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Abstract

On Using Elemental and Non-Elemental Sets to Reproduce the

OLS Estimator in Linear Regression

By Xiaojing Wang

It has been shown previously that Ordinary Least Squares (OLS) estimates based on a
multiple linear regression model with p unknown parameters can be reproduced by
combining the results from fitting the same model to all elemental sets, the unique
subsets of size p from the total of n observations. In addition, it has been shown that
the same goal of reproducing OLS estimates can be achieved by combining the results of
the regressions on all unique non-elemental sets, i.e., subsets of size k where
p+1<k<n-—1. Weconsider three new methods aimed at reproducing the overall
OLS estimates of parameters. The three methods use the direct inverse-variance(INV)
weights, the refined inverse-variance (REF) and the constrained optimal (CON) weights
applied to each individual OLS estimator based on elemental or non-elemental sets.
These methods are compared with the determinant-based weighting method which has
previously been proven to reproduce the overall OLS estimates. The primary new insight
gained by our study is the notion that the direct inverse-variance weighting essentially
achieves the objective, while in theory there may be an infinitely large collection of
different weights that can do so. We illustrate the use of the various weighting schemes
using simulated data under various linear regression settings, including one-way and

two-way ANOVA designs.
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Chapterl

Introduction

1.1 Elemental Sets and Elemental Regressions

In the context of multiple linear regression, an elemental set is a subset of the data
containing the minimum number of points such that the unknown parameters in the
model can be identified (Smyth & Hawkins (2000)). Assume we have n observations, and
p is the number of unknown parameters (typically including an intercept) in the model.
Consider the multiple linear regression model Y = X8 + &, whereY isann X 1 vector
of dependent variables, X isann X p matrix of predictors, Bisap X 1 vector of
unknown parameters, and €isann X 1 vector of random errors with E(g) = 0 and
var(e) = o?l. leth = {il, i) een) ip} be a set of p distinct observations. Define X}, to
bethe p X p submatrix consisting of the rows of X indexed by the subset h, and
define Y, to be the corresponding p X 1 subvector of Y. Any such set of p observations
is an elemental set of the data. The solution to the system of p equations in p

unknowns, XpBr = Y, is called an elemental regression and is given by

Br = (XiXp) ' XpY, = X3'Yy
The B, can only be computed if X}, is nonsingular; if this is the case for all h, then the

data set is said to be in “general position” (Hawkins, 1993).



Elemental set methods are centuries old in their origins. In 1755, Boscovich first
considered a regression estimator based on a method of combining all possible
elemental regressions, but it was never widely accepted due to its computational
infeasibility in all but the smallest datasets (Sheynin, 1973). With the advent of modern
computing power, researchers have become interested in the elemental set-based
methods again. Theil (1950) and Sen (1968) used the elemental regressions to estimate
simple linear regression coefficients. This work was extended to the multiple regression
situation by Rubin (1980). Mayo and Gray (1997) introduced a new classification of
regression estimators that generalizes a characterization of ordinary least squares (OLS)
based on elemental regressions. Estimators in this class are a weighted average of the
elemental regressions, where the weights are determined by leverage and residual
information associated with the elemental sets. Rousseeuw (1984) and Hawkins, Bradu,
and Kass (1984) used elemental sets to handle outlier problems in multiple linear
regressions. Elemental sets also have been proposed as a computational device to
approximate estimators in the areas of high breakdown regression (Stromberg, 1993)
and multivariate location/scale estimation. Hawkins (1993) proposed that elemental set
algorithms provide excellent approximations for the least median of squares, least

trimmed squares and ordinary least squares criteria.

1.2 Existing Estimators as Functions of Elemental Regressions by OLS

In 1841, Jacobi showed that the least squares estimator is a weighted average of the

elemental regressions in the set of data (Sheynin, 1973). If we let h denote an elemental



set, the least squares estimator EOLS can be expressed in the following form:

= Yul XpXn|-Bn _ Znl XjXn|- B | XiXn| 5 -
= = = . = w .

where B, = (XX, )"t XL Y, = X;'Y}, is the solution based on the elemental set h,

| X5, Xy is the determinant of the p X p matrix X}, X, and the sums are taken over all
n . . %) t .
(p) possible elemental sets h. Note that the expression for B, assumes that XX, is

invertible. Should this not be the case, we would term the h-th set “inadmissible” and
leave it out of the weighted average when seeking to reproduce ﬁ’OLS. Such inadmissible

sets are common in ANOVA designs (see Section 3.4).

Hoerl and Kennard (1980) extended the previous result to show that, for any integer

value of m suchthatp < m < n, BoLs can also be expressed as a weighted average of
all (m) possible regressions based on m observations within the data. In summary, it is

currently known that the OLS estimators can be reproduced using elemental or non-

elemental sets by this determinant-based weighting method.

1.3 Outline

In this paper, we propose and illustrate three alternative weighting methods that can be
used for the same objective targeted by Hoerl and Kennard (1980); namely, reproducing
the OLS estimators using elemental or non-elemental sets. In several special cases, we
compare the resulting weighted estimators with OLS and with the previous authors’

determinant-based method presented in Section 1.2. The primary new insights gained



are the understanding that the direct inverse variance-based weights meet the desired
objective and that in theory an infinite number of weighting schemes can be used to

reproduce the OLS estimator.

Among the special cases considered for illustrations are typical simple and multiple
linear regression settings, as well as one-way ANOVA and two-way ANOVA scenarios. In
the latter case, we introduce the notion that only ‘admissible’ elemental or non-
elemental sets must be included in the weighting process. This notion relates to that of

‘general position’ (Hawkins, 1993).

In this thesis, we are primarily interested in the methods of reproducing OLS estimators
using elemental and non-elemental sets as an instructional tool, rather than for practical
purposes. However, it has already been noted (Section 1.1) that techniques based on
elemental sets have practical applications in the direction of “robust” regression. In
particular, Ordinary Least Squares (OLS) estimates the model parameters by minimizing
™, 8%, where é; = y; — x; is the fitting error. This criterion is sensitive to outliers.
OLS estimation also suffers from the problem of masking, which occurs when a data set
contains multiple outliers and, at the same time, these outliers are not detected by the
usual LS diagnostic procedures (Agullo, 1997). To solve these problems, robust
regression methods attempt to make the estimators less sensitive to outliers or
influential observations. The notion of reproducing the OLS estimators using elemental
or non-elemental sets via the direct inverse-variance weighting explored here might be

useful toward the development of new ideas for robust estimation of regression



coefficients, as explored by Jin (2012, unpublished thesis). But firstly, we need to verify
that our proposed the direct inverse variance-based weighting methods could indeed

reproduce the OLS estimators using elemental and non-elemental sets.



Chapter 2

Methods

2.1 Methods to Reproduce the OLS Estimator in Linear Regression

To review, we assume a multiple linear regression model Y = X8 + &, where Y is an
n X 1 vector of dependent variables, X isann X p matrix of predictors, fisap X 1
vector of unknown parameters, and €isann X 1 vector of random errors with

E(¢) = 0andvar(e) = o?l.Here, nis the number of observations and p is the
number of unknown parameters. Let | = {iy, iy, ..., i} be a set of k distinct
observations forany k suchthatp < k < n — 1. Define X;tobethe k X p
submatrix consisting of the rows of X indexed by the subset J, and define ¥ to be the

corresponding k X 1 subvector of Y.

An interesting feature of the determinant-based weights is the fact that the weights
used to combine elemental or non-elemental sets to reproduce OLS are identical for
every regression coefficient in the model. In contrast, the three alternative approaches
explored below produce different sets of weights corresponding to each individual OLS

coefficient estimate that we try to reproduce.
2.1.1 The Direct Inverse-Variance Weighted Average Estimator

A natural approach to combining the k elemental or non-elemental set-based OLS

estimates for a given regression parameter is to simply take the inverse-variance



weighted average of the OLS estimates from each of the (Z) sets. The resulting

estimator can be expressed in the following form:

b= > Var(:éi])_l . Bi]
' Z] Var(ﬁi])_l

wherei = 1,2,...,p, ﬁ] = (X]tX] )_1 X;Y, = X,‘lY] is the solution based on the

n 5 , -
subset | and the sums are taken over all (k) subsets J. B;; is the ith element of B; .

In Section 3, we demonstrate that the direct inverse variance weighted average does
not exactly reproduce the overall OLS estimate in general, except in the special case of
the slope estimate in simple linear regression. However, as we will see, the
approximation to overall OLS based on this approach is quite close, and tends to get

closer as n increases.
2.1.2 The Refined Inverse-Variance Weighted Average Estimator

The failure of the direct inverse-variance weights to exactly reproduce OLS in general is
likely due to the fact that they ignore the covariances among the set-based OLS
estimates that are being combined. Taking advantage of ideas based on generalized
least squares theory (Arnold, 1981), we propose a refined version of the weights applied
to the individual set-based OLS estimators. In this method, we take into account the

covariances of these estimators in addition to their variances.

Let



Bix
ﬁt = :8i2

:éiz
wherei = 1,2,..,p,z= (k) is the total number of possible subsets of size k. In theory

(e.g. Weller et al., 2006), the optimal weights can be expressed in the following form:
—1(p* -1 —1(p*
Tg, = [ltVar Y(By) 1] 1Var=1(B;)
where 1 is the z x 1 matrix with all its entries being 1.

The variance-covariance matrix of the z correlated estimates, Var(ﬁ?), can be obtained
by creating carefully chosen matrices that we will label as A, B and C. Let us take the
simple linear regression model, Y = 8, + ;X + € with n=3 and k=2, as an example.
Denote the vector of responses as Y’ = (y4, y,, ¥3). All possible dependent variable
subsets of size k are Y7 = (v1,2), Y5 = (¥1,¥3) and Y5 = (y,, y3). First we define a
matrix A such that AY= (Y4,Y5,Y3)" is a column vector containing the dependent

variable subset blocks . In this case the matrix A is (6x3 here) is as follows:

S rRr OO R O

Next, define the matrices B; (j=1,2,3), where B; = (X]-’ j)‘lX]-’ and X; is the design
matrix for the jth subset. We then define a block diagonal matrix with the B;’s down the

diagonal, in this case such that



B, 0 0
B:(O B, 0)
0 0 B;

For this example, B is a 6x6 matrix since each of the By’s is 2x2. Now the matrix BAY will
return the vector containing all of the individual OLS ,[?0 and [?1 estimates from the 3

separate regressions.

Finally, in order to sort the latter vector so as to group all of the ﬁo’s together followed

by the ﬁ’l's, we create matrix C as follows:

100 000
/001000\
c={0 00 01 0
010 00 0
\000100/
000 00 1

Thus, we can obtain the vector B* = CBAY that contains the block of 3 individual 3,’s
followed by the block of 3 individual 3,’s. Then the desired variance-covariance matrix
Var(ﬁ*) = Var(CBAY) = 6> CBAA'B’'C’. We can then take the 2 separate (3x3)
blocks along the diagonal of that matrix to give us the variance-covariance matrices

Var(ﬁ’{), corresponding to the 3 correlated [?0’5 and the 3 correlated ,[?1'5.

The above example is a simple special case, but the same process can be applied more
generally (in theory, for arbitrary n, p, and k). Note that in general, the matrices Y, Y}, X;,
B, A, B, and C defined above are of dimensions (nx1), [(n—1)x1], [(n—1)xp], [px(n—1)],

[n(n—=1)xn], [npxn(n—1)], and (npxnp), respectively. This general technique was applied
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to all the linear regression examples in this paper to get the variance-covariance matrix

for each set of §;’s.

One problem with directly using the generalized least squares-based weights given
previously is the fact that the variance-covariance matrices Var(f?}‘) are singular. As a
result, we use generalized inverses in the above formula to calculate the optimal
weights. The generalized inverse of a matrix is a matrix that shares some properties of
the inverse matrix (Rao, 1971). Typically, the generalized inverse exists for an arbitrary
matrix. When a matrix has an inverse, then its inverse and the generalized inverse are

the same.

Having substituted a generalized inverse for Var(ﬁ?), we offer the following

observation: The overall OLS estimator for the ith regression coefficient is given by
Bi=r1g, - Bi

Although we offer the above observation without a formal proof, the result is
demonstrated in several linear regression settings in Section 3. An important
consequence of this result is the apparent fact that OLS can actually be reproduced by
an infinite number of different weight combinations as applied to elemental or non-
elemental sets (due to the non-uniqueness property of the generalized inverse). Note
that if k=p (so that elemental sets are being used), it is not possible to estimate a2 in
Var(ﬁ*) = Var(CBAY) as outlined above. However, ¢ factors out in the inverse

variance-based weights and can thus be ignored.
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2.1.3 The Constrained Optimal Weighted Average Estimator
Although it is not readily generalizable, a third approach to the weighting of set-based

OLS estimates is to derive optimal weights that target the minimal variance for the
resulting overall estimator. Due to complicated algebraic work, we only consider the
simple linear regression with n=3, p=2 as an example. Then there are 3 possible subsets
of observations. Let w;;, w;,, w;3 be weights for ,éip ,[?iz, 31'3 respectively, where we
observe the constraint w;z = (1 — w;; — w;3), where i = 1,2 since p=2. The weighted

estimator for the ith coefficient is then

Bi = wiBir + Wiz + (1 — wyy —wy)Bis
Suppressing the subscript i for simplicity, we use basic properties of linear combinations
of random variables to determine that

VaT‘(B) = leVar(ﬁAl) + WZZVar(ﬁAz) + W%VCIT(ﬂ}) + 2W1W20'12 + 2W1W30'13 + 2W2W30-23 ,

where the ¢’s represent covariances between the corresponding pairs of set-based

estimates. Now replacing w; with (1 — w; — w,), we have

Var(ﬁ’) = WfVar(ﬁl) + W%Var(ﬁ’z) +(1—w; — WZ)ZVar(ﬁ’?,) + 2wy w, 04,

+ 2W1 (1 - Wl - W2)0'13 + 2W2(1 - W1 - W2)0-23

avar(B) set avar(B) set
“ow, = 0and “ows | =

To find the weights that minimize the variance, we take 0,

obtaining
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— var(Bs)-o13—{vVar(Bs)+o1,—013—023}w,
var(B1)+var(Bs)-2013

and

{Var(Bs) + 015 — 013 — 023 }{013 — Var(Bs)} — {Var(By) + Var(Bs) — 201, H{ozs — Var(Bs)}
{(Var(B,) + Var(Bs) — 2053 {Var(B,) + Var(Bs) — 2013} — {Var(Bs) + 015 — 013 — a3 {Var(Bs) + 015 — 015 — 03}

In this example, the required variances and covariances are very simple algebraically. In
Section 3, we verify that this third approach (like the constrained optimal estimator in

Section 2.1.3) directly reproduces OLS for the special case considered here.
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Chapter 3

Simulation Studies

Simulation experiments were conducted to compare the performance of the estimates
based on the proposed methods. Several special cases were listed to illustrate the
methods we used to reproduce the OLS estimators. Uses of the weights based on four
methods were compared. These methods utilize the previously published determinant-
based weights (DET), along with the proposed direct inverse-variance weights (INV),
refined inverse-variance weights (REF), and the constrained optimal weights (CON) (the

latter are illustrated only for the special case of n=3, k=2).

3.1 Special Case 1: Simple linear regression (SLR) with n=3, p=2

The model of simple linear regressionis Y = B, + ;X + €. From Table 3.1, we could
see that the REF method, the DET method, and the CON method reproduce the OLS
estimators exactly using elemental sets for a situation with n=3, k=2, and p=2. Note that
the intercept estimator S, based on the INV method is a little off relative to the overall
OLS estimator, while the slope estimator [?1 using the INV method reproduces the

overall OLS estimator exactly (see Section 2.1.1).

Figure 3.1 and Figure 3.2 display the weights based on each of the four methods for
estimating 8, and f;. The determinant (DET) weights for estimating /3, are the same as

the DET weights for estimating ,[?1, but the other methods’ weights for estimating ,[?O are
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different from those for estimating ﬁl, as expected. The CON method weights are vastly
different from the weights of the other methods, while the weights based on the other
3 methods are similar. However, though it is difficult to tell from Figures 3.1.1 and

3.1.2, the sets of weights used are different across all of the methods.



Table 3.1 Simulation results of reproducing SLR coefficients based on 500 simulated datasets (n=3, k=2, p=2)

Parameters | OLS Coefficient REF DET INV CON
Mean SD Mean Est. SD Est. | Mean Est. SD Est. | Mean Est. SD Est. | Mean Est. SD Est.
,@ 1.0316 0.5257 1.0316 0.5257 1.0316 0.5257 1.0306 0.5405 1.0316 0.5257
0
1.9914 0.2481 1.9914 0.2481 1.9914 0.2481 1.9914 0.2481 1.9914 0.2481

[

15
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Figure 3.1.1 The weights of four methods for estimating ﬁo of SLR
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Figure3.1.2 The weights of four methods for estimating ﬁl of SLR

(n=3, k=2, p=2)
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3.2 Special Case 2: Multiple linear regression (MLR) with n=7, p=4

Consider the multiple linear regression model Y = 8y + 1 X1 + (X, + B3X3 + &,
where the total number of observations (n) is 7. So here the possible sizes of the subsets
could be k where 4 < k < 6. We provide the results based on weighting all possible

subsets in Sections 3.2.1, 3.2.2, and 3.2.3.
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The results demonstrate that the overall OLS estimates for a multiple linear regression
can indeed be reproduced by weighting the elemental sets with k=4, or by weighting
non-elemental sets with k=5 or k=6. In terms of the weighting methods, the coefficients
of the linear regression can be exactly reproduced by the REF method and by the DET
method using elemental and non-elemental sets. Note that the estimates produced by
the direct inverse-variance weights method (INV) are not exactly the same as the OLS

estimates, but are very close.

The DET weights for estimating each unknown parameter of a multiple linear regression
are the same, but the REF weights and the INV weights are different for estimating each
individual regression coefficient parameter. All three methods use different weights, yet

all effectively reproduce the OLS estimators using elemental and non-elemental sets.

3.2.1 Reproducing OLS coefficients via the elemental sets with n=7, k=4, p=4

Table3.2.1 Simulation results of reproducing MLR coefficients based on 500 simulated
datasets (n=7, k=4, p=4)

Parameters | OLS Coefficient REF DET INV
Mean Mean Mean
Mean SD Est. SD Est. Est. SD Est. Est. SD Est.
ﬁo 1.0015 0.3195 | 1.0015 0.3195 | 1.0015 0.3195 | 1.0036 0.3241
Bl 2.3834 1.6065 | 2.3834 1.6065 | 2.3834 1.6065 | 2.3727 1.6165
ﬁz 1.2890 1.3933 | 1.2890 1.3933 | 1.2890 1.3933 | 1.2993 1.4140
,@3 3.0916 0.2692 | 3.0916 0.2692 | 3.0916 0.2692 | 3.0873 0.2714
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Figure 3.2.1.1 The mean weights of three methods based on 500 simulated datasets for
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Figure3.2.1.3 The mean weights of three methods based on 500 simulated datasets for
estimating 3, of MLR (n=7, k=4, p=4)
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Figure3.2.1.4 The mean weights of three methods based on 500 simulated datasets for
estimating S5 of MLR (n=7, k=4, p=4)
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3.2.2 Reproducing OLS coefficients via the non-elemental sets with n=7, k=5, p=4

Table3.2.2 Simulation results of reproducing MLR coefficients based on 500 simulated
datasets (n=7, k=5, p=4)

Parameters Coefficient REF DET
Mean SD Est. Mean SD Est. Mean SD Est.
Mean SD Est. Est. Est.
Bo 1.0073 0.2682 | 1.0073 0.2682 | 1.0073 0.2682 | 1.0056 0.2729
ﬁl 2.2381 1.3833 | 2.2381 1.3833 | 2.2381 1.3833 | 2.2276 1.3913
32 1.2967 1.1452 | 1.2967 1.1452 | 1.2967 1.1452 | 1.2986 1.1404
/A;S 3.1088 0.2259 | 3.1088 0.2259 | 3.1088 0.2259 | 3.1080 0.2265

Figure3.2.2.1 The mean weights of three methods based on 500 simulated datasets for
estimating S, of MLR (n=7, k=5, p=4)
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Figure3.2.2.2 The mean weights of three methods based on 500 simulated datasets for
estimating f; of MLR (n=7, k=5, p=4)
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Figure3.2.2.3 The mean weights of three methods based on 500 simulated datasets for
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Figure3.2.2.4 The mean weights of three methods based on 500 simulated datasets for
estimating f; of MLR (n=7, k=5, p=4)
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Table3.2.3 Simulation results of reproducing MLR coefficients based on 500 simulated

datasets (n=7, k=6, p=4)

Parameters Coefficient REF DET INV
Mean SD Est. Mean SD Est. Mean SD Est.
Mean SD Est. Est. Est.
Bo 1.0339 0.3091 | 1.0339 0.3091 | 1.0339 0.3091 | 1.0338 0.3090
Bl 2.4225 1.3879 2.4225 1.3879 2.4225 1.3879 24212 1.4009
ﬁz 1.1744 1.2351 | 1.1744 1.2351 | 1.1744 1.2351 | 1.1598 1.2812
33 3.1143 0.2385 3.1143 0.2385 3.1143 0.2385 3.1157 0.2451
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Figure3.2.3.1 The mean weights of three methods based on 500 simulated datasets for
estimating S, of MLR (n=7, k=6, p=4)
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Figure3.2.3.2 The mean weights of three methods based on 500 simulated datasets for
estimating Bl of MLR (n=7, k=6, p=4)
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Figure3.2.3.3 The mean weights of three methods based on 500 simulated datasets for
estimating 3, of MLR (n=7, k=6, p=4)
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3.3 Evaluation of direct INV method as n increases

Suppose the multiple linear regression model is still Y = Sy + 1 X1 + (X, + B3X3 + &.
Table 3.3 shows that the estimates produced by the direct inverse-variance (INV)
weights method with k=n—1 are extremely close to the OLS estimates for a range of
sample sizes (n). The refined inverse-variance (REF) weights method and the
determinant (DET) weights method continue to reproduce exactly the OLS estimates in

all conditions studied.

The potential significance of these results for the INV approach could be in the area of
robust regression (see Section 1.3). In particular, some prior robust regression
techniques utilize weighting of elemental sets with weights a function of leverage
information corresponding to the observations in each set (e.g., Mayo and Gray, 1997).
Our finding that direct inverse-variance weighting essentially reproduces OLS suggests
that INV weights could be useful as one component in such a robust regression effort
(for example, combined with other weights designed to provide robustness to outliers).
The direct INV weights are more convenient that the REF or DET weights in this regard,
and are utilized in this direction by Jin (2012, unpublished MS thesis). As discussed by
Jin, the applicability of the INV weights to both elemental and non-elemental sets also

opens up potentially new avenues for similar weighting approaches in robust regression.



Table 3.3 Simulation results for reproducing MLR coefficients based on 500 simulated datasets

(n=6, 50, 100; k=n—1; p=4)

27

No. of No. of Parameters OLS Coefficient REF DET INV
Observations | Observations
(n) in Each Subset
(k)
Mean SD Mean Est. SD Est. Mean Est. SD Est. Mean Est. SD Est.
Po 1.000218 0.372262 | 1.000218 0.372262 | 1.000218 0.372262 | 0.999376 0.373623
n=6 k=5 ﬁl 2.236744  1.774762 | 2.236744 1.774762 | 2.236744 1.774762 | 2.226723 1.761088
[?2 1.322763 1.365702 1.322763 1.365702 1.322763 1.365702 1.324691 1.369867
ﬁ3 3.10291 0.290713 3.10291 0.290713 3.10291 0.290713 | 3.102472 0.286573
Po 0.997059 0.068846 | 0.997059 0.068846 | 0.997059 0.068846 | 0.997057 0.068842
n=50 k=49 ,[?1 2.293481 0.322723 2.293481 0.322723 2.293481 0.322723 2.293473 0.32272
ﬁ’z 1.307413 0.248415 | 1.307413 0.248415 | 1.307413 0.248415 | 1.307414 0.248407
[§3 3.098996 0.048179 | 3.098996 0.048179 | 3.098996 0.048179 | 3.098999 0.048179
Po 1.001215 0.051865 | 1.001215 0.051865 | 1.001215 0.051865 | 1.001214 0.051866
n=100 k=99 ,31 2.306166 0.201351 | 2.306166 0.201351 | 2.306166 0.201351 | 2.306166 0.20135
[?2 1.298516 0.166794 | 1.298516 0.166794 | 1.298516 0.166794 | 1.298516 0.166792
33 3.099694 0.034296 | 3.099694 0.034296 | 3.099694 0.034296 | 3.099694 0.034295
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3.4 Special Case 3: Reproducing OLS coefficients for one-way ANOVA

One issue that has not yet been addressed is the possibility that certain sets (elemental
or non-elemental) may be “inadmissible” for weighting because the MLR model based
on those sets is less than full rank. ANOVA designs provide obvious examples in which
such anissue will arise, since many subsets may contain observations with identical
predictor (X) values. Intuitively, we should not include in the weighting any subsets for

which the OLS estimate for a particular coefficient of interest is not unique.
Assume the following MLR model corresponding to one-way ANOVA:
Yy =pu+XictaX +e;(i=12,..,r=1j=12,.,n) ,

where u represents an overall mean, a; corresponds to the “effect” of group i, and ¢;;
is a random error term corresponding to the jth observation on the ith subject. Typically
we assume the ¢;; ‘s are independent and identically distributed as Normal(0, o?),
although normality is not required for OLS estimation. In one-way ANOVA, the criterion
for an “admissible” subset is not only that it represents a set of k distinct observations
forany k suchthatp < k < n — 1. Besides this requirement, there must be at least

one observation in each subset from all levels (i) of the group variable.

From the formulae for the three methods, we can see that they only involve the X’s.
Each subset regression should be weighted the same since the X;’s are dummy variables
(0 or 1). All 3 methods (INV, REF, and DET) are found to reduce to using the same simple

set of weights, namely, 1/(# of admissible sets) for each subset. So theiand &’s
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simplify down to the unweighted average of the estimators from all possible subset
regressions. Using the estimates from all subsets that meet these two requirements,
one can thus reproduce the estimates for the one-way ANOVA via the simple average of

the subset-specific OLS estimates.

For example, suppose there are two groups and 3 observations in each group, and the

data are displayed in the following table:

X
0 1
y=2 y=6
y=3 y=7
y=5 y=4

Then, although there are a total of (6) possible elemental sets, the only “admissible”

2
sets are [(0,2),(1,6)], [(0,2),(1,7)], [(0,2),(1,4)], [(0,3),(1,6)], [(0,3),(1,7)], [(0,3),(1,4)],
[(0,5),(1,6)], [(0,5),(1,7)], [(0,5),(1,4)]. The weights of three methods are the same.

Specifically, the weight is 1/9 for each elemental subset in this example.
3.4.1 Reproducing the coefficients of the balanced one-way ANOVA

As a simple example, suppose there are 3 groups (A, B and C) and 2 observations in each
group. An appropriate MLR model for this caseis Y = u + a; X; + a,X, + €. Here
group A was set as the reference group. So the total number of observationsisn = 6
and the number of unknown mean parametersis p = 3. We can consider subsets

containing k observations, where 3 < k < 5. For a subset to be admissible, there must



be at least one observation in each group. The admissible subsets can be combined to

reproduce the overall one-way ANOVA coefficients.

All possible situations characterizing possible subsets that are elemental or non-
elemental are listed in Table 3.4.1. The results show that the coefficients for one-way
ANOVA with a balanced dataset can be reproduced exactly based on the elemental or
non-elemental sets. Also the weight for each subset is the same for each of the three
weighting methods (INV, REF, and DET), and that common weight is 1/(# of admissible

sets).

30
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Table 3.4.1 Simulation results of reproducing one-way ANOVA coefficients based on 500
simulated balanced datasets

k | No. of No. of Paramet- OLS Coefficients Estimates by averaging all
Obs. Admiss- | ers subset estimators
taken in ible sets
each
group

Mean SD Est.
Mean SD Est.
/I;Fi K 0.05207 0.73444 | 0.05207 0.73444

3 C:1 8 a, -0.04236 1.59258 | -0.04236 1.59258

- a, 2.95248 0.84194 | 2.95248 0.84194

';Fi K 0.07162 0.70955 | 0.07162 0.70955

C:l 4 a, -0.04622 1.71136 | -0.04622 1.71136

- a, 2.91471 0.80993 | 2.91471 0.80993

4 gf; K 0.01308 0.65205 | 0.01308 0.65205
:1 4 a, -0.03811 1.53333 | -0.03811 1.53333

<= @, 298167  0.75435 | 2.98167 0.75435

f:i K 0.00339 0.69931 | 0.00339 0.69931

C:Z 4 a, -0.07937 1.58048 | -0.07937 1.58048

- a, 3.00873 0.80089 | 3.00873 0.80089

gf; K 0.04019 0.68845 | 0.04019 0.68845

C:1 2 a, -0.03321 1.56381 | -0.03321 1.56381

- a, 2.96357 0.79344 | 2.96357 0.79344

3 ';F; K 0.00301 0.73036 | 0.00301 0.73036
C:Z 2 a, -0.00655 1.58438 | -0.00655 1.58438

- a, 3.00200 0.83730 | 3.00200 0.83730

gzi K 0.03576 0.70473 | 0.03576 0.70473

sz 2 a, -0.06058 1.57554 | -0.06058 1.57554

- a, 2.97227 0.78023 | 2.97227 0.78023
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3.4.2 Reproducing the coefficients of the unbalanced one-way ANOVA

The method can also be applied to unbalanced datasets. We take the same example as
that in 3.4.1 except that group A was changed to contain one observation. So the total
number of observations isn = 5 and the number of unknown mean parameters
remains p = 3. The subsets contain k observations such that 3 < k < 4. Also there

must be at least one observation in each group for a subset to be admissible.

All possible situations characterizing the subsets that are elemental or non-elemental
are listed in Table 3.4.2. Again, the results show that the coefficients of one-way ANOVA
with unbalanced dataset can be reproduced exactly based on the elemental or non-
elemental sets. The weights of the three methods (DET, INV, REF) are again the same,

namely, the weight is 1/ (# of admissible sets) for each subset.

Table 3.4.2 Simulation results of reproducing one-way ANOVA coefficients with based
on 500 simulated unbalanced datasets

k | No. of Obs. | No. of Paramet- OLS Coefficients Estimates by averaging all
taken in Admiss- | ers subset estimators
each group | ible sets

Mean SD Est.
Mean SD Est.
A=1 K 0.05679 1.02981 | 0.05679 1.02981

3 B=1 4 ('221 -0.11910 1.75473 | -0.11910 1.75473

=1 @, 2.97401 1.07256 | 2.97401 1.07256
A=l K -0.0157 0.9884 | -0.0157 0.9884
sz 2 a, -0.0253 1.7023 | -0.0253 1.7023
c=1 a, 3.0149 1.0428 3.0149 1.0428
4 A=l # -0.0611 1.0189 | -0.0611 1.0189
B=1 2 a, 0.0495 1.7315 | 0.0495 1.7315
C=2 a, 3.0508 1.0605 3.0508 1.0605
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3.5 Special Case 4: Reproducing the coefficients of two-way ANOVA

Assume the model corresponding to two-way ANOVA is

T
Yijk=li+z a;X; + ﬂ]Z] Z Z VijXiZj t¢
i= = j=1

i=1.,c—1;j=1.,c—1,

where u represents an overall mean for the reference cell, «; is the effect due to the ith
level of factor A relative to its reference level , f; is the effect due to the jth level of
factor B relative to its reference, the y;; ‘s capture any interaction between the ith level
of A and the jth level of B, and ¢ is a random error term. In the two-way ANOVA, the
formulae for the three methods for reproducing the estimators again only involved the
X's and Z's. Every subset regression should be weighted the same, since the X; and Z;
are dummy variables (0 or 1). The weights produced by all 3 methods (DET, INV, REF) are
identical across the methods, and once again the common weight reduces to 1/ (# of
admissible sets) for each subset. So the i, &, § and 7’s can be simplified to be the

simple weighted average of their estimates of all possible admissible subset regressions.

Regarding the admissibility of subsets, again each subset including elemental and non-
elemental sets to reproduce the estimates for the two-way ANOVA is not only a set of k
distinct observations for any k suchthatp < k < n — 1. There must also be at least
one observation in the ith level of factor A and the jth level of factor B in every

admissible subset of the data so that the subset produces a unique estimate of each
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parameter. For example, suppose there are 2 levels of factor A and 2 levels of factor B.

The following table provides hypothetical data for the two-way model:

Factor A
Levell Level2
Level 1 y=3 y=2
Factor B y=4 y=6
Level 2 y=8 y=1
y=9 y=5

Then all possible elemental sets should be [(1,1,3), (1,2,2), (2,1,8), (2,2,1)], [(1,1,3),

(1,2,2), (2,1,8), (2,2,5)], [(1,1,3), (1,2,2), (2,1,9), (2,2,1)], [(1,1,3), (1,2,2), (2,1,9), (2,2,5)],
[(1,1,3), (1,2,6), (2,1,8), (2,2,1)], [(1,1,3), (1,2,6), (2,1,8), (2,2,5)], [(1,1,3), (1,2,6), (2,1,9),
(2,2,1)], [(1,1,3), (1,2,6), (2,1,9), (2,2,5)], [(1,1,4), (1,2,2), (2,1,8), (2,2,1)], [(1,1,4), (1,2,2),
(2,1,8), (2,2,5)], [(1,1,4), (1,2,2), (2,1,9), (2,2,1)], [(1,1,4), (1,2,2), (2,1,9), (2,2,5)], [(1,1,4),
(1,2,6), (2,1,8), (2,2,1)], [(1,1,4), (1,2,6), (2,1,8), (2,2,5)], [(1,1,4), (1,2,6), (2,1,9), (2,2,1)],

[(1,1,4), (1,2,6), (2,1,9), (2,2,5)]. The number of possible elemental sets should not be

simply (2), since many of them are inadmissible.

3.5.1 Reproducing the coefficients of the balanced two-way ANOVA

As in the previous table, suppose there are two factors A and B and two levels in each
factor. There are 2 observations in the ith level of factor A and in the jth level of factor
B,fori =1,2andj = 1,2. The model inthiscaseis Y = u+ aX + fZ + yXZ + €. The

level 1 of factor A and the level 1 of factor B were considered as reference levels in a
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standard reference cell coding. The total number of observations is n=8 and the number
of unknown parameter is p=4. So each potential subset is a set of k distinct
observations, where 4 < k < 7.There must be at least one observation in the cell of
ith level of factor A and the jth level of factor B in the subset to correctly reproduce the
overall two-way ANOVA coefficients (i.e., each admissible subset must have this

characteristic).

All possible situations characterizing the subsets that are elemental or non-elemental
are listed in Table 3.5.1. The results confirm that the coefficients of two-way ANOVA
with a balanced dataset can be reproduced exactly based on the elemental or non-
elemental sets. Each subset is weighted by 1/ (# of admissible sets), based on each of

the 3 methods (INV, REF, DET).
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Table 3.5.1 Simulation results of reproducing two-way ANOVA coefficients with based

on 500 simulated balanced datasets

No. of Obs. | No. of Paramet- OLS Coefficients Estimates by averaging all
taken in Admiss- ers subset estimators
each cell ible sets
Mean SD Est.
Est.
Mean SD
a=1 K 0.1555 27934 | 0.1555 2.7934
4 b=1 16 @ 0.1209 38719 | 0.1209 3.8719
c=1 Ji -0.0795 3.7807 | -0.0795 3.7807
d=1 7 -0.3007 5.0680 | -0.3007 5.0680
a=1 K 0.1345 3.0118 | 0.1345 3.0118
b=1 8 @ -0.2806 4.0075 | -0.2806 4.0075
c=1 B 0.1732 3.9685 | -0.1732 3.9685
d=2 % 0.6713 55127 |  0.6713 5.5127
a=1 K 0.0107 2.8425 | 0.0107 2.8425
b=1 8 @ 0.0373 3.9974 | 0.0373 3.9974
c=2 B 0.0870 4.0699 |  0.0870 4.0699
5 d=1 % -0.1508 54751 | -0.1508 5.4751
a=1 K -0.0103 2.8120 | -0.0103 2.8120
E:i 8 Q 0.0410 3.9653 | 0.0410 3.9653
41 B 0.0414 3.8927 | 0.0414 3.8927
4 0.1579 5.6456 | 0.1579 5.6456
a=2 K -0.0818 29232 | -0.0818 2.9232
i’: 8 Q -0.1356 3.9696 | -0.1356 3.9696
41 B 0.0573 4.0017 | 0.0573 4.0017
7 0.2121 56489 | 0.2121 5.6489
a=2 i 7.34E-
b=1 05 2.7705 | 7.34E-05 2.7705
c=1 4 @ -0.0407 3.9368 | -0.0407 3.9368
d=2 B 0.1882 41234 | 0.1882 4.1234
7 0.0543 5.8008 | 0.0543 5.8008
a=2 K 0.0703 29174 | 0.0703 2.9174
E:; 4 Q 0.0973 4.0659 | 0.0973 4.0659
41 B 0.1842 42310 | 0.1842 4.2310
6 % -0.3641 59959 | -0.3641 5.9959
a=2 K -0.0068 2.8241 | -0.0068 2.8241
b=2 @ 0.0248 3.8454 |  0.0248 3.8454
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c=1 B 0.1148 3.9979 | 0.1148 3.9979
d=1 7 -0.064 5.5172 -0.064 5.5172
a=1 # 0.0956 2.7659 |  0.0956 2.7659
E:g c? -0.0164 3.9723 | -0.0164 3.9723
d4=1 /j -0.1708 4.0537 | -0.1708 4.0537

7 0.1824 5.6700 | 0.1824 5.6700
a=1 K -0.0303 2.7810 | -0.0303 2.7810
bfz a 0.1604 42050 | 0.1604 4.2050
Z;; @ 0.0765 3.9507 | 0.0765 3.9507

7 -0.1215 5.8527 | -0.1215 5.8527
a=1 K 0.0689 2.8894 |  0.0689 2.8894
E:; c? 0.0097 4.2500 | 0.0097 4.2500
d4=2 € 0.1039 4.1444 |  0.1039 4.1444

4 -0.1067 6.0224 | -0.1067 6.0224
a=2 # 0.0964 2.8087 |  0.0964 2.8087
bfz @ -0.0018 3.9673 | -0.0018 3.9673
;;; /j -0.1964 3.9553 | -0.1964 3.9553

7 0.0631 5.4865 |  0.0631 5.4865
a=2 K -0.0387 2.8647 | -0.0387 2.8647
bfz a 0.1117 3.8966 | 0.1117 3.8966
;j @ -0.0632 3.9459 | -0.0632 3.9459

7 0.1211 5.5211 | 0.1211 5.5211
a=1 K -0.0312 2.7940 | -0.0312 2.7940
EZ & -0.0284 4.0783 | -0.0284 4.0783
d4=2 € 0.0223 3.9989 | 0.0223 3.9989

7 0.1137 5.5034 | 0.1137 5.5034
a=2 K 0.0422 2.8226 | 0.0422 2.8226
'2:; c? -0.0999 4.0117 | -0.0999 4.0117
=2 [j -0.0135 3.8747 | -0.0135 3.8747

4 0.2315 5.5370 | 0.2315 5.5370
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3.5.2 Reproducing the coefficients of the unbalanced two-way ANOVA

The example is the same as that in 3.5.1 except that there is only one observation in the
first level of factor A and the first level of factor B. So the total number of observations
isn = 7 and the number of unknown parameters is p = 4. The subsets contain k
observations such that 4 < k < 6. There must be at least one observation in the cell of
the ith level of factor A and the jth level of factor B to obtain an admissible subset, and
these subsets are weighted equally to correctly reproduce the overall two-way ANOVA
coefficients. Again, the weight is 1/ (# of admissible sets) for each admissible subset

based on all of the 3 weighting methods (DET, INV, REF).

All possible situations characterizing the subsets that are elemental or non-elemental
are listed in Table 3.5.2. The coefficients of two-way ANOVA with the unbalanced

dataset can be also reproduced exactly based on the elemental or non-elemental sets.
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Table 3.5.2 Simulation results of reproducing two-way ANOVA coefficients with based

on 500 simulated unbalanced datasets

K | No.of No. of Paramet- Coefficients Estimates by averaging all
Obs. taken | Admiss- ers subset estimators
in each cell | ible sets
Mean SD Est.
Mean SD Est.

a=1 K -0.0476 3.7700 | -0.0476 3.7700

4 b=1 8 a 0.1612 45789 | 0.1612 4.5789
cil 5 0.0163 46731 | 0.0163 4.6731

d=1 7 -0.0177 6.0265 | -0.0177 6.0265

a=1 K 0.0178 36748 | 0.0178 3.6748

b=1 4 @ -0.1422 45087 | -0.1422 4.5087

Cil I -0.1114 46988 | -0.1114 4.6988

d=2 7 0.1065 6.4397 |  0.1065 6.4397

a=1 K 0.1962 4.0519 | 0.1962 4.0519

b=1 4 a -0.2678 4.8482 | -0.2678 4.8482

Ciz i -0.1420 51289 | -0.1420 5.1289

5 d=1 y 0.1327 6.5053 0.1327 6.5053
a=1 K 0.0832 3.9810 | 0.0832 3.9810

E:i 4 & -0.2006 49213 | -0.2006 4.9213

d=1 € 0.0674 48111 | 0.0674 4.8111

7 -0.0025 6.4622 | -0.0025 6.4622

a=1 K -0.0114 40148 | -0.0114 4.0148

?:; 2 c? 0.0293 46329 | 0.0293 4.6329

=1 [j 0.0871 46875 | 0.0871 4.6875

7 -0.0843 5.8695 | -0.0843 5.8695

6 a=1 K -0.0080 4.0600 | -0.0080 4.0600
bfz 2 a 0.2520 5.0039 | 0.2520 5.0039

3;; @ -0.2070 5.1758 | -0.2070 5.1758

7 0.0191 6.5687 | 0.0191 6.5687

a=1 K 0.0625 4.1084 | 0.0625 4.1084

E:zl 2 & -0.0235 5.0131 | -0.0235 5.0131

dea € -0.0502 5.0665 | -0.0502 5.0665

7 0.1801 6.3033 | 0.1801 6.3033
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Chapter 4

SUMMARY AND FUTURE WORK

4.1 Summary

In this paper, we discussed three methods that could reproduce the OLS estimators of
the linear regression based on elemental and non-elemental sets. Both the refined
inverse-variance (REF) and the constrained optimal (CON) weights method, just as with
the determinant (DET; Hoerl and Kennard, 1980) weights method, lead to exact
replication of the OLS estimators. However, we assumed only n=3 observations when

illustrating the CON method. If we increase n, the number of equations that we need to
solve will correspondingly increase. Normally, there are (k) equations to solve, which

will result in computational infeasibility when the dataset is large. So the CON method is
not readily generalized. However, the REF method, which refines direct inverse-variance
weighting by accounting for covariances among individual subset-based OLS estimates,

is generalizable and represents the primary original contribution of this thesis.

The estimators produced by the direct inverse-variance (INV) method based on
combining results of all the elemental or non-elemental regressions are found to be very
close to the OLS estimators. As mentioned in Section 3.3, this may have applications in

the area of robust regression analysis (see Jin, 2012).
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Among the examples considered, we demonstrated that the coefficients of one-way or
two-way ANOVA can also be reproduced exactly based on elemental or non-elemental
sets. This required discussion of the notion of “admissible” subsets, i.e., those for which
the desired model can be fit to produce unique OLS estimates. In these ANOVA cases,
we find that the overall OLS coefficients can be reproduced by simply taking an average

of all estimators based on the admissible the elemental or non-elemental sets.

4.2 Future Research

In this paper, only special cases were listed to illustrate the fact that our methods can
reproduce the OLS estimators of the linear regressions based on the elemental and non-
elemental sets. A formal proof that the REF method can reproduce OLS in the general

case might represent a worthwhile educational contribution to the literature.

In addition, we know that Ordinary Least Squares (OLS) estimation is sensitive to
outliers, hence not robust. We could use non-elemental sets to produce robust
estimators which are more robust to outliers or influential observations by
incorporating the inverse-variance weights method, along with other weight

components based on outlier diagnostics (see Jin, 2012).
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