes.

While examining the Hi pangenome data, we observed an interesting pattern of gains and

losses that correspond to a previously undescribed mobile cassette inserted in the same

ancestral region of C1, C2, and a small subset of other sequence types. There were eight genes

identiifed as present in both C1 and C2 but in less than 90% of the rest of the pangenome. All 8

gene families had significant homoplasy, with a consistency index less than or equal to 0.2 on

the species core genome tree (Table 1). Within this subset of rare genes, we identified 5 genes

that were likely acquired as a cassette in the ancestor and inserted at the ancestral site of the



one lost gene family. The gene that was the apparent site for cassette integration in C1 and C2

encoded a protein annotated as 5-oxoprolinase subunit PxpB6. Using comparative genomic

analysis with the MAUVE tool, we found that the five inserted genes were on a cassette of 9444

bp in C1 and C2. In the same region of the outgroup that lacked the cassette

(GCF_014701215.1_ASM1470121v1), there was an intact pxpABC gene cluster. Four of the 5

genes within the boundary of the cassette have been assigned a gene name and function by

bakta annotations. One of those gene families is the gene tnpA, which is crucial for IS200/IS605

family transposition 7,8. The remaining 3 were potentially part of a sugar metabolic operon based

on their annotations. These were (ptsEII) - a sugar transmembrane transporter; malQ,

4-α-glucanotransferase important in maltose metabolism; and treR the repressor of the

trehalose metabolic pathway. The presence of intact pxpB was highly homoplasic in Hi

(consistency Index of 0.14), which suggested a history of frequent gain and loss in the species,

commensurate with cassette insertion. There was a pattern of lost and gained gene families

found in other sequence types on the tree. We observed that there were 42 STs that have the

exact same pattern of the lost pxpB gene family and concurrently gained the 5 gene families

within the cassette. The pattern of gains and losses could be explained by multiple independent

insertions of a cassette at the same location that disrupted pxpB. The metadata available for

these 42 STs included isolates from both blood and respiratory infections. Many isolates were

from infections of populations at risk of pulmonary infection such as patients with chronic

obstructive pulmonary disease (COPD) and cystic fibrosis.

C1 and C2 have accessory gene profiles more similar to Hi isolates from blood

than sputum

Out of 4,842 Hi isolates with public genomes, 1,624 had metadata indicating the isolates were

collected from a blood or system infection and 1,441 were labeled as being isolated from
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sputum (the other genomes did not have identifiable metadata). Our goal was to identify genes

associated with systemic Hi infections using a Genome-Wide Association Study (GWAS)

approach to determine if C1 and C2 isolates had systemic infection genes represented. We

randomly choose at most one representative sample from each ST collected from either blood

or sputum to reduce bias introduced by oversampling a small number of STs with a large

number of genomes. This resulted in a set of 146 blood and 87 sputum-associated genomes.

Using the Scoary pangenome GWAS tool9 we identified 24 accessory genes that have a

Bonferroni p-value less than 0.05 and odds ratio greater than 2 association with blood versus

sputum (Table 2). Compared to the Hi 4,842 pangenome set, representative C1 and C2

genomes were enriched in the presence of these accessory genes associated with blood

infections, having 16 and 14 genes (of the 24 identified?), respectively (Figure 6).

Rates of recombination and pseudogene-formation were similar in C1 and C2 to

the rest of the Hi species

While the analysis assessing patterns of the presence and absence of genes in the

pangenomes yielded limited insight about C1/C2 virulence, we hypothesized that allelic variation

introduced by homologous recombination may have played a role in the potential evolution to

increased pathogen virulence, as seen for example in the recent emergence of a novel

urogenital Neisseria meningitidis strain10. To investigate this hypothesis, we created a core

genome alignment of 50 randomly chosen STs and one representative each from C1 and C2 to

predict potential regions of recombination using the Gubbins tool (Figure 7). As found in

previous whole genome studies of,11,12 recombination was common across Hi genomes but

there were clade-specific patterns. Gubbins detected 57 recombination events in the C1

genome with a rho/theta of 0.53 and no likely recombination events in the C2 genome with a

rho/theta of 0. In GA81666 representing C1, there were 1717 SNPs inside a region of

https://paperpile.com/c/arXyo7/JPVD
https://paperpile.com/c/arXyo7/OJGI
https://paperpile.com/c/arXyo7/uLuw+nE60


recombination and 30 SNPs outside of the 16 recombination blocks identified. In GA54827

representing C2, there were 0 recombination blocks identified and therefore 0 SNPs within a

recombination block. In terms of the number of genes overlapping SNPs, the GA81666 (C1)

genome had 326 genes in regions involved, while the GA54827 (C2) genome had 292 genes

similarly affected. Notably, there were no genes affected by independent events in both C1 and

C2 genomes.

Finally, we found the number of pseudogenes identified in C1 and C2 strains using the Bakta

tool (6 and 10 hypothetical proteins, respectively) did not significantly differ from the number

found in other Hi strains (supplemental data?). No genes with a function linked to virulence

were found to have acquired null mutations in either C1 or C2.

DISCUSSION

Using innovative and comprehensive bacterial genotypic analytic methods, we investigated

whether the emergence of two clones of NTHi (C1 and C2) associated with a novel clinical

presentation of invasive disease in metropolitan Atlanta (primarily occurring among persons with

well-controlled HIV) was associated with genomic changes that could have increased the

virulence of clones. We showed that both clusters consisted of closely related strains, with few

core chromosome SNPs but with some gene loss occurring. Because of the limited within-clade

diversity, we compared representative strains to an extensive public dataset of Hi genomes to

gather clues about potential clade-level adaptations. We evaluated patterns of gene gain and

loss involving the C1/C2 isolates in the context of an Hi species pangenome deriving from 4,842

publicly available genomes. Based on the pangenome analysis, we identified 24 accessory

genes enriched in Hi strains associated with blood/ systemic over sputum infections and found

that the genomic composition of the C1/C2 strains resembled those causing invasive disease.



We examined whether specific gene losses or gains may be linked to virulence and discovered

a previously undescribed mobile cassette in Hi as part of the C1 and C2 genomes but otherwise

did not see evidence of unusual patterns in C1/C2. Finally, we determined that rates of

homologous recombination or pseudogenization in the C1/C2 genomes were not outliers

compared to other Hi clades. While our investigation did not reveal genomic changes in C1 and

C2 that could be directly associated with traditionally defined serotyped Hi virulence factors, we

did identify intriguing changes potentially meriting further exploration through laboratory-based

analysis.

While we did not find genes with known functions unique to C1 and/or C2, we did identify a

novel cassette encoding a polysaccharide metabolism cluster inserted in C1/C2 genomes in a

manner that disrupted the pxpB gene. This disruption could itself be linked to a pathoadaptive

phenotype. The pxpB gene is part of an operon including pxpA and pxpC. Single gene

mutations in B. subtilis showed that each of the pxpA, pxpB, and pxpC genes were necessary

and sufficient for 5-Oxoproline (OP) metabolism, and deletion of any resulted in OP

accumulation and slowed growth (Niehaus et al. 2017). Accumulation of OP causes a number

of cellular responses in prokaryotes, including growth inhibition 6. Deletion of pxpB showed

aberrant DNA recombination within a large genetic interaction screen in E. coli13. The disruption

of pxpB should therefore be associated with a fitness deficit, so it is interesting that it is the

target for disruption in several Hi lineages. This might suggest a possible tradeoff for a

pathoadaptive trait and should be investigated further.

Of the 24 genes that were identified by SCOARY as potentially discriminatory for bloodstream

infection, only two were known virulence factors in the Haemophilus genus according to the

VFDB. The lsgB, gene found in both C1 and C2 samples, is associated with Haemophilus

parasuis virulence through its involvement in lipooligosaccharide biosynthesis sialylation14. It is

https://paperpile.com/c/arXyo7/3qZf
https://paperpile.com/c/arXyo7/Bvq7
https://paperpile.com/c/arXyo7/hyrE


one of several virulence genes in Haemophilus parasuis, contributing to the bacterium's

pathogenicity by influencing sialylated lipooligosaccharide production. Another of the 24, an

igaA1 gene, found in C1 but not C2 genomes, is a homolog of Salmonella membrane protein

IgaA 15. IgA regulates bacterial regulons like RcsC-YojN-RcsB and PhoP-PhoQ, with the igaA1

allele (due to an R188H mutation) altering the expression of PhoP-PhoQ-activated (pag) genes,

such as ugd, which is linked to lipopolysaccharide modification and colanic acid capsule

synthesis15.

Three other genes (dacB, fbp, and sbcB) associated with blood infections have been associated

with virulence mechanisms for other pathogens, dacB and fbp are the only genes also found

core genes in our pangenome analysis. The dacB gene encodes for a serine-type D-Ala-D-Ala

carboxypeptidase, and it appears to have the potential to influence virulence in the context of

peptidoglycan16,17. Studies have shown that disabling this gene, as well as its counterpart dacA,

in pneumococci led to significant attenuation of the bacteria in infected mice17. Additionally,

mutants lacking dacB and dacA exhibited enhanced uptake by professional phagocytes and

decreased adherence to lung epithelial cells. In another context, a mutation in dacB was

associated with changes in peptidoglycan structure, including the release of different

peptidoglycan fragments, highlighting its role in peptidoglycan metabolism16. The fbp gene,

which encodes fructose-1,6-bisphosphatase, exhibits varying effects on virulence in different

bacterial and protozoan species. In Brucella, the loss of fbp does not impact virulence,

suggesting that it is not essential for full virulence in laboratory models18. Similarly, in Brucella

suis biovar 5, fbp is not required for full virulence in laboratory models18. However, in

Leishmania, the gluconeogenic enzyme fructose-1,6-bisphosphatase encoded by fbp is

essential for virulence, as mutants lacking this enzyme can persist in mice but fail to generate

normal lesions19. This suggests that Leishmania relies on fructose-1,6-bisphosphatase for

virulence, possibly due to its dependence on non-glucose carbon sources in glucose-poor

https://paperpile.com/c/arXyo7/egak
https://paperpile.com/c/arXyo7/egak
https://paperpile.com/c/arXyo7/V9G8+Vv3X
https://paperpile.com/c/arXyo7/Vv3X
https://paperpile.com/c/arXyo7/V9G8
https://paperpile.com/c/arXyo7/WTLS
https://paperpile.com/c/arXyo7/WTLS
https://paperpile.com/c/arXyo7/R7Rb


phagosomes. Additionally, fbp has been identified in a screen in Staphylococcus, but its specific

role in virulence in this context is not detailed in the provided information20. The sbcB gene,

which encodes exodeoxyribonuclease I, is a recognized component of virulence in Salmonella21.

Research has shown that mutants of Salmonella lacking the RecBC function, in which sbcB is

involved, are avirulent in mice and incapable of growing inside macrophage 21. This finding

highlights the critical role of the RecBCD recombination pathway, in which sbcB plays a part, in

Salmonella's virulence. This pathway is essential for repairing double-strand breaks generated

during DNA replication and is proposed to be necessary for systemic infection by S. enterica, as

it likely facilitates DNA replication within phagocytes during infection, notably the other

pathogens included don't necessarily cause joint manifestations.

The comparative genomic approach described here is limited to events involving gain and loss

or recombination-driven allelic change in genes with known virulence functions; within those

limitations, our data do not reveal unusual patterns of virulence genes in C1/C2. There are

genomic changes that could cause hypervirulence but would not be detected using the

methodology implemented in this analysis, such as rare SNPs, particularly in regulatory genes,

genomic rearrangements, and the gain of virulence genes of unknown function. One future

exploratory approach may include evaluating potential differences in gene expression in

virulence models between C1/ C2 and non-pathogenic Hi. From these data, hypotheses on

genetic changes responsible for the phenotypic effects could be generated. Finally, our analysis

focused on a C1/C2 genomic-derived mechanism underlying the emergence of two novel NTHi

strains leading to invasive disease with a relatively high prevalence of joint involvement among

primarily persons with HIV and Black men who have sex with men who resided in geographic

proximity. However, this unique clinical presentation in a particular demographic warrants

additional investigation into host factors as well as potential transmission modes including

anatomic sites as well as the potential role of social networks.

https://paperpile.com/c/arXyo7/OnPL
https://paperpile.com/c/arXyo7/e3xy
https://paperpile.com/c/arXyo7/e3xy


METHODS

Oxford nanopore sequencing and hybrid assembly with Illumina data

Haemophilus influenzae strains GA81666 and GA54827 genomic DNA were extracted using the

Promega Wizard Genomic DNA Purification Kit. Sequencing libraries prepared using the

SQK-LSK109 1D ligation sequencing kit and sequenced on a FLO-FLG001 Flongle flow cell,

yielding 496.9 Mb and 552.6 Mb of raw reads (~267x and ~297x coverage) for GA81666 and

GA54827, respectively. The Hi GA81666 and GA54827 genomes were then assembled from

Nanopore and Illumina paired-end reads using Unicycler22.

Downloading public Hi genome data

One of the strengths of this study is setting up not only a database of Hi samples to compare

against the clusters identified in the original investigation in Atlanta, but also assembling

resources and a pipeline to assess their uniqueness and potential virulence. 4,842 samples

were downloaded from NCBI SRA database and run through the bactopia pipeline to ensure

consistency. The output of this pipeline were used as the inputs for the pangenome, pan-GWAS,

and recombination analysis that is to follow.

Hi virulence gene database

We created a blast database of all of the virulence factors defined in the virulence factor

database (http://www.mgc.ac.cn/VFs/main.htm accessed October 2023) and the Victors

database (https://phidias.us/victors/ accessed October 2023)23,24. To match a protein against our

database we used blastp with default parameters and used a threshold of 80% identity to define

a hit.

https://paperpile.com/c/arXyo7/SmaED
http://www.mgc.ac.cn/VFs/main.htm
https://phidias.us/victors/
https://paperpile.com/c/arXyo7/VLMd+oIqC


We defined a gene as being “potentially linked to virulence” if it was either 1) in the virulence

factor database and the Victors database blast database, 2) one of the 24 gene families

potentially linked to systemic infection from our SCOARY analysis described in the next section

or 3) its annotated gene name contained the terms “virulence”, “pathogenicity”, “capsule” or

“toxin”.

Processing whole genome data

For the remaining Haemophilus influenzae strains we used Bactopia (v1.6.0, 25) to process the

Illumina data. The multi-locus sequence type (MLST) schema for Hi from PubMLST.org26 was

included. In addition to the public datasets included with the command “bactopia datasets”, we

added gene and protein sequences of 105 H. influenzae reference genes described in Pinto et.

al. 27, and completed genomes for GA81666 and GA54827 as optional datasets.

With Bactopia the reads were cleaned and error-corrected using BBDuk (v38.86, 28) and Lighter

(v1.1.2, 29). Process reads were assembled with SKESA (v2.4.0, 30) using Shovill (v1.1.0, 31.

Assembly quality metrics were determined with assembly-scan (v0.3.0 32) and CheckM (v1.1.3,

33). The species composition of the assembly was determined by screening against a minmer

sketch of GenBank 34 using sourmash (v3.5.0, 35). The MLST was determined using BLAST+

(V2.10.1, 36) and Ariba (v2.14.6, 37).

To supplement our study we used “bactopia search” to identify all publicly available H.

influenzae genomes from the Sequence Read Archive in December 2020. Each of the public

genomes with Illumina sequencing was also processed through Bactopia..

The “summary” tool from Bactopia was used to aggregate the results for all genomes into a

single table (nthi-report.txt). The average nucleotide identity (ANI) between GA81666 and all

https://paperpile.com/c/arXyo7/nFmuh
https://paperpile.com/c/arXyo7/uTdcX
https://paperpile.com/c/arXyo7/mT0pJ
https://paperpile.com/c/arXyo7/RaqzM
https://paperpile.com/c/arXyo7/Rwhda
https://paperpile.com/c/arXyo7/4Zr5y
https://paperpile.com/c/arXyo7/eMkk9
https://paperpile.com/c/arXyo7/3WnHz
https://paperpile.com/c/arXyo7/Ey1mJ
https://paperpile.com/c/arXyo7/JYjNn
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other genomes was calculated with FastANI (v1.32, 38). A Python script

(‘generate-representative-set.py’) was created to identify genomes to exclude from further

comparative analysis as well as generate a set of genomes that represented all identified

sequence types at least once.

Any genomes with more than 500 assembled contigs, did not have a sequence type

determined, or not screened as “Haemophilus influenzae” by sourmash, were excluded from

further analysis.

The representative set included all Georgia genomes from this study (that were not excluded)

and all genomes that had an ANI greater than the floor of the ANI of the most distant C2

genome from GA81666 (a member of C1). If an ST was identified, but not yet included, a

genome was picked prioritizing its quality rank, assembly completeness, and total number of

contigs.

Comparative analyses were done using available Bactopia. A tree was constructed with

Mashtree (v1.2.0, 39). The representative set was used to determine the pan-genome using

PIRATE (v1.0.4, 40). A phylogenetic tree based on the recombination masked core-genome

alignment was created with IQ-TREE (v2.0.3, 41,42).

Intra-clade comparisons

SNPs were called using the bactopia-tools workflow for snippy. To understand if there was any

variability across the entire genomes of C1 and C2 samples, reads from each sample were

individually mapped to the completed reference genome of each and potentially deleted regions

were assessed by lower than expected coverage in regions. In 1000 bp windows, sliding every

250 bp, reads were counted, adjusted for rpkm, and selected if one of the samples had 0 reads

https://paperpile.com/c/arXyo7/xA0is
https://paperpile.com/c/arXyo7/C3Bk3
https://paperpile.com/c/arXyo7/U1R1O
https://paperpile.com/c/arXyo7/MLz8C+4QkPf


over that bin. Adjacent regions of zero coverage were combined into a single region of interest

and coverage was converted into a binary presence or absence.

GWAS

In order to gather association data from bacterial genomes of nontypeable Hflu (NTHi) in the

bloodstream versus sputum, we used publicly available samples from multiple studies and the

Roary/Scoary software9. Roary is a software that creates a pangenome from gff annotation files

for each sample. The software collects the DNA sequence of each annotated gene, translates to

the protein sequence, blasts protein sequences against each other to create gene families of

highly similar sequences, and creates a count table of gene families that are present or absent

in each sample. Scoary inputs include the roary pangenome csv that annotated the presence or

absence of each gene family in every sample and a manifest file separating the samples into

the two conditions. The first step is to identify gene families in the accessory genome and

calculate initial associations to the conditions. A second association is calculated by

incorporating the phylogenetic structure of the samples. This is followed by a permutation test.

The output is a table of genes and their calculated p-values, odd ratio, and another metric of

significance. From this, we hope to identify genes positively associated with septic infection,

query the genome of C1/C2 clusters to identify which are present in these samples.

Recombination and Pseudogene analysis

The core-genome alignment of 50 randomly chosen STs had recombination events predicted by

Gubbins (ref) and masked with maskrc-svg (v0.5) 44.Pseudogenes were detected using bakta

reporting of pseudogenes, a new feature to version v1.8.2(Schwengers et al. 2021).

Data availability

Summary data is available at /mnt/tiramisu/emergent/projects/NTHI/ena-results.txt

https://paperpile.com/c/arXyo7/JPVD
https://paperpile.com/c/arXyo7/M3Jb7
https://paperpile.com/c/zJmQhD/QlFn


The exact commands and code used in this study are available at

https://github.com/Read-Lab-Confederation/gaeip-nthi.

FIGURES

Figure 1A: SNPs in the core alignment of C1

https://github.com/Read-Lab-Confederation/gaeip-nthi


Figure 1B: SNP distance in C2 genome

Figure 2A: Regions of low coverage within C1



Figure 2B: Regions of low coverage within C2

Figure 3: The pangenome consisted of 6,560 gene families, of which 1368 were

core (>= 95% genomes), 1107 intermediate accessory (95% < x <= 5 %) and 4085

rare accessory (x > 5%)



Figure 4: C1 and C2 isolates from 2017-2018 are from a closely related clade



Figure 5: Heatmap of the gained and lost gene families

Table 1: Value the 1 lost and 8 gained gene families by consistency index



Table 2: 24 significant genes from pan-GWAS

Figure 6: 24 significant genes count in all samples



Figure 7: rho/theta values of recombination detected in 50 sequence types of

Haemophilus influenzae.

Figure 8: Distribution of rho/theta values with C1 and C2 values represented by

vertical lines, where the blue line represents the value of C1 and the green line

represents the value of C2.



Table 3: C1 unique gene families



Table 4: C2 unique gene families

Supplemental figures

Output from mauve for C1, C2, and an outgroup
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Chapter 3: COVID-19 co-infection

INTRODUCTION

Overview of COVID-19 metatranscriptomic project

Shortly after the discovery of the novel SAR-CoV-2 virus (COVID-19), it spread to over 200

countries and was declared a pandemic by March 2020 by the World Health Organization

(WHO) 1–3. By June of that same year, the United States reported 2 million cases of COVID-19

and by August COVID-19 became the third leading cause of death in the United States. By

September 2020 the global death toll reached 1 million people4. Within the same year, there

were also documented cases of people in the hospital suffering from bacterial or fungal

co-infection 5–10. Our primary question is to characterize the rate of viral co-infection at the onset

of COVID-19 infection. We are able to do this by metatranscriptomic sequencing, which gives us

the transcriptomic data of the host and microbiome, and the genomic data of the RNA virus

infecting that patient.

COVID-19 genomics

Although the COVID-19 virus was novel, it is related to other positive-sense RNA viruses that

have circulated in our populations and have been well studied in the past1,11,12. It is part of the

coronaviruses (CoVs) family of viruses belonging to the Coronaviridae family of order

Nidovirales 11. They are broken into 4 genera: alpha, beta, gamma, and delta1,13. Each of these

genera has hosts that they are more likely to infect, alpha and beta primarily affecting mammals,

gamma primarily affecting birds, and delta affecting both mammals and birds1.
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CoVs have relatively large RNA genomes, which can be from 26 to 32 kb 14,15. CoV genomes

are single-stranded, positive-sense RNAs. This means that the RNA resembles an mRNA and

can be translated into proteins directly. Their relatively large size also means that they can store

a range of protein-coding sequences, making their genomes more diverse and interesting than

some other viruses that are constrained by the compact and relatively simple structure of their

genomes. RNA is translated into proteins in units of open-reading frames (ORFs) and the CoV

genomes have several 15. Specifically, COVID-19 has 6 highly conserved ORFs, including

ORF1ab, ORF3, ORF6, 7a, 8, and ORF10. Some of the functional products are transcribed and

translated into spike proteins, nucleocapsid, envelope, and membrane proteins15. CoVs are also

genetically plastic, leading to altered transmission, virulence, host-specificity, and other factors

of viral evolution. These changes in the genome can arise from point mutations, insertions,

deletions, and recombination events, both within and between strains (16.

COVID-19 and Co-infection

Bacterial, fungal, and viral co-infection was observed in the hospital setting early during the

COVID-19 pandemic 5. Fungal infections of invasive pulmonary aspergillosis and candidiasis

were observed in immunocompromised or diabetic patients also infected with COVID-19, and it

was established that prolonged hospitalization and use of corticosteroids were associated with a

higher risk of fungal co-infection 7;6,8. These cases were primarily reported during the second

wave of COVID-19 in patients in India7.

A slightly more common occurrence observed in many different countries is co-infection with

COVID-19 and a bacterial or viral pathogen. A meta-analysis assessing the prevalence of

co-infections available patient hospitalization records of patients admitted for COVID-19

infection was published in May 2020 5. Of the bacterial co-infections identified in this study, over
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40% of them can be attributed to Mycoplasma pneumoniae. Of the viral co-infections identified,

RSV, Influenza A, Rhino/Enteroviruses, and Influenza B were the most common, responsible for

10-15% of the viral co-infections. Although they were able to detect some co-infections, they

found them to be relatively rare in the hospital setting; their meta-analysis indicated that 7% of

hospitalized patients were co-infected with a bacterial pathogen and only 3% were infected with

a viral pathogen. Since we know co-infections can lead to more severe symptoms, we might

expect the rate of co-infection to be enriched in this population of patients. This study was

limited to hospitalized patients that were reported in the literature and was not an unbiased

sampling of all patients experiencing COVID-19. Another meta-analysis published in 2022

confirmed that viral co-infection rates were low (5.01%) and the most prevalent viral pathogen

observed was influenza viruses and enteroviruses17.

Our study differs from these in that we are interested in what viral pathogens may be present in

patients at the onset of symptoms, without any bias towards people who were hospitalized with

severe infection. Also, this study uses the metagenomic approach to capture all possible

infectious agents in the nasal cavity, instead of being limited to medical diagnostic methods.

Candidate Viruses

We selected a set of viruses that are common and well-studied causes of respiratory disease,

including adenoviridae, coronaviridae, paramycoviridea, picornaviridea, and orthomyovirdea.

Below I will describe some biological context for each family, highlighting the partial strains we

selected as co-infection candidates.

Adenovirus (Human mastadenovirus C from the Adenoviridae family of viruses) is a

double-stranded DNA genome of 26 to 48 kb 18. This family of viruses is responsible for a range
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of diseases, including respiratory infection, gastroenteritis, and epidemic keratoconjunctivitis19.

Infections affect both adults and children which can be severe, especially in

immunocompromised individuals. These viruses, belonging to the Adenoviridae family, are

responsible for a significant portion of upper and lower respiratory tract infections, including the

common cold, bronchitis, and pneumonia. Adenoviral respiratory diseases often spread through

respiratory droplets, making them highly contagious.

Coronaviridae is another family of viruses that we are widely interested in, including Coronavirus

HKU, Coronavirus NL63, Coronavirus 299E, Coronavirus OC43, and SARS-CoV-2 as

candidates. This is the same family of positive-sense RNA viruses that were introduced earlier

in this chapter because COVID-19 is in the same taxa 14. This is a diverse group of viruses that

primarily cause respiratory illness, ranging from mild to severe presentation.

Respiratory illnesses caused by viruses within the Paramyxoviridae family, namely Human

metapneumovirus (HMPV), Parainfluenza virus, and Respiratory syncytial virus (RSV),

represent a significant burden on public health. These viruses have a single-stranded,

negative-sense RNA genome20. These viruses are prominent culprits behind a range of

respiratory infections, from mild cold-like symptoms to more severe respiratory distress,

especially in vulnerable populations such as young children and the elderly20. HMPV, a relatively

recently discovered pathogen, shares clinical similarities with RSV and Parainfluenza virus,

often causing bronchitis and pneumonia21. Parainfluenza viruses are a common cause of croup

and bronchiolitis in children, while RSV is known for its impact on infants and can lead to severe

bronchiolitis and pneumonia.

Respiratory illnesses caused by very small, RNA viruses within the Picornaviridae family,

particularly Rhinovirus and Enterovirus, are a common occurrence and a major contributor to
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upper respiratory tract infections 22,23. Rhinoviruses are colloquially known as ‘common cold’,

leading to symptoms like runny nose, sore throat, and cough23. They are highly contagious and

thrive in temperate climates, especially during the cooler months. In contrast, enteroviruses can

cause a broader range of respiratory and systemic symptoms, from mild respiratory issues to

more severe conditions, such as pneumonia, myocarditis, or meningitis22. They are typically

spread by fecal-hand-oral contamination and are endemic in warmer climates.

Respiratory illnesses caused by viruses within the Orthomyxoviridae family, specifically

Influenza A and Influenza B, are regularly a public health concern 24. They are a negative-sense,

single-stranded RNA virus that regularly circulates in our population25. Influenza A and Influenza

B are responsible for the annual flu outbreaks, which can vary in severity and are commonly

vaccinated against26. These infections can vary in severity but typically lead to a wide range of

respiratory symptoms, fever, cough, sore throat, and muscle aches24. Influenza A has the

potential to cause more severe and widespread epidemics and pandemics due to its genomic

plasticity, while influenza B is generally responsible for milder outbreaks.

This curated list creates a starting point to explore potential co-infection in our

metatranscriptomic data and offers a focused hypothesis to answer from the mountain of

information that is retained in these samples.

Metagenomic Libraries

Metatranscriptomics is a powerful approach used in the field of genomics and microbiology to

study the gene expression profiles of entire microbial communities within a specific environment,

such as the nasal cavity. When applied to RNA viral genomics, metatranscriptomics provides
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valuable insights into the diversity, activity, and functional roles of RNA viruses present in the

nasal microbiome. Samples were collected at the onset of COVID-19 infection for diagnostic

purposes, as patients with COVID-19-like symptoms visited a clinic in the metropolitan Atlanta

area. When a COVID-19 infection was confirmed, RNA was extracted from nasal cavity samples

and used to create a metatranscriptomic library. The primary goal of the study was to sequence

SARS-CoV-2 genomes for public health surveillance. Initially we used a metagenomic approach

because there were not robust SARS-CoV-2 specific sequencing approaches - and even after

these became available, we continued to perform some metagenomic sequencing to study

coinfectionThis RNA sample represents the patient's transcriptome, the microbiome's

transcriptome, and RNA genomes of potential nasal RNA viruses.

Host cells in the nasal cavity include epithelial cells, immune cells (neutrophils, macrophages,

dendritic cells, and lymphocytes), and mucosal gland cells. These cells play critical roles in

immune defense and maintaining the nasal barrier. I expect the RNA from this group to

represent the steady-state measure of all the genes being expressed in these populations of

these host cells as they go about their function and life cycle. In addition to host cells, the nasal

cavity hosts a diverse microbiome of bacteria and fungi, including Staphylococcus,

Streptococcus, Corynebacterium, Candida, Malassezia, and Aspergillus. RNA sequences from

this microbiome provide insights into gene expression and species identification. The

metatranscriptomic data also includes viral genomes, such as COVID-19. These viral transcripts

represent the virus's genome as it replicates and is distinct from host and microbiome RNA. This

comprehensive analysis helps us understand the interactions of these components during

COVID-19 infection.



METHODS

Building the Pipeline

The goal here is to build a pipeline that is not just useful for this study, but would have broad

applicability across other projects in clinical metagenomics. In order to achieve this, I spent time

making this script as portable and generalizable as possible. The goal of this pipeline is to

classify reads by their taxonomy, separate those reads by group, create QC measure, and

create output that can be read into R in order to make figures.

There are 4 scripts within this pipeline that are all orchestrated by a shell script that requires the

path to a manifest file that stores the following information in a space-delimited fashion:

1. R1 file path: Path to the first read file (fastq format).

2. R2 file path: Path to the second read file (fastq format).

3. Prefix: A prefix to be used in the output file names.

4. Batch: Information about the dataset batch or any other relevant details.

The runner script will call and orchestrate the inputs and outputs of 4 scripts that pre-process

the data, classify the reads, separate the reads by their classification, calculate QC, and modify

the reports so that downstream figures and analysis can be done. The script logs the progress

of each dataset processing by writing information to a file called progress. This includes the

commands executed and the number of files generated for each dataset and provides a record

of the script's execution. This script automates the processing and analysis of paired-end

sequencing data. It iterates through a list of data manifests, runs several processing and

analysis scripts on each dataset, and logs the results. This is particularly useful for batch

processing multiple sequencing datasets with consistent file structures.



The first script that the runner script calls does most of the heavy lifting of this pipeline. This

script is designed to process paired-end sequencing data, deduplicate and trim reads, classify

them using Kraken2, and extract specific taxonomic groups of interest27–29. Kraken2 is a

taxonomic sequence classier that examines k-mers within a fastq against a database in order to

add taxonomic labels to those sequences. The first section uses Kraken2 to classify the reads

and Bracken to summarize the unfiltered dataset, producing Kraken and Bracken reports for

further analysis. Bracken, Bayesian Reestimation of Abundance with KrakEN, is a software

package by the same group that adjusts abundance of taxonomic groups that were outputed by

Kraken230. The next section of the script extracts reads corresponding to specific taxonomic

groups of interest (e.g., human, bacteria, fungus, virus, COVID) and writes them to separate

fastq files. Reads that do not belong to the specified group are also extracted. The split files are

then re-run through Kraken2 and Bracken to generate report and output files for each split file.

This output would be important to use if i was interested in the taxonomic grouping of all reads

classified as viruses for each sample.

The second script that the runner script calls is a script that counts the reads in the fastq file as

it progresses through the pre-processing and quality control steps. The third and fourth script

reformat the Kraken and Bracken reports for figures.

All downstream data manipulation was done through R and custom awk/shell scripts. One of

these manipulations was to format a csv file with demographic and clinical data to join this to the

output reports from Kraken and Bracken.

https://paperpile.com/c/OHc90r/qipn+Gp6m+3fg7
https://paperpile.com/c/OHc90r/rcXo


Running the Pipeline

For the 846 metatranscriptomic samples, the reads were first passed through a pre-processing

pipeline where the reads were deduplicated with Clumpify.sh in the BBMap tools 31.

Deduplicated reads were trimmed with Trimmomatic Version 0.40 and filtered for quality, with

flags leading:3, trailing:3, slidingwindow:4:15, minlen:3632. Each of these pre-processing steps

are designed to drop duplicated or low-quality reads, making the total read count in each

sample drop. In order to assess how many reads were being lost at each step compared to the

original, we counted the reads and plotted the output numbers of each step in a boxplot.

Pre-processed reads were run through kraken2 v2.1.3 against the k2_pluspf_20210127

database to assign each read to a taxonomic group, then adjusted for significance with Bracken.

The k2_pluspf_20210127 database is a pre-made kraken2 database that stores information to

identify taxonomic groups that could be represented in the sample. This particular database can

classify Refeq archaea, bacteria, viral, plasmid, human1, UniVec_Core, Refeq protozoa and

fungi33. Within the Kraken Tools packages, the extract_kraken_reads.py script was used to

separate reads by taxonomic ID for human taxID_hg="9606", bacteria taxID_bac="2", fungus

taxID_fungus="4751", viruses taxID_virus="10239", and COVID-19 taxID_COVID="2697049".

Our main questions were to identify potential coinfections with the metatranscriptomic data and

understand if these cases lead to more severe clinical outcomes. Custom shell and R scripts

were used to determine if the following viruses, bacteria, and fungi were found in each sample:

Pathogen Type Tax ID

Human mastadenovirus C virus 129951

Coronavirus HKU1 virus 443239

Coronavirus NL63 virus 277944

Coronavirus 299E virus 11137

https://sourceforge.net/projects/bbmap/
https://paperpile.com/c/OHc90r/3YDr
https://github.com/usadellab/Trimmomatic
https://paperpile.com/c/OHc90r/PQUS
https://paperpile.com/c/OHc90r/QWWo


Coronavirus OC43 virus 31631

SARS-CoV-2 virus 2697049

Paramyxoviridae virus 11158

Human metapneumovirus virus 162145

Parainfluenza virus virus 2905673

Respiratory syncytial virus virus 12814

Picornaviridae virus 12058

Rhinovirus virus 31708

Enterovirus virus 12059

Orthomyxoviridae virus 11308

Influenza A virus 382835

Influenza B virus 11520

Mycoplasma pneumoniae bacteria 2104

Pseudomonas aeruginosa bacteria 287

Haemophilus influenzae bacteria 727

Klebsiella pneumoniae bacteria 573

Enterobacter bacteria 547

Acinetobacter baumannii bacteria 470

Chlamydia bacteria 810

Enterococcus faecium bacteria 1352

Staphylococcus aureus bacteria 1280

Serratia marscecens bacteria 615

Aspergillus fungus 5052

Candidia fungus 160764

Processing samples in AWS

Samples were processed with an EC2 instance on AWS. To start and use a Linux EC2 (Elastic

Compute Cloud) instance on AWS (Amazon Web Services) cloud computing, begin by signing

into your AWS account and accessing the AWS Management Console. Launch an EC2

instance, selecting a Linux-based Amazon Machine Image (AMI) that suits your needs.

Configure the instance type, adjust network settings, and allocate storage as required. Don't

forget to configure security groups to allow SSH access. You can use default settings in many



cases but customize them to fit your specific use case. Optionally, add tags for organization and

identification. Review your settings, create a key pair for SSH access, and proceed to launch

the instance. After the instance starts, connect to it using SSH, and you'll have complete control

over your Linux EC2 instance. Install software, configure settings, and run applications as

needed. Secure your instance further, set up user accounts, and manage OS updates. AWS

offers comprehensive documentation and resources to help you manage and maintain your EC2

instance, allowing you to harness the scalability and power of cloud computing for your

Linux-based projects and applications.

RESULTS

Sample demographics

We have processed 846 samples from 2021 processed through this pipeline. The output files

were joined with the metadata that was collected by our lab and our collaborators. Although

there is a portion of the samples that do not have corresponding metadata, there are enough

samples that we can infer general trends in the data. Samples that have available metadata

were collected from June to September, primarily in September (Figure 1). These patients were

also predominantly women (Figure 1).

Another piece of metadata to consider is the clinical Ct values for each patient’s sample. Clinical

Ct (cycle threshold) values represent a measure of the number of PCR (Polymerase Chain

Reaction) cycles required for the amplification of a target nucleic acid sequence in a patient's

sample to reach a detectable level. Lower Ct values indicate a higher quantity of the target

sequence in the sample, meaning the virus is present at a higher level in the sample. Higher Ct

values indicate the opposite, lower concentration of target sequence and therefore lower



amount of viral load. In the context of testing for COVID-19, a lower Ct value can represent a

higher viral load, more active or severe infection, in this case at the onset of symptoms. When

we observe clinical ct values by age, there is a general trend toward lower Ct values in the

young and old populations of people (Figure 2). This is what we might expect considering that

this is the population of people that typically develop severe infections. It is also interesting that

we observe this trend at the onset of symptoms. We also observe that early infections have a

wider and lower range of clinical Ct values than later infections, suggesting the possibility of

acquired immunity or better interventions later in the pandemic (Figure 3).

Assessing the quality of the reads

As part of quality control measures, reads were de-duplicated, trimmed, and then filtered for

read quality and length post-trimming. In order to understand if the reads within the sample

withstood these quality control steps, reads in each sample were counted. As shown in figure 4,

the majority of the reads were kept in the deduplicated and trimmed-pair intermediate files

(Figure 4). This also suggests that the samples were good quality and the libraries were not

over-amplified in their preparation steps.

Another important component of sample quality is to determine how many of the reads are able

to be identified in the Kraken database and if we are observing the taxa we might expect given

that these samples were collected from the nasal canal of patients. Kraken is a software

designed to assign every read within a sample to a taxonomic level and identification, giving a

profile of what cells contributed DNA or RNA to that library27. The software generates a report

that summarizes the taxons present, the number of reads assigned to this level, the sum of the

reads at this level and below it, and the proportion of the reads that are unable to be assigned to

any taxon. To understand what proportion of the reads were able to be identified as something

https://paperpile.com/c/OHc90r/qipn


within our Kraken database, I plotted that value for each value on a histogram and observed

that the majority of our samples had high identification rates (Figure 5). To confirm that our

samples contained COVID-19 reads and to understand what proportion of those reads were

contained in each sample, I plotted the percentage of COVID-19 reads on a histogram (Figure

6).We can observe that most samples have less than 10% of their reads assigned to COVID,

but some of the samples had an incredibly high proportion of those reads assigned to

COVID-19.

Validating Kraken2 assignments

To validate the Kraken assignments, I plotted the percentage of COVID-19 reads assigned by

Kraken against the Clinical Ct value of those same samples (Figure 8). In line with our

expectations, at low Ct values there is a very high percentage of COVID-19 reads assigned by

Kraken, and as the Ct value increases the percentage of reads assigned to COVID-19

decreases (Figure 8). This negative correlation is exactly what we might expect to see in our

data and is a solid and independent confirmation that what we are observing in the Kraken data

is accurate. To understand what percentage of reads were being assigned to the major groups

we expect in our samples, Figure 7 plots the human, bacterial, or viral reads for every sample in

either a stacked bar plot to highlight the total amount these 3 taxa are responsible for (Figure

7). There is also the same plot split into 3 bar plots for each taxa, where we can observe that for

the majority of the samples human reads dominate the sample, viral reads are present in high

amounts but are consistently less than human, and bacterial reads typically account for a small

portion of the reads (Figure 7).



Searching for Viral Co-infection

Most, but not all, of the samples, had at least 1 read assigned to COVID-19, with an average of

34,354 reads assigned to this taxa (Table 1). A small portion of the samples also contained at

least one read assigned to a candidate virus, 39 samples contained Human mastadenovirus C

reads, 27 samples contained Paramyxoviridae, 5 samples contained Picornaviridea, 3 samples

contained Enterovirus, 2 samples contained Human coronavirus NL63, and 1 sample contained

Human coronavirus 229E. It should be noted that although these samples were positively

identified with Kraken, some had a very low read count (Table 1). When the read counts of

these viruses were correlated with the read counts of COVID-19 in the same sample, we found

that every one of the samples that came up as positive for another virus was negative (read

count of 0) for COVID-19 (Figure 9). Therefore, this suggests that the cause of their illness is

this or another virus and not COVID-19.

Expanding the search to Bacterial and Fungal Co-infections

Candidates for bacterial co-pathogens were chosen directly from a meta-analysis published

early in the pandemic in 2020 5. Fungal species that were candidates for were also identified

directly from what was observed and published in the literature 8. We detected 3 bacterial

species that were present in patients with varying COVID-19 reads, however, there was no

correlation between the number of COVID-19 reads and the number of reads from that

pathogen (Figure 10). There are also 6 bacterial pathogens that are identified in our samples,

but only in samples with 0 COVID-19 reads (Figure 11). There was one fungal pathogen

identified in the samples, but again no correlation between the number of reads assigned as

Aspergillus and viral load (Figure 12).

https://paperpile.com/c/OHc90r/y6E4
https://paperpile.com/c/OHc90r/WoT4


CONCLUSIONS

No detected viral co-infections

To find no viral co-infections of these candidates in over 846 patients at the onset of COVID-19

symptoms is a surprising negative result. While the instances of co-infection in COVID-19

patients was lower than what can be observed in previous influenza outbreak, it was still

prevalent enough to be observed in the hospitalized population and even make the New York

Times headlines 5,7,34.

The high rates of reads that were able to be positively identified within Kraken2 database

suggest that this finding could be a true negative result (Figure 5). There are times when a

negative result leaves you with the disjunction of there being accurately negative/not present or

I am not able to detect anything to confirm its presence. Given that we were able to classify

almost all of the reads within these samples, the latter seems less likely to be true.

Bacterial and Fungal pathogens

While there were some fungal and bacterial pathogens identified, they were either in samples

with 0 COVID-19 reads or they showed no correlation with viral load. While it is interesting that

we are able to observe some of these species in the nasal microbiome at the onset of

COVID-19 infection, there is no evidence to support that the presence leads to a higher viral

burden in the patient. If we were to explore this hypothesis more these identifications would

need to be confirmed with an identification tool independent from Kraken2.

Challenges with meta-transcriptomic data

https://paperpile.com/c/OHc90r/y6E4+Ps8S+zQPA


The major challenge for this project was the sheer volume of comparisons that can be made

from the data. Another challenge is determining which ones were false positives, especially with

viral pathogens because the detectable genomic material is so low that we are getting very few

reads above the noise.

Future directions

Metatrancripttomic data is incredibly rich, giving us insights into host immune response, and

bacterial and fungal microbiome, on top of our initial question of viral co-infection. It would be

interesting to take an agnostic approach to correlate the presence or absence of any constituent

of the microbiome with the increase of COVID-19. While this question is simple to pose, it has

proved itself to be a very challenging question to code and assess at a large scale. There are so

many identifications within one sample at different taxonomic levels obscuring any real signal

with a mountain of noise.

Another possible experiment would be to rank samples by the number of COVID reads to a

human gene set enrichment to understand what pathways are activated during an immune

response that is able to keep COVID growth at bay (or just an early response) compared to an

immune response when viral replication has progressed.



FIGURES

Figure 1: Sample demographics.

Figure 2: COVID Ct by age



Figure 3: COVID Ct over time



Figure 4: As part of quality control steps, the number of reads were
counted at each preprocessing step to determine the number of reads that
are being retained.



Figure 5: Reads identified by Kraken2

Figure 6: COVID-19 reads identified by Kraken2



Figure 7: Bacterial, Human, and Viral reads identified by Kraken2

Figure 8:Clinical Ct obtained by the lab against reads identified as
COVID-19 by Kraken2 in the meta-transcriptomic libraries.



Table 1: Candidate viruses detected in meta-transcriptomic samples

Figure 9: Reads assigned to candidate viruses by Kraken2 against reads
assigned to COVID-19 by Kraken2.





Figure 10: bacteria in COVID-19 positive patients

Figure 11: Bacteria in patients with no COVID-19 reads



Figure 12: Fungal
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Chapter 4: Conclusion

NTHi study
In this study we found a number of genes associated with septic infection of Haemophilus

influenzae (Hi). I am particularly interested in this set of genes because some were identified as

virulence factors and less was known about others. I can imagine a set of benchwork

experiments aimed at understanding the mechanism of virulence is an important advancement

in the field.

As more samples of septic arthritis NTHi infections come in, we have a database of factors and

genes to compare them against. The 5 gene families that are traveling on the cassette knocking

out pxpB are of particular interest to me, even though there is no known virulence factors in this

set of gene families. I think benchwork experiments to understand how these genes affect

virulence, coupled with a PCR screen of affected patients, could be a really powerful next step

for understanding severe NTHi infections.

COVID-19 study
In the COVID-19 study there is a lot of work left to be done on these samples, mainly because

there is so much information within a single sample. There is a lot of validation of Kraken2 calls

that could be made, which can be done by funneling these outputs through blast or aligning to

reference genomes. This could help us validate samples that seem to be negative by Kraken’s

more conservative calls and confirm the presence of other co-infecting pathogens in the nasal

canal.

I would love to look at the host and microbiome’s transcriptomic, to see if any genes are

associated with higher viral load. This would give us an idea of what is going on in the host’s



body during the early stages of severe and less severe cases. It would be so interesting to see if

any bacterial virulence factors are over-represented, especially antibiotic resistance genes.



Appendix

Previous publications

Undergraduate researcher in the Ané lab, University of Wisconsin-Madison (2012-2016)

During my time as an undergraduate, I spent over 3 years working on collaborative projects in

the labs of Prof. Jean-Michel Ané and Prof. Charles Kaspar. I worked on projects designed to

understand how plants perceive and communicate with microbes in the environment. The main

model system I used was Medicago truncatula and Rhizobia. I also studied over 50 different

species of plants (algae, liverworts, gymnosperms, angiosperms) in order to analyze the most

abundant root exudate and how it differed between plants able to establish symbiotic

relationships with bacteria and fungi. My last year of this collaboration focused on the

colonization of Medicago by Salmonella, and the study of genomic instability of bacteria in the

presence of environmental stresses

a. Wahlig TA, Bixler BJ, Valdés-López O, Mysore KS, Wen J, Ané JM, Kaspar CW.
Salmonella enterica serovar Typhimurium ATCC 14028S is tolerant to plant defenses
triggered by the flagellin receptor FLS2. FEMS Microbiol Lett. 2019 Feb 1;366(4)
PubMed Central PMCID: PMC6420342.

Research Technician at Van Andel Research Institute, Grand Rapids, MI (2016,

2017)

As an intern and research associate at Van Andel Research Institute, I developed a project to

understand how differentially methylated regions that are necessary for genomic imprinting

persist despite rapid and global DNA demethylation in the zygote and pre-implantation embryo.

With the help of my mentor, this project was awarded an institutional innovation award which

funded my return to Van Andel to continue developing the methods and aims of the project. I

characterized candidate proteins biochemically and designed a method to better understand

their binding potential in the genomic material in the zygote.
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KM, Pfeifer GP, Szabó PE. Z-DNA is remodelled by ZBTB43 in prospermatogonia to
safeguard the germline genome and epigenome. Nat Cell Biol. 2022
Jul;24(7):1141-1153. doi: 10.1038/s41556-022-00941-9. Epub 2022 Jul 4. PMID:
35787683; PMCID: PMC9276527.

Initial research at Emory University (2017-2020)

My research was focused on understanding the principles of chromatin organization in the

germline and the pre-implantation embryo. My contribution to both papers cited was to

characterize how certain transcription factors might contribute to chromatin organization. In

Jung et al. 2019 I found that in mature sperm CTCF, Znf143, and Smc1 were co-localized at

enhancer-enhancer, enhancer-promoter, and promoter-promoter interactions. In Rowley et al.

2019, I used a method developed by our lab to identify loops in a Hi-C matrix, which in

mammals are intense point-to-point interactions that are often mediated by CTCF and cohesin. I

characterized how the strength of candidate transcription factors that co-localize with CTCF

corresponded with the strength of looping in the Hi-C matrix. I also contributed to the analysis of

recently published Hi-C datasets in pachytenes in order to understand how

compartmentalization and histone modifications can affect interactions between homologs

during meiosis.

a. Rowley MJ, Poulet A, Nichols MH, Bixler BJ, Sanborn AL, Brouhard EA, Hermetz K,
Linsenbaum H, Csankovszki G, Lieberman Aiden E, Corces VG. Analysis of Hi-C data
using SIP effectively identifies loops in organisms from C. elegans to mammals.
Genome Res. 2020 Mar;30(3):447-458. PubMed Central PMCID: PMC7111518.

b. Jung YH, Kremsky I, Gold HB, Rowley MJ, Punyawai K, Buonanotte A, Lyu X, Bixler BJ,
Chan AWS, Corces VG. Maintenance of CTCF- and Transcription Factor-Mediated
Interactions from the Gametes to the Early Mouse Embryo. Mol Cell. 2019 Jul
11;75(1):154-171.e5. PubMed Central PMCID: PMC6625867.

c. Jung YH, Wang HV, Ruiz D, Bixler BJ, Linsenbaum H, Xiang JF, Forestier S, Shafik AM,
Jin P, Corces VG. Recruitment of CTCF to an Fto enhancer is responsible for
transgenerational inheritance of BPA-induced obesity. Proc Natl Acad Sci U S A. 2022
Dec 13;119(50):e2214988119. doi: 10.1073/pnas.2214988119. Epub 2022 Dec 5. PMID:
36469784.
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Guide to mindful server usage

This guide was included as part of our lab manual as commands that can be used to make sure

the resources requested by your job does not surpass what could be considered reasonable for

a shared resource.

Example of how to run a shared server

1. Activate conda virtual env

2. Install needed softwares and check installs (usually command --help is sufficient)

3. Run a pilot- only one sample to get an idea of how long/how many cpus is needed, you

can monitor by htop -u <userID>

4. Create a loop or shell script to go through commands one-by-one, instead of running

them all at once in the background. If you need to parallelize, consider nextflow or using

the “nice” command to set the priority of your jobs lower when the server is being used

by others.

5. Run with specified cpus whenever possible (even if it is and optional input)

6. Check htop and watch to make sure the cores are not overwhelmed, this means that

only a portion of the cores are being used, leaving some of the computing space for the

processes that keep the server running.

7. If overworked, pid kill immediately

8. Check outputs and their size

9. Immediately delete intermediates after you have confirmed outputs. This is the most

important step because in a few weeks from now you may have a hard time

remembering which are extra files and which are the finalized outputs



a. Note: if you are running a pipeline for the first time and are not sure what

can/can’t be deleted, create a gzip step for all files and use zcat to comb through

them

10. Immediately move raw data to long term storage and check your disk space footprint.

This is a shared resource that will only be useful if we keep enough room for everyone to

run and create outputs

AWS guide

Setting up your EC2 with extra EBS storage

This guide was created with inspiration from generic AWS guide, an email from AWS help at

Emory, and brute force. Pink highlighted text is the actual command run on the commandline

either on your home computer or within the EC2 instance.

Mounting EBS for the first time

1. Download *.pem file locally

2. Change the permissions of *.pem file with command chmod 400 *pem

3. Ssh into EC2.

a. At this point your EBS is visible but not mounted

4. Use the df command to get your starting baseline

a. the EBS will not be visible

5. Use lsblk command

a. Note the first column, Name, is the relevant identifier for your EBS. For t3 series

this name will be something along the scheme of “nvme1n1” and for this example

is will use “EBS_lsblk_name” as it’s variable.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-using-volumes.html


b. Note the last column, Mountpoint, is blank. Again this is a starting baseline that

will change if mounting is successful

6. For ubuntu use the sudo apt-get install xfsprogs

a. It is likely already installed but just in case

7. Get things ready with sudo mkfs -t xfs /dev/EBS_lsblk_name

8. Create the destination of the mount-point by sudo mkdir /data

9. Mount the EBS with sudo mount /dev/EBS_lsblk_name /data

10. You should be good to go

a. Use lsblk command to confirm that the mountpoint entry in the last column of

EBS_lsblk_name row is now populated with /data

b. Use df to confirm that you can see the /data mount point

c. Use ls -lt /data to confirm the state of that mountpoint

Setting up EBS to be automatically mounted in subsequent logins

1. Copy your fstab start-up file for safekeeping with sudo cp /etc/fstab /etc/fstab.orig

2. Create identifier for EBS_lsblk_name with sudo blkid

a. Copy the UUID=”...” identifier for /dev/EBS_lsblk_name

3. Add the UUID info to lsblk readout by using the command sudo lsblk -o +UUID

a. There should be an additional column titled “UUID” added

4. Carefully(!) update fstab with this command sudo nano /etc/fstab

a. This will open the fstab file within the nano text editor

5. Within the fstab document opened with nano, add a newline of information to be read

upon start up of this server. The syntax of this line will be UUID=... /data xfs

defaults,nofail

a. This is newline, space delimited, no quotations around UUID number

6. Use sudo umount /data to unmount your EBS



7. Use sudo mount -a to confirm that your addition to th

a. If not, you can go within the fstab and edit the line you created

b. If nothing works, please remove the modified fstab and use the mv /etc/fstab.orig

/etc/fstab to replace the modified file with the original

Setting up /data

1. Change ownership of that directory and its contents with common sudo chown -R ubuntu

/data

a. Unless the username was change by the owner of the AMI, it can be foun within

the ssh common, i.e. ssh -i "bbixler_1.3.pem" ubuntu@10.66.123.132

b. Check the ownership before and after with ls -lt /data

Useful commands to remember

1. To copy files to bucket

a. aws s3 cp <your_file> s3://<your_bucket>

2. To create bucket from the commandline of EC2

a. aws s3 mb s3://<bucket_name>

3. To exchange files between your home computer and an EC2 scp will not work, you need

to use an sftp command

a. sftp username@ip.address:/path/to/files /path/to/destination




