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Abstract 

A Trainable Conjugate Gradient Method for Image Reconstruction 
By Junyuan Wu 

Deep learning has become an important tool in imaging classification, recognition, and 
recently in reconstruction. Image reconstruction is an ill-posed inverse problem, which is 
commonly solved by minimizing an objective function consisting of a data misfit term and a 
regularization term.  Two key challenges in solving inverse problems are to design an effective 
regularization term and iterative solver. 

This thesis presents a trainable Conjugate Gradient method that we call VNCG. Our 
method is obtained by following the framework of variational networks (VN), with the key idea 
of unrolling and training a CG method with fixed number of iterations. In our numerical 
experiments, we consider linear inverse problems and train a convolution stencil that represents 
the regularization operator in a Tikhonov form. We compare two strategies: using a constant 
stencil for all iterations or a more flexible approach that assigns different stencils to each 
iteration.
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Chapter 1

Introduction

During the past decades, machine learning has become an important tool in image

classification, recognition, and recently in reconstruction. Among various machine

learning models, a neural network is a model designed to simulate how human

brains work to solve problems. In this work, we use the idea of machine learning

for solving image reconstruction problems.

An image reconstruction problem is an ill-posed inverse problem of finding

a solution image x such that b = Ax + n, where matrix A is an operator and

n is the noise. Due to ill-posedness, the solution x is highly sensitive to the

noise n. Thus, an ill-posed inverse problem is commonly solved by minimizing an

objective function consisting of a data misfit term and a regularization term. Two

key challenges in solving inverse problems are to design an e↵ective regularization

term and iterative solver.

There are many iterative solvers for a minimizing problem. One of these solvers

is the Gradient Descent method (GD) used in [2]. Innovated by the fact that the
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Conjugate Gradient method (CG) converges faster than GD, we present in this

thesis a trainable CG method that we call VNCG following the framework of

variational networks (VN) [2], which is a neural network with the key idea of

unrolling and training an image reconstruction algorithm.

In our numerical experiments, we train a convolution stencil that represents the

regularization operator in a Tikhonov form. We compare two strategies: using a

constant stencil for all iterations or a more flexible approach that assigns di↵erent

stencils to each iteration.

In this thesis, we design three numerical experiments to train VNCG for re-

construction of Shepp-Logan images [8], general blurred images and undersampled

tomography. The reconstruction of undersampled tomography is of great impor-

tance in medical areas. Since the acquisition of the reconstructing data (such as

MRI data) involves inspections that might have adverse e↵ects to patients, it would

be preferable to do inspections on smaller areas but obtain the information with

similar accuracy. Also, considering the cost of medical machines to do inspections

and acquire data, smaller inspection areas also decrease the economic pressure of

patients, hospitals, and clinics. Thus, we want to train VNCG to improve the

accuracy of reconstruction from undersampled data.

Contributions and Outline

In this thesis, we present a trainable CG which we call VNCG. In practice, we train

VNCG to learn the convolution stencil(s) of an image reconstruction problem.

Through numerical experiments, we show that by training VNCG, we could make

improvement in reconstructions as in Figure 1.1.
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Figure 1.1: Perfomance of VNCG for image deblurring. The true image (left-
bottom) is blurred by a rotational blurring operator and becomes the blurred
image (left-top). Images share a common color bar. With an un-trained, random
convolution operator, CG results in the reconstructed image as (right-top). Take
the untrained operator as an initial guess and train VNCG with the Gradient
Descent method (GD), the learned, constant operator reconstructs the image as
(right-bottom).

This thesis is organized as follows. Chapter 2 generalizes CG to operate on

matrices, introduces Tikhonov regularization to the reconstruction problem and

builds up VNCG for learning the convolution stencil.

Based on the theory, we design three experiments in Chapter 3 to examine the

performance of VNCG in solving the following reconstruction problems:

1. Sparse (tomography) forward problem matrix and Shepp-Logan phantoms
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(Section 3.2).

2. General image debluring that treats filter as a convolution operator (Section

3.3).

3. Undersampled tomographic forward problem and Sheep-Logan phantoms

(Section 3.4).

Based on results of the above experiments, Chapter 4 summarizes the findings

and provides directions for future works.



5

Chapter 2

Background

To better illustrate how we could train the Conjugate Gradient method (CG) as

a variational network (VN), in this chapter we first briefly show the implementa-

tion of CG as an iterative method. Then we bring in Tikhonov regularization to

the inverse problem and introduce the structure of our VNCG. Finally, we show

the loss function of the learning problem and train the operator of the Tikhonov

regularization.

2.1 Conjugate Gradient Method

In this work, for convenience of training, a bijective mapping from an image x̂ 2

Rn⇥n to a vector x 2 Rn2
is defined. With this mapping, a set of images X̂ 2

Rn⇥n⇥m, where m is the number of images in this set, can be converted to a 2D

matrix X 2 Rn2⇥m.

Now we consider an ill-posed inverse problem of finding reconstructed set of
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images X 2 Rn2⇥m from a given image set B 2 Rk⇥m satisfying the following

system of equations

B = AX+N,

where A 2 Rk⇥n2
is an operator and N 2 Rk⇥m is the noise. The inverse problem

is sensitive to noise and modeling errors, which is said to be ill-posed. Because of

ill-posedness, we solve this problem as an optimization problem where we minimize

the least square error

min
X

1

2

���
���AX�B

���
���
2

F
. (2.1)

There are plenty of approaches to solve this minimizing problem. One of these

approaches is to use the Gradient Descent method (GD) as in [2]. Here in this

thesis, since CG converges in less iterations than GD (see [3, 7]), we use CG as an

iterative algorithm to solve the normal equation corresponding to the minimizing

problem [4],

ATAX = ATB. (2.2)

To solve ATAx = ATb for a vector x, where A is some matrix and b is a

vector, CG starts with an initial guess x0 and computes the residual rk and the

moving direction pk in its kth iteration following procedures in Algorithm 1 to get

xk after k iterations [3].

Then we use Algorithm 1 for solving equation 2.2, where we deal with matrices

X and B. Here we consider every image x in the set separately, which means that

we do operations in Algorithm 1 on every column of X. For every step in the

algorithm, we compute the result for each column, and put the results next to

each other to be the result of the step. In this way, we extend Algorithm 1 to
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Result: approximate result xN of ATAx = ATb
Anew = ATA;

bnew = ATb;
r0 = bnew �Anewx;
p0 = r0;
k = 0;

while k  N do

↵k =
rTk rk

pT
kAnewpk

;

xk+1 = xk + ↵kpk;

rk+1 = rk � ↵kAnewpk;

�k =
rTk+1rk+1

rTk rk
;

pk+1 = rk+1 + �kpk;

k = k + 1;

end
Algorithm 1: Conjugate Gradient Method for vectors. N is the total

number of iterations. rk, pk are vectors and ↵k, �k are scalars.

Algorithm 2 for solving AX = B, where A, B, X are all matrices.

With Algorithm 2, we can find an approximate solution XN to Equation 2.2.

However, because of the noise N, there might exist over-fitting in our method,

which we discuss in detail in the next section [9].
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Result: approximate result XN of AX = B
Anew = ATA;

Bnew = ATB;

R0 = Bnew �AnewX;

P0 = R0;

k = 0;

while k  N do

ak =
RT

kRk

PT
kAnewPk

;

Xk+1 = Xk + akPk;

Rk+1 = Rk � akAnewPk;

bk =
RT

k+1Rk+1

RT
kRk

;

Pk+1 = Rk+1 + bkPk;

k = k + 1;

end
Algorithm 2: Generalized Conjugate Gradient Method for matrices. N is

the total number of iterations. Rk,Pk are matrices and ak, bk are vectors.

In the iterations, we define RT
kRk as column-wise inner products, matrix

division Ak/Bk as column-wise division, and akPk = diag(ak)⇥Pk.

2.2 Trainable Regularization Operators

In statistics and machine learning, over-fitting happens when a model fits the

data too closely and may, therefore, fail to fit additional data [9]. In solving

reconstruction problems, the semi-convergence property of an iterative method

states that when there are too many iterations, the reconstructed image converges

to the true image in its first several iterations and then goes into a wrong direction.

As shown in Figure 2.1, the reconstructed image 2.1d might look totally di↵erent

from the true image 2.1c.
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(a) B without noise (b) B with noise

(c) Reconstructed from 2.1a: a cat (d) Reconstructed from 2.1b

Figure 2.1: True image vs. over-fitted reconstruction image. The color bars of
data images are adjusted for visibility.

There are many approaches to prevent over-fitting, one of which is to stop the

iterations early by having a small number of iterations N . Another approach we

could use is to introduce a regularization term R(X) to the original least square
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problem

min
X


�R(X) +

1

2

���
���AX�B

���
���
2

F

�
,

where � > 0 controls the influence of the regularization term.

In this thesis, we pick the Tikhonov regularization

R(X) =
1

2

���
���LX

���
���
2

2
,

where L is a convolution operator. Then the problem becomes

min
X

1

2

✓���
���LX

���
���
2

2
+
���
���AX�B

���
���
2

F

◆
,

where � is implicitly included in L. Then we could generate the normal equation

corresponding to the least square problem

LTLX+ATAX = ATB.

Since L is a convolution operator, we define a function conv such that

LX = conv(K, X),

where the convolution kernel K is a small (3 ⇥ 3), sparse matrix. And we define

the transpose of the convolution

LTX = convT (K, X).
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Then the normal equation to solve becomes

convT
✓
K, conv

�
K, X

�◆
+ATAX = ATB. (2.3)

In this work, our reconstruction algorithm is to solve Equation 2.3 with extended

CG (Algorithm 2), which we define as a function

XN = CG(A, B, Kconst, N), (2.4)

where besides A and B, we take two more parameters: the number of iterations

N and a convolution kernel Kconst. In our work, we also want our reconstruction

algorithm to allow di↵erent convolution kernels in each iteration of CG, so we also

define our algorithm as

XN = CG(A, B, Kfree), (2.5)

where Kfree is a list of convolution kernels for each iteration, and its first dimension

indicates the number of iterations Kfree[0] = N .

As defined in Equation 2.4, 2.5, the choice of convolution kernel(s) K is crucial

to our reconstruction algorithm. Thus, to find an optimal value of K, we want to

use machine learning techniques to learn K from a neural network, which will be

introduced in detail in the next section.

2.3 Variational Network

With regularization introduced to CG (Algorithm 2) as our reconstruction algo-

rithm, we aim to build up a neural network that can be trained to learn the
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CG
1 · · · CG

k+1 · · · CG
N

CG iteration

Xk+1 = Xk + ak(Kk)Pk(Kk)

X0 XN

Xk Xk+1

Figure 2.2: Structure of VNCG. ak and Pk are defined in Algorithm 2.

convolution kernel of our reconstruction algorithm. We take our reconstruction

algorithm as the forward propagation

Xk+1 = Xk + ak(Kk)Pk(Kk), k = 0, 1, 2, · · · , N � 1,

where N is the total number of iterations in our algorithm, and the moving step

sizes ak and moving directions Pk defined as in Algorithm 2 both take the con-

volution kernel Kk as a parameter. As in [2], a neural network that takes a

reconstruction algorithm as forward propagation is termed as a VN. To avoid con-

fusion, we term our network to be VNCG.

As shown in Figure 2.2, VNCG has N + 1 layers in total, where N is the

total number of iterations in CG. We set the initial guess of our algorithm X0 to

be the input layer, the reconstructed image XN to be the output layer, and all

X1, X2, · · · ,XN�1 be hidden layers.
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2.4 Training Convolution Operator

With the VN depicted in Figure 2.2, we now define a learning problem that aims

at estimating the convolution kernels in the forward propagation so that the for-

ward propagation finds a reconstructed image X closest to the true image Xtrue.

Therefore, we set up the loss function of the learning problem to be

L(K) =
1

2

���
���X�Xtrue

���
���
2

F
,

where X denotes the approximate result given by the forward propagation and

Xtrue is the true image. We then rephrase the learning problem to an optimization

problem

min
K

L(K) s.t. Xk+1 = Xk + ak(Kk)Pk(Kk), k = 0, 1, 2, · · · , N � 1.

There are many approaches to solve this learning problem. In this work, we use

a standard Gradient Descent method (GD). The implementations are explained in

detail in Chapter 3.
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Chapter 3

Numerical Experiments

In order to perform some numerical experiments, we design an experimental method

based on the theory stated in Chapter 2. In section 3.1, we explain our method in

three parts: data acquisition, network training, and validation.

With this method, we conduct three experiments. We first start with a tomo-

graphic Shepp-Logan phantom reconstruction in section 3.2 [8]. Then we continue

to train VNCG to deblur general images in section 3.3. In the end, we work on

undersampled tomographic reconstruction in section 3.4. Through these three ex-

periments, we show that trained convolution kernels reconstruct the images better

than untrained ones. Moreover, we show that allowing di↵erent convolution kernels

for each iteration provides a better reconstruction results than using a constant

kernel for image deblurring. The experiment results and analysis are stated in

detail in this chapter.
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3.1 Methods

3.1.1 Data Acquisition

For the convenience of computation and image display, all experiments shown in

this work are conducted on one-channel grey value images only. However, the

experiments can be easily extended to three-channel RGB images, which only

requires several changes to the implementation code.

In the experiments, we separately generate two sets of data based on their

usage: the training set S for training VNCG to learn the convolution kernel(s)

in 3.1.2, and the validation set S0 for the test of validity in reconstructing other

images in 3.1.3.

All the data we use in our experiments are generated through the following

MATLAB functions:

1. randomSheppLogan(n, param) for Shepp-Logan phantoms [6].

2. PRtomo(varargin) for tomographic operators[1].

3. PRblur(varargin) for blurring stencils and images [1].

Examples of generated images are shown in Figure 3.1.

In our experiments, for every inverse problem, we first generate the true im-

ages Xtrue and the common operator A, from which we add noise N randomly

distributed for every single image and generate the data B to reconstruct. The

noise level we use in the experiments is

1

100
||B||2  ||N||2 

1

10
||B||2.
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(a) Sample Shepp-Logan phantom: a
model of human head.

(b) Sample general image: a random
image with patterns of nonzero pixels

Figure 3.1: Sample images generated by MATLAB code.

3.1.2 Training VNCG

In this work, we implement VNCG training and validation with pytorch, which is

an open-source deep learning library [5]. Related python code for our method is

listed in Appendix C.

We separate the training section of our method into three steps, which are

listed in detail below:

1. Before we start training, we first manually choose the kernel to be a discrete

Laplacian

Klap =

����������

0 �1 0

�1 4 �1

0 �1 0

����������

. (3.1)

Without training VN, we take Klap as parameter of the Conjugate Gradient

method (CG) and run Equation 2.4 to get

Xlap = CG(A, B, Klap, N),



3.1 Methods 17

where Xlap is the reconstructed image and N is number of iterations.

For comparison, we also randomly build a kernel Kran. Also without train-

ing, take Kran as a parameter and run Equation 2.4 to get

Xran = CG(A, B, Kran, N),

where Xran is the reconstructed image and N is number of iterations.

2. Then we want to start training VNCG to learn the convolution kernel. We

first pick Klap or Kran as an initial guess of our learning problem. With

the initial guess, we go through the learning process to find a new learned

convolution kernel Kconst for reconstruction. Then we run Equation 2.4 to

get

Xconst = CG(A, B, Kconst, N),

where Xconst is the reconstructed image and N is number of iterations.

3. In the last step of training, we want the forward propagation to allow di↵er-

ent convolution kernels in each layer of VNCG. That is to say, we can now

have di↵erent kernels in each iteration of CG. To realize it, we first build a

list of N convolution kernels as a N ⇥ 3⇥ 3 matrix, where N is the number

of iterations of CG. Initially, every kernel of the set equals Kconst. Then we

take this set of kernels as the initial guess of our learning problem and find

a new learned list of convolution kernels Kfree. Then we take Kfree as an

input parameter of CG and run Equation 2.5 to get

Xfree = CG(A, B, Kfree),
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where Xfree is the reconstructed image.

In our implementation, we take X0 = 0 to be the initial guess of the CG, and

N = 20 to be the number of iterations of CG by default.

When training VNCG, we use the Gradient Descent method (GD) with con-

stant step size and batch size being the number of images. We implement GD

with torch.optim.SGD() class of torch package [5]. The optimizer SGD class takes

three inputs: the trained parameter(s), the learning rate and the momentum. In

this work, we keep the momentum to be 0.9 for all training processes and adjust

the learning rate to find the optimal kernel(s).

To improve the performance of training VNCG, we decide to try di↵erent

learning rates in our training process. We introduce a new parameter lr num to

denote the number of learning rates we try in a training process. The optimizer

is implemented in a loop, where the learning rate is decreased by half in each

iteration. In this way, we can see the relationship between the learning rate and the

loss. Moreover, we introduce another parameter epoch num to denote the number

of epochs of each optimizer. By default, we set lr num = 4, and epoch num = 10.

There are two ways for us to evaluate the performance of VNCG. One is by

comparing visualized reconstructed images Xran, Xlap, Xconst, and Xfree with the

true image Xtrue. If we see significant improvement in the images, then we could

say that VNCG provides a better reconstruction for training data. Also, this

comparison is used for the validation data, which will be discussed in detail in 3.1.3.

The other way to evaluate the performance of VNCG is to look at the loss in the

training process. If the loss is decreased by a significant percentage, then we could

say that VNCG provides an improvement of some percentage.



3.2 Tomographic Shepp-Logan Phantom Reconstruction 19

3.1.3 Validation

After the training, we run the following reconstructions

X0
ran = CG(A0,B0,K0

ran, N)

X0
lap = CG(A0,B0,K0

lap, N)

X0
const = CG(A0,B0,K0

const, N)

X0
free = CG(A0,B0,K0

free)

for the validation data. By comparing the resulting images X0
ran, X

0
lap, X

0
const,

and X0
free with the true validation image X0

true, we could see if the learned kernels

work for reconstructing other images of the same type.

3.2 Tomographic Shepp-Logan Phantom Re-

construction

3.2.1 Single Shepp-Logan Phantoms

Our first experiments deal with the Shepp-Logan phantoms, which is the standard

testing images of image reconstruction problems [8]. We first start with recon-

structing a single image. For the training set, we generate a random 32 ⇥ 32

Shepp-Logan phantom Xtrue and a tomographic operator A. From these, we gen-

erate the data B = AX + N with noise N. Similarly, for the validation set, we

generate another random 32 ⇥ 32 Shepp-Logan phantom X0
true and tomographic

operator A0, from which we build the data B0. Following the method in section 3.1
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(a) Training Results

(b) Validation Results

Figure 3.2: Results for tomographic reconstruction of a single 32 ⇥ 32 Shepp-
Logan phantom with the initial guess Klap. Images share a common color bar.

we obtain Figure 3.2 as a result.

By comparing the reconstructed images with the true image in Figure 3.2a, we

could see that the learned kernels indeed reconstruct the image in a slightly better

way than the un-trained kernel. Also, comparing Figure 3.2b with Figure 3.2a, we

could see that the kernels reconstruct the validation image in a manner similar to

how they reconstruct the training image. Thus, we could confirm the validity of

VNCG training for tomographic reconstruction of single Shepp-Logan phantoms.

However, by comparing the reconstructed images with the true image in Fig-

ure 3.2a, we could see that although the learned kernels work well to reconstruct

the pattern of the image, the images only show slight di↵erences between trained

results and un-trained results. This is caused by the fact that the Laplacian Klap
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(a) Training Results

(b) Validation Results

Figure 3.3: Results for tomographic reconstruction of a single 32 ⇥ 32 Shepp-
Logan phantom with random initial guess Kran. The images share a common color
bar.

is a good enough parameter for reconstruction so that there is not so much im-

provement space for training VNCG.

To further understand the performance of VNCG, we take Kran as the initial

guess to train VNCG for reconstructing with the same true images and generate

the results in Figure 3.3.

Now we can see from Figure 3.3 that Kran is a ”bad” convolution kernel for our

reconstruction algorithm, which provides enough improvement space for VNCG.

And the learned kernel Kconst now gives a more visibly better reconstruction than

the initial guess Kran. However, doubts still exist for the necessity of allowing

di↵erent kernels in each iteration of CG in this problem.

To quantify the performance of VNCG, we want to show the loss with respect
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(a) From Klap to Kconst (b) From Kconst to Kfree

(c) From Kran to Kconst (d) From Kconst to Kfree

Figure 3.4: Loss v.s. Epoch in training a single 32⇥ 32 Shepp-Logan phantom.
Row 1 shows training with manual initial guess Klap; Row 2 shows training with
random initial guess Kran. Column 1 goes from un-trained kernel to trained kernel;
Column 2 goes from constant kernel to free kernels.

to the epoch number of our learning process. Also, since we learn the convolution

kernels by adjusting the learning rate of SGD function in our experiment, we want

to show the relationship between the loss and the learning rate. Thus, we generate

Figure 3.4.

Comparison between Figure 3.4a and Figure 3.4c justifies our assumption that

Klap is a much better convolution kernel than Kran for our reconstruction algo-

rithm. In Figure 3.4a, the loss decreases by around 50% in training, while it drops
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by around 90% in Figure 3.4c. Although the improvement percentage is signifi-

cantly di↵erent, the two learning processes both end up in convergence to a loss

of around 1. From this, we could say that the learning processes from un-trained

kernel to constant kernel almost reach the minimum loss of our learning problem.

Therefore, there is not much improvement space for allowing free kernels. If we

look at Figure 3.4b and Figure 3.4d, we could easily find out that the two learning

processes do not result in making a big di↵erence in value of loss. Another pos-

sible explanation for not having big improvement by allowing free kernels is the

optimizer we are using might not be a good choice to learn free kernels.

Then we want to look at the relationship between loss and learning rates.

Since the learning process from constant kernel to free kernels does not generate

big di↵erences in loss, we only look at Figure 3.4a and Figure 3.4c. As shown in

these two images, when we decrease the learning rate of our learning algorithm by

half, the loss eventually decreases by about half after the learning process until it

reaches an approximate minimum of the optimizing learning problem.

3.2.2 Shepp-Logan Phantom Sets

Now we want to generalize this experiment to reconstruction of multiple phantoms

at a same time. We generate our data in the same way as we do for reconstructing

single images in 3.2.1. The only di↵erence is that the true images Xtrue and X0
true,

instead of single random 32⇥ 32 Shepp-Logan phantoms, are now random sets of

32⇥ 32 Shepp-Logan phantoms.

Since we already show the Laplacian Klap is an e↵ective regularization opera-

tor, we want to see if VNCG could learn a similarly e↵ective kernel as Klap from a
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(a) Training Result

Figure 3.5: Performance of variational network for tomographic reconstruction
of 32⇥ 32 Shepp-Logan phantom set. Images share a common color bar.

completely ine↵ective kernel Kran. We obtain Figure 3.5 for reconstructed images

and Figure 3.6 for loss analysis.

Experiments on Shepp-Logan phantom sets give similar results as the one on

single phantoms in Figure 3.2. Thus, we could have the following conclusions for

this experiment of tomographic Shepp-Logan phantom reconstruction:

1. The Laplacian Klap is an e↵ective regularization operator for this problem.

2. Taking a completely ine↵ective kernel Kran as initial guess, VNCG is able
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(b) Validation Result

Figure 3.5: Performance of VNCG for tomographic reconstruction of 32 ⇥ 32
Shepp-Logan phantom set (continued). Images share a common color bar.

to learn a constant kernel that is at least as e↵ective as the Laplacian Klap.

3. We do not see big improvement by allowing di↵erent kernels in di↵erent

iterations. There are some possible explanations for this phenomenon: there

might be no necessity of allowing di↵erent kernels in solving this problem,

or GD is not a good optimizer for learning free convolution kernels, or we

do not have a good enough learning problem.

4. Keeping the momentum of the learning algorithm constant, if we decrease
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(a) From Kran to Kconst (b) From Kconst to Kfree

Figure 3.6: Convergence plots for training VNCG for tomographic reconstruction
of 32⇥ 32 Shepp-Logan phantom set.

the learning rate by half, the loss will eventually also decrease by approxi-

mately half if it does not reach the approximated optimal value.

Based on the conclusions above, we will continue to look at other situations in

sections 3.3 and 3.4.

3.3 General Image Deblurring

3.3.1 Moderate Blurring

In the second experiment, we want to see how VNCG works with reconstruction

from a blurred general image. We first start with images blurred moderately.

For the training set, we generate a random 32 ⇥ 32 image Xtrue and a rotational

blurring operator Amoderate, which moderately blurs the true image. Then we

generate the data Bmoderate for some noise N as in section 3.2. Similarly, we

generate A0
moderate, X

0
true and B0

moderate for the validation set. In training VNCG,
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we use Kran as our initial guess and see if the learned results is better than the

Laplacian Klap. Besides the reconstructed images and the true images, we also

include the blurred images in Figure 3.7 for comparison.

(a) Training Result

Figure 3.7: Performance of VNCG for deblurring moderately burred 32 ⇥ 32
general images. Images share a common color bar.
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(b) Validation Result

Figure 3.7: Performance of VNCG for deblurring moderately burred 32 ⇥ 32
general images (continued). Images share a common color bar.

The performance of VNCG shown in Figure 3.7 reveals the same information

we got for tomographic reconstruction: Kran serves as a bad convolution kernel

for this problem, while Klap is an e↵ective operator. Also, the reconstructed

images Kconst and Kfree appear to be as e↵ective as the Laplacian Klap. One

thing noticeable from the reconstructed images is that when the image has non-
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(a) From Kran to Kconst (b) From Kconst to Kfree

Figure 3.8: Convergence plots of learning processes for deblurring moderately
blurred 32⇥ 32 general images.

zero boundaries as in Figure 3.7a, the trained kernels does better in reconstruct

the boundaries than the Laplacian when we use the zero boundary conditions.

As shown in Figure 3.8a, the loss drops from about 350 to about 100, which

is a 70% improvement in terms of loss. Also, in Figure 3.8b, the loss drops by

around 10%. In this case, we can say that although the improvement is still hard

to be recognized from the reconstructed images, the convergence plots show that

allowing di↵erent kernels in each iteration of CG indeed provide better regulariza-

tion operators in terms of loss, which is a di↵erence between this image deblurring

problem and the tomographic Shepp-Logan phantom problem.

3.3.2 Severe Blurring

Now we want to increase the level of blurring. We generate our data in the same

way as we do for moderate blurring in 3.3.1. The only di↵erence is that we re-

place the blurring operator Amoderate with Asevere, which blur the images severely.
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Therefore, the blurred image is now denoted Bsevere. We train VNCG with initial

guess Kran and display reconstructed images together with the blurred images and

the images reconstructed by Klap in Figure 3.9.

(a) Training Result

Figure 3.9: Performance of VNCG for deblurring severely burred 32⇥32 general
images. Images share a common color bar.
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(b) Validation Result

Figure 3.9: Performance of VNCG for deblurring severely burred 32⇥32 general
images (continued). Images share a common color bar.

Figure 3.9 again shows the improvement brought by training VNCG. Also,

from Figure 3.10 we can see that, in the training process to learn Kconst from

Kran, the loss drops by over 75% from about 800 to about 150. Moreover, in the

training process to learn Kfree from Kconst, the loss drops by around 20%. This

gives us a similar result as what we obtained for moderately blurred images in
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(a) From Kran to Kconst (b) From Kconst to Kfree

Figure 3.10: Convergence plots for deblurring severely blurred 32 ⇥ 32 general
images.

Figure 3.8. However, one thing di↵erent between Figure 3.8 and 3.10 is the value

of loss, which indicates that the the reconstruction is better for moderately blurred

images than for severely blurred images.

Based on the results we get, we could draw the following conclusions for this

experiment of deblurring general images:

1. Just like in tomographic reconstruction, Klap is an e↵ective convolution

kernel for reconstruction.

2. From the convergence plots, we could find that by training VNCG, we can

learn a constant convolution kernel nearly as e↵ective as the Laplacian Klap.

Moreover, when the image has non-zero pixels on its boundaries, the learned

kernels does better than the Laplacian in reconstructing the boundary when

we use trivial zero boundary conditions. Also, unlike in tomographic re-

construction of Shepp-Logan phantoms, allowing free convolution kernels

provides an improvement of about 10% in loss. However, compared to the
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norm of the true image, the improvement is still relatively small. Thus, we

still need further experiments to prove necessity of allowing di↵erent kernels

in each iteration.

3. Performance of VNCG depends on the level of blurring: when the images

are severely blurred, the resulting kernels can not deblur as well as they do

when the images are blurred in a medium level in terms of the loss.

3.4 Undersampled Tomography

An extension we can make for experiments in section 3.2.1 is to conduct experi-

ments on undersampled tomographic reconstruction. We generate our data sets

similarly to what we do in section 3.2.2. However, after we generate our tomo-

graphic operator A, we take only the first 80% of columns of it, and therefore our

data B also decrease 20% of its columns. The validation data set is generated in

the same way. By training VNCG with initial guess Kran, we compare the results

with images reconstructed by the Laplacian Klap in Figure 3.11. Also we generate

the loss in Figure 3.12.

The reconstruction performance of the kernels is similar to what we find in

section 3.2. However, one thing noticeable for undersampled tomography is that

although the reconstructions behave well when we look at the loss for convergence,

the pattern of the true image is not preserved as well as how it is preserved for

regular tomographic reconstruction in Figure 3.5, and the minimum value of loss is

much greater than what we have in Figure 3.6. This indicates that the undersam-

pling level of tomography relates to the performance of VNCG in reconstruction.
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(a) Training Result

Figure 3.11: Performance of VNCG for reconstruction of 20% undersampled
tomography. Images share a common color bar.

To find out the maximum undersampling level that VNCG could handle, we

train VNCG for di↵erent undersampling levels. Since we already show in sec-

tion 3.2.1 that allowing free kernels does not improve the reconstruction perfor-

mance, we only look at the performance of the learned constant kernel Kconst. We

decrease size of A by 10% each time, and compare the reconstructed images in

Figure 3.13.

As shown in Figure 3.13, although some of the phantoms are reconstructed in
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(b) Validation Result

Figure 3.11: Performance of VNCG for reconstruction of 20% undersampled
tomography (continued). Images share a common color bar.

an acceptable manner for all undersampling levels, the original pattern is hardly

recognizable for some images when the undersampling level is above 40%. Thus,

we would make the following conclusions for this experiment:

1. Although training VNCG indeed provides better reconstruction for under-

sampled tomographic reconstruction, it does not do as well as when it is not

undersampled.

2. The performance of VNCG is dependent on the undersampling level. Ac-
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(a) From Kran to Kconst (b) From Kconst to Kfree

Figure 3.12: Convergence plots of learning processes for reconstruction of 20%
undersampled tomography.

cording to our experiments, VNCG is able to handle undersampling level of

at most 40%.
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Figure 3.13: Reconstruction results for di↵erent undersampling levels.
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Chapter 4

Summary and Conclusion

Overall, we presented in this thesis a trainable Conjugate Gradient method (CG)

that we call VNCG. In VNCG, we followed the framework of variational networks

(VN) to unroll and train a CG method in a fixed number of iterations. Then we

conducted numerical experiments in which we considered linear inverse problems

and trained a convolution stencil that represents the regularization operator in a

Tikhonov form. We attempted two strategies for regularization: using a constant

stencil for all iterations or a more flexible approch that assigns di↵erent stencils

to each iteration.

Based on the results of numerical experiments in Chapter 3, we could make

the following conclusions for VNCG:

1. In general, by training VNCG, we could learn convolution kernels that pro-

vide better reconstructions than un-trained kernels.

2. For tomographic Shepp-Logan phantom reconstruction, the Laplacian Klap

serves as an e↵ective regularization operator. Taking a randomly chosen,
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ine↵ective operator as the initial guess, training VNCG could give us an

operator as e↵ective as Klap.

When the network is trained with the Gradient Descent method (GD), if we

keep the momentum of the learning process to be constant and decrease the

learning rate by half, the resulting loss eventually decreases by about half

before the optimizer approximately reach the optimal value.

By looking at both the loss and the reconstructed images, we do not see

necessity of allowing free kernels to solve these problems, which might results

from the optimizer we used for training and the learning problem we have.

3. For deblurring general images, the Laplacian Klap still serves as an e↵ective

convolution kernel. Training VNCG to learn a constant kernel for deblurring

results in kernel(s) almost as e↵ective as Klap in terms of the reconstructed

images. Also, when the image has non-zero boundary pixels, the learned

kernel does better than the Laplacian Klap in reconstructing the boundaries

under zero boundary conditions.

Unlike for tomographic Shepp-Logan phantoms, allowing free convolution

kernels for image deblurring provides an improvement of around 10% in

terms of loss. However, compared with the norm of the true image, the

percentage improvement is not su�cient to prove the necessity of allowing

di↵erent kernels.

Moreover, the performance of VNCG depends on the blurring level. When

the images are severely blurred, the reconstruction performance is not so

good as how it is when the images are moderately blurred.
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4. For undersampled tomographic reconstruction, the improvement by training

is also observed. The reconstruction performance of VNCG relates to the

undersampling level. Through experiments, we show that the VNCG is able

to handle an undersampling level of at most 40% missing data.

Besides the improvement in reconstructions listed above, experiments also re-

veal some shortcomings:

1. For tomographic reconstructions, assigning di↵erent convolution kernels in

each iteration does not make any improvement. While in image deblurring,

the improvement is relatively small so that we could not prove the necessity

of assigning di↵erent kernels in solving these problems. A possible expla-

nation is that we did not use a suitable optimizer to train VNCG for free

convolution kernels.

2. For undersampled tomographic reconstruction, VNCG can only handle up to

40% undersampled operators. When we miss more than 40% of the operator,

VNCG is not able to preserve the pattern of a Shepp-Logan phantom.

Based on the findings and shortcomings, there are several directions that might

lead to future works. One of the directions is to introduce other parameters to

our reconstruction algorithm and train them together with the convolution kernel.

By introducing new training parameters, the VN could possibly be able to handle

more than 40% undersampled tomography. Another possible direction is to design

an appropriate training method to train VNCG for di↵erent convolution kernels.

Besides, VNCG can also be applied to real medical data, such as the MRI data.

In this case, the practicability of this method is examined.
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Appendix A

Main Notation

A some matrix, operator

X some matrix, image

B some matrix

K some matrix, convolution kernel(s)

R some matrix, residual in CG

P some matrix, moving direction in CG

L some matrix, convolution operator

a some vector

b some vector

↵ some scalar

� some scalar

N some scalar

� some scalar

k some scalar
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Appendix B

Abbreviations

CG Conjugate Gradient

VN Variational Network

GD Gradient Descent

SGD Stochastic Gradient Descent

VNCG VN with CG
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Appendix C

Python Code

import copy

import math

import matplotlib.pyplot as plt

import numpy as np

import torch

import torchvision

import torchvision.transforms as transforms

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torch.sparse

import scipy.io as sio

import scipy.sparse as sp

from scipy.io import loadmat

1 Helper Functions

def img2dto4d(X, n, num_image):

# X: (n*n) * num_image: 2d image

graph4d = torch.t(X).reshape([num_image,1,n,n])

graph4d = torch.transpose(graph4d,2,3)

return graph4d

def conv3x3(X,K):

"""3x3 convolution with padding"""
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return F.conv2d(X, K, stride=1, padding=1)

def conv3x3T(X,K):

"""3x3 convolution transpose with padding"""

return F.conv_transpose2d(X, K, stride=1, padding=1)

def conv_mat(X, K, n, num_image):

# X: (n*n) * num_image

graph4d = torch.t(X).reshape([num_image,1,n,n])

graph4d = torch.transpose(graph4d,2,3)

conv_graph4d = conv3x3T(conv3x3(graph4d,K),K)

graph2d = torch.transpose(conv_graph4d,2,3).reshape(

[num_image, n*n])

return torch.t(graph2d)

# load data from mat files, convert to tensors

def load_data(matdata):

# load matrix generated in MATLAB

data = loadmat(matdata)

B = torch.FloatTensor(data[’B’])

X_true = torch.FloatTensor(data[’X’])

A_sparse = data[’A’] # sparse

# construct sparse matrix in torch

(I, J, V) = sp.find(A_sparse)

it = torch.LongTensor([I, J])

vt = torch.FloatTensor(V)

A = torch.sparse.FloatTensor(it, vt,

torch.Size([A_sparse.shape[0], A_sparse.shape[1]]))

return A, B, X_true

2 CNN with CG

class CG_CNN(nn.Module):

def forward(self,A,B,K):
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# A: tensor, n^2 * n^2, operator

# B: tensor, n^2 * num_image, image

# K: tensor, 1*1*3*3, for constant kernel

# 20*1*1*3*3, for free kernel sets

n = int(math.sqrt(A.shape[1])) # image size: n * n

num_image = B.shape[1] # num of images

if K.dim() == 4: N = 20 # num of iterations

else: N = K.shape[0]

# CG method

X = torch.zeros(A.shape[1], B.shape[1])

# initial guess: X[0] = 0

if K.dim() == 4: # AX + conv(X)

AX = conv_mat(X, K, n, num_image)

+ torch.spmm(A, X)

else:

AX = conv_mat(X, K[0], n, num_image)

+ torch.spmm(A, X)

P = torch.add(B, -1, AX) # P[0] = B - AX

R = P

# CG iteration

for i in range(2,N,1):

Rinner = torch.sum(torch.mul(R, R), 0)

# column-wise inner products

if K.dim() == 4: # AP + conv(P)

AP = conv_mat(P, K, n, num_image)

+ torch.spmm(A, P)

else:

AP = conv_mat(P, K[i], n, num_image)

+ torch.spmm(A, P)

alpha = torch.div(Rinner, torch.sum(

torch.mul(AP, P), 0))

# alpha[i] = Rinner/<AP[i],P[i]>

X = X + torch.mul(P, alpha)

# X[i+1] = X[i] + alpha * P[i]

R = R - torch.mul(AP, alpha)

# R[i+1] = R[i] - alpha * P[i]
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newRinner = torch.sum(torch.mul(R, R), 0)

# inner product of R[i+1]

beta = torch.div(newRinner, Rinner)

# beta[i] = newRinner / Rinner

P = R + torch.mul(P, beta)

# P[i+1] = R[i] + beta * P[i]

return X

3 Loss Function

def Loss(X,X_true):

return torch.norm(X - X_true) ** 2

4 Load Data

A, B, X_true = load_data("train.mat") # training

A_v, B_v, X_true_v = load_data("valid.mat") # validation

5 Initialize Klap and Kran

K_lap = nn.Parameter(torch.Tensor(1,1,3,3))

K_ran = nn.Parameter(torch.Tensor(1,1,3,3))

data = np.random.randn(1,1,3,3)

data = np.float32(data)

K_ran.data = torch.from_numpy(data)*10

data[0][0] = [[0,-1,0],[-1,4,-1],[0,-1,0]]

K_lap.data = torch.from_numpy(data)

6 Initialize Kconst and Train

K_const = copy.deepcopy(K_lap)

net = CG_CNN_K()

lr_num = 4

epoch_num = 20

loss_const = np.random.randn(lr_num * epoch_num)
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for i in range(lr_num):

lr = 1/(2**i)

optimizer = optim.SGD([{’params’:K_const}], lr=lr, momentum=0.9)

# loop over the dataset multiple times

for epoch in range(epoch_num):

optimizer.zero_grad() # zero the parameter gradients

X = net(A,B,K_const) # forward

loss = Loss(X, X_true) # backward

loss.backward()

optimizer.step() # optimize

loss_const[epoch_num * i + epoch] = loss

# record loss

print(’%d \t %.4f’ % (epoch + 1, loss))

print(’Finished Training, get K_const’)

7 Initilize Kfree and Train

K_free = nn.Parameter(torch.Tensor(20,1,1,3,3))

data = np.random.randn(20,1,1,3,3)

data = np.float32(data)

const = K_const.detach().numpy()

for i in range(0,20): data[i] = const

K_free.data = torch.from_numpy(data)

lr_num = 4

epoch_num = 20

loss_free = np.random.randn(lr_num * epoch_num)

for i in range(lr_num):

lr = 1/(2**i)

optimizer = optim.SGD([{’params’:K_free}], lr=lr, momentum=0.9)

# loop over the dataset multiple times
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for epoch in range(epoch_num):

optimizer.zero_grad() # zero the parameter gradients

X = net(A,B,K_free) # forward

loss = Loss(X, X_true) # backward

loss.backward()

optimizer.step() # optimize

loss_free[epoch_num * i + epoch] = loss

# record loss

print(’%d \t %.4f’ % (epoch + 1, loss))

print(’Finished Training, get K_free’)

8 Data Collect and Image Generation

n = int(math.sqrt(X_true.shape[0]))

num_image = X_true.shape[1]

# training data

blur = B.detach().numpy()

true = X_true.detach().numpy()

output_man = net(A,B,K_lap).detach().numpy()

output_const = net(A,B,K_const).detach().numpy()

output_free = net(A,B,K_free).detach().numpy()

I_blur_t = np.transpose(np.reshape(np.transpose(blur), (-1, n)))

I_true_t = np.transpose(np.reshape(np.transpose(true), (-1, n)))

I_man_t = np.transpose(np.reshape(np.transpose(output_man),

(-1, n)))

I_const_t = np.transpose(np.reshape(np.transpose(output_const),

(-1, n)))

I_free_t = np.transpose(np.reshape(np.transpose(output_free),

(-1, n)))

# validation data

blur_v = B_v.detach().numpy()

true_v = X_true_v.detach().numpy()

output_man_v = net(A_v,B_v,K_lap).detach().numpy()



49

output_const_v = net(A_v,B_v,K_const).detach().numpy()

output_free_v = net(A_v,B_v,K_free).detach().numpy()

I_blur_v = np.transpose(np.reshape(np.transpose(blur_v),

(-1, n)))

I_true_v = np.transpose(np.reshape(np.transpose(true_v),

(-1, n)))

I_man_v = np.transpose(np.reshape(np.transpose(output_man_v),

(-1, n)))

I_const_v = np.transpose(np.reshape(np.transpose(output_const_v),

(-1, n)))

I_free_v = np.transpose(np.reshape(np.transpose(output_free_v),

(-1, n)))
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