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Abstract 
 

Adaptations to Tonic T Cell Receptor Signaling in Naive T Cells 

 

By Joel Eggert 

Naive T cells experience recurrent TCR:self-pMHC signals in the steady state, termed tonic 

signaling. Such signals are generally inadequate to promote canonical T cell activation. Still, they 

are sufficient to modulate proximal TCR signaling and induce gene expression changes and 

epigenetic modifications of naive T cells. Therefore, tonic TCR signals have implications for the 

responsiveness and differentiation of naive T cells following canonical T cell activation. However, 

how extensive tonic TCR signaling affects naive CD8+ T cells upon subsequent agonist TCR 

stimulation remains unresolved. We investigated the heterogeneity and functional implications of 

tonic TCR signal strength in naive CD8+ T cells by utilizing a transcriptional reporter of Nr4a1 

(Nur77-GFP) reflective of TCR signaling. We found that naive CD8+ T cells experience highly 

variable levels of tonic TCR signaling strength as measured by Nur77-GFP fluorescence intensity. 

Consistent with Nur77-GFP expression as an indicator of TCR signaling, GFPHI cells exhibited a 

gene expression profile more indicative of T cell activation than GFPLO cells. However, the cells 

that experienced the most extensive tonic TCR signaling (GFPHI cells) exhibited diminished IFN-

 and IL-2 secretion in response to agonist TCR ligand stimulation relative to GFPLO cells. The 

attenuated responsiveness of GFPHI cells correlated with increased protein levels of Cbl-b, a 

negative regulator of TCR signaling. Deficiency of Cbl-b partly restored the responsiveness of 

naive CD8+ GFPHI cells. Our data suggests that extensive tonic TCR signaling induces adaptations 

of naive CD8+ T cells that attenuate the responsiveness to agonist TCR stimulation. Furthermore, 

negative regulation induced by strong TCR:self-pMHC signals partly depends on Cbl-b 

expression. We propose that this de-sensitization of naive T cells may allow the immune system 

to limit the autoreactive potential of the most self-reactive naive CD8+ T cells. 
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Chapter 1: Introduction 

Sections of this chapter have been published:  

Eggert, J., and B.B. Au-Yeung. 2021. Functional heterogeneity and adaptation of naive T cells in 

response to tonic TCR signals. Curr Opin Immunol 73:43-49. 

T cells are part of the adaptive immune response and are a crucial component of the host response 

to infections and cancer (1). Infants born with primary immunodeficiencies resulting in the absence 

of T cells illustrate the importance of T cells for the human immune system. Such patients are 

susceptible to opportunistic infections, and survival depends on immune reconstitution during their 

first few months of age (2). Likewise, the loss of a subset of T cells due to human 

immunodeficiency viruses leads to impaired cellular immunity and susceptibility to opportunistic 

infections (3). While T cells help protect the host against exogenous threats such as pathogens or 

endogenous ones such as aberrant host cells, dysregulation of the T cell response is associated with 

several autoimmune diseases (4). Hence, the activation of T cells must be strictly controlled to 

prevent any responses to non-malignant self. 

The composition of T cells in secondary lymphoid organs (SLOs) in both mice and humans is 

primarily composed of T cells expressing a T cell receptor (TCR) consisting of an -chain and a 

-chain (5, 6). The TCR  heterodimer linked by a disulfide bond associates with the CD3 

complex consisting of CD3 homodimers and CD3 and CD3 heterodimers (7-10). The CD3 

complex is essential for initiating TCR signaling, whereas the  heterodimer mediates antigen 

recognition and thus provides the specificity of the T cell (11-14). T cells recognize peptides 

derived from foreign or host proteins situated in a binding cleft of host glycoproteins termed Major 

Histocompatibility Complex (pMHC) (15-17). Two main subsets of T cells harbor distinctive 
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surface phenotypes (18-20). T cells expressing the surface protein CD4 recognize peptides 

presented by MHC class II whereas T cells expressing CD8 recognize peptides in the context of 

MHC class I (21-24). 

All  T cells are positively selected in the thymus for weak reactivity to self-peptide antigens 

presented by self-pMHC during development (25-28). Naive CD4+ and CD8+ T cells continue to 

experience low-level T cell receptor (TCR) signaling in response to self-pMHC in the periphery, 

termed basal or tonic signaling (29, 30). Tonic TCR signaling is sufficient to induce constitutive 

tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the TCR 

CD3 complex and ZAP-70 recruitment to phosphorylated -chains (31-33). ZAP-70-bound 

phosphorylated -chains are detectable in CD4+ T cells isolated from lymph nodes but not from 

peripheral blood (33). Conditional depletion of conventional dendritic cells (cDCs) also reduces 

the phosphorylated -chains associated with ZAP-70 in CD4+ T cells during steady-state 

conditions with ~50% (34). Moreover, CD4+ T cells from germ-free mice exhibit -chain 

phosphorylation similar to T cells isolated from specific-pathogen-free mice (35). This finding 

indicates that antigens from commensal bacteria are not a primary driver of tonic TCR signaling. 

Together, these studies thus suggest that tonic TCR signaling occurs in SLOs mediated mainly by 

interactions with self-pMHC presented by DCs. 

The phosphorylation of ZAP-70 is an early signal transduction step of canonical TCR signaling 

rapidly induced after agonist TCR stimulation (36, 37). Although ZAP-70 associates with 

phosphorylated -chains in T cells isolated from steady-state conditions, ZAP-70 phosphorylation 

is below the limit of detection by western blotting, contrary to cells that experienced canonical 

TCR signaling (32). Weak-affinity pMHC stimulation of T cells likewise induces phosphorylation 
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of -chains but not detectable phosphorylation of ZAP-70 and the resulting production of IL-2 or 

clonal expansion (38). Although tonic TCR signaling does not induce ZAP-70 phosphorylation 

and the subsequent initiation of the downstream signaling cascade, multiple studies illustrate how 

self-pMHC:TCR signals during steady-state conditions can modulate T cell responsiveness. For 

instance, total deprivation of tonic TCR signals mediated by adoptive transfer of T cells into MHC 

deficient recipients or antibody-blocking of MHC affects T cell responsiveness (33, 39-42). For 

CD8+ T cells, deprivation of MHC I signals leads to enhanced sensitivity to weak affinity 

pMHC:TCR signals (39). However, such studies on CD4+ T cells have reached conflicting results. 

For example, transferring CD4+ T cells into T cell- and MHC II-deficient mice resulted in 

enhanced calcium flux upon TCR ligation (40). On the other hand, antibody-mediated blocking of 

MHC II in lymphoreplete mice resulted in reduced proliferation and IL-2 secretion upon activation 

(33). Whether the different lymphopenic versus lymphoreplete experimental environments or the 

distinct readouts of T cell activation drive the conflicting results from these studies is unclear. In 

either case, these studies on CD4+ and CD8+ T cells suggest that the complete absence of tonic 

TCR signals affects T cell reactivity to subsequent stimulation. 

More recent studies have focused on how self-pMHC:TCR signal strength influences T cell 

responses. For instance, the strength of tonic signaling naive T cells experience correlates with 

epigenetic modifications, transcriptional and protein gene expression changes, and metabolic 

activity (43, 44). A growing body of evidence suggests that tonic TCR signal strength experienced 

before cognate antigen exposure influence primary and secondary responses of T cells (30). Here, 

we discuss recent advances in our understanding of how tonic TCR signaling is detected, how 

naive T cells adapt to varying tonic TCR signal strengths, and the impact on effector responses. 

Markers of tonic signaling 
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CD5 

CD5 is a scavenger receptor expressed on the surface of T cells, certain B cell lymphomas and B 

cell subsets, and various DCs in mice and humans (45). Studies in vitro have shown that several 

ligands can bind CD5, such as CD72, antibody framework regions, fungal cell wall components, 

and CD5 itself (46-49). However, the physiological relevancy in vivo of these reported ligands 

identified in vitro remains inconclusive (50). Regardless of CD5-ligand interactions, TCR 

stimulation can induce tyrosine phosphorylation of the cytoplasmic tail of CD5 (51). Moreover, 

recruitment of CD5 to the immune synapse occurs upon T cell activation (52). Initial studies that 

characterized the function of CD5 in T cells reported that cells stimulated with anti-CD3 and anti-

CD5 antibodies exhibited enhanced T cell activation compared to cells stimulated with only anti-

CD3 (53, 54). Hence, the interpretation from these studies was that CD5 acts as a positive regulator 

of TCR signaling. However, subsequent studies utilizing CD5-deficient transgenic mice found that 

CD5-/- thymocytes were hyperresponsive to TCR stimulation (55). CD5-deficient thymocytes, or 

T cell hybridomas expressing a mutated CD5 protein with a truncated cytoplasmic domain, were 

similarly hyperresponsive to TCR stimulation (56, 57). These results suggest that signaling events 

mediated by CD5 upon TCR engagement can inhibit TCR signaling in thymocytes. Although some 

uncertainty remains about whether CD5 could modulate TCR signaling differently in thymocytes 

versus mature T cells, CD5 is mainly considered a negative regulator of TCR signals in developing 

and mature T cells (45). For instance, the E3 ubiquitin ligases and negative regulators of TCR 

signaling, c-Cbl, and Cbl-b, are recruited to the cytoplasmic domain of CD5 upon T cell activation 

(58-62). The role of CD5 as a regulator of TCR signaling is discussed in more detail in later 

sections. 

An elegant study by Paul Love’s laboratory first described the positive correlation between TCR 



 

 

5 

signal strength and CD5 surface expression in thymocytes by generating transgenic -chain-

deficient mice reconstituted with a full-length -chain versus a truncated -chain with no ITAM 

domains (63). In this system, thymocytes exhibiting attenuated TCR signaling due to the reduced 

number of ITAMs of the CD3 complex expressed lower surface levels of CD5 (63). Likewise, 

studies utilizing TCR transgenic T cells in systems that modulated TCR signal strength in 

developing T cells by altering MHC haplotypes or restricting the peptide repertoire found a 

positive correlation between the affinity of the self-pMHC:TCR interaction and CD5 expression 

(57, 64). Hence, these studies showed that CD5 expression is a correlate marker of TCR signal 

strength during development. Later studies also revealed that surface expression of CD5 positively 

correlates with the strength of tonic TCR signaling naive, mature T cells experience (35). Naive 

CD4+ and CD8+ T cells expressing the highest levels of CD5 exhibit increased -chain 

phosphorylation compared to CD5LO cells (35). The magnitude of CD5 expression can vary 

between T cells with different TCR specificities, as demonstrated by comparing TCR transgenic 

populations (35). However, CD5 expression and TCR specificity are not strictly linked, as two 

TCR transgenic strains can recognize the same Listeria monocytogenes epitope with similar 

affinity but exhibit different surface levels of CD5 (65, 66). In sum, CD5 has been a useful marker 

to identify T cells that experience relatively weak or strong tonic signaling.  

Reporters of Nr4a 

The immediate early gene Nr4a1 (encoding Nur77) is an orphan nuclear receptor in the same 

family as Nr4a2 (encoding Nurr1) and Nr4a3 (encoding Nor1) (67). The DNA binding domains 

of Nurr1 and Nor1 share over 90% sequence homology to the Nur77 counterpart, and all three 

transcription factors bind similar DNA motifs (68, 69). Proposedly, Nr4a receptors may be 

transcriptionally active constitutively, independent of any ligand binding (70). Antigen-receptor 
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stimulation, but not cytokine stimulation, induces expression of Nr4a1 in T and B cells (71, 72). 

Two Nur77-GFP reporter transgenes have been independently generated (71, 72). Like CD5, 

Nur77-GFP expression is initiated during thymic development and maintained in mature 

peripheral T cells (71, 73). The level of basal Nur77-GFP in naive T cells is relatively stable short-

term, as the majority of sorted cells retain similar Nur77-GFP intensity ten days after adoptive 

transfer into WT recipients, but not in MHC II-deficient hosts (71, 73). Stimulation with cognate 

pMHC or TCR crosslinking antibodies leads to rapid upregulation of Nur77-GFP expression (71, 

74). While Nur77-GFP expression is sensitive to TCR stimulation induced by self-pMHC 

interactions, Bending and colleagues recently showed that Nr4a3 reporter expression is two- to 

threefold less sensitive to TCR stimulation and is selectively activated by cognate pMHC 

stimulation (75). 

Beyond inducing transcription, Nur77, and Nor1 can also promote apoptosis by translocating to 

the mitochondria and inducing a conformational change of Bcl-2 that uncovers a Bcl-2 pro-

apoptotic domain (76-79). Induced constitutive expression of WT Nur77 or Nor1 sensitizes 

thymocytes to activation-induced apoptosis (68, 80). In contrast, the constitutive expression of a 

dominant-negative Nur77 mutant leads to impaired negative selection and clonal deletion of 

developing T cells (80-82). These studies thus suggest that extensive TCR signaling in thymocytes 

induces Nur77 and Nor1 expression that promotes apoptosis and the negative selection of highly 

self-reactive thymocytes during development. Even mixed bone marrow chimeras consisting of 

WT and Nr4a1-/- Nr4a3-/- bone marrow develop systemic autoimmunity over time despite having 

a WT Treg compartment (83). When CD4 expression drives the Cre-recombinase-driven deletion 

of Nr4a1 and Nr4a3 in these chimeras, the deletion event occurs in thymocytes at the double-

positive (DP) stage (84). Such chimeras exhibit a peripheral CD8+ T cell compartment primarily 
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consisting of CD44HI antigen-experienced CD8+ T cells (83). However, CD8-cre-mediated 

deletion of Nr4a1 and Nr4a3 in CD8 single-positive (SP) thymocytes results in a CD8 T cell 

compartment mainly consisting of naive T cells similar to WT animals (83, 85). Such targeted Cre-

expression is attainable due to a CD8 enhancer that is active and drives Cre-expression in mature 

CD8+ T cells and CD8 SP but not in DP thymocytes (85). The absence of Nur77 and Nor1 during 

the negative selection of DP thymocytes severely hinders the deletion of highly self-reactive 

thymocytes leading to a more self-reactive TCR repertoire with a majority of naive CD8+ T cell 

clones becoming activated by strong self-pMHC:TCR signaling during steady-state conditions. On 

the contrary, deletion of Nr4a1 and Nr4a3 at the CD8 SP stage enables Nur77 and Nor1 expression 

in DP thymocytes, facilitating negative selection of highly self-reactive CD8+ T cells and thus 

restoring central tolerance. 

The Nr4a transcription factors are also crucial for the differentiation of CD4 helper cells into 

regulatory T cells (Tregs) (86). Single knockout Nr4a1-/-, Nr4a2-/-, and Nr4a3-/- mice exhibit no 

reduction of thymic and peripheral Treg populations and do not develop autoimmune disease (86, 

87). However, mice with Nr4a1- and Nr4a3-deficient T cells have severely reduced Treg 

frequencies and die within a month of birth due to systemic autoimmune pathology (86). Other 

double knockout combinations in T cells (Nr4a1-/- Nr4a2-/- or Nr4a2-/- Nr4a3-/-) do not promote 

apparent autoimmunity in mice (86). These studies suggest that Nr4a1 and Nr4a3 have critical but 

redundant roles in Treg development. Moreover, Nr4a factors also promote a Treg fate in highly 

self-reactive thymocytes that have avoided negative selection (88). By utilizing a CD4 TCR 

transgenic T cell clone that exhibits minimal signs of negative selection, Sekiya and colleagues 

could identify thymocytes that expressed phenotypic markers associated with Treg precursor cells 

in Nr4a1-/- Nr4a2-/- Nr4a3-/- (TKO) thymocytes (88, 89). However, Treg-fated TKO thymocytes 
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failed to upregulate Foxp3 protein expression and could not mount sustained Foxp3 mRNA 

expression in response to IL-2 stimulation (88). Furthermore, polyclonal Treg precursors from Nr4a 

TKO mice induced wasting disease in lymphopenic recipients, contrary to the WT counterparts 

(88). These studies suggest that the Nr4a family of genes is essential for directing highly self-

reactive thymocytes that have escaped negative selection into the Treg lineage, thus mitigating their 

differentiation into pathogenic and autoreactive T cells. 

The expression of Nr4a transcription factors is also crucial for the function of mature Tregs. While 

mice that harbor a Treg-specific deletion of all three Nr4a genes exhibit regular Treg frequencies, 

they die within four months of birth due to systemic autoimmunity (90). Nr4a TKO Tregs exhibit 

attenuated suppressive function and are more likely to turn off Foxp3 expression (90). Hence, the 

Nr4a factors play an essential role beyond Treg development in ensuring Treg suppression and the 

maintenance of Foxp3 expression and commitment to the Treg lineage. Thus, these studies indicate 

that the Nr4a family genes contribute to central and peripheral tolerance in several ways. First, by 

promoting highly self-reactive thymocytes to undergo apoptosis and negative election. Second, by 

fostering self-reactive thymocytes that escape negative selection to differentiate into Tregs, and 

third, by ensuring mature Tregs’ functional capabilities and commitment in the periphery. The role 

of the Nr4a genes as a regulator of TCR signaling in the context of peripheral tolerance is discussed 

in later sections. 

Ly6C 

Ly6C1 and Ly6C2 are two homologous GPI-linked receptors with unknown functions that are 

currently not distinguishable from each other with monoclonal antibodies and are often 

collectively referred to as Ly6C (91). Various murine immune cells express Ly6C, such as CD4+ 

and CD8+ T cells, NK cells, neutrophils, subsets of monocytes, DCs, and stromal cells like 
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medullary thymic epithelial cells (92, 93). A subpopulation of naive CD4+ T cells upregulates 

Ly6C expression shortly after thymic egress (94). In contrast to CD5 and Nur77-GFP, Ly6C 

expression inversely correlates with CD4+ T cell reactivity to self-pMHC, as demonstrated by 

decreased -chain phosphorylation in Ly6C+ naive CD4+ T cells (Fig. 1.1) (94). Moreover, the 

adoptive transfer of naive Ly6C- CD4+ T cells into MHC II-deficient recipients leads to 

upregulation of Ly6C (73). Hence, Ly6C surface levels in naive CD4+ T cells depend on the 

exposure to TCR:self-pMHC signals. Mechanistically, the downregulation of Ly6C expression 

depends on TCR-induced Ca2+ signaling (95). Within the Treg population, Ly6C expression also 

marks a subset of Foxp3+ cells that experience weaker tonic signaling and exhibit decreased 

Fig. 1.1. TCR reactivity to self-pMHC 

during development and in the 

periphery. 

(A) There is a broad range of self-reactivity 

in the immature CD4+ CD8+ double-

positive population. Positively selected 

thymocytes (in green) exhibit self-

reactivity that is neither too weak nor too 

strong. (B) Self-reactivity persists in the 

periphery, and naive CD4+ T cells 

experience varying strengths of tonic TCR 

signaling. Surrogate markers of tonic signal 

strength in mice include CD5, Ly6C, and 

the Nur77-GFP transgene. 
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suppressive activity (96, 97). Furthermore, effector CD4+ T cells are heterogeneous regarding 

Ly6C expression (98-102). Briefly, T follicular helper cells are Ly6C- whereas subsets of Th1 cells 

are both Ly6C- and Ly6C+ (99, 102, 103). As effector CD4+ T cells that experience strong TCR 

signaling during an acute infection exhibit bimodal Ly6C expression, TCR signaling strength does 

not seem to correlate strongly with Ly6C expression on effector CD4+ T cells. 

For CD8+ T cells, Ly6C upregulation can occur at the CD8 SP stage in the thymus but is more 

noticeable in the periphery among naive CD8+ T cells (104, 105). Contrary to CD4+ T cells, 

deprivation of tonic TCR signals in naive CD8+ T cells upon adoptive transfer to recipients with 

nearly absent MHC class I expression correlates with Ly6C downregulation (104). Thus, for naive 

CD8+ T cells, tonic TCR signals are crucial for Ly6C surface expression.  Furthermore, naive 

CD8+ T cells expressing low CD5 levels are almost exclusively Ly6C-negative (104, 105). 

Therefore, LyC6 expression in naive CD8+ T cells may positively correlate with tonic TCR signal 

strength, whereas the opposite is true for naive CD4+ T cells. Consistent with these findings, T cell 

activation induced by TCR crosslinking in vitro induces upregulation of Ly6C in CD8+ but not in 

CD4+ T cells (106). 

For both CD4+ and CD8+ naive T cells, modulation of surface Ly6C expression can occur in the 

absence of TCR agonist stimulation. Naive CD4+ and CD8+ T cells treated with type I interferon 

(IFN) upregulate Ly6C (104-106). Moreover, CD8+ T cells deficient in the type I IFN receptor or 

the downstream transcription factor STAT1 exhibit severely reduced frequencies of Ly6C+ cells 

during steady-state conditions suggesting that type I IFN signaling contributes either directly or 

indirectly to Ly6C expression in CD8+ T cells (104, 105). One caveat with these studies is that 

general rather than T cell-specific knockout mice were used to study animals with defective type 

I IFN-signaling (104, 105). As type I IFNs can induce increased MHC I expression on stromal 
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cells in lymph nodes, one possibility is that type I IFNs enhance MHC expression even during 

steady-state conditions (105). Hence, increased MHC expression could facilitate stronger tonic 

TCR signals in naive CD8+ T cells, reflected by modulated Ly6C expression. In support of this 

hypothesis, antibody-mediated blocking of MHC I mitigates the induced Ly6C expression by 

adding type I IFNs to in vitro cultures of purified naive CD8+ T cells (105). These results thus 

suggest that type I IFNs either modulate MHC expression and thus promote increased tonic TCR 

signaling strength or STAT1-induced signaling contributes synergistically to induce Ly6C 

expression on naive CD8+ T cells in the presence of tonic TCR signals. 

Ly6C expression on naive CD5HI CD8+ T cells positively correlates with T cell effector functions 

independently of TCR specificity (104, 105). TCR transgenic Ly6C+ CD5HI naive CD8+ T cells 

exhibit an increased proliferative response than Ly6C- CD5HI cells upon competitive transfer 

experiments during an acute viral infection (104). However, the function of Ly6C does seemingly 

not contribute to the competitive advantage of Ly6C+ over Ly6C- naive CD8+ T cells. Mice 

deficient of both Ly6c1 and Ly6c2 exhibit no defects in T cell development, no altered composition 

of peripheral T cell subsets, and Ly6c1-/- Ly6c2-/- T cells proliferate similarly to WT T cells in 

response to TCR agonist stimulation (107). Hence, Ly6C expression presumably identifies a naive 

CD8+ T cell subset with an altered gene expression profile that may enhance the recruitment and 

expansion of T cells independently of Ly6C function (104, 105). 

Combination of markers 

Our laboratory investigated whether a combination of markers could improve the dynamic range 

of tonic signaling that can be detected (73). The combination of Nur77-GFP plus Ly6C exhibited 

a broader dynamic range compared to GFP plus CD5 or Ly6C plus CD5. In this scheme, Nur77-

GFPLO Ly6C+ cells experience the weakest tonic signaling, and Nur77-GFPHI Ly6C− cells 
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experience the strongest tonic signals, as shown by -chain phosphorylation (73). While Nur77-

GFPHI Ly6C− cells express high levels of CD5, high CD5 expression alone does not solely mark 

the Nur77-GFPHI Ly6C− subset. These data raise the possibility that the range of tonic signal 

strength extends further than previously thought. Future studies with new markers or combinations 

of markers may improve the "resolution" to detect tonic signal strength. 

Role of tonic signaling in CD4+ T cells 

Paul Allen’s laboratory generated an elegant experimental system where the researchers 

investigated naive CD4+ T cells from two different TCR transgenic mouse lines specific to the 

same epitope with similar affinity (65, 66). These two TCR clonotypes exhibited differential CD5 

expression and thus marked naive CD4+ T cells that experienced different basal TCR signaling 

strength but with similar cognate antigen-specificity and affinity. T cell clones from the CD5HI 

TCR transgenic exhibited greater ERK phosphorylation and IL-2 production in response to acute 

stimulation (66). However, at the late stages of the primary response, higher percentages of CD5HI 

TCR transgenic cells underwent apoptosis than CD5LO cells, and T cell clones from the CD5LO 

TCR transgenic dominated the acute phase of the primary immune response (65). A model based 

on these studies suggests that strong tonic signaling correlates with a robust acute response that is 

not sustained due to increased cell death (108). Hence, one potential consequence of naive CD4+ 

T cell heterogeneity is that different clones may engage in primary responses to foreign antigens 

with different kinetics. However, for naive CD4+ T cells, the relationship between CD5 expression 

and the responsiveness toward subsequent cognate antigen stimulation is complex. Germain and 

colleagues showed that upon co-transfer of CD5HI and CD5LO naive polyclonal CD4+ T cells, 

CD5HI cells were present in greater numbers than CD5LO cells at the late stages of the primary 

response in different infection models (35). As CD5HI cells exhibit an increased susceptibility to 
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activation-induced cell death relative to CD5LO cells at the height of the acute immune response, 

the increased abundance of polyclonal CD5HI relative to CD5LO cells is likely the result of 

increased clonal expansion  (66, 104). The discrepancies in the studies between the Allen and the 

Germain laboratories are presumably due to comparing polyclonal T cells versus T cell clones of 

similar specificity and cognate antigen affinity. For example, when adoptively transferring 

polyclonal T cells, it is impossible to control for the precursor frequencies or the affinity of antigen-

specific T cells, which might differ between the CD5LO and CD5HI populations. 

Studies from our laboratory revealed that weak tonic signal strength, experienced by naive CD4+ 

T cells with a Nur77-GFPLO Ly6C+ phenotype, consistently correlated with the most robust 

activation, as reflected by IL-2 secretion, cell division, and ERK phosphorylation (73). Nur77-

GFPMED Ly6C+ and Nur77-GFPMED Ly6C− cells, which experience moderate tonic signal strength, 

mounted IL-2 responses comparable to Nur77-GFPLO Ly6C+ cells early (four hours post-

stimulation). Still, the IL-2 responses of GFPLO Ly6C+ cells were consistently higher at later time 

points. These findings are compatible with the concept that strong tonic signaling correlates with 

short-lived acute responses. However, Nur77-GFPHI Ly6C− cells, which experience extensive 

tonic signaling, consistently exhibited decreased responsiveness to stimulation. This result is 

congruent with a “tunable” model where lymphocytes adapt to the amount of tonic signaling they 

experience (109). Consequently, cells that experience strong tonic TCR signaling shift their 

activation threshold and effectively become de-sensitized to subsequent TCR stimulation (Fig. 

1.2). Additionally, the Allen laboratory has demonstrated similar results in transgenic mice that 

experience stronger tonic signaling due to the expression of a voltage-gated sodium channel that 

facilitates sustained calcium signaling (110, 111). In this system, TCR transgenic T cells that 

experience heightened tonic TCR signaling exhibit an impaired primary immune response. Hence, 
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these studies suggest that for naive CD4+ T cells, when normalized for TCR specificity and affinity 

to cognate antigen, extensive tonic TCR signaling correlates with an attenuated primary immune 

Fig. 1.2. Adaptation to tonic TCR signals through negative feedback. 

(A) Individual naive T cells that exhibit relatively weak reactivity to self-pMHC induce weak 

tonic TCR signals. (B) CD4+ T cells that exhibit strong reactivity to self-pMHC induce more 

extensive tonic TCR signaling, which results in higher expression of Nur77, and correlates 

with higher expression of negative regulators of TCR signaling and decreased basal 

metabolism. (C) Naive CD4+ T cells that experience the most extensive tonic signal strength 

have attenuated responsiveness. 
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response. Finally, while some of the correlations identified using CD5 and Nur77-GFP as correlate 

markers of tonic TCR signaling strength overlap, differences remain. Further research is needed 

to clarify how tonic TCR signaling impacts CD4+ T cells at various stages of primary responses. 

The molecular pathways tonic TCR signaling activates remain incompletely understood (29). A 

major challenge in studying the basal TCR signaling machinery has been the lack of an in vitro 

model. However, studies have highlighted how tonic signal strength can impact CD4+ T cells. For 

instance, in a mouse model with impaired NF- signaling, naive T cells express lower levels of 

the IL-7 receptor -subunit and exhibit reduced cell survival compared to WT cells (112), 

suggesting that the downstream effects of basal TCR signaling may affect cell survival. More 

recent studies add to the complexity and suggest that tonic TCR signaling could have both positive 

and negative effects on T cell effector function and influence T cell differentiation. 

Tonic signal strength influences effector functions and cell fate decisions 

Th1-polarized CD5HI cells express lower levels of Tbet and produce less IFN relative to CD5LO 

cells upon stimulation (113). Similarly, strong tonic signaling correlates with impaired T follicular 

helper cell differentiation (114). In contrast, naive CD4+ T cells that experience increased tonic 

signaling, such as CD5HI, Ly6C–, or Nur77-GFPHI Ly6C– populations have a higher propensity for 

Foxp3 expression under induced Treg differentiation conditions  (73, 94, 115). This functional 

heterogeneity may reflect mechanisms to attenuate highly self-reactive cells or divert them from 

an inflammatory effector state. However, in a lymphopenic environment, strong tonic signal 

strength correlates with increased autoreactive potential, as Ly6C– naive CD4+ cells induce more 

severe disease in an adoptive transfer model of colitis compared to Ly6C+ cells (94). A correlation 

between basal TCR signaling and immunopathology can also be observed in mice that harbor 
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mutations in the TCR signaling pathway (116-118). The ZAP-70 mutation in SKG mice renders 

ZAP-70 hyporesponsive and thus allows positive thymic selection of T cell clones that otherwise 

would have undergone negative selection, resulting in an arthritis-like disease (119). In the SKG 

mouse model of rheumatoid arthritis, Nur77-GFPHI naive CD4+ cells have increased arthritogenic 

potential compared to Nur77-GFPLO cells (116). Likewise, T cells expressing a point mutation in 

LAT Tyrosine 136 experience weaker tonic signaling but paradoxically induce a Th2 

lymphoproliferative disorder (117). More specifically, weaker tonic signaling reduces the 

constitutive nuclear export of histone deacetylase 7, a transcriptional repressor of Nr4a1 and Irf4 

(120). Furthermore, a point-mutation in Rasgrp1 increases tonic mTORC1 signaling, which skews 

CD4+ T cells toward Th2 differentiation and instigates immunopathology in mice (118). Together, 

these studies underscore that (i) TCR signaling can influence T helper effector function and cell 

fate decisions and (ii) strong tonic TCR signals correlate with increased autoimmune pathology if 

tolerance is compromised. 

Potential mechanisms of negative regulation 

An elegant study by Trefzer et al. investigated the effects of chronic antigen stimulation on CD4+ 

T cells in the absence of infection by utilizing a TCR transgenic mouse model in which cognate 

antigen expression is inducible (121). In contrast to acute cognate antigen exposure, chronic 

exposure impaired cytokine production and induced gene expression signatures that bear 

similarities with gene expression patterns in anergic and exhausted T cells. Although constitutive 

cognate antigen stimulation differs from the constitutive low-level TCR stimulation T cells 

experience from self-pMHC interactions, T cells may similarly adapt to strong self-pMHC signals. 

CD5 expression positively correlates with higher expression of IκB (a negative regulator of NFκB) 

(122), suggesting that self-reactive naive T cells potentially counterbalance an increased capacity 
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of tonic signaling by expressing negative regulators of TCR signaling. A negative regulator of 

strong tonic signaling may also be CD5 itself. CD5 deficiency results in hyperresponsive TCR 

signaling in thymocytes, and mature CD5HI T cells exhibit a decreased TCR-induced calcium flux, 

consistent with CD5 as an inhibitor of TCR signaling (40, 55, 56). Recent analyses of the CD5 

interactome by mass spectrometry have highlighted several potential binding partners in mouse 

CD4+ T cells. One analysis identified negative regulators such as the E3 ubiquitin ligase Cbl-b and 

the phosphatase Ubash3a in the CD5 signalosome (123). E3 ligases are involved in ubiquitin-

mediated endocytosis and degradation of proteins, and therefore, Cbl-b can promote negative 

regulation of TCR signaling proteins by promoting ubiquitination (124). However, Cbl-b can also 

mediate negative regulation of some TCR signaling substrates in a non-ubiquitin ligase-dependent 

manner (125). Ubash3a encodes the phosphatase Sts2 that can dephosphorylate protein tyrosine 

kinases in the TCR signaling cascade, such as ZAP-70, and can, therefore, prevent the activation 

of positive signaling mediators (126). An independent analysis identified a required role for 

Tyrosine 429 of CD5 in the recruitment of c-Cbl, Cin85, and CrkL, which assemble molecular 

complexes that included both negative regulators (phosphatases SHIP-1 and Ubash3a) and positive 

regulators (PI3K) (127). Moreover, CD5 also has a reported pro-survival role in mature T cells 

(128-130). Hence, CD5 may have both positive and negative regulatory roles in TCR signaling, 

although further research is necessary to define the underlying mechanisms.  

Tolerized and anergic T cells express high levels of Nur77 (131-133), and Nur77-deficiency 

impairs the induction of tolerance and exhaustion (131, 132). Furthermore, Nur77 deficient CD4+ 

T cells exhibit enhanced basal and maximal respiration and glycolytic capacity (134) in addition 

to enhanced IL-2 secretion upon stimulation (83), consistent with a role for Nur77 as a negative 

regulator of T cell activation. Moreover, extensive tonic signaling results in elevated levels of Cbl-
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b and GRAIL, E3 ubiquitin ligases that negatively regulate TCR signal transduction and are 

associated with T cell anergy (73, 135, 136).  

Increasing tonic signal strength attenuates metabolism 

Ectopic expression of Scn5a, the pore-forming subunit of a voltage-gated sodium channel, 

enhances tonic TCR signal strength as reflected by elevated CD5 expression (110, 111). Increasing 

tonic signal strength by ectopic expression of Scn5a resulted in impaired cell expansion during a 

primary response to L. monocytogenes infection (110). Furthermore, Scn5a-expressing cells have 

a decreased basal and maximal respiration rate and glycolytic rate (44). These results suggest that 

strong tonic signaling limits the basal metabolism of naive T cells, perhaps to limit the autoimmune 

potential of self-reactive T cells. 

Role of tonic signaling in CD8+ T cells 

High CD5 expression positively correlates with increased persistence of antigen-specific CD8+ T 

cells during a primary response (137), suggesting a positive correlation between tonic signal 

strength and the magnitude of naive CD8+ T cell responses to foreign/agonist pMHC. Furthermore, 

utilizing TCR transgenic cells expressing identical TCR clonotypes, a similar skewing toward 

CD5HI over CD5LO naive CD8+ T cells could be observed in a viral infection model (104). Hence, 

the paradigm in the field has primarily been that naive CD8+ T cells that experience stronger tonic 

TCR signaling from self-antigens are better poised to respond to foreign antigens. Cho and 

colleagues proposed a more refined model showing that naive CD8+ CD5HI cells exhibited 

attenuated proximal TCR signaling upon TCR ligation relative to CD5LO cells (138). However, 

the inverse relationship was true after more extended periods of stimulation, where CD5HI cells 

proliferated more extensively than CD5LO cells (138). 
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Stephen Jameson’s group compared CD8+ cells specific to the self-antigen tyrosinase-related 

protein 2 (Trp2) harvested from WT and Trp2-deficient mice  (139). Although the Trp2-specific 

T cells were phenotypically and transcriptionally similar, Trp2-specific T cells from Trp2-deficient 

mice induced greater pathology in an adoptive transfer model of vitiligo. Moreover, a positive 

correlation between the expression of CD5 and the protein tyrosine phosphatase non-receptor type 

2 (PTPN2), a negative regulator of TCR-proximal signal transduction due to dephosphorylation of 

positive signaling mediators such as protein tyrosine kinases and therefore preventing their 

activation, was detected in naive CD8+ T cells (140). These findings are consistent with the concept 

that negative feedback from strong self-pMHC interactions reduces the pathogenic potential of the 

most self-reactive naive CD8+ T cells. 

Strong tonic signaling is associated with antigen-inexperienced memory-like T cells 

Strong tonic signaling in CD8+ T cells positively correlates with the conversion of naive cells into 

antigen-inexperienced CD44HI memory phenotype cells (141), so-called antigen-inexperienced 

memory-like T cells (AIMT). Mouse models that enhance tonic signaling, such as Dock2 mutant 

mice and mice expressing a chimeric CD8 that couples with Lck at superphysiological 

stoichiometry, illustrate this correlation (142, 143). Furthermore, TCR sequencing of AIMT cells 

revealed enrichment of distinct clonotypes that, upon re-expression, possessed higher self-

reactivity compared to TCRs isolated from the naive repertoire (144). 

Tonic signaling in human T cells 

Transcriptional analysis of human CD5LO vs. CD5HI naive CD4+ T cells revealed gene expression 

differences but whether genes associated with TCR signaling are upregulated in CD5HI cells is less 

clear (145). The transcriptional profile of naive human CD8+ CXCR3+ cells was more similar to 

naive murine CD5HI than CD5LO CD8+ T cells (146). Consistent with this finding, CXCR3 
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expression in the murine naive CD8+ population is limited to the CD5HI compartment (137). 

Hence, these studies suggest that CXCR3 expression could potentially function as a correlate 

marker of tonic TCR signaling in naive human CD8+ T cells, although more research are needed. 

Further studies are also necessary to build on our understanding of the functional implications of 

tonic signaling in naive human T cells. There appears to be some similarity in the functional 

capacities of human and mouse CD5LO and CD5HI CD4+ cells. Re-stimulation of activated human 

naive CD4+ T cells revealed differences in cytokine production; CD5LO cells produced higher 

levels of IFN under Th1 conditions (145), consistent with previous results in mice (113). 

Tonic signaling strength and adoptive cell therapy 

Chimeric antigen receptor (CAR) T cell therapy is an individualized treatment strategy that relies 

on harvesting a patient’s T cells, expanding them in vitro, and transducing them with a synthetic 

T cell receptor that can recognize and eliminate tumor cells upon reinfusion into the patient (147). 

Some degree of tonic signaling mediated by the endogenous TCR seems beneficial for CAR T cell 

therapy since deletion of the TCR negatively affected CAR T cell persistence in vivo (148). 

However, too much basal signaling may be detrimental since tonic signals through the synthetic 

CAR T cell receptor are associated with T cell exhaustion (149, 150). Furthermore, TCRs that 

were engineered to have increased affinity for self-MHC resulted in diminished responsiveness 

upon stimulation (151). Minguet and colleagues recently demonstrated that mutating a previously 

unknown Lck binding motif in CD3 impaired the recruitment of Lck to the TCR complex and 

attenuated T cell activation (152). CARs incorporating this mutated binding motif induced 

enhanced anti-tumor responses, possibly due to reduced CAR tonic signals (152). Hence, 

determining the “optimum” amount of tonic signaling for T cells used in immunotherapy may 

further improve the therapeutic efficacy of ACT. 
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Outstanding questions in the field 

The view of naive T cells as a functionally homogenous group of cells is under revision as 

increasing evidence reveals further heterogeneity. How the effects of tonic TCR signal strength 

influence T cell responses in different contexts (i.e., autoimmunity, infection, cancer) remain 

incompletely understood. Further studies are also needed to identify the molecular mechanisms 

that regulate adaptations to varying strengths of tonic TCR signaling, including at the signaling, 

transcriptional, and epigenetic levels. 

Purpose of the study 

Utilizing the expression of the TCR signaling reporter Nur77-GFP as a correlate readout of tonic 

TCR signaling enables a broader range of TCR:self-pMHC signaling compared to other correlate 

markers of TCR signaling in naive CD4+ T cells (73). Nur77-GFP expression is, therefore, a 

valuable tool for isolating the cells that encounter the most extensive basal TCR signaling. Whether 

naive CD8+ T cells experience such extensive signaling from TCR:self-pMHC interactions that it 

may influence how the naive cells respond to agonist TCR stimulation remains incompletely 

described. Hence, unanswered questions remain, including (i) whether tonic TCR signaling and 

Nur77-GFP expression in naive CD8+ T cells is heterogenous, (ii) what the functional implications 

of extensive tonic TCR signaling in naive CD8+ T cells are, and (iii) what are the potential 

molecular mechanisms induced by tonic TCR signaling that regulate naive CD8+ T cell 

responsiveness. A better understanding of how basal TCR signaling in naive T cells relates to the 

heterogeneity of the T cell response to foreign antigens has implications for adoptive cell therapies 

as it might allow us to better anticipate different T cell outcomes. Moreover, broadening our 

knowledge of the molecular changes induced by tonic TCR signaling that affect the responsiveness 

of naive CD8+ T cells could stimulate further research into limiting autoreactive T cells from 
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causing pathology. 
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Abstract  

Naive T cells experience tonic TCR signaling in response to self-antigens in the steady state. 

However, how these signals influence the responsiveness of naive CD8+ T cells to subsequent 

agonist TCR stimulation remains incompletely understood. We investigated how relatively low or 

high levels of tonic TCR signaling influence naive CD8+ T cell responses to stimulation with 

foreign antigens. A transcriptional reporter of Nr4a1 (Nur77-GFP) is heterogeneously expressed 

by naive CD8+ T cells in the steady state, suggesting that individual naive T cells experience 

variable intensities or durations of tonic TCR signaling. Nur77-GFPHI cells exhibited diminished 

activation marker expression and secretion of IFN and IL-2 relative to Nur77-GFPLO cells in 

response to agonist TCR stimulation. Differential gene expression analyses revealed upregulation 

of genes associated with acutely stimulated T cells in Nur77-GFPHI cells. Furthermore, Nur77-

GFPHI cells expressed higher protein levels of the ubiquitin ligase Cbl-b, a negative regulator of 

TCR signaling. Cbl-b deficiency partially restored the responsiveness of Nur77-GFPHI cells. Our 

data suggest that the cumulative effects of experiencing extensive tonic TCR signaling under 

steady-state conditions induce a recalibration of naive CD8+ T cell responsiveness. These changes 

include gene expression changes and negative regulation, dependent partly on Cbl-b. This cell-

intrinsic negative feedback loop may allow the immune system to restrain naive CD8+ T cells with 

higher self-reactivity. 

One Sentence Summary: Naive CD8+ T cells adapt to extensive tonic TCR signaling by inducing 

a negative feedback loop dependent in part on Cbl-b.  
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Introduction 

The activation of T cell-mediated immune responses is associated with sustained, robust signal 

transduction triggered by the T cell antigen receptor (TCR) (1). Activating TCR signals induces 

changes in T cell metabolism, cytoskeleton arrangements, and gene expression (1). Transcription 

of immediate-early genes occurs rapidly in response to robust TCR stimuli and includes 

transcription factors of the Jun/Fos family and Nur77, an orphan nuclear receptor encoded by 

Nr4a1 (2). However, T cells also experience weaker, non-activating TCR:self-pMHC signals in 

secondary lymphoid organs (SLOs) under steady-state conditions (3). These tonic or basal TCR 

signals induce constitutive tyrosine phosphorylation of the TCR complex and association of the 

tyrosine kinase ZAP-70 with the CD3 ζ-chain even in naive T cells (4, 5). TCR:self-pMHC signals 

do not typically produce a cellular phenotype associated with an effector T cell (3). However, tonic 

TCR signals can alter chromatin accessibility and influence the expression of several genes at the 

transcriptional or protein level in T cells (6-9). This feature of tonic TCR signaling also raises the 

possibility that variable gene expression patterns in response to tonic TCR signaling result in 

functional heterogeneity within the naive T cell population (10, 11). How the intensity of tonic 

TCR signals helps shape the responsiveness of naive T cells to subsequent foreign antigen 

stimulation remains unresolved (3). 

The immediate downstream effects of strong tonic TCR signals, such as CD3 ζ-chain 

phosphorylation and ZAP-70 recruitment to the TCR complex, are transient events (4). For 

example, the loss of ζ-chain phosphorylation and the dissociation of ZAP-70 from the TCR 

complex is evident in peripheral blood T cells compared to cells harvested from SLOs (4). Hence, 

the expression of proteins induced by TCR signaling, such as Nur77 and CD5, function as 

surrogate markers of tonic TCR signaling (3). Transgenic reporters of Nr4a family genes, 
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including Nr4a1 and Nr4a3, can provide fluorescence-based readouts of TCR signaling (12). The 

Nur77-GFP reporter transgene consists of enhanced green fluorescent protein (GFP) driven by the 

promoter and enhancer elements of the Nr4a1 gene (13, 14). Nr4a1 gene transcription and Nur77-

GFP reporter expression are induced in relative proportion to TCR signal strength. For example, 

the mean fluorescence intensity of Nur77-GFP expressed by acutely stimulated T cells decreases 

with diminishing pMHC affinity (13, 15). Furthermore, Nur77-GFP expression is relatively 

insensitive to constitutively active STAT5 or inflammatory signals, suggesting that reporter 

transgene expression is activated selectively by TCR stimulation in T cells (13). TCR-induced 

Nur77-GFP expression is also sensitive to inhibitors of TCR signaling proteins, including the 

tyrosine kinase ZAP-70. Previous work showed that stimulation with a single concentration of 

TCR stimulus in the presence of graded concentrations of a pharmacologic inhibitor of ZAP-70 

catalytic activity resulted in dose-dependent decreases in Nur77-GFP fluorescence intensity (16). 

Naive T cells express a wide range of steady-state Nur77-GFP in response to tonic or basal TCR 

signals from self-pMHC interactions in SLOs (13, 17, 18). In this study, we investigated the 

functional responsiveness of naive CD8+ T cells that express varying levels of Nur77-GFP. Naive 

CD8+ T cells expressing the highest levels of Nur77-GFP exhibit relative hyporesponsiveness to 

stimulation with agonist TCR ligands and differential gene expression, including genes potentially 

inhibiting T cell activation. We found that Nur77-GFPHI cells from mice lacking Cbl-b exhibit 

partially rescued responsiveness to TCR stimulation. Together, these findings suggest a model 

whereby naive CD8+ T cells adapt to high levels of tonic TCR signaling through negative 

regulation that limits T cell responsiveness. 

Results 

Naive CD8+ T cells experience variable strengths of tonic TCR signaling  
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We first sought to investigate the diversity of Nur77-GFP expression in the CD8+ T cell population. 

TCR polyclonal naive CD8+ and CD4+ T cells, as defined by their CD44LO CD62LHI cell surface 

phenotype, express Nur77-GFP at steady-state, with a range spanning over three orders of 

magnitude (Fig. 2.S1 A). The GFP intensities of naive CD4+ and CD8+ T cells are notably higher 

than non-transgenic T cells but decreased compared to CD4+ Foxp3+ regulatory T cells (Fig. 2.S1 

A), a T cell population with highly self-reactive TCRs (19-21). The 10% of naive CD8+ T cells 

expressing the highest levels of GFP exhibited largely overlapping or slightly reduced levels of 

surface TCR and CD8 than the 10% lowest GFP-expressing cells (Fig. 2.1 A). We also did not 

detect differences in surface plus intracellular TCR staining intensity between naive polyclonal 

GFPLO and GFPHI cells (Fig. 2.S1 B and C), suggesting that Nur77-GFP is uncorrelated with total 

TCR levels. The surface expression of CD5 correlates with TCR reactivity to self-pMHC (22-26). 

CD5 staining intensity is increased in naive, polyclonal GFPHI CD8+ T cells, in agreement with 

previous results and consistent with the concept that the intensity of CD5 and Nur77-GFP 

expression can reflect the strength of tonic TCR signaling (Fig. 2.S1 D, (27)). Naive GFPHI CD8+ 

T cells are CD44LO CD62LHI, consistent with a naive surface marker phenotype. However, within 

the naive CD8+ population, GFPHI cells exhibit increased CD44 staining intensity relative to 

GFPLO cells (Fig. 2.S1 E). This result is consistent with previous studies showing that CD5HI naive 

CD8+ T cells express higher levels of CD44 than CD5LO cells (27).  

We hypothesized that restricting the repertoire to a single TCR specificity would decrease the 

heterogeneity of GFP expression in a TCR transgenic population. To test the influence of TCR 

specificity on the distribution of GFP expression, we compared the intensity and distribution of 

GFP between naive polyclonal, OT-I, and P14 TCR transgenic populations. The geometric mean 

fluorescence intensity (gMFI) of GFP expressed by naive CD44LO CD62LHI OT-I cells was higher 
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than the GFP gMFI for polyclonal naive CD8+ cells, whereas P14 cells had a similar gMFI 

compared to polyclonal cells (Fig. 2.1 B; and Fig. 2.S1 F). These results suggest that TCR 

specificity can influence the intensity of TCR signaling experienced by individual T cells. We also 

confirmed that the Nur77-GFP distribution is similar between Trac-/- and Trac+/- P14 cells, 

suggesting that endogenous recombination of the TCR -chain in TCR transgenic cells does not 

dramatically shift the level of experienced tonic TCR signaling in the periphery (Fig. 2.S1 G).  

Increases in steady-state Nur77-GFP expression could reflect more intense or frequent tonic TCR 

signals. We hypothesized that GFP expression in naive OT-I cells would correlate with the relative 

TCR:pMHC 2D affinity. To test this hypothesis, we used a 2-dimensional micropipette adhesion 

frequency (2D-MP) assay (28). This assay measures the relative affinity of OT-I TCRs for pMHC 

in the context of 2-dimensional membrane environments. We compared naive GFPLO and GFPHI 

cells that expressed the OT-I TCR and were deficient for the endogenous TCR -chain to prevent 

endogenous TCR recombination. Furthermore, we excluded Qa2LO recent thymic emigrants 

(RTEs), which were more abundant in 6-13 week-old OT-I or P14 TCR transgenic mice but present 

at low frequencies in WT mice (Fig. 2.S1 H and I). RTEs continue to undergo maturation and 

exhibit diminished functional responses compared to mature T cells (29). 

Sorted naive GFPLO and GFPHI OT-I cells were brought into contact with human red blood cells 

(RBCs) coated with the cognate SIINFEKL (N4) peptide or the weaker affinity SIIVFEKL (V4) 

peptide presented by H2Kb for the detection of RBC elongation as a measure of an adhesion event 

(30). By calculating the adhesion frequency from a set of different T cell: RBC interaction times, 

the generated binding curve is used to calculate the 2D affinity (31). GFPHI naive OT-I cells 

exhibited an increase in relative TCR:pMHC 2-D affinity for both N4 and V4 antigens compared 
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to GFPLO cells (Fig. 2.1 C). These data suggest that higher relative 2D affinity interactions with 

N4, V4, and possibly to self-pMHC correlate with increased steady-state Nur77-GFP expression. 

This result is consistent with a previous study from our lab that revealed a positive correlation 

between Nur77-GFP expression in naive CD4+ OT-II cells and the relative 2D affinity to OVA 

peptide/MHC (7).  

We hypothesized that GFP expression in naive CD8+ T cells depends on exposure to pMHC. To 

test this hypothesis, we adoptively transferred naive polyclonal CD8+ T cells into B2m-/- or B2m+/+ 

recipients for ten days (Fig. 2.1 D). The CD8+ T cells transferred into B2m-/- recipients exhibited 

a reduction of GFP fluorescence intensity and CD5 staining intensity (Fig. 2.1 D). These results 

suggest that steady-state Nur77-GFP expression in naive CD8+ T cells depends on the continuous 

exposure to and the abundance of pMHC. Likewise, previous studies have shown that steady-state 

Nur77-GFP expression in CD4+ T cells also requires perpetual exposure to pMHC (13, 18). Hence, 

Nur77-GFP expression in naive T cells in the steady state reflects the frequency and intensity of 

relatively recently experienced tonic TCR signaling. 

We adoptively transferred the 20% lowest and highest GFP-expressing naive OT-I cells into 

congenic lymphoreplete recipients to determine whether the bias in GFP expression is sustained 

beyond several half-lives of GFP protein in a TCR transgenic population (Fig. 2.1 E). Four weeks 

post-transfer, the distribution of Nur77-GFP fluorescence overlapped completely (Fig. 2.1 E). 

These results suggest that GFP biases in a naive TCR transgenic population shift over extended 

periods. 

We next investigated how Nur77-GFP expression changes in naive polyclonal CD8+ T cells over 

several days by adoptively transferring the 10% lowest and highest GFP-expressing naive 
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polyclonal CD8+ T cells into congenic lymphoreplete recipients for one week (Fig. 2.1 F). Donor 

GFPLO cells tended to sustain low GFP intensity, even though weak affinity antigens can induce 

OT-I cells to upregulate Nur77-GFP in less than eight hours (13). These results suggested that 

polyclonal GFPLO cells tend to experience weak tonic TCR signals over a time scale of one week 

(Fig 2.1. F). TCR stimulation by GFPHI naive donor T cells also sustained relatively high GFP 

expression (Fig. 2.1 F), although part of this phenotype could be due to the reported half-life of 

GFP lasting 26-54 hours (32, 33). These results are consistent with previous work, which showed 

that sorted TCR polyclonal CD5LO and CD5HI naive CD4+ and CD8+ T cells maintained skewed 

CD5 expression more than four weeks post-adoptive transfer into lymphoreplete recipients (22, 

27). Hence, differences in TCR specificities may enable Nur77-GFP biases in naive polyclonal T 

cells for more extended periods.  

We next asked whether GFP expression by naive CD8+ T cells varied between cells harvested 

from different anatomical locations. Hence, we analyzed naive CD8+ T cells from different SLOs, 

such as the spleen, mesenteric lymph nodes, and Peyer’s patches, and compared the expression of 

GFP between these populations. However, we did not detect differences in the intensity or 

distribution of GFP expression (Fig. 2.S1 J). Subsequently, we queried whether the location within 

the spleen could still contribute to heterogenous Nur77-GFP expression in naive CD8+ T cells. To 

compare the GFP distribution of T cells located in the more vascularized red pulp versus the white 

pulp of the spleen, we performed intravascular labeling with fluorescently labeled anti-CD45 

antibodies 3 minutes before euthanasia. We detected largely overlapping GFP intensities for naive 

polyclonal CD8+ T cells labeled with anti-CD45 and cells not labeled with anti-CD45, interpreted 

to represent cells located in the red and white pulp, respectively (Fig. 2.S1 K). These results 

suggest that GFPLO and GFPHI cells are not skewed in their distribution at steady-state between the 
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red or white pulp in the spleen or the SLOs we analyzed. 

Taken together, we interpret steady-state levels of GFP to function as a readout of relatively 

recently experienced TCR signals. TCR specificity, relative 2-D affinity, and frequency and 

duration of TCR stimulations can influence the intensity of steady-state GFP expression. 

Naive CD8+ T cells that experience extensive tonic TCR signaling are hyporesponsive to TCR 

stimulation 

To analyze the functional responsiveness of GFPLO and GFPHI naive T cells, we isolated three 

populations across the GFP distribution (GFPLO, GFPMED, and GFPHI) from naive, polyclonal 

CD8+ T cells (Fig. 2.2 A; and Fig. 2.S2 A). After 24 hours of stimulation with soluble anti-CD3 

antibodies and splenocyte APCs, we labeled cells with an IFN catch-reagent consisting of an anti-

CD45 antibody conjugated with an anti-IFN antibody (34, 35). After a 45-minute secretion period 

at 37°C, we labeled the cells with a second anti-IFN antibody for detection purposes to visualize 

the secreted and “captured” IFN (35). Approximately 25% of GFPLO cells secreted IFN, whereas 

two-fold fewer GFPMED and less than 1% of GFPHI cells secreted IFN (Fig. 2.2 B and C). Hence, 

there was an apparent inverse correlation between the intensity of steady-state GFP expression and 

the magnitude of anti-CD3-induced IFN-secretion. Although cytokine production increases after 

T cells have undergone cell division, naive T cells have the capacity to produce effector cytokines 

within 24 hours of stimulation and before cell division (23, 36-43). We also detected a similar 

inverse correlation between Nur77-GFP expression and IFN-secretion in naive P14 TCR 

transgenic cells specific for the lymphocytic choriomeningitis virus (LCMV) epitope GP33 upon 

cognate antigen stimulation (Fig. 2.S2 B and C) (44). 

To determine whether GFPLO, GFPMED, and GFPHI cells similarly upregulated markers associated 
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with acute T cell activation, we analyzed their expression of the activation markers CD25, CD69, 

and transferrin receptor (CD71), in addition to the Nur77-GFP reporter. All three populations 

upregulated Nur77-GFP and CD69 above baseline levels (Fig. 2.2 D; and Fig. 2.S2 D). However, 

on average, GFPLO cells expressed higher levels of CD69 than GFPMED and GFPHI cells (Fig. 2.2 

D). Similarly, higher frequencies of the GFPLO population fully upregulated CD25 and CD71 (Fig. 

2.2 D). Following stimulation, the sorted GFPLO, GFPMED, and GFPHI populations each expressed 

similar levels of Nur77-GFP at the 24-hour endpoint. 

To test whether GFPLO and GFPHI cells exhibit differences in survival after stimulation, we 

quantified the proportion of viable CD8+ T cells after the 24-hour stimulation period. GFPHI cells 

had a 1.5-fold reduction in the percentage of viable cells compared with GFPLO cells (Fig. 2.S2 

E). Hence, GFPHI cells experience a decrease in cell survival following TCR stimulation. 

We next asked whether GFPLO and GFPHI cells exhibit differences in cell division. We 

hypothesized that more extensive tonic TCR signaling would result in delayed or reduced cell 

division upon stimulation of naive CD8+ T cells. We thus labeled CD8+ T cells with a cell 

proliferation dye and sorted naive GFPLO and GFPHI polyclonal T cells for in vitro stimulation 

with anti-CD3 antibodies and APCs (Fig. 2.S2 F). Three days post-stimulation, the proliferation 

index (the average number of divisions of cells that divided at least once) of GFPLO cells was 

greater than that of GFPHI cells (Fig. 2.S2 G). This result suggests that extensive tonic TCR 

signaling negatively impacts the proliferative responses of naive CD8+ T cells under the conditions 

tested. 

We further hypothesized that naive GFPLO cells might have a competitive advantage during the 

early phase of an immune response in vivo relative to GFPHI cells. To investigate this hypothesis, 
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we sorted the 10% highest and lowest GFP-expressing P14 cells with a CD44LO CD62LHI Qa2HI 

V2HI phenotype to isolate mature, naive P14 cells (Fig. 2.S2 H). In a competitive-transfer 

experiment, we co-transferred 3000 congenically distinct donor cells each, from GFPLO and GFPHI 

populations into WT recipients to analyze the ratiometric difference between the two populations 

in an acute infection model (Fig. 2.S2 I). Five days post LCMV infection, the ratio between GFPLO 

and GFPHI cells in the spleen significantly skewed toward GFPLO cells (Fig. 2.S2 I). Hence, GFPLO 

cells, relative to GFPHI cells, have a slight competitive advantage in the early phase of an immune 

response that persists through multiple rounds of cell division. 

We next asked how the cellular responses of GFPLO and GFPHI naive CD8+ OT-I TCR transgenic 

cells compared in response to titrated doses of peptide and with altered peptides that vary in affinity 

for the OT-I TCR. We postulated that GFPHI T cells exhibited decreased responsiveness for pMHC 

at low concentrations or weak affinity pMHC ligands. We sorted naive T cells with a CD8+ 

CD44LO CD62LHI Qa2HI phenotype from OT-I TCR-/- TCR transgenic mice to compare mature 

T cell populations differing only in basal GFP expression. From this naive T cell population, we 

isolated the 10% lowest and highest GFP-expressing cells (Fig. 2.3 A). We assessed the 

upregulation of CD25 and CD69 after stimulating GFPLO and GFPHI OT-I cells for 16 hours with 

APCs and the cognate N4 peptide. The dose-response curve of GFPHI cells was shifted further to 

the right compared to GFPLO cells, indicating a reduction in CD25 and CD69 upregulation. The 

calculated Log10 EC50 value for GFPLO cells was -11.36 compared to -11.23 for GFPHI cells (Fig. 

2.3 B; and Fig. 2.S3 A and B). These results suggest that GFPHI cells exhibit reduced 

responsiveness to a high-affinity antigen under non-saturating antigen doses. 

To test whether extensive tonic TCR signaling affected the responsiveness to antigen affinity, we 
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also stimulated OT-I cells with the SIIQFERL (Q4R7) altered peptide, which has reduced affinity 

for the OT-I TCR relative to the N4 peptide (45). The dose-response curve of GFPHI compared to 

GFPLO cells was increasingly shifted to the right when stimulated with Q4R7 relative to N4. The 

calculated Log10 EC50 value for GFPLO cells was -9.657 compared to -9.190 for GFPHI cells (Fig. 

2.3 B; and Fig. 2.S3 B). Upon stimulation with the weak agonist peptide SIIGFEKL (G4), the 

dose-response curve also shifted to the right for GFPHI cells. The calculated Log10 EC50 value for 

GFPLO cells was -6.907 compared to -6.155 for GFPHI cells (Fig. 2.3 B; and Fig. 2.S3 B). These 

results indicate that higher levels of accumulated TCR signaling from self-pMHC in naive CD8+ 

T cells result in hyporesponsiveness to subsequent stimulation. 

We next asked whether GFPLO and GFPHI OT-I cells exhibit differences in TCR-induced cytokine 

secretion. We hypothesized that GFPHI cells would exhibit decreased IL-2 and IFN secretion 

relative to GFPMED and GFPLO cells. After sorting GFPLO, GFPMED, and GFPHI OT-I cells and 

stimulating them for 16 hours with a concentration (1x10-11 M) of N4 peptide that was on the linear 

range of the curve for CD25- and CD69-upregulation, we performed IL-2- and IFN-capture 

assays (Fig. 2.3 C and D; and Fig. 2.S3 C and D). GFPLO OT-I cells generated the highest 

percentage of IFN-secreting cells (approximately 25%) (Fig. 2.3 C and D). There was a trend 

toward reduced IFN-secreting cells in the GFPMED population (about 15%) and a significant 

reduction in the GFPHI population (about 6%) (Fig. 2.3 C and D). The frequency of IL-2-secreting 

cells was below 5% for all populations at a dose of 1x10-11 M N4 peptide (Fig. 2.3 C and D). 

To induce more robust IL-2 secretion, we stimulated the three populations with a ten-fold higher 

dose of N4 peptide (1x10-10 M). At this dose, there was comparable IFN secretion (Fig. 2.3 C and 

D). However, approximately 25% of GFPLO cells secreted IL-2, whereas about 6% of GFPHI cells 



 

 

52 

secreted IL-2 (Fig. 2.3 C and D). Similarly, the frequency of cells that secreted both IL-2 and IFN 

was significantly higher in GFPLO cells (about 5%) than in GFPMED (approximately 2.5%) or GFPHI 

cells (about 1%) (Fig. 2.3 C and D). Hence, a dose-dependent, inverse correlation exists between 

GFP expression in naive CD8+ T cells and cytokine secretion in response to subsequent foreign 

antigen stimulation. 

CD8+ GFPHI cells exhibit attenuated calcium flux responses and exert reduced mechanical forces 

We next wanted to investigate whether GFPHI cells exhibited an attenuated response at more 

proximal events of T cell activation upon stimulation with cognate peptide. Among the early T 

cell responses to pMHC stimulation is the exertion of mechanical forces through the TCR (46). 

Previous work found a positive correlation between increases in the exertion of mechanical tension 

by T cells and increases in the intensity of ZAP-70 phosphorylation, suggesting a positive 

regulatory role for mechanical forces in early T cell activation (47). We hypothesized that GFPLO 

and GFPHI cells would exhibit differences in tension exerted on pMHC ligands. To test this 

hypothesis, we utilized DNA hairpin-based “tension” probes linked to pMHC. The tension probe 

consists of a DNA hairpin conjugated to fluorophore (Atto647N) and quencher (BHQ2) molecules 

positioned to quench fluorescence by fluorescence resonance energy transfer (FRET) when the 

DNA hairpin is in its closed configuration (Fig. 2.4 A) (48). When a T cell, through its TCR, 

applies forces to a pMHC molecule with a magnitude exceeding 4.7 piconewtons (pN), the DNA 

hairpin unfolds, separating the FRET pair and causing dequenching of the dye. A “locking” DNA 

strand is then introduced to selectively hybridize to the mechanically unfolded DNA hairpin and 

prevent refolding to capture the tension signal. After isolating the 10% lowest and highest GFP-

expressing OT-I cells, we cultured them on substrates coated with tension probes conjugated to 

H2-Kb loaded with OVA N4 peptide (Fig. 2.S4 A and B). GFPLO cells induced, on average, a 20% 
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higher fluorescence signal from the tension probes than GFPHI cells (Fig. 2.4 B and C). These 

results indicate that GFPLO cells were more likely to exert the 4.7 pN tension force required to 

unfold the DNA hairpins than GFPHI cells in response to pMHC stimulation. 

We next sought to determine whether GFPLO and GFPHI naive CD8+ T cells exhibited differences 

in proximal TCR signaling. We hypothesized that naive GFPHI OT-I T cells would exhibit 

decreased cytosolic Ca2+ concentrations relative to GFPLO cells upon stimulation with cognate N4 

peptide antigen. Hence, we co-incubated OT-I cells labeled with the Indo-1 ratiometric indicator 

dye with N4 peptide-pulsed APCs and analyzed the fluorescent signal of the calcium indicator dye 

in T cells by flow cytometry. Compared to the peak free Ca2+ concentration signal generated by 

GFPLO cells, the peak signal generated by GFPHI cells was reduced by 20% (Fig. 2.4 D). Together, 

these data suggest that GFPHI naive CD8+ T cells, which previously experienced more TCR 

signaling in the basal state, trigger downstream signals with weaker intensity in response to 

subsequent TCR stimulation. These results are consistent with a previous study using CD5 as a 

surrogate marker of self-pMHC reactivity, which showed an inverse correlation between the 

intensity of CD5 expression and the magnitude of anti-CD3-induced Ca2+ increases in naive CD8+ 

T cells (23). 

We further hypothesized that naive GFPHI OT-I cells would exhibit attenuated integrated TCR 

signaling in response to antigen stimulation. Upregulation of the transcription factor IFN 

regulatory factor 4 (IRF4) occurs within hours in response to TCR stimulation and is sensitive to 

both antigen affinity and antigen dose in CD8+ T cells (49, 50). Hence, we sorted naive GFPLO and 

GFPHI OT-I cells to investigate the induced IRF4 expression five hours post-stimulation with the 

weak agonist peptide G4. The gMFI of IRF4 staining intensity in GFPLO cells was, on average, 

1.6-fold higher than in GFPHI cells (Fig. 2.4 E). Thus, naive GFPHI cells exhibit a reduced intensity 
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of integrated TCR signaling within hours of stimulation compared to GFPLO cells. 

Extensive tonic TCR signaling in naive CD8+ T cells correlates with differences in gene expression 

To identify gene expression patterns associated with increased tonic TCR signaling in naive CD8+ 

T cells, we performed RNA-sequencing of naive CD8+ CD44LO CD62LHI Qa2HI OT-I cells isolated 

based on the 10% highest versus 10% lowest GFP fluorescence intensities. We detected a total of 

601 differentially expressed genes (DEGs) at a false discovery rate (FDR) < 0.05 (Fig. 2.5 A). 

Considering the correlation between Nur77-GFP expression and TCR signal strength, we 

hypothesized that GFPHI cells would exhibit a gene expression profile with more similarities to 

acutely stimulated cells than GFPLO cells. To test this hypothesis, we performed Gene Set 

Enrichment Analysis (GSEA) to compare our dataset of GFPLO and GFPHI naive CD8+ T cells 

with DEGs upregulated in viral infection-induced effector OT-I cells compared to naive cells (51). 

Consistent with this hypothesis, GFPHI cells showed enrichment of genes upregulated in effector 

CD8+ T cells (Fig. 2.5 B). 

Additionally, we compared the degree of overlap between DEGs in naive GFPHI versus GFPLO 

cells and DEGs in Listeria infection-induced OT-I effector cells versus naive OT-I cells (52) (Fig. 

2.S5 A). Linear regression analysis indicated a significant correlation between genes enriched in 

GFPHI cells and acutely stimulated OT-I cells (Fig. 2.S5 B). These results suggest that the effects 

of extensive tonic TCR signaling share similarities with the gene expression changes associated 

with acutely stimulated and effector CD8+ T cells. However, GFPHI cells also showed enrichment 

of genes upregulated in effector compared to resting memory OT-I cells (Fig. 2.5 B). We did not 

detect a statistically significant enrichment of genes associated with T cell exhaustion, senescence, 

or deletional tolerance in GFPHI cells (Fig. 2.5 B).  
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We next sought to explore the sets of DEGs in GFPHI naive CD4+ and CD8+ T cells. Therefore, 

we compared the DEGs between GFPLO and GFPHI naive CD8+ T cells and the DEGs upregulated 

in naive GFPHI Ly6C- CD4+ T cells (7) (Fig. 2.S5 C). Among the overlapping DEGs from both 

analyses (CD8+ and CD4+ cells), linear regression analysis suggested a significant correlation (Fig. 

2.S5 D). Hence, extensive tonic TCR signals during steady-state conditions induce similar 

transcriptional changes in naive CD4+ and CD8+ T cells. 

In addition, we detected increased transcripts of genes involved in cell division in GFPHI relative 

to GFPLO cells, consistent with a gene signature indicative of acutely activated T cells (Fig. 2.5 

C). In agreement, naive CD8+ T cells that experience stronger tonic TCR signals and express 

higher levels of CD5 likewise show enrichment for cell cycle-associated genes (53). GFPHI cells 

also expressed higher levels of transcription factors associated with T cell differentiation, such as 

Bcl6 and Ikzf2 (Helios), and TCR stimulation, such as Tox and Irf8 (Fig. 2.5 C) (54-56). Consistent 

with a gene signature of T cell activation, GFPHI cells upregulated immunomodulatory molecules 

such as Tnfrsf9 (4-1bb), Tnfsf11 (Rankl), and Cd200 (Fig. 2.5 C) (57-60). GFPHI cells expressed 

lower levels of Il7r (CD127) in addition to other common -chain cytokine receptors such as Il4ra, 

Il6ra (CD126), and Il15ra (Fig. 2.5 C). Among genes involved in signal transduction, GFPHI cells 

had lower expression levels of kinases such as Pim1 and Pdk1. In contrast, GFPHI cells expressed 

higher levels of the phosphatases Ubash3b (Sts1), Dusp22 (Jkap), and Ptpn14 (Fig. 2.5 C). Taken 

together, gene expression patterns associated with higher levels of tonic TCR signaling bear 

similarities to gene expression patterns induced by acute TCR stimulation. This gene signature 

includes higher expression levels of immunomodulatory receptors and ligands, including negative 

regulators of TCR signaling. 

We next performed flow cytometry analyses to determine whether differential gene expression 
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patterns correlated with differential protein expression. We analyzed the 10% highest vs. lowest 

GFP-expressing naive, polyclonal CD8+ T cells to compare the protein levels of several DEGs, 

including Bcl6, Ikzf2 (Helios), Izumo1r (Folate receptor 4), Il6ra (CD126), Il7ra (CD127), and 

Cd200 (Fig. 2.5 D; and Fig. 2.S5 E). For four of the six selected DEGs, protein staining was 

increased in GFPHI relative to GFPLO cells and thus correlated with the RNA-sequencing data. 

GFPHI cells expressed lower surface levels of CD126 and CD127, consistent with the RNA-seq 

analysis. Flow cytometry analysis of naive CD8+ T cells showed a spectrum of CD127 and CD200 

expression (Fig. 2.5 E). Within the naive CD8+ population, the CD127HI CD200LO cell subset 

enriched for Nur77-GFPLO cells, and in contrast, the CD127LO CD200HI population enriched for 

GFPHI cells (Fig. 2.5 E). These results indicate that Nur77-GFPLO and GFPHI cells exhibit 

differential expression of several genes at the protein level. 

We hypothesized that CD127LO CD200HI cells would exhibit an attenuated responsiveness similar 

to GFPHI cells. To test this hypothesis, we sorted CD127HI CD200LO (GFPLO-like) and CD127LO 

CD200HI (GFPHI-like) naive CD8+ T cells from WT mice and stimulated these populations with 

APCs and anti-CD3 antibodies (Fig. 2.5 F). After 24 hours of stimulation, we performed an IFN 

secretion assay. The frequency of IFN-secreting CD127LO CD200HI (GFPHI-like) cells was, on 

average, more than four-fold lower than the frequency of IFN-secreting CD127HI CD200LO 

(GFPLO-like) cells (Fig. 2.5 F). These results suggest that GFPHI-like naive CD8+ T cells from WT 

mice exhibit attenuated early responsiveness and a similar functional phenotype as Nur77-GFPHI 

naive CD8+ T cells. 

Cbl-b deficiency partially rescues the responsiveness of GFPHI naive CD8+ T cells 

We hypothesized that increased steady-state expression of negative regulators mitigates the 
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activation of GFPHI cells. Previous studies in our lab revealed that naive GFPHI Ly6C- CD4+ T 

cells express higher steady-state protein levels of the E3 ubiquitin ligase Cbl-b, a negative regulator 

of TCR signaling (18, 61). We hypothesized that CD8+ GFPHI cells, similarly to their CD4+ 

counterparts, would express higher levels of Cbl-b. Our RNA-seq analyses did not detect a 

significant difference in Cblb mRNA levels between GFPLO and GFPHI naive CD8+ T cells. We 

next compared Cbl-b protein expression by GFPLO and GFPHI cells by intracellular staining 

analysis. Both cell populations stained positive for Cbl-b; however, the gMFI of Cbl-b staining 

intensity in GFPHI cells was almost 1.5-fold higher than in GFPLO cells (Fig. 2.6 A). Hence, 

extensive tonic TCR signaling is associated with an upregulation of Cbl-b protein levels in naive 

CD8+ T cells. 

Considering the inhibitory function of Cbl-b in the TCR signal transduction pathway and its 

increased expression in GFPHI cells, we hypothesized that Cbl-b deficiency would rescue the 

attenuated responsiveness of GFPHI cells. We first generated Cblb-/- Nur77-GFP mice to test this 

hypothesis. Cblb+/+ and Cblb-/- naive CD8+ cells express a similar range of Nur77-GFP at steady-

state, although the gMFI of GFP was higher in Cblb-/- cells (Fig. 2.6 B). To determine whether 

Cbl-b deficiency rescues the responsiveness of GFPHI cells, we isolated the 10% lowest and highest 

GFP-expressing cells (Fig 2.6 C). After stimulation for 24 hours with APCs and anti-CD3 

antibodies, Cblb+/+ and Cblb-/- cells upregulated GFP to comparable levels (Fig. 2.6 D). The 

frequency of GFPHI cells that upregulated CD25 and CD69 after 24 hours of stimulation was 

approximately two-fold higher in Cblb-/- compared to Cblb+/+ cells (Fig. 2.6 E). The frequencies 

of CD25HICD69HI cells were higher in GFPLO cells and not significantly different between Cblb+/+ 

and Cblb-/- cells (Fig. 2.6 E). In a complementary approach, we analyzed Cbl-b-deficient naive 

CD8+ T cells using the CD127HI CD200LO (GFPLO-like) and CD127LO CD200HI (GFPHI-like) 
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gating strategy (Fig. 2.S6A and B). While only 5% of Cblb+/+ GFPHI-like cells fully upregulated 

CD25 and CD69, the frequency was more than ten-fold higher in Cblb-/- GFPHI-like cells (Fig. 

2.S6 C). The frequency of CD25HICD69HI cells was 1.5-fold higher in Cblb-/- compared to Cblb+/+ 

GFPLO-like cells (Fig. 2.S6 C). 

We next quantified the increases in CD25 gMFI from Cblb+/+ to Cblb-/- populations. The CD25 

gMFI increased for both GFPLO and GFPHI populations; however, the fold increase in CD25 gMFI 

was significantly higher for GFPHI than GFPLO cells (Fig 2.6 F). We next compared the CD25 

gMFI between Cblb-/- and Cblb+/+ GFPLO-like and GFPHI-like cells. The CD25 gMFI increased in 

Cblb-/- cells for both populations (Fig. 2.S6 D). There was also a trend of a higher fold increase for 

GFPLO-like cells, but that did not reach statistical significance (Fig. 2.S6 D). These data suggest 

that the CD25 upregulation of GFPHI cells was rescued to a greater extent by Cbl-b deficiency than 

in GFPLO cells. 

We next asked how Cbl-b deficiency affected the secretion of IFN in GFPLO and GFPHI cells. 

After 24 hours of stimulation with anti-CD3-mediated TCR-crosslinking, we performed an IFN-

capture assay. The percentage of Cblb+/+ GFPHI cells that secreted IFN was on average 6% +/- 

3.4%, whereas the percentage of Cblb-/- GFPHI cells that secreted IFN was on average 28% +/-

4.7% (Fig. 2.6 F). Among GFPLO cells, Cbl-b-deficiency increased the frequency of IFN-

secreting cells almost two-fold (Fig. 2.6 F). We next asked whether Cbl-b deficiency could also 

rescue the secretion of IFN in GFPHI-like cells. Approximately 20% of GFPHI-like Cblb-/- T cells 

secreted IFN, while the frequency of IFN-secreting cells was less than 1% in the GFPHI-like 

Cblb+/+ population (Fig. 2.S6 E). IFN secretion in GFPLO-like Cbl-b-deficient T cells was about 

four-fold more prevalent compared to GFPLO-like Cblb+/+ cells (Fig. 2.S6 E). Together, these 
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results indicate that naive GFPLO and GFPHI CD8+ T cells differentially express Cbl-b at the protein 

level and are more responsive to TCR stimulation in the absence of Cbl-b. However, some GFPHI 

responses, such as CD25 upregulation, appear to be rescued more profoundly by Cbl-b deficiency. 

These data support a model where extensive tonic TCR signals induce negative regulation, partly 

mediated by increased Cbl-b expression. 

Discussion 

In this study, we found that naive CD8+ T cell responsiveness correlates inversely with steady-

state Nur77-GFP expression. Hence, we propose a model where extensive tonic TCR signaling 

induces negative feedback mechanisms that limit the responsiveness to subsequent TCR 

stimulations. 

Steady-state Nur77-GFP expression in naive T cells is heterogeneous, and the strength, frequency, 

and recency of tonic TCR signals may all influence Nur77-GFP expression levels in naive CD8+ 

T cells. Our findings showed that steady-state Nur77-GFP expression depended on continuous 

exposure to MHC I, indicating that recurrent TCR signals continuously drive Nur77-GFP 

expression. These results are consistent with previous studies that showed that naive T cells engage 

in multiple transient interactions with APCs that, on average, last for less than five minutes per 

interaction (62). These findings suggest that naive T cells experience discontinuous tonic TCR 

signaling during these short-lived interactions with APCs. The GFP proteins expressed as a result 

of TCR stimulation persist in T cells with a half-life of 26-54 hours, longer than most T cell:APC 

interactions (32, 33). In light of these results, we conclude that steady-state GFP expression can 

reflect cumulative tonic TCR signals experienced by T cells as they scan APCs in SLOs. On the 

other hand, it is formally possible that high basal Nur77-GFP expression reflects very recent acute 

TCR stimulation. However, studies of the reporter transgene Nur77-Tempo suggest this may not 
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be the case. In Nur77-Tempo transgenic mice, the Nr4a1 promoter drives the expression of a 

Fluorescent Timer (FT) protein (63). The FT protein shifts its fluorescence emission spectrum with 

a half-life of around four hours in T cells (64). Analysis of the FT fluorescence in CD69- CD8+ T 

cells in the spleen showed non-detectable levels of the less mature form of FT, indicating that the 

contribution of very recent tonic TCR signals to steady-state FT expression was minimal. These 

results are consistent with the model that fluorescent reporters can reflect the accumulated output 

of multiple discontinuous tonic TCR signals experienced by naive T cells at steady-state. 

Considering these findings and the decay of Nur77-GFP in naive CD8+ T cells seen after ten days 

in B2m-/- mice, we interpret steady-state Nur77-GFP expression in naive T cells to reflect the 

accumulation of TCR signaling events occurring within days. 

The influence of discrete, recurrent TCR signaling events on T cell biology is also apparent during 

development. For example, CD4+ CD8+ double positive (DP) thymocytes experience multiple 

transient TCR stimulations over hours to days during thymic positive selection, as observed by 

transitory calcium increases (65). Inhibition of ZAP-70 kinase activity decreased the intensity and 

frequency of these discontinuous signaling events and correlated with an impairment in positive 

selection (66). 

Our gene expression analyses revealed that high GFP expression in naive T cells correlates with 

upregulation of a gene expression profile associated with T cell activation and negative regulators 

of TCR signaling. This finding is reminiscent of recent studies showing that constitutive agonist 

TCR stimulation in mice unperturbed by infection or inflammatory mediators is associated with 

tolerogenic responses in CD4+ T cells (67). In this system, constitutive expression of even low 

doses of cognate antigen over an extended period induces the upregulation of genes associated 

with anergy (67). Furthermore, we previously found that naturally occurring naive Nur77-GFPHI 
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CD4+ T cells exhibit a gene expression profile associated with T cell activation and negative 

regulation (7). Moreover, naive CD4+ T cells expressing a hyperactive ZAP-70 mutant experience 

increased tonic TCR signaling but exhibit reduced responsiveness to agonist TCR stimulation (68). 

However, Cbl-b-deficiency restored the responsiveness of those T cells, highlighting the role of 

Cbl-b in CD4+ T cell anergy (68). These studies suggest that extensive TCR signals can induce 

negative feedback mechanisms. 

Here, we propose that the attenuated responsiveness of the most self-reactive naive CD8+ T cells 

due to induced negative regulation is dependent, at least in part, on the ubiquitin ligase Cbl-b. 

Nur77-GFP expression in naive CD8+ T cells positively correlates with increased protein levels of 

the ubiquitin ligase Cbl-b. The signalosome of Cbl-b in CD4+ T cells consists of nearly 100 

interacting partners, including Sts1, Sts2, CD5, CSK, and LAT (69). Studies of Cbl-b deficiency 

in T cells have established Cbl-b as a negative regulator of T cell activation (61). Cbl-b deficient 

T cells exhibit many altered signal transduction pathways in response to TCR signaling, such as 

increased NF-B activation and Vav1 phosphorylation (70, 71). 

Recent studies also suggest that Nr4a transcription factors restrain peripheral T cell responses (72). 

Consistent with this concept, in vivo-tolerized murine T cells express high levels of Nr4a1, and 

Nr4a1 overexpression results in the upregulation of anergy-associated genes, including Cbl-b (73). 

Nr4a1 deficiency results in resistance to anergy induction and exacerbates autoimmune disease 

severity (73-75). Moreover, Nr4a1-/- Nr4a2-/- Nr4a3-/- CAR T cells had an enhanced antitumor 

response in a solid tumor mouse model (76). These studies suggest that Nr4a1 and the other Nr4a 

family genes can act as negative regulators (77). We propose that the transcriptional upregulation 

of Nr4a1 in Nur77-GFPHI naive CD8+ cells is part of a negative feedback mechanism also 

associated with tonic TCR stimulation.  
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Our differential gene expression analyses suggested that strong tonic TCR signaling induced 

upregulation of genes associated with acute TCR stimulation, as well as the phosphatases Ubash3b 

(encoding Sts1), Dusp22 (encoding Jkap), and Ptpn14, which have the potential to function as 

negative regulators of intracellular signaling in naive OT-I GFPHI cells. Ubash3b-/- and Ubash3b-

/- Ubash3a-/- T cells are hyperresponsive to TCR stimulation (78, 79). Sts1’s role in negatively 

regulating T cell responsiveness may involve the inhibition of ZAP-70 through the 

dephosphorylation of regulatory tyrosine residues (79). The phosphatase Jkap can dephosphorylate 

kinases of the proximal TCR signaling cascade, while Ptpn14 has unclear functions in T cells (80, 

81). The higher gene expression of these phosphatases in GFPHI cells is coherent with the higher 

expression of the phosphatase Ptpn2 in CD5HI over CD5LO naive CD8+ T cells (82). Furthermore, 

T cells deficient in Ptpn2 tend to undergo more extensive lymphopenia-induced proliferation, 

suggesting Ptpn2 negatively regulates TCR:self-pMHC signaling (82). 

CD5-deficient T cells are hyperresponsive to TCR stimulation, suggesting that CD5 can act as a 

negative regulator of TCR signaling (83, 84). CD5 and Nur77-GFP are both surrogate markers of 

tonic TCR signaling (3). However, although a positive correlation exists between CD5 staining 

intensity and Nur77-GFP expression in naive CD8+ T cells, we show in this study that the 10% 

lowest and highest GFP-expressing cells still have overlapping CD5 staining intensity. Likewise, 

previous studies showed that the 20% top and bottom CD5-expressing naive CD8+ T cells have 

overlapping Nur77-GFP expression (27). Hence, CD5HI and Nur77-GFPHI expression phenotypes 

mark different cell populations. Similarly, CD5LO and Nur77-GFPLO expression phenotypes label 

diverging cell populations. We propose that the differences in cellular compositions of CD5LO and 

GFPLO (or CD5HI and GFPHI) cell populations can lead to different functional phenotypes. For 

example, previous studies suggested that CD5HI naive CD8+ T cells have a competitive advantage 
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over CD5LO cells in response to foreign antigen stimulation (27, 85). In contrast, our results suggest 

that GFPLO cells have a competitive advantage over GFPHI cells. Understanding the differences 

between CD5 and Nr4a1-reporter expression as markers of tonic TCR signaling would require 

additional studies. 

The upregulation of negative regulators in naive T cells in response to tonic TCR signaling is 

consistent with models proposing that T cell responsiveness depends on previously experienced 

TCR signals (9, 86). A negative feedback loop is one way in which relatively strong basal TCR 

signaling could effectively result in T cell desensitization and hyporesponsiveness to subsequent 

TCR stimulations. “Adaptive tuning” in this context could attenuate the responsiveness of the 

naive T cells that respond most intensely to self-pMHC (87). Strong TCR stimulation of naive T 

cells can re-calibrate the activation thresholds of recently stimulated T cells through upregulation 

of checkpoint receptor expression (88). 

Variable levels of Nur77-GFP expression appear to correlate with functional heterogeneity within 

the naive CD8+ T cell population. Tonic TCR signal strength may influence such variations at the 

single-cell level. Lineage-tracing studies have previously identified diversity in the expansion and 

differentiation of single TCR transgenic T cells through primary and recall responses (89). Cellular 

heterogeneity may also contribute to the dynamic nature of adaptive immune responses to respond 

to a breadth of antigens (11, 90). 

In conclusion, we observed reduced responsiveness in GFPHI naive CD8+ T cells that have 

experienced extensive tonic TCR stimulation in the steady state. We speculate that such negative 

feedback mechanisms may constitute a form of cell-intrinsic tolerance in naive T cells. 

Materials and Methods 
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Mice 

Nur77-GFP (Tg(Nr4a1-EGFP)GY139Gsat) transgenic mice, ZAP-70 deficient mice lacking 

mature T cells (Zap70tm1Weis), and Foxp3-RFP mice (C57BL/6-Foxp3tm1Flv/J) have been 

previously described (14, 91, 92). C57BL/6J mice (WT mice in the text), CD45.1 mice (B6.SJL-

Ptprca Pepcb/BoyJ), and B2m-/- mice (B6.129P2-B2mtm1Unc/DcrJ) were purchased from the 

Jackson Laboratory (93). When noted, the Nur77-GFP strain was interbred with the CD45.1 strain. 

A Nur77-GFP strain that is interbred with the OT-I (C57BL/6-Tg(TcraTcrb)1100Mjb/J) TCR 

transgenic strain was described previously (15). This OT-I-Nur77-GFP strain was interbred with 

a Trac-/- strain (B6.129S2-Tcratm1Mom/J) purchased from the Jackson Laboratory. A Nur77-GFP 

strain interbred with the Foxp3-RFP strain has previously been described (18). P14 mice have been 

described before and were generously provided by Rafi Ahmed at Emory University (94). P14 

mice on the C57BL/6J background were interbred with the Nur77-GFP and the CD45.1 strains. 

All mice were housed under specific pathogen-free conditions in the Division of Animal Resources 

at Emory University. The Cblb-/- strain was previously described and was interbred with the Nur77-

GFP strain (95). These two strains were maintained in the Laboratory Animal Resource Center at 

the University of California, San Francisco. Both female and male mice were used throughout the 

study. All animal experiments were conducted in compliance with the Institutional Animal Care 

and Use Committees at Emory University (PROTO201700761) and the University of California, 

San Francisco (AN184320-02D). 

Antibodies and reagents  

The antibodies and reagents used in this study are listed in table S1. For the negative enrichment 

of CD8+ T cells, the following biotinylated anti-mouse or anti-mouse/human antibodies were used: 

CD4 (clone RM4-5), CD19 (6D5), B220 (RA3-6B2), CD11b (M1/70), CD11c (N418), CD49b 
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(DX5), and Erythroid cells (TER119), for the negative selection of APCs, biotinylated anti-CD4 

(RM4-5), anti-CD8 (53-6.7), and anti-Erythroid cells (TER119) were used. 

Lymphocyte isolation and flow cytometry  

Single-cell suspensions of lymphoid organs were generated by mashing organs through a 70 µm 

cell strainer or using a Dounce homogenizer. For phenotypic analysis of T cells by flow cytometry, 

red blood cells (RBCs) were lysed using RBC Lysis Buffer (Tonbo Biosciences) prior to Fc-block 

incubation (anti-mouse CD16/CD32, clone 2.4G2). CD8+ T cells were purified by negative 

selection using biotinylated antibodies and magnetic beads, as previously described (96). 

Splenocytes were used as APCs, isolated from Zap70-/- or Trac-/- mice after RBC lysis or by 

negative selection using biotinylated antibodies and magnetic beads on single-cell suspensions 

from C57BL/6 mice. Single-cell suspensions were stained in PBS and washed with FACS buffer 

(PBS with 0.5% BSA and 2 mM EDTA) for surface stains. For intracellular Bcl6, Helios, and 

IRF4 staining, samples were fixed and permeabilized with the Foxp3/Transcription Factor Staining 

kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. For intracellular 

staining of TCR- and Cbl-b, samples were fixed with 4% paraformaldehyde in PBS and 

permeabilized with Perm/Wash buffer (BD Biosciences) according to the manufacturer’s 

instructions. All intracellular stainings were performed at room temperature. Cbl-b were stained 

with a primary Rabbit anti-Mouse antibodies and a secondary stain with a Donkey anti-Rabbit IgG 

FAB fragment (Jackson ImmunoResearch). For in vitro proliferation analysis, T cells were labeled 

with CellTrace Violet (ThermoFisher Scientific) according to the manufacturer’s instructions. 

Samples were analyzed using FACSymphony A5 (BD Biosciences), FACSymphony A3 (BD 

Biosciences), LSRFortessa (BD Biosciences), or Cytek Aurora instruments. Flow cytometry data 

were analyzed using FlowJo v.10.8.1 software (BD Biosciences). 
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Intravascular labeling  

Intravascular labeling was performed as previously described (97). Briefly, 3 µg anti-CD45.2-APC 

antibody was injected in 200 µl PBS intravenously 3 min before euthanasia. Cells from the spleen 

were analyzed by flow cytometry. Lymph nodes and peripheral blood were harvested as negative 

and positive controls, respectively. Positive staining with anti-CD45 antibodies was interpreted to 

indicate cells located within the red pulp; the absence of staining with anti-CD45 was interpreted 

to indicate cells located within the white pulp. 

Cell sorting  

Naive CD8+ GFPLO and GFPHI T cells were sorted from bulk CD8+ T cells using a FACS Aria II 

SORP cell sorter (BD Bioscience). From viable polyclonal CD8+ CD44LO CD62LHI cells, the 10% 

of cells with the highest and the 10% of cells with the lowest GFP fluorescence intensity were 

sorted. For OT-I cells, samples were sorted on GFP expression (top and bottom 10%) from viable 

CD8+ CD44LO CD62LHI Qa2HI cells. For the DNA hairpin tension probe experiment, bulk CD8+ 

T cells were sorted based on a viable CD4- CD19- phenotype, then GFPLO and GFPHI cells were 

isolated from the 10% of cells with the highest and lowest GFP fluorescence intensity. The purity 

of CD8+ T cells post-enrichment was >96%. 

Adoptive transfer and infections  

For the polyclonal Nur77-GFP stability experiment, 5105 sorted CD44LO CD62LHI polyclonal 

GFPLO or GFPHI (top and bottom 10%) CD8+ T cells were injected intravenously into congenic 

WT recipients in 200 µl PBS. For the OT-I Nur77-GFP stability experiment, 1.3-1.8106 sorted 

CD44LO CD62LHI Qa2HI OT-I GFPLO or GFPHI (top and bottom 20%) CD8+ T cells were injected 

intravenously into congenic WT recipients in 200 µl PBS. Flow cytometry analysis was conducted 
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seven days (polyclonal experiment) or four weeks (OT-I experiment) later on CD8+ T cells 

enriched from the spleen and lymph nodes. For the parking experiment of Nur77-GFP naive CD8+ 

T cells in B2m-/- vs. B2m+/+ recipients, 2.2-2.5106 sorted CD44LO CD62LHI polyclonal CD8+ T 

cells crossed to the CD45.1 strain, were injected intravenously in 200 µl PBS. Flow cytometry 

analysis was conducted ten days later on CD8+ T cells enriched from the spleen and lymph nodes. 

For the co-transfer experiment of P14 cells, GFPLO and GFPHI (top and bottom 10%) P14 cells 

were sorted from Va2+ CD44LO CD62LHI Qa2HI CD8+ T cells. Three thousand cells of each 

population were co-injected intravenously in 200 µl PBS into CD45.1+ WT recipients (donor cells 

were either CD45.1+ CD45.2+ or CD45.2+.). Recipients were infected with 2105 PFU LCMV 

Armstrong i.p. the following day, and flow cytometry analysis was conducted five days later on 

splenic cells. 

T cell stimulation  

For in vitro stimulation of T cells, 5  104 sorted CD8+ T cells were cultured with 2.5  105 APCs 

(T cell-depleted splenocytes) per well in a 96-well U-bottom plate. Polyclonal CD8+ T cells were 

incubated with 0.25 µg/ml anti-CD3 antibodies (clone 145-2C11), whereas OT-I cells were 

incubated with SIINFEKL (N4) or SIIQFERL (Q4R7) or SIIGFEKL (G4) peptides (GenScript) at 

indicated concentrations. As a positive control of TCR internalization, splenocytes were incubated 

with 10 µg/ml anti-CD3 antibodies and 2 µg/ml anti-CD28 antibodies (clone E18) for 90 minutes 

at 37°C prior to staining. Cells were cultured in RPMI 1640 (Thermo Fisher Scientific) 

supplemented with 10% FBS, 1% Penicillin-Streptomycin-Glutamine, 1% non-essential Amino 

Acids, 10 mM HEPES, 1 mM Sodium Pyruvate, and 50 µM 2-mer-capto-ethanol at 37°C with 5% 

CO2. 
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Cytokine secretion assay  

To detect IFN secretion by stimulated polyclonal CD8+ T cells, we used the IFN Secretion Assay 

Kit (Miltenyi Biotech, catalog #130-090-984) after 24 hours of stimulation with APCs and peptide. 

This assay enabled sensitive detection of cytokine secretion with low numbers of sorted cells 

compared to fixation, permeabilization, and intracellular staining. IFN- and IL-2-secreting OT-I 

cells were co-labeled using the IFN Secretion Assay Kit (Miltenyi Biotech, catalog #130-090-

516) and the IL-2 Secretion Assay Kit (Miltenyi Biotech, catalog #130-090-987) after 16 hours of 

stimulation. Briefly, 1-1.5  105 T cells, including co-cultured T cell-depleted splenocytes, were 

labeled with the bispecific catch reagent and incubated in 50 ml of pre-warmed RPMI 

supplemented with 10% FBS for 45 min at 37°C. 50 ml conical tubes were inverted every 5 

minutes several times during incubation. After washing, cells were stained with the cytokine 

detection antibody/antibodies in addition to surface antibodies. 

Calcium analysis  

OT-I cells were labeled with 1.5 µM Indo-1 AM dye (ThermoFisher Scientific) according to the 

manufacturer’s instructions. APCs (T cell-depleted splenocytes) were pulsed for 30 minutes at 

37°C with 1 µM SIINFEKL peptide and washed. All cells were incubated at 37°C during the 

acquisition and for 5 min before the start of the experiment. After the baseline calcium levels of 4 

 106 OT-I cells were recorded for 30 seconds, cells were pipetted to an Eppendorf tube containing 

8  106 peptide-pulsed APCs and spun down for 5 seconds in a microcentrifuge. The acquisition 

was resumed after the cell pellet was resuspended. The ratio of bound dye (Indo-violet) to unbound 

dye (Indo-blue) was analyzed for the 10% top and bottom GFP-expressing cells gated on viable 

CD8+ CD44LO cells. 
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Preparation of tension probe surfaces  

No. 1.5H glass coverslips (Ibidi) were placed in a rack and sequentially sonicated in Milli-Q water 

(18.2 megohms cm−1) and ethanol for 10 minutes. The glass slides were then rinsed with Milli-Q 

water and immersed in freshly prepared piranha solution (3:1 sulfuric acid:H2O2) for 30 minutes. 

The cleaned substrates were rinsed with Milli-Q water at least six times in a 200-mL beaker and 

washed with ethanol thrice. Slides were then incubated with 3% 3-aminopropyltriethoxysilane 

(APTES) in 200 mL ethanol for 1 hour, after which the surfaces were washed with ethanol three 

times and baked in an oven at 100°C for 30 minutes. The slides were then mounted onto a six-

channel microfluidic cell (Sticky-Slide VI 0.4, Ibidi). To each channel, ~50 mL of NHS-PEG4-

azide (10 mg/ml) in 0.1 M NaHCO3 (pH 9) was added and incubated for 1 hour. Afterward, the 

channels were washed with 1 mL Milli-Q water three times, and the remaining water in the channel 

was removed by pipetting. The surfaces were then blocked with 0.1% BSA for 30 minutes and 

washed with PBS three times. Subsequently, the hairpin tension probes were assembled in 1 M 

NaCl by mixing the Atto647N-biotin labeled ligand strand (220 nM), the DBCO-BHQ2 labeled 

quencher strand  (220 nM), and the hairpin strand (200 nM) in the ratio of 1.1:1.1:1. The mixture 

was heat-annealed at 95°C for 5 minutes and cooled down to 25°C over a 30-minute time window. 

The assembled probe (~50 mL) was added to the channels (Final concentration = 100 nM) and 

incubated overnight at room temperature. This strategy allows for covalent immobilization of the 

tension probes on azide-modified substrates via strain-promoted cycloaddition reaction. Unbound 

DNA probes were washed away by PBS the next day. Then, streptavidin (10 mg/ml) was added to 

the channels and incubated for 45 minutes, followed by washes with PBS. Next, a biotinylated 

pMHC (OVA N4-H2Kb) ligand (10 mg/ml) was added to the surfaces, incubated for 45 minutes, 

and washed with PBS. Surfaces were buffer exchanged with Hanks’ balanced salt solution before 
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imaging. 

Imaging TCR tension with DNA hairpin tension probes  

TCR:pMHC interactions exert force and mechanically unfold the DNA hairpin, leading to the dye's 

(Atto647N-BHQ2) dequenching. T-cells were added to the tension probe surface and incubated 

for 20 minutes at room temperature. 200 nM of locking strand was then added to the surface for 

10 minutes to capture the tension signal. 

Relative 2D affinity assay  

Negative enrichment of CD8+ T cells from OT-I-Nur77-GFP-Trac-/- spleens was performed using 

the CD8+ T Cell Isolation Kit (Miltenyi Biotec) according to the manufacturer’s instructions. 

Naive OT-I cells were sorted on Nur77-GFP expression (top and bottom 10%) from viable CD44LO 

CD62LHI Qa2HI cells. To prevent CD8 co-receptor binding to MHC, monomers with an H-2Kb a3 

domain with a human HLA-A2 a3 domain were generated. The 2D-MP assay was performed as 

previously described (28, 98, 99). Briefly, human RBCs coated with various concentrations of 

Biotin-LC-NHS (BioVision) were coated with 0.5 mg/ml of streptavidin (Thermo Fisher 

Scientific), followed by 1 µg of SIINFEKL (N4) or SIIVFEKL (V4) monomer generated by the 

National Institutes of Health Tetramer Core Facility. Surface pMHC and TCR densities were 

determined by flow cytometry using anti-TCR- PE antibody (BD Biosciences) and anti-mouse 

2-microglobulin PE antibody (BioLegend) with BD QuantiBRITE PE beads for standardization 

(BD Biosciences). TCR:pMHC affinity calculations were determined as previously described (28, 

98). 

RNA-Sequencing  

1  105 CD8+ CD44LO CD62LHI Qa2HI OT-I GFPLO and GFPHI cells from three biological 
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replicates were sorted into RLT Lysis Buffer (Qiagen) containing 1% 2-mercaptoethanol. RNA 

was isolated using the Zymo Quick-RNA MicroPrep kit (Zymo Research), cDNA was prepared 

from 1000 cell equivalent of RNA using the SMART-Seq v4 Ultra Low Input RNA Kit for 

Sequencing (Takara Bio), and next-generation sequencing libraries were generated using the 

Nextera XT DNA Library Preparation kit (Illumina). The library size patterning from a 2100 

Bioanalyzer (Agilent) and the DNA concentration were used as quality control metrics of the 

generated libraries. Samples were sequenced at the Emory Nonhuman Primate Genomics Core on 

a NovaSeq6000 (Illumina) using PE100. FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to validate the quality of 

sequencing reads. Adapter sequences were trimmed using Skewer, and reads were mapped to the 

mm10 genome using STAR (100, 101). Duplicate reads were identified using PICARD 

(http://broadinstitute.github.io/picard/) and were removed from the following analyses. Reads 

mapping to exons were counted using the R package GenomicRanges (102). Genes were 

considered expressed if three reads per million were detected in all samples of at least one 

experimental group. 

Analysis of differentially expressed genes was conducted in R v.4.1.1 using the edgeR package 

v.3.36.0 (103). Genes were considered differentially expressed at a Benjamini-Hochberg FDR-

corrected p-value < 0.05. Heatmaps were generated using the ComplexHeatmap v.2.10.0 R 

package (104). Venn diagrams were generated using the ggvenn package (https://CRAN.R-

project.org/package=ggvenn). Preranked GSEA was conducted using the GSEA tool v.4.2.3 (105). 

The ranked list of all detected transcripts was generated by multiplying the sign of the fold change 

by the –log10 of the p-value. All other RNA sequencing plots were generated using the ggplot2 

v.3.3.5 R package (106).  

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
https://cran.r-project.org/package=ggvenn
https://cran.r-project.org/package=ggvenn
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Statistical analysis  

All statistical analyses were performed in Prism v.9.4.1 (GraphPad) or R v.4.1.1. A p-value < 0.05 

was considered significant. Details about the statistical tests used are available in each figure 

legend. The sample sizes of experiments were determined based on preliminary or prior 

experiments with CD4+ T cells that yielded significant results. No power analyses to calculate 

sample sizes were performed. 

Data and materials availability  

RNA sequencing data are available under accession number GSE223457 in the Gene Expression 

Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE223457). 
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Figures 

Fig. 2.1. The intensity of tonic TCR signaling in naive CD8+ T cells is heterogeneous. 

(A) Overlaid histogram (left) depicts GFP fluorescence for GFPLO and GFPHI cells in the spleen. 

GFPLO cells are the 10% of cells with the lowest (blue) GFP fluorescence intensity, whereas GFPHI 

cells are the 10% of cells with the highest (red) GFP fluorescence intensity. Histograms 

(middle/right) show expression of TCR and CD8 by polyclonal naive GFPLO and GFPHI CD8+ 

T cells. (B) Representative flow cytometry plots of Nur77-GFP fluorescence of splenic naive 

polyclonal or TCR transgenic CD8+ T cells. Polyclonal (black) and OT-I-Trac-/- (cyan) T cells 

were gated on CD44LO CD62LHI CD8+ cells (left), and P14 T cells (green) were gated on CD44LO 

CD62LHI V2+ CD8+ cells (right). Grey histograms depict non-transgenic lymphocytes, and the 

numbers indicate the geometric mean fluorescence intensity (gMFI) calculated for the whole 

population. (C) Graph displays the relative two-dimensional affinity of naive GFPLO and GFPHI 
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OT-I cells to N4 or V4 peptide/H2Kb monomers. Each symbol represents one cell with a total of 

33-34 cells from three independent experiments. Bars depict the mean, and error bars show ± s.d. 

Statistical testing was performed by unpaired two-tailed Student’s t test. (D). Histogram (left) 

shows the GFP fluorescence intensity of FACS-sorted naive polyclonal CD8+ T cells. ~2.5106 

naive polyclonal CD8+ T cells were adoptively transferred into B2m+/+ or B2m-/- recipients. 

Histograms (middle/right) shows GFP fluorescence and CD5 staining intensity of transferred T 

cells ten days post-transfer into B2m+/+ (black) vs. B2m-/- (orange) recipients. (E) Histograms show 

the GFP fluorescence intensity of total naive OT-I cells (left) or FACS-sorted GFPLO and GFPHI 

cells (middle). 1.3-1.8106 GFPLO or GFPHI (top and bottom 20%) OT-I cells were adoptively 

transferred into separate WT congenic recipients. Histogram (right) shows GFP fluorescence of 

transferred T cells four weeks post-transfer. (F) Histograms show the GFP fluorescence intensity 

of total CD8+ T cells (left) or FACS-sorted GFPLO and GFPHI cells (middle). A total of 5105 

GFPLO or GFPHI (top and bottom 10%) polyclonal CD8+ T cells were adoptively transferred into 

separate WT congenic recipients. Histogram (right) shows GFP fluorescence of transferred T cells 

seven days post-transfer. For adoptive transfer experiments, donor cells were gated on naive CD8+ 

T cells, the congenic marker expression (E and F) and in addition, TCR-+ cells (D). Data represent 

two independent experiments with n = 2 mice (B, D, and F) or three independent experiments with 

n = 3 mice (A, C, and E).  
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Fig. 2.2. Extensive tonic TCR signaling correlates negatively with naive polyclonal CD8 T 

cell responsiveness. 

(A) Representative flow cytometry plots show GFP fluorescence of total CD8+ cells (top) and 

sorted GFPLO, GFPMED, and GFPHI naive, polyclonal CD8 T cell populations (bottom). (B) 

Contour plots depict CD8 and IFN expression by unstimulated and stimulated viable polyclonal 

CD8+ T cells after a 45-minute IFN-secretion assay. Numbers indicate the percentage of cells 

within the indicated gates. (C) Bar graph displays the frequencies of GFPLO, GFPMED, and GFPHI 

IFN-secreting cells. Cells were either unstimulated or stimulated for 24 hours with 0.25 µg/ml 

anti-CD3 and APCs before the secretion assay. (D) Histograms show expression of the indicated 

activation markers of cells stimulated for 24 hours with 0.25 µg/ml anti-CD3 and APCs. Cells 

were gated on viable CD8+ T cells. Bar graphs display the gMFI for Nur77-GFP and CD69 or the 
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frequency of marker-positive cells for CD25 and CD71 (as indicated by the dotted line in the 

histogram). Data represent three independent experiments with n = 6 mice (A, B, C, and D). Bars 

in (C and D) depict the mean, error bars show ± s.d., and each symbol represents one mouse. 

Statistical testing in (C) was performed by one-way analysis of variance (ANOVA) (p < 0.0001) 

followed by Tukey’s multiple comparisons test indicated in the graph. Statistical testing in (D) was 

performed by one-way ANOVA (p < 0.0001 for CD69, CD25, and CD71), followed by Tukey’s 

multiple comparisons test. n.s., not significant. 
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Fig. 2.3. Extensive tonic TCR signaling correlates negatively with naive OT-I cell 

responsiveness. 

(A) Representative flow cytometry plots show GFP fluorescence of total cells (top) and sorted 

GFPLO and GFPHI naive CD8 T cell populations (bottom) from OT-I-Nur77-GFP-TCR–/– mice. 

(B) Graphs show the frequencies of CD25HICD69HI cells after 16 hours of stimulation with 

indicated peptide concentrations and APCs. Plotted are mean values fitted by non-linear regression 

curves. The dotted lines indicate the Log10EC50 for GFPLO (blue) and GFPHI (red) cells. The p-

value indicates the t test for the Log10EC50 (the null hypothesis being that the Log10EC50 is the 

same for the two populations). (C) Contour plots depict viable CD8+ T cells after a 45-minute 

assay of IFN- and IL-2-secretion of stimulated (16 hours) OT-I CD8+ T cells. (D) Bar graphs 

show the frequencies of IFN, IL-2, or IFN and IL-2-secreting cells after 16 hours of stimulation 

with indicated N4 peptide concentrations and APCs or unstimulated control. Data represent three 

independent experiments with n = 3 biological replicates (A, B, C, and D). Bars in (B and D) depict 

the mean, error bars show ± s.d., and each symbol represents one biological replicate. Statistical 
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testing in (D) was performed by two-way analysis of variance (ANOVA) (p = 0.0004) (left), or 

one-way ANOVA (p = 0.0107) (middle), (p = 0.0001) (right), followed by Tukey’s multiple 

comparisons test. n.s., not significant.  
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Fig. 2.4. Nur77-GFPHI CD8+ T cells exert less TCR-mediated tension forces and exhibit 

attenuated proximal and integrated TCR signaling.  

(A) Schematic outline of the DNA hairpin-based tension probe. In its closed conformation, the 

fluorescence of Atto647N is quenched. The DNA hairpin unfolds when TCR-mediated tension 

exceeds 4.7 piconewtons (pN). A “locking” DNA strand that hybridizes to the mechanically 

unfolded probe stabilizes the unfolded conformation of the DNA hairpin. (B) Representative 

Reflection Interference Contrast Microscopy (RICM) and fluorescence images showing GFPLO 

and GFPHI (top and bottom 10%) OT-I CD8+ T cells spread on DNA hairpin tension probe coated 

surfaces after 30 minutes. Scale bars, 10 µm. (C) Graph displays the normalized unquenched 

fluorescence intensities of the unfolded tension probes for 176-180 cells from three independent 

experiments (each symbol represents one cell). (D) Contour plot shows the distribution of Nur77-

GFP fluorescence intensity for CD8+ CD44LO OT-I T cells. Numbers indicate the percentages of 

cells within the indicated gates, representing GFPLO and GFPHI cells (left). Histogram shows the 
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relative concentration of free Ca2+ over time. Shown are the mean values for GFPLO and GFPHI 

naive OT-I CD8+ T cells (middle). Baseline Ca2+ levels were recorded for 30 seconds, and the 

arrow indicates the time point when the T cells were mixed with N4-pulsed APCs, centrifuged, 

and resuspended before the continuation of data acquisition. The bar graph shows the normalized 

peak intracellular free Ca2+ values during ten seconds of GFPLO and GFPHI cells ~70 seconds after 

the initial acquisition (right). (E) Histograms depict the IRF4 staining intensity of FACS-sorted 

GFPLO and GFPHI (top and bottom 10%) OT-I cells that were either unstimulated (left) or 

stimulated for five hours with 110-7 M G4 peptide and APCs. Bar graph displays the IRF4 gMFI. 

Data represent three independent experiments with n = 3 mice or biological replicates (B, C, and 

E) or n = 5 mice (D). Bars in (C, D, and E) depict the mean, and error bars show ± s.d. Statistical 

testing was performed by unpaired two-tailed Student’s t test (C and E) or unpaired two-tailed 

Student’s t test with Welch’s correction (D). 
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Fig. 2.5. Nur77-GFP expression in naive CD8+ T cells during steady-state conditions 

correlates with gene expression changes.  

(A) MA plot of DEGs between GFPLO and GFPHI naive OT-I CD8+ T cells. DEGs were defined 

as genes with an FDR < 0.05. Selected genes have been highlighted. The number of upregulated 

and downregulated genes in GFPHI relative to GFPLO cells are indicated in red and blue, 

respectively. (B) GSEA of genes downregulated in naive compared to effector CD8+ T cells (top 
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left panel) and genes upregulated in effector compared to resting memory CD8+ T cells (bottom 

left panel) (51). GSEA of genes downregulated in effector compared to exhausted CD8+ T cells 

(top middle panel) and genes associated with cellular senescence (bottom middle panel) (107). 

GSEA of genes upregulated (top right panel) or downregulated (bottom right panel) in cells 

subjected to deletional tolerance compared to activated CD8+ T cells (108). FDR values were 

derived from running GSEA on the c7_Immunesigdb.v2022.1 database or the 

c2.cp.reactome.v2023.1 database. (C) Curated heatmaps of normalized expression of DEGs in 

indicated categories. (D) Histograms show the expression of the indicated markers by GFPLO and 

GFPHI cells. The cells were gated on naive, polyclonal CD8+ T cells. Bar graphs depict gMFI of 

indicated proteins. (E) Flow cytometry plots (left, middle) show the gating scheme to identify 

CD127HI CD200LO and CD127LO CD200HI populations. Histogram (right) shows the GFP 

fluorescence intensity for CD127HI CD200LO and CD127LO CD200HI populations. Plots depict 

naive, polyclonal Nur77-GFP CD8+ T cells. (F) Overlaid dot plot of sorted CD127HI CD200LO and 

CD127LO CD200HI naive polyclonal CD8+ T cells (left). Contour plots (middle/right) depict CD8 

and IFN expression by stimulated viable polyclonal CD8+ T cells after a 45 min IFN-secretion 

assay. Numbers indicate the percentage of cells within the indicated gates. Bar graph displays the 

frequencies of CD127HI CD200LO and CD127LO CD200HI IFN-secreting cells. Cells were 

stimulated for 24 hours with 0.25 µg/ml anti-CD3 and APCs before the secretion assay. Bars depict 

the mean, error bars show ± s.d., and each symbol represents one mouse. Statistical testing was 

performed by unpaired two-tailed Student’s t test. Data represent two to three independent 

experiments with n = 3-6 mice (D, E, and F). NES, normalized enrichment score. 
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Fig. 2.6. Increased Cbl-b expression in naive GFPHI cells contributes to the attenuation in 

responsiveness. 

(A) Histogram depicts the staining intensity of Cbl-b in naive polyclonal GFPLO and GFPHI CD8+ 

T cells. Bar graph displays the Cbl-b gMFI from three independent experiments. (B) Histogram 

depicts the Nur77-GFP staining intensity of naive polyclonal CD8+ T cells from Cbl-b+/+ (black) 

and Cbl-b-/- (red) mice. Bar graph shows the Nur77-GFP gMFI. (C and D) Histograms display 

Nur77-GFP expression in naive polyclonal GFPLO (blue) and GFPHI (red) cells from Cbl-b+/+ 

(filled symbols or Cbl-b-/- (open symbols) mice. Cells were either unstimulated (left) or stimulated 

for 24 hours with 0.25 µg/ml anti-CD3 and APCs (right). (E) Contour plots depict CD25/CD69 

expression in naive, polyclonal GFPLO and GFPHI CD8+ T cells that were either unstimulated (left) 
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or stimulated as in D (right). Numbers indicate the percentage of cells within the indicated gates. 

Bar graphs show the percentages of CD25HI CD69HI cells. (F) Bar graph depicts the ratio of the 

CD25 MFI of Cbl-b-/- to Cbl-b+/+ mice. (G) Contour plots of IFN-secretion of CD8+ T cells that 

were either unstimulated (left) or stimulated as in D, after a 45-minute IFN-secretion assay (right). 

Numbers indicate the percentage of cells within the indicated gates. Bar graphs show the 

percentages of IFN+ cells. Data represent three independent experiments with n = 6 mice (A) or 

n = 3 mice or biological replicates (B, C, D, E, F, and G). Bars in (A, B, E, F, and G) depict the 

mean, error bars depict ± s.d., and each symbol represents one mouse or biological replicate. 

Statistical testing was performed by unpaired two-tailed Student’s t test. n.s., not significant, FMO, 

Fluorescence Minus One control. 
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Supplemental Information 

Fig. 2.S1. The intensity of tonic TCR signaling in naive CD8+ T cells is heterogeneous, 

supporting data. 

(A) Representative flow cytometry plots of Nur77-GFP fluorescence of naive, splenic, polyclonal 
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CD44LO CD62LHI CD8+ (left) and CD4+ cells (cyan) or CD4+ Foxp3-IRES-RFP+ (red) T cells 

(right). (B) Overlaid histogram (left) depicts GFP fluorescence for naive GFPLO and GFPHI cells 

in the spleen. Histogram (right) shows the expression of TCR- in permeabilized, naive GFPLO 

and GFPHI CD8+ T cells. (C) Histograms display the staining intensity of TCR- at the surface 

(left) or total (right) level. Polyclonal CD8+ T cells were either unstimulated (black) or stimulated 

for 90 minutes with 10 µg/ml anti-CD3 and 4 µg/ml anti-CD28 (red). (D) Contour plot (left) shows 

CD5 and Nur77-GFP expression by total naive polyclonal CD8+ T cells. Overlaid histogram 

(center) depicts GFP fluorescence for GFPLO and GFPHI cells. Histogram (right) shows the CD5 

expression for GFPLO and GFPHI populations. (E) Histograms depict Nur77-GFP expression (left) 

and CD44 staining intensity (right) of polyclonal naive GFPLO and GFPHI cells or CD44HI 

CD62LHI cells. (F) Representative gating of naive polyclonal, OT-I, and P14 CD8+ T cells. 

Numbers indicate the percentage of cells within each gate. (G) Histogram show Nur77-GFP 

expression in Trac+/- (black) and Trac-/- (red) P14 CD8+ T cells. (H) Representative dot plots depict 

Qa2 and CD8 expression in naive polyclonal or OT-I CD8+ T cells in mice aged 6-9 weeks. 

Numbers indicate the percentage of cells within the indicated gates. (I) Representative dot plots 

depict Qa2 and CD8 expression in naive P14 CD8+ T cells in mice aged 6-13 weeks. (J) Offset 

histograms show Nur77-GFP expression in naive polyclonal CD8+ T cells harvested from the 

spleen, mesenteric lymph nodes, or Peyer’s Patches. (K) Flow cytometry plots of naive polyclonal 

CD8+ T cells after intravascular labeling of cells in the red pulp by intravenous injection of 

CD45.2-APC antibody intravenously prior to euthanasia. Data represent two (A, B, C, G, H, I, and 

J) to three (D, E, and K) independent experiments with n = 3-4 mice (B, C, H, I, J, and K) or n = 

6-7 mice (A, D, E, and G). 
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Fig. 2.S2. Extensive tonic TCR signaling correlates negatively with naive, polyclonal CD8 T 

cell responsiveness, supporting data. 

(A) Representative backgating analysis of sorted naive polyclonal GFPLO, GFPMED, and GFPHI 

cells. Sorted cells were gated on lymphocytes and single cells, and the pre-sort sample was gated 

as indicated in grey above the plots. (B) Representative histogram (left) and dot plot (right) depict 

Nur77-GFP expression in total and sorted GFPLO versus GFPHI naive P14 CD8+ T cells, 

respectively. (C) Representative contour plots depict CD8 and IFN expression by unstimulated 

and stimulated viable P14 CD8+ T cells after a 45 min IFN-secretion assay. Cells were stimulated 

for 16 hours with GP33 and APCs before the secretion assay. Numbers indicate the percentage of 
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cells within the indicated gates. (D) Histograms show the expression of the indicated activation 

markers of unstimulated control cells. (E) The frequency of viable CD8+ T cells was determined 

after 24 hours of stimulation with 0.25 µg/ml anti-CD3 and APCs. (F) Representative flow 

cytometry plots of the pre-sort GFP distribution (left) and sorted GFPLO and GFPHI naive, 

polyclonal CD8 T cell populations (right). (G) CTV-labeled naive, polyclonal GFPLO and GFPHI 

CD8+ T cells were incubated for 70 hours with 0.25 µg/ml anti-CD3 and APCs. The representative 

flow cytometry plot was gated on viable CD8+ T cells. The graph depicts the proliferation index 

(the average number of divisions of cells that divided at least once). (H) Schematic overview of 

the competitive-transfer experiment. 3000 cells each of GFPLO and GFPHI naive P14 cells were 

co-transferred into WT recipients, followed by infection with LCMV Armstrong (2105 PFU i.p.). 

(I) Contour plots (left) depict mixed GFPLO and GFPHI cells pre-transfer and (right) cells harvested 

from the spleen on day five post-infection gated on viable donor cells. Scatterplot displays the ratio 

of GFPLO to GFPHI P14 donor cells pooled from three independent experiments. Each symbol 

represents one mouse. Data represent two (B and C), three (D and I), or four (E, F, and G) 

independent experiments with n = 4 mice (E, F, and G), n = 6-7 mice (B, C, and D), or n = 15 mice 

(I). Bars in (E and G) depict the mean, error bars depict ± s.d., and each symbol represents one 

mouse. Statistical testing was performed by unpaired two-tailed Student’s t test (B and D) or by 

two-tailed Wilcoxon matched-pairs signed-rank test (I).   
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Fig. 2.S3. Extensive tonic TCR signaling correlates negatively with naive OT-I cell 

responsiveness, supporting data. 

(A) Representative flow cytometry plots depicting CD25 and CD69 upregulation after 16 hours of 

stimulation with indicated peptide concentrations are shown from one experiment. Panels in the 

first row represent suboptimal peptide concentrations, the second row depicts peptide 

concentrations on the linear part of the dose-response curve, and the third-row show saturating 

peptide concentrations. Numbers indicate the percentage of cells within the indicated gates. (B) 

Unstimulated control of CD25 and CD69 upregulation in GFPLO and GFPHI naive OT-I cells. Data 

represent three (A and B) independent experiments with n = 3 biological replicates (A and B).   
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Fig. 2.S4. Nur77-GFPHI CD8+ T cells exert less TCR-mediated tension forces and exhibit 

attenuated proximal and integrated TCR signaling, supporting data. 

(A) CD8 staining of OT-I cells post-negative enrichment. The CD8 purity was >96% for all 

experiments. (B) Dot plots depict Nur77-GFP fluorescent intensity of total (left) and sorted OT-I 

cells based on GFP expression (top and bottom 10%) from viable, CD4– CD19– cells (right). CD8+ 

T cells were enriched by negative selection before sorting. Data represent three independent 

experiments with n = 3 mice (A and B).   
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Fig. 2.S5. Nur77-GFP expression in naive CD8+ T cells during steady-state conditions 

correlates with gene expression changes, supporting data. 

(A) Venn diagram of DEGs defined as genes with an FDR < 0.05 present in the GFPHI vs. GFPLO 

naive OT-I dataset (green), the effector vs. naive dataset (purple), or in both datasets (grey). The 

number of DEGs and the percentage of the total DEGs is depicted within each condition. (B) Log2 

fold-change plot of genes upregulated in effector compared to naive OT-I CD8+ T cells on the Y-

axis (52) and genes upregulated in Nur77-GFPHI compared to GFPLO naive OT-I CD8+ T cells on 

the X-axis. Each dot represents an overlapping DEG defined as in A. The red line depicts the 

correlation with a 95% confidence interval. The dotted black line depicts a 1:1 relationship 

between the two datasets. (C) Similar to A, the Venn Diagram depicts DEGs defined as genes with 

an FDR < 0.05 present in the GFPHI vs. GFPLO dataset (green), the GFPHI vs. GFPLO CD4+ Ly6C- 

dataset (purple) or in both datasets (grey). The number of DEGs and the percentage of the total 

DEGs is depicted within each condition. (D) Similar to B, the plot depicts the Log2 fold-change of 

genes upregulated in Nur77-GFPHI compared to GFPLO naive Ly6C- CD4+ T cells on the Y-axis 

(7) and genes upregulated in GFPHI compared to GFPLO naive OT-I CD8+ T cells on the X-axis. 
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(E) The top row depicts Nur77-GFP expression in relationship to indicated markers in naive, 

polyclonal CD8+ T cells. The bottom row indicates the Fluorescence Minus One (FMO) control 

for the indicated markers. (F) Contour plots depict CD8 and IFN expression by unstimulated 

CD127HI CD200LO (top) and CD127LO CD200HI (bottom) polyclonal naive CD8+ T cells after a 

45 min IFN-secretion assay. Data represent represent two to three (E) or three (F) independent 

experiments from n = 3-6 (E) or n = 3 (F) mice. Statistical analysis in (B and D) was performed 

by a one-sample t test (the null hypothesis being that the slope was equal to zero).  
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Fig. 2.S6. Increased Cbl-b expression in naive GFPHI cells contributes to the attenuation in 

responsiveness, supporting data. 

(A) Dot plots depict the expression of CD127 and CD200 in naive, polyclonal CD8+ T cells from 

Cblb+/+ and Cblb-/- mice. (B) Representative flow cytometry plots of sorted, naive GFPLO-like 

(blue) and GFPHI-like cells (red) CD8+ T cells from Cblb+/+ and Cblb-/- mice. (C) Contour plots 

depict CD25/CD69 expression in naive, polyclonal GFPLO and GFPHI CD8+ T cells that were either 

unstimulated (left) or stimulated for 24 hours with 0.25 µg/ml anti-CD3 and APCs (right). 

Numbers indicate the percentage of cells within the indicated gates. Bar graphs show the 

percentages of CD25HI CD69HI cells. (D) Bar graph depicts the ratio of the CD25 MFI of Cblb-/- 

to Cblb+/+ mice. (E) Contour plots of IFN-secretion of CD8+ T cells that were either unstimulated 
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(left) or stimulated as in C, after a 45-minute IFN-secretion assay (right). Numbers indicate the 

percentage of cells within the indicated gates. Bar graphs show the percentages of IFN+ cells. 

Bars (in C, D, and E) depict the mean, error bars depict ± s.d., and each symbol represents one 

biological replicate. Data represent three to four independent experiments with n = 3-4 biological 

replicates (A, B, C, D, and E). Statistical testing was performed by unpaired two-tailed Student’s 

t test in (C and E (upper panels)). Statistical testing was performed by unpaired two-tailed 

Student’s t test with Welch’s correction in (C and E (lower panels), and D. n.s., not significant. 
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Table S1: Materials and Reagents 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-mouse CD3 (Clone 145-2C11 BioLegend Cat#100331; RRID:AB_1877073 

Anti-mouse CD4, biotin (Clone RM4-5) BioLegend Cat#100508; RRID:AB_312711 

Anti-mouse CD4, Pacific Blue (Clone RM4-5) BioLegend Cat#100531; RRID:AB_493374 

Anti-mouse CD4, APC (Clone RM4-5) BioLegend Cat#100516; RRID:AB_312719 

Anti-mouse CD5, BV786 (Clone 53-7.3) BD Biosciences Cat#740842; RRID:AB_2740496 

Anti-mouse CD8a, biotin (Clone 53-6.7) BioLegend Cat#100704; RRID:AB_312743 

Anti-mouse CD8a, PerCP-Cy5.5 (Clone 53-6.7) BioLegend Cat#100734; RRID:AB_2075238 

Anti-mouse CD8a, PE-Cy7 (Clone 53-6.7) BioLegend Cat#100722; RRID:AB_312761 

Anti-mouse CD8a, Pacific Blue (Clone 53-6.7) BioLegend Cat#100725; RRID:AB_493425 

Anti-mouse CD8a, BV711 (Clone 53-6.7) BioLegend Cat#100759; RRID:AB_2563510 

Anti-mouse CD8a, BV605 (Clone 53-6.7) BioLegend Cat#100744; RRID:AB_2562609 

Anti-mouse CD8a, BUV395 (Clone 53-6.7) BD Biosciences Cat#563786; RRID:AB_2732919 

Anti-mouse CD11b, biotin (Clone M1/70) BioLegend Cat# 101204; RRID:AB_312787 

Anti-mouse CD11c, biotin (Clone N418) BioLegend Cat#117304; RRID:AB_313773 

Anti-mouse CD16/CD32 (Fc Block) (Clone 2.4G2) Tonbo Biosciences Cat#70-0161-U500; N/A 

Anti-mouse CD19, biotin (Clone 6D5) BioLegend Cat#115504; RRID:AB_313639 

Anti-mouse CD19, Pacific Blue (Clone 6D5) BioLegend Cat#115523; RRID:AB_439718 

Anti-mouse CD25, Pacific Blue (Clone PC61) BioLegend Cat#102022; RRID:AB_493643 

Anti-mouse CD25, FITC (Clone PC61) BioLegend Cat#102006; RRID:AB_312855 

Anti-mouse CD25, Al647 (Clone PC61) BioLegend Cat#102020; RRID:AB_493458 

Anti-Mouse CD28 (Clone 37.51) BioLegend Cat#102112; RRID:AB_312877 

Anti-mouse CD44, PE-Cy7 (Clone IM7) BioLegend Cat#103030; RRID:AB_830787 

Anti-mouse CD44, PE (Clone IM7) BioLegend Cat#103008; RRID:AB_312959 

Anti-mouse CD44, Pacific Blue (Clone IM7) BioLegend Cat#103020; RRID:AB_493683 

Anti-mouse CD44, Al488 (Clone IM7) BioLegend Cat#103016; RRID:AB_493679 

Anti-mouse CD44, Al647 (Clone IM7) BioLegend Cat#103018; RRID:AB_493681 

Anti-mouse CD44, BUV496 (Clone IM7) BD Biosciences Cat#741057; RRID:AB_2870671 

Anti-mouse CD44, BUV737 (Clone IM7) BD Biosciences Cat#612799; RRID:AB_2870126 

Anti-mouse CD45.1, Pacific Blue (Clone A20) BioLegend Cat#110722; RRID:AB_492866 

Anti-mouse CD45.2, PE-Cy7 (Clone 104) BioLegend Cat#109830; RRID:AB_1186098 

Anti-mouse CD45.2, APC (Clone 104) BioLegend Cat#109814; RRID:AB_389211 

Anti-mouse CD45R/B220, biotin (Clone RA3-6B2) BioLegend Cat#103204; RRID:AB_312989 

Anti-mouse CD49b, biotin (Clone DX5) BioLegend Cat#108904; RRID:AB_313411 

Anti-mouse CD62L, PE (Clone MEL-14) BioLegend Cat#104408; RRID:AB_313095 

Anti-mouse CD62L, APC (Clone MEL-14) BioLegend Cat#104412; RRID:AB_313099 

Anti-mouse CD62L, BUV737 (Clone MEL-14) BD Biosciences Cat#612833; RRID:AB_2870155 

Anti-mouse CD69, PE-Cy7 (Clone H1.2F3) eBioscience Cat#25-0691-82; RRID:AB_469637 

Anti-mouse CD69, eF780 (Clone H1.2F3) eBioscience Cat#47-0691-82; RRID:AB_2573966 

Anti-mouse CD71, PE (Clone C2) BD Biosciences Cat#553267; RRID:AB_394744 

Anti-mouse CD126, APC (Clone D7715A7) BioLegend Cat#115811; RRID:AB_2127937 

Anti-mouse CD127, BV421 (Clone SB/199) BD Biosciences Cat#562959; RRID: AB_2737917 

Anti-mouse CD200, Al647 (Clone OX-90) BD Biosciences Cat#565544; RRID:AB_2739287 

Anti-mouse β2-microglobulin, PE (Clone A16041A) BioLegend Cat#154504; RRID:AB_2721340 

Anti-mouse Bcl-6, Al647 (Clone K112-91) BD Biosciences Cat#561525; RRID:AB_10898007 

Anti-Cbl-b (Clone D3C12) Cell Signaling Cat#9498; RRID:AB_2797707 
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Continued 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Anti-mouse Erythroid cells, biotin (Clone TER-119) BioLegend Cat#116204; RRID:AB_313705 

Anti-mouse FR4, PE-Cy7 (Clone eBio12A5) eBioscience Cat#25-5445-80; RRID:AB_842812 

Anti-mouse Helios, Al647 (Clone 22F6) BD Biosciences Cat#563951; RRID:AB_2738506 

Anti-rabbit IgG AffiniPure Fab Fragment, APC Jackson ImmunoResearch Cat#711-136-152; RRID:AB_2340601 

Anti-mouse IRF4, PE (Clone 3E4) eBioscience Cat#12-9858-80; RRID:AB_10853179 

Anti-mouse TCR, APC (Clone H57-597) BioLegend Cat#109212; RRID:AB_313435 

Anti-mouse TCR, BV711 (Clone H57-597) BioLegend Cat#109243; RRID:AB_2629564 

Anti-mouse TCR, PE (Clone H57-597) BD Biosciences Cat#553172; RRID:AB_394684 

Anti-mouse TCR V2, PE (Clone B20.1) BioLegend Cat#127808; RRID:AB_1134183 

Anti-mouse TCR V2, BV605 (Clone B20.1) BD Biosciences Cat#747768; RRID:AB_2872232 

Anti-mouse Qa-2, biotin (Clone 695H1-9-9) BioLegend Cat#121703; RRID:AB_572000 

Virus strains  

LCMV Armstrongp Dr. Rafi Ahmed (Ahmed et al., 
1984) (109) 

N/A 

Chemicals and peptides 

OVA (257-264) (SIINFEKL) GenScript Cat#RP10611 

OVA (257-264) (SIIQFERL) GenScript Custom 

OVA (257-264) (SIIGFEKL) GenScript Custom 

OVA (257-264) (SIIVFEKL) In house (University of Utah) N/A 

GP33-41 (KAVYNFATC) GenScript Cat#RP20091 

LIVE/DEAD Fixable Near-IR Thermo Fisher Scientific Cat#L34976 

LIVE/DEAD Fixable Violet Thermo Fisher Scientific Cat#L34955 

LIVE/DEAD Fixable Yellow Thermo Fisher Scientific Cat#L34967 

Ghost Dye Red 780 Cytek Biosciences Cat#13-0865-T100 

CellTrace Violet Thermo Fisher Scientific Cat#C34557 

Indo-1 AM Thermo Fisher Scientific Cat#I1223 

Streptavidin (APC) Thermo Fisher Scientific Cat#SA1005 

Streptavidin (eFlour 450) eBioscience Cat#48-4317-82 

BD Perm/Wash buffer BD Biosciences Cat#554723 

Foxp3 Staining buffer set eBioscience Cat#00-5523-00 

RBC lysis buffer Tonbo Biosciences Cat#TNB-4300-L100 

RPMI 1640 Thermo Fisher Scientific Cat#11875-119 

Fetal bovine serum Omega Scientific Cat#FB-21 

HEPES Thermo Fisher Scientific Cat#15630-080 

MEM Non-essential amino acid solution Sigma-Aldrich Cat#M7145-100ML 

Penicillin-Streptomycin-Glutamine Thermo Fisher Scientific Cat#10378-016 

Sodium pyruvate Sigma-Aldrich Cat#S8636-100ML 

2-Mercaptoethanol Thermo Fisher Scientific Cat#31350-010 

Critical commercial assays 

Mouse IFN-γ Secretion Assay – Detection Kit (PE) Miltenyi Biotec Cat#130-090-516 

Mouse IFN-γ Secretion Assay – Detection Kit (APC) Miltenyi Biotec Cat#130-090-984 

Mouse IL-2 Secretion Assay – Detection Kit (APC) Miltenyi Biotec Cat#130-090-987 

EasySep Mouse Streptavidin RapidSpheres Isolation Kit STEMCELL Technologies Cat#19860A 

Deposited data 

RNA-seq (raw data and count data) This study GEO: GSE223457 
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Continued 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Experimental models: Organisms/strains 

C57BL/6J Jackson Laboratory Cat#000664; RRID:IMSR_JAX:000664 

B6.SJL-Ptprca Pepcb/BoyJ Jackson Laboratory Cat#002014; RRID:IMSR_JAX:002014 

B6.129P2-B2mtm1Unc/DcrJ Jackson Laboratory Cat#002087; RRID:IMSR_JAX:002087 

Zap70tm1Weis Kadlecek et al., 1998 (91) N/A 

Tg(Nr4a1-EGFP)GY139Gsat Zikherman et al., 2013 (14) N/A 

Nur77-GFP-Foxp3-RFP Zinzow-Kramer et al., 2019 

(18) 

N/A 

OT-I-Nur77-GFP-Trca-/- This study N/A 

P14-Nur77-GFP This study N/A 

Cbl-b-/- Chiang et al., 2000 (95) N/A 

Nur77-GFP-Cbl-b-/- This study N/A 

Oligonucleotides 

Atto647N-biotin labeled ligand strand:  
Atto647N - CGC ATC TGT GCG GTA TTT CAC TTT - Biotin 

Ma et al., 2019 (48) N/A 

DBCO-BHQ2 labeled quencher strand: 

DBCO - TTT GCT GGG CTA CGT GGC GCT CTT - BHQ2 

Ma et al., 2019 (48) N/A 

Hairpin strand: 

GTG AAA TAC CGC ACA GAT GCG TTT GTA TAA ATG 

TTT TTT TCA TTT ATA CTTTAA GAG CGC CAC GTA 
GCC CAG C 

Ma et al., 2019 (48) N/A 

Software and algorithms 

FlowJo V10 BD Biosciences https://www.flowjo.com  

Gene Set Enrichment Analysis (GSEA) Subramanian et al., 2005 (105) https://www.gsea-msigdb.org/gsea  

Prism 9 GraphPad Software https://www.graphpad.com  

R (version 4.1.1) and dependencies The Comprehensive R Archive 
Network 

https://cran.r-project.org/  

Other 

BD Quantibrite PE beads BD Biosciences Cat#340495 

https://www.flowjo.com/
https://www.gsea-msigdb.org/gsea
https://www.graphpad.com/
https://cran.r-project.org/
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Chapter 3: Discussion 

Summary of main findings 

Here, we utilized the Nur77-GFP system to investigate the functional implications of strong tonic 

TCR signaling in naive CD8+ T cells. Nur77-GFP transgenic reporter mice enable visualization of 

T cell receptor (TCR) stimulation in T cells (1, 2). Moreover, T cells induce GFP expression even 

in response to weak agonist TCR signals (1). Hence, Nur77-GFP expression in the steady state 

reflects the weak tonic TCR signaling T cells experience from self-pMHC interactions (3). Such 

tonic TCR signals typically do not activate T cells but can influence the responsiveness to 

subsequent stimulation (4). Our study demonstrates that strong tonic TCR signaling in naive CD8+ 

T cells (as indicated by high expression levels of Nur77-GFP) inversely correlated with the 

responsiveness to subsequent agonist TCR stimulation. Naive Nur77-GFPHI CD8+ T cells 

exhibited diminished upregulation of activation markers and reduced cytokine secretion upon 

stimulation relative to Nur77-GFPLO cells. We further showed that strong tonic TCR signaling 

correlated with gene expression changes in naive CD8+ T cells. Nur77-GFPHI cells exhibited a 

gene expression profile associated with T cell activation and negative regulation. For instance, 

Nur77-GFPHI naive CD8+ T cells expressed higher protein levels of the E3 ubiquitin ligase, Cbl-

b, an important negative regulator of T cell activation (5). Finally, we showed that Cbl-b-

deficiency partly rescued the attenuated responsiveness observed in naive CD8+ T cells that 

experience extensive tonic TCR signaling. Together, these results suggest that T cells that 

experience extensive TCR:self-pMHC signals induce adaptations that attenuate their 

responsiveness to subsequent agonist TCR stimulation. Hence, we propose a model where 

extensive tonic TCR signaling in naive CD8+ T cells induces negative feedback mechanisms, 

which partly depends on the expression of Cbl-b (Fig. 3.1). 
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Fig. 3.1. Increased negative feedback in response to extensive tonic TCR signaling attenuates 

T cell responsiveness in naive CD8+ T cells. 

Extensive TCR:self-pMHC signals in naive CD8+ T cells induce upregulation of Nr4a1 and 

CD200 while downregulation of CD127 (right). Strong tonic signals are also associated with 

increased protein expression of Cbl-b, a negative regulator of T cell activation. Functionally, cells 

that experience stronger tonic TCR stimulation exhibit attenuated responsiveness upon subsequent 
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TCR agonist stimulation, manifested by diminished secretion of IFN and IL-2. The attenuated 

phenotype is partly rescued in the absence of Cbl-b, indicating that Cbl-b expression contributes 

to diminished responsiveness. Cells that experience weak tonic TCR signals express lower levels 

of Nr4a1 and Cbl-b (left). However, weak tonic TCR signaling is associated with increased surface 

expression of CD127 and increased responsiveness to agonist TCR stimulation. 

This thesis results in the context of the current paradigm 

My results suggest that naive CD8+ T cells that experience stronger TCR signals exhibit attenuated 

responsiveness even after several days of stimulation. Hence, the conclusion from our experiments 

using Nur77-GFP expression as a correlate marker of tonic TCR signaling in naive CD8+ T cells 

is comparable to our previous studies on naive CD4+ T cells (6, 7). However, our conclusion is 

vastly different from the current paradigm for CD8+ T cells, which almost exclusively has relied 

on CD5 as a correlative marker of basal TCR signaling. It is important to point out that while there 

is a positive correlation between Nur77-GFP and CD5 expression on naive CD8+ T cells, it is not 

a 1:1 correlation (Fig. 2.S1 D). In other words, the cellular composition of Nur77-GFPHI cells 

differs from CD5HI cells, and Nur77-GFPLO cells differ in composition from CD5LO cells. 

Therefore, our interpretation that these two markers solely reflect TCR signaling in a similar 

manner may be oversimplified. Thus, our understanding of hallmark studies utilizing these 

markers as correlate indicators of tonic TCR signaling could potentially change. 

The factors that drive the underlying differences in cellular composition between Nur77-GFPHI 

and CD5HI cells are unknown. One possibility is that external cues beyond TCR signals could 

influence Nur77-GFP or CD5 expression. Studies from Kristin Hogquist’s laboratory established 

that Nur77-GFP expression in antigen-specific CD8+ T cells is insensitive to the inflammatory 

environment of an infection in the absence of a cognate antigen (1). Moreover, IL-2 stimulation, 
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or transgenic expression of a constitutively active Stat5, did not induce increased expression of 

Nur77-GFP in T cells, suggesting that signaling from common -chain family cytokines does not 

contribute to Nur77-GFP expression (1). There is, however, evidence that cytokine signaling can 

modulate surface CD5 expression. Gagnon et al. showed that supplementing in vitro cultures with 

IL-7 alone or combined with IL-6 or IL-21 induces downregulation of CD5 surface levels on CD8+ 

T cells after 24 hours (8). Studies also demonstrate that antibody-mediated ligation of CD5 can 

induce rapid endocytosis of surface CD5 on T cells in a clathrin-mediated manner (9). Hence, post-

translational regulation of CD5 surface expression in CD8+ T cells may occur independently of 

TCR signaling. On the other hand, GFP expression induced by the Nur77-GFP transgene may not 

undergo post-translational modifications. Therefore, in theory, the reason for some cells 

expressing high levels of Nur77-GFP but only intermediate levels of surface CD5 or why some 

Nur77-GFPMED cells express low levels of surface CD5 could be due to CD5 downregulation 

induced by IL-7 signaling or CD5 ligand interactions, and thus independently of TCR signaling 

(Fig. 2.S1 D). It is also a possibility that cytokines and other proteins and ligands that induce 

signaling may indirectly affect cis-regulatory elements of CD5 and Nr4a1, which could induce 

transcription of these genes independently of TCR signaling in T cells and drive the Nur77-

GFPMED CD5LO phenotype. 

A recent study highlighted the importance of dendritic cells (DCs) with a CD5HI surface phenotype 

for the antitumor response (10). Interestingly, depending on whether T cells were stimulated with 

cultures containing CD5+ or CD5-deficient DCs, surface CD5 expression on the T cells correlated 

positively with CD5 expression on the DCs (10). Similarly, in a tumor model utilizing mice with 

CD5-deficient DCs, antigen-specific T cells expressed lower CD5 levels than in control mice (10). 

Hence, there is a possibility that surface CD5 on DCs might contribute to the regulation of CD5 
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expression in T cells. For instance, surface plasmon resonance studies suggested that CD5 can act 

as a homophilic ligand for itself (11). A careful characterization of the effects of cytokines and 

other stimuli on CD5 and Nur77 expression in CD8+ T cells could shed light on whether cues 

beyond TCR stimulation can induce upregulation of these markers. For instance, culturing CD5LO 

naive CD8+ T cells in the presence of anti-MHC I and CD5HI dendritic cells or recombinant CD5 

protein could answer whether CD5 as a ligand can induce CD5 expression in the absence of TCR 

stimulation and could potentially explain why some naive CD8+ T cells exhibit a Nur77-GFPLO 

CD5HI phenotype (Fig. 2.S1 D). Such studies could tell us how functional heterogeneity is 

associated with TCR:self-pMHC signaling in the context of other contributing factors and may 

allow us to better predict the responsiveness of naive CD8+ T cells based on cellular phenotype. A 

greater understanding of the underlying mechanisms that govern T cell responses might allow us 

to therapeutically influence desired T cell outcomes. For example, by understanding why naive 

Nur77-GFPLO cells secrete more cytokines relative to GFPHI cells, we could target those 

mechanisms therapeutically to increase cytokine secretion in T cells in the context of an infection 

or cancer and dampen cytokine secretion in T cells in the context of autoimmunity. 

The implications of tonic TCR signaling-induced negative feedback mechanisms on tolerance  

Central tolerance mechanisms prevent the selection of T cells bearing TCRs that react too strongly 

with self-pMHC during development (12). While central tolerance is efficient in deleting 

autoreactive thymocytes, it is not absolute (13). Peripheral T cell tolerance mechanisms, such as 

regulatory T cells and clonal deletion in the periphery or anergy, provide additional layers of 

defense (12). This dissertation describes a mechanism in naive CD8+ T cells that may limit highly 

self-reactive naive T cells from responding inappropriately to self-pMHC by induced negative 

regulation.  
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Strong TCR:pMHC signals, without co-stimulation, induce T cell anergy (14). Moreover, 

upregulation of Cbl-b is apparent in anergic T cells and essential for their hyporesponsive state 

(15, 16). The fact that the Nur77-GFP distribution is unaffected by CD28 deficiency in CD4+ and 

CD8+ T cells suggests that tonic TCR signaling occurs independently of co-stimulation (1). Thus, 

TCR stimulation in the absence of co-stimulatory signals likely induces Cbl-b expression for both 

anergic and naive CD8+ T cells that experience extensive tonic TCR signaling. At least for in vitro-

generated anergic T cells, the hyporesponsiveness is reversible upon the addition of exogenous IL-

2 (17). In this thesis, I detected a dramatically attenuated responsiveness of naive CD8+ T cells 

that experienced extensive tonic TCR signaling in short-term in vitro assays but a much subtler 

difference during an in vivo response to a viral infection. Thus, it is possible that in an 

inflammatory environment with increased concentrations of cytokines such as IL-2, the 

hyporesponsiveness of naive CD8+ T cells that experience strong tonic signals is reversed. Anergic 

T cells also exhibit attenuated IL-2 production (17). Furthermore, the IL-2 locus of anergized T 

cells is associated with altered chromatin modifications compared to effector T cells, such as 

diminished demethylation of the IL-2 promoter (18). Hypermethylation of the IL-2 promoter is 

also seen in recent thymic emigrants (RTEs) compared to mature naive T cells (19). RTEs have 

recently experienced strong TCR signals during development and exhibit attenuated IL-2 secretion 

upon stimulation (20). As hypermethylation of promoters correlates with transcriptional 

repression, strong TCR signaling may induce epigenetic modifications that limit IL-2 transcription 

in the context of anergic cells and RTEs (21). Considering these results, future studies could 

address whether strong tonic TCR signaling in naive T cells induce hypermethylation of cytokine 

loci, such as the IL-2 locus, resulting in diminished cytokine production upon activation. 

The role of induced Cbl-b expression in response to chronic cognate antigen stimulation remains 
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incompletely described. Cbl-b-mediated negative regulation is not a typical mechanism associated 

with the functional impairment induced by chronic antigen stimulation (22). However, one study 

recently demonstrated the upregulation of Cbl-b mRNA in tumor-infiltrating lymphocytes that 

expressed the inhibitory receptors PD-1 and Tim-3 (23). Moreover, adoptive cell therapy using 

Cbl-b-deficient chimeric antigen receptor (CAR) T cells in a preclinical solid tumor model restored 

T cell function and promoted tumor regression (23). Our studies show that naive CD8+ T cells that 

experience strong tonic TCR signals exhibit increased protein but similar transcript levels of Cbl-

b, suggesting that TCR signaling can affect post-translational mechanisms of Cbl-b. Hence, Cbl-b 

upregulation in T cells that experience chronic antigen stimulation may thus be underappreciated 

in other models that solely characterized transcriptomic differences associated with exhausted T 

cells. 

Our studies show that extensive tonic TCR signals in naive CD8+ T cells can induce upregulation 

of Cbl-b under steady-state conditions and partly contributes to attenuated responsiveness. While 

naive CD8+ TCR transgenic T cells that experience strong tonic TCR signals have a competitive 

disadvantage during the early phase of an immune response to a viral infection, the differences are 

subtle. Hence, the negative feedback mechanism induced by strong tonic TCR signaling may limit 

the autoreactive potential of T cell clones that were close to the self-reactivity threshold during 

development but escaped negative selection. At the same time, these self-reactive cells can 

seemingly participate in eliciting a robust protective immune response to a pathogen. 

A shared functional feature between naive T cells that experience extensive tonic TCR signaling 

and anergic T cells is the reduced secretion of cytokines such as IL-2 and IFN upon TCR agonist 

stimulation (6, 17); (Fig. 2.2 and Fig. 2.3). On the other hand, while anergic T cells exhibit almost 

complete proliferative impairment in response to agonist TCR stimulation and have a CD44HI 
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surface phenotype, naive CD44LO T cells that encounter strong basal TCR signals can proliferate, 

although less extensively compared to naive T cells that experience weaker tonic TCR signaling 

(17, 24) and Fig. 2.S2 G). Hence, these results suggest that Nur77-GFPHI cells are phenotypically 

different from anergic T cells, and the hypofunctional state of naive GFPHI cells is less severe and 

more easily reversible than that of anergic T cells. 

Implications of tonic TCR signaling on cell fate trajectories  

In this thesis, I demonstrate that extensive tonic TCR signaling in naive CD8+ T cells correlates 

with attenuated IL-2 secretion before cell division (Fig. 2.2 and Fig. 2.3). If the bias in IL-2 

secretion persists at later stages of the immune response, the level of basal TCR signaling naive 

CD8+ T cells experience could have implications for effector T cell differentiation. For CD4+ T 

cells, there is extensive evidence that tonic TCR signaling experienced by naive cells can influence 

lineage decisions of CD4+ effector cells (4). For example, naive CD4+ T cells encountering strong 

tonic TCR signals are more prone to differentiate into extrathymic regulatory T cells (6, 25, 26). 

Moreover, studies suggest tonic signaling in naive CD4+ T cells affects the differentiation into 

CD4+ follicular helper cells (TFH) in viral infections (27, 28). Together, these studies suggest that 

tonic signaling can influence the diversification of the CD4+ T cell response by shifting the 

probability of an individual T cell to differentiate into a specific T cell subset. 

How tonic TCR signaling strength may influence the cell fate of naive CD8+ T cells is less clear, 

but there is some evidence that tonic signaling may also diversify the CD8+ T cell response. For 

instance, strong tonic signals and higher self-reactivity correlate with the differentiation of naive 

CD8+ T cells into antigen-inexperienced memory-like T cells (AIMT) (29-33). Several studies 

demonstrate that AIMT cells can mediate immune protection in the absence of cognate antigens 

(30, 34, 35). Hence, strong tonic TCR signaling in CD8+ T cells may modify the CD8+ T cell 
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compartment by enhancing bystander T cell protection. Studies also show that the tonic signaling 

strength of naive CD8+ T cells can affect antigen-specific T cell responses beyond the acute phase 

of the immune response. Ju et al. showed in a TCR transgenic system that CD5LO naive CD8+ T 

cells that experienced weak tonic signaling persisted in greater frequencies and numbers relative 

to the CD5HI counterparts four months post an acute viral infection (36). The same study also 

showed a skewing of CD5LO cells toward central memory T cells (TCM), whereas CD5HI cells were 

more likely to exhibit an effector memory (TEM) phenotype (36). Therefore, the strength of tonic 

TCR signaling in naive CD8+ T cells prior to activation may thus diversify both the composition 

and persistence of memory T cells. 

While weak tonic TCR signals inversely correlate with an enhanced capacity of IL-2 secretion 

during the acute phase of an immune response, whether such biases persist during the later stages 

of the CD8+ effector response remains unresolved. Although effector CD8+ T cells produce robust 

levels of IFN during the peak of an acute viral infection, relatively few effector cells co-produce 

IL-2 (37). However, the transfer of CD8+ effector cells from an acute immune response into 

secondary recipients subsequently challenged with a chronic viral infection revealed that IL-2+ 

effectors were hyperfunctional relative to the IL-2- effector cells (37). Counterintuitively, IL-2 

production in effector cells correlated with attenuated IL-2 signaling (37). IL-2 stimulation 

influences the CD8+ T cell response by enhancing T cell effector differentiation (38). Moreover, 

continuous IL-2 signaling in mouse tumor models led to functional impairment of the CD8+ T cell 

response (39). The resulting impairment depended on Stat5 as the knockdown of Stat5 reversed 

the phenotype (39). Hence, persistent Stat5 activation seems detrimental to the CD8+ T cell 

response during conditions of chronic antigen stimulation. If strong tonic signaling in naive CD8+ 

T cells would also predict IL-2 production at later stages of the immune response, the resulting 
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attenuation of IL-2 signaling could potentially have implications for T cell functionality during 

chronic antigen stimulation. Future studies should thus address whether extensive tonic signaling 

in naive CD8+ T cells may be detrimental to T cell outcomes during conditions of chronic antigen 

stimulation in vivo. 

The implications of functional heterogeneity induced by tonic TCR signaling for adoptive cell 

therapy 

Different adoptive T cell therapies have shown promising results in the context of cancer and in 

restoring T cell immunity against opportunistic viruses following allogeneic hematopoietic stem 

cell transplantation (40, 41). In both cases, isolated autologous or allogeneic T cells are generally 

expanded in vitro and reinfused into the patient (40, 41). An additional genetic manipulation step 

generating T cells expressing CARs targeting the B cell antigen CD19 has shown clinical success 

and has led to regulatory approval of multiple CAR T cell therapies against B cell malignancies 

(40). Most clinical studies of CD19 CAR T cell therapy have used a heterogenous mixture of 

isolated T cells as the starting point for downstream CAR transduction, expansion, and ultimately 

infusion (42). However, studies have demonstrated enhanced efficacy of CAR T cells in a 

humanized mouse model by modifying the cellular composition of the starting T cells (43). In this 

preclinical model, a cellular composition consisting of naive or TCM CD4+ T cells was superior 

over TEM cells in inducing tumor regression (43). Using CD8+ T cells as the starting material for 

CAR T cells showed that cell compositions of human CD8+ TCM cells were more efficacious than 

TEM or naive cells (43). Furthermore, additional studies showed that CAR T cells from pre-

enriched naive and memory T cells, rather than bulk T cells, were less likely to induce toxicities 

in a humanized mouse model (44). 

Considering the favorable outcomes of using broad, defined T cell subsets as a starting material 



 

 

121 

for adoptive cell therapies in preclinical studies, it is tempting to speculate that more refined T cell 

compositions might be beneficial. Many studies demonstrate a correlation between weaker tonic 

TCR signals in CD4+ T cells and enhanced responsiveness to TCR agonist stimulation (6, 7, 45, 

46). Therefore, a potential strategy could be to pre-enrich naive or memory CD4+ T cells that 

experience weaker tonic signaling and use these cells as the starting material for adoptive cell 

therapies instead of bulk T cells. Refining the cell composition by fluorescence-activated cell 

sorting based on the surface expression of markers that correlate with tonic signaling in human T 

cells would enable the strategy described above. It is unclear whether tonic TCR signals have such 

lasting effects on naive or memory T cells that they could impact the responsiveness of T cells 

after multiple rounds of clonal expansion. Nonetheless, since strong tonic signaling induces 

changes in chromatin accessibility in naive CD4+ T cells, epigenetic modifications before the in 

vitro expansion of T cells may have long-lasting effects that could impact cell behavior in vivo (7, 

28). Thus, my prediction would be that adoptive cell therapies using T cells that experience weaker 

tonic TCR signaling could exhibit enhanced effector functions and efficiency. Preclinical studies 

should, therefore, test whether such a hypothesis holds up. 

Identifying new correlate markers of tonic TCR signaling in human T cells 

Tonic TCR signaling induces phosphorylation of the CD3 -chain, which enables recruitment of 

the signaling mediator ZAP-70 (47, 48). These events are evident in murine T cells isolated from 

secondary lymphoid organs where T cells experience TCR:self-pMHC signals but are non-

detectable in T cells isolated from peripheral blood (49). Therefore, such biochemical analyses of 

human T cell subsets isolated from peripheral blood would likely fail in identifying cells that have 

experienced more extensive tonic TCR signaling. Studies have also aimed to investigate whether 

the expression of the correlate markers of TCR signaling in murine cells, Nur77 and CD5, can also 
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reflect TCR signaling in human T cells. TCR agonist stimulation induces Nur77 upregulation in 

human CD4+ and CD8+ T cells in a dose-dependent manner (50). However, the intracellular 

localization of Nur77 prevents isolating human T cell subsets based on Nur77 expression for 

functional assays. Recent studies have developed protocols to analyze the transcriptome of fixed 

T cells (51). Hence a reverse approach of sorting Nur77LO and Nur77HI cells to identify 

differentially expressed transcript levels of surface markers that correlate with TCR signaling in 

naive human T cells may be feasible. Likewise, single-cell transcriptomic analyses of naive human 

T cells could provide similar answers. 

TCR ligation induces upregulation of surface CD5 on human CD4+ T cells, indicating that CD5 

expression can reflect TCR signaling in human T cells (52). CD5HI naive human CD4+ T cells also 

express higher levels of Nur77 than CD5LO cells, albeit the difference is immensely subtle (52). 

Transcriptional analysis of naive human CD4+ CD5HI and CD5LO cells revealed gene expression 

differences, but it is not clear that the transcriptome of CD5HI cells is indicative of increased TCR 

signaling (52). Hence, how well CD5 expression on naive human T cells reflects tonic TCR 

signaling is less clear. Another marker of interest to the field has been the chemokine receptor 

CXCR3, expressed on the surface of a subset of murine and human naive T cells (36, 53, 54). 

CXCR3 expression does not correlate with CD5 expression on naive human CD8+ T cells, but 

CXCR3+ cells exhibit a gene expression profile more similar to effector and memory T cells than 

CXCR3- cells (53). Hence, it is possible that increased TCR signaling in CXCR3+ naive human 

CD8+ T cells drives the expression of genes associated with T cell differentiation. Moreover, 

CXCR3+ naive CD8+ human T cells produce increased levels of IFN and IL-2 compared to the 

CXCR3- counterparts in response to acute stimulation, suggesting that the induced gene expression 

differences in CXCR3+ cells may make them more poised to respond (53). 
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This dissertation shows that the expression of additional surface markers correlates with strong 

tonic TCR signaling in murine naive CD8+ T cells. Nur77-GFPHI cells exhibit increased CD200 

expression and diminished expression of CD127. Moreover, I demonstrated that combining the 

two markers enhanced the separation between GFPLO and GFPHI naive CD8+ T cells. Since human 

T cells express these surface proteins, they could potentially function as correlate markers of tonic 

TCR signaling in human T cells (55, 56). 

A potential driver of the heterogeneity of tonic TCR signaling strength  

I showed in this dissertation that the biases of Nur77-GFP expression in naive polyclonal CD8+ T 

cells persist for at least seven days. This result is consistent with previous studies revealing that 

upon transferring CD5LO and CD5HI naive polyclonal CD8+ or CD4+ T cells into lymphoreplete 

recipients, cells maintain their skewed CD5 expression weeks post-transfer (57, 58). Hence, naive 

polyclonal T cells seemingly endure similar tonic TCR signaling strength over long periods. 

However, I also demonstrated that biases in Nur77-GFP expression in GFPLO and GFPHI TCR 

transgenic T cells do not persist for several weeks. One plausible explanation for these discording 

results is that TCR specificity is a primary driver of the levels of TCR signaling naive CD4+ and 

CD8+ T cells experience in the periphery. Hence, in a population of naive TCR transgenic CD8+ 

T cells with identical TCR clonotypes, biases in tonic TCR signaling appear to be relatively short-

lived. Previous studies by our laboratory showed that biases in Nur77-GFP expression of 

polyclonal CD4 single-positive (SP) thymocytes persist weeks later upon adoptive transfer to 

secondary recipients and maturation into naive T cells (7). Hence, perhaps due to TCR specificity, 

the level of TCR:self-pMHC signals that CD4 SP polyclonal thymocytes experience during 

development correlate with the level of tonic signaling mature naive cells experience in the 

periphery (7). Thus, the level of TCR signals that polyclonal CD8+ T cells experience as CD8 SP 
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thymocytes may predict tonic TCR signaling levels in mature naive T cells. This hypothesis could 

be tested by adoptively transferring GFPLO vs. GFPHI CD8 SP polyclonal thymocytes into 

lymphoreplete recipients to investigate the Nur77-GFP distribution weeks later in naive T cells 

stemming from the GFPLO or GFPHI thymocytes. If biases in GFP distribution persist, it would 

suggest that TCR specificity is a primary driver of how much TCR:self-pMHC signaling T cells 

experience. Furthermore, it would indicate that the strength of those signals is set throughout a T 

cell’s lifetime by the abundance of the self-antigens the T cell recognizes and/or the affinity of 

those TCR:self-pMHC interactions. If biases in GFP expression are non-existent, it would imply 

that TCR specificity is not an essential driver of tonic TCR signaling strength and that stochastic 

interactions with antigen-presenting cells and self-pMHC may drive Nur77-GFP heterogeneity. 

Characterizing the effects of tonic TCR signaling in a polyclonal repertoire normalized for cognate 

pMHC affinity  

Tetramer-based enrichment can facilitate the isolation of polyclonal antigen-specific T cells from 

the naive repertoire (59-61). Assuming that polyclonal CD8+ T cells sustain a bias in the strength 

of tonic TCR signals, they experience as naive cells, TCR clonotypes experiencing weak or strong 

self-pMHC:TCR signals could potentially be isolated from Nur77-GFP mice for a given antigen 

using tetramers. We show in this dissertation that naive TCR transgenic CD8+ T cells exhibit a 

wide range of Nur77-GFP fluorescent intensity, indicating that the strength of tonic signaling 

varies even in T cell populations that express identical TCRs. However, a primary driver of the 

heterogeneity of tonic TCR signals in the context of TCR transgenic cells could be that 

supraphysiological T cell frequencies lead to competition for self-antigens that generally do not 

occur for naive polyclonal T cells. A recent study compared the immune response in vivo of several 

T cell clones with similar specificity that exhibited differential self-reactivity, as measured by 
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surface CD5 expression in the naive state (33). However, whereas the TCR affinity to the cognate 

antigen correlated with the magnitude of the immune response, CD5 expression of naive T cells 

did not (33). Similarly, comparing three different T clones specific for the same Toxoplasma gondii 

epitope revealed that the affinity of the TCR/cognate pMHC ligand, as measured by surface 

plasmon resonance, was a better predictor of T cell expansion in response to infection compared 

to tonic TCR signaling strength indicated by steady-state CD5 and Nur77-GFP expression (62). 

These studies suggest TCR/cognate antigen affinity predicts the magnitude of the acute CD8+ T 

cell response more reliably than tonic TCR signaling strength. 

Hence, ideally, one would isolate numerous antigen-specific TCR clonotypes from the naive 

repertoire that exhibit similar affinity to cognate antigen but differential expression of steady-state 

Nur77-GFP. Such a study would be labor-intensive but is feasible by sequencing the naive TCR 

repertoire for a particular antigen, reexpressing the TCRs in retrogenic mice, and measuring the 

affinity to cognate pMHC by quantifying the dissociation rate of pMHC monomers (63-66). 

Moreover, fluorescent barcoding of T cells in retrogenic mice would allow tracking of the immune 

responses of distinct naive T cell clones co-transferred in small numbers into secondary recipients 

(67, 68). Assuming that naive CD8+ T cells experience a bias in tonic TCR signaling that persists 

in the context of physiological precursor frequencies, such an experiment could allow the 

characterization of a “polyclonal” naive repertoire with similar affinity to cognate pMHC, but that 

experiences different levels of tonic signaling. Hence, such a system could ask how adaptations 

induced by tonic signaling shape the immune response while normalizing cognate pMHC affinity, 

which is an effective predictor of T cell responsiveness (69, 70). Based on the slight competitive 

advantage of Nur77-GFPLO over GFPHI TCR transgenic cells at the acute phase of a viral infection 

(Fig. 2.S2 H and I), my prediction would be that naive CD8+ T cells that experience extensive 
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tonic TCR signaling but similar cognate pMHC affinity, would expand slightly less during a 

primary response. Furthermore, recent studies suggest that naive TCR transgenic CD8+ T cells that 

experience weaker tonic TCR signaling exhibit enhanced self-renewal capacity as memory cells 

one month post an acute viral infection and also persist in increased numbers in secondary 

lymphoid organs four months post-infection relative to the naive cells that experience strong tonic 

signals (36). Therefore, CD8+ T cell clones that encounter extensive tonic signaling as naive cells 

may mount a less robust secondary response than the naive counterparts that experience weaker 

tonic signaling due to reduced frequencies of persisting memory cells following an acute infection. 

Conclusion 

This dissertation aimed to determine the functional implications of tonic TCR signaling in naive 

CD8+ T cells. By utilizing transgenic Nur77-GFP mice that visualize TCR signaling from self-

pMHC interactions, I showed that strong tonic signaling correlates with an attenuated 

responsiveness of naive CD8+ T cells that is partly dependent on Cbl-b, a negative regulator of 

TCR signaling. This study illustrates that extensive tonic TCR signals in naive CD8+ T cells induce 

adaptations that mitigate T cell activation and early responsiveness but raises the question of how 

long such adaptations persist. The findings in this dissertation challenge the current paradigm that 

strong tonic TCR signals enhance the responsiveness of naive CD8+ T cells to subsequent 

stimulation. 
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