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Abstract 

 

Red Blood Cell Transfusion as a Predictor of Outcome after Cardiac Surgery in Neonates and 
Young Infants 

By: Christopher Locandro 

 

Introduction: Little is known about the adverse outcomes associated with red blood cell (RBC) 
transfusion in neonates and young infants undergoing cardiac surgery.  The goal of this paper 
was to examine associations between RBC transfusion, both intra-operatively and post-
operatively, and adverse outcomes in this patient population.  We sought to adjust for surgical 
risk scores and implement a standardized measure of RBC volume per kilogram for each patient.  
We then extend these results to develop a clinical tool that predicts patient complication risk 
post-surgery. 
 
Methods: We retrospectively analyzed a cohort of 605 patients (666 surgeries in total) aged 6 
months or less who underwent cardiac bypass surgery.  Clinical parameters included age, weight, 
risk adjustment for congenital heart surgery (RACHS1 and STAT) scores, intensive care unit 
length of stay (ICU LOS), RBC volume transfused intra-operatively, RBC volume transfused 24 
hours post-operatively, cross-clamp time, and cardiopulmonary bypass (CPB) time.  Risk-
adjusted logistic regression and lognormal regression were used to assess the influence of RBC 
transfusion on complication risk and LOS, respectively.  Finally, we trained and tested 3 models 
(random forest, decision tree, and logistic regression) for predicting patient complication risk 
post-surgery.  We generated the receiver operating characteristics (ROC) curve for each model 
and calculated area under the curve (AUC) as a performance metric.  

Results: In our cohort, we observed 137 (20.6%) complications.  Patients that were transfused 
post-operatively had a significantly higher risk of post-surgery complications (95% C.I. for OR, 
[3.06,7]).  Both intra-operative and post-operative standardized RBC transfusion volumes were 
associated with higher complication risk, after controlling for patient age and surgery risk scores 
(p<0.001 for both).  We found similar results when considering our secondary outcome, ICU 
LOS.  Both intra-operative (p<0.001) and post-operative (p=0.004) standardized RBC 
transfusion volumes were associated with increased ICU LOS.  The random forest model had the 
highest predictive accuracy with an AUC of 0.718. 

Discussion: Our findings suggest that this younger population of pediatric cardiac surgical 
patients is particularly volume-sensitive to RBC transfusion, even after controlling for variables 
such as surgery risk.  Our predictive model may assist in identifying patients that are high risk 
for complication immediately following surgery.  
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1: INTRODUCTION 

1.1 Overview 

Transfusion of red blood cell (RBC) products has been regarded as one of the most 

significant contributions to modern medicine and surgical practice.  The primary purpose of RBC 

transfusion is to correct for insufficient tissue oxygenation, particularly when the patient’s 

physiological mechanisms of compensation are failing to do so (Liumbruno, Bennardello, 

Lattanzio, Piccoli, & Rossetti, 2009).  Factors that influence tissue oxygenation include 

hemoglobin (Hb) concentration, tissue oxygen (O2) demand, and Hb saturation (Blackwood et 

al., 2010).  Therefore, part of the decision to transfuse is based on whether Hb levels fall below a 

predefined threshold.  Other factors determining the need for RBC transfusion include blood loss 

(as a percentage of total blood volume) and clinical features of the patient (Hill et al., 2000).  

However, the demand for RBC transfusion, as well as its associated benefits and risks, varies 

across patient populations and surgical procedures (Spiess, 2013).   

1.2 Problem Statement 

We believe the following issues regarding RBC transfusion have not been appropriately 

studied as of yet. There are no studies that focus exclusively on RBC transfusion associated with 

cardiac surgery in neonates and young infants less than 6 months of age. While these patients are 

more volume-sensitive than older children and adults, none of the previous studies specifically 

took into account the volume of RBCs transfused intra-operatively versus post-operatively when 

examining clinical endpoints.  Furthermore, most previous studies have been small (fewer than 

300 patients) and of short duration.   
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1.3 Purpose Statement 

We propose to correct what we believe are drawbacks in prior studies in order to 

accurately correlate RBC transfusion volume with outcome measures in newborns and neonates 

less than 6 months of age undergoing cardiac surgery, and to develop a model to predict which of 

these patients are more likely to be at risk for any deleterious effects of transfusion.  The primary 

goal of this study is to examine the impact of intra-operative and post-operative RBC 

transfusion, with standardized quantification of transfusion volume in each patient, upon specific 

post-operative outcomes in a cohort of neonates and infants less than six months of age 

undergoing cardiac surgery at a large, urban medical center. 

1.4 Significance Statement 

This paper will examine the effect of both intraoperative and postoperative RBC 

transfusion on multiple outcome measures in a rarely studied pediatric cardiac surgery patient 

population.  This paper will provide evidence for the effects of RBC transfusion on outcome in 

neonates as compared to the older pediatric population.  Additionally, a predictive model will be 

incorporated into a web application that can readily be used as a clinical tool to anticipate patient 

complication risks following cardiac surgery. 
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2: BACKGROUND/ LITERATURE REVIEW 

2.1 RBC Transfusion Overview 

 Transfusion of blood products, primarily RBCs, is common in adult and pediatric 

patients undergoing surgery.  The benefits of RBC transfusion have been well established in the 

literature.  In patients with severe anemia, RBC transfusion may help prevent organ ischemia due 

to decreased oxygen delivery (Iyengar et al., 2013; Marik & Corwin, 2008).  In patients with less 

severe anemia, transfusion of RBCs may also help prevent hemodynamic instability due to intra-

operative or post-operative blood loss.  However, RBC transfusions are not without risk. 

Transfusion has been associated with several adverse outcomes in diverse patient populations, 

including increased rates of infection, ischemia, kidney failure, circulatory overload, and 

mortality (Marik & Corwin, 2008).  In adults, RBC transfusion has also been associated with 

increased 30-day mortality and increased length of stay (Corwin et al., 2004).  More recently, 

RBC transfusion has been linked with adverse outcomes particularly relevant to cardiac surgery, 

including an increased risk of new-onset cardiac arrhythmias and conduction abnormalities in 

patients with acute myocardial infarction (Athar et al., 2011).  Numerous studies involving adult 

cardiac surgery patients have also identified associations between RBC transfusion and increased 

morbidity and mortality (Marik & Corwin, 2008; Murphy et al., 2008; Ranucci et al., 2011; 

Szekely et al., 2009).  

2.2 RBC Transfusion in Pediatric Cardiac Surgery 

Because the majority of adult cardiac surgery patients included in these studies 

underwent coronary artery bypass grafting, it is difficult to extrapolate from their results to the 

effects of transfusion on pediatric cardiac surgery patients, most of whom have congenital heart 
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disease.  Furthermore, RBC transfusion reaction rates and types differ between these two 

populations due to physiological differences (e.g. metabolic rate, oxygen consumption, cardiac 

output) (Bharadwaj, Khandelwal, & Bhargava, 2014).  For instance, in a large cohort study of 

adult and pediatric RBC transfusion reactions, Oakley et al. (2015) observed a significantly 

higher incidence of allergic, hypotensive, and febrile nonhemolytic transfusion reactions in 

pediatric patients compared to adults.   

In addition, the available evidence is too sparse to either confirm or refute a relationship 

between RBC transfusion and postoperative morbidity and mortality in critically ill pediatric 

patients, particularly neonates and infants. For example, Willems et al. (2010) examined 125 

pediatric patients after cardiac surgery and found a mean ICU length of stay of 7 days and a 

3.2% 28-day mortality. However, this study excluded patients less than 28 days of age, a 

substantial segment of the pediatric cardiac surgery population.  Salvin et al. (2011) found that 

postoperative RBC transfusion was associated with prolonged hospitalization in children after 

cardiac surgery.  However, in this study greater than 47% of children were over one year of age. 

Other studies that focused on neonates primarily enrolled non-cardiac populations.  For example, 

for patients in non-cardiac pediatric ICUs, RBC transfusion was found to be independently 

associated with increased inotropic requirements, prolonged duration of mechanical ventilation 

and greater mortality (Keung et al., 2009).  Furthermore, the study determined that only 41% of 

released blood products were transfused but did not determine the volume transfused per patient.  

Schmotzer et al. (2010) examined RBC usage at Children's Healthcare of Atlanta at Scottish 

Rite, but their analysis lacked cardiac surgical patients and only examined six months of data.  

Agarwal et al. (2014) discovered associations between cardiopulmonary bypass time and 

complications in a cohort of pediatric cardiac surgeries, however, they did not consider RBC 
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transfusion volumes.  Similarly, Costello et al. (2010) identified the number of RBC transfusions 

as a risk factor for surgical site infection in pediatric cardiac surgery, but they ignored 

transfusion volume in their analysis.  There are few studies examining the effects of RBC 

transfusion on clinical outcomes after cardiac surgery. 

2.3 Statistical Considerations  

 In our analysis, we consider intensive care unit (ICU) length of stay as one of our primary 

endpoints.  ICU LOS is known to have a right-skewed, nonnegative distribution, which renders 

ordinary least squares (OLS) regression inappropriate.  Numerous alternative approaches have 

been proposed, including zero-truncated Poisson, zero-truncated negative binomial, Cox 

proportional hazards, and lognormal models (Austin, Rothwell, & Tu, 2002; Faddy, Graves, & 

Pettitt, 2009).  Each approach has its associated benefits and drawbacks.  For instance, if one 

considers LOS as a measure of time-to-event (i.e. time to discharge from hospital) data, then the 

Cox proportional hazards model becomes a natural choice that can also account for censoring.  

However, the proportional hazards assumption may or may not be justified (Verburg, Keizer, 

Jonge, & Peek, 2014).  The log-transformed linear model approach offers interpretability after 

appropriate retransformation of the regression coefficients.  However, Manning (1998) shows 

that if the error term for the log-transformed dependent variable is heteroscedastic, this can lead 

to biased coefficient estimates on the untransformed scale.  Ultimately, model fit dictates the 

optimal approach, however, model interpretability is also an attractive feature in the clinical 

setting.  Knowing the associated increase in LOS corresponding to unit increases in covariate 

values is often of interest to clinical investigators.  We factor these considerations into our model 

selection process.  
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2.4 Predictive Modeling   

 In the final part of our analysis, we develop a predictive model for complication risk as a 

function of patient and operative characteristics.  With complication as a dichotomous variable 

(yes/no), several modeling options are feasible.  The traditional approach, logistic regression, 

considers the log-odds (logit) of complication as outcome.  With logistic regression, we can 

explicitly model the probability of complication (risk) and then generate predictions for new 

covariate values.  However, supervised machine learning methods, such as classification and 

regression trees (CART), may offer improved predictive accuracy (Austin, Lee, Steyerberg, & 

Tu, 2012).  CART works by establishing a sequence of splitting rules on each of the predictors in 

the model, such that each series of splits corresponds to a constant outcome value (or class, in the 

case of categorical outcomes).  The CART algorithm then chooses the optimal set of splitting 

criteria by minimizing an impurity measure (e.g. misclassification error, Gini index, or cross-

entropy) (Loh, 2014).   

This approach offers many advantages over logistic regression, particularly in the context 

of clinical prediction models (Verplancke et al., 2009).  First, CART is a nonparametric approach 

that does not require any assumptions about the distributional form of the outcome.  Second, the 

interpretation of CART closely resembles the clinical decision making process.  Finally, CART 

is generally robust to outliers and missing data (Hastie, Tibshirani, & Friedman, 2009).  

However, decision trees are subject to instability and high variance.  Additionally, they may fail 

to capture additive structures within data (Loh 2014).   

Another feasible modeling option for binary classification is the random forest approach.  

Random forests extend CART by generating many optimized trees, each on a bootstrap-sampled 
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version of the training set.  For new observations, the predicted class is generated by taking the 

majority vote from this set of trees (Hastie et al., 2009).  By taking an averaged prediction over 

many decision trees, the random forest method reduces the inherent instability of the traditional 

CART approach.  In classification problems involving patient mortality, for instance, random 

forests have been shown to offer superior predictive accuracy when compared to other 

approaches such as CART and logistic regression (Austin, 2011; Peng, Chuang, Kang, & Tseng, 

2010). 

 

3. METHODOLOGY 

3.1 Study Design 

In our study, we retrospectively examined a cohort of 605 patients that underwent 

pediatric cardiac surgery with cardiopulmonary bypass (CPB) from January 2012 through July 

2013.  Blood transfusion and outcomes data were pulled from the electronic medical record 

EPIC database at Egleston Hospital with authors N. Guzzetta and S. Niazi reviewing each case 

for accuracy (Niazi, Leong, Meyer, & Guzzetta, 2017). In patients with congenital defects 

requiring multiple surgeries, each surgery was considered independently in the analysis (666 

operations in total).  We required patients to be fully recovered from a prior surgery for the 

subsequent surgery to qualify.   
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3.2 Data Collection 

Demographic variables, including patient weight (kg) and age (days), were collected 

from the electronic medical record. Operative variables included cross clamp time (min), 

cardiopulmonary bypass time (min), perfusion time (min), time on ventilation (hrs), RBC 

volume transfused intra-operatively (mL), RBC volume transfused post-operatively (mL), 

whether or not the patient received RBC transfusion prior to surgery, and whether or not the 

patient required Extracorporeal Membrane Oxygenation (ECMO). Prior to surgery, patients are 

classified into risk categories defined by two scoring systems: the Society of Thoracic Surgeons-

European Association for Cardio-Thoracic Surgery Score (STAT) and the Risk Adjustment for 

Congenital Heart Surgery Score (RACHS1) (Jenkins, 2014).  High-risk surgeries correspond to 

higher STAT and RACHS1 scores.  We use these two metrics to control for the inherent 

variability in surgery risks across the cohort.  In the original dataset, STAT scores ranged from 1-

5 with some surgeries classified further into subgroups (e.g. “1a”).  However, due to the sparsity 

of these sub-grouped classifications, we ultimately combined them into their numerical group 

(e.g. “1a” to“1”).  We also consider cardiopulmonary bypass time as an indicator of surgery risk.  

Outcomes considered were discharge mortality, ICU length of stay (hrs), total length of stay 

(days), renal failure, infection, and thrombosis. 

In order to relate RBC transfusion parameters to outcomes, we account for patient weight 

by calculating a standardized ratio of RBC volume (mL) transfused per kg for each patient and 

incorporate this quantity into our analysis. Additionally, we define complication as the 

occurrence of any of the following: mortality, infection, thrombosis, renal failure, or ECMO. 

This leads to more stable maximum likelihood estimates in our logistic regression model, 

compared to a model with a low mortality rate as the outcome. 



 9 

 

3.3 Statistical Analysis 

Depending on skewness, continuous variables were summarized using median (IQR) or 

mean (SD). Categorical variables were summarized using frequencies and percentages. For 

univariate analyses, independent t-tests were used for pairwise comparisons of normally 

distributed continuous variables.  Chi-square tests were used for pairwise comparison of groups 

of categorical variables.   

When considering complication as the outcome, logistic regression was employed with 

stepwise variable selection.  We report the odds ratios (OR) and associated 95% confidence 

intervals.  For LOS as the outcome, zero-truncated negative binomial, zero-truncated Poisson, 

lognormal, and Cox proportional hazards models were considered with stepwise variable 

selection. The Akaike Information Criterion (AIC) was then employed for model selection of 

fully-parametric methods (all except Cox proportional hazards).  However, AIC-based model 

comparison is only valid for models with the same outcome variable.  Therefore, we use 

statistical software to calculate the corrected lognormal model AIC for the untransformed version 

of LOS, based on the likelihood function (as in Burnham & Anderson, 2010).  For the semi-

parametric Cox proportional hazards model, model fit was assessed by Cox-Snell residuals.  For 

predictive modeling with complication as the outcome, CART, logistic regression, and random 

forests were considered.  Classification trees were developed using Gini impurity as the splitting 

criterion.   Each model was developed and tested using a 70/30 train-test split on the data.  We 

then compare the performance of each binary classifier by examining receiver operating 

characteristic (ROC) curves and computing area under the curve (AUC) as a performance metric.   
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4: RESULTS 

4.1 Univariate Analysis 

 

The median (IQR) patient age at time of surgery was 78 days (131).  The mean (SD) 

patient weight was 4.39 kg (1.45).  Table 1 shows selected patient characteristics by post-

operative transfusion status (yes/no).  Of the 666 operations, death as discharge status occurred 

34 (5.1%) times, infection occurred 64 (9.6%) times, thrombosis occurred 55 (8.3%) times, renal 

failure occurred 12 (1.8%) times, and 40 (6%) operations required extracorporeal membrane 

oxygenation (ECMO). The complication rate for the cohort was 20.6%.  Median (IQR) ICU 

length of stay was 101.5 hours (172.5) and median hospital LOS was 11 days (16).  Two patients 

died during surgery, therefore no ICU LOS was reported.  

Age and weight at time of surgery were found to be negatively associated with risk of 

complication (p<0.001 for both).  A 60-day reduction in age was associated with a 2.12 increase 

in the risk of complication (95% C.I. for OR [1.34,2.90]).  Both cross clamp time and 

cardiopulmonary bypass time were associated with higher risk of complication (p<0.001 for 

each).  Furthermore, patients that were transfused within 7 days prior to surgery had a 

significantly higher risk of complication (95% C.I. for OR [1.8,4.31], p<.001).  Patients 

transfused within 7 days post-operation had an even higher risk of complication (95% C.I. for 

OR [3.06,7], p<.001).  Post-operative standardized RBC volume (p<0.001) and intra-operative 

standardized RBC volume (p<0.001) were associated with higher risk of complication in the 

cohort.  We also assessed complication rate by post-operative transfusion status (yes/no) (Table 

2).  Within each group, we observed the same effects of patient weight, age, and 
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cardiopulmonary bypass time as we did without subgrouping by transfusion status, as in Table 1.  

However, in patients that did not receive post-operative RBC transfusion, cross clamp time was 

not significantly associated with risk of complication (p=0.08).  On the other hand, cross clamp 

time did have a significant effect on complication risk in patients that were transfused post-

operatively (p<0.001).   

We considered ICU LOS as a secondary outcome in our analysis. Patient age was 

negatively associated with ICU LOS (p<.001). A 60-day reduction in age corresponded to an 

increase in ICU length of stay of approximately 49.6 hours. Similarly, patient weight was 

negatively associated with ICU length of stay (p<.001). A 6-kg reduction in weight, for example, 

corresponded to an 8-hour increase in length of stay. Both intra-operative standardized RBC 

volume (p<0.001) and post-operative standardized RBC volume (p=0.002) were associated with 

increased LOS. A 20-unit (mL/kg) increase in standardized RBC volume was associated with a 

20.1-hour increase in LOS for intra-operative transfusion and a 20.0-hour increase in LOS for 

post-operative transfusion. 

4.2 Multivariate Analysis 

 

In considering associations between patient characteristics and outcome, we then 

accounted for the surgery risk as measured by both the STAT/RACHS1 scores and CPB time.  

As expected, Figure 1 illustrates that the distribution of STAT/RACHS1 scores for our cohort is 

higher in operations that resulted in a complication compared to operations that did not.  

Therefore, in modeling complication as the outcome, we forced these variables into our logistic 

regression model.  We found that models including STAT vs. RACHS1 performed similarly, 

since these scores are based on similar clinical criteria.  Thus, we only kept RACHS1 score in 
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our final model to reduce the number of parameters.  Additionally, since the standardized ratios 

of RBC transfusion volume already account for patient weight, we excluded weight from the 

model.  Stepwise variable selection was then used to choose the most important of the remaining 

predictors.  The final logistic regression model included RACHS1 score, CPB time, standardized 

post-operative RBC transfusion volume, standardized intra-operative RBC transfusion volume, 

and patient age.  After accounting for RACHS1 score, CPB time, and standardized transfusion 

volumes, age was found to remain significantly associated with complication risk (p=0.010).  

Similarly, after controlling for the other predictors in the model, the effect of standardized 

postoperative transfusion remained significant (p=0.006). 

We then performed multivariate analysis with ICU LOS as the outcome.  The following 

candidate models were considered: zero-truncated negative binomial, zero-truncated Poisson, 

lognormal, and Cox proportional hazards.  Patients that died while in the ICU were considered 

censored in the Cox proportional hazards model.  Surgery risk variables (RACHS1 score and 

CPB Time) were forced into each of these candidate models and then stepwise variable selection 

was used to choose the remaining predictors in the model.  Table 4 shows the AIC for each of the 

4 parametric models, with the lognormal model having the lowest.  The Cox proportional 

hazards model had significant upper tail deviation in the Cox-Snell residual plot (Figure 2), 

indicating poor fit.  For these reasons, we ultimately chose the lognormal model in our analysis.  

Regression estimates for this final multivariate model are reported in Table 5.  After controlling 

for CPB time, RACHS1 score, and standardized RBC transfusion, patient age was found to 

remain negatively associated with ICU LOS (p<0.001).  Similarly, standardized post-operative 

transfusion remained a significant predictor of ICU LOS even after accounting for risk measures 
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and patient age (p=0.004).  Intra-operative transfusion was also positively associated with ICU 

LOS, after accounting for risk measures and patient age (p<0.001).  

 

4.2 Predictive Modeling 

	

 Predictive models with complication as outcome were then constructed using the logistic 

regression model and two supervised machine learning techniques (CART and random forest).  

A random sample of 70% of the original dataset was used to train each model.  In all three cases, 

the predictions measured the probability of having a complication, given specific patient and 

operative characteristics (patient weight, patient age, RACHS1 score, STAT score, standardized 

post-operative RBC volume, standardized intra-operative RBC volume, cross clamp time, and 

CPB time).  However, since the observed data takes on a binary form (complication vs. no 

complication), it was necessary to define some threshold, k, to dichotomize the predicted 

probability into similar classes.  Plotting true positive rate against the false positive rate for 

different values of k then produced the ROC curve for each classifier.  The area under the ROC 

curve (AUC) was used to compare the predictive performance of each model.  The random forest 

model had the highest AUC at 0.718 (Figure 3).  AUC’s for the decision tree and logistic 

regression model were 0.683 and 0.659, respectively.   

 The random forest model was then developed into an online web application (Figure 4).  

The application allows the user to input the following variables: patient weight, patient age, 

RACHS1 score, STAT score, RBC volume transfused intra-operatively, RBC volume transfused 

post-operatively, cross clamp time, and CPB time.  The application then converts patient weight 

and transfusion volumes into standardized RBC transfusions volumes.  It then inputs the 
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predictor values into the random forest model.  Finally, the application outputs the probability of 

complication for a given patient, as well as the probability of mortality, infection, renal failure, 

and thrombosis.  These predictions update in real-time, enabling the user to examine the effect of 

changing certain predictor values while keeping others fixed. 

 

5: DISCUSSION 

5.1 Introduction and Implications 

 

 The purpose of this analysis was to determine the effects of RBC transfusion (both intra-

operatively and post-operatively) on outcome measures in a cohort of neonates and infants 

undergoing pediatric cardiac surgery.  The risk-adjusted impact of RBC transfusion on 

complication rate and length of stay, with careful quantification of standardized transfusion 

volume, has not been previously studied in this subset of the pediatric patient population.  

Another goal of the analysis was to generate a predictive model for patient complication risk as a 

function of operative parameters and patient characteristics. 

 Our findings that age and weight were negatively associated with complication risk 

reinforce the vulnerability of this younger subset of the pediatric patient population.  After 

adjusting for risk scores, we also found that increased standardized post-operative transfusion 

volume was associated with increased complication.  Iyengar et al. (2011) noticed a similar 

association, though they treated pulmonary complications as the outcome.  Salvin et al. (2011) 

also observed a higher risk of morbidity among patients with increased post-operative 

transfusion volumes.  Willems et al. (2010) observed no effect of post-operative transfusion 

volume on complication risk, but their study population excluded neonates and young infants.  
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We also observed an association between both intra-operative and post-operative RBC 

transfusion and ICU LOS, after controlling for surgery risk.  This finding is well supported by 

other evidence from the literature in other patient populations (Crown et al., 2004, Ranucci et al., 

2011, Keung et al., 2009).   

 Our findings suggest that the population of neonate and young infant cardiac surgical 

patients are particularly volume-sensitive to RBC transfusion.  Even after controlling for surgical 

risk and standardizing RBC volume by patient weight, both intra-operative and post-operative 

transfusion were found to have deleterious effects as measured by ICU LOS and complication 

risk.  Our results suggest that caution should be exercised in determining operative RBC 

transfusion volumes for this vulnerable subset of the pediatric cardiac surgical population.  Our 

predictive model may assist in this process by identifying high-risk patients immediately 

following cardiac surgery.  Patients identified as having a high risk of complication could then be 

followed more closely after surgery.  

 

5.2 Recommendations 

 

 One of the issues we encountered in our study was a low mortality rate.  Because of this, 

we grouped other outcomes together to create a complication variable.  Future studies with larger 

sample sizes would enable meaningful analysis of those specific outcomes (i.e. mortality, renal 

failure, infection, and thrombosis).  Our study also did not include patient lab measurements (e.g. 

hemoglobin and creatinine concentrations), because the data were unavailable.  Future studies 

may examine, for instance, the relationship between hemoglobin concentration and outcome.  

Furthermore, these measurements may improve the accuracy of our random forest model.     



 16 

Additionally, some of the patients in our cohort underwent multiple cardiac surgeries.  Although 

we only include such cases where patients made a full recovery between surgeries, future 

analyses may consider the possibility that these observations could be correlated.  Another 

consideration is the possibility of “hidden” confounders that we were unable to control for in the 

analysis.  For instance, surgeon skill may confound the relationship between RBC transfusion 

volumes and outcome.  Lastly, the predictive modeling application could be modified to allow 

continual updating of the training set.  The random forest model could then be retrained on this 

new dataset and achieve increased predictive accuracy over time.   
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APPENDIX: Tables & Figures 

Table 1 

Patient Characteristics by Post-Operative Transfusion Status (Yes/No) 

Variable Overall Post-Operative 
Transfusion 

No Post-Operative 
Transfusion 

Age (days) 78 (131) 31 (125.5) 94 (131.5) 

Weight (kg) 4.39 (1.45) 4.05 (1.40) 4.55 (1.45) 

CC Time (min) 56 (45) 59 (55) 55 (42.5) 

CPB Time (min) 101.5 (76.75) 131 (88) 91 (67) 

Note.  Weight is reported as mean with standard deviation in parentheses.  All other variables are reported as median 
with interquartile range in parentheses.  CC = Cross Clamp, CPB = Cardiopulmonary Bypass.  
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Table 2 

Patient Characteristics by Complication and Transfusion Status (Yes/No)  

 
Post-Operative 

Transfusion  
No Post-Operative 

Transfusion  
Variable Comp 

(n=82) 
NoComp 
(n=129) 

P 
Value 

Comp 
(n=55) 

NoComp 
(n=400) 

P 
Value 

 
Age (days) 
 

 
37.26 

 
80.9 

 
<0.0001 

 
46.4 

 
88.5 

 
<0.0001 

Weight (kg) 3.46 4.42 <0.0001 3.62 4.68 <0.0001 

ICU LOS (hrs) 722.4 257.4 <0.0001 581.24 107.64 <0.0001 

Total LOS 
(days) 
 

49.05 20.66 <0.0001 43.95 12.62 <0.0001 

CPB Time 
(min) 
 

173.34 116.95 <0.0001 129.56 99.35 0.001 

CC Time (min) 74.91 52.47 <0.0001 74.91 55.28 0.083 

Note.  Weight is reported as mean.  All other variables are reported as median.  P values correspond to pairwise 
univariate tests between subgroups.  Comp=Complication, NoComp =No Complication, CC = Cross Clamp, CPB = 
Cardiopulmonary Bypass. 
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Table 3 

Multivariate Logistic Regression Model Estimates 

Parameter β  Estimate (SE) P Value 

Intercept  1.43  (3.56) 0.656 

PostBloodPerKG 0.0032 (0.0011) 0.006 

IntraBloodPerKG  0.0071 (0.0023) 0.0016 

RACHS1 Score* 

1 

2 

3 

4 

5 

6 

 

-0.32 (0.54) 

-0.12 (0.23) 

0.05 (0.39) 

-0.002 (0.07) 

0.21 (0.11) 

0.43 (0.76) 

 

0.277 

0.301 

0.551 

0.489 

0.700 

0.714 

CPB Time 0.0041 (0.0024) 0.093 

Age (Days) -0.0061 (0.0025) 0.014 

Note. PostBloodPerKG= Post-operative RBC volume per kg.  IntraBloodPerKG= Intra-operative RBC volume per 
kg.  CPB= Cardiopulmonary Bypass.. Patients that did not receive any transfusion were assigned a value of 0 for 
PostBloodPerKG and IntraBloodPerKG and included in this analysis. * RACHS1 Score 0 is treated as the reference 
group. 
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Table 4 

AIC Comparison of Candidate Models for ICU LOS  

Model Type AIC 

Naïve (Normal) 9813.039 

Lognormal  6412.99* 

Zero-Truncated Negative 
Binomial 

8091.488 

Zero-Truncated Poisson 11342.12 

Note. * Because AIC is only a valid comparison technique when models have the same outcome measure 
(untransformed ICU LOS in our case), we use statistical software to obtain the corrected AIC for the lognormal 
model based on a modified version of the likelihood (as in Burnham & Anderson, 2010). 
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Table 5 

Multivariate Lognormal Regression Estimates for ICU LOS  

Parameter β  Estimate (SE) P Value 

Intercept  5.47  (0.87) <0.001 

PostBloodPerKG 0.0009 (0.00032) 0.004 

IntraBloodPerKG  0.0024  (0.00064) <0.001 

RACHS1 Score* 

1 

2     

3 

4 

5 

6 

 

-1.62 (1.05) 

-0.99 (0.86) 

-0.89 (0.86) 

-0.87 (0.86) 

-0.21 (1.21) 

-0.28 (0.86) 

 

0.123 

0.255 

0.303 

0.314 

0.865 

0.744 

CPB Time 0.002 (0.0008) 0.005 

Age (Days) -0.004 (0.0007) <0.001 

Note. PostBloodPerKG= Post-operative RBC volume per kg.  IntraBloodPerKG= Intra-operative RBC volume per 
kg.  CPB= Cardiopulmonary Bypass. This model treats log(ICU LOS) as outcome.  Patients that did not receive any 
transfusion were assigned a value of 0 for PostBloodPerKG and IntraBloodPerKG and included in this analysis.  
*RACHS1 Score 0 is treated as the reference group. 
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Figure 1: STAT and RACHS1 Scores by Complication (Yes/No) 
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Figure 2: Cox-Snell Residuals for Cox PH Model 
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Figure 3: Receiver Operating Characteristics (ROC) Curve for Random Forest Model 
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Figure 4: Online Clinical Tool Developed from Random Forest Predictive Model 

 

 

 

 

 

 

 

 

 

 

 

 

 


	methods
	study-design
	data-collection
	statistical-analysis
	results
	references

