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Abstract

Medulloblastoma Circulating Tumor Cell Clusters as a Novel Tumor Biomarker and
Mechanism for Hematogenous Spread

By Franklin L Chien, MD

Medulloblastoma is an embryonal tumor of the cerebellum and accounts for most
pediatric malignant disease of the central nervous system (CNS). RNA sequencing
and DNA methylation studies reveal four major subgroups of disease: SHH-activated,
WNT-activated, Group 3 and Group 4 [22, 23]. While grouping carries prognostic sig-
nificance, metastatic spread remains the single most important indicator of outcomes
[25].

Previously, medulloblastoma spread was thought to occur only by direct tumor
shedding. However, there is a growing recognition for a hematogenous route for
metastasis [13].

Literature in several adult cancers recognize the role of circulating tumor cells
(CTCs) as a mechanism of seeding disease at remote sites [2], with CTC clusters
(CTCCs) carrying even greater potential for metastasis [6]. Traditional methods of
CTC detection rely on immunolabeling. This requires a universal and tumor-specific
surface marker, whereas no similar markers are known in medulloblastoma cells. A
novel microfluidic chip (Cluster-Chip) was developed to capture CTCCs from unpro-
cessed blood using a label-free approach, achieving 99% efficiency on cluster sizes of
4 or more cells [24]. Using the Cluster-Chip technology, we describe the presence of
CTCCs in patients with medulloblastoma. CTCCs therefore may represent a novel
biomarker for tumor and present an exciting new direction to study hematogenous
disease spread in medulloblastoma.

We enrolled 44 pediatric patients in a longitudinal study. CTCCs are quantified
at enrollment and additionally at routine 3-month intervals in medulloblastoma pa-
tients. From this study cohort, we report the presence of CTCCs in all patients with
medulloblastoma and at all phases of therapy, while none are detected in patients
without malignancy.

Identifying CTCCs in blood from patients with medulloblastoma is promising,
but their role in metastasis pathophysiology is not currently understood. We use
multiple change point detection to identify significant changes in CTCC quantity
from sequential peripheral whole blood data, and next-generation high-throughput
RNA sequencing to describe CTCC transcriptome compared to whole blood through
gene set enrichment analysis and immune cell deconvolution.
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Chapter 1

Introduction and Background

1.1 Medulloblastoma

Medulloblastoma is the most common malignant brain tumor of the CNS in child-

hood [29]. It is an embryonal small round blue cell tumor of the cerebellum origi-

nating from neuronal progenitor cells. The malignancy occurs in the posterior fossa,

an intracranial anatomical space housing the cerebellum. Medulloblastoma is more

common in males compared to females at a ratio of 1.6 to 1 [9], and is most common

in non-Hispanic white patients.

General approaches to medulloblastoma treatment include maximally safe surgi-

cal resection, adjuvant chemotherapy, and radiation therapy [19]. Due to significant

adverse cognitive effects of radiation, high intensity chemotherapy followed by au-

tologous stem cell rescue is becoming an increasing popular method of treatment in

the youngest and thus most radiosensitive patient population. With these interven-

tions, five- and ten-year overall survival in the United States are 70.1% and 63.3%,

respectively [9]. Profound and permanent neurologic deficits may result from both

the disease and treatment sequelae. In this way, medulloblastoma represents one of

the most significant causes of childhood cancer related morbidity and mortality.
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1.1.1 Medulloblastoma Genomics

In the genomics era, molecular profiling of tumors have improved tumor categorization

and prognostication. One notable example is the subdivision of medulloblastoma into

four distinct groups based on transcriptomic landscape [22]. In 2006, discrete sub-

groups of medulloblastoma were first described based on Affymetrix oligonucleotide

arrays [28]. In the following decade, these were later expanded upon and refined

leading to a consensus statement defining 4 major molecular subgroups of Medul-

loblastoma: WNT-activated, SHH-activated, Group 3, and Group 4 [27]. Group 3

and Group 4 tumors are now recognized as two extremes of a continuum of tumors

[31]. As molecular subgrouping continues to advance, 12 subtypes of the 4 major

groups have been proposed [11].

Medulloblastoma molecular sub-grouping carries prognostic significance with most

favorable survival in the WNT-activated group in contrast Group 3 tumors which

predicts poorest survival outcomes [9].

1.1.2 Metastasis and Survival Outcomes

Despite significant recent advances to the molecular diagnosis and categorization of

medulloblastoma, metastatic staging remains the most significant predictor of survival

[25]. With the exception of extreme cases of severe tumor burden, the vast majority of

medulloblastoma metastasis occurs in the leptomeningeal space. Traditionally, these

have been referred to as “drop down” metastasis, suggestive of direct tumor shedding

as a mechanism for spread.

Recent literature challenges the previously held assumption for direct tumor shed-

ding as the sole means of metastasis. Murine xenograft studies have demonstrated

the ability of medulloblastoma cells to travel through a hematogenous route and seed

distant sites of disease in a sibling mouse with surgically anastomosed circulatory

system [13].
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1.2 Circulating Tumor Cells and Cell Clusters

Circulating tumor cells (CTCs) are cancer cells derived from solid tumors that can

be detected away from the primary tumor site circulating in the bloodstream. CTCs

were first discovered over a century ago, however, they were not able to be further

characterized or studied in detail until more recently [5, 12]. Among the challenges to

studying CTCs include their extreme rarity, accounting for 1 cancer cell among one

billion normal circulating blood cells [3]. Most CTCs are fated to die in circulation

due to sheer forces, oxidative stress, and peripheral immune surveillance. However,

a small fraction survive and seeds metastasis at distant sites [14]. CTCs are thus a

mechanism for hematogenous spread to distant site in several solid tumors. Their

presence has not been previously described in medulloblastoma patients.

In addition to circulating as single clusters, recent data within the past decade

have demonstrated that CTCs also cluster [3]. These clusters of two or more CTCs

with strong cell-to-cell contact defines a circulating tumor cell cluster (CTCC) [12].

Clusters can consist of a single cell type (homotypic) or be composed of multiple

distinct cell types (heterotypic) [1]. The mechanisms by which CTCCs originate is

still under investigation, with two leading hypothesis including collective migration

off the primary bulk tumor versus intravascular cell aggregation (”cell jamming”)

[5, 14].

Emerging evidence suggest that clustering confers certain survival advantages for

the tumor cells including mesenchymal transformation, resistance to programmed cell

death, and immune surveillance escape [5, 14, 12], though the specific mechanisms by

which these advantages are achieved are not fully understood. While circulating, they

have been observed to be quiescent with respect to cell cycle [14], allowing resistance

to conventional chemotherapy. This ability to circulate and survive away from the

primary tumor is necessary for metastasis.

Previous molecular studies of CTCC in non-medulloblastoma tumors have shown
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that CTCC carries the tumor signature of the original bulk tumor. In addition,

CTCCs also differentially express cell-cell adhesion proteins and markers of stemness,

distinguishing them from singular CTCs [6]. Several markers of stemness have been

described in a variety of cancers [4].

1.2.1 Circulating Tumor Cell Capture

Despite interest in CTCs and CTCCs as a novel disease biomarker, isolation of rare

circulating cells from blood poses a significant challenge to their study. Several meth-

ods have been developed using a immune label based approach for cell detection and

capture such as CellSearch [7]. Immune labeling approaches are difficult to apply to

medulloblastoma, as their application requires the presence of a cell surface marker

that is both sensitive and specific to medulloblastoma when no such candidate marker

is known.

Recently, a novel microchip (Cluster Chip) was developed with the capacity to cap-

ture peripherally circulating CTCCs from unprocessed whole blood [24]. The Cluster

Chip uses bifurcating triangular columns through which whole blood is passed in low-

flow conditions, trapping tumor clusters. Using the label-free approach circumvents

the requirement for an identifying surface marker. The low flow conditions are below

the flow speed of human capillaries, minimizing mechanical injury to the cell clusters

and artifactual dissociation of clusters. Capture efficiency was at 99% in a population

of spiked CTCCs for clusters of 4 cells or greater. Lastly, the Cluster Chip captures

and releases live cells, allowing for subsequent sequencing experiments of the cells.
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Chapter 2

Methods

2.1 Patient Enrollment and Human Subjects Re-

search

To study the role of CTCC in disease, 44 patients were enrolled into a pilot study

including 24 with medulloblastoma, 10 with low grade glioma, and 10 with non-

malignant hematological conditions. Patients were consented for study from Chil-

dren’s Healthcare of Atlanta’s Aflac Blood and Cancer Disorder Center in Scottish

Rite children’s hospital. First samples of blood and cerebrospinal fluid (CSF) were

obtained in medulloblastoma patients following surgical resection of the tumor and

pathological diagnosis of disease, but prior to initiation of chemotherapy. Peripheral

blood draws were repeated regularly at 3-month intervals throughout therapy during

clinic visits when peripheral blood draws are otherwise medically indicated. Routine

sequential spinal fluid evaluations were not obtained as repeat lumbar punctures are

not medically indicated.

Controls patients with low grade glioma or non-malignant hematological condi-

tions were similarly patients who sought care at Aflac Blood and Cancer Disorder

Center. Patients with low grade gliomas were chosen as a control due to presence of
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CNS mass. However, unlike Medulloblastoma, these lesions are not considered ma-

lignant. Non-malignant hematological controls include patients seeking care for iron

deficiency anemia, hereditary spherocytosis, and sickle cell anemia but do not have

any oncological disease. No patients received lab draws or procedures for research

purposes except at times when they are otherwise medically indicated.

Human subjects research activities and protocol was reviewed and approved by

Emory University Institutional Review Board (IRB) under the IRB approval ID

MODCR003-IRB00116846 following submission for the expedited process. Origi-

nal IRB documents were submitted Nov 2021. Re-application was performed the

following year with re-approval in October 2022.

2.2 Change Point Detection

Multiple change point detection was used to detect changes in mean CTCC concen-

tration from sequential lab draws using the R package “changepoint” developed by

Killick and Eckley [16]. Multiple detection algorithms are implemented. The pruned

exact linear time (PELT), an optimization of the segment neighborhood algorithm

was selected as the method for multiple change point detection. Given no theoretical

reason to limit to single change point, At Most One Changepoint (AMOC) was not

used. A Modified Bayes Information Criterion (MBIC) penalty was applied. Multiple

change point detection was performed on peripheral CTCC concentrations in patients

with ten or more collections.
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2.3 CTCC Enrichment and Bulk-RNA Seq

2.3.1 Enrichment

CTCCs were isolated and quantified from peripheral blood and CSF using a novel

physics-based microfluidic device, the “Cluster Chip”. Captured CTCCs undergo

immunostaining with the cell surface markers CD45 and Synaptophysin. These two

markers were selected for immunostaining after discussion with hematopathology and

neuropathology to distinguish medulloblastoma cells from other cells in whole blood.

CD45 was selected to stain cells of hematopoietic lineage, and synaptophysin to stain

cells of neuronal lineage. CTC clusters enriched from whole blood are subsequently

identified by pathology to be of tumor origin based on microscopic appearance and

CD45-negative, synaptophysin-positive immunofluorescence staining pattern. Cells

obtained in peripheral blood do not express synaptophysin under physiologic condi-

tions.

2.3.2 Sequencing

To validate CTCC enriched samples as distinct from background whole blood and to

describe the transcriptomic landscape of CTCC, next-generation bulk RNA sequenc-

ing was performed from CTCC enriched samples. Six patients in the study cohort

were selected for sequencing, chosen to represent a range of medulloblastoma sub-

groups and relapse status. Of note, no patients were enrolled with WNT-activated

disease at the time of sequencing. Sequenced samples were obtained from first lab

draws prior to chemotherapy. Two to 4 replicates were performed for each biological

sample for a total of 21 samples.

Following CTCC enrichment on the Cluster Chip, each sample typically contains

fewer than 100 cells. To account for this, an ultra-low cell count protocol optimized for

transcriptome analysis was used for sequencing. Following CTCC enrichment, RNA
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was isolated using the Quick-RNA Microprep Kit by Zymo Research. Complementary

DNA was generated using SMART-Seq v4 Ultra-Low Input RNA Kit by Takara bio.

The final sequencing library is made by Nextera XT kit by Illumina. Samples were

provided to the Emory Integrated Genomics Core (EIGC) who carried out ultra-low

cell count sequencing. Once complementary DNA fragments are tagged and adaptors

added, sequencing was performed at a read-depth of 30 million paired-end reads of

100 base pairs per sample on an Illumina NovaSeq6000 system. A read-depth of 30

million reads per sample was selected to detect large differences in gene expression

and with consideration to sequencing cost. Significant differences in differential gene

expression is anticipated between CTCC originating from cerebellar tumor compared

to whole blood without malignancy.

Following sequencing, FASTQ files were then provided to the Emory Integrated

Computation Core (EICC). Read fragments were first pre-processed by adaptor trim-

ming using the Java based software Trimmomatic (v0.36). Read sequences are quality-

checked using FastQC with read confidence reported in phred quality score. Trimmed

reads are then aligned with STAR aligner v2.5.2 to the University of California Santa

Cruz (UCSC) Hg38 human genome assembly, the most current major assembly of the

human genome. Finally, gene quantification is performed using HTSeq-count.

The resulting count matrices obtained from ultra-low input bulk RNA sequencing

of CTCC-enriched samples were then compared to whole blood control RNA expres-

sion. Whole blood control data derive from four healthy young adult donors aged

25-40, and were obtained from the Gene Expression Omnibus (GEO), a public ge-

nomics repository of the National Center for Biotechnology Information (NCBI). This

comparison data series were selected to match major sequencing parameters used in

CTCC-enriched sequencing in that it was also computed from STAR alignment to

Hg38 assembly, with sequencing on the same NovaSeq6000 platform (GSE178388)

[8]. Sequencing depth of whole blood controls was at 50 million paired end reads per
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sample, compared to the 30 million in CTCC-enriched samples.

2.3.3 Differential Gene Expression Analysis

Differential expression analysis was performed with DESeq2, a component of the

Bioconductor software packages. Sequencing counts typically have a skewed and

over-dispersed nature, thus are incompatible with Gaussian models. Therefore, DE-

Seq2 uses a negative binomial distribution for RNA-seq data to conduct statistical

inferences [18]. Adjusted p-values were used rather than raw p-values to account for

multiple hypothesis testing.

To account for differences in read depth and gene length, normalization was ap-

plied using median of ratios method as implemented in DESeq2. Relative sparsity in

gene expression is noted in the CTCC enriched samples. To account for the expected

increase in variation due to sparsity, only differential up-regulation was considered as

upregulation can be more robust to variance compared to down regulation.

2.3.4 Batch Effect

Peripheral whole blood control sequencing was selected to match several key experi-

mental designs with the CTCC enriched sequencing. However, because the sequenc-

ing experiments were performed by different labs, institutions, and at different read

depths, batch-effect is expected to contribute to differences in transcriptomic expres-

sion between the two sample groups.

To further evaluate technical differences in sequencing reads, DESeq2 normalized

counts were plotted as two overlapping density curves. Due to substantial right skew

in the sequencing alignment counts, normalized counts were globally log-transformed

for ease of visualization.

Down sampling is a method of batch correction whereby data is randomly ex-

cluded to normalize gene expression raw count matrices. The CTCC sequencing was
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performed at 30 million reads per sample - 40% fewer reads than the control which

was sequenced at a read depth of 50 million reads. ComBat-seq is another batch-

correction algorithm using a negative-binomial regression model to minimize variance

in genomics data due to technical differences [33]. In discussion with Emory Inte-

grated Computation Core, post sequencing batch-effect correction was not pursued

as subsequent experiments are planned to minimize batch-correction a-priori. Down

sampling was felt to be suboptimal due to resulting loss of data.

2.3.5 Stemness

Stemness and epithelial to mesenchymal transformation is known to play an impor-

tant role in the biological function of CTCCs. To evaluate the expression of stem-

ness markers in medulloblastoma CTCCs, a gene set of 46 markers of stemness was

compiled from a review article of cancer stem cells from the circulating tumor cell

literature [4]. Differential gene expression log-fold change and adjusted p-values for

each of these 46 genes are plotted in a volcano plot.

2.3.6 Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) is a method whereby biological insight can be

statistically inferred by comparing the pattern of differential gene expression against

a-priori curated sets of genes that define a specific cellular behaviors. Gene set col-

lections were obtained from the Molecular Signatures Database (MSigDB) jointly

hosted by the Broad Institute and UC San Diego. Human collections C2, C5, and C6

corresponding to Canonical Pathway, Gene Ontology, and the Oncogenic Signatures

gene sets were used as the basis of GSEA.

GSEA was scripted in R version 4.2.1 using the Bioconductor package “fgsea”.

Resulting normalized enrichment scores (NES) and adjusted p-values are plotted in a

bubble chart. Bubble chart are constructed with NES on the x-axis and bubble size
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determined by the −log(AdjustedP ), transformed on negative log such that larger

dots represent more significance.

2.3.7 Immune Deconvolution

CTCC captured from the peripheral blood are observed to be circulating with CD45+

cells of hematopoietic lineage, which are hypothesized to represent tumor associated

immune cells. In order to identify immune cell populations associated with CTCC,

CIBERSORTx was used to perform RNA deconvolution on CTCC samples. CIBER-

SORTx uses a support vector machine based machine-learning approach to deconvo-

lute cell types from a mixture matrix [26].

A signature matrix defines RNA profiles in pure samples of different cell types and

is used as the basis of mixture deconvolution. LM22 is a validated leukocyte gene

signature matrix originally developed from Affymetrix microarray data [20], which

contains 547 genes distinguishing 22 human cell types from hematopoietic lineage.

This matrix was used as the basis of immune deconvolution.

To construct the CTCC mixture matrix, DESeq2 normalized RNA expression

was averaged across replicates. Following deconvolution, relative fractions were used

to construct heat maps of both lymphoid and myeloid lineage by patient sample.

To illustrate differences in T, B, and Monocyte/macrophage cells, violin plots are

constructed.

Differences in relative fraction between CTCC enriched samples and whole blood

controls were evaluated statistically. Paired t-tests were performed on relative frac-

tions for each cell type defined in the LM22 signature matrix. Resulting p-values are

adjusted for multiple hypothesis using the False Discovery Rate (FDR) method.
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2.4 Contributions from Collaborators

CTCC capture and quantification was performed by Sarioglu lab. Sequencing, align-

ment, and differential gene expression was performed by EIGC and EICC. The author

of this manuscript as part of MacDonald lab was involved in the experimental design

and interpretation of differential gene expression results, as well as selection of the

data series to serve as whole blood control. Gene expression distribution compar-

ison between CTCC enriched sequencing against whole blood sequencing was also

performed by the author. Additionally, computation, scripting, and interpretation of

change point detection, gene set enrichment analysis, and immune deconvolution was

performed by the author.

2.5 Funding

Funding support for personnel, laboratory materials and reagents, and next-generation

RNA sequencing was provided by the V Foundation for Cancer Research.
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Chapter 3

Results

3.1 Patient Enrollment and Cell Capture

In the three-year period between 2020 and 2023, 44 pediatric patients were enrolled

in the Medulloblastoma CTCC study (table 3.1). Of the 44 total patients, 24 have

medulloblastoma, 10 have low grade glioma, and 10 have benign hematological con-

ditions. Enrolled medulloblastoma patients include 16 with new diagnosis and 8 with

relapse disease, and include all 4 molecular subgroups. Patient ages ranged from less

than 1 year-of-age to 22 years-of-age at enrollment, with an average age of 11.

For the duration of the pilot study, 204 total samples were collected including 163

from blood and 41 from CSF. Serial blood draws were obtained at 3 month intervals

with number of peripheral blood collections ranging from 1 to 13 (figure 3.1).

Medulloblastoma CTCCs, defined as large cells in clusters staining positive for

synaptophysin and negative for CD45, are detected in every patient with medul-

loblastoma and absent in both low grade glioma controls and non-malignant controls.

Representative images of captured clusters from peripheral blood and from CSF are

given in figure 3.2 with green fluorescence indicating synaptophysin and red indicat-

ing CD45. CD45 positive cells were noted to associated with clusters from peripheral
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Variable n Mean Age (Range)

Sex
Male 24 10.0 (1, 22)
Female 20 13 (0, 22)

Medulloblastoma 24 9.8 (0, 22)
Relapse Status
New Diagnosis 16 7.5 (0, 22)
Relapse 8 14.3 (6, 22)

Sub-type
SHH 9 9.7 (0, 22)
WNT 1
Group 3 3
Group 4 6
Non WNT/SHH 5

Low Grade Glioma 10 12.6 (4, 21)
Non-Malignant Heme 10 13.9 (5, 19)

Total 44 11.34 (0, 22)

Table 3.1: Number of patients enrolled in CTCC study over 3-year study period
between 2020-2023 by sex, diagnosis, and medulloblastoma subgroup. Average and
age ranges at time of enrollment are given for groups with 8 or more patients.

Figure 3.1: Number of peripheral blood collections per patient enrolled in pilot cohort.
Each bar represents a patient with medulloblastoma.
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(a) CTCC cluster in peripheral blood (b) CTCC cluster in CSF

Figure 3.2: Immunofluorescent staining of CTCC in blood and CSF. Clusters of
large cells stain positively with synaptophysin (green) and negatively with CD45
(red) indicate tumor cells of neuronal origin. CD45+ cells from hematopoietic lineage
associating with CTCC from blood are hypothesized to constitute a CTCC immune
microenvironment. CD45+ cells are not seen in CSF, an immune privileged space

blood (figure 3.2a) but not from CSF (figure 3.2b), an immune privileged space.

These associated CD45+ cells are predicted to comprise a peripheral CTCC immune

microenvironment.

3.2 CTCC Quantification and Change Point De-

tection

Global concentrations of CTCC in CTCC/ml following enrichment are plotted in

violin plot in figure 3.3. The spread of the data shows significant skew, with few ob-

servations correlating with extremely high concentrations of CTCC. In blood, these

extreme outlying data correspond clinically with a spike in CTCC concentration fol-

lowing completion of chemotherapy. These spikes are observed to return to non-

outlying values without additional therapy. While noted as a recurring pattern, the

spikes in CTCC concentration were not universally observed within our patient co-
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hort.

Within CSF observations, outlying high CTCC concentrations coincides with lab

draws preceding disease progression and death.

(a) Excluding extreme outlying data (b) With extreme outlying data

Figure 3.3: Overall distribution of CTCC concentration (CTCC/ml) enriched from
peripheral blood and CSF samples from patients diagnosed with Medulloblastoma.
Several extreme outlying data points are noted. Distributions are plotted both with
and without these outliers

Peripheral blood CTCC quantity is hypothesized to indicate the body’s overall

tumor burden. To assess global trends in CTCC/ml with therapy and with off therapy

follow-up, seven patients with the greatest number of serial whole blood collections

were plotted on line plot (figure 3.4). The overall shape of the data is consistent with

decreasing CTCC quantities with cancer directed care. Overall, CTCCs continues to

be detected following therapy even in the absence of relapse or progression as assessed

by traditional means. Figure 3.4b show a representative patient demonstrating spike

in CTCC/ml following completion of therapy, with resolution in CTCC in the absence

of further chemotherapy.

Multiple change point detection is predicted to correlate with significant changes

to the biological system such as changes in chemotherapy, tumor progression, or

relapse. Applied to patients with 10 or more collections, change points in mean are

statistically detected. In one patient (figure 3.5b), the first change point corresponded
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(a) Excluding outlying data (b) Including outlying data

Figure 3.4: CTCC concentrations (CTCC/ml) trends over time in seven patients with
medulloblastoma having the most number of blood draws, both with and without
extreme outlying data. The addition of outlying data demonstrates a spike in CTCC
concentration at the end of therapy seen in some patients. Excluding the spike,
an overall shape of decreasing CTCC is noticed as patients are treated with cancer
directed therapy.

with initiation of tumor directed therapy. Figure 3.5c shows one patient with a

large spike in CTCC following therapy, triggering detection of two change points

surrounding this spike.

3.3 Bulk RNA-Seq Quality Control

Bulk RNA-Seq quality control was conducted by EICC and is given in the figure

3.6. Guanine and Cytosine are two of the four base pairs comprising human DNA

and RNA with percentage content commonly used as a quality control metric. GC

content of bulk RNA-sequencing are consistent with average GC-content of human

genomes of 41% [17]. Phred score show high confidence in base pair calls (figure

3.6c), and read lengths were as expected in this short-read sequencing experiment

(figure 3.6d). Relatively high adapter content was detected pre-trimming, in contrast

to post-adapter trimming with Trimmomatic (figure 3.7).

To assess differences in gene expression distribution between CTCC samples versus
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(a) Patient MB003

(b) Patient MB008. First change point
correspond with initiation of tumor di-
rected therapy

(c) Patient MB022. Change point coin-
cide with the large spike in CTCC fol-
lowing completion of chemotherapy

Figure 3.5: CTCC concentrations (CTCC/ml) trends over time with detected change
points shown in three patients, two with 10 or more blood collections (MB003,
MB008), and one patient with the post therapy spike in CTCC. In patient MB0003
(3.5a), first change point occurs in the midst of chemotherapy and second coincides
with therapy completion. In patient MB008 (3.5b), first change point is associated
with initiation of therapy for relapse disease, the second at the end of radiation ther-
apy and initiating chemotherapy, and the 3rd during chemotherapy. Patient MB022
(3.5c) show the off therapy spike in CTCC/ml, with change points detected at the
spike.
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(a) Proportion of STAR Alignment uniquely
mapped to reference genome

(b) RNA sequencing QC Content

(c) Phred quality score by read position (d) Sequencing read-length

Figure 3.6: FastQC results from ultra-low input bulk RNA-sequencing of CTCC
enriched samples. Alignment, GC content, Phred quality scores, and read lengths are
given.

(a) Adaptor content pre trimming (b) Adaptor content post trimming

Figure 3.7: Adaptor content of sequenced CTCC samples pre and post algorithmic
adaptor removal
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controls, density distribution of gene expression profiles using DESeq2 normalized

gene counts were plotted (figure 3.8). Relative data scarcity is noted in the CTCC

sample with greater number of genes with 0 reads compared to control, whereas more

gene expression is detected in the control samples at log normalized counts within in

the range less than 5 but greater than 0.

Figure 3.8: Comparison of gene expression distribution between CTCC sample and
peripheral whole blood controls, showing right skew and relative scarcity in CTCC
data. Log transformed DESeq2 normalized gene expression counts were to plot den-
sity distribution.

3.4 Bulk RNA Sequencing

Principal component analysis using top 1000 genes by variance demonstrate clear

separation of the peripheral blood control samples from medulloblastoma sequencing

samples, with 31% of variances explained by the first principal axis and 13% explained

by the second (figure 3.9).

Heat map of gene expression in the top 40 most varied genes also reveal distinct

gene expression profiles between medulloblastoma samples compared to the eight
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Figure 3.9: Principal component analysis using top 1000 genes by variance showing
Medulloblastoma CTCC samples (red) and peripheral whole blood control (blue).
Medulloblastoma CTCC and whole blood sequencing show distinct clustering by
group, supporting that the Cluster Chip was able to capture and distinguish CTCCs
from background whole blood.

control samples (figure 3.10). Among the highly differentially expressed genes, SOCS7

(suppressor of cytokine signaling 7) was upregulated in all medulloblastoma enriched

samples sequenced compared to whole blood control. SOCS7 is predicted to play

a role in brain development, and has also been implicated as an oncogene in the

carcinogenesis of bladder cancer [21]. SOCS7 is not previously reported in association

with medulloblastoma, and therefore represents a possible novel biomarker.

Volcano plot constructed using only the 46 genes known to be markers of cancer

stem cells from adult CTCC literature show 13 genes differentially upregulated with

statistical significance compared to whole blood. This is as opposed to only one gene

differentially down regulated (figure 3.11). The remaining failed to meet statistical

significance in differential expression analysis.
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Figure 3.10: Heat map of top 40 genes with highest variance in differential gene ex-
pression on bulk RNA sequencing comparing medulloblastoma CTCC (red columns)
to peripheral whole blood control (blue columns).

Figure 3.11: Volcano plot of 46 genes known to be markers of cancer stem cells
within the adult CTCC literature, showing several genes in the upper right quadrant
compared to a single gene differentially down regulated reaching significance. The
result supports stemness as a potential feature for medulloblastoma CTCCs.
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3.5 Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using multiple gene set col-

lections obtained from the Molecular Signatures Database. Normalized enrichment

scores of the top 20 gene sets from the C2 canonical pathways collection is shown in

figure 3.12. All top 20 gene sets achieve statistical significance at AdjustedP < 0.05

with collagens and collagen chain trimerization having the highest normalized enrich-

ment scores.

Figure 3.12: Gene set enrichment analysis by C2 canonical pathway analysis show
several gene sets involved in collagen, extracellular matrix, basement membrane, and
cell junction proteins.

GSEA by gene ontology biological processes shown in 3.13 demonstrate the highest

normalized enrichment score in a gene set representing membrane depolarization.

The second highest normalized enrichment was in basement membrane organization.

Other gene sets annotated with biological processes involving action potentials are also

represented. Each of the top 20 again reaches statistical significance at AdjustedP <

0.05.

Lastly, GSEA by oncological signature is shown in 3.14 demonstrating upregula-

tion of oncologic pathways known to be over expressed in medulloblastoma tumor.

NFκB related gene sets are the two most enriched pathways by this gene set. The

mTOR and p53 pathways are noted in the top 20 of this collection, both well-known
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Figure 3.13: Gene set enrichment analysis by Gene Ontology Biological Processes
showing enrichment of several gene sets involved in neuronal processes. These pro-
cesses including membrane depolarization, action potential, and neurotransmitter
uptake.

pathways involved in cell-growth and cancers.

Of note, a gene set upregulated in embryoid bodies embryonic stem cells is also

significantly enriched [15]. This is in agreement with both medulloblastoma cells’

embryonal origin, and with stemness as a feature of CTCCs.

Figure 3.14: Gene set enrichment analysis by oncologic signatures collection demon-
strating enrichment with statistical significance several gene sets known to be involved
in cell cycle regulation and proliferation, including NFκB, PTEN, MTOR, and KRAS.
Additionally, a gene set upregulated in embryonic stem cells (ESC J1 UP LATE V1
UP) is notably enriched, supporting CTCC stemness.
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3.5.1 Immune Deconvolution

Immune deconvolution with CIBERSORTx was used to ascertain differences in rel-

ative fractions of immune cells between CTCC enriched samples compared to pe-

ripheral whole blood (figure 3.15). Among myeloid lineage cells, neutrophils had

the highest relative fraction in both CTCC enriched samples as well as peripheral

control. In the lymphoid lineage cells, both CTCC and control samples show high

relative fractions of naive CD4+ T cells. High relative fraction of CD4+ memory

resting T-cells is observed in whole blood control, and is notably different than that

of CTCC samples.

Two-sample t-test of relative fractions from CTCC enriched samples compared to

controls show statistically significant differences in CD4+ memory resting T-cells at

AdjustedP = 0.0001, adjusted for multiple hypothesis testing. No other cell types

achieved statistical significance at p < 0.05.

(a) Myeloid lineage cells (b) Lymphoid lineage cells

Figure 3.15: Relative fraction of myeloid and lymphoid lineage immune cells de-
convoluted through CIBERSORTx using LM22 signature matrix. Paired t-test show
significant difference in relative fraction of CD4+ memory resting t-cells (figure 3.15b)
with AdjustedP = 0.0001.

Figure 3.16 shows differences in relative fraction of immune cells from the mononu-

clear phagocyte system including monocytes and macrophages. Macrophages have a

higher relative fraction in whole blood control samples whereas CTCC samples show
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higher relative fractions of macrophages. This difference is biologically intuitive, but

did not reach statistical significance under this experimental design.

Figure 3.16: Violin plot of medulloblastoma CTCC (red) compared to peripheral
blood control (blue) showing increased relative fractions of monocytes in whole blood
samples compared to increased macrophages in CTCC samples. This was true of M0,
M1, and M2 macrophages



27

Chapter 4

Discussion

4.1 Circulating Tumor Cell Cluster Quantification

Circulating tumor cell clusters (CTCCs) are not previously known to exist in pediatric

patients with medulloblastoma. In our study cohort of 44 pediatric patients treated

at Children’s Healthcare of Atlanta, CTCCs were captured at some phase of therapy

in all patients with medulloblastoma whereas none were observed from patients with

either low grade glioma or non-malignant hematological conditions. Their universal

presence in patients with medulloblastoma suggests that detection of CTCCs alone

do not predict metastasis or survival outcomes.

CTCC concentrations are hypothesized to reflect overall tumor burden and thus

correlate with disease outcomes. Supporting this is the recognition that CTCC con-

centrations vary with chemotherapy, often decreasing with treatment but notably

rarely eliminated entirely following treatment. Treated as time-series data, CTCC

concentrations were analyzed using change point detection analysis to identify in-

flexion points. While change points are statistically detected, to date patients with

medulloblastoma have not clearly separated into distinct groups based on CTCCs

concentrations, suggesting that the amount of CTCC in peripheral blood may not
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necessarily distinguish population of tumors destined to metastasize.

A limitation of change point analysis is the relatively few data points available for

each patient. While no theoretical lower limit is identified, it is felt that fewer than

10 observations is pushing the boundaries of statistical confidence. The study design

and blood draw sampling schedule were finalized prior to the application of change

detection methods, and so was not designed to optimize change point detection.

Future studies of CTCCs are planned using monthly blood draws rather than an

every 3 months schedule. This will provide increased data granularity and allow for

more robust time-series analysis.

4.2 Transcriptomic Analysis of Captured CTCCs

CTCCs are identified as originating from medulloblastoma bulk tumor as opposed to

from background whole blood on the basis of positive immunofluorescence staining

for synaptophysin, a marker of neuronal lineage, and negative staining for CD45, a

marker of hematopoietic lineage. Bulk-RNA sequencing of CTCC enriched samples

corroborate this conclusion, as they demonstrate a transcriptomic landscape distinct

to that of background whole blood.

First, fastQC results were reassuring in that GC content match the known GC% of

41% in human genomes [17]. Further, phred scores indicated high confidence in base

calls. Our sequencing experiment show decreasing read quality as base pair position

advances, a well-known phenomena in Illumina’s sequencing by synthesis. Despite

this, the majority of reads show phred scores in excess of 30 indicating fewer than 1

in 1000 incorrect base calls throughout all base pair positions.

Isolation of extremely rare circulating tumor cells from peripheral blood present a

challenge in biomedical engineering addressed by the Cluster Chip. In both principal

component analysis and gene expression heat map, CTCC samples separate from the
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control whole blood in two distinct groupings. These results support that CTCC

was successfully captured, and that sequencing was of a different population of cells

compared to background whole blood.

Stemness and epithelial-mesenchymal transformations are known to be important

properties of CTCCs from studies of other adult type tumors. We therefore hypothe-

sized that stemness will also be important to CTCCs. Supporting this is the relative

abundance of CTCC stem cell marker genes upregulated with statistical significance

on volcano plot. Stemness as a feature of CTCCs is further corroborated by elevation

of the normalized enrichment score in an embryonic stem cell gene set.

4.3 CTCC Gene Set Enrichment Analysis

Current CTCC literature from adult type tumors recognizes the importance of cell

to cell adhesion and extracellular matrix remodeling. Indeed, the act of clustering

and circulation requires cell adhesion and separation from the original extracellular

environment. Clustered cells are resistant to anoikis, the programmed cell death

process typically invoked upon separation with the extracellular matrix [6]. GSEA

results are consistent with activation of these biological processes. In particular, 18

of the 20 gene sets with highest normalized enrichment scores from the C2 canonical

pathway human gene collection are pathways involved in collagens, integrins, cell-cell

adhesion, and basement membranes.

GSEA results by gene ontology biological processes reveal distinct neuronal func-

tions. The pathway with the highest normalized enrichment score by a sizable margin

is in membrane depolarization during action potentials, supporting CTCC cells being

of neuronal origin. Several pathways indicating neuronal function are represented, in-

cluding gene sets involved in action potentials, membrane depolarization, and neuro-

transmitter uptake. Under physiologic conditions, no cells from whole blood conduct
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or relay action potentials. The result is not to suggest that CTCCs are literally firing

action potentials, but rather is consistent with the fact that medulloblastomas arise

from embryonal neuronal cells and so is expected to express several genes in common

with mature neurons.

Gene set analysis by oncological signatures reveal several pathways that are known

to be upregulated in cancer and medulloblastoma including NFκB, YAP, p53, PTEN,

MTOR, and KRAS. Additionally, gene sets upregulated by astrocytes and oligoden-

drocytes, two neuroglial cell types found in the CNS, are also enriched [10], further

supporting CTCC similarity with neuronal cell types.

A limitation of this GSEA analysis is that the transcriptomic data from which

GSEA is performed may not be representative of the entire breadth of medulloblas-

toma disease. At the time of sequencing, no patients were yet enrolled with WNT-

activated tumor, the rarest of the 4 major subgroups. Further, this GSEA is based

on differential gene expression comparing CTCC to background whole blood, and so

widely differing transcriptomic expression is expected. Future RNA sequencing ex-

periments comparing CTCC with bulk cerebellar tissue and subsequent downstream

GSEA will inform cellular processes specific to the circulating tumor.

4.4 Immune deconvolution

To determine cell composition from bulk RNA sequencing data, deconvolution was

performed with CIBERSORTx [26]. While not meeting statistical significance, de-

convolution results suggests differences noted monocytes and macrophage cell types.

Whereas monocytes physiologically circulate in whole blood, macrophages are typ-

ically found in target tissue. Our data suggests that increased relative fractions of

macrophages are observed in CTCC enriched samples. Of note, tumor associated

macrophages (TAMs) are known to play key roles in the bulk tumor immune mi-
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croenvironment [32]. It is thus feasible that the macrophage signature detected in

deconvolution arise from TAMs circulating in association with CTCCs. Increased

number of samples in each comparison group may confer added statistical power to

detect differences in relative fraction of mononuclear immune cells.

4.5 Batch Effect

The likely contribution of batch effect requires interpretation of the results with cau-

tion. Batch effect differences are expected to exaggerate the distinction between whole

blood sequencing and CTCC samples on PCA and heat maps. DESeq2 normalization

with median of ratios is expected to abate some variation due to technical differences,

but does not alone overcome batch effect. We propose that while some difference in

transcriptome is secondary to batch effect, the transcriptomic distinction of CTCC

versus background whole blood cannot be fully explained by batch effect alone. Batch

effect will not selectively introduce tumor specific and neuronal signatures detected

by GSEA, nor would batch effect preferentially show upregulation in collagen and

integrin proteins consistent with CTCC literature from other adult tumors. Post

sequencing batch correction methods such as down sampling and ComBat-seq were

considered. Ultimately, a-priori minimization of batch effect by experimental design

in subsequent experiments was favored.

4.6 Future Studies

Differential gene expression analysis has yet to be performed comparing CTCC against

the bulk tumor from which it originated. As part of Aflac Cancer and Blood Disorder

Center’s Precision Medicine Program, bulk tumor sequencing was performed with

GEM ExTra [30], which sequences RNA reads at 100 million per sample. CTCC

sequencing was not compared to GEM ExTra results as batch effect is expected to
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be even more significant given the wide disparity in platform and read depth.

To further interrogate CTCC transcriptome against that of the bulk cerebellar

tumor, further RNA sequencing experiments are planned. Five patients have been

identified with high CTCC content and with available patient-matched samples of

peripheral blood and bulk tumor tissue. Parallel ultra-low cell number bulk RNA

sequencing will be performed on each of the three tissue types and for each of the five

patients at four to five technical replicates each. Cell reduction on bulk tumor and

tissue samples will be performed so as to match the cell and RNA content of CTCCs

prior to sequencing. This experiment is designed to detect the unique transcriptomic

signature of CTCC while minimizing batch effect a-priori.

Additionally, we hypothesize immune cells to substantially contribute to the mi-

croenvironments of both bulk cerebellar tumor as well as CTCC. Further, differences

in immune cell profile and microenvironments in both circulating tumors as well

as in bulk tumor may predict clinical outcome. To assess the tumor immune mi-

croenvironment, 17 medulloblastoma tumor tissues samples are identified for spatial

sequencing. Spatial sequencing will allow for the identification of immune cells within

tumor, while concurrently identifying their spatial orientation relative to cancer cells.

To date, spatial sequencing has not been described in medulloblastoma.
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Chapter 5

Conclusions

The presence of circulating tumor cells or cell clusters in blood from patients with

medulloblastoma is not previously known. Similarly, their role in disease pathophysi-

ology has yet to be elucidated. From a cohort of pediatric patients with medulloblas-

toma, low grade glioma, and non-malignant hematological conditions, we analyzed

sequential peripheral blood CTCC concentrations with multiple change point detec-

tion and performed bulk RNA sequencing of CTCC enriched samples. Transcriptomic

results are consistent with CTCC arising from neuronal lineage, while suggesting the

importance of stemness and basement membrane reorganization consistent with adult

CTCC literature from other tumors. Immune cell deconvolution analysis shows clus-

ters enriched samples have different immune cell composition compared to background

whole blood in a T-cell sub-type.

CTCCs in medulloblastoma patients hold promise as novel biomarkers and may

represent a previously unknown route for hematogenous spread. As a biomarker,

CTCC may function as a tool for prognostication or evaluation of drug response

without invasive imaging and neurosurgery. If CTCCs contribute to disease spread,

then CTCCs may become a pharmaceutically targetable site of disease decreasing

risk of metastasis. To realize these two goals, future studies are needed to describe
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their behavior, relationship to primary bulk tumor, and their role in disease spread.
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