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Abstract 
 

Predictive value of cellphone geolocated mobility, vaccination, and social factors on COVID-19 

mortality to provide foundational framework for predicting outcomes of future pandemics 

 

By Erica Lynn Johnson 

 

 

Relevance 

Current research into the factors associated with COVID-19 mortality have shown that social 

distancing has a direct effect on the levels of COVID-19 deaths1. To expand on this research, this 

study aims to find the predictive value in using cellphone geolocated mobility, vaccination, and 

social factors on COVID-19 mortality. Knowing that the effect of these variables are most likely 

not linearly associated to mortality, using a predictive model that allows for nonlinear relationships 

and is able to handle missing data and outliers will increase the predictability of the model. 

 

Variables 

This study assessed COVID-19 mortality as the main outcome. Mean movement aggregated to 

four categories (visits to K-12 grade schools, visits to food service locations, points of public 

transportation, and visits to grocery stores) in each county for each week were considered the 

exposure of interest in our models. We then added in covariates of vaccination, population density, 

GDP level, level of urbanicity, household size, age, and political affiliation to address cofounding 

effects of human movement on COVID-19 mortality. 

 

Design 

Data was gathered from all 159 counties in Georgia for dates ranging from March 2020 and March 

2022 using SafeGraph, the CDC, GA state databases, and US Census data. After processing this 

data was visualized using correlation graphs, histograms, and scatter plots to check for collinearity 

and possible associations between variables. These variables were then evaluated using both 

simple and expanded linear and Gradient Boosted Trees (GBT) models. Model statistics were 

looked at to assess the models performance and predictability. 

 

Main Findings 

Multiple models, looking at different ways to evaluate movement to locations within the categories 

were evaluated to provide the best way to include this data in future disease predictive models. We 

found that there was little difference between the three ways we looked at geo-located data and 

their effect on the model’s ability to accurately predict COVID-19 deaths. The GBT models 

significantly out preformed the linear regression models. Expanded GBT models, which 

considered all covariates and exposures showed a good R2 value around 0.6 with low MAE and 

RMAE values showing the high precision of this model. 
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Introduction 

Burden of Disease 

As of April 2023, there have been over 760 million reported cases of COVID-19 worldwide and 

approximately 6.9 million deaths attributed to COVID-19. The United States has one of the highest 

overall cases (102 million) and deaths (1.1million) ascribed to COVID-19, making research into 

prevention of COVID-19 a virial topic, as our numbers have accounted for about 1/6 of the total 

number of cases and deaths worldwide7–9.  

 

COVID-19 has disproportionately affected low-income communities in the US, showing how the 

intersection of poverty, economic instability, and systemic racism has led to dire health 

consequences. This has had the effect of further intensifying the disparities that existed in the US 

prior to COVID-19, exacerbating the disparities in health equity and deepening the divide between 

communities10. 

 

The burden of this pandemic can be seen in more than just the effect it has had on individuals and 

the health system, as part of the control measures for containing the spread involved shutting down 

non-essential jobs greatly impacting the economy. These measures, though important to preventing 

further spread of COVID-19, have been found to have significant mental health consequences due 

to increased rates of anxiety, depression, and other mental health conditions, as well as substance 

abuse and domestic violence during this time of social isolation, economic stress, and uncertainty 

about the future11,12. 
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Natural History of COVID-19 

SARS-CoV-2, the causative agent of the COV1D-19 pandemic is a coronavirus, and one of three 

notable coronaviruses that have led to outbreaks in the human population13. Initial reported cases 

were from the Wuhan City, Hubei Province in China, who reported to the WHO office in 

December 2018 of unexpected increases of individuals with pneumonia of unknown cause. This 

prompted an investigation where the novel cases were identified as SARS-CoV-2. A pandemic 

was officially announced by the WHO on March 11, 2020, with cases popping up across Europe 

and Asia14. The COVID-19 pandemic has changed the way we look at infectious diseases. As the 

world has gotten more interconnected so has the ability of infectious diseases to transverse the 

world at a pace that makes containment close to impossible. 

 

The presentation of COVID-19 in each individual infected with the virus has been diverse, with 

no one symptom being reported in all cases. The most common symptoms are cough, fever, 

myalgia, chills, fatigue, headache, and shortness of breath15. Individual infected with COVID-19 

could also present as asymptomatic, which is the case for about 40-45% of individuals16. 

Symptoms can start anywhere from 2-14 days at with the infectious period lasting up to 20 days 

(or longer depending on severity of symptoms)17. 

 

Current treatment for COVID-19 includes three currently emergency approved antivirals, one of 

which requires continued infusion over three days at a health care facility. Convalescent Plasma 

treatment has also been approved for treatment of COVID-19.  
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Known Covariates of Infectious Diseases 

As with any infectious disease, there are many factors that affect the ability of the disease to spread, 

and this is no different for the SARS-CoV-2 virus. In many of the currently published articles 

evaluating both the spread of the virus and effective control measures we find that not only does 

geography and timing play a role but also factors like population density, socio-economic factors, 

politics, urbanicity, age, and many other individual and community attributes play an important 

role18–23.  

 

When looking into what causes a respiratory infectious disease to spread one of the main concerns 

is the amount of individual within an area. To account for this in a model, we can look at things 

like population, urbanicity, and household size which give an overall picture of the community in 

a specific location. Adding in social and other non-measurable factors, like the level of 

discrimination that minorities face, are slightly harder to account for. It is know that in the US that 

race plays a role in health outcomes and access to health care, not because it is a factor in the actual 

disease but due to inequitable access to treatments, housing locations, and other factors responsible 

for social inadequacies in the US. Using variables like GDP, household income, and percentage of 

Black identifying individuals can help to account for these factors in modeling infectious diseases. 

With COVID-19 specifically it has been shown that age has a direct effect on the outcome of 

infection, so accounting for the population in a county over the age of 65 can help even out the 

model to make it more generalizable. 

 



 4 

Mitigating Measures of the COVID-19 Pandemic 

As COVID-19 spread and the pandemic was declared various measures have been implemented 

across the world to mitigate its spread. These mitigation measures included social interventions 

such as social distancing and the use of face masks. Campaigns were put forward for hand hygiene, 

and any locations were people gathered, like grocery stores and churches, were encouraged to 

frequently wash down any surfaces with high constant rates like door handles.  

 

Other mitigation measures include testing and contact tracing to identify individuals who have 

potentially been exposed to COVID-19 and quarantine and isolation measures to prevent further 

spread. All of these measures have been shown to be effective in reducing the transmission of the 

virus and limiting the impact of the pandemic on public health. In addition to these social measures, 

pharmaceutical interventions such as vaccines have also played a critical role in mitigating the 

impact of the COVID-19 pandemic.  

 

COVID-19 Vaccination 

With the emergency use approval of mRNA vaccines from Pfizer-BioNTech and Moderna having 

over 90% prevention rates, vaccines are an important time varying mitigation measure.  

 

In addition to these vaccines being highly effective in reducing the transmission of COVID-19 

they have also been shown to prevent severe illness and hospitalization. However, vaccine 

hesitancy remains a significant challenge in some communities, and there are concerns regarding 

the equitable distribution of vaccines globally. One of these factors that has shown to influence 

vaccine hesitancy is political affiliation.  
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Mobility & SafeGraph 

During COVID-19, mobility metrics that approximated human movement were used to understand 

adherence to social distancing and subsequent relaxation of behavior after the most stringent 

protocols were rolled back. Mobility data also served as a proxy for changes in social contact in 

transmission models where it provided a direct, quantifiable link between observed behavioral 

changes and potential changes in population-level transmission. Increases in human movement 

observed by mobility data were used as an early indication of potential rises in cases and were 

tracked by public health agencies such as the Centers for Disease Control (CDC) and Georgia 

Department of Public Health (GDPH). Our analysis seeks to explore the predictive value of cell-

phone geolocated mobility on COVID-19 deaths to determine its utility as an early indicator for 

upcoming waves during an epidemic. 

 

Through the COVID-19 pandemic, mobility data was used to assess compliance with social 

distancing and other recommended restrictions. Measures of mobility trends were then used to 

understand potential spreading or super-spreading events resulting in predictions of outbreaks24–

27. Mobility data described the connectivity within and between communities, allowing for 

predictions of the spatial patterns of disease spread with quick and high accuracy. This allowed 

policymakers to efficiently set restrictions for the populace prior to detailed knowledge of specific 

disease dynamics, and effectively preventing further disease spread28.  
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Machine Learning in Epidemiology 

Regression models provide an understanding of the association between exposure and outcome of 

interest and machine learning algorithms can make use of regression models to provide a predictive 

quality to the results. Unlike general regression models, machine learning algorithms are able to 

capture complex patterns and relationships in data without relying on explicit assumptions or pre-

defined models. They are able to handle highly complex and nonlinear relationships between 

predictor variables (exposure and covariates) and the outcome of interest which makes them a 

powerful tool in prediction tasks29. 

 

Machine learning algorithms are not a new topic in public health and have been used by 

epidemiologist and statisticians before in disease predictions. But the pandemic spurned a need for 

the most accurate predictions of disease spread, prompting growth in the popularity of using 

machine learning in public health and infectious diseases. These models have shown great promise 

in predicting COVID-19 outcomes using a range of data sources, including demographic and 

socio-economic data, health indicators, and mobility patterns. Supervised machine learning 

algorithms allow the researcher to use regression models on labeled data to train then evaluate the 

models’ ability to predict a specified outcome26,30–33.  Several studies have explored the application 

of machine learning models to predict COVID-19 spread, hot-spots, morbidity, case numbers, and 

mortality. These models included the use of random forest34, ARIMA models for time-series 

forecasting34, Gaussian process regression35, linear discriminate analysis36, suggesting many 

feasible approaches to achieve our research goals.  
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Gradient Boosted Trees (GBT) models have several advantages over other machine learning 

algorithms. GBT models are less prone to overfitting, a problem that happens when the model is 

too complex and forms to the training data without generalizability to un-seen circumstances. They 

allow for the input of many features regardless of variable type (categorical/continuous), as well 

as allowing the regression to capture non-linear relationships between these features and COVID-

19 mortality. GBT differs from traditional regression models in its ability to handle complex and 

nonlinear relationships, its built-in mechanisms to handle overfitting, and its effectiveness in 

handling missing data and outliers37. 

 

We use the GBT model to see if the effects of human movement coupled with additional covariates 

provide an accurate prediction of COVID-19 deaths at the county-level and over weeks of the 

pandemic 38.  

 

Impact and Objectives 

Predicting the spread of COVID-19 and identifying regions that are most vulnerable to severe 

outcomes, such as deaths, is critical for public health officials to make informed decisions about 

resource allocation, planning and policy decisions. But this does not only apply to COVID-19. 

Through modeling the effect of movement on COVID-19 mortality, we will be able to provide 

future respiratory outbreaks a starting point to predict the effect of movement on that novel disease.  

The overall objective of this study was to look at the predictive value of cellphone geolocated 

mobility, vaccination, and social factors on COVID-19 mortality. To tackle this objective a GBT 

model was designed, trained, and tested for this study.  
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Methods 

To analyze the relationship between human movement and other covariates such as vaccination 

rate, population density, GDP level, level of urbanicity, household size, age, and political 

affiliation on COVID-19 mortality rates in GA counties from March 2020 to March 2022 the data 

was initially collected and processed to scale based on counties population. Further processing was 

done the main exposure variables to look at model changes when these variables are coded as 

continuous, dichotomous, and categorical. The lag between these variables and COVID-19 

mortality rates were graphed to observe any effect and a two week lag period was applied to the 

vaccination data to appropriately model the initiation of protection given by these vaccines at 14 

days after the second dose39.  

After processing the data, both a linear and non-linear GBT machine learning model were used 

to analyze the effect of the exposure and covariates on our outcome and test our hypothesis that 

human movement had a direct effect on the predictability of COVID-19 mortality. The flow of 

this overall process can be seen in Figure 1. 

 

Exploration Framework and Context 

The study at hand was conducted using a retrospective framework with county-level COVID-19 

mortality data collected from March 2020 to March 2022 in the state of Georgia, USA.. One of the 

most versatile and accurate machine learning methods, GBT model, was used to carry out this 

analysis. This process involved five main components: Data Collection, Data Processing, Feature 

Selection and Data Visualization, Model Selection and Training, and Evaluation. Figure 1 shows 

the steps taken during this process. This study used only R programming language to perform all 

steps of this process. 
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Data Source & Processing 

In this research study we have taken geolocated time series data from Georgia counties between 

March 2020 and March 2022 to analyze SARS-CoV-2 deaths. To better understand the effect of 

human movement on the COVID-19 pandemic we decided to model the outcome of COVID-19 

deaths. Though there was availability on the number of cases of COVID-19 in each county each 

week, the case number is known to be under-reported especially as time progressed and at-home 

test became more readily available. To model the effect of movement on COVID-19 mortality, we 

considered our exposure to be current average movement in four categories: to educational 

institutes k-12, to grocery stores and markets, to food service locations, and transportation (both 

busses and plane locations).  

 

Outcome  

To measure the effect of human movement in a way that was comparable between counties of 

different population levels, mortality data from the CDC was collected and converted into the 

number of COVID-19 associated deaths per 1,000 individuals living within that specific county. 

Before this was done, to allow for a timeseries analysis, the data was aggregated into weekly 

counts, based off of the weekly dates from SafeGraph (Table 1).  

 

Exposure 

We used data gathered from SafeGraph as a proxy for human movement. The mobile phone-based 

geolocation data offered by SafeGraph is obtained from anonymous sources across the United 

States. This data is sourced from mobile phone users who have enabled geolocation on undisclosed 
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mobile applications. SafeGraph assigns the devices represented in the data to their respective home 

census block group based on the most frequent nighttime location during the preceding six weeks. 

SafeGraph has designed a privacy-centric approach to handle the data by pre-aggregating it into 

weekly visit and visitor counts to Points of Interest (POIs). POIs, which are public locations such 

as stores, schools, parks, health facilities, offices, hotels, among others, are bounded by polygons, 

and devices are counted as having visited a POI when a ping is captured within the polygon for at 

least four minutes. Additionally, the data is further categorized into weekly Census Block Groups 

(CBG)-POI visitor flows to provide a more granular level of analysis. 

 

When receiving the data from SafeGraph, specifically it’s Places dataset, rows are organized into 

POI’s and the data for each of the POI’s standardized at the state level for visits to each location 

reported on. POI’s were then categorized into four different categories of interest: visits to K-12 

grade schools, visits to restaurant and other food service locations, points of public transportation 

(including airports and bus terminals), and visits to grocery stores. This was done using all 

applicable location with a NIAC’s code in one of the four categories to label the data. The these 

labeled categories were grouped by county location then by week. This was done to get a single 

mean value for each category in each county per week as a way to approximate the movement in 

a specific county to these four location types each week. 

 

We hypothesized that the association between changes in movement and COVID-19 mortality 

may not be linear and decided to look at the effect of grouping movement in different ways on the 

models’ predictability. This was done by first using the continuous mean movement value to the 

four locations. We then dichotomized this value based on sectioning as the following: movement 
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less than the overall movement average for that category was given a value of zero, and movement 

above the overall movement average for that category was given a value of 1. Lastly, a categorical 

approach was also looked at with overall movement in each category broken into low, medium, 

and high based off of one-third and two-third break points. Table 2 shows the three ways 

SafeGraph movement data was looked at for all three categories in our separate model’s analysis. 

In addition, since it was likely that the movement in one week would not directly impact that 

week’s COVID-19 deaths, rather the effect would lag behind, a graph of lag effects on the GBT 

model were done for the different movement groupings from zero to 14 weeks as the potential lag 

component (Figure 2).  

 

Other Covariates 

In consideration of the currently published research covariates such as county population density, 

GDP level, level of urbanicity, household size, age, political affiliation, and vaccination coverage 

were added to the model to improve its predictive capability and generalizability18–23,40–43. The 

data on these different confounders was gathered from many sources across the web, but in totality 

they can all be traced back to four main sources: the CDC, Georgia state government, the US 

Census, and SafeGraph as shown in Table 4. In addition to this information, website references 

can be found in Appendix 1 for exact locations of this data online. 

 

After collecting the above variables from multiple sources, pre-processing of the dataset occurred. 

This involved aggregating data to county weekly values, rates of vaccinations per 1000 individuals 

living in the county, lagging the vaccinations for 2 weeks, and handling missing or incorrect values. 
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Covariate Selection and Data Visualization 

Understanding the relationships between the variables to be used in this analysis was an important 

first step in the process of coming up with the correct model. To do this a comparative graph which 

places each variable against all other variables was done. This graph includes only time 

independent variables as well as total COVID-19 deaths per 1000 individuals for each county. This 

comparative graph included both histograms and scatter plots. In addition, a correlation matrixes 

was created between each of the time independent variables, and totals vaccinations and deaths for 

all time.  

 

This was done to visualize any trends, like a linear association, and discover any possible 

collinearity that would need to be addressed before moving forward in this process. Exploration 

statistics such as total values, median, mean, standard deviation, range, and more were done on 

covariate variables to give an understanding of distribution and counts. As stated in the 

descriptions of a few features in Table 2 and Table 3, three variables (normalized visits by state 

scaling to transportation terminals, counties total votes in 2020 presidential election, and median 

age of county from 2019) were removed after pre-processing the data and not used in our models. 

 

The SafeGraph transportation category was not used in this analysis due to there being less than 

one third of the counties with transportation information. Both counties total votes in 2020 

presidential election and median age of county from 2019 were not used due to collinearity issues 

with other variables.  
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Model Selection and Training 

To tackle the effect of human movement on COVID-19 mortality, a GBT model was designed, 

trained, and tested. The GBT model is a machine learning algorithm used for both regression and 

classification problems and was used here for our regression analysis. GBT is a decision tree-based 

ensemble learning method that combines multiple decision trees to make more accurate 

predictions. The GBT model uses an iterative approach after it has been initialized. Starting with 

a simple model to predict the average value of COVID-19 mortality, the GBT model then goes on 

to build a decision tree to predict mortality based on the features included in the model. It makes 

what is called a weight adjustment, changing to value of observations based on their residuals 

(differences between the observed values and the predicted values of COVID-19 mortality). 

Additional trees are added to the model based on the residuals from the previous iteration, 

improving its predictions by focusing on the observations that were poorly predicted by the 

previous trees. This repeated process happens for a specified number of steps with the final 

prediction being the sum of the predictions of all the trees. GBT models have emerged as a 

powerful machine learning tool that can make accurate predictions on complex datasets 44–46. 

 

After initial processing and feature selection a simple linear regression model was run using only 

the three movement variables, which included visits to K-12 grade schools, to restaurant and other 

food service locations, and to grocery stores, as features to look at the effect on our outcome, 

COVID-19 mortality. After this a linear model containing both exposure variable (movement to 

the labeled categories) and identified covariates (vaccination rate, population density, GDP level, 

level of urbanicity, household size, age, and political affiliation)  was created and processed as a 

multi-linear regression model, which used each time step (week) as a single regression.  
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Before applying any machine learning algorithms, our data was converted to a timeseries list, 

containing one object per county. This list was then broken with a 80:20 ratio using randomization 

on the counties, keeping the timeseries together to improve accuracy of our results. For each 

training and test set the data was then broken into outcome (new deaths per 1000 individuals) and 

predictor variables. A GBT model was applied with 50 rounds using xgboost package in R, and 

trained using the training data set. A prediction on the COVID-19 mortality in each of the testing 

counties each week was then made using the testing predictor values with this trained model. This 

process was repeated three times, with each movement variable type. We did this approach to see 

if coding the exposure variable in these different ways would effect the predictability of the model 

overall, whit the assumption that using a continuous outcome (movement to each category in each 

week given as a mean over all labeled POIs within that county and category) would have a positive 

effect on the models predictive value. 

 

Model Evaluations 

For all models, both the linear regression and the GBT models, the coefficient of determination 

was evaluated. For the linear regression models F-statistic and adjusted R-squared were also 

calculated and parameter estimates for exposure values were evaluated. For the GBT models the 

predicted values were compared to the actual values to provide an evaluation on the model through 

calculating the mean absolute error (MAE) and root mean squared error (RMSE).  

 

We looked at both the linear model and the GBT predictive model to observe potential differences 

in model output if we considered the variables effect on COVID-19 mortality to be non-linear. 
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Results: 

Data Description & Visualization  

Figures 3 and 4 show the top and bottom nine counties in Georgia, regarding overall deaths. These 

histograms represent the epidemic curve of the counties COVID-19 deaths per 1,000 individuals. 

Smoothed lines of movements within the four categories were scaled to show overall trajectory, 

allowing comparisons between the outcome and exposure. We can see overall in these graphs a 

trend of four distant peaks of COVID-19 deaths, which are likely correlated with the waves of 

COVID-19 as they moved through the GA counties. 

 

Figure 5 shows this comparative graph where is histogram is representative of the counts of that 

variable, and the scatter plots are pointwise effects of one variable on another. We were able to 

observe collinearity between age variables, household size and age variables, as well as percentage 

of the population who identify as Black and the percentage of the population who voted for Trump 

in the 2020 presidential elections. 

 

To continue this simple analysis of the variables effect on each other a correlation heat map was 

created, Figure 6 and animated maps were also created to show the change of movement (in each 

category) and number of COVID-19 deaths per 1000 individuals in each county (links to these are 

in Appendix 2). An example of one frame of these maps is seen in Figure 7. These animated maps 

showed movement to K-12 grade schools showed some correlation between increase in movement 

to these locations and higher COVID-19 mortality. 
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Linear Models: 

Linear models on both simple, including only movement as our exposure variables, and expanded, 

including all covariates, all had somewhat similar metric values as seen in Table 5. The R-squared 

values for these models was very close to zero for all of them but shows a worse result when we 

dichotomous the movement data as well as simple models having a worse result then expanded 

models. Though the resulting multiple and adjusted R square values for these models range from 

0.004 to 0.069 (very close to zero) and the F-statistics are high, ranging from 25-67, the coefficients 

values of our exposures do show a significant impact in our linear models, with movement to K-

12 school estimates being significant in every model with a positive increase association.  

 

We see the highest impact of these exposures in the expanded linear model with categorical 

movement variables. In that outcome model both movement to K-12 schools and grocery stores 

show a positive association for both medium and high movement coefficients of 0.305(medium) 

and 2.823(high) for grocery stores and 8.182(medium) and 10.902(high) for K-12 schools. 

Regarding the estimates for food service, there is a negative association between movement to this 

category with estimates of -0.916(medium) and -4.022(high). All high categories resulted in a 

significant coefficient estimate, and K-12 schools also had a significant estimate for medium factor 

value.  

 

Though we see the most of the time at least two of these exposure variables have an impact on the 

model that is not just a result of random variation in the data, with low R-Squared values and high 

F-statistics we are getting a competing interpretation of the model results. This most likely 

indicates that the model has statistically significant predictors, like our exposure variables, but that 
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they collectively, even in our expanded linear models, only explain a small proportion of the 

variation in COVID-19 mortality.  

 

Gradient Boosted Trees (GBT) Model: 

As with the linear models simple and expanded version of separate GBT models were run on our 

selected data. Table 6, shows the overall performance measurements used to evaluate the different 

GBT models, and Figure 7 is a smoothed graph of the difference in the models predictive value 

and the actual value of deaths per 1,000 individuals.  

 

Before these models were run, a lag graph for all four movement categories was created and 

analyzed to see the effect of lagging the movement on the predictive value in each of the GBT 

models. These graphs look at the error in prediction through MSE and RMSE, and the goal of 

looking at these lagged values of error is to see which lag value produces the lowest error for each 

GBT model. In this case we notice an increase of error as we increase the lag. This shows the 

optimal lag for these variables is zero, so no lag was applied to the exposure variables (movement 

to the four categories of POIs) in both the linear and GBT models analyzed in this study (Figure 

2). 

 

As with the linear regression models in Table 5, there is not much change in the model statistical 

metrics when changing the exposure variable type when comparing the  simple GBT models to 

each other or full models to each other. We do see that all the full GBT models completely out 

preform the simple ones as well as all of the linear regression models. When looking just at the R-

squared values of these different models, the GBT model with the simple regression does just as 
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poorly as the linear model ranging from 0.0004-0.02, but once covariates are added in the GBT 

model performs significantly better than any linear model with R-squared value ranging from 0.60-

0.61. With MAE values ranging from 0.69-0.74 for the expanded GBT models this suggest that on 

average the predicted COVID-19 deaths per 1,000 individuals from the models have an absolute 

difference of 0.69 to 0.74 units from the actual observed values. These lower MAE values indicate 

that the GBT model performance is good since they reflect smaller errors between predicted and 

actual values for COVID-19 deaths per 1,000 individuals. The RMSE values, which measure the 

average magnitude of error between the actual and predicted values of the model, range from 1.27-

1.34 for the expanded GBT models. With these low RMSE values, it shows that these GBT models 

have performed well.  

 

In tables 5 and 6 we can see that the full GBT models have R-squared values ranging from 0.6 to 

approximately 0.62, whereas the linear regression models and simple GBT models have R-squared 

values range from approximately ~0 to 0.07. This is a large difference in values, which results in 

a p-value of less than 0.0001 when doing a two sample, two tailed t-test on this data. These are 

significantly different values show that the expanded GBT models not only out preformed the 

linear regression models with an average R-squared of about 0.61 but that together the  model data 

is able to explain over 60% of the variability in the mortality data. 

 

Discussion: 

Main Findings 

From the model evaluation it seems that the way we modeled human movement, regardless of the 

type of variable this we put into, does not have a direct relationship to COVID-19 mortality. Even 
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with this finding, from looking at R2 values of our simple models (both linear and GBT), we do 

see that the full regression GBT models due show both high accuracy and precision, this 

indications that this model is accounting for and predicting some of factors associated with 

COVID-19 mortality. Knowing from previously published articles that there are many factors that 

come into effect of predicting COVID-19 mortality, this finding is not surprising. With an R2 of 

around 0.6 for all GBT expanded models, we know that our exposure (travel to specific locations) 

and the chosen covariates have an interpretation value of 60% on the cause of COVID-19 

mortality. This increase in predictability of GBT models that include all exposure and covariates 

could be due to correctly accounting for cofounding effects of our movement exposures on 

COVID-19 mortality. 

 

In general, we see the trend of increased model performance when evaluating the full expanded 

model’s vs any of the simple (exposure only) models. Knowing that the model’s R2 values, when 

only containing our movement exposure values is so low, it shows that the assumed relationship 

between movement and COVID-19 mortality was not adequately modeled here. This could be due 

to how we approximated human movement, by using aggregated data from only four specific 

categories. In our linear models we did see that the movement in the K-12 school category was 

significant in all models, regardless of how the variable was code in the model. In future analysis 

isolating this effect and looking more individually at travel to these location might prove to tighten 

up the predictability of the GBT model, rather then having these values aggregated per week in 

each county. 
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Limitations 

As the GBT expanded models only account for 60% of the variability in COVID-19 mortality, we 

know that there is still 40% of variance in this outcome that is not covered by the association 

between labeled movement in our four categories and addition covariates on COVID-19 mortality. 

Adding in additional covariates, such as county health access, might provide a clearer outcome 

relationship.  

 

In using a GBT model, we are also limiting our understanding of which factors have the most 

effect on the outcome predictability. It is not a simple process to evaluate the inner workings of a 

GBT model, and this was not attempted in this study, so evaluation of specific variables effects  

on COVID-19 mortality in the GBT model is a strong limitation to using this model in the future.  

 

To continue to use this GBT model to predict COVID-19 mortality, or to use a similar model to 

predict a new novel disease’s mortality would require continued updating to the training model. 

This would involve adding in new time series data, which in this model is movement to four 

location categories and vaccination rates. This is required due to the dynamic nature of the COVID-

19 pandemic, which is something that is shared with any novel disease. Validation using rigorous 

scientific methods and ongoing monitoring of model performance is essential to ensure accurate 

and reliable predictions of COVID-19 mortality. In addition to using the proposed GBT models 

when looking at COVID-19 mortality, other sources of evidence and expert judgment to inform 

decision-making and policy development related to COVID-19 should be used as well. 
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Strengths 

The GBT models out preforming the linear regression models is most likely due to the flexibility 

that is inherent to the GBT model type, that we cannot get when assuming a linear correlation. The 

GBT model, also allows us to add in our categorical variables with more effect, which we do not 

see in our linear models. In addition, movement, and the changes in movement that we are seeing 

in this data, even when looking at the animated maps, are not showing a simple association.  

 

Though an R2 value of 0.6 is good, a higher value was expected when using the GBT model to 

evaluate the predictability of movement and other covariates on COVID-19 deaths. It was initially 

thought that receiving a lower R2 then what was expected might be due to the fact that neither of 

these models takes into consideration the lag response of social exposure to COVID-19 and the 

resulting death. But after producing lag graphs of the error in the different GBT models when 

lagging movement from zero to 14 weeks, the lowest error is seen when we do not add any lag to 

movement exposure variables in our model. This was an unexpected result, since on average  after 

exposure to COVID-19 most deaths occur after four weeks.  

 

The GBT models also have consistently low MAE values, showing that this model does have high 

precision in its prediction of the effect that movement and covariates have on COVID-19 mortality. 

As for the RMSE scores for the GBT model, these are also in the good range of RMSE scores 

allowing us to generalize these results to more than just Georgia.  
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Within the GBT models, there is not a lot of variation between the resulting model statistics and 

the change in movement variables. This could be due to the effect of movement still being captured 

the same, regardless of how we code this variable in the model.  

 

Implications 

Overall, this study highlights the effectiveness of using predictive models on understand effect of 

cellphone geolocated mobility, vaccination, and social factors on the predictability of COVID-19 

mortality and warrants further study into this effect. These models can provide the groundwork 

into understanding novel respiratory viruses and help predict the outcomes of the next pandemic 

and it’s spread across the word. 

 

Public Health Implications and Future Directions: 

The COVID-19 pandemic has caused significant public health challenges worldwide, with 

governments implementing a range of measures to control its spread. Social distancing and 

limiting travel outside of the home was one of these widely adopted measures used to curb the 

transmission of this virus. This study aimed to take into consideration confounding causes of not 

following social distancing measures, like political partisanship, overcrowding seen in large 

metropolitan areas, and racial disparities seen in our health care system. 

 

The spread of any infectious disease is not limited to one person’s response, but rather communities 

as a whole deciding to follow guidelines to keep from spreading or catching these diseases. The 

results of this study have important implications for public health policy, showing that political 
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partisanship and these other social factors are just as important in understand and controlling the 

spread of COVID-19 as social distancing guidelines. 

 

In future studies, being able to look at other locations, and not aggregating location data into only 

four groups could benefit the model as well. Geo-located data is not the only way to measure 

human movement. Using survey response data, like what is available through Facebooks COVID-

19 questionnaire, could provide a better account for the individual mindset, then cell-phone pinged 

data. 
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Tables: 

Table 1: COVID-19 mortality was used as an outcome variable in the models of this study 

Outcome Description 
Collection 

Location 

Time 

Variant 

COVID-19 

Deaths per 

1000 

individuals 

Daily COVID-19 deaths were collected and 

aggregated to weekly values. Since this data was 

cumulative new deaths per week was calculated 

in R using lag. For weeks with negative values of 

new deaths (due to corrective measures in the 

data), it was assumed that the next positive value 

of new deaths accounted for multiple weeks, so 

this value was split so each week between the 

negative deaths and the positive deaths had the 

same number of deaths. This data was then 

further standardized to each county then 

evaluated as deaths per 1000 individuals.  

CDC Yes 

 

 

Table 2: SafeGraph mobility data to four defined location types provided exposure values in the models 

of this study 

Exposure Description 
Collection 

Location 

Time 

Variant 

Normalized 

visits by state 

scaling to K-

12 Schools 

SafeGraph data on various school locations 

throughout the county was standardize by 

scaling the number of visits by the overall 

amount of people in Georgia. From there all 

locations with NAIC's codes pertaining to K-

12 schools were aggregated to achieve the 

mean value per week to be used in the 

analysis. 

SafeGraph Yes 
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Normalized 

visits by state 

scaling 

grocery stores 

SafeGraph data on various grocery locations 

throughout the county was standardize by 

scaling the number of visits by the overall 

amount of people in Georgia. From there all 

locations with NAIC's codes pertaining to 

grocery stores and markets were aggregated to 

achieve the mean value per week to be used in 

the analysis. 

SafeGraph Yes 

Normalized 

visits by state 

scaling to 

transportation 

terminals 

SafeGraph data on various bus and plane 

terminal locations throughout the county was 

standardize by scaling the number of visits by 

the overall amount of people in Georgia. 

From there all locations with NAIC's codes 

pertaining to bus stops, bus terminals, and 

plane terminals were aggregated to achieve 

the mean value per week. As only 45 counties 

had any data in relation to this category this 

was not included in the final analysis. 

SafeGraph Yes 

Normalized 

visits by state 

scaling to 

food service 

locations 

SafeGraph data on various restaurants 

locations throughout the county was 

standardize by scaling the number of visits by 

the overall amount of people in Georgia. 

From there all locations with NAIC's codes 

pertaining to restaurants or food service 

locations were aggregated to achieve the 

mean value per week to be used in the 

analysis. 

SafeGraph Yes 

 

 

Table 3: Three types of movement variables 

Variable Type Description 

Continuous 
Numeric mean of normalized visits by state scaling for 

each category. 

Dichotomous 

Value determined by looking at the continuous variable 

and determining if it increased compared to the previous 

week. This was done to provide a simple way to see if 

movement in this category was increase as time went on. 
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Categorical 

Using the initial continuous variable, the data was broken 

into 3 parts, low medium and high levels of movement. 

This was determined using the cut function in R breaking 

the continuous variable into three categories, with low 

movement being below 1/3 of the categories movement 

and high movement being above 2/3. 

 

 

Table 4: Covariates which were identified as potential cofounders for the effect of human movement on 

COVID-19 mortality were collected and added to the model to provide a better understanding of the 

relationship between movement and COVID-19 mortality 

Covariates Description 
Collection 

Location 

Time 

Variant 

Per-Capita 

Personal 

Income, 

2020 

Per-capita personal income provides a way to 

measure the counties socioeconomic status and 

directly related to poverty levels. Income has a 

known effect on health outcomes19. 

US Census No 

Percentage 

of the 

Population 

over 65 

COVID-19 and general health outcomes have 

been shown to have a direct correlation with 

age. COVID-19 has been shown to 

disproportionately result in deaths individuals 

over the age of 6518. 

US Census No 

Median age 

of County, 

2019 

As another measurement of age, this variable 

was removed due to the collinearity effect 

between this and the percentage of the 

population over 65. Since older individuals had 

a higher rate of mortality associated with 

COVID-19, that was determined to be a better 

measurement for age then this variable18.  

US Census No 
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Percentage 

of 

Individuals 

who voted 

Trump 

Political communication and rhetoric has been 

shown in previous studies to have an impact on 

the decision of citizens to practice physical 

distancing. As those choosing not to participate 

in preventative measures for COVID-19 are at 

large republican, this was seen as an adequate 

measurement of the potential percentage of the 

county who might not be compiling with 

guidelines23. 

Georgia 

State 

Government 

No 

Total votes 

in 2020 

Presidential 

Election 

As another measurement of political affiliation, 

this variable was removed due to the 

collinearity effect23. 

Georgia 

State 

Government 

No 

Urban Code, 

2013 

Urbanicity is thought to contribute to the 

overall COVID-19 case numbers and 

responses20,21. 

US Census No 

Average 

Household 

Size 

As a way to measure population density, this 

variable was included since population density 

has been shown to have a directly effect on the 

increases of the amount of COVID-19 cases 

and deaths22. 

US Census No 

Percentage 

of Black 

Individuals 

Though we are unable to obtain a direct 

measure of racism in health care and health 

outcomes, the percentage of the county who 

identify as Black is a good indication of this 

level of racism and disparity42,43.  

US Census No 

Population  

The population of counties was used to 

standardize measurements in counties so they 

are comparable18. 

US Census No 

Week 

As we are using a series dataset, the weekly 

start and end dates for our time period were 

determined by the aggregated data from 

SafeGraph40. 

SafeGraph Yes 

New 

Vaccinations 

per 1000 

individuals 

To indicate the decreasing probability of 

individuals obtaining COVID-19, the total 

completed new vaccinations per week (per 

1000 people) was used . 

CDC & 

Georgia 

State 

Government 

Yes 
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Table 5: Linear Models Evaluation Statistics 

Linear 

Model 

Multiple 

R-squared 

value 

Adjusted R-

squared 

value2 F-Statistic 

K-12 

Schools 

Estimate 

Grocery 

Stores 

Estimate 

Food 

Service 

Estimate 

Simple 

Linear 

Model with 

Continuous 

Movement 

Variable 

0.01265 0.01246 67.45 0.00011* -0.00004* -0.0001* 

Simple 

Linear 

Model with 

Dichotomous 

Movement 

Variable 

0.004917 0.004728 25.91 0.3017* 0.04115 -0.0632 

Simple 

Linear 

Model with 

Categorical 

Movement 

Variable 

0.0205 0.02013 55.08 

Medium: 

0.56723* 

High: 

0.75827* 

Medium: 

-0.06754 

High: -

0.02113 

Medium: 

0.01586 

High: -

0.18447* 

Expanded 

Linear 

Model with 

Continuous 

Movement 

Variable 

0.07103 0.06975 55.35 8.751* 1.614* -4.119 

Expanded 

Linear 

Model with 

Dichotomous 

Movement 

Variable 

0.06873 0.06744 53.21 0.3478* 0.1610 0.02507* 

Expanded 

Linear 

Model with 

Categorical 

Movement 

Variable 

0.06935 0.06799 43.72 

Medium: 

8.182* 

High: 

10.902* 

Medium: 

0.305 

High: 

2.823* 

Medium: 

-0.916 

High:     

-4.022* 

*denotes significant at an alpha level of at least 0.001 for β coefficients 



 34 

Table 6: GBT Model performance of different movement variable data types 

GBT Model R-Squared value 

Mean Absolute Error 

(MAE) 

Root Mean 

Squared 

Error 

(RMSE) 

Simple GBT with 

Continuous Movement 

Variable 0.0004004477 1.891814 3.379743 

Simple GBT with 

Dichotomous 

Movement Variable 0.004000327 1.34146 2.006809 

Simple GBT with 

Categorical Movement 

Variable 0.02189969 1.328132 1.979287 

GBT with Continuous 

Movement Variable 0.6067073 0.7437192 1.3446 

GBT with 

Dichotomous 

Movement Variable 0.6173938 0.6966837 1.271944 

GBT with Categorical 

Movement Variable 0.6042525 0.7437192 1.313551 
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Figures: 

 
Figure 1: Study Roadmap 

Data Collection
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Figure 2: Assessment of the effect of lagging the movement in GBT models. A- GBT dichotomous 

movement simple model; B- GBT categorical simple model; C - GBT continuous movement simple model; 

D: GBT continuous movement full model 

 

0.0

2.5

5.0

7.5

0 5 10 15 20

Lag

E
rr

o
r

Error Type

MSE

RMSE

A

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20

Lag

E
rr

o
r

Error Type

MSE

RMSE

B

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20

Lag

E
rr

o
r

Error Type

MSE

RMSE

C

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20

Lag

E
rr

o
r

Error Type

MSE

RMSE

D



 37 

 
Figure 3: Histogram of COVID-19 deaths per 1,000 individuals in the top nine Georgia Counties effected 

by this pandemic. Lines of movement in the county was added to each graph, scaled and smoothed to be 

seen as the overall effect over time with the following representation of movement catagories: red –  

education, blue – grocery, green – food services, and purple – transportation 
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Figure 4: Histogram of COVID-19 deaths per 1,000 individuals in the bottom nine Georgia Counties 

effected by this pandemic. Lines of movement in the county was added to each graph, scaled and 

smoothed to be seen as the overall effect over time with the following representation of movement 

catagories: red –  education, blue – grocery, green – food services, and purple – transportation 
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Figure 5: Comprehensive exploratory graph on all variables to be consider for modeling the effect of 

human movement on COVID-19 deaths. 

Explanation of Variables in Figure 5 
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Figure 6: Variable Pearson correlation heat map used to understand and evaluate potential connections 

between variables. 
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Figure 7: Frame captured from animated maps showing movement in the grocery category in the first 

week and the association with COVID-19 mortality 
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Figure 8: Absolute difference between predictive and actual for each model in comparison the scaled GA 

overall mortality per week.  
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Appendix 1 

Online locations of data collected for analysis in this study: 

Covariates Online Location of data 
Main 

Source 

Time 

Variant 

COVID-19 

Deaths per 

1000 

individuals 

https://apidocs.covidactnow.org/?utm_campaign=API&utm_me

dium=ppc&utm_source=adwords#historic-data-for-all-states-

counties-or-metros 

CDC Yes 

Per-Capita 

Personal 

Income, 2020 

https://apps.bea.gov/itable/?ReqID=70&step=1&acrdn=5 
US 

Census 
No 

Percentage of 

the 

Population 

over 65 

https://www.census.gov/data/tables/time-

series/demo/popest/2010s-counties-detail.html 

US 

Census 
No 

Median age 

of County, 

2019 

https://www.census.gov/data/tables/time-

series/demo/popest/2010s-counties-detail.html 

US 

Census 
No 

Percentage of 

Individuals 

who voted 

Trump 

https://sos.ga.gov/election-data-hub 

Georgia 

State 

Govern

ment 

No 
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Total votes in 

2020 

Presidential 

Election 

https://sos.ga.gov/election-data-hub 

Georgia 

State 

Govern

ment 

No 

Urban Code, 

2013 
https://www.cdc.gov/nchs/data_access/urban_rural.htm 

US 

Census 
No 

Average 

Household 

Size 

https://www.census.gov/data/tables/time-

series/demo/popest/2010s-counties-detail.html 

US 

Census 
No 

Percentage of 

Black 

Individuals 

https://www.census.gov/data/tables/time-

series/demo/popest/2010s-counties-detail.html 

US 

Census 
No 

Population 
https://www.census.gov/data/tables/time-

series/demo/popest/2010s-counties-detail.html 

US 

Census 
No 

New 

Vaccinations 

per 1000 

individuals 

https://apidocs.covidactnow.org/?utm_campaign=API&utm_me

dium=ppc&utm_source=adwords#historic-data-for-all-states-

counties-or-metros 

CDC & 

Georgia 

State 

Govern

ment 

Yes 
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Appendix 2: 

https://github.com/erica8494/Thesis_EricaJohnson.git 
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