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Abstract 

 
Genomic epidemiology of bacterial pathogen 

transmission, persistence, and resistance 

 

By 

Brooke Morgan Talbot 

 

This dissertation broadens the application of evolutionary concepts within applied epidemiology to 
enhance and go beyond traditional case detection and diagnostics. It aims to identify the strengths and 
limitations of genomic approaches when paired with clinical and epidemiological data. I use 
methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections as a model for exploring 
within host and between host pathogen evolution and to test the capacity of single species comparative 
genomics to detect epidemiological linkages. I also expand on the relationship between genetic 
distance and spread using a metagenomic analysis of antimicrobial resistance (AMR) genes in two 
different colocalized hosts, humans and gray mouse lemurs. First, I critically evaluate the use of single 
nucleotide polymorphism (SNP) thresholds in hospital-associated spread of S. aureus and Pseudomonas 
aeruginosa. I argue that a one-size-fits-all approach for SNP difference is insufficient due to evolutionary 
and ecological differences influencing genomic variability, even within the same epidemiological 
setting. I next investigate whether patients experiencing MRSA bacteremia exist in genomic clusters 
with epidemiological links based on SNP distance. I identified that genomic alignment strategy, and 
the genetic background of strains affect the detection of SNP differences and that bacteremia patients 
in clusters have common healthcare exposures long before illness onset. I then examine risk factors 
for MRSA bacteremia recurrence and whether recurrent strains share convergent adaptive traits. I 
show that in our study set most recurrent infections are relapses from previous strains. These relapse 
lineages exhibit signatures of positive selection, particularly in genes associated with antibiotic 
resistance and virulence. Finally, I characterized the AMR resistomes between human and lemur gut 
microbiomes using metagenomics. The study identified distinct bacterial species profiles but shared 
antimicrobial resistance genes between hosts and suggests that AMR gene spread is diffuse in this 
system. This research demonstrates how genomics offers more precise and predictive public health 
interventions by refining our understanding of pathogen transmission and recurrence and emphasizing 
that evolutionary dynamics beyond neutrally evolving genes demark epidemiological linkages. 
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Chapter 1: Introduction 

Overview of Pathogen Genomic Epidemiology 

Genomic epidemiology of infectious diseases seeks to use the detection of nucleic acids, 

such as DNA and RNA,  to measure disease distributions within a population and identify biological 

mechanisms that underlie disease (1–3). The discipline draws from, but is distinctly separate from, 

genetics, population biology, taxonomy and molecular biology, and is shaped by the availability of 

technology, especially sequencing and bioinformatics (2). It is therefore vital that public health 

scientists gain an educational grounding in bioinformatics, surveillance, and population genetics 

together (4). 

In recent years nucleic acid sequencing technology has become highly sensitive and 

affordable, making genomic surveillance of infectious disease more accessible to public health and 

clinical laboratories (5–7). The focus on nucleic acids allows for methods to be adapted to different 

taxonomic groups, including bacteria, fungi, eukaryotic parasites, and DNA and RNA viruses 

causing human disease. Previously, pulsed-field gel electrophoresis (PFGE), which fragments DNA 

into specific patterns or “fingerprints,” was widely implemented for bacterial disease surveillance 

and was the standard for matching infection isolates together to identify a possible transmission 

event for nearly three decades (6). Though PFGE’s pattern matching is simple to interpret, it only 

captures a small portion of genetic information from the bacterial genome. For bacterial isolates, 

multilocus sequence typing (MLST) further increased the resolution of genetic similarity between 

isolates and accounted for horizontally obtained DNA by comparing housekeeping alleles across 

bacterial isolates (8). Both PFGE and MLST require up to date records of identified types, though, 
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and cannot readily provide information about drug resistance or virulence. To address the 

limitations of earlier typing methods, scientists investigated the utility of whole genome sequencing 

(WGS) for surveillance. Today WGS has superseded previous technologies as the primary analysis 

for pathogen genomic epidemiology. The resolution of WGS supports the creation of highly 

resolved phylogenies and detection of many genes of interest, including drug resistance genes, all 

from a single sequence run. When analyzed isolates are then paired with high quality metadata, 

including exposure histories, clinical history of disease, and other ecological factors, transmission 

sources can be more accurately deduced.  

Suites of bioinformatic tools and workflows exist to support full integration of genomics 

into routine surveillance today, each of which can be tailored to the pathogen taxonomy of interest. 

WGS of individual bacterial isolates (e.g. from DNA prepared from a single bacterial colony) is 

normally paired with detailed comparative analyses within a single species for relating evolutionary 

history with epidemiological causality. Metagenomics, where nucleic acids are isolated, amplified, and 

sequenced from a raw sample rather than a pure culture, is used largely to characterize diversity of 

microbial communities and for the unbiased detection of suspected disease-causing agents. Larger 

systems which have already adopted WGS for routine genomic surveillance include PulseNet in the 

U.S. to nationally reduce the burden of bacterial foodborne disease (5), and the global coalition 

PHA4GE supporting transmission tracking and contact tracing of SARS-CoV-2 infections (9). 

Developments regarding the sequencing and surveillance of pathogens with more complex life 

histories and genetics, such as Cryptosporidium species, are also underway (10).  

The definition of “outbreak,” while understood to be some level of increase in detected 

cases of illness over time, is dependent on the biology of the infectious agent, the environment in 

which it is detected, the primary mode of transmission, and the prevalence of the disease caused by 
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the organism (11). For public health practice, scientists attempt to use comparative genomics as 

central evidence for characterizing the etiology, pathogenesis, source/reservoir identity, circulation, 

and transmission of a disease, as well as the development of vaccines and drug therapy (3). The 

challenge of defining bacterial outbreaks with WGS is that the molecular evidence is not static and 

exists on a continuum. That is, bacterial genomes are subject to many simultaneous pressures and 

evolutionary forces that can alter how much genetic similarity will ultimately be detectable between 

recently diverged isolates from a common source.      

To understand how to detect and combat disease, it is imperative to understand the typical 

ways these organisms reproduce, compete with other species, move through their environment, and 

ultimately evolve in response to unique environmental pressures. For outbreak management, 

comparing genomic markers to the known life history of pathogens helps resolve the likelihood of 

transmission events when pathogens are endemic to an area, have high prevalence or are highly 

clonal species. Infectious bacteria have unique evolutionary histories, reproduction mechanisms, and 

prevalence from other pathogens. The diverse bacterial species that cause infection are of great 

interest among basic researchers and public health practitioners. Some of the major contemporary 

questions related to bacterial infections include how to relate mutation rate to epidemiological 

timelines, persistence of infections, and the evolution of drug resistance.  

 

Antibiotic Resistance as a Public Health Target  

Monitoring the prevalence and emergence of drug-resistant pathogens is a major goal of 

public health surveillance. Antibiotic resistance (AMR) in bacteria is defined as the ability of a cell to 

survive and/or grow in the presence of normally toxic antimicrobials. AMR phenotypes are 

common among all species of bacteria regardless of pathogen state. Antimicrobials are produced 
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naturally by fungi and other bacteria as a defense against other invading bacteria, and they are also 

artificially synthesized for clinical use (12). Unique antibiotic molecules target essential physiology of 

the bacteria, targeting cell wall and cell membrane growths, DNA replication, and protein synthesis 

(13). Antibiotics can have a bactericidal effect on cells, i.e. causing rapid cell death, and they can also 

be bacteriostatic, i.e. limiting growth and cell density in the population (13). Naturally occurring 

antimicrobials may also act as signaling molecules for physiological changes and gene expression, 

leaving much still to be explored about the anthropogenic impact on increased resistance in natural 

populations (12).  

  Consequently, bacterial populations evolve traits that directly and indirectly resist antibiotic 

chemicals. AMR can be intrinsic where an entire species is naturally resistant to specific classes of 

antibiotics. Certain classes of antibiotics affect bacteria differently depending on the contents of 

their cell walls and cell membranes (14). Efflux pumps protect bacteria by eliminating foreign or 

toxic substrates that enter the cell and are often associated with broad spectrum resistance (14). 

Bacteria can also acquire resistance relative to the adaptive landscape that certain members of the 

species experience. Acquired resistance occurs because of de novo mutations on the chromosome 

that promote a fitness advantage in the presence of an antimicrobial chemical, which is then passed 

on to daughter cells vertically. These mutations remain within the cell lineage and are a concern for 

chronically infected individuals (15,16). Bacteria also acquire antimicrobial resistance traits through 

horizontal gene transfer (HGT), which is a major mechanism of broad resistance between strains 

and different species of bacteria (17). Genes can move through transduction conferred by a viral 

phage, transformation, or uptake of free DNA in the environment, and conjugation, which requires 

cell-cell contact. Mobile resistance genes conferred by HGT are determined by the type of transfer 

mechanism and cellular restrictions that allows a non-susceptible bacterium to incorporate or expel 
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foreign DNA (18),  which in turn is affected by the spatial structure that allows for cellular 

interaction. Therefore, not all bacteria will be able to acquire resistance in the presence of a resistant 

cell. However, it is these mobile genetic elements that raise the most concerns for the widespread 

treatment failure in currently treatable infections (17,19). The combination of intrinsic and extrinsic 

factors leading to drug resistance has led to the emergence of multidrug resistance further 

exacerbating the difficulty treating these infections (20–22).    

Evidence shows that genes that confer AMR have long evolutionary histories independent 

of clinical usage (14, 23). However, the massive application of antimicrobial agents since the early 

20th century in medicine and agriculture has resulted in a huge increase in resistant bacterial 

pathogens of humans and animals alike (24). Bacteria must pass through several gauntlets to pass on 

genetically acquired drug resistance: the volume of antibiotic exposure, survival in the infection 

environment, susceptibility to HGT, and ease of transmission to another host. Overwhelmingly, 

human activity determines how likely and how far drug resistance will spread, and this is largely in 

the context of clinical and agricultural practices (12, 25). Poor penetration of an antibiotic into 

infected tissue or incompletion of therapy allows for small subsets infecting bacteria to survive and 

become cryptic reservoirs for possible onward transmission. Antibiotic tolerance, in which the time 

it takes to kill bacteria at the same dosage of treatment, increases the likelihood of mutations 

occurring that result in resistant subpopulations (26). Variation in the fitness effects of AMR genes 

can also change their prevalence, especially if genes are co-selected with other traits. For example, 

application of metals to agricultural soils can select for genetic elements that confer resistance to 

metal exposure and antibiotics simultaneously (27).  Antimicrobial exposure is critical for genetic 

emergence of resistance in bacteria, but this selective pressure is not the only force that maintains 

resistance genes in a bacterial population. Systems that are more open may cause the migration of 
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horizontally transferred genetic elements to populations with susceptible bacteria despite low 

prevalence of antibiotics, such as the spread of genes from human-generated sewage into natural 

water systems or soil (28–30). Differently structured healthcare systems can also vary in their 

openness between the community and the healthcare setting, meaning that there is no one clinical 

protocol that can be executed to reduce the exchange or the risk of drug resistant bacterial infections 

(31). Onward transmission is then possible when known routes of infection are not monitored or 

controlled. Contaminated healthcare equipment and personal protective equipment in healthcare 

environments is an ongoing challenge in healthcare outbreaks (32–35), and poor management of 

sewage leads to agricultural contamination and outbreaks related to fecal-oral transmission 

(28,36,37). 

For nearly a decade, The Global Action Plan on AMR has acted as an important framework 

for global stewardship of antimicrobial use and the prevention of drug-resistant infections. It 

especially calls for a One Health approach, a movement and programmatic framework which 

encourages the cooperation between many disciplines and sectors of expertise including and not 

limited to veterinary and human medicine, public health agencies, agricultural and environmental 

professionals, and the political and financial sectors (38). Individual efforts to combat resistance 

include drug stewardship programs (39), development and implementation of new antimicrobial 

therapies, and modernization and increased efforts in the surveillance of drug-resistant bacteria (40, 

41). Given the high genetic association with phenotypic AMR, metagenomics and genomics can be 

used to assess the strength of contribution from individual drivers of resistance. Detection of the 

type of gene, its prevalence, and which species it is associated with can be connected to data related 

to its ecological context, and interventions that prevent onward transmission can be reassessed and 

re-evaluated. However, the pipeline to create new long lasting and effective antimicrobial therapies is 
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slow and countries and communities alike still experience major gaps in access to systems and 

equipment that can help diagnose and monitor drug-resistant bacteria. Consequently, global 

prevalence of many resistant infections is still largely unknown.        

 

Staphylococcus aureus: A Pathogenesis Model 

In this thesis I use Staphylococcus aureus as a model for identifying epidemiological linkages 

from genomic changes. I selected S. aureus because it possesses a mix of stable, clonal lineages with 

strong geographic and epidemiological linkages, while also exhibiting patterns of convergent traits 

across highly divergent members of the species. This allows for exploration of the speed and scale of 

evolution during transmission and results in the interesting duality of S. aureus as a “asymptomatic” 

colonizer that can frequently cause serious infections. Furthermore, S. aureus has well-defined sub-

species groupings (aka “strains”) with distinct phenotypes, diseases and hosts associated with them. 

The clinical and public health significance, unique human hosts-adapted virulence traits, and 

genomic architecture make S. aureus a well-suited organism to serve as a model for understanding 

within-host evolution and pathogen transmission from a genomic perspective.  

S. aureus is a pathogen of global concern. It is a gram-positive coccus species that forms 

“grapelike” clusters of cells. It was first described by Alexander Ogston in 1882 from surgical 

wounds (42) and further characterized as its own species in 1884 by Frederich Rosenbach based on 

the distinct yellow coloration of colonies (43). S. aureus colonizes humans and domesticated animals 

as well as some wild animals (44). It can cause a range of infection types including skin and soft 

tissue infections (45), toxic-shock syndrome (46), and deeply invasive infections associated with 

bone and joint infections (47, 48), pneumonia (49), and cardiovascular disease (50). It has also been 
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implicated in outbreaks of illness associated with food and agriculture (44, 51) and healthcare 

exposure (52, 53).  

S. aureus has acquired drug resistance to multiple classes of antibiotics, including methicillin.  

Methicillin resistant S. aureus (MRSA) infections cause over 300,000 infections in hospitalized 

patients, 10,000 deaths, and a burden of $1.7 billion dollars in healthcare costs in the US alone (54).  

Although MRSA lives commensally on the skin and in the nose for nearly two percent of adults in 

the US (55), it can be life-threatening when spread in healthcare settings (56,57). Therefore, 

community-associated spread leading to healthcare introductions is also an increasing infection 

control challenge (31, 58). Human population structure can also impact the expansion of S. aureus 

lineages (59).  The most common MRSA lineages in the US are the USA300 strain (60, 61), a lineage 

with community-associated (CA) spread, and Clonal Complex 5 (CC5)/USA100 (61), which has 

been implicated in a variety of healthcare setting transmissions (62).  Prior to the 1990s, MRSA 

rarely spread outside of healthcare settings (63). Rapid emergence of USA300 in the US in 

community and eventually healthcare settings demonstrated completely unique evolutionary, 

epidemiological and molecular patterns (31,64). Although CA and healthcare-associated (HA) 

lineages distinctly differ in clinical, demographic, and microbiological characteristics (63,65), CA 

strains add to the burden of HA infections (52, 66) and HA strains have transmitted between 

patients with no known healthcare exposure (67). The decreased incidence of MRSA in healthcare 

settings is largely due to improvements in healthcare infection control practices. However, the 

impact of these prevention efforts has slowed in the last decade (54). 

S. aureus is notoriously equipped to attack the host and escape the innate and adaptive 

immune response. S. aureus produces a range of toxins that allow it to invade many different tissues. 

Toxins can damage host cells directly, including leukotoxins which target host immune cells and 
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alpha-toxin which target red blood cells (68). Toxins produced by S. aureus can also alter receptor 

functions and lead to pathological disease for the host. Enterotoxins and toxic shock syndrome 

toxin are most notable for their association with severe disease states and outbreaks (46, 51, 68).  S. 

aureus also produces enzymes to assist in invasion by breaking down host tissue proteins, and 

degrading or encouraging blood clots for evasion (69). Further S. aureus can evade the human 

immune system by producing superantigens and chemical blockers that prevent the recruitment of 

neutrophils and their ability to interact with host receptors (70). S. aureus can also evade clearance by 

complement through expression of staphylococcal protein A (70). If bacteria are phagocytized, they 

can withstand the release of reactive oxygen species using a suite of detoxifying enzymes, antioxidant 

pigments, and alteration of their cell wall (70–73). Altogether, S. aureus has an arsenal of virulence 

traits that contribute to the variety of diseases that it can cause.  

Virulence (49, 65, 74, 75) and antibiotic resistance (76) can differ across S. aureus lineages. It 

has been documented that specific mutational signatures occur in pathogenesis-associated genes 

from infecting S. aureus that differed from commensal S. aureus in the same patient (77). Since 

different body sites can harbor S. aureus persistent infections, there are likely different selective 

pressures for within-host evolution, and consequently differential disease presentations depending 

on the site of invasion or colonization. Since S. aureus can have longevity on its host, long-term 

screening of S. aureus from the same host helps us understand the expectations of the differences in 

populations that likely arose from the same recent common ancestor relative to host colonization 

(78, 79). 

Bacteria primarily reproduce through binary fission, producing identical daughter cells with 

vertically acquired copies of chromosomes. Small errors in the replication process introduce 

mutations into the daughter cells, and these mutations result in neutral effects on proteins or 
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alterations to the proteins. Mutations that are not severely detrimental can then be passed along to 

other daughter cells and persist and become fixed in the population through random and non-

random processes (i.e. selection, genetic drift, and migration). Over time, the genetic record 

generated through vertical transmission and mutational fixation is used to distinguish and trace 

subspecies lineages and can provide information about the likelihood of spread between hosts and 

within the environment. One limitation, however, is that mutation rates, usually defined as the 

average number of mutations per site in the genome per year during asexual growth, vary at species 

and subspecies levels due to differences in generation time, DNA replication proteins, and possible 

environmental mutagens (80). New genetic differences can also be introduced through HGT. 

Identifying instances of HGT can provide a lot of important information about potential 

environmental pressures that bacteria experience and possible epidemiological inference about 

antibiotic exposures. HGT, as well as homologous recombination, are non-descent associated 

genetic changes, and therefore they make phylogenetic estimations challenging. There are also 

barriers to genetic exchange in S. aureus that shape genetic diversity and species structure. For 

example, plasmid incompatibility determines whether multiple plasmids may be maintained within 

the same cell line through interference of the replication process (18). Natural restriction 

modification systems in bacteria, which act as a defense against the invasion of foreign DNA, can 

prevent the incorporation of mobile genetic elements introduced into a bacterial cell (81). Therefore, 

to epidemiologically define strains, it is necessary to account for vertically and horizontally acquired 

genetic changes in final phylogenetic estimations.      

To track drug resistance and virulence markers associated with disease, it is important to find 

clear and consistent methods for defining common strains within a single species. Through WGS, 

we can compare entire genomes between bacterial isolates and identify when virulence and 



11 

 

 

resistance likely arose. However, there is no singular definition of a “strain” recognized by 

microbiologists, and the term is often used interchangeably with other terms such as “lineage” and 

“clone.” Some definitions rely on known ecological and epidemiological association with specific 

genetic markers, while others are agnostic to the epidemiology and utilize qualitative cutoffs of 

genetic similarity based on the whole genome or on marker genes.  As a species, S. aureus forms 

larger clonal clades with distinct evolutionary histories and similar allelic profiles of core genes, or 

genes shared by at least 95% of representative isolates (81, 82). It also has a repertoire of non-core 

genes, some of which are associated with horizontal gene transfer, that are important for 

antimicrobial resistance and for some of the virulence traits (82, 83).  This divide between core and 

non-core genes contributes to the derivation of subspecies groups (strains) based on various levels 

of genetic similarity and the presence or absence of genes. Common groupings that exist include 

clonal complex (CC) and sequence type (ST) which use a gene-by-gene approach to differentiate 

lineages and group into non-overlapping categories based on central genotypes (84). Other typing 

mechanisms include categorizing at the individual trait level with structural stability and 

epidemiological linkage, such as agr type (85) SCCmec type (for mecA positive S. aureus) (86), and 

staphylococcus protein A (spa) (87). With the advent of whole-genome sequencing, there is an 

increasing opportunity to use the entire set of genomic information, including core genes and non-

core, or “accessory” genes, to group individual isolates into unique lineages.  

Summary of Chapters  

The goal of this thesis is to broaden the scope of evolutionary concepts utilized for applied 

epidemiological practice and identify the strengths and limitations of genomic approaches when 

paired with clinical and epidemiological metadata. In applied epidemiology, practitioners still face 

challenges in justifying the use of genomics for improved outbreak prevention or clinical care, 
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developing systems for processing large amounts of data, ensuring effective communication between 

laboratory staff and epidemiologists regarding genomics, and discerning transmission based on 

genomic thresholds. In this thesis I aim to tackle some of these challenges directly: first, by testing 

the value of specific genetic distance thresholds as markers for lineage relatedness within and 

between individuals. Second, by describing and testing techniques in both metagenomics and 

genomics that can lead to improved detection of genetic relatedness.  

In Chapter 2, I review the use of single nucleotide polymorphism (SNP) thresholds in 

hospital-associated spread of two major pathogens, S. aureus and Pseudomonas aeruginosa. I describe 

important evolutionary and ecological contributors that can lead to genomic differences present 

when two or more isolates are compared. Simultaneously, I highlight how these forces may differ in 

their effect on genetic difference depending on the species being investigated in an outbreak, even 

when the epidemiological setting remains the same. I argue that SNP thresholds should be species-

specific and refined into SNP threshold ranges to better guide outbreak investigations. I plan to 

modify this chapter and submit it for peer review. 

In Chapter 3, I investigate the presence of close genomic relationships between patients 

experiencing infections caused by methicillin-resistant S. aureus. I evaluated the impact of genomic 

alignment tools and genetic background of the infection strains on the detection of SNP differences 

and subsequent putative transmission clusters, followed by classification of those clusters at different 

thresholds. I identify potential risk factors for clustering, including recent hospital overlaps, and 

offer a logistic analysis to relate SNP distance and likelihood of detecting a hospital overlap as a tool 

for future cluster investigations of MRSA in hospital settings. This chapter was published in the 

Journal of Clinical Infectious Diseases in 2022, entitled “Unsuspected Clonal Spread of Methicillin-
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Resistant Staphylococcus aureus Causing Bloodstream Infections in Hospitalized Adults Detected 

Using Whole Genome Sequencing.” 

 In Chapter 4, I expand upon my research from Chapter 3 by investigating risk factors for 

recurrence of MRSA bacteremia as well as investigate whether recurrent strains share convergent 

adaptive traits. I describe the phylogenetic and clinical diversity between strains that do and do not 

cause subsequent infections in patients with bacteremia. I further use SNP distance and phylogenetic 

topology to differentiate persistent lineages associated with a host from genetically new infections 

for the same individual. I show that most recurrent infections are from relapsing strains, and that 

these strains share demographic, molecular, and clinical characteristics associated with recurrence as 

seen in the overall body of work. I demonstrate that relapse isolates have a signature of positive 

selection compared to the overall population of MRSA isolated from bloodstream infections, and 

that common genes among these relapse lineages occur in antibiotic resistance and virulence-

associated genes. This work will be submitted as a unique publishable unit upon further revision and 

review.  

In Chapter 5, I examine how antimicrobial resistance profiles can be compared in a larger 

ecological network using metagenomics. I first characterize the bacterial species abundance and 

antimicrobial gene abundance profiles between gut microbiomes of human residents and sympatric 

gray mouse lemurs living near Ranomafana National Park in Madagascar. I show that human 

communities have indistinguishable abundance profiles but are significantly distinct from lemur gut 

microbiomes. I then identify gene presence overlaps and compare the nucleotide sequence 

similarities between genes detected in both groups and their surrounding genetic context. I identify 

shared antimicrobial resistance genes with highly conserved nucleotide sequences, several of which 

were evidently a part of a larger cassette that is likely associated with horizontal gene transfer. This 
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chapter was published in PeerJ in 2024, entitled “Metagenome-wide characterization of shared 

antimicrobial resistance genes in sympatric people and lemurs in rural Madagascar.” 

 In Chapter 6, I conclude this thesis with a summary of the work thus far and suggest future 

directions for study. I outline some of the benefits and ongoing challenges in using sequencing to 

understand transmission risk factors and within-host evolution. I further suggest potential analyses 

to explore within-host adaptations of staphylococcus aureus and how that can contribute to 

different disease states in colonized patients. For example, building upon a hypothesis that within-

host adaptation may lead to a virulence versus transmission trade off, I suggest looking more closely 

at phenotypic changes relative to virulence profiles in addition to antimicrobial resistance profiles. I 

also plan to conduct additional analyses using boosted regression trees to assist with predicting 

relapse as an outcome.   
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Chapter 2: What’s in a SNP?: Deducing transmission 

events of bacterial infections using genetic thresholds 

of relatedness 

Brooke M. Talbot and Timothy D. Read 

Abstract 

Whole genome sequencing (WGS) is now the preferred molecular typing method for applied 

epidemiological surveillance of bacteria causing infectious diseases due to the technology’s ability to 

highly resolve pathogen genomes. Outbreak and transmission investigations using WGS in the last 

decade have successfully detected clusters of related illnesses, ruled out unrelated cases from 

investigations, and identified important risk factors causing disease spread. For these investigations, 

practitioners typically use a “SNP threshold,” a measure of single nucleic acid base pair differences 

between infection isolates, as a tool for deciding if two infections are closely related enough to 

signify a recent transmission event. However, the justification for these thresholds varies across 

investigations as well as the considered ecological and evolutionary processes acting uniquely on 

bacteria for determining the relationship between genetic change and transmission source. By 

comparing how these processes are understood and handled across outbreak investigations for two 

model organisms that plague healthcare settings, Staphylococcus aureus and Pseudomonas aeruginosa, I 

demonstrate that to best define SNP thresholds that are most useful for solving bacterial outbreaks, 

investigators should ensure that their WGS investigation workflows account for the contribution of 

the biological effects from cellular processes and population among sampled strains of bacteria.  
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Introduction 

Of increasing interest is the use of WGS surveillance in hospital and healthcare settings, 

where the introduction and spread of any disease into these spaces has serious consequences for 

patients receiving healthcare. Hospital-associated pathogens make for a great case of how an 

epidemiologist can think through the different biological components of bacterial investigations 

using WGS because 1. Hospital environments are known to have outbreaks with multiple modes of 

transmission, 2. A high-risk population benefits from time sensitive and highly granular 

investigations, 3. Bacterial pathogens in these environments have high morbidity for patients, and 4. 

There is currently no widespread surveillance system using WGS uniformly across all hospital and 

healthcare settings.   

There are inherent challenges for fully implementing WGS into routine surveillance, with 

special concern for tracking bacterial infections. For bacterial species, genetics change through both 

horizontal and vertical gene transfer and variation in the environment can trigger different stress 

responses and adaptation among different populations of the same species, the impact of which 

muddies the generalizability of too fine grain a genetic match.  One of the most executed strategies 

for bacterial disease transmission is reporting single nucleotide polymorphisms (SNPs), where there 

is a single base pair change at specific loci. This metric is primarily modelled on the idea that, under 

a neutrally evolving population, more SNPs are equivalent to more time passing since the common 

ancestor of two isolates. Consequently, epidemiologists have taken to reporting some “SNP 

threshold” when using WGS as a part of an outbreak investigation. A SNP threshold is the 

measured number of base pair differences between two isolates. The terms single nucleotide variant 

(SNV) threshold and SNP threshold have been used interchangeably throughout bacterial outbreak 

reports, though SNV more accurately encompasses general variation of a single base of a nucleic 
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acid, while SNPs refer to specific single base changes at a locus. Most reports do not disentangle 

these definitions, and largely instead report SNP differences as the total number of base pair 

variations across all loci between two isolates. For this review I will use SNP threshold as it is the 

more commonly expressed term across investigation reports.        

To establish these thresholds, it is critical that infectious disease scientists and 

epidemiologists invoke basic understanding of the evolutionary context of the molecular markers 

that they are relying on for disease prevention. In this review, I will discuss the important genomic, 

evolutionary, and epidemiological factors that impact the detection, comparison, and 

epidemiological patterns of present single nucleotide polymorphisms (SNPs) in bacterial infections 

which have been addressed to varying degrees across different bacterial outbreak reports. The 

ecological and evolutionary concerns of investigators can broadly be broken into those at the 

individual bacterial cell level, random mutations, homologous recombination, and adaptation to the 

environment; and at the bacterial population level, intrahost demography and interhost and 

environmental richness. To exemplify how these concepts impact phylogenetically distinct 

pathogenic bacteria that are operationally considered in the same way for surveillance, I compared 

and characterized SNP ranges documented and summarized in outbreak investigations utilizing 

WGS for two model bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, associated 

with healthcare-associated outbreaks.  

 

Ecology, Epidemiology, Evolution, oh my!  

Though WGS has often been used to confirm outbreaks initially detected by another 

sentinel event (i.e. a sudden increase in culture positive cases of illness in a short span of time), WGS 

and metagenomic sequencing will inevitably become the standard of practice in prospective 
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surveillance of bacterial outbreaks. It is therefore important to explore the current state of outbreak 

investigations that have used WGS and help define SNP threshold ranges that can be used in a 

variety of outbreak settings and transmission events. The sheer volume of outbreak investigations 

using WGS for various bacterial pathogens in numerous settings provides an excellent opportunity 

to identify empirical evidence of current pairwise SNP differences and define the criteria for 

effective SNP thresholds or threshold ranges. Early implementation of WGS into hospital 

surveillance was reactive to ongoing outbreaks and used to confirm or rule out cases (88). These 

early investigations were important for defining early ranges of pairwise SNP differences between 

isolates when there was a clear epidemiological link, which was the case with tracking cases related to 

a single-introduction of a MRSA infection into a neonatal intensive care unit (89). However, 

investigators moved quickly from this reactive and confirmatory practice with WGS toward testing 

the utility SNP thresholds to detect outbreaks prospectively in the hospital and provide swift 

intervention. This was demonstrated in 2012 with investigations of Clostridium difficile and methicillin-

resistant S. aureus, where, the combination of prospective sequencing and regular infection control 

identification of outbreaks was able to rapidly ruled in or out patients from of a cluster on the basis 

of pairwise SNP differences between patient isolates (90). Contemporarily, investigations now tend 

toward using WGS in a prospective manner, where pairwise SNP differences are the principal 

sentinel event for cluster detection. The sensitivity of a SNP threshold is quite important for this 

wave toward prospective surveillance of clusters.  Some investigators have implemented predictive 

models to come up with a species-specific SNP threshold. For example, Coll et al. suggests S. aureus 

isolates be included in a cluster at a threshold of <=15 SNPs within six months of isolation (79). 

Other Investigators take a broad approach and define a single threshold value for multiple hospital 
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pathogens from the available case reports, such as Sundermann et al.’s definition of 15 SNPs as a 

cut-off for 14 different species of bacteria (7).        

 

Justifications for SNP thresholds between bacterial infections 

Suggestions for optimal workflow strategies that integrate WGS and bioinformatics into 

outbreak investigations have been reviewed elsewhere(91–93). These reviews highlight that the 

choice of a SNP threshold must be contextualized in the availability and expertise of the 

investigation team in terms of bioinformatics, epidemiology, microbiological technique, and 

evolutionary biology. Briefly, the first component to determine an appropriate SNP threshold is to 

ensure that workflows include suitable sampling to ensure infecting isolates are from pure colonies, 

adequate sequencing depth and quality, and appropriate variant calling software. For this review, I 

will not focus on these technical bioinformatic considerations but instead focus on underlying 

biological processes fundamental to pathogen evolution and ecology that drive the presence of 

SNPs in the bacterial genome. Ultimately, SNP thresholds demonstrate some expected difference 

that investigators have about the relationship between two or more sampled isolates in the temporal 

period of interest. Investigations discuss important genetic and ecological principles in pieces that 

influenced the choice of the threshold. The most common patterns that emerge for justifying SNP 

thresholds occur at multiple stages related both to natural processes that result in an accumulation of 

SNPs and the population structure and niche of a pathogen. At the individual bacterial cell level 

mutations accumulate over time through random processes at a given rate. Selection on these 

mutations can remove deleterious mutation from the population, but less deleterious or neutral 

mutations may remain or be removed more gradually over time. This accumulation of differences 

can be profoundly adjusted by homologous recombination and cell adaptation to the environment 
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via positive and purifying selection. At the broader population level, intrahost demography and 

interhost and environmental richness also influence the number of SNPs ultimately detected once 

isolates are compared to one another (Fig. 2.1). Comparing how these processes are understood and 

handled across outbreak investigations will help better define their relative contribution to SNP 

thresholds, and which are most useful, stable, and for solving outbreaks and assist in the adaptation 

of future workflows as more is understood about pathogen biology.           

 

Figure 2.1. Evolutionary and ecological processes leading to genetic difference 

accumulation between bacterial core genomes. After a transmission event occurs, genetic 

differences accumulate in the core genome over time causing divergence between two related 

isolates. The expected SNP threshold between related bacterial isolates in a given time frame can 

increase or decrease depending on the weighted effect of cellular processes and population diversity 

in the sample. An example between two hypothetical bacterial species shows that the expected SNP 

threshold can differ from one another depending on the impact of each biological effect within the 

system, indicated by line weight and color. 
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The traditional characteristic relationships investigated for transmission events and outbreak 

relationships are those among the person, environment, and infecting agent in a given course of 

time(11). Describing these relationships with a simple metric like a SNP threshold can help decide if 

that detected diversity relates to an appreciable time and place. Investigators debate whether SNP 

thresholds should be used at all for inferring transmission events and outbreaks. Arguments against 

a single threshold include that their context varies between studies, that they may not necessarily 

imply transmission probability, and that different genetic lineages within the same species vary in 

substitution rate (94,95). The advantage of thresholds, however, is that they allow investigators to 

make quick, simple, and consistent decisions to prioritize which patients to investigate for possible 

exposures and transmission events such as in hospital infection prevention or contact tracing. 

Consequently, thresholds are readily documented in the literature for both prospective and 

retrospective outbreak analyses and have been used successfully to identify transmission. 

 

Use Cases: Interpreting thresholds across healthcare-associated 

pathogens  

Important considerations to define for any disease under surveillance are the expected 

modes of transmission (eg direct or indirect) and the expected source or environment that resulted 

in the disease. Healthcare settings are a high priority for preventing infection transmission, as these 

pose a major threat to patient safety and are worldwide the most common adverse event associated 

with healthcare (96). These infections can be prevented with good surveillance and infection control 

practices. WGS surveillance in these settings offers high returns for understanding disease spread 

and promoting patient welfare. From a clinical and public health perspective, molecular surveillance 
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stands to massively benefit local communities served by a single healthcare system, as well as the 

wider community. 

Globally, two pathogens of great concern in healthcare settings are Gram positive S. aureus 

and Gram negative P. aeruginosa (97) because of their ability to harbor antibiotic resistant phenotypes 

and cause persistent and recurrent infections in hospitalized patients and in patients with 

comorbidities.  Healthcare settings utilizing SNP-based thresholds for outbreak investigations 

demonstrate that infections of S. aureus and P. aeruginosa with epidemiological links to other patients 

or environmental samples cluster tightly together under 20 SNPs difference (Fig. 2.2).  
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Figure 2.2. Epidemiologically investigated clusters of healthcare-associated S. aureus 

(n=22) and P. aeruginosa (n=14) investigated with whole genome sequencing. Cluster 

isolates constitute clinical isolates and/or environmental isolates. Maximum pairwise single 

nucleotide polymorphism (SNP) difference, number of isolates in a cluster, duration between 

collection dates were gathered from main and supplementary figures, text, and tables from 14 

outbreak investigations (Table S1). Clusters were excluded from visualization if there was no defined 

time period or if pairwise SNP distances could not be identified. Epidemiological linkages were 

defined in the reports and include hospital overlaps between patients, common exposures to 

equipment or care personnel (cross-transmission), and exposure to contaminated environments.  

 

Most practitioners applying thresholds must account for all pathogens of interest during 

prospective surveillance, including S. aureus and P. aeruginosa, and therefore additional simplicity has 

been used for surveillance by setting the same threshold for multiple species (7). This should be met 
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with some caution and considerable review given that evolutionary and ecological processes can 

affect bacterial species differently. Particularly, P. aeruginosa and S. aureus have very distinct genetic 

characteristics than result in different estimations of the relationship between the pathogen’s 

genetics and the time between onward transmission and human detection from a recipient patient 

(Table 2.1).   
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Table 2.1. Taxonomic, genomic, and ecological characteristics of Staphylococcus aureus 

and Pseudomonas aeruginosa causing human infections 

 Staphylococcus aureus Pseudomonas aeruginosa 

Taxonomic group Gram positive cocci Gram negative bacilli 

Genome size (Mbp) Average: ~2.8 (∼2.69 to 

∼2.96) (98)  

 6.34  to 7.15 (99)  

Estimated substitution rate 

(SNPs/year) 

Non-hypermutator 

3.5   (89) 

5.8   (53,100) 

8.7   (101) 

  

Non-hypermutator 

1.0    (102) 

~1.2  (103)  

2.5    (15) 

5.5    (104) 

 

Hypermutator 

50 [60] 

Isolate 

sources/environments 

Human nose (77), skin and 

soft tissue infections (105), 

hospital equipment (106–108)   

  

hospital water sources 

(103,109,110), human lung 

(15,104,111) 
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The unique niches of S. aureus and P. aeruginosa contribute to the investigation priorities of 

documented outbreaks and likely contribute to differences in the genomic characteristics of 

individual clusters. S. aureus typically colonizes human hosts and becomes an opportunistic 

infection, with sequelae including skin and soft tissue infections, bloodstream infections, 

pneumonia, and bone infections (63). P. aeruginosa is a commensal organism and can cause acute 

(112,113) and chronic opportunistic infections (111), but it is also a known contaminant of water 

sources in healthcare settings (34,109,113). Previous outbreaks demonstrate years-long persistence 

of a single P. aeruginosa clone can persist and spread in a healthcare setting due to the environment 

(16,34,112–115), though acute are also detectable with WGS (106,112,116). In contrast, S. aureus is 

frequently reported in person to person spread, or shared equipment or healthcare workers, where 

the epidemiological link is overlapping hospital stays between patients (88,89,106,107,117). 

However, S. aureus can also contaminate the environment and result in short-term outbreaks with 

few (≤3) involved patients (52,108)[31,32], and some larger and more prolonged outbreaks (90,108). 

These distinct transmission situations are ultimately reflected in the SNP difference profile of 

reported outbreaks, where smaller, more rapid, and very genetically similar isolates are seen for S. 

aureus, and larger and more genetically diffuse clusters are documented for these long-term P. 

aeruginosa outbreaks (Fig. 2). In order to assess how expected SNP thresholds can be readily tailored 

to each species, investigators must therefore gain a good understanding of the evolution and ecology 

of each pathogen of interest. This starts with considering how much cellular processes and 

population sampling processes influence the expected detectable SNP range.     

 



27 

 

 

Random mutations and substitution rate  

 The accumulation of random mutations at a predictable rate over time is foundational to the 

rationale of SNP thresholds. Binary fission, the asexual reproduction mechanism of bacteria, 

produces two identical daughter clones, and it is this clonality which underpins the detection of 

related infections. However, the clock starts ticking upon this split. Under the neutral mutation 

theory, synonymous SNPs have no effect on organismal fitness and accumulate in a pathogen 

population through random processes (118). Though this idea is now more often regarded as a null 

hypothesis in most evolutionary explorations, it is nevertheless an important assumption for 

modeling relatedness over time between prokaryotic isolates. Using these assumptions, investigators 

can build a molecular clock that demonstrates a linear relationship between base substitutions and 

time, in order to predict the time at which last common ancestor emerged between two or more 

sampled organisms. In the context of an outbreak, by following this molecular clock, investigators 

hope to find epidemiological links that can occur within the predicted time frame.  

A priori knowledge of the per site and per genome substitution rate for some pathogens is 

available in literature, which investigators have made use of during outbreak investigations in order 

to identify clusters of significance (110). However, even for the same pathogen, estimates of the 

substitution rate relative to the reference genome are vary between investigations, leading to 

different expectations of the SNP differences over a time period of interest. For example, S. aureus 

substitution rate estimates include one SNP every 15 weeks (89), one SNP every nine weeks 

(53,100), and one SNP every six weeks (101). The diversity in values may arise from improved 

estimation techniques over time, size of the dataset used to calculate the estimates, and the size of 

the reference core genome. However, these estimates could also reflect some critical biological 

differences, including strain-specific substitution rates or the specific ecology of the transmission 
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event, such as the source coming from long-term host carriage. P. aeruginosa, in comparison, has a 

lower reported mutation rate than S. aureus, which ranges from 1 SNP a year to 1 SNP every nine 

weeks (Table 1). When considering a common threshold for multiple pathogens, it is important to 

factor in how divergent the expected substitution rates will be between species in the time period of 

interest, as drastically different rates could result in very different estimates the longer the 

investigation period proceeds.    

Though not frequently documented as a concern in transmission cluster investigations, 

hypermutation in some strains can nevertheless contribute to irregularities in the estimated 

substitution rate that would determine an expected SNP threshold. In one documented methicillin-

resistant S. aureus (MRSA) outbreak, one isolate with a confirmed mutation in mutS, a gene regulating 

DNA repair mechanisms, was identified as connected to a cluster of patients and had a substitution 

rate 6.9 times greater than the next-related isolate and many unique SNPs (88). Had this isolate been 

a part of prospective surveillance where the substitution rate was assumed to be the same across 

isolates, this isolate likely would have been excluded despite ultimately having an epidemiological 

connection to other isolates with a tighter connection. Comparatively, P. aeruginosa has known 

documentation of hypermutator phenotypes, particularly among chronically infected cystic fibrosis 

patients and less commonly among acutely infected patients (119). However, P. aeruginosa isolates 

have large variation in reported mutation phenotype when derived from clinical isolates of cystic 

fibrosis patients or from the environment (120). Future investigations should consider iterative 

WGS analyses as epidemiological links are identified between closely related cases as a method of 

exhaustive case finding to account for the possibility that other patients could be involved. Curating 

and tracking mutations associated with hypermutation and screening isolates for these changes as a 
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part of surveillance practices would be a wise early step in determining how to best use substitution 

rate to estimate a SNP cutoff.           

 

Homologous recombination 

The main goal of phylogenetics in transmission and outbreak investigations is to identify 

precise relationships between closely related isolates through vertical gene transmission. Novel 

genetic elements are also introduced into bacteria populations through horizontal gene transfer, 

which includes the processes of conjugation, transduction, and transformation. These introduced 

genes, such as plasmids, transposons, and phage DNA are mobile genetic elements and form the 

accessory genome. Using the whole genome, and therefore all available genes have been 

demonstrated to lead to the same epidemiological conclusions. Comparison of core- and whole-

genome MLST and SNP-based analyses for the same set of P. aeruginosa outbreak isolates showed 

that the methods are comparable (115). Limitations to the comparison arise, however. First, the 

alleles in the accessory genome undergo evolutionary pressures in the same way as alleles in the 

core, but not necessarily in concordance with the number or rate of changes among core genes. 

Different bacterial species also have different sized accessory genomes and different compositions 

of mobile genetic elements. Predictability of vertical transmission becomes difficult when the whole 

genome is considered in an investigation because of the possible different evolutionary trajectories 

of core and accessory genes and because the contribution of the accessory is not standard across 

species [51]. Second, the rate of genetic recombination is variable between species, which can 

influence gene-by-gene comparisons if some genes undergo a more rapid rate of change over time 

than others. Therefore, most transmission investigations focus on core genome analysis, which 

identifies conserved genes across a species without the contribution of elements of the accessory 
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genome. This ensures that the observed genetic SNPs are detected among the most conserved alleles 

within the population.  

Variation may also be introduced into components of the whole genome through 

homologous recombination, in bacteria a process of gene conversion, where donor DNA sequence 

replaces recipient sequences, both in core and accessory genes (121). However, homologous 

recombination also affects bacterial species differentially. The percentage of recombined genome in 

species significantly differs across bacteria, with intracellular pathogens exhibiting the least variation 

and opportunistic pathogens exhibiting the most. Considerable differences can be observed between 

species even occupying similar niches though (e.g., S. aureus having comparably low recombination 

to the intracellular pathogen Neisseria meningitidis) (122). Accounting for recombination is not 

uniform across outbreak investigations. Access and understanding of appropriate bioinformatic 

tools to handle this concern is still beginning to enter into common use among investigators of 

bacterial infections, but workflows can account for recombination during the variant identification 

phase to filter out regions of concern (112). Freely available tools to identify and mask recombinant 

regions, such as Gubbins (123), ClonalFrameML (124), and fastgear (125) can also be incorporated 

into investigations (107,113,117). Even with available tools, the practice of excluding recombinant 

regions is still not adopted in all workflows, and this could contribute to the variation seen in 

different thresholds for similar investigation periods.    

Regardless of tool access, though, the choice not to measure SNPs in recombinant regions 

ultimately removes genetic diversity from the sequence comparisons, and this choice may come 

down to the species of bacteria under consideration. For example, Eyre et al. chose to remove 

known mobile genetic elements from their investigation of Clostridium difficile clusters because 11% of 

the genome is affected by these elements. In their same prospective analysis, which included MRSA 



31 

 

 

isolates, mobile genetic elements were not removed, though SNPs were identified only in non-

repetitive sites on the genome for both pathogens (90). However, in a P. aeruginosa hospital outbreak, 

removal of these regions from the analysis still allowed investigators to differentiate clades for 

distinct transmission events despite a decrease in comparable core genes (113). Since the effects of 

recombination can affect detectable variation at the level of a SNP, it is important to at least 

document consideration of these methods in a public health workflow for the sake of comparability 

across studies.      

    

Adaptation to the host and environment 

Neutral mutations cannot explain all accumulated SNPs. Rare adaptive non-synonymous 

mutations, and alleles undergoing genetic hitchhiking associated with these selected SNPs, change 

the genetic diversity of bacterial populations as they adapt to changes in their environment (126). 

Adaptation to the host or to an environment can have variable effects on the overall number of 

differences detected. Adaptations reflect the function of random mutations to the genome and their 

presence and persistence in a population. Cells carrying an advantageous adaptation may increase in 

numbers because of their increased fitness compared to cells without the adaptation. This is 

dependent on the diversifying effects that various niches in the healthcare environment have on 

pathogen adaptation, and consequently the persistence of genetic lineages associated with different 

niches. These niches exist within the host where bacteria interact with immune cells and also exhibit 

variable tropisms to host tissues. They are also part of the external environment, such as the water 

systems, machinery and equipment, and surfaces subjected to regular antibiotic treatment. 

Depending on the organism, a pathogen may exhibit adaptations that allow it to move between a 

host and the environment, or its niche range may be narrow. When a pathogen infects a host, it is 
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faced with an array of complex selective pressures, particularly adapting to the host immune 

response (77). An infecting strain of bacteria must also contend with other present bacteria 

commensal to the host in order to establish infections. Together these components of the host 

environment act as different selective pressures on individual cells which contribute to within-host 

evolution. Particularly important among hospitalized patients and those with chronic infections, the 

presence of antibiotics can also act as a selective pressure as well as cause genetic bottlenecks that 

drastically decrease the population size and available genetic variation (111). 

S. aureus causing infections tend to occupy host-associated niches, though the bacteria can be 

isolated from a variety of infection-relevant tissues like whole blood, stool, lung aspirate, and 

wounds. Adaptation and long-term residency on a host result in detectable variation between 

bacteria. However, Young et al. showed that intrahost nasal and bloodstream S. aureus isolates 

differed by eight SNPs (127), and another investigation, observed no more than 10 SNPs between 

isolate pairs from the same patient, leading to a defined threshold of ≤15 SNPs for identifying 

transmission pathways over a seven-month investigation period of a neonatal intensive care unit 

(108,128). In contrast, evidence in the literature also shows that the diversity and within-host 

evolution of S. aureus samples even from the same body site could be as high as 40 SNPs (129). 

Assessment of transmission may also be clouded by patient exposure to multiple phylogenetic 

lineages whose most recent common ancestor would be outside of the relevant time scale for 

transmission investigation. Two scenarios emerge: Few SNPs occur even with distinct within-host 

environmental pressures, or many SNPs occur when the environment stays the same. For both 

scenarios, different evolutionary forces may be acting with different magnitude: in the former 

example, adaptation and selection may be decreasing genetic diversity, and in the latter these 

differences may be accumulating because of random processes resulting in nonsynonymous SNPs.    
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In comparison, P. aeruginosa is known to be both a free-living organism, as well as live 

commensally within a human host (Table 1). Therefore, there is potential for P. aeruginosa to transmit 

both from person to person or from a contaminated environment shared by multiple patients. This 

is of particular concern for patients who maintain long residency in a healthcare setting and 

repeatedly change between care units, which was observed in a patient infected with two lineages of 

P. aeruginosa that shared the same strain type (103). In this case, the genetic differences seen between 

multiple samples could reflect multiple transmission events.  

Microevolution of P. aeruginosa is well documented among chronically infected patients, and 

it leads to specific adaptations for pathogenesis. Even on a time scale as short as a year, P. aeruginosa 

infections gave rise to multiple clonal emergences with specific adaptations that are unique to 

different parts of the patient’s lungs (111). Interestingly, evidence of transmission from hospital 

water sources to a patient with cystic fibrosis showed that over a 60 day period isolates of P. 

aeruginosa between the two sources differed by about two SNPs (110). This observation is interesting 

given the expected substitution rate of P. aeruginosa to be about one SNP per year. From the 

perspective of a practitioner, though, this contrast can cast some insight on the utility of a threshold 

for P. aeruginosa. If separate clusters of P. aeruginosa differ by two SNPs in a two-year period and a 

two-month period, Likelihood of successfully linking other cases decreases if the threshold is 

generalized and does not consider different sources for each cluster. By not accounting for this 

adaptive behavior, longer-term investigations might detect more SNPs than would fall within a SNP 

threshold, and therefore miss transmission events.                    
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Intrahost demography of bacterial infections  

Considering neutral mutation, a colonizing bacterial population that started from the 

introduction of a single cell may acquire increasing intra-population diversity, (known as a cloud of 

diversity). This demography becomes important when tracing transmission events as the genetics of 

the truly transmitted cell may differ by a certain number of SNPs from both the sampled isolate of 

the donor host (or donor environment) and the recipient host. Thus, the difference between 

historical infection isolate, infection host, and recipient host all have the potential to start with a 

non-zero value of SNP differences from one another depending on how close in time these samples 

are collected to the time of infection. The consequence of this “non-zero” value means that we 

might under- or over-estimate the expected number of SNPs different between two infections, 

especially if the source has been infected for a long enough period of time that there is already 

significant genetic variation within the donor pathogen population. Similarly, the genetic diversity 

ultimately observed in transmission investigations depends on the number of samples collected and 

assessed from a patient, any of which could harbor mutations reflective of its response to the host 

and the structure of the population from which it is derived. For routine surveillance and diagnostics 

in a hospital, it is most common to observe in outbreak reports that a single, representative index 

isolate per patient is assessed in the final data set, thus all available diversity is not captured.  

Modeling approaches can help define a range of diversity to expect in an outbreak, which 

can account for the accumulation of genetic differences over time by combining data regarding 

interhost genetic diversity, intrahost genetic diversity, and epidemiological links to predict a 

reasonable threshold. Coll et al. demonstrated that a core genome SNP threshold for S. aureus that 

predicts transmission events among asymptomatic and symptomatic patients within a six-month 

period is between 11-13 SNPs by testing multiple different models to predict S. aureus genomic 
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differences over time, which included empirical data from infections between different hosts and 

isolates over time isolated from the same host (79). Their model was generalizable to unrelated 

populations of isolates than the original test cohorts and showed a similar result of 14 core genome 

SNPs across all isolates and 11 core genome SNPs from infecting isolates. However, this modeling 

approach was based on the assumption of person-to-person transmission events, and therefore it 

may not necessarily apply to other pathogens with a different mode of transmissions, such as 

through water. Development of different models and evaluation of Coll’s model and others in the 

literature to new scenarios would be useful nonetheless to assess their generalizability.   

 

Interhost and environmental richness 

To set up prospective genomic surveillance of a hospital, many isolates will have to be 

sequenced, and the majority of these isolates will be genetically distinct from one another and not 

related to a cluster. How then should investigators compare the highly genetically diverse pool of 

samples in real time and still capture all of the true SNPs? Investigators are usually interested in 

establishing the phylogenetic relationships of all isolates in a period of interest and test hypotheses 

for the relationships between genetic distance and isolation source or environment. Investigators 

create core genome alignments that compare common alleles between isolates and a selected 

representative reference, or in absence of a reference between all sequences in a sample set (7). Core 

genome analysis may slightly reduce accuracy and may possibly reduce resolution of lineage specific 

events (130). To better detect these more nuanced genetic relationships, investigators have first 

identified isolates that form broad but distinct phylogenetic clades (110) or that belong to the same 

known MLST identified in silico (108), and then take a stepwise approach to build phylogenies 

among more similar isolates. For example, in an attempt to understand S. aureus transmission 
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between healthcare workers, patients, and the hospital environment, Popovich et al. chose first to 

align all investigated isolates to the same USA300 reference strain, the most prevalent background of 

methicillin-resistant S. aureus in the U.S., and then separately build USA300 or USA100 phylogenies 

with references or closed genome derived from the study set (52). In this way, investigators were 

able to maximize conserved genes within vertical lineages and consequently the number of 

observable variants. However, core genome analyses without further sub-setting of clade-specific 

references can still resolve epidemiological linkages. Harris et al. conducted an investigation of 

MRSA in a hospital special care baby unit where clustering isolates were on average over 500 SNPs 

different from the reference strain but still epidemiologically resolved, even revealing important 

connections between hospital and community transmission (89).  

Strategies for P. aeruginosa are similar, but the overall values of SNPs are distinct from the 

previous examples of S. aureus transmission. In a prolonged outbreak of P. aeruginosa in a hospital 

ICU, Buhl et al. produced a polyclonal phylogenetic tree with the use of a single reference strain, 

PAO1, meaning that their detected cases were among distinct evolutionary clades rather than one 

lineage transmitting through the space. Even if this phylogenetic diversity reduced the detectable 

genetic differences between more closely related individuals, the investigators still identified unique 

epidemiological linkages within the two distinct detected clades (16). Other investigators chose to 

artificially diversify their phylogenetic investigations in order to create more evolutionary context for 

the outbreak. For an investigation of an outbreak of P. aeruginosa compared to other patient and 

environment samples in the same hospital, Parcell et al. included 15 additional reference samples in 

their phylogenetic reconstruction in order to resolve the evolutionary relationships (113). Addressing 

or adjusting diversity may change the absolute number of detectable differences, but it is apparent 

from these investigations that it might not always be necessary to find cases in a single cluster. 
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Perhaps the biggest concern instead becomes deciding what to do with cases at the edge of a 

threshold, especially if there is a precedent for gathering additional helpful exposure information to 

augment an investigation or to maximize detection of individuals still able to transmit disease.                    

   For investigations using WGS to prospectively find clusters, investigators should be 

concerned about the contribution of genetic diversity in the pool of samples on the recreation of a 

core gene and core gene comparisons. As genetic diversity increases, the core genome shared among 

bacteria decreases, which in turn decreases the number of comparable loci. Given that prospective 

surveillance will sample from whatever is present, it is likely that most phenotypically similar samples 

will not be related and that datasets within a period of surveillance will be genetically diverse, 

exemplified by the diverse collection of bacterial isolates gathered under hospital surveillance by 

Ward et al. (106). To account for this inevitable diversity, some investigations implement sequence-

by-sequence comparisons that estimate sequence similarity and group more highly similar alleles into 

gene families. This can be done with k-mer matching, followed by reference-based alignment (108). 

Other options include creating a core pangenome by identifying unique gene families among 

available sequences with Markov Cluster Algorithm (MCL) to find sequence distances (117,131). A 

gene-family approach may still decrease the detectable variation, but these variations remain more 

stable in alignments necessary for building phylogenies even with increased diversity compared to 

reference-based approaches (117). Using gene-family approaches are therefore advantageous in long-

term surveillance, as it allows for flexibility in the sample pool over time and does not rely on a static 

reference that may become less relevant over time. 

Since many isolates sampled from a setting will likely be unrelated, it is also important to 

consider a threshold that can successfully rule-out cases from investigation. Phenotypically similar 

isolates that are unrelated tend to have fairly distinct genetic profiles from unrelated isolates. For 
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example, in a two-year P. aeruginosa, outbreak associated isolates differed from one another by 0-14 

SNPs while a patient with no epidemiological link to the outbreak differed from the group of 

isolates by more than 100 SNPs (112). This distinct genomic distance hints that very distance 

genomic relationships can often be quick instances to separate cases from one another, and that 

energy and time should largely be spent on discerning edge cases that are closer to a cut off.   

 

Conclusion 

Transmission investigations have demonstrated that WGS is useful for forensic and public 

health purposes and can be done in an actionable time span for health interventions. These 

investigations highlight a transition from reactive and confirmatory use of WGS for outbreaks 

detected through other measures toward being the primary prospective surveillance tool. Public 

health practitioners now must go beyond the acceptability and feasibility of WGS. Incorporating a 

critical assessment of evolutionary and ecological processes within the context of each species is 

necessary to discern appropriate epidemiological links. From the observed biology of the richly 

documented outbreak reports, there are pathogen-specific patterns relating SNP differences and 

epidemiological linkage. Therefore, picking a target SNP threshold within the observed realm of 

SNP differences across investigations is a good starting strategy for building and refining outbreak 

detection systems. Additionally, anomalies that do not quite fit into a threshold can cue investigators 

to identify new and interesting patterns in disease, such as the role and emergence of hypermutators 

in disease spread or antibiotic resistance. However, SNP thresholds are tools that require 

understanding of underlying evolutionary biology and the pathogen’s relationship to the surrounding 

environment. For investigators already implementing a standardized threshold, the best next steps 

would be to build in regular evaluation of the system to monitor the stability and sensitivity of the 
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threshold, especially as disease prevalence in the community changes. Most fundamentally and 

importantly, thoughtful refinement of these thresholds using empirical data can guide us toward 

more rapid and complete prevention of further morbidity and mortality. 

Though these investigations have demonstrated that we are likely to find epidemiological 

links from molecular surveillance, it is also likely that we will continue to find “closely related” 

clusters without detectable epidemiological or environmental relationships. New priorities and areas 

for further research must then become: 1. Sequencing and sampling equity (What are other 

epidemiological or environmental factors not currently measured within a study that should be 

considered? Do networks become better resolved when we widen the frequency of sampling? What 

institutional settings still lack access to sequencing, bioinformatic, and epidemiologic workforces?), 

2. Ecological discovery (Are these results indicative of a new/unknown route of transmission?), 3. 

Evolutionary discovery (Do these pathogenic strains have new or unknown adaptations that could 

guide epidemiological surveillance? What are the phenotypic consequences of detected SNPs?), 4. 

Technological development (e.g., Does long-read sequencing provide additional/better resolution to 

WGS practices), 4. Refinement in the context of evolutionary principles (How do substitution rates 

compare between pathogen-only samples, commensal/asymptomatic, and environmental 

sampling?), 5. Non-outbreak health outcomes (How do disease prevalence and health outcomes 

change in a community when WGS is utilized?). WGS is simply the newest chapter in the history of 

molecular epidemiology, but by contextualizing the technology in evolutionary concepts we can 

understand disease transmission processes and behavior of pathogenic bacteria in exciting and 

unexplored ways.      
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Supplementary Tables 

Table S2.1. Summary and citation sources of epidemiologically investigated clusters of S. 

aureus and P. aeruginosa 

Cluster 

Citation Species Days Isolates 

Detection 

Method 

Source 

Environment 

Suspected/Identified 

Source 

Transmission 

Type  

Min 

SNP 

Median 

SNP 

Max 

SNP 

Ward 2019 

(106) 

P. 

aeruginosa 12 3 Prospective Healthcare None Unknown 1 1 2 

Davis 2015 

(116) 

P. 

aeruginosa 21 11 Retrospective Healthcare Water source 

Indirect: 

Common 

vehicle 0   2 

Parcell 2017 

(113) 

P. 

aeruginosa 237 3 Prospective Healthcare Room environment 

Indirect: 

Common 

vehicle 0 1.33 4 

Buhl 2019 

(16) 

P. 

aeruginosa 394 27  Retrospective Healthcare  Hospital environment 

Indirect: 

Common 

vehicle  1 15 66 

Sundermann 

2021 (35) 

P. 

aeruginosa 191 7 Prospective Healthcare Healthcare equipment 

Indirect: 

Common 

vehicle  0 2 9 

Magalhães 

2020 (112) 

P. 

aeruginosa 10 3 Prospective Healthcare  sink trap 

Indirect: 

Common 

vehicle 0 1 1 

Magalhães 

2020  (112) 

P. 

aeruginosa 157 13 Prospective Healthcare ICU 

 Indirect: 

Common 

vehicle 0 –  13 

Blanc 2020 

(115) 

P. 

aeruginosa 911 23 Retrospective Healthcare Burn unit environment 

Indirect: 

Common 

vehicle 0 –  16 

Snyder 2013 

(114) 

P. 

aeruginosa 2405 5 Retrospective Healthcare handwashing bin 

Indirect: 

Common 

vehicle 5 11 34 
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Moloney 

2020 (34) 

P. 

aeruginosa Unk  25 Prospective Healthcare washbasin u bend 

Indirect: 

Common 

vehicle 0 –  8 

Moloney 

2020 (34) 

P. 

aeruginosa Unk  2 Prospective Healthcare washbasin u bend 

Indirect: 

Common 

vehicle 5 5 5 

Moloney 

2020 (34) 

P. 

aeruginosa 789 31 Prospective Healthcare washbasin u bend 

Indirect: 

Common 

vehicle 0 –  38 

Ward 2019 

(106) 

P. 

aeruginosa 6 13 Prospective Healthcare 

shared inpatient 

environment 

Indirect: 

Common 

vehicle  2 7.5 15 

Ward 2019 

(106) S. aureus 321 21 Prospective Mixed 

Intravenous drug use, 

unknown 

Direct: Person 

to person  0 13 22 

Ward 2019 

(106) S. aureus 4 3 Prospective Healthcare 

shared inpatient 

environment 

Indirect: 

Common 

vehicle  4 5 5 

Ward 2019 

(106) S. aureus 139 2 Prospective Community Intravenous drug use 

Direct: Person 

to person 2 2 2 

Ward 2019 

(106) S. aureus 47 6 Prospective Community Intravenous drug use 

Direct: Person 

to person 0 3 4 

Ward 2019 

(106) S. aureus 50 2 Prospective Healthcare 

shared inpatient 

environment 

 Indirect: 

Common 

vehicle 4 4 4 

Ward 2019 

(106) S. aureus 23 2 Prospective Healthcare 

shared inpatient 

environment and 

hospital stay 

Direct or 

indirect  5 5 5 

Harris 2013 

(89) S. aureus 200 12 Retrospective Healthcare shared unit 

Indirect: 

Common 

vehicle  1 – 3 

Harris 2013 

(89) S. aureus 175 2 Prospective Mixed Mother to child 

Direct: Person 

to person 8 8 8 

Kristinsdottir 

2019 (107) S. aureus 35 16 Retrospective Mixed 

Parent and healthcare 

worker spread 

Direct: Person 

to person 0  – 11 
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Kristinsdottir 

2019 (107) S. aureus 2 9 Retrospective Community Parent 

Direct: Person 

to person 0 –  6 

Berbel 

Caban 2020 

(108) S. aureus 159 2 Prospective Unknown Unknown Unknown 14 14 14 

Berbel 

Caban 2020 

(108) S. aureus 102 2 Prospective Unknown Unknown Unknown 1 1 1 

Berbel 

Caban 2020 

(108) S. aureus 2 2 Prospective Healthcare Shared ward overlap Unknown 1 1 1 

Berbel 

Caban 2020 

(108) S. aureus 24 2 Prospective Healthcare Shared ward overlap Unknown 1 1 1 

Berbel 

Caban 2020 

(108) S. aureus 467 2 Prospective Unknown Unknown Unknown 11 11 11 

Berbel 

Caban 2020 

(108) S. aureus 565 3 Prospective Mixed Unknown Unknown 3 –  12 

Berbel 

Caban 2020 

(108) S. aureus 628 24 Prospective Healthcare 

Shared Overlapping 

ward transmissions 

Direct or 

indirect 1 –  15 

Berbel 

Caban 2020 

(108) S. aureus 88 5 Prospective Healthcare 

Shared Overlapping 

ward transmissions 

Direct or 

indirect 5 –  10 

Köser 2012 

(88) S. aureus 12 7 Prospective Healthcare NICU carriage 

Indirect: 

Common 

vehicle 1 –  51 

Eyre 2012 

(90) S. aureus 45 7 Retrospective Healthcare Ward overlaps 

Direct or 

indirect 1 –  3 

Eyre 2012 

(90) S. aureus 79 6 Retrospective Healthcare Ward overlaps 

Direct or 

indirect 0 –  1 
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Table S2.2. Glossary of terms  

Term  Definition 

Surveillance Systematic collection of health-related data for the purpose of 

research, evaluation, and planning   

Horizontal gene transfer Movement of genetic material between organisms other than 

direct transfer from a parent to offspring   

Vertical gene transfer Movement of genetic material from a parent to offspring  

Loci Specific positions of genes within a genome 

Richness A measure of the number of different taxonomic units (eg 

species) within an ecological community 

Alleles Forms of a gene found at the same locus of a genome 

Phylogenetics The study of the evolutionary history between organisms 

Niche The impact of biotic and abiotic factors in a specific environment 

on an organism and that organism’s interaction with those factors 

Positive selection Process of advantageous mutations arising and increasing in 

frequency in a population 

Purifying selection Process of the removal of disadvantageous mutations through 

selection 

Substitution rate The number of new mutations that arise in each generation 

multiplied by the probability that these mutations become fixed in 

a population 

Opportunistic infection An infection caused by an organism that non-pathogenic when 

under typical host-organism interactions 
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Hitchhiking Mutations or genes which are not directly under selection but fix 

in a population due to close proximity to a gene undergoing 

selection   

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

 

Chapter 3: Unsuspected Clonal Spread of Methicillin-

Resistant Staphylococcus aureus Causing Bloodstream 

Infections in Hospitalized Adults Detected Using 

Whole Genome Sequencing 

 

Reprinted material from: Talbot, B. M., Jacko, N. F., Petit, R. A., Pegues, D. A., Shumaker, M. J., 

Read, T. D., & David, M. Z. (2022). Unsuspected Clonal Spread of Methicillin-Resistant 

Staphylococcus aureus Causing Bloodstream Infections in Hospitalized Adults Detected Using 

Whole Genome Sequencing. Clinical infectious diseases : an official publication of the Infectious Diseases Society 

of America, 75(12), 2104–2112. https://doi.org/10.1093/cid/ciac339 

 

Abstract 

Background: Though detection of transmission clusters of methicillin-resistant Staphylococcus 

aureus (MRSA) infections is a priority for infection control personnel in hospitals, the 

transmission dynamics of MRSA among hospitalized patients with bloodstream infections (BSIs) 

has not been thoroughly studied. Whole genome sequencing (WGS) of MRSA isolates for 

surveillance is valuable for detecting outbreaks in hospitals, but the bioinformatic approaches 

used are diverse and difficult to compare.     
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Methods: We combined short-read WGS with genotypic, phenotypic, and epidemiological 

characteristics of 106 MRSA BSI isolates collected for routine microbiological diagnosis from 

inpatients in two hospitals over 12 months. Clinical data and hospitalization history were 

abstracted from electronic medical records. We compared three genome sequence alignment 

strategies to assess similarity in cluster ascertainment. We conducted logistic regression to 

measure the probability of predicting prior hospital overlap between clustered patient isolates by 

the genetic distance of their isolates.        

Results: While the three alignment approaches detected similar results, they showed some 

variation. A Gene-family-based alignment pipeline was most consistent across MRSA clonal 

complexes. We identified nine unique clusters of closely related BSI isolates. Most BSI were 

healthcare-associated and community-onset. Our logistic model showed that with 13 single 

nucleotide polymorphisms the likelihood that any two patients in a cluster had overlapped in a 

hospital was 50 percent.  

Conclusions: Multiple clusters of closely related MRSA isolates can be identified using WGS 

among strains cultured from BSI in two hospitals. Genomic clustering of these infections 

suggests that transmission resulted from a mix of community spread and healthcare exposures 

long before BSI diagnosis.  

 

Introduction  

S. aureus caused nearly 119,000 bloodstream infections (BSIs) and 20,000 associated 

deaths in 2019 (132). These infections are exacerbated by the emergence of methicillin-resistant 

S. aureus (MRSA) strains which are resistant to treatment with conventional ß-lactam antibiotics. 
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Concerted national infection control efforts have decreased MRSA healthcare-associated 

infections (HAIs) in the United States (U.S.), particularly BSIs caused by MRSA strains 

historically associated with HAIs. However, the decrease in MRSA BSIs in the U.S. has slowed 

since 2013, and community-onset infections have recently made up the largest proportion of 

cases (132).  

Onset of a clinically significant infection is influenced by bacterial virulence, human host 

factors, and triggers such as skin trauma or underlying illnesses that predispose patients to 

opportunistic infections (133). Asymptomatic S. aureus carriage is a risk factor for infection, and 

can be harbored in sites across the body (134), complicating elimination since detecting carriage 

or transmission can occur long after exposure. Consequently, hospital (95) and community 

(135,136) outbreaks of S. aureus result from direct or indirect contact with colonized individuals, 

contamination of an intermediate person such as a healthcare worker (32), or through 

environmental reservoirs. Though detecting transmission clusters of MRSA is an infection 

control priority in hospital settings, the transmission dynamics of MRSA among hospitalized 

patients with BSIs has not been thoroughly studied.  

Whole genome sequencing (WGS) of bacterial genomes provides high resolution of 

genetic relationships between MRSA isolates and possible recent transmission. Improved access 

and ease of use of open-source bioinformatic resources, lower costs, and expansion of publicly 

available DNA sequences increases the feasibility of routine genomic analysis for cluster 

detection (137,138). Of great importance for detection is maximizing gene homology through 

genome alignments. Alignment creation includes reference-free or reference-dependent methods, 

which have unique trade-offs for sensitivity, specificity, and completeness of genetic data (93).        
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Epidemiological investigations use genetic thresholds between S. aureus isolates to 

identify or rule out clusters of related infections (79,90,95). Commonly, single nucleotide 

polymorphisms (SNPs) are quantified to compare isolate sequences, create multisequence 

alignments for phylogenetic reconstruction, and estimate the likelihood of a recent common 

ancestor and possible transmission given a SNP threshold (94,130). Reference choice, sample 

genetic diversity, and bioinformatic tools all impact which and how many SNPs are detected in a 

sample set and necessitate exploration of the consistency genomic alignments used to infer 

transmission clusters.     

To elucidate transmission of MRSA BSI, we conducted a retrospective analysis of 

MRSA BSI at two hospitals in one university system over 12 months. We compared core-

genome sequences from the isolates to detect putative transmission events between BSI patients 

and examined epidemiological and molecular traits of isolates shared between cluster patients. 

We also tested the consistency of detectable SNP differences between isolates using different 

sequence alignment pipelines.   

Methods 

Patient cohort  

We identified all patients diagnosed with a MRSA BSI between July 2018 and June 

2019, admitted to either of two hospitals of the University of Pennsylvania hospital system. The 

Hospital of the University of Pennsylvania (HUP) is a 625-bed academic tertiary and quaternary 

care medical center in West Philadelphia with approximately 32,000 patient admissions, 633,000 

outpatient visits, and 40,000 Emergency Department visits annually. The Penn Presbyterian 

Medical Center (PMC) is a 324-bed urban community hospital in West Philadelphia with 12,000 
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admissions, 130,000 outpatient visits, and 26,000 Emergency Department visits annually. A 

single case of MRSA BSI was defined as a MRSA isolate collected from blood of any patient at 

HUP or PMC during the study period. Each subject was only included once. The study was 

approved by the University of Pennsylvania Institutional Review Board and given a waiver of 

consent, as the study was retrospective, and no data or samples were collected specifically for 

research purposes.  

 Isolate selection and DNA sequencing 

Isolates were obtained from a biobank of clinical MRSA isolates cultured for routine 

diagnosis in the HUP Clinical Microbiology Laboratory during the study period. Isolates were 

screened for phenotypic antibiotic resistance using the Vitek 2 automated system, and assigned  

susceptibility/resistance in accordance with CLSI protocols (139).  A 1μL loopful of frozen 

isolate was streaked onto blood agar, incubated overnight at 37℃, and a single representative 

colony was grown under the same conditions on a new plate. A 10μL loopful of each isolate was 

then frozen in a bead beating tube and underwent WGS using an Illumina MiSeq at the 

Penn/Children’s Hospital of Philadelphia Microbiome Center. Sequencing libraries were 

prepared using the Illumina Nextera library preparation kit. Sequences were made publicly 

available through the Sequence Read Archive (Bioproject PRJNA751847).  

Bioinformatic pipelines 

Paired-end 150 bp FASTQ files were passed through Bactopia workflow to assess data 

quality, assemble contigs, and call MLST, SCCmec type, antibiotic resistance and virulence 

genes (140). To compare SNP-based core-genome multiple-sequence alignments, the total 

number of assembled contigs or subsets grouped by clonal complex (CC) were passed through 
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three pipelines: (1) randomly fragmenting assembled genomes to create “pseudoreads” and 

mapping these to a reference genome using Snippy (v.4.6.0) (141) (“Pseudoread pipeline”); (2) 

mapping assembled genomes to a reference using Parsnp (v.1.5.6) (142) (“Assembly pipeline”); 

and (3) evaluating reads with Markov Cluster Analysis, identifying overlapping gene clusters, 

and aligning core genes using the Bactopia Tools pangenome workflow (“Gene-family 

pipeline”). The Gene-family pipeline included PIRATE (131), ClonalFrameML (124) and 

maskrc-svg (v0.5) (https://github.com/kwongj/maskrc-svg) to identify and mask possible 

recombinant regions within the core-genome alignment. For the two reference-based pipelines, 

we used strain N315 (GCF_000009645.1) as reference for non-CC specific alignments (all 104 

available sequences regardless of CC) and CC5-specific alignments (N=40). For the CC8-

specific alignments (N=55) we used NCTC 8325 as reference (GCF_000013425.1). Pairwise 

SNP distances of the core-genomes were calculated using snp-dists (143). Maximum likelihood 

trees were created with IQ-Tree (v2.1.2) (144) using a general time reversible model allowing for 

invariant sites and unequal base frequencies and midpoint-rooted and visualized using ggTree 

(145). Bootstrap values were calculated for 1000 repetitions. Phylogenetic similarity across 

pipelines was measured by calculating cophenetic correlation (146) between SNP distance 

matrices and estimated phylogeny tip distance, and assessing Robinson-Foulds distances (147) 

between different alignment trees and randomly generated trees using ape (v5.5) (148).  

Epidemiological investigation of clustered isolates  

A transmission cluster was defined as two or more subjects whose isolates’ core-genomes 

differed from one another by 35 or fewer SNPs, based on the approximate cutoff for within-

patient versus between-patient BSI lineages in a hospital setting (89,95). We also examined a 

threshold of 15 SNPs, a proposed threshold for recent inter-patient MRSA transmission (79). 

https://github.com/kwongj/maskrc-svg
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Demographic data, comorbidities, Pitt Bacteremia Score, source of BSI, and in-patient mortality 

were abstracted from the electronic medical record (EMR) summarized and assessed for 

association with CC using Fisher’s exact test or Student’s t-test. BSIs were considered 

healthcare-associated (HA) if the index blood culture was drawn >48 hours after hospital 

admission; healthcare-associated, community-onset (HACO) if the index culture was obtained 

<48 hours after admission or in the community setting, and if the subject had one or more 

previous healthcare risk factors (hospitalization, surgery, hemodialysis, or nursing 

home/residential medical facility stay in the previous year; or presence of an indwelling 

intravascular catheter at time of culture); and community-associated (CA) if the index culture 

was obtained <48 hours after admission or in the community setting and the subject lacked these 

healthcare risk factors. The EMR was examined for evidence of overlap or sequential 

hospital/unit stays among cluster-subjects and visualized using vistime 

(https://github.com/shosaco/vistime). Admission and discharge dates were recorded for each 

cluster-subject for all hospital stays at any of four networked hospitals within one year before the 

first collected BSI isolate in a cluster and one year after the last collected BSI isolate in the 

cluster. These included HUP, PMC, Pennsylvania Hospital (PH), and a single, University of 

Pennsylvania long-term acute care hospital in Philadelphia. PH is a 481-bed urban community 

hospital located in the Society Hill district of Philadelphia with >27,000 hospital admissions, 

>24,000 Emergency Department visits, and 201,000 outpatient visits annually.  

Logistic regression assessed the predictive power of SNP distances and likelihood of 

patient hospitalization overlaps. Goodness of fit was assessed using a receiver operating 

characteristic (ROC) curve and measuring the area under the curve. All analyses were conducted 

in R studio (v1.4.1106) (149) run with R version 4.0.4, and final figures labelled in InkScape 
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(v0.92.5) (150). Analysis code is available at https://github.com/Read-Lab-

Confederation/MRSA_bloodstream_clusters.                     

Results 

Patient demographics and isolate characteristics   

We screened all patients diagnosed with a MRSA BSI at two academic hospitals between 

July 2018 and June 2019, identifying 106 qualifying subjects. Of the BSI source sites that could 

be identified from EMR, skin site infections made up 19% and central venous catheter infections 

made up 14% (Table 3.1). Among included subjects, 17% died while hospitalized. From each 

individual, single MRSA isolates were sequenced, of which 105 had sufficient coverage for 

further analysis and 104 isolates were S. aureus. One isolate was identified by WGS as 

Staphylococcus argenteus and was excluded. Among the 104 genomes, 55 were assigned to 

CC8, 49 of which were USA300 strains; 40 were assigned to CC5; and the remaining nine were 

assigned CC30, CC72, and CC78. No significant association emerged between the two most 

common CCs (CC5 and 8) and sex, age group, race, ethnicity, BSI source site, hospital death, 

Pitt bacteremia score, or hospital of diagnosis (Supplementary Table S3.1 and S3.2).   

 

 

 

 

 

 

https://github.com/Read-Lab-Confederation/MRSA_bloodstream_clusters
https://github.com/Read-Lab-Confederation/MRSA_bloodstream_clusters
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Table 3.1. Demographics and clinical outcomes of subjects with MRSA bloodstream infection 

(n=106) 

Demographic 

Characteristic 

Number (%) 

Patients 

 Clinical  

Characteristic 

Number (%) 

Patients 

Total 106  Total 106 

Age Group   Source of BSI  

20-29 12 (11%)  Arteriovenous graft 4 (4%) 

30-39 
13 (12%) 

 Central venous 

catheter infection 
15 (14%) 

40-49 16 (15%)  Device infection 4 (4%) 

50-59 18 (17%)  Respiratory source 2 (2%) 

60-69 32 (30%)  Skin site 20 (19%) 

70+ 15 (14%)  Surgical site 4 (4%) 

Sex   Other 3 (3%) 

Female 51 (48%)  Unknown 52 (49%) 

Male 
55 (52%) 

 Hospital of BSI 

diagnosis 

 

Race   Hospital A 65 (61%) 

Asian 1 (1%)  Hospital B 41 (39%) 

White 50 (48%)  Infection setting  

Black 49 (46%)  HA 22 (21%) 

Other/Unknown 6 (6%)  CA 11 (10%) 
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Ethnicity   HACO 71 (68%) 

Hispanic/Latino 2 (2%)  In-hospital deatha  

Non-

Hispanic/Latino 
99 (93%) 

 No 
88 (83%) 

Unknown 5 (5%)  Yes 18 (17%) 

   Pitt Bacteremia Score  

   Mean (SD) 2.1 (2.6) 

   Median (Range) 1.00 (0, 10.0) 

aIndicates death prior to discharge during the index MRSA BSI hospitalization. Abbreviations: BSI: 

bloodstream infection; CA: community-associated; HA: healthcare-associated; HACO: healthcare-

associated, community-onset; SD: standard deviation. 

 

Assessment of sequence alignment pipelines 

We generated multiple alignments of all isolate sequences using three approaches to 

determine their effect on pairwise SNP distances. Alignments generated with all 104 isolates had 

lower distances compared to CC-specific alignments. SNP distances produced by the Gene-

family-pipeline were consistent between CC groups and whole species alignments (Fig. 3.1A-B), 

whereas the SNP distances produced by the Pseudoread- and Assembly-pipelines were greater 

when isolates of the same CC were the input (Fig. 3.1 C-F). Pipeline choice on phylogenetic 

structure was assessed by comparing tree topology and SNP matrices across pipelines and 

sequence input groupings (Table 3.2). The cophenetic correlation showed the highest correlation 

for alignments produced from CC-specific inputs, though all alignment pipelines and inputs 
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produced a value greater than 0.90. Tree topology across pipelines suggested that trees are highly 

similar to one another compared to a random tree.         

 

 

Figure 3.1. Frequencies and distribution of single nucleotide polymorphism distances 

between isolates vary by alignment tool. The frequency of pairwise distances between isolates 

from clonal complexes (CC) 8 and 5 were quantified from distance matrices derived from 

alignments generated from two groupings of isolate input: The total number of isolates in the 

investigation (blue) or CC-specific isolates only (red). Isolate inputs were aligned using each of the 

three alignment pipelines, the Gene-family pipeline (A,B), Assembly pipeline (C,D), and Pseudoread 

pipeline (E,F).  
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Table 3.2. Comparability phylogenetic fit of alignment pipelines using Cophenetic correlation (R2), 

alignment size, and Robinson-Foulds (RF) comparisona by alignment pipeline  

Pipeline Total isolates (N=104)  
CC5-specific isolates  

(N =40)  

CC8-specific isolates  

(N = 55)  

  R2 

Alignment 

Size (bp) 

RF- 

values 
R2 

Alignment 

Size (bp) 

RF- 

value 
R2 

Alignment 

Size (bp) 

RF- 

values 

Gene-

family-  

pipeline 

0.984  2,141,357 56,52,200 0.984 2,182,742 10,8,72 0.987  2,176,046 
40,36,10

4 

Pseudor

ead- 

pipeline 

0.983  2,839,469 46,56,202 0.993 2,839,469 10,10,72 0.999 2,821,361 
34,40,10

4 

Assembl

y- 

pipeline 

0.929  2,163,693 52,46,202 0.995 2,497,454 8,10,72 0.999 2,482,874 
34,36,10

4 

aRow alignment pipeline compared to each other alignment pipeline and a random tree of the same 

number of phylogenetic tips 

 

Identification of suspected transmission clusters 

Using alignments from each pipeline containing 104 isolates, we identified nine clusters 

(C1-C9) among 29 isolates that differed by 35 SNPs or fewer from at least one other subject 

isolate (Table 3). The Pseudoread-pipeline clustered 29 isolates, the Assembly-pipeline clustered 

21, and the Gene-family-pipeline clustered 19. Five clusters contained CC5 isolates, three 

clusters were CC8, and one cluster was CC30. The median cluster size was three isolates (range 
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2-6). The longest collection date difference between clustering isolates was 265 days (C1), and 

the shortest 12 days (C6). Median SNP differences were variable across clusters, and smaller 

differences did not correlate with shorter collection date differences. 

 

Table 3.3. Summary of suspected MRSA transmission clusters identified through Pseudoread-, 

Assembly-, and Gene-family-alignment pipelines among 104 sequential MRSA bloodstream 

infection patients at 2 hospitals  

Transmission 

Cluster 
MRSA Isolate 

Clonal 

Cluster  

Number 

of isolates 

Median Pairwise SNP Difference (Range) Median 

Collection 

Date 

Difference, 

Days 

(Range) 

Pseudoread- 

pipeline 

Assembly- 

pipeline 

Gene-

family- 

pipeline 

C1 

SAMN20960259, 

SAMN20960281, 

SAMN20960331 CC5 3 11 (3-12) 16 (4-16) 14 (5-16) 

177 (110 - 

265) 

C2 

SAMN20960260, 

SAMN20960274 CC5 2 6 7 7 61 

C3a 

SAMN20960263, 

SAMN20960326, 

SAMN20960280, 

SAMN20960314, 

SAMN20960328 CC5 5 35 (20 - 46) 44 (26-62) 50 (36 - 62)a 128 (7 - 241) 

C3b 

SAMN20960280, 

SAMN20960314, 

SAMN20960328 CC5 3 25 (20 - 25) 32 (26-36) 39 (36 - 39)a 113 (37 - 150) 

C4 

SAMN20960270, 

SAMN20960325 CC5 2 20 26 24 189 

C5a 

SAMN20960271, 

SAMN20960343 CC5 4 29 (6 - 35) 44 (10-53)a 41 (33 - 46)a 119 (56 - 237) 
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C5b 

SAMN20960271, 

SAMN20960343 CC5 2 29 42a 33 237 

C5c 

SAMN20960298, 

SAMN20960324 CC5 2 6 10 7 78 

C6a 

SAMN20960276, 

SAMN20960282, 

SAMN20960287, 

SAMN20960293, 

SAMN20960301, 

SAMN20960306 CC8 6 29 (15 - 42) 39 (21-62) 38 (26 - 53)a 54 (12 - 121) 

C6b 

SAMN20960276, 

SAMN20960282, 

SAMN20960293, 

SAMN20960301, 

SAMN20960306 CC8 5 26 (15 - 31) 35 (21-40) 37 (26 - 43) 66 (12 - 121) 

C6c 

SAMN20960276, 

SAMN20960282, 

SAMN20960293, 

SAMN20960306 CC8 4 23 (15 - 30) 32 (21 - 36) 34 (26-38) 63 (32 - 121) 

C7 

SAMN20960299, 

SAMN20960305, 

SAMN20960334 CC8 3 34 (30 -34) 39 (36 - 41) 45 (41 - 50) 80 (24 -104) 

C8 

SAMN20960313, 

SAMN20960323 CC8 2 1 1 1 28 

C9 

SAMN20960316, 

SAMN20960337 CC30 2 23 25 22 67 

                         aPartial or no detection of isolates as part of the cluster 
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Phylogenetic analysis of isolates   

To assess phylogenetic relationships within clusters, we created a representative tree 

using the Gene-family-pipeline of the 104 isolates. This tree was selected because it had the 

strongest cophenetic correlation, tree structure similarity, and conservation of SNP distances 

between pipelines for the 104 isolates together (Table 3.2; Fig 3.1A-B). BSI isolates occupied 

significantly divergent clades of CCs (Shimodaira–Hasegawa – approximate likelihood ratio test 

and ultrafast bootstrap values >70) (Fig 3.2A). Candidate transmission clusters arose from 

distinct sub-lineages (Fig 3.2B). The largest cluster, C5, diverged significantly from other CC8 

isolates, and isolates were identified as part of the CC8c lineages (151).  Cluster and non-cluster 

isolates had varied distributions for infection setting, with most BSIs categorized as HACO 

(68%). At a 15-SNP threshold, only isolates in clusters C1, C2, C5(a,c), and C8 remained 

clustered. All isolates were susceptible to vancomycin and daptomycin but isolates in both the 

CC5 and CC8 clades showed resistance to multiple ß-lactams and quinolones. Thus, multiple 

lineages of MRSA associated with BSI could transmit multiclass-resistant strains between 

patients. 
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Figure 3.2. Suspected transmission clusters fall into distinct clonal groups.  

Maximum likelihood trees were generated from the PIRATE alignment of 104 isolates and 

visualized using ggtree. (A) Tree indicating clades containing individual clonal complexes (CCs). (B) 

Subtrees from the complete maximum likelihood trees for the two most abundant CCs. Nodes with 

bootstrap values >= 70 are marked in red. Heat maps show strain type, SCCmec element type, and 

resistance phenotype for indicated antibiotics per sequence, infection setting (Healthcare-associated 

[HA], Community associated [CA] and Healthcare-associated community-onset [HACO]), 

admission hospital, and transmission cluster at a threshold of 35 SNPs or 15 SNPs. 
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Genomic similarity predicts overlapping hospital stay in transmission clusters  

 For every cluster-subject we examined hospitalization history at four networked hospitals 

in the University of Pennsylvania system one year before the first index BSI isolate and one year 

after the last patient index isolate per cluster. Six clusters included subjects with overlapping 

hospital stays, of which three had median SNP distances between 1-16 with corresponding 

hospital unit overlaps (Table 3.3; Fig. 3.3). Cluster C5c had a median SNP difference of seven 

(range 6-10 SNPs across pipelines) with no common hospital overlap. In comparison, cluster C4 

had no subjects with overlapping hospital admissions prior to their index BSI, but a median SNP 

distance range of 20 - 26 SNPs across pipelines.  

 

 

Figure 3.3. Hospitalization history among patients in genomic BSI clusters. Hospitalization 

history at 4 study hospitals (A, B, C, and D) up to 365 days before the date of the earliest MRSA 

bloodstream isolate culture in each cluster (relative Day 0) and up to 365 days after the latest MRSA 

bloodstream isolate in the cluster. Note that bloodstream infections were only included at hospitals 
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A and B. Rows represent the hospitalization history of each patient associated with a sequenced 

cluster isolate. Colored rectangles and circular marks represent individual hospitalization durations 

(rectangles) or one-day admissions (circles); the color indicates Hospital A, B, C, or D. Black 

outlined boxes represent areas where two or more patients overlapped in the same hospital at the 

same time. Red stars indicate the date of collection of the sequenced BSI isolate for each patient. 

Yellow triangles indicate a hospitalization where two or more patients overlapped in the same 

hospital unit. 

 

We performed a logistic regression to measure the association between likely hospital 

exposure and SNP difference assessing a SNP threshold range (Fig. 3.4). The log odds of 

clustered patient pairs overlapping in the same hospital decreases by 0.065 with every increase of 

one SNP (p=0.05), and showed that with 13 SNPs the likelihood that any two patients in a cluster 

overlapped in a hospital was 50 percent, with a trend toward no overlap at higher SNP 

differences (Fig. 3.4A).  The ROC area under the curve classified known prior overlapping 

hospitalizations 66% of the time from the SNP difference (Fig. 3.4B).            
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Figure 3.4. Higher SNP distances trend toward ruling out hospital overlaps between 

clustering patients.  (A) Logistic regression model indicating the relationship between patient pairs 

overlapping in the same hospital at the same time (prior to the diagnosis of an index MRSA 

bloodstream infection) and the pairwise SNP distance. Points indicate the true result for each pair as 

overlapping (1.0) or not overlapping (0). The color of the points indicates whether hospital overlap 

patient pairs also overlapped (black) or did not overlap (gray) in the same hospital unit. Gray ribbon 

indicates the 95% confidence interval. (B) Receiver operating characteristic (ROC) curve of the logistic 

model in A. Area under the curve (AUC) = 0.662.      

      

Discussion 

We combined clinical and genome data to describe a cohort of 104 U.S. MRSA BSI 

patients. The predominant genetic backgrounds of MRSA isolates in this study is consistent with 

known prevalence of CC8 and CC5 MRSA strains causing healthcare- and community-

associated infections in the U.S (152). The resolution of WGS was critical for identifying 

clusters of BSIs that would have otherwise gone unnoticed in the hospital setting. It is well 
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characterized that WGS is useful for S. aureus outbreaks in hospitals (88–90,95,137,153), 

,though many reports focus on its use in emergent, point-source outbreaks, such as those 

occurring in neonatal intensive care unit with an identifiable index case (88,89,153). In other 

instances, WGS confirmed related cases of MRSA infection only after initial outbreak detection 

by other means, including an unusual antibiograms (88) or uncommon strain types (137). 

Collectively, these investigations identified an epidemiologically significant core-genome SNP 

difference as small as 13 SNPs (79) to as large as 40 SNPs (52) among outbreak isolates.  

A SNP threshold under 35 was effective for cluster detection with evidence of prior 

hospital overlaps among adult patients in a population where transmission pathways are difficult 

to identify. Four clusters showed pairwise differences between 1-25 SNPs and patients with 

diagnosis date within three months. Considering estimates of S. aureus neutral mutation of 

approximately 5-6 SNPs per genome per year (100), a likely scenario is a recent common 

exposure in a healthcare setting several weeks to months prior to BSI onset for clustered 

subjects. However, clusters lacking evidence of a hospital overlap also had small SNP difference 

ranges, suggesting alternative routes of MRSA transmission among BSI patients, such as hospital 

environmental reservoirs like equipment (32,154) or a community reservoir of patients carrying 

MRSA (155), possibly reintroducing bacteria to the hospital. We demonstrated that it is 

reasonable to investigate healthcare histories for patients at or below 13 SNPs to find sources of 

transmission associated with hospital settings.  

Most U.S. hospitals have not yet implemented a WGS surveillance system for infection 

control. Hospitals can approach bioinformatic surveillance using commercial workflows with 

integrated processes (153) or open source options (108), or create robust in-house surveillance 

methods (7). We demonstrated that different approaches to sequence alignment detect similar 
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SNP differences and phylogenies. However, alignment sizes and the number of clusters at the 

threshold of interest did differ. Choosing the most appropriate tool ideally optimizes sensitivity 

and comparability across investigations. The Gene-family approach consistently detects similar 

SNP differences among alignments of mixed clonal clusters and is suited to studies comparing 

diverse sample sets. However, higher sensitivity can be achieved using an Assembly- or 

Pseudoread-pipeline because they also compare a larger portion of the genome where SNPs can 

accumulate. We suggest future studies use both approaches, first for general detection of clusters 

with highly sensitive approaches, followed by a Gene-family approach to compare clusters 

across a broader context of transmission cluster history in a specific environment. A sliding scale 

(156) or a threshold range (79) could also offer a more flexible alternative for including patients 

in transmission investigations. 

Reference-based alignments and phylogenetic reconstruction is advantageous for 

identifying transmission events in healthcare settings, particularly where MRSA infections are 

rare (130,156). However, S. aureus transmission from healthcare facilities into community 

settings and back suggest that hospitals and the surrounding community are a single reservoir of 

transmission (89). Our investigation also points to the importance of long-term MRSA carriage 

prior to diagnosis of a BSI. Overlapping hospitalization may provide an opportunity for MRSA 

transmission and subsequent asymptomatic colonization in a recipient patient but BSI symptoms 

may occur weeks or months later. Consequently, clusters are not identified after the critical 

moment of transmission when infection control interventions could be implemented. As WGS 

surveillance becomes prospectively implemented, Gene-family alignments are advantageous for 

assessing increasingly diverse collections of isolates in a hospital or single healthcare system.  
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In our analysis, the long span of time between BSI onset among cluster patients and lack 

of an obvious transmission pathway suggests possible intermediate patients without a BSI but 

still carriers of the infecting MRSA strains. We did not collect isolates from the hospital 

environment or from healthcare workers directly, so we cannot discern the role of these 

intermediaries for transmission in the clusters.  

We revealed MRSA BSI clusters among adults with various prior healthcare exposures in 

a setting with relatively high incidence of MRSA infections. We identified genetically similar 

clusters while routine epidemiological signal was weak, but with further investigation suggested 

healthcare exposures well before BSI presentation. Including WGS as a part of current routine 

colonization screenings for MRSA in high-risk clinical settings could identify and prevent 

transmission events in areas of hospitals not regularly scrutinized by infection control staff. With 

robust and consistent cluster detection pipelines and the prospective collection of detailed 

exposure histories, with a focus on identifying exposures during hospitalization to specific 

healthcare workers, fomites, and medical procedures, outbreak sources can be better resolved 

before the onset of a BSI event.          

 

Additional Information and Declarations 

Funding 

This work was supported by supported by grant # AI139188 from the National Institutes of 

Health (NIH) to BMT, MZD, and TDR.  

Conflicts of Interest 

DAP is an Associate Editor for Clinical Infectious Diseases. 



67 

 

 

Acknowledgements 

Thank you to Laurel Glaser for assistance with the biobanking of isolates used in this study, and 

to Katrina Hofstetter for support in troubleshooting R code. We also thank the Penn/Children’s 

Hospital of Philadelphia (CHOP) Microbiome Center for performing the isolate sequencing used 

in this analysis.  

 

Supplementary Information 

Table S3.1. Distribution of patient demographics and clinical outcomes across isolate clonal 

clusters 

  
CC30 CC5 CC72 CC78 CC8 

(N=2) (N=38) (N=5) (N=2) (N=52) 

Age Group         

20-29 0 (0%) 3 (7.9%) 2 (40.0%) 0 (0%) 7 (13.5%) 

30-39 0 (0%) 2 (5.3%) 1 (20.0%) 

1 

(50.0%

) 

8 (15.4%) 

40-49 0 (0%) 9 (23.7%) 0 (0%) 0 (0%) 7 (13.5%) 

50-59 1 (50.0%) 4 (10.5%) 1 (20.0%) 

1 

(50.0%

) 

8 (15.4%) 

60-69 0 (0%) 
15 

(39.5%) 
0 (0%) 0 (0%) 

14 

(26.9%) 
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70-79 1 (50.0%) 4 (10.5%) 1 (20.0%) 0 (0%) 6 (11.5%) 

80-89 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 1 (1.9%) 

90-99 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

100-110 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1.9%) 

Sex           

Male 2 (100%) 
19 

(50.0%) 
3 (60.0%) 

1 

(50.0%

) 

25 

(48.1%) 

Female 0 (0%) 
19 

(50.0%) 
2 (40.0%) 

1 

(50.0%

) 

27 

(51.9%) 

Race           

Black 1 (50.0%) 
20 

(52.6%) 
3 (60.0%) 

2 

(100%) 

20 

(38.5%) 

White 1 (50.0%) 
16 

(42.1%) 
2 (40.0%) 0 (0%) 

28 

(53.8%) 

Asian 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 0 (0%) 

Other 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 2 (3.8%) 

Don't Know 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (3.8%) 

Ethnicity           

Non-Hispanic/Latino 2 (100%) 
36 

(94.7%) 
5 (100%) 

2 

(100%) 

48 

(92.3%) 

Hispanic/Latino 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 1 (1.9%) 
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Refused 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 3 (5.8%) 

Source Site of BSI         

Skin site 2 (100%) 6 (15.8%) 2 (40.0%) 0 (0%) 
10 

(19.2%) 

Arteriovenous Graft 0 (0%) 1 (2.6%) 0 (0%) 

1 

(50.0%

) 

1 (1.9%) 

Central venous catheter 

infection 
0 (0%) 7 (18.4%) 1 (20.0%) 0 (0%) 6 (11.5%) 

Device infection 0 (0%) 1 (2.6%) 1 (20.0%) 0 (0%) 2 (3.8%) 

Other 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 2 (3.8%) 

Respiratory source 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 1 (1.9%) 

Surgical site 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 1 (1.9%) 

Unknown 0 (0%) 
19 

(50.0%) 
1 (20.0%) 

1 

(50.0%

) 

28 

(53.8%) 

Urinary source 0 (0%) 1 (2.6%) 0 (0%) 0 (0%) 1 (1.9%) 

Hospital           

Hospital A 1 (50.0%) 
23 

(60.5%) 
1 (20.0%) 

2 

(100%) 

33 

(63.5%) 

Hospital B 1 (50.0%) 
15 

(39.5%) 
4 (80.0%) 0 (0%) 

19 

(36.5%) 

Pitt Bacteremia Scale       
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Mean (SD) 
0.500 

(0.707) 

2.21 

(2.78) 

2.80 

(3.83) 
0 (0) 

2.25 

(2.60) 

Median [Min, Max] 
0.500 [0, 

1.00] 

1.00 [0, 

9.00] 

1.00 [0, 

9.00] 
0 [0, 0] 

2.00 [0, 

10.0] 

In-hospital Death         

No 2 (100%) 
30 

(78.9%) 
5 (100%) 

2 

(100%) 

43 

(82.7%) 

Yes 0 (0%) 8 (21.1%) 0 (0%) 0 (0%) 9 (17.3%) 

 

 

Table S3.2. Association of Patient demographics and clinical outcomes with clonal clusters CC8 

and CC5 

  

CC5 CC8 

P-value* 

(N=38) (N=52) 

Age Group     

20-29 3 (7.9%) 7 (13.5%) 0.519 

30-39 2 (5.3%) 8 (15.4%)   

40-49 9 (23.7%) 7 (13.5%)   

50-59 4 (10.5%) 8 (15.4%)   

60-69 15 (39.5%) 14 (26.9%)   

70-79 4 (10.5%) 6 (11.5%)   

80-89 1 (2.6%) 1 (1.9%)   

90-99 0 (0%) 0 (0%)   
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100-110 0 (0%) 1 (1.9%)   

Sex       

Female 19 (50.0%) 27 (51.9%) 1 

Male 19 (50.0%) 25 (48.1%)   

Race       

Asian 1 (2.6%) 0 (0%) 0.369 

Black 20 (52.6%) 20 (38.5%)   

Other 1 (2.6%) 2 (3.8%)   

White 16 (42.1%) 28 (53.8%)   

Don't Know 0 (0%) 2 (3.8%)   

Ethnicity       

Hispanic/Latino 1 (2.6%) 1 (1.9%) 0.82 

Non-Hispanic/Latino 36 (94.7%) 48 (92.3%)   

Refused 1 (2.6%) 3 (5.8%)   

Source Site of BSI     

Arteriovenous Graft 1 (2.6%) 1 (1.9%) 0.995 

Central venous catheter 

infection 
7 (18.4%) 6 (11.5%)   

Device infection 1 (2.6%) 2 (3.8%)   

Other 1 (2.6%) 2 (3.8%)   

Respiratory source 1 (2.6%) 1 (1.9%)   

Skin site 6 (15.8%) 10 (19.2%)   

Surgical site 1 (2.6%) 1 (1.9%)   
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Unknown 19 (50.0%) 28 (53.8%)   

Urinary source 1 (2.6%) 1 (1.9%)   

Hospital       

Hospital A 23 (60.5%) 33 (63.5%) 0.828 

Hospital B 15 (39.5%) 19 (36.5%)   

Pitt Bacteremia Scale   

Mean (SD) 2.21 (2.78) 2.25 (2.60) 0.946 

Median [Min, Max] 1.00 [0, 9.00] 2.00 [0, 10.0]   

In-hospital Death     

No 30 (78.9%) 43 (82.7%) 0.786 

Yes 8 (21.1%) 9 (17.3%)   

*P-values reflect results of two-tailed T-test or Fisher's Exact test 
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Chapter 4:  Genomic investigation of MRSA 

bacteremia relapse reveals diverse genomic profiles but 

convergence in bacteremia-associated genes  

Brooke M. Talbot, Natasia F. Jacko, Katrina Hofstetter, Timothy D. Read, Michael Z. David 

 

Abstract 

Background. Recurrence of Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a high-

risk complication for patients. Characterizing the patterns of risk relative to the initial infections is 

complex. 

Methods. We investigated clinical and bacterial factors contributing to recurrence of MRSA 

bacteremia among a cohort of patients in Philadelphia, Pennsylvania. Patient demographics, clinical 

history, and suspected sources of BSI were collected. Infection isolates were short read whole-

genome sequenced and de novo assembled. All BSI isolates were core genome-aligned to assess 

pairwise single nucleotide polymorphism (SNP) distances, and to create a maximum likelihood tree 

to infer phylogenetic relationships. Recurrence was defined as MRSA bacteremia occurring 30 days 

or more from previous MRSA bacteremia experienced by the same person. Infections were relapses 

if isolates from the same patient were less than 25 SNPs different or if the genomic distance was 

smaller between isolate from the same patient than the next closest isolate from a different patient. 

CC and time between infections were compared between relapse and non-relapse recurrences. 

Convergent genetic traits were assessed by quantifying unique SNPs per gene emerging in relapse-

infection lineages. 
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Results. Among 411 BSI subjects, 32 had at least one repeated MRSAbacteremia event. There were 

26 subjects with relapse infections and 8 with infections from a new strain, with two patients with 

both relapse and distinct recurrences. CC distribution was similar between recurrence and non-

recurrence isolates (p=0.6132). Relapses occurred sooner after the prior infection (Median 155 days, 

interquartile range (IQR) 88-269 days) compared to new strain recurrences (Median 248 days, IQR 

105-599 days), though this was not statistically significant. Recurrences sharing the same CC as their 

paired previous infection were not distinct from chance and occurred 55% of the time. Genes with 

SNPs occurring in multiple relapse lineages have roles in antibiotic resistance and virulence, 

including 5 lineages with mutations in mprF and 3 lineages with mutations in rpoB.   

Conclusions. Recurrent MRSA infections have a diverse strain background, but relapses can be 

readily distinguished from newly acquired infections. Continued genomic analysis can reveal the 

roles of unique mutations in pathoadaptation. 

 

Introduction 

Staphylococcus aureus bacteremia (SAB) is a complex clinical syndrome which often leads to 

severe patient outcomes, including endocarditis and other metastatic infections (157). SAB is 

associated with high mortality and strains with increased antibiotic resistance (158–160). In the 

healthcare setting, where it is most intensively studied, asymptomatic colonization (161), intravenous 

drug use (162,163), and involvement of central lines in clinical care (33) all increase the risk of SAB.  

Recurrence of SAB, where patients experience SAB after assumed resolution of a previous 

infection, is an ongoing clinical challenge. Global records demonstrate that among five and 15 

percent of patients with a Methicillin-resistant SAB episode experience a recurrence, and the risks 

associated with recurrence in the blood are similarly heterogenous to bloodstream infections overall 
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(33,159,163–168).  Known risk factors for recurrence of SAB in adults include younger patient age, 

presence of a foreign body, hemodialysis dependence, valvular heart disease, liver cirrhosis, and 

endocarditis (165,168). Drug resistance can also emerge from mutations that confer cross resistance 

of first-line treatments or sequential mutations that lead to multidrug resistance, further complicating 

prevention of more difficult to treat recurrences among patients with persistent infections or 

patients with deep-seated foci (169). Therefore, understanding the nature of the recurrence helps 

better understand a clinical course of action and future prevention of ongoing infection. 

One clinical challenge is disentangling new infections after true clearance from cryptically 

persisting bacteria within the host. With primary bacteremia, where the focus of infection is 

unknown, only general measures can be taken to prevent a future infection and recurrence becomes 

more difficult to predict. After diagnosis of SAB, follow-up blood cultures are collected typically 2-4 

days after the beginning of antibiotic treatment and through to the first negative blood culture, 

though intermittent negative cultures are known to occur in some persistent S. aureus infections. 

Genetic typing has been used to distinguish persistent populations of bacteria that remain from a 

previous infection in the same person, known as relapse of infection (165,170). However, there is no 

definitive time interval that is used to determine within-host persistence from successfully circulating 

clones that may cause re-infections. Therefore, recurrence of infections currently are 

heterogeneously defined by a combination of genetic pattern, time interval between negative cultures 

and a new onset, and suspicion of a previous source of infection as the cause of a subsequent 

infection (33,165–168). Further, the overall prevalence of S. aureus colonization, and the known 

asymptomatic spread of S. aureus from person to person make it challenging to determine if a 

recurrence emerges because of exposure to anew S. aureus strain, or if a previous strain was 

cryptically persistent on a person even after treatment. The consequence of misidentifying 
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recurrence could result in failures to prevent future infections;  If an infected person is indicated as 

having a new infection when in fact there is persistent colonization or infection of a foci, future 

recurrence may be possible; In contrast, new infections thought to be associated with a previous 

infection could make it difficult to clearly identify patterns of S. aureus introduction in a healthcare 

setting or community setting, slowing down efforts to identify areas for infection prevention.  

Certain S. aureus lineages have been implicated as more likely to develop SAB, such as clonal 

complexes (CC) 5 (65), 30 (65), and 8 (159) and these are also strains more likely to be encountered 

in healthcare settings in the US. Individual mutations and genes associated with bacteremia alter 

traits related to virulence regulation (22,72,73,158,160,170–177), antibiotic targets 

(158,160,170,178,179) and the development of small colony variants (180,181). Both methicillin-

resistant (MRSA) and susceptible strains (MSSA) can cause  SAB (182,183).   S. aureus causes chronic 

invasive infections across different body niches, and the transition from colonizing to invasive 

results in relatively quick host adaptation (129,169,184). However, adaptations to invasion are 

generally considered to exist only in an extent colony present in the invasion (i.e. the bloodstream), 

and therefore SABs are thought to be an evolutionary dead-end for the clone (129,184). Several 

genomics studies have revealed that mutations in a limited number of loci appear to increase the risk 

for metastatic and persistent infections, and possible recurrence. Arguably, however, SAB episodes 

occupy a continuum between bacterial populations chronically invading tissue and acutely invading 

the cardiovascular system. Therefore, the quality and quantity of genetic change present in a set of 

subsequent SAB episodes could help researchers understand the collective set of drivers in the host 

environment that lead to recurrences as well as help differentiate new infections from cryptic and 

persistent infections.     



77 

 

 

To define genetic differences and risks for recurrence of SAB, we examined a cohort of 

patients in Philadelphia, Pennsylvania experiencing SAB across five years who received care at a 

single hospital system. We performed whole-genome sequencing on single isolates from episodes of 

SAB from individuals, including isolates from subsequent episodes in individuals experiencing a 

recurrence. We examined the strength association in host clinical factors and bacterial genetics to 

help further define risks for recurrent SAB, as well as distinguish the transmission and adaptive 

history of infections that result in a relapse or a new infection.  

 

Methods 

Subject cohort and isolate collection 

This study was considered exempt by the University of Pennsylvania Institutional Review 

Board. Subject isolates were included from a cohort of adult patients admitted to at least one of two 

hospitals in Philadelphia, Pennsylvania and diagnosed with Methicillin-resistant S. aureus (MRSA) 

bacteremia between July 2018 and February 2022. A single colony representative isolate was taken 

for each bacteremia episode. Additional clinical and demographic information was collected through 

medical chart reviews for all infections, including age at time of isolate collection, race, ethnicity, sex 

at birth, death within 30 days of infection, comorbidities and chronic conditions, antibiotic 

treatment, suspected source site of infection, and healthcare-associated acquisition of infection. 

Antibiotic resistance phenotypes were collected from clinical microbiology records associated with 

the unique bacterial isolates. Antibiotic resistance was assessed using the Vitek 2 automated system, 

and assigned susceptibility/resistance in accordance with Clinical and Laboratory Standards Institute 

protocols (185).  



78 

 

 

Clinical distinction of relapse and new infections 

For subjects with a recorded subsequent SAB event (a “recurrence”) in the study period each 

event was classified as a “relapse” or “new infection” according to the following criteria as outlined 

in Figure S4.1: MRSA bacteremia episodes among subjects include all isolates collected in a 30-day 

period from the first episode isolate. At each discrete medical encounter where MRSA bacteremia 

was detected, subjects with one or more MRSA isolate were assessed for any previous MRSA 

bacteremia. If patients had a record of MRSA bacteremia, then the time interval between the 

collection date of the isolate at the encounter and the last known index isolate collection date was 

checked for whether it was greater than 30 days. All MRSA bacteremia isolates collected outside of 

the 30-day period but with record of a previous bacteremia episode during the study period were 

considered “recurrences.”  Recurrent infections were then categorized into “new infections” and 

“relapse” infections according to either clinical criteria or genomic criteria. For clinical criteria, new 

infections had to fulfill any of the following: The episode was 30 days or more since the last positive 

blood culture, all symptoms at the source site and metastatic sites of the previous infection were 

resolved, no new antibiotics were prescribed after completion of definitive therapy, the site of the 

infection was different from the previous infection and the subject was on suppressive antibiotics, if 

a central venous catheter was changed then it was changed over a wire (186), or the source of 

infection was clinically ruled to be different from the previous infection. Otherwise, the bacteremia 

episode was considered a relapse. 

 

Sequencing quality and phylogenetics 

Genomic DNA was extracted from S. aureus isolates and sequenced at the Children’s 

Hospital of Pennsylvania SEQ Center, using a paired-end  short read whole-genome shotgun 
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strategy as previously described (187). Reads were processed using Bactopia (v 3.0.0) (140). Briefly, 

in the Bactopia pipeline adaptor sequences were removed, and reads were de novo assembled using 

Shovill (v.1.1.0). Sequences were used for further investigation if reads had at least an average per-

read quality score of Q12 and a mean read length of 49bp, and the genomic assembly had at least 

20x coverage and no more than 500 contigs. Multilocus sequence type (ST) and CC were assigned by 

calling Ariba (v 2.14.6) in the Bactopia workflow, which utilized the S. aureus specific ST scheme 

from PubMLST (84) . For novel STs or STs without a defined CC, the CC was manually defined 

based on the clade position of the isolate within a maximum likelihood tree and its closest relative 

with a defined CC. In order to differentiate distinct infection lineages, a core genome alignment was 

created among all MRSA BSI isolates and  methicillin-susceptible S. aureus Strain Newman 

(GCF_020985245.1) as an outgroup using the Bactopia subworkflow “pangenome” using PIRATE 

(131). Areas of likely recombination were identified and masked using ClonalFrame ML (v.1.12) 

(124). A maximum likelihood tree of all isolates was created from the masked alignment with 

IQTree (2.1.2) (144) and ModelFinder (188), which determined the best fit model to be a generalized 

time reversible model with Empirical base frequencies plus the FreeRate model. Raw reads for this 

study are publicly available in the Sequence Read Archive under the project ID PRJNA751847. 

 

Genomic definition of recurrences and cluster identification  

Snp-dists (0.8.2) was used to calculate the pairwise distance of single nucleotide 

polymorphisms (SNPs) between aligned isolates. Subjects with recurrent episodes of bacteremia 

were categorized as having a relapsed infection or new infection based on the genomic difference 

from the isolate of the most recent previous episode relative to the episode of comparison. Relapsed 

infections were defined as episodes where the isolate genomes were <= 25 SNPs different from one 
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another, or isolates whose most-recent common ancestor to another isolate in the overall population 

was from an infection within the same human subject and which shared the same ST. Cohen’s kappa 

(189,190) was calculated between the clinical and genomic definitions of relapse to assess agreement 

between the methods, as well as sensitivity and specificity of the clinical definition in comparison to 

a genomic approach.  

 

Association of clusters with demographic and clinical data 

The distribution of demographic, clinical, and genomic characteristics was compared 

between genomically defined relapses and new infections using Peason’s Chi-square test or Fisher’s 

exact test. Isolates between subjects were also compared to identify potential clusters of highly 

related infections. For all relapse-associated isolates that clustered with isolates from a separate 

subject, subtrees of the larger ML tree were created and examined for branch structure to identify 

the role of relapse isolates in putative onward transmission. The time in days between collection date 

of the earliest isolate in the cluster (designated as day 0) and subsequent isolates was annotated for 

each cluster.      

 

Variant calling and identifying mutations in common genes in relapse lineages 

The Snippy Bactopia subworkflow, which utilizes Snippy v4.6.0 (141), was used for variant 

calling of all isolates against a previously generated ancestrally reconstructed S. aureus genome (191). 

Variant calling was also conducted for each set of identified relapse infections by using the first 

known isolate (index) in each lineage as the reference. The index isolates were annotated using Bakta 

(v1.9.3)(192) in order to generate the reference sequence for variant analysis. Small insertions and 

deletions (indels) and single nucleotide polymorphisms (SNPs) were identified. The –snippy-core 
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option was run on all isolates to identify variants in core coding regions across all genomes in the 

set. The snippy-core alignment produced an output with the predicted effects of variants on amino 

acid structure and potential functional changes. Any change that altered the amino acid compared to 

the reference was designated as non-synonymous, and if there was no change to the amino acid 

composition, the prediction was a synonymous change. Additionally, to identify commonly 

occurring non-synonymous changes within each recurrence lineage, the –snippy-core option was run 

to create a SNP alignment of the set of isolates from the same subject and identify the predicted 

effect of variants on amino acid structure and functional change. SNPs in coding regions were 

concatenated and summarized for all lineages. 

 

Creating a database of bacteremia-associated mutations 

A PubMed literature review was conducted to create a database of previously identified 

genes and/or mutations in S. aureus genomes that were associated with host bloodstream infections. 

Pubmed was searched in December 2023 using query (((staphylococcus aureus)) AND ((bacteremia) 

OR (bloodstream infection))) AND (genetic mutation). Only peer-reviewed articles (no reviews or 

preprints) were scanned for evidence. Genes or mutations in genes were considered if the study 

reported that they occurred in the S. aureus genome, samples were derived from bloodstream 

infections, were associated with changes in virulence expression or host survival or were associated 

with phenotypic changes related to blood cells, including immune cells. A collection of sources 

where these genes were identified can be found in Table S4.1.  
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Calculation of the index of neutrality  

A McDonald-Kreitman (MK) test (193) was performed across all isolates associated with a 

relapse to assess the impact of selection on the whole genome or on known bacteremia-associated 

genes. A core genome alignment was created using snippy-core for all isolates and for all isolates 

that were associated with a relapse lineage. The ancestral reference served as the outgroup. Fixed 

sites were determined by counting the nucleotide sites that were universally conserved from the 

reference for all sequences when all sequences were included, and per relapse lineage. Polymorphic 

sites were determined if there were nucleotide sites that differed between individuals within a 

lineage. A G-test was used to evaluate the significance of the neutrality index.            

 

Relationship between phylogenetic background and relapse/new infection 

In cases where a patient suffered a recurrent new infection, we tested whether the second 

strain was likely to be of the same genetic background (CC or ST) as the first infection. We used a 

permutation approach, where we drew sequential isolates at random with the same frequency as seen 

among the patients with new infections. Random isolates were drawn from all the isolates within the 

sample population. The proportion of pairs that did not share a CC or ST compared to all pairs was 

calculated. We selected pairs for a total of 1000 drawings and the distribution of the non-clade 

sharing pairing proportions was compared to the observed number of recurrent infections that did 

not result in a subsequent relapse event. We also conducted a permutation test on whether the 

difference in collection date of the bacteremia isolate between recurrent and non-relapse pairs of 

infections was associated with sharing of clade background between infections. For all pairs of 

unrelated recurrences, the date difference between the first and next infection were calculated, and 

whether the two isolates shared the same ST or CC was noted. The mean date difference was 
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calculated for pairs with shared and nonshared clade backgrounds. Subsequently, a permutation test 

was conducted on the mean date difference for 10,000 permutations. 

 

Results 

Recurrent bloodstream infections are from common clinical and phylogenetic 

backgrounds as other circulating strains.  

We sequenced 456 S. aureus isolates from episodes of bacteremia and included 411 subjects, 

of which 32 subjects had at least one recurrent MRSA bacteremia episode (77 isolates total). Over 

the study period the number of new MRSA bacteremia episodes per month was consistent. (Figure 

1). Recurrence-associated isolates occurred across phylogenetic clades including CC5 (N = 29), CC8 

(N = 41), CC30 (N = 3), CC78 (N = 3) and CC72 (N = 1) (Figure 2). CC distribution was similar 

between recurrence and non-recurrence isolates (p=0.91), and there was no difference in the 

number of recurrences over time.  

Demographic characteristics, healthcare exposures, comorbidities, and course of treatment 

of the first bacteremia episode of the patient were assessed to identify differences in the clinical risk 

factors that could contribute to the emergence of a recurrent strain of MRSA causing bacteremia. 

Only the length of time daptomycin was administered for the initial infection was significantly 

associated with a patient experiencing a recurrence compared to non-recurrence subjects, with a 

median time of 39 days compared to 21 days of therapy respectively (p = 0.05). Subjects with 

younger age, more cardiovascular disease and kidney disease, and healthcare-acquired community 

onset (HACO) acquisition were more frequent among recurrent subjects compared to non-

recurrence patients, even if these factors did not attain p values < 0.05. Additionally, while there was 

no difference in the presence of a foreign body involved in the infection, removal of the foreign 
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body was much more commonly occurring among non-recurrence subjects (37/80 subjects, 46%) 

compared to recurrence subjects (2/7 subjects, 29%). Taken together, recurrent bacteremia episodes 

share clinical and genetic characteristics with the overall population of infectious MRSA causing 

non-recurrent bloodstream infections and that larger population sizes will be needed to identify any 

variables with small effect.  

 

 

Figure 4.1. Case count of bacteremia over time by phylogenetic category. The total number of 

SAB episodes was counted from July 2018 to February 2022 and aggregated per month. Individual 

colored lines represent the clonal complex background of the isolate associated with each episode. 

The dotted line represents the total number of episodes over time during the study period (N=456). 
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Figure 4.2. Recurrent SAB isolates share a similar phylogenetic distribution to non-recurrent 

SAB episodes. A core pangenome tree was constructed and rooted using MSSA strain Newman 

(GCF_020985245.1). Whether or not an isolate was a recurrence in a patient with a history of a 

previous infection is indicated in red in the first heat map column. Additional molecular 

characteristics included in the heat map are, from left to right, the presence or absence of mecA, 

mecA type, clonal complex, and sequence type. Blue dots indicated nodes where Shimodaira-

Hasegawa approximate likelihood ratio test and ultrafast bootstrap values were >70).   
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Table 4.1. Clinical and demographic characteristics at the time of the first bacteremia episode for 

recurrent- and non-recurrent-episode subjects   

Patient Attribute Overall (N = 

411) 

Non-recurrent 

(N = 379) 

Recurrent (N = 

32) 

P-Value 

Age at Diagnosis 

(median, IQR) 

56 (42.5-68) 57 (43-68) 51 (33-62) 0.06 

Sex         

Male 232 (56%) 215 (57%) 17 (52%) Ref. 

Female 179 (44%) 163 (43%) 16 (48%) 0.71 

Race and Ethnicity         

White 185 (45%) 168 (44%) 17 (52%) Ref. 

Asian 9 (2%) 8 (2%) 1 (3%) 0.59 

Black 171 (42%) 161 (42%) 10 (33%) 0.31 

Hispanic or Latino 10 (2%) 9 (2%) 1 (3%) 0.91 

More than one race or 

ethnicity 

9 (2%) 7 (2%) 2 (6%) 0.22 

Other Race/ethnicity 10 (2%) 9 (2%) 1 (3%) 0.91 

Don’t know/refused 17 (4%) 17 (4%) 0 (0%) Inf. 

Chronic Skin 

Disease 

36 (9%) 33 (9%) 3 (9%) 0.75 

Diabetes 143 (35%) 130 (34%) 13 (39%) 0.56 

Cancer 67 (16%) 64 (17%) 3 (9%) 0.33 
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Respiratory disease 95 (23%) 85 (23%) 8 (27%) 0.82 

Cardiovascular 

Disease 

199 (48%) 180 (47%) 19 (61%) 0.20 

Infective 

Endocarditis 

71 (17%) 67 (18%) 4 (12%)   

Liver Disease 41 (10%) 37 (10%) 4 (12%) 0.58 

Kidney Disease 114 (28%) 102 (27%) 12 (36%) 0.22 

Treated with 

Hemodialysis in 

the last 12 months? 

77 (19%) 68 (18%) 9 (27%) 0.16 

Current 

Intravenous Drug 

Use 

87 (21%) 80 (21%) 7 (21%) 1 

Involvement of 

foreign body in the 

bacteremia 

87 (21%) 80 (21%) 7 (21%) 1 

Was the foreign body 

removed? 

39 (45%) 37 (46%) 2 (29%) 0.52 

Healthcare 

Acquisition of 

index 

        

Community Acquired 50 (12%) 48 (13%) 2 (6%) Ref. 
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Healthcare Acquired 92 (22%) 88 (23%) 4 (12%) 1 

Healthcare Acquired- 

Community Onset 

269 (72%) 243 (64%) 26 (82%) 0.28 

Death in hospital or 

30 days after index 

infection 

        

Yes 86 (22%) 86 (22%) 0 (0%) <0.01 

Unknown 14 (3%) 14 (4%) 0 (0%) 1 

How many 

antibiotics was the 

patient exposed to 

during their index 

infection? 

2 (1-2) 1 (1-2)  2 (1-3) 0.23 

Vancomycin 383 (93%) 352 (94%) 31 (97%) 0.7 

Vancomycin 

Duration (days) 

21 (7-42) 20 (7-42) 24 (6 – 42) 0.65 

Daptomycin 153 (37%) 136 (36%) 17 (55%) 0.08 

Daptomycin 

Duration (days) 

27 (8-42) 25 (7-42) 39 (21 – 42) 0.05 
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Recurrent but new infections are genetically distinct from relapse infections. 

Using a genomic definition for relapse and recurrent but new infections, we identified 26 

subjects with relapse infections and 8 with infections from a new strain; two subjects experienced 

both relapse and new infections. Relapses occurred sooner after the prior infection (Median 155 

days, interquartile range (IQR) 88-269 days) compared to new strain recurrences (Median 248 days, 

IQR 105-599 days), though this was not statistically significant (Fig. 4.3A). Most relapse infections 

fell well below the set SNP threshold of 25 SNPs, with only 3 episodes requiring additional review 

for phylogenetic clustering, The six recurrent but new infections were distantly related from the 

subject’s previous infection by hundreds to thousands of SNPs, suggestive of an evolutionary 

common ancestor well outside of a reasonable epidemiological time parameter (Fig. 4.3B). Indeed, 

when these pairs are compared in their phylogenetic context, they often are derived from wholly 

separate clades of the pangenome tree (Fig. 4.3C).   

We were interested to identify the concordance between clinical definitions of relapse in the 

absence of genomic information compared to a strictly genomic definition. When pairs of 

bacteremia episodes were compared, the overall concordance was poor (Cohen’s Kappa = 0.18, CI: 

-0.41), with the genomic definition predicting that 82% of subsequent infections are related to the 

previous infection, and the clinical definition predicting that 50% are related (Fig. 4.4). When 

genomics was used as a standard for relapse likelihood, the clinical definition has a sensitivity of 55% 

and a specificity of 75%. When a device or foreign body was implicated in any infection, however, 

there was often high concordance in identifying relapsing infections. The genomic definitions of 

relapse and new infections were used for the remainder of analyses.   
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Figure 4.3. Relapsing infections and new infections within a patient are genomically 

distinguishable. Recurrence-associated isolates were separated into relapse-associated isolates or 

new infections based on pairwise SNP distance between isolate pairs within the subject. (A) 

Difference in time between subsequent episodes for genomically new infections and relapse 

associated infections were compared. (B) Counts of the number of pairs within an individual subject 

were assessed relative to their pairwise SNP distance. The inset display demonstrates counts where 

the SNP distance was between 0 and 350 SNPs. The dotted line represents the 25 SNP threshold for 

categorizing relapse infections. (C) A core-pangenome tree of all bloodstream isolates with 

recurrence-associated isolates linked by lines, with recurrent but new infections represented by green 

dotted lines and relapse infections represented by orange links.      
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Figure 4.4. Clinical and genomic definitions of relapse are discordant. Pairs of isolates from all 

recurrent infections were compared and identified as relapse (filled black rectangle) or new 

infections (white rectangles) based on a genomic definition or clinical definition, for a total of 4X 

pairs. The suspected source type of each infection within the episode was identified, with the least 

recent isolate associated with the “First Source” and the most recent isolate associated with the 

“Second Source.” Clinical source type was additionally assessed to determine if the first and second 

source were physically the same source.       
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Relapse infections, but not new recurrent infections, demonstrate distinct 

adaptation to the host.  

Among isolates that were recurrent but ultimately genomically distinct, subsequent re-

infection with a strain of a different strain type or clonal complex was not more likely than by 

chance in the overall population. The difference in days of the subsequent infection did not differ 

from chance between isolate pairs that shared a phylogenetic background (ST or CC) compared to 

those with different backgrounds (Fig. 4.5). Taken together the genomic background of a previous 

MRSA bacteremia episode does not play a greater role than chance in determining strain a person 

may become infected with in a future new infection.    

Relapse infections may be associated with long-term carriage of the strain on the body, 

which could result in adaptations different from populations that are cleared after the initial 

infection is treated. We utilized the McDonald-Kreitman neutrality index to examine whether there 

were significant signatures of adaptation overall and relative to known bacteremia-associated genes 

(Table 4.2). Across all bloodstream isolates, there is a general trend of neutral evolution across the 

genome and in the subset of genes specifically associated with bacteremia. Comparatively, relapse-

associated lineages show a significant signature of positive selection in the whole genome. Although 

relatively few bacteremia-associated genes were synonymously mutated and comparable to all strains 

of relapsing lineages, there were notably no synonymous mutations at polymorphic sites. Together, 

this suggests that recurrent lineages likely undergo ongoing selection after the index infection and 

dissemination.       
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Figure 4.5. Previous strain background and time between infections does not impact the 

type of strain in recurrent but new infections.  Two permutation tests were conducted to assess 

the likelihood of shared sequence type (ST) or clonal complex (CC) between distantly related 

recurrent infections. Eight pairs of isolates were sampled from the 456 isolate sample population 

1000 times and the proportion of pairs with matching STs (A) or CCs (B) was calculated for each 

iteration. The observed proportion in the sample population is indicated by a red line. The 

difference between mean number of days between infections with or without a shared ST (C ) or CC 

(D) were compared over 1 x 105 permutations. The observed difference in mean date duration is 

plotted with a red line.       
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Table 4.2. Neutrality index calculations of the whole genome and bacteremia-associated genes for all 

bacteremia isolates and for relapse-associated lineages.    

Group Fixed, NS Fixed, S Polymorphic, 
NS 

Polymorphic, 
S 

MK Value P-value 
(G-test) 

All Isolates - 
Whole 
Genome 

17271 24529 1381 1812 0.92 0.03 

All Isolates - 
Bacteremia 
genes 

232 330 19 22 0.81 0.53 

Relapse - 
Whole 
Genome 

2689 5326 45 12 0.133 > 0.01 

Relapse - 
Bacteremia 
genes 

28 81 5 0 – – 

 

 

Antibiotic resistance genotypes and phenotypes in relapses correspond with 

patient exposures.  

To identify potential genes involved in convergent adaptation within the host, genes that 

contained non-synonymous SNPs in more than one relapse lineage were identified. A total of 11 

genes with unique SNPs had mutations in 2 or more relapse lineages (Fig. 4.6A). Mutations in these 

genes occurred regardless of clonal complex, indicating that clade background alone did not 

contribute to the presence of mutations in these genes. Genes in which multiple relapse lineages 

showed non-synonymous mutations were implicated in known virulence traits and antibiotic 

resistance. The genes most commonly mutated were mprF, among five separate subject lineages, and 

rpoB, among four subject lineages. Since changes in both mprF and rpoB are associated with drug 
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resistance for treatments commonly used for bacteremia, we investigated the specific amino acid 

change, isolate MIC, and course of treatment for the patient at the time of the bacteremia episode. 

Multiple different amino acid changes were detected between patients for proteins encoded by both 

genes. Notably the same amino acid change occurred in two subjects with elevated rifampin 

resistance, Ala477Asp, though for one subject the resistance phenotype was present in their first 

infection before relapse (Fig. 4.6B). Only one patient with a rpoB mutation had neither a history of 

rifampin exposure nor the emergence of a resistance phenotype. Three subjects with mprF mutations 

during relapses demonstrated acquired daptomycin resistance alongside previous exposure to 

daptomycin (Fig. 4.6C). These included amino acid changes Ser337Thr, Ser337Leu, and Leu291Ile. 

All patients with mprF mutations had exposure to daptomycin prior to the emergence of their 

mutation regardless of the emergence of daptomycin resistance.  
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Figure 4.6. Commonly mutated genes among relapse lineages are associated with antibiotic 

resistance phenotypes. (A) Unique non-synonymous mutations in coding regions of the genome 

were quantified by gene from isolates of relapse-associated infections and summarized relative to the 

subject from which the isolate was collected. Each unique mutation was annotated with the clonal 

background of the lineage from which the set of relapses were derived. For lineages with rpoB 

mutations (B) and mprF mutations (C), a timeline (days since index infection) was created for each 

set of relapsing infections by the subject experiencing that set of relapses. Individual episodes were 

annotated with the amino acid changes detected in the respective genes, the clinical assay used to 

assess minimum inhibitory concentration (MIC) and the corresponding MIC, and whether the 

patient was exposed to rifampin (RIF)(B) or daptomycin (DAP)(C). Dots are colored based on the 

clinical assay determination of drug susceptibility to RIF or DAP.    

 

Relapse isolates cluster with other bacteremia isolates, but do not contribute to 

onward transmission.  

To determine the burden of recent transmission between patients with relapse infections and 

other bacteremia patients we identified genomic clustering of isolates containing fewer than 25 SNPs 

difference. Nine clusters with at least one subject with a relapse were identified. These clusters 

occurred in distinct lineages across CC5 and CC8 clades (Fig.4.7). If relapse infections were 

contributing to onward transmission, or if patients were becoming reinfected with a closely related 

circulating strain, we might expect that infections between hosts would cluster within the relapse 

lineage clade. Across all nine clusters, isolates from different subjects clustered significantly outside 

of the relapse lineage isolates. This suggested that transmission events occurred prior to the onset of 

relapsing infection, and that the unique lineages within a host were highly specific to the individual.  
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Figure 4.7. Non-relapse associated isolates cluster separately from relapse-associated 

isolates. A pangenome tree was generated using the unequal transition/transversion rate plus 

empirical base frequencies model to investigate branching positions. Clusters were investigated when 

at least one relapse-associated isolate was 25 SNPs or fewer from an isolate from a different subject. 

Subtrees were extracted based on the most-recent common ancestor shared by relapse subject 

isolates and the clustered additional subjects. Nodes denoted with a blue dot indicate ultrafast 

bootstrap values and Shimodaira-Hasegawa approximate likelihood ratio test values that are greater 

than 70. Bolded tip labels indicate an isolate that is part of a relapse. Tips are annotated with the 

patient subject IDs and the number of days at which the isolate was collected relative to the earliest 

isolate in the cluster. Branch lengths are scaled in substitutions per site. 
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Discussion 

This research shows that recurrent SAB is well differentiated into new and relapse infections 

by genomic analysis and patterns of pathogen evolution. Relapsing strains show ongoing adaptive 

mutations in bacteremia genes, especially those also associated with antimicrobial resistance. Further, 

strains of bacteremia in new reinfections are not determined by previous exposure to the same 

strain, suggesting that host adaptive immunity may not play a strong role in preventing new 

infections from the same strain, or that individual patients are sensitive to infection with a specific 

strain. Finally, although relapses of MRSA bacteremia do occur in transmission clusters, they are not 

directly contributing to ongoing spread in healthcare settings after their index infection.  

We demonstrated that relapses and new infections are often distinguishable by their genomic 

distance, source site of infections, and by detection of adaptive traits, especially those associated with 

antibiotic resistance. Previous studies have identified risk factors for recurrence from the pathogen 

level to the type of care received. We identified similarities in our dataset that have been recorded 

previously, including a high prevalence of SCCmecII (167), a high proportion of unremoved foreign 

objects (165,166), increased cardiovascular disease including endocarditis (168), increased 

hemodialysis (166).  The interaction of the variables of Black race and hemodialysis has also been 

implicated in a higher incidence of relapse SAB (165). Our study did not show any significant 

association between race and recurrence; nevertheless, over a third of the subjects in this study 

experiencing recurrence identified as Black. Considering these previously documented patterns, 

consideration of the interaction of community demographics and the prevalence of chronic 

conditions among social groups served by common healthcare groups is critically important to 

monitor to prevent bacteremia and subsequent relapse. We found a significant association between 

relapse and longer duration of daptomycin therapy. However, other researchers have reported a 
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negative or no association between antibiotic duration and the risk of relapse (33,194). These 

discrepancies may be explained by the specificity of the type of antibiotic or by confounding 

conditions that prolong the use of a certain antibiotic, such as a diagnosis of endocarditis.      

We found that most isolates from the same person were separated by fewer than 25 core 

genome SNPs, and the few that did not fall within our definition of relapse were evolutionarily 

distinct enough that recent common ancestry within a reasonable infection timescale was highly 

unlikely. Previous studies have identified a similar pattern in distinguishing relapses from recurrences 

even using less precise technologies such as pulsed-field gel electrophoresis (168). Choi et al 

identified a split between 45 and 54% between new infections and recurrence based on PFGE 

pattern and infections with a difference no greater than 150 days, and they found that WGS aligned 

with their original molecular definition (165). In our study, we used a SNP based definition for 

clustering and found a much larger ratio of relapse infections comparatively. We also found that 

although there was no significant difference in time between infections in relapses compared to 

recurrent infections from new strains, relapse intervals were still much shorter overall and most date 

differences under 200 days.  

Examination of the SNP in its individual gene context and phylogenetic context can be 

extremely useful to help discern the likelihood of persistence as a cause of relapse, especially when 

there may be a concern for infection from external but closely related strains.  In this study, we 

examined the emergence of unique mutations within a lineage of relapses, as well as examined the 

branching patterns between individuals that shared a common strain. When comparing those 

relapses that cluster very closely with other hosts, we observe unique traits (i.e., daptomycin 

resistance), which would suggest that the most parsimonious explanation of their occurrence among 

within-host isolates is a host-associated lineage rather than a unique clone seeding back into the 
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patient. Though we are still not able to rule out entirely that an external source carrying a common 

strain could nevertheless cause reinfection in patients who encounter these sources, the nesting of 

the infections and the genetic changes suggest a higher likelihood of specific host-associated 

exposures related to treatment and possible persistent colonization.   

Because SAB may result from a compounding set of risks and exposures, management of 

SAB and recurrence typically involves a comprehensive assessment of patient history, physical 

examination, and source identification (157). Source control is important, as delays in the removal of 

a contaminated source of infection can increase the risk of persistent bacteremia (157) or metastatic 

spread to other body sites (195). When central lines or foreign bodies are suspected to be the cause 

of the SAB, removal of the foreign body is considered, though it is not always possible if it would 

lead to increased morbidity or mortality for the patient. In this study we found genomically similar 

episodes of SAB common among patients with foreign body infections. Using genomic analysis as 

gold standard for relapse increased the association with foreign body exposure. Further, we had 

previously reported that the odds of MRSA infections associated with a foreign body was nearly five 

times greater among patients that had a previous MRSA infection within a year compared to those 

that did not have a previously reported infection (196). Although it may not always be possible to 

remove a foreign body to eliminate relapse infections, clinicians should maintain high suspicion of 

devices and implants as a source of recurrent SAB and advise patients accordingly in their post-

recovery of a known SAB. 

Two genes known from previous studies to be commonly associated with antimicrobial 

resistance, mprF and rpoB, gained non-synonymous mutations multiple times across relapses 

occurring in separate subjects. Changes to rpoB and mpfF have been implicated in resistance to 

rifampin and daptomycin, and also potential cross-resistance to vancomycin treatment through 
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multiple multistep evolutionary pathways (160,179,197,198). In our study, nearly all subjects, and all 

but one subject that experienced relapse, received vancomycin as a part of their course of treatment 

for their first infection. Multiple different amino acid changes were detected in isolates with a 

rifampin-resistant phenotype, both in the index infection and in acquired resistance over the course 

of resistance. Among these isolates, we detected one relapse lineage in which the index isolate 

carried asparagine at position 481 and which had a rifampin intermediate resistance profile, followed 

by relapses with a change to histidine. The change of asparagine at this position to histidine and 

subsequent susceptibility to rifampin is consistent with the opposite change from histidine to several 

other amino acids leading to phenotypic rifampin resistance (199). In two subjects, at least two 

different changes at multiple sites of the rpoB amino acid sequence were altered between episodes, 

with intermittent reappearance of the index allelic profile. One subject’s isolates also carried the 

Ser529Leu mutation, known to be associated with vancomycin intermediate resistance (VISA) and 

heteroresistance (hVISA), but developed no change in rifampin or vancomycin resistance. We also 

noted emergence of phenotypic rifampin resistance, notably with one subject carrying a resistant 

clone in their original infection and no noticeable change to the MIC in rifampin as the alleles 

changed.  Multiple simultaneous mutations in rpoB have been associated with an increased resistance 

to rifampin (199). The amino acid changes present in this study demonstrate the wide diversity in 

the mutational profile of rpoB. Additional phenotypic investigation of phenotypic cross-resistance 

and combination therapy on the emergence of these mutations is needed.     

We also identified two point mutations in mprF that resulted in changes at the same amino 

acid site (Ser337Thr and Ser337Leu) within two patient lineages which corresponded with 

emergence of phenotypic resistance to daptomycin. For one of these lineages (Ser337Thr), a 

corresponding intermediate resistance to vancomycin was also recorded without the emergence of 
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any known genetic markers for VISA or hVISA, though we simultaneously detected a stop gained in 

the protein nusG, a known global transcription regulator (200). In this sequence of isolates, we did 

not capture possible intermediary isolates that could suggest whether there was a specific sequence 

or evolutionary pathway that could suggest the order in which resistance and intermediate 

phenotypes were gained. Since patterns of two-step evolution of resistance phenotypes in S. aureus, 

for example by regulation of walK and then gain of function of membrane charge increase for mprF 

(201), a possible hypothesis here could be a similar stepwise change in gene expression elsewhere 

followed by changes to membrane charge. 

This study is subject to several limitations. The incidence of recurrence among bloodstream 

infection episodes in our study was 9.8%, which is consistent with the rate seen in other studies 

(159,165,167,168). Nevertheless, the number of recurrent infections we detected is a limited sample 

for generalization. We also characterized cases from a singular geographic area. The smaller sample 

size and unique demographic structure of this area could make it difficult to detect the same risk 

factors associated with demographics or clinical factors.  

Whole-genome sequencing was able to provide additional support for case-identification of 

new and relapsing infections in the context of the clinical history of previous infections. The 

complexity of host-associated factors, within-host selection pressures, strain background and type of 

antibiotic treatment all play interacting roles in the emergence of relapse, but specific mutations can 

help create stronger evidence for how best to identify the patterns of host and pathogen factors that 

lead to relapse for unique individuals. Relapsing isolates undergo positive adaptation to the host, and 

convergently mutating genes are consistent with long-term usage or high exposure to antibiotics, but 

other traits necessary for survival in the cardiovascular system may still play an important role in 

persistence. Ongoing work is necessary to understand the length of survival of individual strains of 



104 

 

 

S. aureus at different body sites on individual hosts. Uniting the frequency of genetic mutations, 

genetic relatedness, and known clinical risk factors for recurrence lay the groundwork for better 

prediction of future relapse. 

 

 

 

 

 



105 

 

 

Supplemental Material 

 

Figure S4.1: Clinical and Genomic Criteria for defining Recurrent new and relapsing 

infections. The flowchart is formatted as a decision tree with round ovals indicating terminals for 

branch points and rectangles indicating options that correspond with the most recent terminal. Black 

lines indicate criteria assessed regardless of the definition. Blue lines indicate criteria assessed for 

genomic definitions, and orange lines indicate criteria that fulfill the clinical definitions.    
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Table S4.1: List of Bacteremia-associated genes and corresponding supporting studies 

Gene Product Isolate 

Source 

Allelic or 

mutational 

change detected 

Phenotype 

of mutation 

Literature 

Support 

Literature 

refute/no 

evidence 

ACM

E (arc 

and 

opp3) 

arginine 

catabolic 

mobile 

element 

clinical 

isolates 

 Presence 

increased 

pathogenicity 

in bacteremia 

model 

(rabbits) 

Diep 2008a 

(202) 

 

Agr virulence 

regulator 

clinical 

isolates 

 Increased 

genetic 

diversificatio

n compared 

to agr+ 

strains and 

colonizers; 

dysfunction 

leads to 

increased 

VAN MICs 

Altman 

2018b(174), 

Cheung 1994 

(176), 

Tsuji 2009 

(175), 

Chong 2013 

(177)  
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AgrA  clinical 

isolates 

Non-synonymous, 

truncation 

High-level 

rifampin 

resistance 

Hachani 2023 
(171), 
Giulieri 
2018 (170), 
Benoit 2018 
(172)    
 
 

Howden 

2008, (83) 

 

AraC AraC 

family 

transcripti

onal 

regulator 

clinical 

isolates 

premature stop Untested, 

but present 

in the BSIs 

separate 

from nasal 

carriage 

Young 2012 

(203) 

 

ausA  clinical 

isolates 

Non-synonumous, 

truncation 

Escape from 

epithelial cell 

endosomes 

Hachani 2023 

(171) 

 

clpX  clinical 

isolate 

Non-synonymous Reduction of 

expression of 

virulence 

Baek 2015 

(179) 

 

cna collagen-

binding 

adhesin 

clinical 

isolates 

non-synonymous Decreased 

attachment 

to collagen 

Iwata 2020 

(204) 

 

 

coa coagulase laborato

ry strain 

deletion Loss of 

coagulase 

function, 

Liu 2021 (73),  

Altman 2018 

(174) 
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decreased 

virulence 

dfrB  Clinical 

isolates 

Non-synonymous Trimethopri

m resistance 

Young 2021 

(183) 

 

edinB epidermal 

cell 

differentia

tion 

inhibitor 

laborato

ry 

strains 

 Presence of 

gene 

increases 

ADP-

ribosylation, 

increased 

prevalence of 

bacteremia 

during 

pneumonia 

and bacterial 

load 

Courjon 2015 

(205) 

 

ess virulence 

regulator 

clinical insertion sequence Increased 

expression of 

ESAT^-like 

secretion 

system 

virulence 

Altman 2018 

(174) 
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factors 

(when agr-) 

essB ESAT-6 

secretion 

system 

componen

t 

laborato

ry 

strains 

ST398 

 Deletion 

results in 

decreased 

neutrophil 

killing and 

lethality in 

blood 

Wang 2016 

(206) 

 

fnbA fibronecti

n-binding 

protein A 

clinical 

isolates 

Non-synonymous 

SNPs 

Enhanced 

binding to 

Fn, 

associated 

with cardiac 

device 

infections 

from 

bacteremia 

isolates[62] 

Hos 2015 (69)  

fusA  clinical 

isolates 

 Fusidic acid 

resistance by 

target 

alteration, 

Lannergard 

2009 (207) 

 

https://www.zotero.org/google-docs/?ehk9EH
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some small 

evidence that 

one isolate 

arouse from 

a SCV 

phenotype 

fusB  clinical 

isolates 

 Fusidic acid 

resistance by 

protecting 

translation 

apparatus 

Lannergard 

2009 (207) 

 

fusC  clinical 

isolates 

 Fusidic acid 

resistance by 

protecting 

translation 

apparatus 

Lannergard 

2009 (207) 

 

hglAB

C 

 laborato

ry 

strians 

 Presence 

assists with 

survival in 

blood 

Malachowa 

2011 (208) 

 

ica intracellula

r adhesin 

locus 

laborato

ry 

strains 

 Loss of 

function 

shows a 

Kropec 2005 

(209) 
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conferring 

poly-N-

acetylgluc

osamine 

productio

n 

greater 

susceptibility 

to Ab-

dependent 

killing by 

leukocytes 

katA catalase 

enzyme 

clinical 

isolate 

stop codon and 

truncation 

Loss of 

catalase 

activity but 

still results in 

septic 

arthritis 

Lagos 2016 

(210) 

 

lukED leucotoxin 

ED 

laborato

ry 

strains 

 Presence 

target murine 

phagocytes 

leading to 

cytotoxic 

effects at 

infection site 

Alonzo 2011 

(211) 

 

mgrA virulence 

regulator 

laborato

ry 

strains 

 Association 

of loss of 

function 

leads to 

Li 2019 (212),  

Rom 2017 

(213)  

Howden 

2008 (83) 
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increased 

susceptibility 

to host 

defense 

response 

cells via mprF 

and dltA 

expression, 

possibly loss 

of fnbA 

expression, 

and general 

decreased 

impact on 

host health 

in a 

bacteremia 

model; 

mutation 

leads to 

increased 

virulence in a 
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mouse 

model 

mprF cell 

membrane 

structure 

clinical 

isolates 

non-synonymous, 

deletions, 

Increased 

daptomycin 

resistance 

Ji 2020 (214), 

Baek 2015 

(179),  

Chen 2015 

(197)  

 

mpsB cation 

translocati

on in cell 

membrane 

clinical 

isolates; 

laborato

ry 

strains 

 Small colony 

phenotype, 

suppression 

of agr 

activation 

due to 

lowered 

membrane 

potential 

Douglas 2021 

(181)  

 

mspA membrain

e protein 

clinical 

and 

laborato

ry 

 Role in toxin 

production, 

resistance to 

innate 

immue cells, 

and iron 

homeostasis 

Duggan 2020 

(215) 
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parC topoisome

rase IV 

clinical 

isolate 

insertion confers 

quinolone 

resistance (eg 

CIP) 

Gao 2010 

(158)  

 

psm-

mec 

phenol-

soluble 

modulin 

alpha type 

clinical 

isolates 

promoter SNP Decreased 

biofim 

formation 

and 

increased 

PMSa3 and 

Hld 

expression 

Aoyagi 2014 

(216)  

 

purR purine 

biosynthes

is 

regulation, 

and 

regulation 

of 

fibronecti

n binding 

protein 

laborato

ry strain 

Non-synonymous 

snp 

Increased 

clumping in 

blood related 

to 

fibronectin 

binding, 

increases in 

SarA 

expression 

which has 

other 

Goncheva 

2019 (217), 

Alkam 2021 

(218)  
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virulence 

factor down 

stream 

events 

PVL 

(lukS/

F) 

Panton-

Valentine 

leukocidin 

laborato

ry 

strains 

 Increased 

pathogenesis 

in early 

stages of 

bacteremia 

Diep 2008ab 

(219)  

 

rel synthesis 

of 

(p)ppGpp 

during AA 

starvation 

clinical 

isolates 

Non-synonymous 

(D134Y, A301T, 

E384K, V670G), 

and the fifth is a 4-

bp deletion 

encompassing 

codon N697 that 

results in a 

frameshift causing 

a premature stop 

codon at position 

701; Gao showed a 

Phe 128 Tyr 

Shortened 

lag phase, 

increased 

fitness in 

nutrient-

poor 

conditions; 

increased 

resistance to 

antimicrobial

s and 

defensins; 

possibly 

related to agr 

Chen 2023 

(220),  

Bryson 2020 

(22), 

Gao 2013 

(160), 

Gao 2010 

(158) 
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substitution from a 

nucleotide sub) 

upregulation 

for Gao 

2010 

rlmN ribosomal 

RNA large 

subunit 

clinical 

isolate 

insertion Confers 

linezolid 

resistance, 

uniquely 

from 

previous 23 

rRNA 

mutations 

Gao 2010 

(158) 

 

rot regulation laborato

ry strain 

 Change in 

sepsis 

virulence (ie 

survival) in 

mice, 

background 

dependent 

Rom 2021 

(71),  

Rom 2017 

(213) 

Howden 

2008 (83) 

RpiRc  laborato

ry strain 

(USA30

0-LAC) 

altering protein 

expression 

Repressed 

RNAIII to 

mimick rot 

deletion, 

leading to 

Balasubraman

ian 2016 (221) 
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bloodstream 

infection 

phenotype 

rpoB RNA 

polymeras

e 

 Non-synonymous   Giulieri 2018 

(170), 

Baek 2015 

(179),  

Gao 2013 

(160),  

Gao 2010 

(158),  

Villar 2011 

(178)  

 

rpoD 

(sigA) 

RNA 

polymeras

e sigma 

factor 

laborato

ry strain 

excision of an 

IS256 element 

Decreased 

capacity to 

infect bone 

and 

increased 

virulence to 

mouse 

Suligoy 2020 

(222) 

 

rsp transcripti

on factor 

repressor 

clinical 

isolates 

Non-synonymous 

and premature stop 

codon 

Reduced 

lethality, 

Das 2016 

(223) 
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of surface 

protein 

reduced 

cytotoxicity 

SaeRS regulatory 

system 

laborato

ry strain 

deletion Increased 

survival in 

mouse 

blood; in 

balance with 

sarA 

protease 

production 

for virulence; 

in lab, lack of 

SaeRS 

increases 

mortality, 

but down 

regulation of 

leukosidins 

and 

immunomod

ulatory 

genes, and 

some 

Liu 2021 (73), 

Beenken 2014 

(72), 

Nygaard 2010 

(173) 

Voyich 

2009 (224) 
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adhesion 

genes) 

sar virulence 

regulation 

laborato

ry strain 

 Loss of 

virulence 

factors 

leading to 

loss of 

attachment 

to heart 

valves; loss 

of virulence 

that is 

connected to 

protease-

mediation 

Cheung 1994 

(176), 

Beenken 2014 

(72), 

Zielinska 

2012 (225) 

 

SCCM

ec type 

IV 

MGE 

harboring 

mecA 

clinical 

isolates 

 Higher 

association 

with 

bacteremia 

or central 

line 

infections 

Nakano 2022 

(182), 

Young 2021 

(183) 
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selw productio

n of SAg 

SelW 

clinical 

isolates; 

laborato

ry 

strains 

 Superantigen 

activation of 

T-cell 

proliferation 

Vrieling 2020 

(226) 

 

srtA sortase A laborato

ry 

strains 

 Deletion 

results in 

reduced 

mortality and 

disseminatio

n to tissues 

after 

introduction 

to the 

bloodstream 

in an 

injection 

introduction 

Wang 2015 

(227) 

 

stp     Giulieri 2018 

(170) 

 

thyA thymidylat

e synthase 

gene 

clinical 

isolate 

premature stop Small colony 

phenotype, 

related to 

de Souza, 

2020 (180) 
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needing 

THF 

cofactor 

adaptation of 

trimethoprim

-

sulfamethoxa

zole 

resistance? 

xerC recombina

se 

laborato

ry strain 

(USA30

0-LAC 

and 

UAMS-

1) 

 Mutation 

results in 

decreased 

bacterial load 

in murine 

bacteremia, 

decreased 

accumulation 

of alpha 

toxin 

decreased 

biofilm 

production 

Atwood 

2016) (228)  

 

yycH modulatio

n/downstr

eam of 

walK 

clinical 

isolates 

frameshift, 

premature 

termination 

VAN and 

DAP 

nonsusceptib

ility, 

Chen 2015 

(197) 
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which is 

important 

for cell 

wall 

metabolis

m 

mechanism 

unknown or 

multifaceted 

 Wall 

teichoic 

acids 

laborato

ry strain 

 Loss of 

function 

results in less 

adherence to 

endothelial 

cells and 

proliferation 

to spleen and 

kidneys 

Weidenmaier 

2005) (229) 
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Chapter 5: Metagenome-wide characterization of 

shared antimicrobial resistance genes in sympatric 

people and lemurs in rural Madagascar 

Reprinted material from: Talbot, B. M., Clennon, J. A., Rakotoarison, M. F. N., Rautman, L., Durry, 

S., Ragazzo, L. J., Wright, P. C., Gillespie, T. R., & Read, T. D. (2024). Metagenome-wide 

characterization of shared antimicrobial resistance genes in sympatric people and lemurs in rural 

Madagascar. PeerJ, 12, e17805. https://doi.org/10.7717/peerj.17805 

 

Abstract 

Background. Tracking the spread of antibiotic resistant bacteria is critical to reduce global 

morbidity and mortality associated with human and animal infections. There is a need to 

understand the role that wild animals in maintenance and transfer of antibiotic resistance genes 

(ARGs). Methods. This study used metagenomics to identify and compare the abundance of 

bacterial species and ARGs detected in the gut microbiomes from sympatric humans and wild 

mouse lemurs in a forest-dominated, roadless region of Madagascar near Ranomafana National 

Park. We examined the contribution of human geographic location toward differences in ARG 

abundance and compared the genomic similarity of ARGs between host source microbiomes. 

Results. Alpha and beta diversity of species and ARGs between host sources were distinct but 

maintained a similar number of detectable ARG alleles. Humans were differentially more 

https://doi.org/10.7717/peerj.17805
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abundant for four distinct tetracycline resistance-associated genes compared to lemurs. There 

was no significant difference in human ARG diversity from different locations. Human and 

lemur microbiomes shared 14 distinct ARGs with highly conserved in nucleotide identity. 

Synteny of ARG-associated assemblies revealed a distinct multidrug-resistant gene cassette 

carrying dfrA1 and aadA1 present in human and lemur microbiomes without evidence of 

geographic overlap, suggesting that these resistance genes could be widespread in this 

ecosystem. Further investigation into intermediary processes that maintain drug-resistant bacteria 

in wildlife settings is needed. 

 

Introduction 

The global estimated number of human deaths attributed to antibiotic-resistance among 

bacterial infections in 2019 alone was 1.27 million, with Sub-Saharan African countries 

experiencing the highest proportion of the burden (25). Antimicrobial resistance in bacteria is a 

heterogeneous problem, with multiple organisms, biological mechanisms, and anthropogenic 

activities contributing to its presence and spread. Pathogen spread is known to play a major role 

in antimicrobial resistance gene (ARG) distribution, with evidence of enteric infections among 

symptomatic humans and animals having less antibiotic susceptibility compared to asymptomatic 

individuals (230). Bacteria can acquire antibiotic resistance through de novo mutations, but they 

may also acquire resistance through horizontal gene transfer on mobile genetic elements 

(MGEs). MGE movement through a bacterial community depends on the species present, as 

MGE sharing can be restricted by species compatibility and host range (231–233), but the 

presence of ARGs and its transference into closely related species can facilitate epidemic spread 
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of pathogens (234). Nearly all bacterial pathogens associated with infectious diseases have been 

found to contain antimicrobial resistance genes, so it becomes imperative to capture the extent to 

which illness in an area may drive antibiotic resistance.  

Although reducing antimicrobial resistant infections in humans and animals is a global 

priority, there remain major gaps in measurements of the global prevalence of antibiotic resistant 

organisms across species and region. Knowledge of transmission dynamics and prevalence of 

community-acquired antimicrobial resistant species shared between overlapping humans and 

animals is limited. Detecting the distribution and diversity of specific antimicrobial resistant 

genes (ARGs) within and between human and animal microbiomes can further identify potential 

spillover events. Although antibiotics are lifesaving during some infections, agricultural and 

medical overuse of antibiotics contribute to the current rise of resistant organisms in human and 

animal populations (24). Further, and consequently, domestic animals, peri-domestic rodents, 

and wildlife all harbor ARGs, and each group can act uniquely as a sentinel for emerging or 

increased spread of antibiotic resistance (21,235–237). Comparisons of resistomes are well 

documented between human and agricultural animals (236,238), agricultural soil(30), and in 

wastewater (28), showing widespread ARG diversity that is geographically specific. A lesser 

focus has been on comparative studies of ARGs in wildlife animals overlapping with human 

communities.  

In this paper, we examined human and brown mouse lemur gut microbiomes to 

investigate the extent of ARG sharing between humans and wildlife in rural Madagascar where 

there are opportunities for humans and lemur spatial overlap. Whether shared environment could 

be enough to result in shared microbiomes/resistomes is of interest, given that in Madagascar, 

lemur species exist across a gradient of human-transformed space, from undisturbed wild to 
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being kept as pets in some households. The gradient of lifestyle has had a parallel effect on 

pathogen prevalence and ARG abundance. In ring-tailed lemurs, for example, it was shown that 

ARGs were in greater abundance in captive populations compared to wild, and ARGs that could 

impact human health were correlated to the level of human disturbance in the location of varying 

lemur populations (29). Further, mouse lemurs dwelling in more human-disturbed areas harbored 

pathogenic bacteria also found in nearby dwelling human, rodents, and livestock (239). It is 

unknown whether the ARGs identified in wild populations share a similar genetic profile to the 

profile of the human microbiomes present in the area. Information on general human and lemur 

interactions, even no interactions, could be informative of the dispersal of reservoirs for 

transmission. 

The landscape of genomic analyses capable of comparing bacterial communities ranges 

from fast but less sensitive 16S sequencing to highly discriminatory but labor intensive 

metatranscriptomics (240).  Application of metagenomic sequencing can strike the balance for 

understudied microbiomes and allow for comparing diversity at the microbial species scale 

without a priori assumptions of what species should be expected (240), and capture more gene-

level diversity which cannot be evaluated from taxonomy gene marker techniques (241). 

Although challenges remain for positive identification of rare species from short-read 

sequencing, it is nevertheless a powerful approach for examining patterns in abundantly present 

and known species (241), for diagnosis of present pathogens (242), and for identifying 

compositional differences between environmental samples (28). Additionally, genetic closeness 

of detected species or genes of interest shared by humans and animals can be used to infer 

zoonotic transfer and further combined with epidemiological information to identify links 

between ARG presence, species richness, and risks of illness and transmission. However, the 
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abundance of antibiotic resistance genes may be underestimated, and a latent, or undocumented 

diversity in established databases, population of ARGs exists within and between different hosts 

and environments (243). Sequencing metagenomic analysis can help identify the reservoirs of 

rare or unknown species and offer a starting place for hypothesis generation for complimentary 

methods, such as functional metagenomics, to fill in the species knowledge gaps (244).    

Here, we aimed to identify the ARG burden and diversity between humans and wild 

lemurs near Ranomafana National Park in Madagascar. This unique system provides an 

opportunity to examine this interplay in low-resource, rural, tropical communities where 

exceptional biodiversity and human-wildlife overlap create unusually high potential for novel 

zoonotic events. Comparison of the respective bacterial species and ARG profile lays the 

foundation for understanding ecological and evolutionary patterns outside of agricultural and 

clinical settings. This has implications for documenting potential downstream or indirect 

selection pressure that anthropogenic drug use has on an ecosystem regardless of direct human 

and animal interaction.  

 

Materials & Methods 

Sample Collection and Demographic Survey  

As a component of a One Health research platform in Ifanadiana District, Madagascar, a 

household survey was conducted from June to August 2017 in eight communities in roadless 

areas < 5km from Ranomafana National Park to collect information regarding household 

member demographics, antibiotic usage, household illness, exposure to wildlife, and previous 

illness with diarrheal disease. Within these communities, we have documented diverse global 
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health challenges including high prevalence of enteric infections and resistance genes regardless 

of antibiotic class, and zoonotic human-wildlife linkages (239,245–248). Human participation in 

the study and collection of survey data were approved of and reviewed by the Emory Internal 

Review Board (IRB00093812). Before survey administration, informed oral consent was 

gathered and documented. Household members were also asked to voluntarily submit a fecal 

sample regardless of history of diarrheal illness. Fecal sample IDs were linked to their 

corresponding household survey responses, and deidentified for downstream analysis. Fecal 

samples were collected from captured wild brown mouse lemurs (Microcebus rufus) along 

footpaths near the villages. The mouse lemurs were trapped using banana-baited Sherman traps 

(XLR, Sherman Traps Inc., FL), and set overnight at 16:00 and checked at 05:00. One microliter 

of fresh fecal samples was collected from individual trapped lemurs by using a sterile tongue 

depressor and transferring the sample into a cryovial filled with approximately 0.8mL RNAlater. 

The Emory University Institutional Animal Care and Use Committee provided full approval for 

this research (#3000417) and the field research procedures were approved by Madagascar’s 

Ministry of Environment, Ecology and Forests (permit nos: 028/17; 083/17; 136/17; 146/17; 

164/17). 

 

DNA extraction and sequencing  

DNA was extracted from fecal samples using a standard Zymo Inc. bead-beating kit. 

Whole metagenome shotgun sequencing was performed on the NextSeq 2000 platform using 

Illumina DNA library preparations. Sequencing produced separate forward and reverse paired-

end fastq files, which served as inputs for bioinformatic processing. All mouse lemur 

metagenomic samples and select human fecal samples from each of the surveyed eight 
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communities were included for metagenomic sequencing and downstream analyses. Human 

samples were selected through stratified random sampling per village. To be included for 

selection, households had to include at least one adult, one school-aged child (5-17 years), and 

one child under 5 years. Eligible households were grouped by their home village and a random 

three households were selected within each community, sampling without replacement. From the 

selected households, a sample was chosen for each age group. If only one household member 

represented an age category, then their sample was selected. If more than one household member 

was represented by an age group, then a second random sampling was done to choose the 

representative sample for that age group. 

 

Bioinformatic processing and quality control 

An overview of the bioinformatic workflow is shown in Supplemental Figure S1. Data 

quality was assessed with FastQC (v.0.11.9) before and after adaptor trimming and removal of 

host reads (249). Read quality trimming was conducted using Kneaddata (v0.10.0) with --

trimmomatic, which employs Trimmomatic (v0.39-2) (250) and Bowtie2 (251) to remove 

adaptor reads and reads mapping to the human genome refence GRCh37 (252), keeping reads at 

or above Phred 33. Reads from lemur microbiomes were additionally mapped against a draft 

genome assembly of Microcebus murinus (GCF_000165445.2) (253), selected for its high level 

of completeness of assembled chromosomes, representation of male and female chromosomes, 

and shared ancestry to M. rufus. The M. murinus assembly was indexed using bowtie2-build. The 

forward and reverse paired-end reads from lemur microbiomes were mapped to the indexed 

assembly using Bowtie2 (v2.5.0) and saved as a SAM file. Unmatched reads (and therefore non-

host reads) were subsequently removed using SAMtools’ sort and fastq functions (254). After 
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filtering, only metagenomic sequences with 1 x 106 reads or more were considered for further 

analysis or assembly. Metagenomes were assembled using SPAdes (v3.15.4) (255) on the 

trimmed and decontaminated paired-end fastq files using the –meta parameter. Separate forward 

and reverse fastq files were used as input with the -1 and -2 flags, respectively. The human 

DNA-scrubbed analysis sequences are available under the Bioproject PRJNA1008138.   

 

Classification of bacterial species and ARGs 

Taxonomic composition of the filtered reads was first calculated using MetaPhlAn4 

(256), with flags --input_type fastq,  --unclassified_estimation, and --bowtie2out, to estimate 

relative abundance of the both classified and unclassified reads which did not match gene 

markers in the database. This was followed by a second analysis against the Bowtie2 indices to 

calculate relative abundance of bacterial-associated reads only using the flags --input_type 

bowtie2out, --t rel_ab, --ignore_eukaryotes, --ignore_archaea. The vOct22 Bowtie2 database 

available for MetaPhlAn4 was downloaded using the command: metaphlan --install --bowtie2db 

and used as a reference for taxonomic markers. To calculate the abundance of ARGs, we 

enumerated the reads per kilobase per million (RPKM) relative to the amount of detected 

bacterial reads in the sample. We derived this formula from Munk et al (28), but accounting for 

reads. The formula is as follows:  

𝐺𝑒𝑛𝑒 𝑟𝑒𝑎𝑑𝑠

(𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝑒𝑛𝑒, 𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒𝑠) × (𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑎𝑑𝑠)
× 109 

Filtered reads were first processed through KMA (257) using the AMR Finder Plus nucleotide 

sequence database to identify ARGs and virulence genes (258). ARGs were specifically subset 

from virulence genes based on classification from the Bacterial Antimicrobial Reference Genes 
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database for sequences related to antibiotic resistance (PRJNA313047). Unique genes were 

categorized based on annotated gene symbols and unique alleles were categorized based on 

sequences matching to present NCBI nucleotide reference sequences. Results were included if 

the detected allele had a template coverage greater than or equal to 60 percent and a query 

identity greater than or equal to 90 percent, and if they had at least three reads assigned. The 

results file was then joined with a .mapstat file generated by KMA to quantify the number of 

reads assigned to each reference sequence. To contextualize the reads relative to bacterial 

content, the filtered fastq files were also run through Kraken2 (259) using the flags --paired, --

report, --classified-out, and --unclassified-out, and referencing the Kraken2 Standard database 

(26 September 2022) to obtain the number of reads rooted at the bacterial level and the number 

of unclassified reads, or reads unable to be identified using the database classifications, in the 

sample. RPKM was calculated for each ARG allele.  

 

Statistical analysis of species and ARG diversity  

Final statistical analyses were conducted in R (260). Continuous values and counts of 

discrete data were assessed for normal distribution. The Wilcoxon rank sum test in the stats 

package (v4.0.4) was used to compare human and lemur metagenomes differences in median 

total detected reads, proportion of reads mapping to higher order taxa, Shannon indices for 

bacterial species and ARG allele diversity, RPKM of ARG reads mapping to specific antibiotic 

classes, and median number of species per sample. Alpha and beta diversity metrics were 

calculated using the vegan package (261). Shannon diversity was calculated based on the 

presence and absence of detected species or alleles. For this system, two measures of alpha 

diversity were used to help to capture a better understanding of detected species. The Shannon 
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diversity index allows for comparison of both the richness and evenness of the community 

structure thus relying on both the abundance and the overall number of species, while Chao1 

gives a greater weight to low abundance species present in a sample to help predict the likely 

number of missing species (Bo-Ra Kim et al., 2017). Principle component analyses (PCA) were 

performed on the relative abundances of species and RPKM values of ARG alleles transformed 

into centered log-ratios to account for the compositional nature of metagenomic data (262). 

Subsequently, Aitchison distance was calculated to assess between-sample differences in 

species/allele diversity. Chao1 and rarefaction statistics were calculated using the iNext package 

using the sum of the presence of each species or allele detected within human or lemur 

microbiomes as input (263).  

 

Differential gene abundance analysis 

Differential gene abundance between humans and lemurs for antibiotic resistance genes 

was conducted on the read counts, summarizing the allele hits to the level of the gene using 

ALDEx2 (v.1.35.0) (262). First, the raw read counts were transformed using the command 

aldex.clr(), with Monte-Carlo sampling set to 128 and the measured denominator set to “all”.  To 

account for both composition and scale in the read counts, uncertainty was added to the model 

using a gamma value of 0.5. A sensitivity analysis for significance of unique features at various 

values of gamma was conducted for reads summarized at the gene level and per corresponding 

antibiotic class associated with resistance (See Supplemental Figure S3) (264). To statistically 

evaluate the transformed abundances, aldex.effect() and aldex.ttest() were used to perform 

Welch’s T-test and a Wilcoxon rank sum test, and corrected for false discovery using Benjamini-

Hochberg corrected p-values (<0.05). Final results were plotted using the aldex.plot() function.  
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Sequence comparison of antibiotic resistance genes shared between humans and lemurs 

AMR Finder Plus (258) was used to identify contigs with ARGs. Contigs with the same ARG 

detected in at least one human and one lemur microbiome were extracted from their sample 

assembly using bedtools getfasta. These sequences were used to create a custom nucleotide 

BLAST database (v2.12.0). Each sequence was then queried against the database to identify the 

pairwise percent identity of each gene compared to other detected genes of the same type. A 

second BLAST comparison was conducted by extracting the 1000 base pair regions before and 

after ARGs commonly present in human and lemur samples, and the pairwise percent identities 

were quantified. To gain additional insight into the genomic contexts of highly similar ARG-

regions, ARG-bearing contigs were extracted from the assemblies and annotated using Bakta 

(v1.7.0) (Schwengers et al., 2021). For ARG-regions in which commonly found ARGs between 

pairs of subjects had greater than 90% similarity, the gene synteny of the annotated contigs was 

inspected and visualized using Gggenes (265).  

 

Results 

The diversity and abundance of bacterial species and ARGs differ between 

humans and lemurs.  

A total of 73 human-derived samples and 15 lemur-derived samples were selected for 

shotgun metagenome sequencing. Of these samples, 57 human samples had greater than or equal 

to 1 x 106 total reads after decontamination of human reads. After mapping to the lemur genome 

assembly, 11 lemur samples had greater than 1 x 106 reads for analysis. The metagenomes of 
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these 68 samples were further characterized for bacterial species abundances and presence of 

antibiotic resistance genes.  

There was a higher total number of reads in lemur samples compared to human samples 

after decontamination (Fig. 5.1A) which could not be explained by a large number of small reads 

present. Although both human and lemur read libraries had average read lengths within an 

acceptable range for downstream mapping and assembly, the average sequence length for lemurs 

was higher and tightly ranged (147 to 139 reads) (p<0.05) (Fig. 5.1B). For the majority of human 

and lemur microbiomes, the most abundant taxa identified belong to kingdom Bacteria (Fig. 

5.1C). However, lemur metagenomes noticeably contained higher relative abundances of reads 

unable to be classified taxonomically. A comparison of unclassifiable reads to taxonomically 

classified reads did not show significant differences in GC content, Q30 score, average length, or 

minimum length (Fig. S5.2).  This suggests that much of the diversity of taxa in lemur 

microbiomes is not represented even in large database collections used for widescale taxonomic 

composition classification.  
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Figure 5.1. Human and lemur metagenomes are different in the classification of sequence 

reads to higher order taxa. Sequences were filtered for adaptor sequences, tandem repeats, and 

reads mapping to human or lemur reference assemblies. (a) The number of total read pairs is 

significantly higher in lemur fecal metagenomes compared to human fecal metagenomes 

(Wilcoxon Rank Sum, p<0.05). (b) The average length of reads within the lemur fecal 

metagenomes is higher than human fecal metagenomes (Wilcoxon Rank Sum, p<0.05). (c) The 

relative abundances of kingdom-level taxa was quantified using MetaPhlAn4. Reads unable to be 

identified as belonging to a higher order were designated as “unclassified.” In general, humans 

and lemurs have the majority of the abundance of taxa assigned to Bacteria or Unclassified; 

however, lemur fecal metagenomes are characteristically higher in the abundance of unclassified 

reads. 
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    Although different in rank of abundance, human and lemur fecal metagenomes include 

a high abundance of bacteria from the phylum Bacillota (Firmicutes), and human metagenomes 

are also dominated by Bacteriodota. Several lemur samples are contrastingly dominated by 

species from Pseudomonadota (Proteobacteria) (Fig. 5.2A). Humans and lemurs shared 55 of 

452 known bacterial species (12.2%) that had at least 0.01% abundance within a single 

metagenome and occurred in at least 10% of all samples, suggesting there are many rare species 

detected in the system.  The Shannon index between the two groups was higher in humans 

(P<0.05) (Fig. 5.2B). Distinct clustering by sample source was also observed when examining 

the compositional differences between sample sources. Lemur microbiomes grouped more with 

other lemur microbiomes without overlapping human microbiomes, and human samples 

overlapped regardless of the village of residence (Fig. 5.2C). By Chao1 estimates, when 

considering detectable species including those in the lowest abundance (<10% of samples) there 

were fewer species able to be sampled from lemurs (590, 95% confidence interval (CI): 496-729) 

compared to humans (1091, 95% CI: 1057-1144) (Fig. 5.2D).  
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Figure 5.2. Bacterial species communities are distinct between humans and wild lemurs.  

(a) Relative abundance of bacterial phyla detected in human and lemur derived metagenomes. (c) 

Principle component analysis using Aitchison distance on centered log-ratio transformed 

abundances of individual species stratified by the home village for each human sample or if it was 

sourced from a lemur, and demonstrates component dissimilarity between human and lemur 

samples. (c) The Shannon diversity indices of the species detected in human and lemur 

metagenomes show a difference in the mean value between host sources. Statistical significance was 

determined by Wilcoxon rank sum analysis at p<0.05. (d) Rarefaction curves of human- and lemur-

associated bacterial species, where the x-axis is the sampling effort of available individual bacterial 

species and the y-axis is the estimated richness. 
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 A different pattern emerged when examining the overall composition and abundance of 

ARGs detected in human and lemur metagenomes. We identified reads mapping to 107 unique 

ARGs, which comprises 217 unique alleles. Two lemur samples had no reads matching ARGs in 

our database. Individual microbiomes varied in abundance of ARGs grouped by the class of 

antibiotic to which they confer resistance, but all human microbiomes carried genes associated 

with tetracycline and trimethoprim, and 55/57 human metagenomes carried resistance genes to 

beta-lactam antibiotics. In contrast, there was no one shared antibiotic class among detected 

ARGs in lemur microbiomes, but all classes seen in human microbiomes were represented in at 

least one lemur microbiome (Fig. 5.3A). Lemur microbiomes had no statistical difference in 

ARG richness compared to human microbiomes (P<0.05) (Fig. 5.3B). Still, lemur microbiomes 

clustered distinctly in their ARG diversity from human microbiomes, however human 

microbiome ARG profiles from all resident villages overlapped with one another (Fig. 5.3C). 

Concordantly, rarefaction estimates, alongside Chao1 calculations suggested that the estimated 

maximum number of ARG alleles to be sampled are likely similar for lemurs (201, 95% CI: 166-

264) and humans (206, 95% CI: 160-302) (Fig. 5.3D).  
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Figure 5.3. Antibiotic resistance gene abundances are distinct between humans and wild 

lemurs. (a) Relative abundance of genes by their associated antibiotic resistance classes detected in 

human and lemur derived metagenomes. (b) Principle component analysis using Aitchison distance 

on the centered log-ratio tranformed abundances of unique ARGs stratified by the home village for 

each human sample or if it was sourced from a lemur show a distinct grouping of lemur samples 

with other lemurs and separate from humans. (c) Shannon diversity index of the unique ARG alleles 

detected in human and lemur metagenomes and demonstrates a difference in mean values between 

host source. Statistical significance was determined by Wilcoxon rank sum analysis at p<0.05. (d) 

Rarefaction curves of human- and lemur-associated ARG alleles, where the x-axis is the sampling 

effort of available alleles and the y-axis is the estimated richness. 

 

 Five antibiotic resistance genes were in significantly greater abundance among human 

microbiomes compared to the lemur microbiomes (Fig. 5.4A-C). These genes consisted of dfrF 

and five separate tetracycline-resistance genes, tet(32), tet(40), tet(W), and tet(Q). The effect size 
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of the difference remained significant for these genes when considering the difference in 

variance in the data points between the two groups (Fig. 4.4B).  When grouped by associated 

antibiotic class of resistance, no associated class groups were differentially abundant between 

humans and lemurs (Fig. S5.3).     

 

 

Figure 5.4. Antibiotic resistance genes vary in abundance between human and lemur 

microbiomes. Raw read counts summarized at the gene level were compared for differential 

abundance using ALDEx2. Red triangles indicate a significant difference in abundance by an effect 

value >2. Blue outlining indicates 95% confidence that the value does not intersect zero. Black dots 

indicate rare and non significant genes while gray dots signify abundant but non-significant genes (a) 

Bland-Altman plot demonstrating the relationship between the difference between groups in median 

centered log-ratio (clr) values of each gene and the relative abundance of those genes. (b) An effect 

plot of the difference between groups in median clr values of each gene and the difference in 

dispersion, with the dotted lines representing values where dispersion and difference are equal. (c) A 
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volcano plot demonstrating the abundance in the clr values of each gene. The dotted x-intercept line 

indicates values at a posterior predictive p-value of 0.001, and the y-intercept line indicates a 1.5-fold 

difference in log abundance. 

 

Humans and lemurs share highly conserved integron-associated ARGs.  

To capture more specific ARG dynamics between humans and lemurs, we quantified and 

compared assembled ARGs that were detectable in both human and wild lemur metagenomes. A 

total of 14 ARGs were detected in common between human metagenomes, with all 57 human 

metagenomes sharing at least one gene with at least one of three lemur metagenomes.  

 ARGs of the same type were compared between each metagenome containing that gene. 

Overall, ARGs from different metagenomes were highly similar, with a median nucleotide 

sequence identity of 99.51 (98.55-99.79) for human-human, 99.67 (99.24-100) for human-lemur 

pairs, and 100 (100-100) for lemur-lemur comparisons (Figure 5A). Similarly high levels of 

sequence identity were found within each ARG (Fig. 5.5B). The largest ranges of diversity were 

among pairwise comparisons of tet(O) and tet(Q) genes, respectively (Fig. 5.5B). We also 

compared the genetic context surrounding the shared ARGs to determine the similarity of 

genomic context regardless of ARG sequence conservation. Sequence identity of the 1000 base-

pair flanking regions were also nearly identical between samples. Specifically, the regions 

around four ARGs (aadA1, dfrA1, qacEdelta1, and sul1) were from seven human metagenomes 

and one lemur metagenome showed highly similar pairwise sequence comparison of the human-

human and human-lemur source pairs (Fig.5.5C). Only one gene, lsa(D), had a pairwise identity 

score less than 100 percent (Fig. 5.5D).  
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Figure 5.5: ARGs shared between humans and lemurs are highly conserved. (a) Percent 

identity for each ARG that was detected in at least one human and one lemur. Pairwise comparisons 

of the gene source, human or lemur metagenome, was calculated using blastn where positive 

sequence hits were at least 90% of the query length. (b) The pairwise source comparisons of the 

percent identity were then stratified by the specific ARG query. (c). Percent identity for the 1000 

base pair region before and after the query gene of interest that was detected in at least one human 

and one lemur. Pairwise comparisons of the ARG-region source, human or lemur metagenome, was 

calculated using blastn where positive sequence hits were at least 90% of the query length. (d) The 

pairwise source comparisons of the percent identity were then stratified by the specific ARG-region 

query. 
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Because the contexts of these genes were so well conserved, we investigated the gene 

synteny to understand if there were shared AMR genes in close genetic proximity. ARGs that 

were co-occurring within assembled contigs included dfrA1 with aadA1, sul1, and qacEdelta.  Of 

the eight samples containing dfrA1, seven contained a conserved aadA1 gene and one sample 

had a broadly categorized aadA region (Fig. 5.6). Five of these samples had a sul1 downstream 

of aadA1, and three contained intI1 (encoding class 1 integrase), including the single lemur 

sample. Of the seven human microbiomes containing a dfrA1-aadA pairing, residents were from 

four different villages, with one pairing from the same household. The single lemur sample was 

collected closest to a village that none of the human residents carrying this cassette were from.  
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Figure 5.6. Human and lemur dfrA1-aadA1 cassette synteny. Contigs containing highly similar 

dfrA1 and aadA1 genes were compared from one lemur and four human samples. Sequence 

annotations were identified using Bakta. Samples from individuals are represented for each line and 

annotated with the individual and geographic source. Genes present on two or more contigs, or 

antibiotic resistance-associated genes labeled and represented by colored arrows. Other detected 

genes unique to the contig are labeled as "other". Sequence coordinates are aligned relative to the 

present dfrA1 gene on their respective contigs. Arrows indicate the strand direction of the detected 

gene. 
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Discussion 

To our knowledge, this is the first study to directly compare the antibiotic resistance 

profiles from human and wild lemur microbiomes from the same geographic space, thus 

providing further insight into antibiotic resistance gene flow between residential human and 

wildlife host populations. We quantified and compared the bacterial species and ARG 

abundances present in human and lemur metagenomes and found their overall profiles to be 

distinct in both bacterial species and ARG distribution, while human microbiomes from different 

villages were largely comparable to one another. We also detected some differentially abundant 

genes among human microbiomes conveying resistance to tetracycline and aminoglycosides. 

Lastly, we assessed the genomic similarity of ARGs shared between human and lemur 

microbiomes and found a shared multidrug resistant mobile gene cassette.  

Understanding the bacterial composition of microbiomes from hosts within a larger 

ecological community helps to establish the biological baseline for future surveillance of 

spillover. In this analysis, humans and lemurs were largely distinct in their microbiome species 

and ARG abundance and distribution. We found that lemur microbiomes were far less rich in 

known bacterial species compared to human microbiomes despite the quantity of available DNA 

in the sample. This is likely explained by a limitation in the detectability of uncharacterized 

species in our chosen database, which also highlights a larger issue of the current state of curated 

taxonomic databases available for metagenomic analysis. Even with this bias, though, it is 

reasonable to conclude that the populations from wildlife, being under-sampled across studies, 

would likely drive this difference even further from humans.  

In contrast the Shannon index for ARGs was not different between lemur microbiomes 

and human microbiomes, and the number of ARGs detected between the two groups were highly 
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similar. Humans and lemurs shared proportionally few types of ARG alleles, but both groups had 

a similar absolute number of ARG allele types detected. The diversity of alleles suggests less 

detection bias that would be preferential toward human microbiomes. It is still possible that the 

full scope of ARGs is yet to be known (243), but in this system there is evidence to suggest that 

at least what can be known about antibiotic resistance genes is comparable between humans and 

wildlife. The structure of resistomes within the gut microbiomes of vertebrates outside of 

humans are influenced by numerous host-associated factors and environmental factors, including 

habitat and the threatened status of the wildlife population (236). For this study, mouse lemurs 

were sampled along roadways specifically to detect patterns in the resistomes in an area of 

human and wildlife crossover. The unique life histories and diet of non-human primates from 

human communities would lead to an expectation that gut bacterial species and present ARGs 

are likely distinct, as has been demonstrated with comparative analyses of the gut microbiomes 

of humans and non-human apes (266). Our study is consistent with this pattern when comparing 

human to sympatric lemur microbiomes, as the lemur microbiome is largely divergent in species 

and ARGs present. Nevertheless, the presence of highly conserved ARGs could be the result of 

shared host traits selecting for specific microbial functions within the gut or from shared lineages 

acquired from common overlapping environment. 

Some antibiotic-resistance genes were more abundant among humans, though resistance 

to no one class was more abundant. It is notable that four of the five differentially expressed 

genes belonged to tetracycline-resistance genes and one aminoglycoside-resistance genes. 

Phenicol and tetracycline class drugs have been used extensively in agriculture (36) and thus 

could end up trickling into natural settings, impacting how often wildlife become exposed to 

these ARGs compared to humans. The synergy of clinical and agricultural use could explain why 
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there are overlaps in top abundance. For example, Since 2009, the World Health Organization 

has recommended that sulfamethoxazole + trimethoprim, doxycycline, or tetracycline be used as 

first-line choices for pre- and postexposure treatment to Yersinia pestis, the pathogen causing 

plague and which is endemic in Madagascar and responsible for periodic large outbreaks, 

including during 2017 (267,268). The diversity of region-specific usages of antibiotics suggests 

that there is likely no single pressure resulting in the maintenance of the most abundant ARGs, 

but it does call for a One Health awareness toward the stewardship of different classes so that 

these drugs can remain effective for interventions, such as management of plague.     

Fourteen assembled ARGs were shared between humans and lemurs, though there were 

69 distinct ARGs among assembled metagenomes. Presence of shared genes is a signifier of 

potential ARG reservoirs for human and agricultural pathogens. Among the shared ARGs, 

several have been detected in pathogen samples with phenotypic resistance to their 

corresponding antibiotic class, including aph(3’’)-Ib (269), aph(6)-Id (270), qacEdelta1 (37), 

and cfxA6 (271). DfrA1, aadA1, aph(3'')-Ib, aph(6)-Id, all have a high risk of contributing 

currently or in the future to pathogen multidrug resistance (244). The lsa(D) gene, responsible 

for lincosamide resistance, was detected in diseased farm-raised fish and attributed to emerging 

fish pathogens (272). We did not identify a clear village-level association between lemurs and 

humans that had these shared genes. Therefore, the high similarity could be explained by strong 

selective pressures within the environment to conserve these gene structures, or it could be 

explained by ongoing drift of bacteria horboring these genes moving between human and lemur 

populations via uncharacterized pathways, such as river systems or intermediary contact between 

wildlife and other domestic or peri-domestic animals. Many of these genes have a prevalence in 

other global areas where genetic sequences of ARGs sourced from different metagenomes are 
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also highly conserved (273). For either scenario, detection of clinically significant ARGs in wild 

lemur populations that may not be directly interacting with human communities signifies just 

how diffuse the community resistome is and may make combating drug resistance more difficult 

as human and wildlife are brought more and more into contact. 

We did identify a common class 1 integron in close genomic context with multiple drug 

resistance genes present in several human and one lemur microbiome. Common characteristics 

of a class 1 integron are encoding of intI1 at the 5’ coding end, followed by with a variable 

cassette region and then encoding of qacEdelta and sul1 at 3’ coding sequence (274). Other 

globally distributed gene cassettes harboring trimethoprim-resistant dfrA and aminoglycoside-

resistant aadA genes are known to be associated with class 1 integrons (275–277). Specifically, 

these gene cassettes have also been found in known patient samples in Madagascar’s capital 

Antananarivo among ESBL-producing Enterobacteriaceae, with the most frequent cassette 

pairing being drfA17-aadA5 (275). Contrastingly, we did not identify this specific cassette 

among any of the microbiomes under consideration in this study from our rural community 

members. The dfrA1-aadA1 cassette among our study samples is dispersed between several 

members of different villages, though more investigation is necessary to understand if its 

prevalence is hallmark of the specific region. Class 1 integrons harboring dfrA1 can move 

between species of gram negative organisms in vivo (278). In the context of our study and the 

growing body of evidence that human-driven antibiotic use drives higher antibiotic resistance 

profiles in animals and in wildlife, we should be concerned that even non-agriculture animals are 

maintaining highly similar ARGs to humans in their microbiomes. Stewardship efforts necessary 

for this system may focus on closing off pathways between human-developed space and wildlife 

and conservative use in agriculture. Detection of ARGs through metagenomics or other 
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screening is a useful tool for increased surveillance efforts, but it will take additional research to 

develop meaningful relationships between genetic abundance and the frequency of spread 

between species or changes in phenotypic resistance to antibiotics. Optimistically, the advent of 

technologies such as long-read sequencing offer a compliment to identifying species genomes 

directly as sequences and as reference scaffolds for short read sequences. Given that antibiotic 

resistance is often a trait maintained when bacteria are consistently exposed to antibacterial 

chemicals, more work must be done to monitor whether individual genes are continually being 

reintroduced to wildlife metagenomes from humans to better understand how stable the lemur 

metagenome niche is as an ARG reservoir.  

 

Conclusions 

In this study, we took a metagenomic approach to characterize ARG presence in a 

specific ecological system and uncover previously unexplored comparisons between humans and 

wildlife. Our observations add to the growing effort to characterize the global extent of ARG 

presence, the range of which is still limited especially in lower- and middle-income countries. 

These findings reflect some known global patterns of drug resistance prevalence and highlight 

unique patterns for this geographic area. This research supports a continued effort to monitor 

antibiotic usage for humans and in agriculture, especially effects on non-pathogen members of 

microbiomes, and their further dissemination into the ecosystem. As more research reveals the 

extent of ARG transmission through an environment, it is evident that there is an increased 

needed to investigate intermediary processes beyond individual players’ proximities to one 

another that can lead to drug resistant gene movement through ecological space.  
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carry out this study (reference number IRB00093812) 
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DNA Deposition 

The following information was supplied regarding the deposition of DNA sequences: 

The metagenomic sequence reads for this project are available in the Sequence Read Archive: 
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Data Availability 
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available on GitHub and Zenodo: https://github.com/bmtalbot/Humans_and_Lemurs_2017.  
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Supplementary Material 

 

Figure S5.1. A schematic of the overall bioinformatic workflow of sampled human and lemur 

metagenomes.  

 

Quality comparison of Kraken2-classified Lemur microbiome metagenome reads 

The nucleotide sequence quality between unclassified and classified reads was compared to 

understand its impact on categorize metagenomic reads into taxa for lemur sequence. Reads were 

run through a comprehensive Kraken2 database (PlusPFP release date 2024-01-12) which includes 

taxa Refseq markers for bacteria, human, virus, plasmids, plants, protozoa, fungi, and UniVec_Core 

sequences. Kraken2 was run with the flags --unclassified-out to generate unclassified reads from 
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each read pair sequences, --classified-out for the classified reads per paired sequence,  --report to 

generate the quality report, and --paired to indicate the two paired end sequences for each sample. A 

quality report was produced summarizing the paired-end sequences of each sample.  

 

 

 

 

Figure S5.2. Comparison of quality metrics between classified and unclassified reads from lemur 

microbiomes. Boxplots were generated from the values of each sequence of a read pair per sequence 

after analysis with Kraken2 against the Kraken PFP database for the following four metrics: (a) The 

GC percentage per sequence, (b) percentage of reads at Q30 score, (c) the average Phred sequence 

quality, and (d) the minimum sequence length. 

 

Evaluation of differential abundance calculations using ALDEx2 for ARGs grouped by gene 

families and primary antibiotic class association 

Raw reads of ARGs were assessed with ALDEx2 to identify differential gene abundances between 

humans and lemurs, accounting for sparseness and composition in the data. Differential abundance 
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grouped at the gene family and the antibiotic class the gene is associated with conferring resistance 

against. The Aldex2 central log transformation (clr) function was used to generate final analyses.  To 

test the effect of scaling on the outcome of differential abundance, a sensitivity analysis was 

performed using the function aldex, which introduces different levels of uncertainty using the 

gamma parameter. 

 

 

Figure S5.3. Sensitivity of detecting significant differential abundances at different levels of 

uncertainty using ALDEx2. Raw read abundances of ARGs were summed by either antibiotic 

class associated with resistance (a-b) or by the gene family associated with the positive allele hit (c-d). 

Plots were generated using the plotGamma function in ALDEx2 (v.1.35.0). (a) The percent of 
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significant entities for reads grouped by antibiotic class was not significant for any value of gamma. 

(b) Individual lines indicate unique entities of antibiotic classes and their corresponding effect size of 

differential abundance at different values of gamma. Gray indicates that an effect size is not 

significant. (c) The percent of significant entities for reads grouped by gene family was significant 

between gamma values of 0 and 3. (d) Individual colored segments indicate significant effect sizes 

for differential expression of eight unique gene families up through a gamma value of 1. Five entities 

remain significant up through gamma = 2, and two remain positive up through gamma = 3  
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Chapter 6: Conclusion   

Summary and Discussion  

The future of pathogenic disease detection and transmission relies on revealing pathogen 

genetic and evolutionary biology through genomics. Therefore, the goal of this thesis was to test the 

boundaries of genomics for pathogen surveillance in and outside of healthcare settings and identify 

opportunities to expand our understanding bacterial pathogen host adaptation. In Chapter 2, I 

advocated for a reconsideration of “SNP threshold” as “SNP ranges” to better account for the 

diverse evolutionary forces that produce genetic differences. In Chapter 3, I tested the strength of 

association between genetic distance and hospital exposure and identified stable clusters of putative 

transmission of MRSA. I looked at the issue of genetic clustering of MRSA strains further in 

Chapter 4 by identifying risks of relapsing strains and differentiating new infections from persistent 

infections occurring for the same host. Finally, in Chapter 5 I described the antimicrobial resistome 

for an under sampled geographic area and revealed that there are highly conserved AMR genes 

shared between humans and lemurs. Collectively, these chapters demonstrate how genetic distance, 

content, and context reveal the likelihood of bacterial strain transmission and persistence.   

Mutations (in the broad sense DNA changes including SNPs, indels, and inversions) is the 

fundamental mechanism of generating genomic change in bacteria, which is why de novo mutation 

accumulation is foundational for estimating the amount of change at a calendar scale for 

epidemiological investigations. Mutation rates are dependent on the fidelity of the cellular replication 

machinery. Whether a new mutation ultimately survives in a bacterial population (“fixation”) is 

dependent on the interplay of strength of selection and the chance of stochastic loss. Building 

phylogenies based on number of mutations accumulating at homologous sites common across 
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bacterial genomes (the “core”) is highly reliable for inferring evolutionary divergence, and this 

principle grounds for each chapter. However, comparative genomics at increasingly short time scales 

(days, for example) reveal evolutionary patterns associated with non-neutral selection for traits that 

affect pathogenesis.  Additionally, there may ways in which the molecular clock can be confounded 

because of the genetic architecture and behavior of bacterial chromosomes, including selection for 

mutations that affect the DNA replication rate and homologous recombination which can bring in 

multiple novel genetic changes all in one event.  In Chapter 3 we demonstrated that core SNP 

distances were stable when the population diversity was considered and showed that epidemiological 

exposures were more predictable among isolates with SNP distances smaller than 13. However, we 

also noticed that many clusters of a similar difference in time having widely different cumulative 

pairwise distances. Therefore, our evidence supports that SNP accumulation is a good marker for 

between host exposures, but more work is necessary to reveal associations of disease and 

transmission at even smaller time scales than our investigation period. One potential way to 

investigate time and SNP distance is to collect more infection colony samples to account for the 

genetic diversity. It is also important to monitor how the individual host factors can shift the 

strength of evolutionary forces driving genetic differences. In Chapter 4, we were able to look more 

closely at lineages that continually seed the blood of the same host and cause relapse and identified a 

trend in positive selection, not just neutral accumulation of SNPs. It is also documented that an 

invasive state can increase the mutation rate (80) and can result in specific mutations that are specific 

to pathogenesis (169). All the isolates in this study were derived from an invasive state, blood, and 

we detected convergent mutations in genes associated with bacteremia and antibiotic resistance. 

Therefore, non-neutral changes are important for identifying potential risks of relapse within a 

patient and could be used as markers that help reduce the burden of disease that could contribute to 
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future outbreaks. We were limited to single bacterial isolates at each time point and likely missed 

some of the standing variability within a patients’ infection. In a healthcare setting, it is possible to 

collect more than one isolated colony from a single patient infection and doing so can help pick up 

on rare genes that are of clinical interest for patient care and infection prevention within the clinic 

(279). Altogether, future models that generate thresholds of relatedness for cluster detection should 

incorporate information about expectations of the standing genomic variation (“the cloud of 

diversity”)(79), screen for potential host-adaptation, and consider the patient state (a carrier or 

someone experiencing disease) to better identify clusters of infections with common epidemiological 

linkages.  

Throughout this research, I demonstrated that genomic and metagenomic technologies are 

useful for simplifying signatures of pathogen detection. In a clinical setting, diagnosis of relapse 

requires many different pieces of information related to exposures, medical history, and is subject to 

differences in clinical discretion. The lack of concordance between clinical and genomic definitions 

of relapse in Chapter 4 demonstrates that often clinical information alone is not accurate enough to 

identify strains that caused a previous infection for the same person. Our evidence suggests that 

combining genomics with clinical information can help reduce the noise of some more complicated 

aspects of diagnosis or clue-in clinicians to persistent infections when the original infection source is 

unknown.  

The relationship between resistant organisms spreading between humans and wildlife is an 

important topic, especially as changes in climate and land use change the geographic movement of 

humans and wildlife. In Chapter 5, we were limited in how we could characterize the overall 

network of interactions that could result in shared AMR genes in humans and lemurs. However, the 

complexity of this community network is not unlike the complexity of hospitalized patients who 
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seem to cluster with related infections but do not have an apparent overlap, or who have loose 

overlaps that could suggest transmission. Given that there is increasing interest in using 

metagenomics at a diagnostic level, including the ability to detect novel pathogens and a lack of need 

to produce cultures, much can be learned about effective methods and limitations from studies 

involving unique ecosystems like the one in Chapter 5.  For example, there is still much that needs 

to be done to relate the quantity of AMR genes detected to species spread, pathogenesis, and 

phenotypic expression. How to best normalize and quantify metagenomic sequences, and how many 

to sample, is still an ongoing dialogue.  

As a technical argument, this body of work largely supports the impressive detective power 

that genomics has for clinical and public health practice. Why is it that the technology is not widely 

adopted for all pathogens in all spaces where disease detection occurs? Like the adoption of most 

technologies, it’s a combination of issues. Cost and access to equipment still play a role in how much 

sequencing can be done, even as the overall price of next-generation sequencing technologies has 

decreased. The expertise to understand how to best use and analyze data also plays a role. Expertise 

in both evolutionary principles and comparative genomics is not typically in core curricula of 

accredited Schools of Public Health (280). The information in Chapter 2 offers an opportunity to fill 

in gaps in understanding for public health practitioners about biological mechanisms for genomic 

differences. Furthermore, sequences alone are not enough to come to good scientific conclusions or 

important decisions on healthcare. Infrastructure, including databases, information management 

systems, and server capacity, also impact who can use genomics for public health practice. Chapters 

3, 4, and 5 all focused on sequences from a single community, but to answer important comparative 

analysis questions within each chapter, it was necessary to draw upon the curation of reference data 

available in public databases. As a global community, concerted efforts have been made to create 
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large databases of sequences, which offers ongoing opportunities to query these databases and look 

for larger trends in pathogen spread and convergence of rare or complicated traits across species 

and/or strains. This requires interdisciplinary teams and increased support for technical 

infrastructure globally so that communities can put these data to public health use. 

Future Directions 

There is still much that can be learned about the genomic changes that occur during disease 

progression. Identifying or connecting phenotypic differences to genomic variation is frequently a 

vital next step when significant genetic mutations are detected. In this research, relapse of infection 

is a complex trait that we demonstrated does not have one singular strain background, nor one gene, 

and occur in different host niches, but nevertheless there is a general trend of positive selection on 

the whole genome. We also collected a comprehensive list of specific genes with known associations 

with bacteremia. This suggests that, overall, relapsing lineages, which are these persistent 

populations closely associated with the host, are responding and adapting in important ways that 

allow for ongoing survival. Two potential future directions for this work include exploration of 

changes in expression of genes and statistical modeling to identify environmental and genetic 

combinations that predict relapse.  

To test if there are expression differences, a set of phenotypic tests could be done to assess 

the relationship between the mutations that arose in the same genes for multiple lineages. Some of 

these mutations occurred in correlation with previous antibiotic exposure and are known to confer a 

resistance phenotype. Others, however, did not demonstrate a specific association to a resistance 

phenotype. To test if these mutations confer different resistance profiles, future studies could be 

designed to challenge the ancestral strains without the mutation and the progeny strains with the 

mutations with different antibiotics to see if there is a difference in growth or survival. Several other 
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genes also had mutations in multiple relapse lineages that are involved in virulence directly or in 

regulatory pathways. Here, future work could assess the association between these mutations and 

virulence expression by comparing them to strains that do not carry these mutations. Traits of 

special interest would be growth rate and important traits for persistence that contribute to the 

evolution of drug resistance, such as biofilm formation and adhesion. 

Another opportunity for advancement is to perform a boosted regression tree analysis to 

assess the combination of pathogen and host traits that predict relapse infection. Boosted regression 

trees are useful for predictive analysis because they combine tree-based analysis with ensemble 

models.  Decision trees are useful when there are complex or non-linear relationships between the 

predictors and the outcome of interest, and because their outcomes are easier to interpret without 

extensive training in statistics or mathematical modeling. Ensemble approaches, then, combine 

smaller, weaker “building blocks” together to create a new predictive model with more power. They 

work well for scenarios where the individual components contribute a weak effect (281). Boosted 

regression trees for this data would be useful not only based on the biological and clinical trends that 

I identified, but also because exploring this space can test the method’s utility for downstream use 

and interpretation in a clinical setting, where quick decisions need to be made for patient care and 

infection control. Other machine learning approaches have shown utility in a clinical setting, 

especially for cluster detection (7).  I have so far tested a boosted regression model to assess the 

demographic characteristics from patient data and in the future will add information about MRSA 

isolate strain and mutational profiles.    

 The evolution of pathogenesis and disease ecology are fundamental to epidemiological 

practice. Genomics and genetic sequencing expand the availability of information that practitioners 

can use to make epidemiological inferences. The expansion of larger sequencing datasets means that 
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scientists can screen for convergence of disease-associated traits across a diverse landscape of hosts 

and environments. Future work should focus on evaluating and curating these data so that we can 

make new predictions about disease and find new solutions to prevent illness globally.  
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