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Abstract 

A New Method for Heuristic Evaluation by Means of Finite Size Scaling 

By Justin Y. J. Burton 

We develop a new method for evaluating the efficacy of NP-hard optimization heuristics 

as an alternative to testbed heuristic evaluation. The new method evaluates heuristics using 

finite-size scaling by extrapolating the observed relationship between resource utilization and 

maximum system size with optimized solutions to larger system sizes. This improves upon 

testbed heuristic evaluation by providing better evaluation of average-case problems and 

providing insight into proper resource allocation to efficiently find heuristic solutions. We 

demonstrate this on the parallel tempering algorithm for the Edwards-Anderson model of a 

hypercubic spin-glass with periodic boundary conditions and bimodal bond distribution. We run 

the parallel tempering algorithm with different time resources and observe the system sizes 

where the algorithm deviates from the accepted ground state energies. We observe deviations 

between systems sizes with 343 spins and 729 spins for between 125 and 3000 time steps of the 

parallel tempering algorithm. This information is extrapolated to evaluate the efficacy of the 

parallel tempering algorithm at finding ground states of larger spin-glasses. 
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1 Introduction

1.1 NP-Hard Problems and Heuristics

Important problems in physics and computer science including the Boolean satisfiability

problem, the traveling salesman problem, the spin glass ground state problem, and neural

network training belong to the NP-hard class of problems [2][3]. If P 6= NP , the NP-hard

problems do not have polynomial-time algorithms to find exact solutions. In the absence of

a polynomial-time algorithm, heuristics become necessary to solve large NP-hard problems.

A polynomial-time algorithm is an algorithm with a polynomial function of parameter size

describing execution time. This is in contrast to an exponential-time algorithm, which has an

execution time which scales exponentially with parameter size. Heuristic solutions must come

with limitations compared to an ideal polynomial-time exact solution, and different heuristics

for the same problem can posses different limitations. When comparing two heuristics, one

may offer a superior approximate solution to the other, but at the cost of increased resource
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utilization. Given this, evaluating the efficacy of heuristics should provide insight into the

advantages and disadvantages provided by a heuristic compared to its alternatives.

1.2 Heuristic Evaluation Methods

Testbeds are the dominant method for evaluating the efficacy of optimization heuristics.

Testbeds provide a heuristic with sample problems often over representing worst-case prob-

lems. While effective for demonstrating the worst-case efficacy of a heuristic, this can be

unhelpful when presented with the more likely average-case behavior, upon which heuristics

can perform far better. Furthermore, the same testbeds being used over decades results

in heuristic development prioritizing testbeds evaluation over other virtues of a heuristic.

This hurts the quality of testbed evaluation as a measure. Additionally, testbed evaluation

may not provide enough information to understand under what conditions certain heuristics

outperform others. With more information, one could know how much resources a heuristic

demands when solving a specific problem [4].

In this work we develop a new method of heuristic evaluation utilizing the finite size scal-

ing method of extrapolation used in statistical mechanics. Finite size scaling observes the

behavior of optimized solutions to statistical systems at small system sizes then extrapolates

this behavior to the thermodynamic limit. Using our new method, we first find the relation-

ship between resource parameters and maximum system size with optimized solutions. After

observing the relationship between resources and solution optimization, we extrapolate this

behavior using finite size scaling to form an evaluation of the heuristic. This method can

be repeated for different resource parameters of the heuristic. We may also adjust qualita-

tive parameters in heuristics and observe how they change the relationship between resource

utilization and solution optimization.

This method of heuristic analysis was previously utilized to measure the performance of

iterated tabu search on the Quadratic Unconstrained Binary Optimization (QUBO) problem

[5]. This work seeks to further investigate and standardize the method of heuristic analysis
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Figure 1: These are diagrams of a two-spin Ising model. Filled circles represent a spin of
Si = +1 while open circles represent a spin of Si = −1. If we assume the interactions
between our spins is Jij = 1, a ferromagnetic interaction, the system on the left has total
energy H = −1 while the system on the right has total energy H = 1 based on Equation
1. In this case, the diagram on the left represents a ground state of this system. For larger
Ising models, it remains true that two like spins with ferromagnetic bond interaction Jij > 0
will lower the total energy of the system, while opposite spins will increase the total energy.
The opposite is true for anti-ferromagnetic bond interactions Jij < 0.

by testing the method on a new model and algorithm.

1.3 The Edwards-Anderson Spin Glass

In this work, we investigate a heuristic built to find the ground state of the Edwards-Anderson

spin glass, a variation of the Ising spin glass. A spin glass is a magnetic state characterized by

random alignment of interactions between particle spins. The bond interaction Jij between

two particles i and j defines the energy of the system that contains the two spins. For

example, in a ferromagnet Jij > 0 for all non-zero interactions between i and j, leading to a

ground state of all spins pointing in the same direction. This bond is a ferromagnetic bond,

and the opposite Jij < 0 represents an antiferromagnetic bond.

A spin glass is expected to have an equal number of ferromagnetic and antiferromagnetic

interactions, resulting in insignificant total magnetization even at low temperature. Another

feature of spin-glasses is a rough energy landscape as a result of frustrated plaquettes: regions

in which a spin locally does not favor either +1 or -1. An example of a frustrated plaquette is

illustrated in Figure 4. While locally the value of a spin may not change its total energy, its

spin may affect other frustrated plaquettes resulting in a very different total energy. A result

of this is that a spin glass is never observed to be in thermal equilibrium, indicating that

algorithms mimicking real thermal easing may fail to reach the ground state configuration

[8].

While there exists polynomial-time algorithms for the two-dimensional Ising spin glass,
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Figure 2: Combining spins and bonds as shown in Figure 1 into a square lattice, we have
a two-dimensional Ising model. The lines connecting circles in this diagram represent non-
zero bond interactions. The Edwards-Anderson spin glass we investigate in this project only
contains non-zero interactions when spins are neighbors as shown here. The spins in this
diagram are represented by filled and open circles as described in Figure 1. If the bond
interactions are all ferromagnetic, the ground state of this system would have Si = Sj for all
i and j.

Figure 3: This diagram expands upon the two-dimension Ising model in Figure 2 by speci-
fying bimodal bond distribution. Bond interactions are assigned Jij = +1, represented by a
red thicker line, or Jij = −1, represented by a black thinner line, each with probability 0.5.
This random distribution of ferromagnetic bonds and anti-ferromagnetic bonds results in a
spin-glass, the system type we optimize in this work. Because only neighboring bonds have
non-zero interaction, this is a diagram of a two-dimensional Edwards-Anderson model with
bimodal bond distribution.
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Figure 4: This is the four spins in the upper-right corner of the Edwards-Anderson spin-glass
shown in Figure 3. A section of spins such as this is called a plaquette. The upper-left spin of
this plaquette can change its value without affecting the total energy of the plaquette. The
change in total energy contributed by one bond is reversed by the energy change contributed
by the other bond. Notice, however, that the upper-right spin shares this property while the
lower-left spin does not. If we swap the spin of the upper-left spin, the lower-left spin now
has no effect on total energy, while the upper-right spin does. These properties indicate a
frustrated plaquette. While the energy of this plaquette is unaffected by certain spin swaps,
the effects on the total energy of the system can be large. This is a cause of the rough energy
landscape of spin glasses.

the three-dimensional Ising spin glass is NP-hard. This is due to the existence of a re-

duction of finding the cocycle of maximum cardinality in a cubic graph to the simplest

three-dimensional Ising spin-glass problem: Finding the ground state of a two-level Ising

spin-glass with bimodal bond interactions [2].

Our model is a hypercubic lattice of spins with arbitrary dimension and side-length,

however due to the NP-hard nature of spin-glasses with dimension greater than two, we

will mostly study the three-dimensional case. The Edwards-Anderson model only considers

the interactions of neighboring spins and calculates total energy according to Equation 1

and magnetization according to Equation 2, where H is the energy of the system, m is the

magnetization of the system, n is the number of spins in the system, Jij is the interaction

between spins i and j, and Si is the spin at index i. Our model uses bimodal bond distri-

bution, a spin-glass interaction in which each non-zero interaction is chosen to be +1 or -1

with probability 0.5 each. The result is a roughly equal number of ferromagnetic and an-

tiferromagnetic interactions. Our model uses periodic boundary conditions to mitigate the

relatively greater effects fixed boundary conditions would have on smaller systems compared
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to the more realistic very large systems we hope to investigate [9].

H = −
∑
〈ij〉

JijSiSj (1)

m =
1

N

∑
i

Si (2)

While the study of spin-glasses is an active and important problem in the area of Statisti-

cal Mechanics, its heuristics are important to fields such as operation research and financial

asset management due to the spin-glass problem being equivalent to the quadratic uncon-

strained binary optimization (QUBO) problem. This equivalency opens the heuristics for

the spin-glass problem to solve a wide array of problems with applications in many fields

[5]. Additionally, the spin glass provides the simplest model of a glassy system, a category

of systems with similar behaviors as a result of disordered constructions [11].

1.4 The Parallel Tempering Algorithm

The heuristic we are using is the Parallel Tempering algorithm, an improvement on the

Metropolis-Hastings algorithm, a Markov chain Monte-Carlo algorithm [10]. Our applica-

tions of the Metropolis-Hastings algorithm begins with a random configuration of spins. To

generate a new configuration, a random spin is chosen and the configuring with this spin

flipped is investigated. If the new configuration has lower energy than the last, the flip is

accepted immediately into the new configuration. If the new configuration has higher energy

than the last, the flip is accepted with a probability given by the Boltzmann distribution

as shown in Equation 3. This process is repeated n times to produce one sweep of the

Metropolis algorithm [9].

P (s→ s′) =


1, if ∆H ≤ 0

e
−∆H(s,s′)

kT , if ∆H ≥ 0

(3)
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The parallel tempering algorithm improves upon the Metropolis-Hastings algorithm by

providing a method for models to escape local minima. The parallel tempering algorithm

escapes local minima by running many metropolis algorithms in parallel at a distribution

of temperatures, then choosing to swap the temperatures between lattices of neighboring

temperatures with the probability given in Equation 4 based on the Boltzmann distribu-

tion. The resulting variation in temperature gives spin configurations in local minima an

opportunity to escape that minimum during the next sweep of the metropolis algorithm [7].

P [(Ei, Ti)→ (Ei+1, Ti+1)] = min[1, exp[(Ei+1 − Ei)(1/Ti+1 − 1/Ti)]] (4)

2 Methods

2.1 Language and Methods for Algorithm Development

The model, heuristic, and evaluation were coded in the C programming language compiled

using the GNU Compiler Collection (GCC). The GNU Scientific Library’s Taus random num-

ber generator was used for random number generation, which is necessary for the stochastic

processes involved both in the construction of our models and the heuristic used to find

optimized solutions. The random number generators used in the generation of data were

seeded with the C library function time(0).

The information for our model is stored on a one-dimensional array, regardless of dimen-

sion. This is made possible by an algorithm developed to find the neighbors of a multi-

dimensional lattice when spins are indexed linearly. Every element of the one-dimensional

array stores a list of neighbors and a list of bond interactions. The bond interactions were

given values of -1 or +1 with probability 0.5 for each, as required by bimodal bond distri-

bution. This spin configurations for this model are stored on another one-dimensional array

with each element holding the value of the spin. The spins were also given values of -1 or

+1 in a similar manner to the bond interactions. While more space efficient methods of

7



storing an array of bits exist, the memory requirements of the parallel tempering heuristic

are inconsequential compared to the time resources, and thus we preferred the time saved

by storing computation-ready integers.

The parallel tempering algorithm requires the generation of a large number of spin con-

figurations. We calculate the Hamiltonian of each configuration according to Equation 1

storing the total energy of each configuration in an array. Storing the total energies im-

proves the speed of the algorithm, as the local energy changes from the Metropolis-Hastings

algorithm can be easy calculated and used to adjust the new total energy.

2.2 Distribution of Temperatures

Acceptance probabilities approximately independent of temperature are desirable to avoid

temperature-space segmentation, and for this reason a non-linear temperature distribution

was chosen which has greater density of temperatures near the minimum temperature of

the distribution [9]. The temperatures were distributed based on a minimum temperature

T1 = 0.1 and maximum temperature TM = 2.1. This was found to have a sufficient number

of temperatures above and below the known transition temperature between a spin glass

and thermal disorder, TC ≈ 1.102 [1]. The resulting distribution is defined by the sequence

defined in Equation 5. Our algorithm utilizes 50 parallel spin configurations and thus we

generate a distribution of 50 temperatures and we attempt a parallel tempering swap 50

times before returning to the parallel metropolis algorithms. Parallel tempering swaps are

implemented simply by swapping the pointers in the array of spin configurations. Each

element in our array is associated with a temperature in our distribution, so the effect is

that the temperatures associated with the two configurations are swapped.

Tk = T1

k−1∏
i=1

Ri Ri = M−1

√
TM

T1

(5)
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2.3 Multithreaded Programming

One parallel tempering time step consists of one metropolis algorithm sweep for each spin

configuration and 50 randomly selected parallel tempering swap attempts. A convenient

result of running the metropolis algorithm in parallel is the ability to use multi-threading.

Because the process of the Metropolis-Hastings algorithm is identical for each spin configura-

tion with the sole exception of temperature, and no memory is shared between the individual

Metropolis algorithms, this process is embarrassingly parallel. A separate POSIX thread was

created for each spin configuration, and once the Metropolis algorithm sweep was complete

for each configuration the threads were joined together for parallel tempering swaps.

2.4 Finding Ground States

After a set number of parallel tempering time steps, the lowest energy configuring found

is the approximate solution found in our heuristic. While there is variation in the lowest

energy of the ground state due to the randomly generated spin-glass models, the mean value

of repeated tests is predictable. In our three-dimensional cubic lattice, we expect the mean

ground state energy to follow e3(n) = e3(∞)+A/n for n-spin lattices [6]. Given the expected

results, we repeat the above steps with different time resources in the form of variable parallel

tempering steps to see at what system size n our heuristic averages energy that is significantly

higher than e3(n), indicating the heuristic frequently failed to reach the ground state.

A relationship can then be found between the system size at which the heuristic fails to

optimize the spin configurations and the time resources allocated. This relationship can be

extrapolated to larger system sizes to give a prediction of heuristic behavior in the average

case depending on time resources.
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3 Results

We plot the average energy per spin 〈En〉 = Etotal/n vs the reciprocal of the system size

1/n. The results until a point of upward inflection match the known ground state average

energies well [6]. The points of upward inflection appear at larger system sizes as the number

of parallel tempering time steps increase.

The plots in Figure 4 show the relationship between 〈En〉 and 1/n for the 〈En〉 for ground

states proposed by the parallel tempering algorithm with differing time resources measured

by number of parallel tempering sweeps. We define the smallest n at which 〈En〉 < 〈En+1〉

to be the maximum system size of the heuristic with the given time resources with feasible

results, nmax(t). While this point may deviate from the known mean energies of the ground

10



Figure 4: This figure showcases 6 plots comparing the mean Energy per spin 〈En〉 = Etotal/n
of the proposed ground state found by the parallel tempering algorithm with the reciprocal
of the system size 1/n. In the order of the plots from the top to the bottom, the time
resources available are t = 125, t = 250, t = 500, t = 1000, t = 2000, t = 3000 in units of
parallel tempering time steps. The blue line and points represent the known mean energy
per spin of the ground states of the Edwards-Anderson Spin Glass and a linear fit [6]. Each
plot showcases a point of deviation at which the points found by our heuristic deviate from
accepted values significantly. We denote the smallest n at which 〈En〉 < 〈En+1〉 as the
maximum system size of the heuristic with the given time resources with feasible results.

state, we decide the point at which 〈En〉 > 〈En−1〉 is a point at which the heuristic could no

longer be producing fully optimized results.

We find rate of growth of nmax(t) with respect to t to decrease with time, as nmax(1000) =

nmax(2000) = nmax(3000). This demonstrates a large range where nmax = 9 compared to

the considerably smaller range where nmax = 8, which is at most ∆t = 875.

11



Table 1: nmax for each tested t

t nmax(t)

125 343
250 512
500 512
1000 729
2000 729
3000 729

4 Conclusions

We find a positive correlation of nmax(t) with respect to t. We find that the necessary

increase in t to increase nmax(t) appears to increase with t.

We hope to interpolate our results for En with respect to t to find the minimum and

utilize finite-size scaling to make predictions about where this minimum would fall given

greater time resources. Given the known results that En should decrease with n, the n

which gives the minimum En should indicate the maximum n for which t parallel tempering

time steps could be sufficient time for our heuristic to optimize the system. Proper finite-size

scaling analysis will likely require more time at different system sizes.

We could further analyze the parallel tempering heuristic by observing and extrapolating

the effect of the number of temperatures in our distribution on the ability or time needed

for the heuristic to find the ground state of the spin glass at different system sizes. We could

similarly observe and extrapolate the effect of the range of temperatures on the heuristic.

Future work includes using this heuristic analysis method to analyze other optimization

heuristics and other problems to further verify its validity.
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