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Abstract

Genomic epidemiology of bacterial pathogen
transmission, persistence, and resistance

By

Brooke Morgan Talbot

This dissertation broadens the application of evolutionary concepts within applied epidemiology to
enhance and go beyond traditional case detection and diagnostics. It aims to identify the strengths and
limitations of genomic approaches when paired with clinical and epidemiological data. I use
methicillin-resistant Staphylococcus anrens (MRSA) bloodstream infections as a model for exploring
within host and between host pathogen evolution and to test the capacity of single species comparative
genomics to detect epidemiological linkages. I also expand on the relationship between genetic
distance and spread using a metagenomic analysis of antimicrobial resistance (AMR) genes in two
different colocalized hosts, humans and gray mouse lemurs. First, I critically evaluate the use of single
nucleotide polymorphism (SNP) thresholds in hospital-associated spread of S. aurens and Pseudomonas
aeruginosa. I argue that a one-size-fits-all approach for SNP difference is insufficient due to evolutionary
and ecological differences influencing genomic variability, even within the same epidemiological
setting. I next investigate whether patients experiencing MRSA bacteremia exist in genomic clusters
with epidemiological links based on SNP distance. I identified that genomic alignment strategy, and
the genetic background of strains affect the detection of SNP differences and that bacteremia patients
in clusters have common healthcare exposures long before illness onset. I then examine risk factors
for MRSA bacteremia recurrence and whether recurrent strains share convergent adaptive traits. I
show that in our study set most recurrent infections are relapses from previous strains. These relapse
lineages exhibit signatures of positive selection, particularly in genes associated with antibiotic
resistance and virulence. Finally, I characterized the AMR resistomes between human and lemur gut
microbiomes using metagenomics. The study identified distinct bacterial species profiles but shared
antimicrobial resistance genes between hosts and suggests that AMR gene spread is diffuse in this
system. This research demonstrates how genomics offers more precise and predictive public health
interventions by refining our understanding of pathogen transmission and recurrence and emphasizing
that evolutionary dynamics beyond neutrally evolving genes demark epidemiological linkages.
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Chapter 1: Introduction

Overview of Pathogen Genomic Epidemiology

Genomic epidemiology of infectious diseases seeks to use the detection of nucleic acids,
such as DNA and RNA, to measure disease distributions within a population and identify biological
mechanisms that underlie disease (1-3). The discipline draws from, but is distinctly separate from,
genetics, population biology, taxonomy and molecular biology, and is shaped by the availability of
technology, especially sequencing and bioinformatics (2). It is therefore vital that public health
scientists gain an educational grounding in bioinformatics, surveillance, and population genetics
together (4).

In recent years nucleic acid sequencing technology has become highly sensitive and
affordable, making genomic surveillance of infectious disease more accessible to public health and
clinical laboratories (5—7). The focus on nucleic acids allows for methods to be adapted to different
taxonomic groups, including bacteria, fungi, eukaryotic parasites, and DNA and RNA viruses
causing human disease. Previously, pulsed-field gel electrophoresis (PFGE), which fragments DNA
into specific patterns or “fingerprints,” was widely implemented for bacterial disease surveillance
and was the standard for matching infection isolates together to identify a possible transmission
event for nearly three decades (6). Though PFGE’s pattern matching is simple to interpret, it only
captures a small portion of genetic information from the bacterial genome. For bacterial isolates,
multilocus sequence typing (MLST) further increased the resolution of genetic similarity between
isolates and accounted for horizontally obtained DNA by comparing housekeeping alleles across

bacterial isolates (8). Both PFGE and MLST require up to date records of identified types, though,



and cannot readily provide information about drug resistance or virulence. To address the
limitations of earlier typing methods, scientists investigated the utility of whole genome sequencing
(WGS) for surveillance. Today WGS has superseded previous technologies as the primary analysis
for pathogen genomic epidemiology. The resolution of WGS supports the creation of highly
resolved phylogenies and detection of many genes of interest, including drug resistance genes, all
from a single sequence run. When analyzed isolates are then paired with high quality metadata,
including exposure histories, clinical history of disease, and other ecological factors, transmission
sources can be more accurately deduced.

Suites of bioinformatic tools and workflows exist to support full integration of genomics
into routine surveillance today, each of which can be tailored to the pathogen taxonomy of interest.
WGS of individual bacterial isolates (e.g. from DNA prepared from a single bacterial colony) is
normally paired with detailed comparative analyses within a single species for relating evolutionary
history with epidemiological causality. Metagenomics, where nucleic acids are isolated, amplified, and
sequenced from a raw sample rather than a pure culture, is used largely to characterize diversity of
microbial communities and for the unbiased detection of suspected disease-causing agents. Larger
systems which have already adopted WGS for routine genomic surveillance include PulseNet in the
U.S. to nationally reduce the burden of bacterial foodborne disease (5), and the global coalition
PHAA4GE supporting transmission tracking and contact tracing of SARS-CoV-2 infections (9).
Developments regarding the sequencing and surveillance of pathogens with more complex life
histories and genetics, such as Cryptosporidium species, are also underway (10).

The definition of “outbreak,” while understood to be some level of increase in detected
cases of illness over time, is dependent on the biology of the infectious agent, the environment in

which it is detected, the primary mode of transmission, and the prevalence of the disease caused by



the organism (11). For public health practice, scientists attempt to use comparative genomics as
central evidence for characterizing the etiology, pathogenesis, source/treservoir identity, circulation,
and transmission of a disease, as well as the development of vaccines and drug therapy (3). The
challenge of defining bacterial outbreaks with WGS is that the molecular evidence is not static and
exists on a continuum. That is, bacterial genomes are subject to many simultaneous pressures and
evolutionary forces that can alter how much genetic similarity will ultimately be detectable between
recently diverged isolates from a common source.

To understand how to detect and combat disease, it is imperative to understand the typical
ways these organisms reproduce, compete with other species, move through their environment, and
ultimately evolve in response to unique environmental pressures. For outbreak management,
comparing genomic markers to the known life history of pathogens helps resolve the likelihood of
transmission events when pathogens are endemic to an area, have high prevalence or are highly
clonal species. Infectious bacteria have unique evolutionary histories, reproduction mechanisms, and
prevalence from other pathogens. The diverse bacterial species that cause infection are of great
interest among basic researchers and public health practitioners. Some of the major contemporary
questions related to bacterial infections include how to relate mutation rate to epidemiological

timelines, persistence of infections, and the evolution of drug resistance.

Antibiotic Resistance as a Public Health Target

Monitoring the prevalence and emergence of drug-resistant pathogens is a major goal of
public health surveillance. Antibiotic resistance (AMR) in bacteria is defined as the ability of a cell to
survive and/or grow in the presence of normally toxic antimicrobials. AMR phenotypes are

common among all species of bacteria regardless of pathogen state. Antimicrobials are produced



naturally by fungi and other bacteria as a defense against other invading bacteria, and they are also
artificially synthesized for clinical use (12). Unique antibiotic molecules target essential physiology of
the bacteria, targeting cell wall and cell membrane growths, DNA replication, and protein synthesis
(13). Antibiotics can have a bactericidal effect on cells, i.e. causing rapid cell death, and they can also
be bacteriostatic, i.e. limiting growth and cell density in the population (13). Naturally occurring
antimicrobials may also act as signaling molecules for physiological changes and gene expression,
leaving much still to be explored about the anthropogenic impact on increased resistance in natural
populations (12).

Consequently, bacterial populations evolve traits that directly and indirectly resist antibiotic
chemicals. AMR can be intrinsic where an entire species is naturally resistant to specific classes of
antibiotics. Certain classes of antibiotics affect bacteria differently depending on the contents of
their cell walls and cell membranes (14). Efflux pumps protect bacteria by eliminating foreign or
toxic substrates that enter the cell and are often associated with broad spectrum resistance (14).
Bacteria can also acquire resistance relative to the adaptive landscape that certain members of the
species experience. Acquired resistance occurs because of de novo mutations on the chromosome
that promote a fitness advantage in the presence of an antimicrobial chemical, which is then passed
on to daughter cells vertically. These mutations remain within the cell lineage and are a concern for
chronically infected individuals (15,16). Bacteria also acquire antimicrobial resistance traits through
horizontal gene transfer (HGT), which is a major mechanism of broad resistance between strains
and different species of bacteria (17). Genes can move through transduction conferred by a viral
phage, transformation, or uptake of free DNA in the environment, and conjugation, which requires
cell-cell contact. Mobile resistance genes conferred by HGT are determined by the type of transfer

mechanism and cellular restrictions that allows a non-susceptible bacterium to incorporate or expel



foreign DNA (18), which in turn is affected by the spatial structure that allows for cellular
interaction. Therefore, not all bacteria will be able to acquire resistance in the presence of a resistant
cell. However, it is these mobile genetic elements that raise the most concerns for the widespread
treatment failure in currently treatable infections (17,19). The combination of intrinsic and extrinsic
factors leading to drug resistance has led to the emergence of multidrug resistance further
exacerbating the difficulty treating these infections (20-22).

Evidence shows that genes that confer AMR have long evolutionary histories independent
of clinical usage (14, 23). However, the massive application of antimicrobial agents since the early
20™ century in medicine and agriculture has resulted in a huge increase in resistant bacterial
pathogens of humans and animals alike (24). Bacteria must pass through several gauntlets to pass on
genetically acquired drug resistance: the volume of antibiotic exposure, survival in the infection
environment, susceptibility to HGT, and ease of transmission to another host. Overwhelmingly,
human activity determines how likely and how far drug resistance will spread, and this is largely in
the context of clinical and agricultural practices (12, 25). Poor penetration of an antibiotic into
infected tissue or incompletion of therapy allows for small subsets infecting bacteria to survive and
become cryptic reservoirs for possible onward transmission. Antibiotic tolerance, in which the time
it takes to kill bacteria at the same dosage of treatment, increases the likelihood of mutations
occurring that result in resistant subpopulations (26). Variation in the fitness effects of AMR genes
can also change their prevalence, especially if genes are co-selected with other traits. For example,
application of metals to agricultural soils can select for genetic elements that confer resistance to
metal exposure and antibiotics simultaneously (27). Antimicrobial exposure is critical for genetic
emergence of resistance in bacteria, but this selective pressure is not the only force that maintains

resistance genes in a bacterial population. Systems that are more open may cause the migration of



horizontally transferred genetic elements to populations with susceptible bacteria despite low
prevalence of antibiotics, such as the spread of genes from human-generated sewage into natural
water systems or soil (28-30). Differently structured healthcare systems can also vary in their
openness between the community and the healthcare setting, meaning that there is no one clinical
protocol that can be executed to reduce the exchange or the risk of drug resistant bacterial infections
(31). Onward transmission is then possible when known routes of infection are not monitored or
controlled. Contaminated healthcare equipment and personal protective equipment in healthcare
environments is an ongoing challenge in healthcare outbreaks (32—-35), and poor management of
sewage leads to agricultural contamination and outbreaks related to fecal-oral transmission
(28,36,37).

For nearly a decade, The Global Action Plan on AMR has acted as an important framework
for global stewardship of antimicrobial use and the prevention of drug-resistant infections. It
especially calls for a One Health approach, a movement and programmatic framework which
encourages the cooperation between many disciplines and sectors of expertise including and not
limited to veterinary and human medicine, public health agencies, agricultural and environmental
professionals, and the political and financial sectors (38). Individual efforts to combat resistance
include drug stewardship programs (39), development and implementation of new antimicrobial
therapies, and modernization and increased efforts in the surveillance of drug-resistant bacteria (40,
41). Given the high genetic association with phenotypic AMR, metagenomics and genomics can be
used to assess the strength of contribution from individual drivers of resistance. Detection of the
type of gene, its prevalence, and which species it is associated with can be connected to data related
to its ecological context, and interventions that prevent onward transmission can be reassessed and

re-evaluated. However, the pipeline to create new long lasting and effective antimicrobial therapies is



slow and countries and communities alike still experience major gaps in access to systems and
equipment that can help diagnose and monitor drug-resistant bacteria. Consequently, global

prevalence of many resistant infections is still largely unknown.

Staphylococcus aureus: A Pathogenesis Model

In this thesis I use Staphylococcus anreus as a model for identifying epidemiological linkages
from genomic changes. I selected S. aurens because it possesses a mix of stable, clonal lineages with
strong geographic and epidemiological linkages, while also exhibiting patterns of convergent traits
across highly divergent members of the species. This allows for exploration of the speed and scale of
evolution during transmission and results in the interesting duality of S. aureus as a “asymptomatic”
colonizer that can frequently cause serious infections. Furthermore, S. aureus has well-defined sub-
species groupings (aka “strains”) with distinct phenotypes, diseases and hosts associated with them.
The clinical and public health significance, unique human hosts-adapted virulence traits, and
genomic architecture make . aurens a well-suited organism to serve as a model for understanding
within-host evolution and pathogen transmission from a genomic petspective.

S. aunreus 1s a pathogen of global concern. It is a gram-positive coccus species that forms
“grapelike” clusters of cells. It was first described by Alexander Ogston in 1882 from surgical
wounds (42) and further characterized as its own species in 1884 by Frederich Rosenbach based on
the distinct yellow coloration of colonies (43). S. aurens colonizes humans and domesticated animals
as well as some wild animals (44). It can cause a range of infection types including skin and soft
tissue infections (45), toxic-shock syndrome (46), and deeply invasive infections associated with

bone and joint infections (47, 48), pneumonia (49), and cardiovascular disease (50). It has also been



implicated in outbreaks of illness associated with food and agriculture (44, 51) and healthcare
exposure (52, 53).

S. aureus has acquired drug resistance to multiple classes of antibiotics, including methicillin.
Methicillin resistant S. aureus (MRSA) infections cause over 300,000 infections in hospitalized
patients, 10,000 deaths, and a burden of $1.7 billion dollars in healthcare costs in the US alone (54).
Although MRSA lives commensally on the skin and in the nose for nearly two percent of adults in
the US (55), it can be life-threatening when spread in healthcare settings (56,57). Therefore,
community-associated spread leading to healthcare introductions is also an increasing infection
control challenge (31, 58). Human population structure can also impact the expansion of S. aureus
lineages (59). The most common MRSA lineages in the US are the USA300 strain (60, 61), a lineage
with community-associated (CA) spread, and Clonal Complex 5 (CC5)/USA100 (61), which has
been implicated in a variety of healthcare setting transmissions (62). Prior to the 1990s, MRSA
rarely spread outside of healthcare settings (63). Rapid emergence of USA300 in the US in
community and eventually healthcare settings demonstrated completely unique evolutionary,
epidemiological and molecular patterns (31,64). Although CA and healthcare-associated (HA)
lineages distinctly differ in clinical, demographic, and microbiological characteristics (63,65), CA
strains add to the burden of HA infections (52, 66) and HA strains have transmitted between
patients with no known healthcare exposure (67). The decreased incidence of MRSA in healthcare
settings is largely due to improvements in healthcare infection control practices. However, the
impact of these prevention efforts has slowed in the last decade (54).

S. aureus 1s notoriously equipped to attack the host and escape the innate and adaptive
immune response. S. aureus produces a range of toxins that allow it to invade many different tissues.

Toxins can damage host cells directly, including leukotoxins which target host immune cells and



alpha-toxin which target red blood cells (68). Toxins produced by S. aureus can also alter receptor
functions and lead to pathological disease for the host. Enterotoxins and toxic shock syndrome
toxin are most notable for their association with severe disease states and outbreaks (46, 51, 68). S.
anreus also produces enzymes to assist in invasion by breaking down host tissue proteins, and
degrading or encouraging blood clots for evasion (69). Further S. aureus can evade the human
immune system by producing superantigens and chemical blockers that prevent the recruitment of
neutrophils and their ability to interact with host receptors (70). S. aureus can also evade clearance by
complement through expression of staphylococcal protein A (70). If bacteria are phagocytized, they
can withstand the release of reactive oxygen species using a suite of detoxifying enzymes, antioxidant
pigments, and alteration of their cell wall (70-73). Altogether, S. aureus has an arsenal of virulence
traits that contribute to the variety of diseases that it can cause.

Virulence (49, 65, 74, 75) and antibiotic resistance (76) can differ across S. aureus lineages. It
has been documented that specific mutational signatures occur in pathogenesis-associated genes
from infecting S. aureus that differed from commensal §. aureus in the same patient (77). Since
different body sites can harbor §. aureus persistent infections, there are likely different selective
pressures for within-host evolution, and consequently differential disease presentations depending
on the site of invasion or colonization. Since S. axreus can have longevity on its host, long-term
screening of S. aureus from the same host helps us understand the expectations of the differences in
populations that likely arose from the same recent common ancestor relative to host colonization
(78, 79).

Bacteria primarily reproduce through binary fission, producing identical daughter cells with
vertically acquired copies of chromosomes. Small errors in the replication process introduce

mutations into the daughter cells, and these mutations result in neutral effects on proteins or
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alterations to the proteins. Mutations that are not severely detrimental can then be passed along to
other daughter cells and persist and become fixed in the population through random and non-
random processes (i.e. selection, genetic drift, and migration). Over time, the genetic record
generated through vertical transmission and mutational fixation is used to distinguish and trace
subspecies lineages and can provide information about the likelihood of spread between hosts and
within the environment. One limitation, however, is that mutation rates, usually defined as the
average number of mutations per site in the genome per year during asexual growth, vary at species
and subspecies levels due to differences in generation time, DNA replication proteins, and possible
environmental mutagens (80). New genetic differences can also be introduced through HGT.
Identifying instances of HGT can provide a lot of important information about potential
environmental pressures that bacteria experience and possible epidemiological inference about
antibiotic exposures. HGT, as well as homologous recombination, are non-descent associated
genetic changes, and therefore they make phylogenetic estimations challenging. There are also
barriers to genetic exchange in . aureus that shape genetic diversity and species structure. For
example, plasmid incompatibility determines whether multiple plasmids may be maintained within
the same cell line through interference of the replication process (18). Natural restriction
modification systems in bacteria, which act as a defense against the invasion of foreign DNA, can
prevent the incorporation of mobile genetic elements introduced into a bacterial cell (81). Therefore,
to epidemiologically define strains, it is necessary to account for vertically and horizontally acquired
genetic changes in final phylogenetic estimations.

To track drug resistance and virulence markers associated with disease, it is important to find
clear and consistent methods for defining common strains within a single species. Through WGS,

we can compare entire genomes between bacterial isolates and identify when virulence and
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resistance likely arose. However, there is no singular definition of a “strain” recognized by
microbiologists, and the term is often used interchangeably with other terms such as “lineage” and
“clone.” Some definitions rely on known ecological and epidemiological association with specific
genetic markers, while others are agnostic to the epidemiology and utilize qualitative cutoffs of
genetic similarity based on the whole genome or on marker genes. As a species, S. aureus forms
larger clonal clades with distinct evolutionary histories and similar allelic profiles of core genes, or
genes shared by at least 95% of representative isolates (81, 82). It also has a repertoire of non-core
genes, some of which are associated with horizontal gene transfer, that are important for
antimicrobial resistance and for some of the virulence traits (82, 83). This divide between core and
non-core genes contributes to the derivation of subspecies groups (strains) based on various levels
of genetic similarity and the presence or absence of genes. Common groupings that exist include
clonal complex (CC) and sequence type (ST) which use a gene-by-gene approach to differentiate
lineages and group into non-overlapping categories based on central genotypes (84). Other typing
mechanisms include categorizing at the individual trait level with structural stability and
epidemiological linkage, such as agr type (85) SCCrer type (for mecA positive S. aureus) (86), and
staphylococcus protein A (spa) (87). With the advent of whole-genome sequencing, there is an
increasing opportunity to use the entire set of genomic information, including core genes and non-

core, or “accessory”’ genes, to group individual isolates into unique lineages.
Summary of Chapters

The goal of this thesis is to broaden the scope of evolutionary concepts utilized for applied
epidemiological practice and identify the strengths and limitations of genomic approaches when
paired with clinical and epidemiological metadata. In applied epidemiology, practitioners still face

challenges in justifying the use of genomics for improved outbreak prevention or clinical care,
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developing systems for processing large amounts of data, ensuring effective communication between
laboratory staff and epidemiologists regarding genomics, and discerning transmission based on
genomic thresholds. In this thesis I aim to tackle some of these challenges directly: first, by testing
the value of specific genetic distance thresholds as markers for lineage relatedness within and
between individuals. Second, by describing and testing techniques in both metagenomics and
genomics that can lead to improved detection of genetic relatedness.

In Chapter 2, I review the use of single nucleotide polymorphism (SNP) thresholds in
hospital-associated spread of two major pathogens, S. aurens and Pseudononas aernginosa. 1 describe
important evolutionary and ecological contributors that can lead to genomic differences present
when two or more isolates are compared. Simultaneously, I highlight how these forces may differ in
their effect on genetic difference depending on the species being investigated in an outbreak, even
when the epidemiological setting remains the same. I argue that SNP thresholds should be species-
specific and refined into SNP threshold ranges to better guide outbreak investigations. I plan to
modify this chapter and submit it for peer review.

In Chapter 3, I investigate the presence of close genomic relationships between patients
experiencing infections caused by methicillin-resistant S. aureus. 1 evaluated the impact of genomic
alignment tools and genetic background of the infection strains on the detection of SNP differences
and subsequent putative transmission clusters, followed by classification of those clusters at different
thresholds. I identify potential risk factors for clustering, including recent hospital overlaps, and
offer a logistic analysis to relate SNP distance and likelihood of detecting a hospital overlap as a tool
for future cluster investigations of MRSA in hospital settings. This chapter was published in the

Journal of Clinical Infections Diseases in 2022, entitled “Unsuspected Clonal Spread of Methicillin-
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Resistant Staphylococcus aureus Causing Bloodstream Infections in Hospitalized Adults Detected
Using Whole Genome Sequencing.”

In Chapter 4, I expand upon my research from Chapter 3 by investigating risk factors for
recurrence of MRSA bacteremia as well as investigate whether recurrent strains share convergent
adaptive traits. I describe the phylogenetic and clinical diversity between strains that do and do not
cause subsequent infections in patients with bacteremia. I further use SNP distance and phylogenetic
topology to differentiate persistent lineages associated with a host from genetically new infections
for the same individual. I show that most recurrent infections are from relapsing strains, and that
these strains share demographic, molecular, and clinical characteristics associated with recurrence as
seen in the overall body of work. I demonstrate that relapse isolates have a signature of positive
selection compared to the overall population of MRSA isolated from bloodstream infections, and
that common genes among these relapse lineages occur in antibiotic resistance and virulence-
associated genes. This work will be submitted as a unique publishable unit upon further revision and
review.

In Chapter 5, I examine how antimicrobial resistance profiles can be compared in a larger
ecological network using metagenomics. I first characterize the bacterial species abundance and
antimicrobial gene abundance profiles between gut microbiomes of human residents and sympatric
gray mouse lemurs living near Ranomafana National Park in Madagascar. I show that human
communities have indistinguishable abundance profiles but are significantly distinct from lemur gut
microbiomes. I then identify gene presence overlaps and compare the nucleotide sequence
similarities between genes detected in both groups and their surrounding genetic context. I identify
shared antimicrobial resistance genes with highly conserved nucleotide sequences, several of which

were evidently a part of a larger cassette that is likely associated with horizontal gene transfer. This
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chapter was published in Peer] in 2024, entitled “Metagenome-wide characterization of shared
antimicrobial resistance genes in sympatric people and lemurs in rural Madagascar.”

In Chapter 6, I conclude this thesis with a summary of the work thus far and suggest future
directions for study. I outline some of the benefits and ongoing challenges in using sequencing to
understand transmission risk factors and within-host evolution. I further suggest potential analyses
to explore within-host adaptations of staphylococcus aureus and how that can contribute to
different disease states in colonized patients. For example, building upon a hypothesis that within-
host adaptation may lead to a virulence versus transmission trade off, I suggest looking more closely
at phenotypic changes relative to virulence profiles in addition to antimicrobial resistance profiles. I
also plan to conduct additional analyses using boosted regression trees to assist with predicting

relapse as an outcome.
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Chapter 2: What’s in a SNP?: Deducing transmission
events of bacterial infections using genetic thresholds

of relatedness

Brooke M. Talbot and Timothy D. Read

Abstract

Whole genome sequencing (WGS) is now the preferred molecular typing method for applied
epidemiological surveillance of bacteria causing infectious diseases due to the technology’s ability to
highly resolve pathogen genomes. Outbreak and transmission investigations using WGS in the last
decade have successfully detected clusters of related illnesses, ruled out unrelated cases from
investigations, and identified important risk factors causing disease spread. For these investigations,
practitioners typically use a “SNP threshold,” a measure of single nucleic acid base pair differences
between infection isolates, as a tool for deciding if two infections are closely related enough to
signify a recent transmission event. However, the justification for these thresholds varies across
investigations as well as the considered ecological and evolutionary processes acting uniquely on
bacteria for determining the relationship between genetic change and transmission source. By
comparing how these processes are understood and handled across outbreak investigations for two
model organisms that plague healthcare settings, Staphylococcus anreus and Pseudomonas aernginosa, 1
demonstrate that to best define SNP thresholds that are most useful for solving bacterial outbreaks,
investigators should ensure that their WGS investigation workflows account for the contribution of

the biological effects from cellular processes and population among sampled strains of bacteria.
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Introduction

Of increasing interest is the use of WGS surveillance in hospital and healthcare settings,
where the introduction and spread of any disease into these spaces has serious consequences for
patients receiving healthcare. Hospital-associated pathogens make for a great case of how an
epidemiologist can think through the different biological components of bacterial investigations
using WGS because 1. Hospital environments are known to have outbreaks with multiple modes of
transmission, 2. A high-risk population benefits from time sensitive and highly granular
investigations, 3. Bacterial pathogens in these environments have high morbidity for patients, and 4.
There is currently no widespread surveillance system using WGS uniformly across all hospital and
healthcare settings.

There are inherent challenges for fully implementing WGS into routine surveillance, with
special concern for tracking bacterial infections. For bacterial species, genetics change through both
horizontal and vertical gene transfer and variation in the environment can trigger different stress
responses and adaptation among different populations of the same species, the impact of which
muddies the generalizability of too fine grain a genetic match. One of the most executed strategies
for bacterial disease transmission is reporting single nucleotide polymorphisms (SNPs), where there
is a single base pair change at specific loci. This metric is primarily modelled on the idea that, under
a neutrally evolving population, more SNPs are equivalent to more time passing since the common
ancestor of two isolates. Consequently, epidemiologists have taken to reporting some “SNP
threshold” when using WGS as a part of an outbreak investigation. A SNP threshold is the
measured number of base pair differences between two isolates. The terms single nucleotide variant
(SNV) threshold and SNP threshold have been used interchangeably throughout bacterial outbreak

reports, though SNV more accurately encompasses general variation of a single base of a nucleic
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acid, while SNPs refer to specific single base changes at a locus. Most reports do not disentangle
these definitions, and largely instead report SNP differences as the total number of base pair
variations across all loci between two isolates. For this review I will use SNP threshold as it is the
more commonly expressed term across investigation reports.

To establish these thresholds, it is critical that infectious disease scientists and
epidemiologists invoke basic understanding of the evolutionary context of the molecular markers
that they are relying on for disease prevention. In this review, I will discuss the important genomic,
evolutionary, and epidemiological factors that impact the detection, comparison, and
epidemiological patterns of present single nucleotide polymorphisms (SNPs) in bacterial infections
which have been addressed to varying degrees across different bacterial outbreak reports. The
ecological and evolutionary concerns of investigators can broadly be broken into those at the
individual bacterial cell level, random mutations, homologous recombination, and adaptation to the
environment; and at the bacterial population level, intrahost demography and interhost and
environmental richness. To exemplify how these concepts impact phylogenetically distinct
pathogenic bacteria that are operationally considered in the same way for surveillance, I compared
and characterized SNP ranges documented and summarized in outbreak investigations utilizing
WGS for two model bacterial pathogens, Staphylococcus anreus and Psendomonas aeruginosa, associated

with healthcare-associated outbreaks.

Ecology, Epidemiology, Evolution, oh my!

Though WGS has often been used to confirm outbreaks initially detected by another
sentinel event (i.e. a sudden increase in culture positive cases of illness in a short span of time), WGS

and metagenomic sequencing will inevitably become the standard of practice in prospective
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surveillance of bacterial outbreaks. It is therefore important to explore the current state of outbreak
investigations that have used WGS and help define SNP threshold ranges that can be used in a
variety of outbreak settings and transmission events. The sheer volume of outbreak investigations
using WGS for various bacterial pathogens in numerous settings provides an excellent opportunity
to identify empirical evidence of current pairwise SNP differences and define the criteria for
effective SNP thresholds or threshold ranges. Early implementation of WGS into hospital
surveillance was reactive to ongoing outbreaks and used to confirm or rule out cases (88). These
early investigations were important for defining early ranges of pairwise SNP differences between
isolates when there was a clear epidemiological link, which was the case with tracking cases related to
a single-introduction of a MRSA infection into a neonatal intensive care unit (89). However,
investigators moved quickly from this reactive and confirmatory practice with WGS toward testing
the utility SNP thresholds to detect outbreaks prospectively in the hospital and provide swift
intervention. This was demonstrated in 2012 with investigations of Clostridium difficile and methicillin-
resistant S. aureus, where, the combination of prospective sequencing and regular infection control
identification of outbreaks was able to rapidly ruled in or out patients from of a cluster on the basis
of pairwise SNP differences between patient isolates (90). Contemporarily, investigations now tend
toward using WGS in a prospective manner, where pairwise SNP differences are the principal
sentinel event for cluster detection. The sensitivity of a SNP threshold is quite important for this
wave toward prospective surveillance of clusters. Some investigators have implemented predictive
models to come up with a species-specific SNP threshold. For example, Coll et al. suggests S. aureus
isolates be included in a cluster at a threshold of <=15 SNPs within six months of isolation (79).

Other Investigators take a broad approach and define a single threshold value for multiple hospital
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pathogens from the available case reports, such as Sundermann et al.’s definition of 15 SNPs as a

cut-off for 14 different species of bacteria (7).

Justifications for SNP thresholds between bacterial infections

Suggestions for optimal workflow strategies that integrate WGS and bioinformatics into
outbreak investigations have been reviewed elsewhere(91-93). These reviews highlight that the
choice of a SNP threshold must be contextualized in the availability and expertise of the
investigation team in terms of bioinformatics, epidemiology, microbiological technique, and
evolutionary biology. Briefly, the first component to determine an appropriate SNP threshold is to
ensure that workflows include suitable sampling to ensure infecting isolates are from pure colonies,
adequate sequencing depth and quality, and appropriate variant calling software. For this review, I
will not focus on these technical bioinformatic considerations but instead focus on underlying
biological processes fundamental to pathogen evolution and ecology that drive the presence of
SNPs in the bacterial genome. Ultimately, SNP thresholds demonstrate some expected difference
that investigators have about the relationship between two or more sampled isolates in the temporal
period of interest. Investigations discuss important genetic and ecological principles in pieces that
influenced the choice of the threshold. The most common patterns that emerge for justifying SNP
thresholds occur at multiple stages related both to natural processes that result in an accumulation of
SNPs and the population structure and niche of a pathogen. At the individual bacterial cell level
mutations accumulate over time through random processes at a given rate. Selection on these
mutations can remove deleterious mutation from the population, but less deleterious or neutral
mutations may remain or be removed more gradually over time. This accumulation of differences

can be profoundly adjusted by homologous recombination and cell adaptation to the environment
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via positive and purifying selection. At the broader population level, intrahost demography and
interhost and environmental richness also influence the number of SNPs ultimately detected once
isolates are compared to one another (Fig. 2.1). Comparing how these processes are understood and
handled across outbreak investigations will help better define their relative contribution to SNP
thresholds, and which are most useful, stable, and for solving outbreaks and assist in the adaptation

of future workflows as more is understood about pathogen biology.
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Figure 2.1. Evolutionary and ecological processes leading to genetic difference
accumulation between bacterial core genomes. After a transmission event occurs, genetic
differences accumulate in the core genome over time causing divergence between two related
isolates. The expected SNP threshold between related bacterial isolates in a given time frame can
increase or decrease depending on the weighted effect of cellular processes and population diversity
in the sample. An example between two hypothetical bacterial species shows that the expected SNP
threshold can differ from one another depending on the impact of each biological effect within the

system, indicated by line weight and color.
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The traditional characteristic relationships investigated for transmission events and outbreak
relationships are those among the person, environment, and infecting agent in a given course of
time(11). Describing these relationships with a simple metric like a SNP threshold can help decide if
that detected diversity relates to an appreciable time and place. Investigators debate whether SNP
thresholds should be used at all for inferring transmission events and outbreaks. Arguments against
a single threshold include that their context varies between studies, that they may not necessarily
imply transmission probability, and that different genetic lineages within the same species vary in
substitution rate (94,95). The advantage of thresholds, however, is that they allow investigators to
make quick, simple, and consistent decisions to prioritize which patients to investigate for possible
exposures and transmission events such as in hospital infection prevention or contact tracing.
Consequently, thresholds are readily documented in the literature for both prospective and

retrospective outbreak analyses and have been used successfully to identify transmission.

Use Cases: Interpreting thresholds across healthcare-associated

pathogens

Important considerations to define for any disease under surveillance are the expected
modes of transmission (eg direct or indirect) and the expected source or environment that resulted
in the disease. Healthcare settings are a high priority for preventing infection transmission, as these
pose a major threat to patient safety and are worldwide the most common adverse event associated
with healthcare (96). These infections can be prevented with good surveillance and infection control
practices. WGS surveillance in these settings offers high returns for understanding disease spread

and promoting patient welfare. From a clinical and public health perspective, molecular surveillance
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stands to massively benefit local communities served by a single healthcare system, as well as the
wider community.

Globally, two pathogens of great concern in healthcare settings are Gram positive S. aureus
and Gram negative P. aeruginosa (97) because of their ability to harbor antibiotic resistant phenotypes
and cause persistent and recurrent infections in hospitalized patients and in patients with
comorbidities. Healthcare settings utilizing SNP-based thresholds for outbreak investigations
demonstrate that infections of S. aureuns and P. aeruginosa with epidemiological links to other patients

or environmental samples cluster tightly together under 20 SNPs difference (Fig. 2.2).
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Figure 2.2. Epidemiologically investigated clusters of healthcare-associated S. aureus
(n=22) and P. aeruginosa (n=14) investigated with whole genome sequencing. Cluster
isolates constitute clinical isolates and/or environmental isolates. Maximum pairwise single
nucleotide polymorphism (SNP) difference, number of isolates in a cluster, duration between
collection dates were gathered from main and supplementary figures, text, and tables from 14
outbreak investigations (Table S1). Clusters were excluded from visualization if there was no defined
time period or if pairwise SNP distances could not be identified. Epidemiological linkages were
defined in the reports and include hospital overlaps between patients, common exposures to

equipment or care personnel (cross-transmission), and exposure to contaminated environments.

Most practitioners applying thresholds must account for all pathogens of interest during
prospective surveillance, including S. aureus and P. aeruginosa, and therefore additional simplicity has

been used for surveillance by setting the same threshold for multiple species (7). This should be met
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with some caution and considerable review given that evolutionary and ecological processes can
affect bacterial species differently. Particularly, P. aeruginosa and S. aurens have very distinct genetic
characteristics than result in different estimations of the relationship between the pathogen’s

genetics and the time between onward transmission and human detection from a recipient patient

(Table 2.1).



Table 2.1. Taxonomic, genomic, and ecological characteristics of Staphylococcus aureus

and Pseudomonas aeruginosa causing human infections

Staphylococcus aureus

Pseudomonas aeruginosa

Taxonomic group

Gram positive cocci

Gram negative bacilli

Genome size (Mbp)

Average: ~2.8 (~2.69 to

~2.96) (98)

6.34 to 7.15 (99)

Estimated substitution rate

Non-hypermutator

Non-hypermutator

(SNPs/year) 3.5 (89) 1.0 (102
5.8 (53,100) ~1.2 (103)
8.7 (101) 25 (15)
5.5 (104)
Hypermutator
50 [60]
Isolate Human nose (77), skin and hospital water sources

sources/environments

soft tissue infections (105),

hospital equipment (106—108)

(103,109,110), human lung

(15,104,111)




The unique niches of S. aureus and P. aernginosa contribute to the investigation priorities of
documented outbreaks and likely contribute to differences in the genomic characteristics of
individual clusters. S. aureus typically colonizes human hosts and becomes an opportunistic
infection, with sequelae including skin and soft tissue infections, bloodstream infections,
pneumonia, and bone infections (63). P. aeruginosa is a commensal organism and can cause acute
(112,113) and chronic opportunistic infections (111), but it is also a known contaminant of water
sources in healthcare settings (34,109,113). Previous outbreaks demonstrate years-long persistence
of a single P. aeruginosa clone can persist and spread in a healthcare setting due to the environment
(16,34,112—115), though acute are also detectable with WGS (106,112,116). In contrast, S. aureus is
frequently reported in person to person spread, or shared equipment or healthcare workers, where
the epidemiological link is overlapping hospital stays between patients (88,89,106,107,117).

However, S. aureus can also contaminate the environment and result in short-term outbreaks with
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few (<3) involved patients (52,108)[31,32], and some larger and more prolonged outbreaks (90,108).

These distinct transmission situations are ultimately reflected in the SNP difference profile of
reported outbreaks, where smaller, more rapid, and very genetically similar isolates are seen for S.

anrens, and larger and more genetically diffuse clusters are documented for these long-term P.

aeruginosa outbreaks (Fig. 2). In order to assess how expected SNP thresholds can be readily tailored

to each species, investigators must therefore gain a good understanding of the evolution and ecology

of each pathogen of interest. This starts with considering how much cellular processes and

population sampling processes influence the expected detectable SNP range.
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Random mutations and substitution rate

The accumulation of random mutations at a predictable rate over time is foundational to the
rationale of SNP thresholds. Binary fission, the asexual reproduction mechanism of bacteria,
produces two identical daughter clones, and it is this clonality which underpins the detection of
related infections. However, the clock starts ticking upon this split. Under the neutral mutation
theory, synonymous SNPs have no effect on organismal fitness and accumulate in a pathogen
population through random processes (118). Though this idea is now more often regarded as a null
hypothesis in most evolutionary explorations, it is nevertheless an important assumption for
modeling relatedness over time between prokaryotic isolates. Using these assumptions, investigators
can build a molecular clock that demonstrates a linear relationship between base substitutions and
time, in order to predict the time at which last common ancestor emerged between two or more
sampled organisms. In the context of an outbreak, by following this molecular clock, investigators
hope to find epidemiological links that can occur within the predicted time frame.

A priori knowledge of the per site and per genome substitution rate for some pathogens is
available in literature, which investigators have made use of during outbreak investigations in order
to identify clusters of significance (110). However, even for the same pathogen, estimates of the
substitution rate relative to the reference genome are vary between investigations, leading to
different expectations of the SNP differences over a time period of interest. For example, S. aureus
substitution rate estimates include one SNP every 15 weeks (89), one SNP every nine weeks
(53,100), and one SNP every six weeks (101). The diversity in values may arise from improved
estimation techniques over time, size of the dataset used to calculate the estimates, and the size of
the reference core genome. However, these estimates could also reflect some critical biological

differences, including strain-specific substitution rates or the specific ecology of the transmission
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event, such as the source coming from long-term host carriage. P. aeruginosa, in comparison, has a
lower reported mutation rate than . aureus, which ranges from 1 SNP a year to 1 SNP every nine
weeks (Table 1). When considering a common threshold for multiple pathogens, it is important to
factor in how divergent the expected substitution rates will be between species in the time period of
interest, as drastically different rates could result in very different estimates the longer the
investigation period proceeds.

Though not frequently documented as a concern in transmission cluster investigations,
hypermutation in some strains can nevertheless contribute to irregularities in the estimated
substitution rate that would determine an expected SNP threshold. In one documented methicillin-
resistant S. aurens (MRSA) outbreak, one isolate with a confirmed mutation in #utS, a gene regulating
DNA repair mechanisms, was identified as connected to a cluster of patients and had a substitution
rate 6.9 times greater than the next-related isolate and many unique SNPs (88). Had this isolate been
a part of prospective surveillance where the substitution rate was assumed to be the same across
isolates, this isolate likely would have been excluded despite ultimately having an epidemiological
connection to other isolates with a tighter connection. Comparatively, P. aeruginosa has known
documentation of hypermutator phenotypes, particularly among chronically infected cystic fibrosis
patients and less commonly among acutely infected patients (119). However, P. aeruginosa isolates
have large variation in reported mutation phenotype when derived from clinical isolates of cystic
fibrosis patients or from the environment (120). Future investigations should consider iterative
WGS analyses as epidemiological links are identified between closely related cases as a method of
exhaustive case finding to account for the possibility that other patients could be involved. Curating

and tracking mutations associated with hypermutation and screening isolates for these changes as a
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part of surveillance practices would be a wise early step in determining how to best use substitution

rate to estimate a SNP cutoff.

Homologous recombination

The main goal of phylogenetics in transmission and outbreak investigations is to identify
precise relationships between closely related isolates through vertical gene transmission. Novel
genetic elements are also introduced into bacteria populations through horizontal gene transfer,
which includes the processes of conjugation, transduction, and transformation. These introduced
genes, such as plasmids, transposons, and phage DNA are mobile genetic elements and form the
accessory genome. Using the whole genome, and therefore all available genes have been
demonstrated to lead to the same epidemiological conclusions. Comparison of core- and whole-
genome MLST and SNP-based analyses for the same set of P. aeruginosa outbreak isolates showed
that the methods are comparable (115). Limitations to the comparison arise, however. First, the
alleles in the accessory genome undergo evolutionary pressures in the same way as alleles in the
core, but not necessarily in concordance with the number or rate of changes among core genes.
Different bacterial species also have different sized accessory genomes and different compositions
of mobile genetic elements. Predictability of vertical transmission becomes difficult when the whole
genome is considered in an investigation because of the possible different evolutionary trajectories
of core and accessory genes and because the contribution of the accessory is not standard across
species [51]. Second, the rate of genetic recombination is variable between species, which can
influence gene-by-gene comparisons if some genes undergo a more rapid rate of change over time
than others. Therefore, most transmission investigations focus on core genome analysis, which

identifies conserved genes across a species without the contribution of elements of the accessory



30

genome. This ensures that the observed genetic SNPs are detected among the most conserved alleles
within the population.

Variation may also be introduced into components of the whole genome through
homologous recombination, in bacteria a process of gene conversion, where donor DNA sequence
replaces recipient sequences, both in core and accessory genes (121). However, homologous
recombination also affects bacterial species differentially. The percentage of recombined genome in
species significantly differs across bacteria, with intracellular pathogens exhibiting the least variation
and opportunistic pathogens exhibiting the most. Considerable differences can be observed between
species even occupying similar niches though (e.g., S. aurens having comparably low recombination
to the intracellular pathogen Neisseria meningitidis) (122). Accounting for recombination is not
uniform across outbreak investigations. Access and understanding of appropriate bioinformatic
tools to handle this concern is still beginning to enter into common use among investigators of
bacterial infections, but workflows can account for recombination during the variant identification
phase to filter out regions of concern (112). Freely available tools to identify and mask recombinant
regions, such as Gubbins (123), ClonalFrameML (124), and fastgear (125) can also be incorporated
into investigations (107,113,117). Even with available tools, the practice of excluding recombinant
regions is still not adopted in all workflows, and this could contribute to the variation seen in
different thresholds for similar investigation periods.

Regardless of tool access, though, the choice not to measure SNPs in recombinant regions
ultimately removes genetic diversity from the sequence comparisons, and this choice may come
down to the species of bacteria under consideration. For example, Eyre et al. chose to remove
known mobile genetic elements from their investigation of Clostridium difficile clusters because 11% of

the genome is affected by these elements. In their same prospective analysis, which included MRSA
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isolates, mobile genetic elements were not removed, though SNPs were identified only in non-
repetitive sites on the genome for both pathogens (90). However, in a P. aeruginosa hospital outbreak,
removal of these regions from the analysis still allowed investigators to differentiate clades for
distinct transmission events despite a decrease in comparable core genes (113). Since the effects of
recombination can affect detectable variation at the level of a SNP, it is important to at least
document consideration of these methods in a public health workflow for the sake of comparability

across studies.

Adaptation to the host and environment

Neutral mutations cannot explain all accumulated SNPs. Rare adaptive non-synonymous
mutations, and alleles undergoing genetic hitchhiking associated with these selected SNPs, change
the genetic diversity of bacterial populations as they adapt to changes in their environment (120).
Adaptation to the host or to an environment can have variable effects on the overall number of
differences detected. Adaptations reflect the function of random mutations to the genome and their
presence and persistence in a population. Cells carrying an advantageous adaptation may increase in
numbers because of their increased fitness compared to cells without the adaptation. This is
dependent on the diversifying effects that various niches in the healthcare environment have on
pathogen adaptation, and consequently the persistence of genetic lineages associated with different
niches. These niches exist within the host where bacteria interact with immune cells and also exhibit
variable tropisms to host tissues. They are also part of the external environment, such as the water
systems, machinery and equipment, and surfaces subjected to regular antibiotic treatment.
Depending on the organism, a pathogen may exhibit adaptations that allow it to move between a

host and the environment, or its niche range may be narrow. When a pathogen infects a host, it is



faced with an array of complex selective pressures, particularly adapting to the host immune
response (77). An infecting strain of bacteria must also contend with other present bacteria
commensal to the host in order to establish infections. Together these components of the host

environment act as different selective pressures on individual cells which contribute to within-host
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evolution. Particularly important among hospitalized patients and those with chronic infections, the

presence of antibiotics can also act as a selective pressure as well as cause genetic bottlenecks that

drastically decrease the population size and available genetic variation (111).

S. aureus causing infections tend to occupy host-associated niches, though the bacteria can be

isolated from a variety of infection-relevant tissues like whole blood, stool, lung aspirate, and
wounds. Adaptation and long-term residency on a host result in detectable variation between
bacteria. However, Young et al. showed that intrahost nasal and bloodstream . aureus isolates
differed by eight SNPs (127), and another investigation, observed no more than 10 SNPs between
isolate pairs from the same patient, leading to a defined threshold of <15 SNPs for identifying
transmission pathways over a seven-month investigation period of a neonatal intensive care unit
(108,128). In contrast, evidence in the literature also shows that the diversity and within-host
evolution of §. aureus samples even from the same body site could be as high as 40 SNPs (129).
Assessment of transmission may also be clouded by patient exposure to multiple phylogenetic
lineages whose most recent common ancestor would be outside of the relevant time scale for
transmission investigation. Two scenarios emerge: Few SNPs occur even with distinct within-host
environmental pressures, or many SNPs occur when the environment stays the same. For both
scenarios, different evolutionary forces may be acting with different magnitude: in the former
example, adaptation and selection may be decreasing genetic diversity, and in the latter these

differences may be accumulating because of random processes resulting in nonsynonymous SNPs.
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In compatrison, P. aeruginosa is known to be both a free-living organism, as well as live
commensally within a human host (Table 1). Therefore, there is potential for P. aernginosa to transmit
both from person to person or from a contaminated environment shared by multiple patients. This
is of particular concern for patients who maintain long residency in a healthcare setting and
repeatedly change between care units, which was observed in a patient infected with two lineages of
P. aernginosa that shared the same strain type (103). In this case, the genetic differences seen between
multiple samples could reflect multiple transmission events.

Microevolution of P. aeruginosa is well documented among chronically infected patients, and
it leads to specific adaptations for pathogenesis. Even on a time scale as short as a year, P. aeruginosa
infections gave rise to multiple clonal emergences with specific adaptations that are unique to
different parts of the patient’s lungs (111). Interestingly, evidence of transmission from hospital
water sources to a patient with cystic fibrosis showed that over a 60 day period isolates of P.
aeruginosa between the two sources differed by about two SNPs (110). This observation is interesting
given the expected substitution rate of P. aeruginosa to be about one SNP per year. From the
perspective of a practitioner, though, this contrast can cast some insight on the utility of a threshold
for P. aeruginosa. 1f separate clusters of P. aeruginosa differ by two SNPs in a two-year period and a
two-month period, Likelihood of successfully linking other cases decreases if the threshold is
generalized and does not consider different sources for each cluster. By not accounting for this
adaptive behavior, longer-term investigations might detect more SNPs than would fall within a SNP

threshold, and therefore miss transmission events.
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Intrahost demography of bacterial infections

Considering neutral mutation, a colonizing bacterial population that started from the
introduction of a single cell may acquire increasing intra-population diversity, (known as a cloud of
diversity). This demography becomes important when tracing transmission events as the genetics of
the truly transmitted cell may differ by a certain number of SNPs from both the sampled isolate of
the donor host (or donor environment) and the recipient host. Thus, the difference between
historical infection isolate, infection host, and recipient host all have the potential to start with a
non-zero value of SNP differences from one another depending on how close in time these samples
are collected to the time of infection. The consequence of this “non-zero” value means that we
might under- or over-estimate the expected number of SNPs different between two infections,
especially if the source has been infected for a long enough period of time that there is already
significant genetic variation within the donor pathogen population. Similarly, the genetic diversity
ultimately observed in transmission investigations depends on the number of samples collected and
assessed from a patient, any of which could harbor mutations reflective of its response to the host
and the structure of the population from which it is derived. For routine surveillance and diagnostics
in a hospital, it is most common to observe in outbreak reports that a single, representative index
isolate per patient is assessed in the final data set, thus all available diversity is not captured.

Modeling approaches can help define a range of diversity to expect in an outbreak, which
can account for the accumulation of genetic differences over time by combining data regarding
interhost genetic diversity, intrahost genetic diversity, and epidemiological links to predict a
reasonable threshold. Coll et al. demonstrated that a core genome SNP threshold for S. aurens that
predicts transmission events among asymptomatic and symptomatic patients within a six-month

period is between 11-13 SNPs by testing multiple different models to predict S. aureus genomic
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differences over time, which included empirical data from infections between different hosts and
isolates over time isolated from the same host (79). Their model was generalizable to unrelated
populations of isolates than the original test cohorts and showed a similar result of 14 core genome
SNPs across all isolates and 11 core genome SNPs from infecting isolates. However, this modeling
approach was based on the assumption of person-to-person transmission events, and therefore it
may not necessarily apply to other pathogens with a different mode of transmissions, such as
through water. Development of different models and evaluation of Coll’s model and others in the

literature to new scenarios would be useful nonetheless to assess their generalizability.

Interhost and environmental richness

To set up prospective genomic surveillance of a hospital, many isolates will have to be
sequenced, and the majority of these isolates will be genetically distinct from one another and not
related to a cluster. How then should investigators compare the highly genetically diverse pool of
samples in real time and still capture all of the true SNPs? Investigators are usually interested in
establishing the phylogenetic relationships of all isolates in a period of interest and test hypotheses
for the relationships between genetic distance and isolation source or environment. Investigators
create core genome alignments that compare common alleles between isolates and a selected
representative reference, or in absence of a reference between all sequences in a sample set (7). Core
genome analysis may slightly reduce accuracy and may possibly reduce resolution of lineage specific
events (130). To better detect these more nuanced genetic relationships, investigators have first
identified isolates that form broad but distinct phylogenetic clades (110) or that belong to the same
known MLST identified in silico (108), and then take a stepwise approach to build phylogenies

among more similar isolates. For example, in an attempt to understand S. aurexs transmission
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between healthcare workers, patients, and the hospital environment, Popovich et al. chose first to
align all investigated isolates to the same USA300 reference strain, the most prevalent background of
methicillin-resistant S. aureus in the U.S., and then separately build USA300 or USA100 phylogenies
with references or closed genome derived from the study set (52). In this way, investigators were
able to maximize conserved genes within vertical lineages and consequently the number of
observable variants. However, core genome analyses without further sub-setting of clade-specific
references can still resolve epidemiological linkages. Harris et al. conducted an investigation of
MRSA in a hospital special care baby unit where clustering isolates were on average over 500 SNPs
different from the reference strain but still epidemiologically resolved, even revealing important
connections between hospital and community transmission (89).

Strategies for P. aeruginosa are similar, but the overall values of SNPs are distinct from the
previous examples of S. aureus transmission. In a prolonged outbreak of P. aeruginosa in a hospital
ICU, Buhl et al. produced a polyclonal phylogenetic tree with the use of a single reference strain,
PAO1, meaning that their detected cases were among distinct evolutionary clades rather than one
lineage transmitting through the space. Even if this phylogenetic diversity reduced the detectable
genetic differences between more closely related individuals, the investigators still identified unique
epidemiological linkages within the two distinct detected clades (16). Other investigators chose to
artificially diversify their phylogenetic investigations in order to create more evolutionary context for
the outbreak. For an investigation of an outbreak of P. aernginosa compared to other patient and
environment samples in the same hospital, Parcell et al. included 15 additional reference samples in
their phylogenetic reconstruction in order to resolve the evolutionary relationships (113). Addressing
or adjusting diversity may change the absolute number of detectable differences, but it is apparent

from these investigations that it might not always be necessary to find cases in a single cluster.
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Perhaps the biggest concern instead becomes deciding what to do with cases at the edge of a
threshold, especially if there is a precedent for gathering additional helpful exposure information to
augment an investigation or to maximize detection of individuals still able to transmit disease.

For investigations using WGS to prospectively find clusters, investigators should be
concerned about the contribution of genetic diversity in the pool of samples on the recreation of a
core gene and core gene comparisons. As genetic diversity increases, the core genome shared among
bacteria decreases, which in turn decreases the number of comparable loci. Given that prospective
surveillance will sample from whatever is present, it is likely that most phenotypically similar samples
will not be related and that datasets within a period of surveillance will be genetically diverse,
exemplified by the diverse collection of bacterial isolates gathered under hospital surveillance by
Woard et al. (106). To account for this inevitable diversity, some investigations implement sequence-
by-sequence comparisons that estimate sequence similarity and group more highly similar alleles into
gene families. This can be done with k-mer matching, followed by reference-based alignment (108).
Other options include creating a core pangenome by identifying unique gene families among
available sequences with Markov Cluster Algorithm (MCL) to find sequence distances (117,131). A
gene-family approach may still decrease the detectable variation, but these variations remain more
stable in alignments necessary for building phylogenies even with increased diversity compared to
reference-based approaches (117). Using gene-family approaches are therefore advantageous in long-
term surveillance, as it allows for flexibility in the sample pool over time and does not rely on a static
reference that may become less relevant over time.

Since many isolates sampled from a setting will likely be unrelated, it is also important to
consider a threshold that can successfully rule-out cases from investigation. Phenotypically similar

isolates that are unrelated tend to have fairly distinct genetic profiles from unrelated isolates. For
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example, in a two-year P. aeruginosa, outbreak associated isolates differed from one another by 0-14
SNPs while a patient with no epidemiological link to the outbreak differed from the group of
isolates by more than 100 SNPs (112). This distinct genomic distance hints that very distance
genomic relationships can often be quick instances to separate cases from one another, and that

energy and time should largely be spent on discerning edge cases that are closer to a cut off.

Conclusion

Transmission investigations have demonstrated that WGS is useful for forensic and public
health purposes and can be done in an actionable time span for health interventions. These
investigations highlight a transition from reactive and confirmatory use of WGS for outbreaks
detected through other measures toward being the primary prospective surveillance tool. Public
health practitioners now must go beyond the acceptability and feasibility of WGS. Incorporating a
critical assessment of evolutionary and ecological processes within the context of each species is
necessary to discern appropriate epidemiological links. From the observed biology of the richly
documented outbreak reports, there are pathogen-specific patterns relating SNP differences and
epidemiological linkage. Therefore, picking a target SNP threshold within the observed realm of
SNP differences across investigations is a good starting strategy for building and refining outbreak
detection systems. Additionally, anomalies that do not quite fit into a threshold can cue investigators
to identify new and interesting patterns in disease, such as the role and emergence of hypermutators
in disease spread or antibiotic resistance. However, SNP thresholds are tools that require
understanding of underlying evolutionary biology and the pathogen’s relationship to the surrounding
environment. For investigators already implementing a standardized threshold, the best next steps

would be to build in regular evaluation of the system to monitor the stability and sensitivity of the



39

threshold, especially as disease prevalence in the community changes. Most fundamentally and
importantly, thoughtful refinement of these thresholds using empirical data can guide us toward
more rapid and complete prevention of further morbidity and mortality.

Though these investigations have demonstrated that we are likely to find epidemiological
links from molecular surveillance, it is also likely that we will continue to find “closely related”
clusters without detectable epidemiological or environmental relationships. New priorities and areas
for further research must then become: 1. Sequencing and sampling equity (What are other
epidemiological or environmental factors not currently measured within a study that should be
considered? Do networks become better resolved when we widen the frequency of sampling? What
institutional settings still lack access to sequencing, bioinformatic, and epidemiologic workforces?),
2. Ecological discovery (Are these results indicative of a new/unknown route of transmission?), 3.
Evolutionary discovery (Do these pathogenic strains have new or unknown adaptations that could
guide epidemiological surveillance? What are the phenotypic consequences of detected SNPs?), 4.
Technological development (e.g., Does long-read sequencing provide additional/better resolution to
WGS practices), 4. Refinement in the context of evolutionary principles (How do substitution rates
compate between pathogen-only samples, commensal/asymptomatic, and environmental
sampling?), 5. Non-outbreak health outcomes (How do disease prevalence and health outcomes
change in a community when WGS is utilized?). WGS is simply the newest chapter in the history of
molecular epidemiology, but by contextualizing the technology in evolutionary concepts we can
understand disease transmission processes and behavior of pathogenic bacteria in exciting and

unexplored ways.
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Supplementary Tables

Table S2.1. Summary and citation sources of epidemiologically investigated clusters of S.

aureus and P. aeruginosa

Cluster Detection Source Suspected/Identified | Transmission | Min | Median | Max

Citation Species | Days | Isolates | Method Environment | Source Type SNP | SNP SNP

Ward 2019 P.

(100) aernginosa 12 3 Prospective Healthcare None Unknown 1 1 2
Indirect:

Davis 2015 P. Common

(116) aernginosa 21 11 Retrospective | Healthcare Water source vehicle 0 2
Indirect:

Parcell 2017 P. Common

(113) aernginosa | 237 3 Prospective Healthcare Room environment vehicle 0 1.33 4
Indirect:

Buhl 2019 P. Common

(106) aernginosa | 394 27 Retrospective | Healthcare Hospital environment | vehicle 1 15 66
Indirect:

Sundermann | P. Common

2021 (35) aernginosa | 191 7 Prospective Healthcare Healthcare equipment vehicle 0 2 9
Indirect:

Magalhies P. Common

2020 (112) aeruginosa 10 3 Prospective Healthcare sink trap vehicle 0 1 1

Indirect:

Magalhies P. Common

2020 (112) aernginosa | 157 13 Prospective Healthcare ICU vehicle 0 - 13
Indirect:

Blanc 2020 P. Common

(115) aernginosa | 911 23 Retrospective | Healthcare Burn unit environment | vehicle 0 - 16
Indirect:

Snyder 2013 P. Common

(114) aernginosa | 2405 5 Retrospective | Healthcare handwashing bin vehicle 5 11 34
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Indirect:

Moloney P. Common

2020 (34) aernginosa | Unk 25 Prospective Healthcare washbasin u bend vehicle 0 - 8
Indirect:

Moloney P. Common

2020 (34) aernginosa | Unk 2 Prospective Healthcare washbasin u bend vehicle 5 5 5
Indirect:

Moloney P. Common

2020 (34) aernginosa | 789 31 Prospective Healthcare washbasin u bend vehicle 0 - 38
Indirect:

Ward 2019 P. shared inpatient Common

(106) aeruginosa 6 13 Prospective Healthcare environment vehicle 2 7.5 15

Ward 2019 Intravenous drug use, Direct: Person

(106) S. anrens 321 21 Prospective Mixed unknown to person 0 13 22
Indirect:

Ward 2019 shared inpatient Common

(106) S. aurens 4 3 Prospective Healthcare environment vehicle 4 5 5

Ward 2019 Direct: Person

(106) S. aurens 139 2 Prospective Community Intravenous drug use to person 2 2 2

Ward 2019 Direct: Person

(100) S. anrens 47 6 Prospective Community Intravenous drug use to person 0 3 4
Indirect:

Ward 2019 shared inpatient Common

(106) S. aurens 50 2 Prospective Healthcare environment vehicle 4 4 4

shared inpatient

Ward 2019 environment and Direct or

(100) S. anrens 23 2 Prospective Healthcare hospital stay indirect 5 5 5
Indirect:

Harris 2013 Common

(89) S. aurens 200 12 Retrospective | Healthcare shared unit vehicle 1 - 3

Harris 2013 Direct: Person

(89) S. aurens 175 2 Prospective Mixed Mother to child to person 8 8 8

Kristinsdottir Parent and healthcare Direct: Person

2019 (107) S. aurens 35 16 Retrospective | Mixed worker spread to person 0 - 11
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Kristinsdottir Direct: Person

2019 (107) S. anrens 2 9 Retrospective | Community Parent to person 0 - 6

Berbel

Caban 2020

(108) S. anrens 159 2 Prospective Unknown Unknown Unknown 14 14 14

Berbel

Caban 2020

(108) S. anrens 102 2 Prospective Unknown Unknown Unknown 1 1 1

Berbel

Caban 2020

(108) S. anrens 2 2 Prospective Healthcare Shared ward overlap Unknown 1 1 1

Berbel

Caban 2020

(108) S. anrens 24 2 Prospective Healthcare Shared ward overlap Unknown 1 1 1

Berbel

Caban 2020

(108) S. aurens 467 2 Prospective Unknown Unknown Unknown 11 11 11

Berbel

Caban 2020

(108) S. anreus 565 3 Prospective Mixed Unknown Unknown 3 - 12

Berbel

Caban 2020 Shared Overlapping Direct or

(108) S. anreus 628 24 Prospective Healthcare ward transmissions indirect 1 - 15

Berbel

Caban 2020 Shared Overlapping Direct or

(108) S. anreus 88 5 Prospective Healthcare ward transmissions indirect 5 - 10
Indirect:

Koser 2012 Common

(88) S. aurens 12 7 Prospective Healthcare NICU carriage vehicle 1 - 51

Eyre 2012 Direct or

(90) S. aurens 45 7 Retrospective | Healthcare Watd overlaps indirect 1 - 3

Eyre 2012 Direct or

(90) S. aurens 79 6 Retrospective | Healthcare Watd overlaps indirect 0 - 1
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Term

Definition

Surveillance

Systematic collection of health-related data for the purpose of

research, evaluation, and planning

Horizontal gene transfer

Movement of genetic material between organisms other than

direct transfer from a parent to offspring

Vertical gene transfer

Movement of genetic material from a parent to offspring

Loci Specific positions of genes within a genome

Richness A measure of the number of different taxonomic units (eg
species) within an ecological community

Alleles Forms of a gene found at the same locus of a genome

Phylogenetics The study of the evolutionary history between organisms

Niche The impact of biotic and abiotic factors in a specific environment

on an organism and that organism’s interaction with those factors

Positive selection

Process of advantageous mutations arising and increasing in

frequency in a population

Purifying selection

Process of the removal of disadvantageous mutations through

selection

Substitution rate

The number of new mutations that arise in each generation
multiplied by the probability that these mutations become fixed in

a population

Opportunistic infection

An infection caused by an organism that non-pathogenic when

under typical host-organism interactions
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Hitchhiking

Mutations or genes which are not directly under selection but fix
in a population due to close proximity to a gene undergoing

selection
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Chapter 3: Unsuspected Clonal Spread of Methicillin-
Resistant Staphylococcus aureus Causing Bloodstream
Infections in Hospitalized Adults Detected Using

Whole Genome Sequencing

Reprinted material from: Talbot, B. M., Jacko, N. F., Petit, R. A., Pegues, D. A., Shumaker, M. J.,
Read, T. D., & David, M. Z. (2022). Unsuspected Clonal Spread of Methicillin-Resistant
Staphylococcus aureus Causing Bloodstream Infections in Hospitalized Adults Detected Using

Whole Genome Sequencing. Clinical infections diseases : an official publication of the Infectious Diseases Society

of America, 75(12), 2104-2112. https://doi.org/10.1093/cid/ciac339

Abstract

Background: Though detection of transmission clusters of methicillin-resistant Staphylococcus
aureus (MRSA) infections is a priority for infection control personnel in hospitals, the
transmission dynamics of MRSA among hospitalized patients with bloodstream infections (BSIs)
has not been thoroughly studied. Whole genome sequencing (WGS) of MRSA isolates for
surveillance is valuable for detecting outbreaks in hospitals, but the bioinformatic approaches

used are diverse and difficult to compare.
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Methods: We combined short-read WGS with genotypic, phenotypic, and epidemiological
characteristics of 106 MRSA BSI isolates collected for routine microbiological diagnosis from
inpatients in two hospitals over 12 months. Clinical data and hospitalization history were
abstracted from electronic medical records. We compared three genome sequence alignment
strategies to assess similarity in cluster ascertainment. We conducted logistic regression to
measure the probability of predicting prior hospital overlap between clustered patient isolates by
the genetic distance of their isolates.

Results: While the three alignment approaches detected similar results, they showed some
variation. A Gene-family-based alignment pipeline was most consistent across MRSA clonal
complexes. We identified nine unique clusters of closely related BSI isolates. Most BSI were
healthcare-associated and community-onset. Our logistic model showed that with 13 single
nucleotide polymorphisms the likelihood that any two patients in a cluster had overlapped in a
hospital was 50 percent.

Conclusions: Multiple clusters of closely related MRSA isolates can be identified using WGS
among strains cultured from BSI in two hospitals. Genomic clustering of these infections
suggests that transmission resulted from a mix of community spread and healthcare exposures

long before BSI diagnosis.

Introduction

S. aureus caused nearly 119,000 bloodstream infections (BSlIs) and 20,000 associated
deaths in 2019 (132). These infections are exacerbated by the emergence of methicillin-resistant

S. aureus (MRSA) strains which are resistant to treatment with conventional 3-lactam antibiotics.
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Concerted national infection control efforts have decreased MRSA healthcare-associated
infections (HAIS) in the United States (U.S.), particularly BSIs caused by MRSA strains
historically associated with HAIs. However, the decrease in MRSA BSls in the U.S. has slowed
since 2013, and community-onset infections have recently made up the largest proportion of
cases (132).

Onset of a clinically significant infection is influenced by bacterial virulence, human host
factors, and triggers such as skin trauma or underlying illnesses that predispose patients to
opportunistic infections (133). Asymptomatic S. aureus carriage is a risk factor for infection, and
can be harbored in sites across the body (134), complicating elimination since detecting carriage
or transmission can occur long after exposure. Consequently, hospital (95) and community
(135,136) outbreaks of S. aureus result from direct or indirect contact with colonized individuals,
contamination of an intermediate person such as a healthcare worker (32), or through
environmental reservoirs. Though detecting transmission clusters of MRSA is an infection
control priority in hospital settings, the transmission dynamics of MRSA among hospitalized
patients with BSIs has not been thoroughly studied.

Whole genome sequencing (WGS) of bacterial genomes provides high resolution of
genetic relationships between MRSA isolates and possible recent transmission. Improved access
and ease of use of open-source bioinformatic resources, lower costs, and expansion of publicly
available DNA sequences increases the feasibility of routine genomic analysis for cluster
detection (137,138). Of great importance for detection is maximizing gene homology through
genome alignments. Alignment creation includes reference-free or reference-dependent methods,

which have unique trade-offs for sensitivity, specificity, and completeness of genetic data (93).
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Epidemiological investigations use genetic thresholds between S. aureus isolates to
identify or rule out clusters of related infections (79,90,95). Commonly, single nucleotide
polymorphisms (SNPs) are quantified to compare isolate sequences, create multisequence
alignments for phylogenetic reconstruction, and estimate the likelihood of a recent common
ancestor and possible transmission given a SNP threshold (94,130). Reference choice, sample
genetic diversity, and bioinformatic tools all impact which and how many SNPs are detected in a
sample set and necessitate exploration of the consistency genomic alignments used to infer
transmission clusters.

To elucidate transmission of MRSA BSI, we conducted a retrospective analysis of
MRSA BSI at two hospitals in one university system over 12 months. We compared core-
genome sequences from the isolates to detect putative transmission events between BSI patients
and examined epidemiological and molecular traits of isolates shared between cluster patients.
We also tested the consistency of detectable SNP differences between isolates using different

sequence alignment pipelines.

Methods

Patient cohort

We identified all patients diagnosed with a MRSA BSI between July 2018 and June
2019, admitted to either of two hospitals of the University of Pennsylvania hospital system. The
Hospital of the University of Pennsylvania (HUP) is a 625-bed academic tertiary and quaternary
care medical center in West Philadelphia with approximately 32,000 patient admissions, 633,000
outpatient visits, and 40,000 Emergency Department visits annually. The Penn Presbyterian

Medical Center (PMC) is a 324-bed urban community hospital in West Philadelphia with 12,000
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admissions, 130,000 outpatient visits, and 26,000 Emergency Department visits annually. A
single case of MRSA BSI was defined as a MRSA isolate collected from blood of any patient at
HUP or PMC during the study period. Each subject was only included once. The study was
approved by the University of Pennsylvania Institutional Review Board and given a waiver of
consent, as the study was retrospective, and no data or samples were collected specifically for

research purposes.
Isolate selection and DNA sequencing

Isolates were obtained from a biobank of clinical MRSA isolates cultured for routine
diagnosis in the HUP Clinical Microbiology Laboratory during the study period. Isolates were
screened for phenotypic antibiotic resistance using the Vitek 2 automated system, and assigned
susceptibility/resistance in accordance with CLSI protocols (139). A 1uL loopful of frozen
isolate was streaked onto blood agar, incubated overnight at 37°C, and a single representative
colony was grown under the same conditions on a new plate. A 10uL loopful of each isolate was
then frozen in a bead beating tube and underwent WGS using an Illumina MiSeq at the
Penn/Children’s Hospital of Philadelphia Microbiome Center. Sequencing libraries were
prepared using the Illumina Nextera library preparation kit. Sequences were made publicly
available through the Sequence Read Archive (Bioproject PRINA751847).

Bioinformatic pipelines

Paired-end 150 bp FASTQ files were passed through Bactopia workflow to assess data

quality, assemble contigs, and call MLST, SCCmec type, antibiotic resistance and virulence

genes (140). To compare SNP-based core-genome multiple-sequence alignments, the total

number of assembled contigs or subsets grouped by clonal complex (CC) were passed through
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three pipelines: (1) randomly fragmenting assembled genomes to create “pseudoreads” and
mapping these to a reference genome using Snippy (v.4.6.0) (141) (“Pseudoread pipeline™); (2)
mapping assembled genomes to a reference using Parsnp (v.1.5.6) (142) (“Assembly pipeline”);
and (3) evaluating reads with Markov Cluster Analysis, identifying overlapping gene clusters,
and aligning core genes using the Bactopia Tools pangenome workflow (“Gene-family
pipeline”). The Gene-family pipeline included PIRATE (131), ClonalFrameML (124) and

maskrc-svg (v0.5) (https://github.com/kwongj/maskrc-svq) to identify and mask possible

recombinant regions within the core-genome alignment. For the two reference-based pipelines,
we used strain N315 (GCF_000009645.1) as reference for non-CC specific alignments (all 104
available sequences regardless of CC) and CC5-specific alignments (N=40). For the CC8-
specific alignments (N=55) we used NCTC 8325 as reference (GCF_000013425.1). Pairwise
SNP distances of the core-genomes were calculated using snp-dists (143). Maximum likelihood
trees were created with 1Q-Tree (v2.1.2) (144) using a general time reversible model allowing for
invariant sites and unequal base frequencies and midpoint-rooted and visualized using ggTree
(145). Bootstrap values were calculated for 1000 repetitions. Phylogenetic similarity across
pipelines was measured by calculating cophenetic correlation (146) between SNP distance
matrices and estimated phylogeny tip distance, and assessing Robinson-Foulds distances (147)

between different alignment trees and randomly generated trees using ape (v5.5) (148).
Epidemiological investigation of clustered isolates

A transmission cluster was defined as two or more subjects whose isolates’ core-genomes
differed from one another by 35 or fewer SNPs, based on the approximate cutoff for within-
patient versus between-patient BSI lineages in a hospital setting (89,95). We also examined a

threshold of 15 SNPs, a proposed threshold for recent inter-patient MRSA transmission (79).


https://github.com/kwongj/maskrc-svg
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Demographic data, comorbidities, Pitt Bacteremia Score, source of BSI, and in-patient mortality
were abstracted from the electronic medical record (EMR) summarized and assessed for
association with CC using Fisher’s exact test or Student’s t-test. BSIs were considered
healthcare-associated (HA) if the index blood culture was drawn >48 hours after hospital
admission; healthcare-associated, community-onset (HACO) if the index culture was obtained
<48 hours after admission or in the community setting, and if the subject had one or more
previous healthcare risk factors (hospitalization, surgery, hemodialysis, or nursing
home/residential medical facility stay in the previous year; or presence of an indwelling
intravascular catheter at time of culture); and community-associated (CA) if the index culture
was obtained <48 hours after admission or in the community setting and the subject lacked these
healthcare risk factors. The EMR was examined for evidence of overlap or sequential
hospital/unit stays among cluster-subjects and visualized using vistime
(https://github.com/shosaco/vistime). Admission and discharge dates were recorded for each
cluster-subject for all hospital stays at any of four networked hospitals within one year before the
first collected BSlI isolate in a cluster and one year after the last collected BSI isolate in the
cluster. These included HUP, PMC, Pennsylvania Hospital (PH), and a single, University of
Pennsylvania long-term acute care hospital in Philadelphia. PH is a 481-bed urban community
hospital located in the Society Hill district of Philadelphia with >27,000 hospital admissions,
>24,000 Emergency Department visits, and 201,000 outpatient visits annually.

Logistic regression assessed the predictive power of SNP distances and likelihood of
patient hospitalization overlaps. Goodness of fit was assessed using a receiver operating
characteristic (ROC) curve and measuring the area under the curve. All analyses were conducted

in R studio (v1.4.1106) (149) run with R version 4.0.4, and final figures labelled in InkScape
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(v0.92.5) (150). Analysis code is available at https://github.com/Read-Lab-

Confederation/MRSA bloodstream clusters.

Results

Patient demographics and isolate characteristics

We screened all patients diagnosed with a MRSA BSI at two academic hospitals between
July 2018 and June 2019, identifying 106 qualifying subjects. Of the BSI source sites that could
be identified from EMR, skin site infections made up 19% and central venous catheter infections
made up 14% (Table 3.1). Among included subjects, 17% died while hospitalized. From each
individual, single MRSA isolates were sequenced, of which 105 had sufficient coverage for
further analysis and 104 isolates were S. aureus. One isolate was identified by WGS as
Staphylococcus argenteus and was excluded. Among the 104 genomes, 55 were assigned to
CC8, 49 of which were USA300 strains; 40 were assigned to CC5; and the remaining nine were
assigned CC30, CC72, and CC78. No significant association emerged between the two most
common CCs (CC5 and 8) and sex, age group, race, ethnicity, BSI source site, hospital death,

Pitt bacteremia score, or hospital of diagnosis (Supplementary Table S3.1 and S3.2).


https://github.com/Read-Lab-Confederation/MRSA_bloodstream_clusters
https://github.com/Read-Lab-Confederation/MRSA_bloodstream_clusters

Table 3.1. Demographics and clinical outcomes of subjects with MRSA bloodstream infection

(n=100)
Demographic Number (%0) Clinical Number (%)
Characteristic Patients Characteristic Patients
Total 106 Total 106
Age Group Source of BSI
20-29 12 (11%) Arteriovenous graft 4 (4%)
30-39 Central venous
13 (12%) 15 (14%)
catheter infection
40-49 16 (15%) Device infection 4 (4%)
50-59 18 (17%) Respiratory source 2 (2%)
60-69 32 (30%) Skin site 20 (19%)
70+ 15 (14%) Surgical site 4 (4%)
Sex Other 3 (3%)
Female 51 (48%) Unknown 52 (49%)
Male Hospital of BSI
55 (52%)
diagnosis
Race Hospital A 65 (61%)
Asian 1 (1%) Hospital B 41 (39%)
White 50 (48%) Infection setting
Black 49 (46%) HA 22 (21%)
Other/Unknown 6 (6%) CA 11 (10%)

53
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Ethnicity HACO 71 (68%)
Hispanic/Latino 2 (2%) In-hospital death®
Non- No
99 (93%) 88 (83%)
Hispanic/Latino
Unknown 5 (5%) Yes 18 (17%)

Pitt Bacteremia Score

Mean (SD) 2.1 (2.6)

Median (Range) 1.00 (0, 10.0)

‘Indicates death prior to discharge during the index MRSA BSI hospitalization. Abbreviations: BSI:
bloodstream infection; CA: community-associated; HA: healthcare-associated; HACO: healthcare-

associated, community-onset; SD: standard deviation.

Assessment of sequence alignment pipelines

We generated multiple alignments of all isolate sequences using three approaches to
determine their effect on pairwise SNP distances. Alignments generated with all 104 isolates had
lower distances compared to CC-specific alignments. SNP distances produced by the Gene-
family-pipeline were consistent between CC groups and whole species alignments (Fig. 3.1A-B),
whereas the SNP distances produced by the Pseudoread- and Assembly-pipelines were greater
when isolates of the same CC were the input (Fig. 3.1 C-F). Pipeline choice on phylogenetic
structure was assessed by comparing tree topology and SNP matrices across pipelines and
sequence input groupings (Table 3.2). The cophenetic correlation showed the highest correlation

for alignments produced from CC-specific inputs, though all alignment pipelines and inputs
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produced a value greater than 0.90. Tree topology across pipelines suggested that trees are highly

similar to one another compared to a random tree.
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Figure 3.1. Frequencies and distribution of single nucleotide polymorphism distances
between isolates vary by alignment tool. The frequency of pairwise distances between isolates
from clonal complexes (CC) 8 and 5 were quantified from distance matrices derived from
alignments generated from two groupings of isolate input: The total number of isolates in the
investigation (blue) or CC-specific isolates only (red). Isolate inputs were aligned using each of the

three alignhment pipelines, the Gene-family pipeline (A,B), Assembly pipeline (C,D), and Pseudoread

pipeline (E,F).
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Table 3.2. Comparability phylogenetic fit of alignment pipelines using Cophenetic correlation (R?),

alignment size, and Robinson-Foulds (RF) comparison® by alignment pipeline

CC5-specific isolates

CC8-specific isolates

Pipeline Total isolates (N=104)
(N =40) (N = 55)
Alignment RF- Alignment RF- Alignment | RF-
R2 R2 R2
Size (bp) values Size (bp) value Size (bp) values

Gene-

40,36,10
family- 0.984 2,141,357 56,52,200 0.984 2,182,742 10,8,72 0.987 | 2,176,046

4
pipeline
Pseudor

34,40,10
ead- 0.983 2,839,469 46,56,202 0.993 2,839,469 10,10,72 0.999 | 2,821,361

4
pipeline
Assembl

34,36,10
y- 0.929 2,163,693 52,46,202 0.995 2,497,454 8,10,72 0.999 | 2,482,874

4
pipeline

‘Row alighment pipeline compared to each other alignment pipeline and a random tree of the same

number of phylogenetic tips

Identification of suspected transmission clusters

Using alignments from each pipeline containing 104 isolates, we identified nine clusters

(C1-C9) among 29 isolates that differed by 35 SNPs or fewer from at least one other subject

isolate (Table 3). The Pseudoread-pipeline clustered 29 isolates, the Assembly-pipeline clustered

21, and the Gene-family-pipeline clustered 19. Five clusters contained CC5 isolates, three

clusters were CC8, and one cluster was CC30. The median cluster size was three isolates (range
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2-6). The longest collection date difference between clustering isolates was 265 days (C1), and

the shortest 12 days (C6). Median SNP differences were variable across clusters, and smaller

differences did not correlate with shorter collection date differences.

Table 3.3. Summary of suspected MRSA transmission clusters identified through Pseudoread-,

Assembly-, and Gene-family-alignment pipelines among 104 sequential MRSA bloodstream

infection patients at 2 hospitals

Median Pairwise SNP Difference (Range) Median
Collection
Transmission Clonal Number Gene- Date
MRSA Isolate Pseudoread- Assembly-
Cluster Cluster | ofisolates family- Difference,
pipeline pipeline
pipeline Days
(Range)
SAMN20960259,
SAMN20960281, 177 (110 -
C1 SAMN20960331 CC5 3 11 (3-12) 16 (4-16) 14 (5-16) 265)
SAMN20960260,
C2 SAMN20960274 CC5 2 6 7 7 61
SAMN20960263,
SAMN20960326,
SAMN20960280,
SAMN20960314,
C3a SAMN20960328 cCs 5 35 (20 - 46) 44 (26-62) 50 (36 - 620 | 128 (7 - 241)
SAMN20960280,
SAMN20960314,
C3b SAMN20960328 CC5 3 25 (20 - 25) 32 (26-306) 39 (36 - 39) 113 (37 - 150)
SAMN20960270,
C4 SAMN20960325 CC5 2 20 26 24 189
SAMN20960271,
C5a SAMN20960343 CC5 4 29 (6 - 35) 44 (10-53)¢ 41 (33-46) | 119 (56 - 237)
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C5b

SAMN20960271,

SAMN20960343

29

422

33

237

C5¢

SAMN20960298,

SAMN20960324

10

78

C6a

SAMN20960276,
SAMN20960282,
SAMN20960287,
SAMN20960293,
SAMN20960301,

SAMN20960306

CC8

29 (15 - 42)

39 (21-62)

38 (26 - 53)¢

54 (12 - 121)

Cob

SAMN20960276,
SAMN20960282,
SAMN20960293,
SAMN20960301,

SAMN20960306

CC8

w

26 (15 - 31)

35 (21-40)

37 (26 - 43)

66 (12 - 121)

Coc

SAMN20960276,
SAMN20960282,
SAMN20960293,

SAMN20960306

CC8

23 (15 - 30)

32 (21 - 36)

34 (26-38)

63 (32 - 121)

Cc7

SAMN20960299,
SAMN20960305,

SAMN20960334

CC8

34 (30 -34)

39 (36 - 41)

45 (41 - 50)

80 (24 -104)

C8

SAMN20960313,

SAMN20960323

CC8

28

C9

SAMN20960316,

SAMN20960337

CC30

23

25

22

67

aPartial or no detection of isolates as part of the cluster
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Phylogenetic analysis of isolates

To assess phylogenetic relationships within clusters, we created a representative tree
using the Gene-family-pipeline of the 104 isolates. This tree was selected because it had the
strongest cophenetic correlation, tree structure similarity, and conservation of SNP distances
between pipelines for the 104 isolates together (Table 3.2; Fig 3.1A-B). BSI isolates occupied
significantly divergent clades of CCs (Shimodaira—Hasegawa — approximate likelihood ratio test
and ultrafast bootstrap values >70) (Fig 3.2A). Candidate transmission clusters arose from
distinct sub-lineages (Fig 3.2B). The largest cluster, C5, diverged significantly from other CC8
isolates, and isolates were identified as part of the CC8c lineages (151). Cluster and non-cluster
isolates had varied distributions for infection setting, with most BSIs categorized as HACO
(68%). At a 15-SNP threshold, only isolates in clusters C1, C2, C5(a,c), and C8 remained
clustered. All isolates were susceptible to vancomycin and daptomycin but isolates in both the
CC5 and CC8 clades showed resistance to multiple B-lactams and quinolones. Thus, multiple
lineages of MRSA associated with BSI could transmit multiclass-resistant strains between

patients.
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Maximum likelihood trees were generated from the PIRATE alignment of 104 isolates and

visualized using ggtree. (A) Tree indicating clades containing individual clonal complexes (CCs). (B)

60

Subtrees from the complete maximum likelihood trees for the two most abundant CCs. Nodes with

bootstrap values >= 70 are marked in red. Heat maps show strain type, SCCwec element type, and

resistance phenotype for indicated antibiotics per sequence, infection setting (Healthcare-associated

[HA], Community associated [CA] and Healthcare-associated community-onset [HACO]),

admission hospital, and transmission cluster at a threshold of 35 SNPs or 15 SNPs.
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Genomic similarity predicts overlapping hospital stay in transmission clusters

For every cluster-subject we examined hospitalization history at four networked hospitals

in the University of Pennsylvania system one year before the first index BSI isolate and one year

after the last patient index isolate per cluster. Six clusters included subjects with overlapping

hospital stays, of which three had median SNP distances between 1-16 with corresponding

hospital unit overlaps (Table 3.3; Fig. 3.3). Cluster C5c¢ had a median SNP difference of seven

(range 6-10 SNPs across pipelines) with no common hospital overlap. In comparison, cluster C4

had no subjects with overlapping hospital admissions prior to their index BSI, but a median SNP

distance range of 20 - 26 SNPs across pipelines.
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Figure 3.3. Hospitalization history among patients in genomic BSI clusters. Hospitalization

history at 4 study hospitals (A, B, C, and D) up to 365 days before the date of the earliest MRSA

bloodstream isolate culture in each cluster (relative Day 0) and up to 365 days after the latest MRSA

bloodstream isolate in the cluster. Note that bloodstream infections were only included at hospitals



62

A and B. Rows represent the hospitalization history of each patient associated with a sequenced
cluster isolate. Colored rectangles and circular marks represent individual hospitalization durations
(rectangles) or one-day admissions (circles); the color indicates Hospital A, B, C, or D. Black
outlined boxes represent areas where two or more patients overlapped in the same hospital at the
same time. Red stars indicate the date of collection of the sequenced BSI isolate for each patient.
Yellow triangles indicate a hospitalization where two or more patients overlapped in the same

hospital unit.

We performed a logistic regression to measure the association between likely hospital
exposure and SNP difference assessing a SNP threshold range (Fig. 3.4). The log odds of
clustered patient pairs overlapping in the same hospital decreases by 0.065 with every increase of
one SNP (p=0.05), and showed that with 13 SNPs the likelihood that any two patients in a cluster
overlapped in a hospital was 50 percent, with a trend toward no overlap at higher SNP
differences (Fig. 3.4A). The ROC area under the curve classified known prior overlapping

hospitalizations 66% of the time from the SNP difference (Fig. 3.4B).
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Figure 3.4. Higher SNP distances trend toward ruling out hospital overlaps between
clustering patients. (A) Logistic regression model indicating the relationship between patient pairs
overlapping in the same hospital at the same time (prior to the diagnosis of an index MRSA
bloodstream infection) and the pairwise SNP distance. Points indicate the true result for each pair as
overlapping (1.0) or not ovetlapping (0). The color of the points indicates whether hospital overlap
patient pairs also overlapped (black) or did not overlap (gray) in the same hospital unit. Gray ribbon
indicates the 95% confidence interval. (B) Receiver operating characteristic (ROC) curve of the logistic

model in A. Area under the curve (AUC) = 0.662.

Discussion

We combined clinical and genome data to describe a cohort of 104 U.S. MRSA BSI
patients. The predominant genetic backgrounds of MRSA isolates in this study is consistent with
known prevalence of CC8 and CC5 MRSA strains causing healthcare- and community-
associated infections in the U.S (152). The resolution of WGS was critical for identifying

clusters of BSIs that would have otherwise gone unnoticed in the hospital setting. It is well
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characterized that WGS is useful for S. aureus outbreaks in hospitals (88-90,95,137,153),
,though many reports focus on its use in emergent, point-source outbreaks, such as those
occurring in neonatal intensive care unit with an identifiable index case (88,89,153). In other
instances, WGS confirmed related cases of MRSA infection only after initial outbreak detection
by other means, including an unusual antibiograms (88) or uncommon strain types (137).
Collectively, these investigations identified an epidemiologically significant core-genome SNP
difference as small as 13 SNPs (79) to as large as 40 SNPs (52) among outbreak isolates.

A SNP threshold under 35 was effective for cluster detection with evidence of prior
hospital overlaps among adult patients in a population where transmission pathways are difficult
to identify. Four clusters showed pairwise differences between 1-25 SNPs and patients with
diagnosis date within three months. Considering estimates of S. aureus neutral mutation of
approximately 5-6 SNPs per genome per year (100), a likely scenario is a recent common
exposure in a healthcare setting several weeks to months prior to BSI onset for clustered
subjects. However, clusters lacking evidence of a hospital overlap also had small SNP difference
ranges, suggesting alternative routes of MRSA transmission among BSI patients, such as hospital
environmental reservoirs like equipment (32,154) or a community reservoir of patients carrying
MRSA (155), possibly reintroducing bacteria to the hospital. We demonstrated that it is
reasonable to investigate healthcare histories for patients at or below 13 SNPs to find sources of
transmission associated with hospital settings.

Most U.S. hospitals have not yet implemented a WGS surveillance system for infection
control. Hospitals can approach bioinformatic surveillance using commercial workflows with
integrated processes (153) or open source options (108), or create robust in-house surveillance

methods (7). We demonstrated that different approaches to sequence alignment detect similar
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SNP differences and phylogenies. However, alignment sizes and the number of clusters at the
threshold of interest did differ. Choosing the most appropriate tool ideally optimizes sensitivity
and comparability across investigations. The Gene-family approach consistently detects similar
SNP differences among alignments of mixed clonal clusters and is suited to studies comparing
diverse sample sets. However, higher sensitivity can be achieved using an Assembly- or
Pseudoread-pipeline because they also compare a larger portion of the genome where SNPs can
accumulate. We suggest future studies use both approaches, first for general detection of clusters
with highly sensitive approaches, followed by a Gene-family approach to compare clusters
across a broader context of transmission cluster history in a specific environment. A sliding scale
(156) or a threshold range (79) could also offer a more flexible alternative for including patients
in transmission investigations.

Reference-based alignments and phylogenetic reconstruction is advantageous for
identifying transmission events in healthcare settings, particularly where MRSA infections are
rare (130,156). However, S. aureus transmission from healthcare facilities into community
settings and back suggest that hospitals and the surrounding community are a single reservoir of
transmission (89). Our investigation also points to the importance of long-term MRSA carriage
prior to diagnosis of a BSI. Overlapping hospitalization may provide an opportunity for MRSA
transmission and subsequent asymptomatic colonization in a recipient patient but BSI symptoms
may occur weeks or months later. Consequently, clusters are not identified after the critical
moment of transmission when infection control interventions could be implemented. As WGS
surveillance becomes prospectively implemented, Gene-family alignments are advantageous for

assessing increasingly diverse collections of isolates in a hospital or single healthcare system.
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In our analysis, the long span of time between BSI onset among cluster patients and lack
of an obvious transmission pathway suggests possible intermediate patients without a BSI but
still carriers of the infecting MRSA strains. We did not collect isolates from the hospital
environment or from healthcare workers directly, so we cannot discern the role of these
intermediaries for transmission in the clusters.

We revealed MRSA BSI clusters among adults with various prior healthcare exposures in
a setting with relatively high incidence of MRSA infections. We identified genetically similar
clusters while routine epidemiological signal was weak, but with further investigation suggested
healthcare exposures well before BSI presentation. Including WGS as a part of current routine
colonization screenings for MRSA in high-risk clinical settings could identify and prevent
transmission events in areas of hospitals not regularly scrutinized by infection control staff. With
robust and consistent cluster detection pipelines and the prospective collection of detailed
exposure histories, with a focus on identifying exposures during hospitalization to specific
healthcare workers, fomites, and medical procedures, outbreak sources can be better resolved

before the onset of a BSI event.
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Supplementary Information

Table S3.1. Distribution of patient demographics and clinical outcomes across isolate clonal

clusters
CC30 CC5 CC72 CC78 CC8
(N=2) | (N=38) | (N=5) | (N=2) | (N=52)
Age Group
20-29 0 (0%) 3(7.9%) 2 (40.0%) 0 (0%) 7 (13.5%)
1
30-39 0 (0%) 2(5.3%) 120.0%) (50.0% 8 (15.4%)
)
40-49 0 (0%) 9 (23.7%) 0 (0%) 0 (0%) 7 (13.5%)
1
50-59 1 (50.0%) 4 (10.5%) 1 (20.0%) (50.0% 8 (15.4%)
)
15 14
60-69 0 (0%) 0 (0%) 0 (0%)

(39.5%) (26.9%)




70-79
80-89
90-99
100-110

Sex

Male

Female

Race

Black

White

Asian
Other
Don't Know

Ethnicity

Non-Hispanic/Latino

Hispanic/Latino

1 (50.0%)
0 (0%)
0 (0%)

0 (0%)

2 (100%)

0 (0%)

1 (50.0%)

1 (50.0%)

0 (0%)
0 (0%)

0 (0%)

2 (100%)

0 (0%)

4 (10.5%)
1 (2.6%)
0 (0%)

0 (0%)

19

(50.0%)

19

(50.0%)

20
(52.6%)
16
(42.1%)
1 (2.6%)
1 (2.6%)

0 (0%)

36
(94.7%)

1 (2.6%)

1 (20.0%)
0 (0%)
0 (0%)

0 (0%)

3 (60.0%)

2 (40.0%)

3 (60.0%)

2 (40.0%)

0 (0%)
0 (0%)

0 (0%)

5 (100%)

0 (0%)

0 (0%)
0 (0%)
0 (0%)

0 (0%)

1

(50.0%

)

1

(50.0%

)

2

(100%)

0 (0%)

0 (0%)
0 (0%)

0 (0%)

2
(100%)

0 (0%)
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6 (11.5%)
1.(1.9%)
0 (0%)

1 (1.9%)

25

(48.1%)

27

(51.9%)

20
(38.5%)
28
(53.8%)
0 (0%)
2 (3.8%)

2 (3.8%)

48
(92.3%)

1(1.9%)




Refused

Source Site of BSI

Skin site

Arteriovenous Graft

Central venous catheter
infection

Device infection

Other

Respiratory source

Surgical site

Unknown

Urinary source

Hospital

Hospital A

Hospital B

Pitt Bacteremia Scale

0 (0%)

2 (100%)

0 (0%)

0 (0%)

0 (0%)

0 (0%)

0 (0%)

0 (0%)

0 (0%)

0 (0%)

1 (50.0%)

1 (50.0%)

1 (2.6%)

6 (15.8%)

1 (2.6%)

7 (18.4%)

1 (2.6%)
1 (2.6%)
1 (2.6%)

1 (2.6%)

19

(50.0%)

1 (2.6%)

23
(60.5%)
15

(39.5%)

0 (0%)

2 (40.0%0)

0 (0%)

1 (20.0%)

1 (20.0%)

0 (0%)

0 (0%)

0 (0%)

1 (20.0%)

0 (0%)

1 (20.0%)

4 (80.0%)

0 (0%)

0 (0%)

1

(50.0%

)

0 (0%)

0 (0%)
0 (0%)
0 (0%)
0 (0%)
1
(50.0%

)

0 (0%)

2

(100%)

0 (0%)

69

3 (5.8%)

10

(19.2%)

1 (1.9%)

6 (11.5%)

2 (3.8%)
2 (3.8%)
1 (1.9%)

1 (1.9%)

28

(53.8%)

1 (1.9%)

33
(63.5%)
19

(36.5%)
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0.500 2.21 2.80 2.25
Mean (SD) 0 (0)
(0.707) (2.78) (3.83) (2.60)
0.500 [0, 1.00 [0, 1.00 [0, 2.00 [0,
Median [Min, Max] 0 [0, 0]
1.00] 9.00] 9.00] 10.0]
In-hospital Death
30 2 43
No 2 (100%) 5 (100%)
(78.9%) (100%)  (82.7%)
Yes 0 (0%) 8 (21.1%) 0 (0%) 0 0%) 9 (17.3%)

Table S3.2. Association of Patient demographics and clinical outcomes with clonal clusters CC8

and CC5
CC5 CC8
P-value*
(N=38) (N=52)
Age Group
20-29 3 (7.9%) 7 (13.5%) 0.519
30-39 2 (5.3%) 8 (15.4%)
40-49 9 (23.7%) 7 (13.5%)
50-59 4 (10.5%) 8 (15.4%)
60-69 15 (39.5%) 14 (26.9%)
70-79 4 (10.5%) 6 (11.5%)
80-89 1 (2.6%) 1 (1.9%)

90-99 0 (0%) 0 (0%)




100-110
Sex
Female
Male
Race
Asian
Black
Other
White
Don't Know
Ethnicity
Hispanic/Latino
Non-Hispanic/Latino
Refused
Source Site of BSI
Arteriovenous Graft
Central venous catheter
infection
Device infection
Other
Respiratory source
Skin site

Surgical site

0 (0%)

19 (50.0%)

19 (50.0%)

1 (2.6%)
20 (52.6%)
1 (2.6%)
16 (42.1%)

0 (0%)

1 (2.6%)
36 (94.7%)

1(2.6%)

1(2.6%)

7 (18.4%)

1 (2.6%)
1 (2.6%)
1 (2.6%)
6 (15.8%)

1 (2.6%)

1.(1.9%)

27 (51.9%)

25 (48.1%)

0 (0%)
20 (38.5%)
2 (3.8%)
28 (53.8%)

2 (3.8%)

1.(1.9%)
48 (92.3%)

3 (5.8%)

1.(1.9%)

6 (11.5%)

2 (3.8%)
2 (3.8%)
1.(1.9%)

10 (19.2%)

1 (1.9%)

0.369

0.82

0.995
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Unknown 19 (50.0%)

Urinary source 1 (2.6%)
Hospital

Hospital A 23 (60.5%)

Hospital B 15 (39.5%)

Pitt Bacteremia Scale
Mean (SD) 2.21 (2.78)
Median [Min, Max] 1.00 [0, 9.00]
In-hospital Death
No 30 (78.9%)

Yes 8 (21.1%)

28 (53.8%)

1.(1.9%)

33 (63.5%)

19 (36.5%)

2.25 (2.60)

2.00 [0, 10.0]

43 (82.7%)

9 (17.3%)

0.828

0.946

0.786
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*P-values reflect results of two-tailed T-test or Fisher's Exact test
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Chapter 4: Genomic investigation of MRSA
bacteremia relapse reveals diverse genomic profiles but

convergence in bacteremia-associated genes

Brooke M. Talbot, Natasia F. Jacko, Katrina Hofstetter, Timothy D. Read, Michael Z. David

Abstract

Background. Recurrence of Methicillin-resistant Szaphylococcus aurens (MRSA) bacteremia is a high-
risk complication for patients. Characterizing the patterns of risk relative to the initial infections is
complex.

Methods. We investigated clinical and bacterial factors contributing to recurrence of MRSA
bacteremia among a cohort of patients in Philadelphia, Pennsylvania. Patient demographics, clinical
history, and suspected sources of BSI were collected. Infection isolates were short read whole-
genome sequenced and de novo assembled. All BSI isolates were core genome-aligned to assess
pairwise single nucleotide polymorphism (SNP) distances, and to create a maximum likelihood tree
to infer phylogenetic relationships. Recurrence was defined as MRSA bacteremia occurring 30 days
or more from previous MRSA bacteremia experienced by the same person. Infections were relapses
if isolates from the same patient were less than 25 SNPs different or if the genomic distance was
smaller between isolate from the same patient than the next closest isolate from a different patient.
CC and time between infections were compared between relapse and non-relapse recurrences.
Convergent genetic traits were assessed by quantifying unique SNPs per gene emerging in relapse-

infection lineages.
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Results. Among 411 BSI subjects, 32 had at least one repeated MRSAbacteremia event. There were
26 subjects with relapse infections and 8 with infections from a new strain, with two patients with
both relapse and distinct recurrences. CC distribution was similar between recurrence and non-
recurrence isolates (p=0.6132). Relapses occurred sooner after the prior infection (Median 155 days,
interquartile range (IQR) 88-269 days) compared to new strain recurrences (Median 248 days, IQR
105-599 days), though this was not statistically significant. Recurrences sharing the same CC as their
paired previous infection were not distinct from chance and occurred 55% of the time. Genes with
SNPs occurring in multiple relapse lineages have roles in antibiotic resistance and virulence,
including 5 lineages with mutations in zprl’ and 3 lineages with mutations in 7poB.

Conclusions. Recurrent MRSA infections have a diverse strain background, but relapses can be
readily distinguished from newly acquired infections. Continued genomic analysis can reveal the

roles of unique mutations in pathoadaptation.

Introduction

Staphylococcus anrens bacteremia (SAB) is a complex clinical syndrome which often leads to
severe patient outcomes, including endocarditis and other metastatic infections (157). SAB is
associated with high mortality and strains with increased antibiotic resistance (158—160). In the
healthcare setting, where it is most intensively studied, asymptomatic colonization (161), intravenous
drug use (162,163), and involvement of central lines in clinical care (33) all increase the risk of SAB.

Recurrence of SAB, where patients experience SAB after assumed resolution of a previous
infection, is an ongoing clinical challenge. Global records demonstrate that among five and 15
percent of patients with a Methicillin-resistant SAB episode experience a recurrence, and the risks

associated with recurrence in the blood are similarly heterogenous to bloodstream infections overall
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(33,159,163-168). Known risk factors for recurrence of SAB in adults include younger patient age,
presence of a foreign body, hemodialysis dependence, valvular heart disease, liver cirrhosis, and
endocarditis (165,168). Drug resistance can also emerge from mutations that confer cross resistance
of first-line treatments or sequential mutations that lead to multidrug resistance, further complicating
prevention of more difficult to treat recurrences among patients with persistent infections or
patients with deep-seated foci (169). Therefore, understanding the nature of the recurrence helps
better understand a clinical course of action and future prevention of ongoing infection.

One clinical challenge is disentangling new infections after true clearance from cryptically
persisting bacteria within the host. With primary bacteremia, where the focus of infection is
unknown, only general measures can be taken to prevent a future infection and recurrence becomes
more difficult to predict. After diagnosis of SAB, follow-up blood cultures are collected typically 2-4
days after the beginning of antibiotic treatment and through to the first negative blood culture,
though intermittent negative cultures are known to occur in some persistent S. axreus infections.
Genetic typing has been used to distinguish persistent populations of bacteria that remain from a
previous infection in the same person, known as relapse of infection (165,170). However, there is no
definitive time interval that is used to determine within-host persistence from successfully circulating
clones that may cause re-infections. Therefore, recurrence of infections currently are
heterogeneously defined by a combination of genetic pattern, time interval between negative cultures
and a new onset, and suspicion of a previous source of infection as the cause of a subsequent
infection (33,165—168). Further, the overall prevalence of S. aurens colonization, and the known
asymptomatic spread of S. aureus from person to person make it challenging to determine if a
recurrence emerges because of exposure to anew S. aureus strain, or if a previous strain was

cryptically persistent on a person even after treatment. The consequence of misidentifying
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recurrence could result in failures to prevent future infections; If an infected person is indicated as
having a new infection when in fact there is persistent colonization or infection of a foci, future
recurrence may be possible; In contrast, new infections thought to be associated with a previous
infection could make it difficult to clearly identify patterns of §. aureus introduction in a healthcare
setting or community setting, slowing down efforts to identify areas for infection prevention.
Certain . aureus lineages have been implicated as more likely to develop SAB, such as clonal
complexes (CC) 5 (65), 30 (65), and 8 (159) and these are also strains more likely to be encountered
in healthcare settings in the US. Individual mutations and genes associated with bacteremia alter
traits related to virulence regulation (22,72,73,158,160,170-177), antibiotic targets
(158,160,170,178,179) and the development of small colony variants (180,181). Both methicillin-
resistant (MRSA) and susceptible strains (MSSA) can cause SAB (182,183). . aureus causes chronic
invasive infections across different body niches, and the transition from colonizing to invasive
results in relatively quick host adaptation (129,169,184). However, adaptations to invasion are
generally considered to exist only in an extent colony present in the invasion (i.e. the bloodstream),
and therefore SABs are thought to be an evolutionary dead-end for the clone (129,184). Several
genomics studies have revealed that mutations in a limited number of loci appear to increase the risk
for metastatic and persistent infections, and possible recurrence. Arguably, however, SAB episodes
occupy a continuum between bacterial populations chronically invading tissue and acutely invading
the cardiovascular system. Therefore, the quality and quantity of genetic change present in a set of
subsequent SAB episodes could help researchers understand the collective set of drivers in the host
environment that lead to recurrences as well as help differentiate new infections from cryptic and

persistent infections.
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To define genetic differences and risks for recurrence of SAB, we examined a cohort of
patients in Philadelphia, Pennsylvania experiencing SAB across five years who received care at a
single hospital system. We performed whole-genome sequencing on single isolates from episodes of
SAB from individuals, including isolates from subsequent episodes in individuals experiencing a
recurrence. We examined the strength association in host clinical factors and bacterial genetics to
help further define risks for recurrent SAB, as well as distinguish the transmission and adaptive

history of infections that result in a relapse or a new infection.

Methods

Subject cohort and isolate collection

This study was considered exempt by the University of Pennsylvania Institutional Review
Board. Subject isolates were included from a cohort of adult patients admitted to at least one of two
hospitals in Philadelphia, Pennsylvania and diagnosed with Methicillin-resistant . azreus (MRSA)
bacteremia between July 2018 and February 2022. A single colony representative isolate was taken
for each bacteremia episode. Additional clinical and demographic information was collected through
medical chart reviews for all infections, including age at time of isolate collection, race, ethnicity, sex
at birth, death within 30 days of infection, comorbidities and chronic conditions, antibiotic
treatment, suspected source site of infection, and healthcare-associated acquisition of infection.
Antibiotic resistance phenotypes were collected from clinical microbiology records associated with
the unique bacterial isolates. Antibiotic resistance was assessed using the Vitek 2 automated system,
and assigned susceptibility/resistance in accordance with Clinical and Laboratory Standards Institute

protocols (185).
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Clinical distinction of relapse and new infections

For subjects with a recorded subsequent SAB event (a “recurrence”) in the study period each
event was classified as a “relapse” or “new infection” according to the following criteria as outlined
in Figure S4.1: MRSA bacteremia episodes among subjects include all isolates collected in a 30-day
period from the first episode isolate. At each discrete medical encounter where MRSA bacteremia
was detected, subjects with one or more MRSA isolate were assessed for any previous MRSA
bacteremia. If patients had a record of MRSA bacteremia, then the time interval between the
collection date of the isolate at the encounter and the last known index isolate collection date was
checked for whether it was greater than 30 days. All MRSA bacteremia isolates collected outside of
the 30-day period but with record of a previous bacteremia episode during the study period were
considered “recurrences.” Recurrent infections were then categorized into “new infections” and
“relapse” infections according to either clinical criteria or genomic criteria. For clinical criteria, new
infections had to fulfill any of the following: The episode was 30 days or more since the last positive
blood culture, all symptoms at the source site and metastatic sites of the previous infection were
resolved, no new antibiotics were prescribed after completion of definitive therapy, the site of the
infection was different from the previous infection and the subject was on suppressive antibiotics, if
a central venous catheter was changed then it was changed over a wire (186), or the source of
infection was clinically ruled to be different from the previous infection. Otherwise, the bacteremia

episode was considered a relapse.

Sequencing quality and phylogenetics
Genomic DNA was extracted from S. aureus isolates and sequenced at the Children’s

Hospital of Pennsylvania SEQ Center, using a paired-end short read whole-genome shotgun
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strategy as previously described (187). Reads were processed using Bactopia (v 3.0.0) (140). Briefly,
in the Bactopia pipeline adaptor sequences were removed, and reads were de novo assembled using
Shovill (v.1.1.0). Sequences were used for further investigation if reads had at least an average per-
read quality score of Q12 and a mean read length of 49bp, and the genomic assembly had at least
20x coverage and no more than 500 contigs. Multilocus sequence type (ST) and CC were assigned by
calling Ariba (v 2.14.6) in the Bactopia workflow, which utilized the . aureus specific ST scheme
from PubMLST (84) . For novel STs or ST's without a defined CC, the CC was manually defined
based on the clade position of the isolate within a maximum likelihood tree and its closest relative
with a defined CC. In order to differentiate distinct infection lineages, a core genome alignment was
created among all MRSA BSI isolates and methicillin-susceptible . aurexs Strain Newman
(GCF_020985245.1) as an outgroup using the Bactopia subworkflow “pangenome” using PIRATE
(131). Areas of likely recombination were identified and masked using ClonalFrame ML (v.1.12)
(124). A maximum likelihood tree of all isolates was created from the masked alignment with
1QTree (2.1.2) (144) and ModelFinder (188), which determined the best fit model to be a generalized
time reversible model with Empirical base frequencies plus the FreeRate model. Raw reads for this

study are publicly available in the Sequence Read Archive under the project ID PRJNA751847.

Genomic definition of recurrences and cluster identification

Snp-dists (0.8.2) was used to calculate the pairwise distance of single nucleotide
polymorphisms (SNPs) between aligned isolates. Subjects with recurrent episodes of bacteremia
were categorized as having a relapsed infection or new infection based on the genomic difference
from the isolate of the most recent previous episode relative to the episode of comparison. Relapsed

infections were defined as episodes where the isolate genomes were <= 25 SNPs different from one
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another, or isolates whose most-recent common ancestor to another isolate in the overall population
was from an infection within the same human subject and which shared the same ST. Cohen’s kappa
(189,190) was calculated between the clinical and genomic definitions of relapse to assess agreement
between the methods, as well as sensitivity and specificity of the clinical definition in comparison to

a genomic approach.

Association of clusters with demographic and clinical data

The distribution of demographic, clinical, and genomic characteristics was compared
between genomically defined relapses and new infections using Peason’s Chi-square test or Fishet’s
exact test. Isolates between subjects were also compared to identify potential clusters of highly
related infections. For all relapse-associated isolates that clustered with isolates from a separate
subject, subtrees of the larger ML tree were created and examined for branch structure to identify
the role of relapse isolates in putative onward transmission. The time in days between collection date
of the earliest isolate in the cluster (designated as day 0) and subsequent isolates was annotated for

each clustet.

Variant calling and identifying mutations in common genes in relapse lineages

The Snippy Bactopia subworkflow, which utilizes Snippy v4.6.0 (141), was used for variant
calling of all isolates against a previously generated ancestrally reconstructed S. aureus genome (191).
Variant calling was also conducted for each set of identified relapse infections by using the first
known isolate (index) in each lineage as the reference. The index isolates were annotated using Bakta
(v1.9.3)(192) in order to generate the reference sequence for variant analysis. Small insertions and

deletions (indels) and single nucleotide polymorphisms (SNPs) were identified. The —snippy-core
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option was run on all isolates to identify variants in core coding regions across all genomes in the
set. The snippy-core alignment produced an output with the predicted effects of variants on amino
acid structure and potential functional changes. Any change that altered the amino acid compared to
the reference was designated as non-synonymous, and if there was no change to the amino acid
composition, the prediction was a synonymous change. Additionally, to identify commonly
occurring non-synonymous changes within each recurrence lineage, the —snippy-core option was run
to create a SNP alignment of the set of isolates from the same subject and identify the predicted
effect of variants on amino acid structure and functional change. SNPs in coding regions were

concatenated and summarized for all lineages.

Creating a database of bacteremia-associated mutations

A PubMed literature review was conducted to create a database of previously identified
genes and/or mutations in 5. aurens genomes that were associated with host bloodstream infections.
Pubmed was searched in December 2023 using query (((staphylococcus aureus)) AND ((bacteremia)
OR (bloodstream infection))) AND (genetic mutation). Only peer-reviewed articles (no reviews or
preprints) were scanned for evidence. Genes or mutations in genes were considered if the study
reported that they occurred in the S. aurens genome, samples were derived from bloodstream
infections, were associated with changes in virulence expression or host survival or were associated
with phenotypic changes related to blood cells, including immune cells. A collection of sources

where these genes were identified can be found in Table S4.1.
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Calculation of the index of neutrality

A McDonald-Kreitman (MK) test (193) was performed across all isolates associated with a
relapse to assess the impact of selection on the whole genome or on known bacteremia-associated
genes. A core genome alignment was created using snippy-core for all isolates and for all isolates
that were associated with a relapse lineage. The ancestral reference served as the outgroup. Fixed
sites were determined by counting the nucleotide sites that were universally conserved from the
reference for all sequences when all sequences were included, and per relapse lineage. Polymorphic
sites were determined if there were nucleotide sites that differed between individuals within a

lineage. A G-test was used to evaluate the significance of the neutrality index.

Relationship between phylogenetic background and relapse/new infection

In cases where a patient suffered a recurrent new infection, we tested whether the second
strain was likely to be of the same genetic background (CC or ST) as the first infection. We used a
permutation approach, where we drew sequential isolates at random with the same frequency as seen
among the patients with new infections. Random isolates were drawn from all the isolates within the
sample population. The proportion of pairs that did not share a CC or ST compared to all pairs was
calculated. We selected pairs for a total of 1000 drawings and the distribution of the non-clade
sharing pairing proportions was compared to the observed number of recurrent infections that did
not result in a subsequent relapse event. We also conducted a permutation test on whether the
difference in collection date of the bacteremia isolate between recurrent and non-relapse pairs of
infections was associated with sharing of clade background between infections. For all pairs of
untelated recurrences, the date difference between the first and next infection were calculated, and

whether the two isolates shared the same ST or CC was noted. The mean date difference was
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calculated for pairs with shared and nonshared clade backgrounds. Subsequently, a permutation test

was conducted on the mean date difference for 10,000 permutations.

Results

Recurrent bloodstream infections are from common clinical and phylogenetic

backgrounds as other circulating strains.

We sequenced 456 §. aureus isolates from episodes of bacteremia and included 411 subjects,
of which 32 subjects had at least one recurrent MRSA bacteremia episode (77 isolates total). Over
the study period the number of new MRSA bacteremia episodes per month was consistent. (Figure
1). Recurrence-associated isolates occurred across phylogenetic clades including CC5 (N = 29), CC8
(N = 41), CC30 (N = 3), CC78 (N = 3) and CC72 (N = 1) (Figure 2). CC distribution was similar
between recurrence and non-recurrence isolates (p=0.91), and there was no difference in the
number of recurrences over time.

Demographic characteristics, healthcare exposures, comorbidities, and course of treatment
of the first bacteremia episode of the patient were assessed to identify differences in the clinical risk
factors that could contribute to the emergence of a recurrent strain of MRSA causing bacteremia.
Only the length of time daptomycin was administered for the initial infection was significantly
associated with a patient experiencing a recurrence compared to non-recurrence subjects, with a
median time of 39 days compared to 21 days of therapy respectively (p = 0.05). Subjects with
younger age, more cardiovascular disease and kidney disease, and healthcare-acquired community
onset (HACO) acquisition were more frequent among recurrent subjects compared to non-
recurrence patients, even if these factors did not attain p values < 0.05. Additionally, while there was

no difference in the presence of a foreign body involved in the infection, removal of the foreign
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body was much more commonly occurring among non-recurrence subjects (37/80 subjects, 46%)

compared to recutrence subjects (2/7 subjects, 29%). Taken together, recurrent bacteremia episodes

share clinical and genetic characteristics with the overall population of infectious MRSA causing

non-recurrent bloodstream infections and that larger population sizes will be needed to identify any

vatiables with small effect.
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Figure 4.1. Case count of bacteremia over time by phylogenetic category. The total number of

SAB episodes was counted from July 2018 to February 2022 and aggregated per month. Individual

colored lines represent the clonal complex background of the isolate associated with each episode.

The dotted line represents the total number of episodes over time during the study period (N=450).
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Figure 4.2. Recurrent SAB isolates share a similar phylogenetic distribution to non-recurrent

SAB episodes. A core pangenome tree was constructed and rooted using MSSA strain Newman

(GCF_020985245.1). Whether or not an isolate was a recurrence in a patient with a history of a

previous infection is indicated in red in the first heat map column. Additional molecular

characteristics included in the heat map are, from left to right, the presence or absence of mecA,

mecA type, clonal complex, and sequence type. Blue dots indicated nodes where Shimodaira-

Hasegawa approximate likelihood ratio test and ultrafast bootstrap values were >70).



Table 4.1. Clinical and demographic characteristics at the time of the first bacteremia episode for

recurrent- and non-recurrent-episode subjects

Patient Attribute Overall (N = Non-recurrent | Recurrent (N = | P-Value
411) (N = 379) 32)

Age at Diagnosis 56 (42.5-68) 57 (43-68) 51 (33-62) 0.06

(median, IQR)

Sex

Male 232 (56%) 215 (57%) 17 (52%) Ref.

Female 179 (44%) 163 (43%o) 16 (48%) 0.71

Race and Ethnicity

White 185 (45%) 168 (44%) 17 (52%) Ref.

Asian 9 (2%) 8 (2%) 1 (3%) 0.59

Black 171 (42%) 161 (42%) 10 (33%) 0.31

Hispanic or Latino 10 (2%) 9 (2%) 1 (3%) 0.91

More than one race or 9 (2%) 7 (2%) 2 (6%) 0.22

ethnicity

Other Race/ ethnicity 10 (2%) 9 (2%) 1 (3%) 0.91

Don’t know/ refused 17 (4%) 17 (4%) 0 (0%) Inf.

Chronic Skin 36 (9%) 33 (9%) 3 (9%) 0.75

Disease

Diabetes 143 (35%) 130 (34%) 13 (39%) 0.56

Cancer 67 (16%) 64 (17%) 3 (9%) 0.33
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Respiratory disease | 95 (23%) 85 (23%) 8 (27%) 0.82
Cardiovascular 199 (48%) 180 (47%) 19 (61%) 0.20
Disease

Infective 71 (17%) 67 (18%) 4 (12%)

Endocarditis

Liver Disease 41 (10%) 37 (10%) 4 (12%) 0.58
Kidney Disease 114 (28%0) 102 (27%) 12 (36%) 0.22
Treated with 77 (19%) 68 (18%) 9 (27%) 0.16
Hemodialysis in

the last 12 months?

Current 87 (21%) 80 (21%) 7 (21%) 1
Intravenous Drug

Use

Involvement of 87 (21%) 80 (21%) 7 (21%) 1
foreign body in the

bacteremia

Was the foreign body 39 (45%) 37 (46%) 2 (29%) 0.52
removed?

Healthcare

Acquisition of

index

Community Acquired 50 (12%) 48 (13%) 2 (6%) Ref.
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Healthcare Acquired 92 (22%) 88 (23%) 4 (12%) 1
Healthcare Acquired- 269 (72%) 243 (64%) 26 (82%) 0.28
Commmnnity Onset

Death in hospital or

30 days after index

infection

Yes 86 (22%) 86 (22%) 0 (0%) <0.01
Unknown 14 (3%) 14 (4%) 0 (0%) 1
How many 2 (1-2) 1(1-2) 2(1-3) 0.23
antibiotics was the

patient exposed to

during their index

infection?

Vancomycin 383 (93%) 352 (94%) 31 (97%) 0.7
Vancomycin 21 (7-42) 20 (7-42) 24 (6 —42) 0.65
Duration (days)

Daptomycin 153 (37%) 136 (36%) 17 (55%) 0.08
Daptomycin 27 (8-42) 25 (7-42) 39 (21 —42) 0.05

Duration (days)

88



89

Recurrent but new infections are genetically distinct from relapse infections.

Using a genomic definition for relapse and recurrent but new infections, we identified 26
subjects with relapse infections and 8 with infections from a new strain; two subjects experienced
both relapse and new infections. Relapses occurred sooner after the prior infection (Median 155
days, interquartile range (IQR) 88-269 days) compared to new strain recurrences (Median 248 days,
IQR 105-599 days), though this was not statistically significant (Fig. 4.3A). Most relapse infections
tell well below the set SNP threshold of 25 SNPs, with only 3 episodes requiring additional review
for phylogenetic clustering, The six recurrent but new infections were distantly related from the
subject’s previous infection by hundreds to thousands of SNPs, suggestive of an evolutionary
common ancestor well outside of a reasonable epidemiological time parameter (Fig. 4.3B). Indeed,
when these pairs are compared in their phylogenetic context, they often are derived from wholly
separate clades of the pangenome tree (Fig. 4.3C).

We were interested to identify the concordance between clinical definitions of relapse in the
absence of genomic information compared to a strictly genomic definition. When pairs of
bacteremia episodes were compared, the overall concordance was poor (Cohen’s Kappa = 0.18, CI:
-0.41), with the genomic definition predicting that 82% of subsequent infections are related to the
previous infection, and the clinical definition predicting that 50% are related (Fig. 4.4). When
genomics was used as a standard for relapse likelihood, the clinical definition has a sensitivity of 55%
and a specificity of 75%. When a device or foreign body was implicated in any infection, however,
there was often high concordance in identifying relapsing infections. The genomic definitions of

relapse and new infections were used for the remainder of analyses.
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Figure 4.3. Relapsing infections and new infections within a patient are genomically

distinguishable. Recurrence-associated isolates were separated into relapse-associated isolates or

new infections based on pairwise SNP distance between isolate pairs within the subject. (A)

Difference in time between subsequent episodes for genomically new infections and relapse

associated infections were compared. (B) Counts of the number of pairs within an individual subject

were assessed relative to their pairwise SNP distance. The inset display demonstrates counts where

the SNP distance was between 0 and 350 SNPs. The dotted line represents the 25 SNP threshold for

categorizing relapse infections. (C) A core-pangenome tree of all bloodstream isolates with

recurrence-associated isolates linked by lines, with recurrent but new infections represented by green

dotted lines and relapse infections represented by orange links.
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Same Source
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First Source
Arteriovenous Graft

Central venous catheter infection
Device infection

Other

Respiratory source

Skin site

Surgical site

Unknown

Second Source
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Figure 4.4. Clinical and genomic definitions of relapse are discordant. Pairs of isolates from all
recurrent infections were compared and identified as relapse (filled black rectangle) or new
infections (white rectangles) based on a genomic definition or clinical definition, for a total of 4X
pairs. The suspected source type of each infection within the episode was identified, with the least
recent isolate associated with the “First Source” and the most recent isolate associated with the
“Second Source.” Clinical source type was additionally assessed to determine if the first and second

source were physically the same source.
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Relapse infections, but not new recurrent infections, demonstrate distinct

adaptation to the host.

Among isolates that were recurrent but ultimately genomically distinct, subsequent re-
infection with a strain of a different strain type or clonal complex was not more likely than by
chance in the overall population. The difference in days of the subsequent infection did not differ
from chance between isolate pairs that shared a phylogenetic background (ST or CC) compared to
those with different backgrounds (Fig. 4.5). Taken together the genomic background of a previous
MRSA bacteremia episode does not play a greater role than chance in determining strain a person
may become infected with in a future new infection.

Relapse infections may be associated with long-term carriage of the strain on the body,
which could result in adaptations different from populations that are cleared after the initial
infection is treated. We utilized the McDonald-Kreitman neutrality index to examine whether there
were significant signatures of adaptation overall and relative to known bacteremia-associated genes
(Table 4.2). Across all bloodstream isolates, there is a general trend of neutral evolution across the
genome and in the subset of genes specifically associated with bacteremia. Comparatively, relapse-
associated lineages show a significant signature of positive selection in the whole genome. Although
relatively few bacteremia-associated genes were synonymously mutated and comparable to all strains
of relapsing lineages, there were notably no synonymous mutations at polymorphic sites. Together,
this suggests that recurrent lineages likely undergo ongoing selection after the index infection and

dissemination.
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Figure 4.5. Previous strain background and time between infections does not impact the
type of strain in recurrent but new infections. Two permutation tests were conducted to assess
the likelihood of shared sequence type (ST) or clonal complex (CC) between distantly related
recurrent infections. Eight pairs of isolates were sampled from the 456 isolate sample population
1000 times and the proportion of pairs with matching STs (A) or CCs (B) was calculated for each
iteration. The observed proportion in the sample population is indicated by a red line. The
difference between mean number of days between infections with or without a shared ST (C) or CC
(D) were compared over 1 x 105 permutations. The observed difference in mean date duration is

plotted with a red line.
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Table 4.2. Neutrality index calculations of the whole genome and bacteremia-associated genes for all

bacteremia isolates and for relapse-associated lineages.

Group Fixed, NS | Fixed, S | Polymorphic, | Polymorphic, | MK Value | P-value
NS S (G-test)

All Isolates - 17271 24529 1381 1812 0.92 0.03

Whole

Genome

All Isolates - 232 330 19 22 0.81 0.53

Bacteremia

genes

Relapse - 2689 5326 45 12 0.133 > 0.01

Whole

Genome

Relapse - 28 81 5 0 — —

Bacteremia

genes

Antibiotic resistance genotypes and phenotypes in relapses correspond with

patient exposures.

To identify potential genes involved in convergent adaptation within the host, genes that

contained non-synonymous SNPs in more than one relapse lineage were identified. A total of 11

genes with unique SNPs had mutations in 2 or more relapse lineages (Fig. 4.6A). Mutations in these

genes occurred regardless of clonal complex, indicating that clade background alone did not

contribute to the presence of mutations in these genes. Genes in which multiple relapse lineages

showed non-synonymous mutations were implicated in known virulence traits and antibiotic

resistance. The genes most commonly mutated were 7prl, among five separate subject lineages, and

rpoB, among four subject lineages. Since changes in both zprl” and 7poB are associated with drug
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resistance for treatments commonly used for bacteremia, we investigated the specific amino acid
change, isolate MIC, and course of treatment for the patient at the time of the bacteremia episode.
Multiple different amino acid changes were detected between patients for proteins encoded by both
genes. Notably the same amino acid change occurred in two subjects with elevated rifampin
resistance, Ala477Asp, though for one subject the resistance phenotype was present in their first
infection before relapse (Fig. 4.6B). Only one patient with a 7p0B mutation had neither a history of
rifampin exposure nor the emergence of a resistance phenotype. Three subjects with 7prI" mutations
during relapses demonstrated acquired daptomycin resistance alongside previous exposure to
daptomycin (Fig. 4.6C). These included amino acid changes Ser337Thr, Ser337Leu, and Leu2911le.
All patients with zprI mutations had exposure to daptomycin prior to the emergence of their

mutation regardless of the emergence of daptomycin resistance.
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Figure 4.6. Commonly mutated genes among relapse lineages are associated with antibiotic
resistance phenotypes. (A) Unique non-synonymous mutations in coding regions of the genome
were quantified by gene from isolates of relapse-associated infections and summarized relative to the
subject from which the isolate was collected. Each unique mutation was annotated with the clonal
background of the lineage from which the set of relapses were derived. For lineages with 7poB
mutations (B) and mprF mutations (C), a timeline (days since index infection) was created for each
set of relapsing infections by the subject experiencing that set of relapses. Individual episodes were
annotated with the amino acid changes detected in the respective genes, the clinical assay used to
assess minimum inhibitory concentration (MIC) and the corresponding MIC, and whether the
patient was exposed to rifampin (RIF)(B) or daptomycin (DAP)(C). Dots are colored based on the

clinical assay determination of drug susceptibility to RIF or DAP.

Relapse isolates cluster with other bacteremia isolates, but do not contribute to

onward transmission.

To determine the burden of recent transmission between patients with relapse infections and
other bacteremia patients we identified genomic clustering of isolates containing fewer than 25 SNPs
difference. Nine clusters with at least one subject with a relapse were identified. These clusters
occurred in distinct lineages across CC5 and CC8 clades (Fig.4.7). If relapse infections were
contributing to onward transmission, or if patients were becoming reinfected with a closely related
circulating strain, we might expect that infections between hosts would cluster within the relapse
lineage clade. Across all nine clusters, isolates from different subjects clustered significantly outside
of the relapse lineage isolates. This suggested that transmission events occurred prior to the onset of

relapsing infection, and that the unique lineages within a host were highly specific to the individual.
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Figure 4.7. Non-relapse associated isolates cluster separately from relapse-associated

isolates. A pangenome tree was generated using the unequal transition/transversion rate plus
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empirical base frequencies model to investigate branching positions. Clusters were investigated when

at least one relapse-associated isolate was 25 SNPs or fewer from an isolate from a different subject.

Subtrees were extracted based on the most-recent common ancestor shared by relapse subject

isolates and the clustered additional subjects. Nodes denoted with a blue dot indicate ultrafast

bootstrap values and Shimodaira-Hasegawa approximate likelihood ratio test values that are greater

than 70. Bolded tip labels indicate an isolate that is part of a relapse. Tips are annotated with the

patient subject IDs and the number of days at which the isolate was collected relative to the earliest

isolate in the cluster. Branch lengths are scaled in substitutions per site.
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Discussion

This research shows that recurrent SAB is well differentiated into new and relapse infections
by genomic analysis and patterns of pathogen evolution. Relapsing strains show ongoing adaptive
mutations in bacteremia genes, especially those also associated with antimicrobial resistance. Further,
strains of bacteremia in new reinfections are not determined by previous exposure to the same
strain, suggesting that host adaptive immunity may not play a strong role in preventing new
infections from the same strain, or that individual patients are sensitive to infection with a specific
strain. Finally, although relapses of MRSA bacteremia do occur in transmission clusters, they are not
directly contributing to ongoing spread in healthcare settings after their index infection.

We demonstrated that relapses and new infections are often distinguishable by their genomic
distance, source site of infections, and by detection of adaptive traits, especially those associated with
antibiotic resistance. Previous studies have identified risk factors for recurrence from the pathogen
level to the type of care received. We identified similarities in our dataset that have been recorded
previously, including a high prevalence of SCCrzel (167), a high proportion of unremoved foreign
objects (165,160), increased cardiovascular disease including endocarditis (168), increased
hemodialysis (166). The interaction of the variables of Black race and hemodialysis has also been
implicated in a higher incidence of relapse SAB (165). Our study did not show any significant
association between race and recurrence; nevertheless, over a third of the subjects in this study
experiencing recurrence identified as Black. Considering these previously documented patterns,
consideration of the interaction of community demographics and the prevalence of chronic
conditions among social groups served by common healthcare groups is critically important to
monitor to prevent bacteremia and subsequent relapse. We found a significant association between

relapse and longer duration of daptomycin therapy. However, other researchers have reported a
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negative or no association between antibiotic duration and the risk of relapse (33,194). These
discrepancies may be explained by the specificity of the type of antibiotic or by confounding
conditions that prolong the use of a certain antibiotic, such as a diagnosis of endocarditis.

We found that most isolates from the same person were separated by fewer than 25 core
genome SNPs, and the few that did not fall within our definition of relapse were evolutionarily
distinct enough that recent common ancestry within a reasonable infection timescale was highly
unlikely. Previous studies have identified a similar pattern in distinguishing relapses from recurrences
even using less precise technologies such as pulsed-field gel electrophoresis (168). Choi et al
identified a split between 45 and 54% between new infections and recurrence based on PFGE
pattern and infections with a difference no greater than 150 days, and they found that WGS aligned
with their original molecular definition (165). In our study, we used a SNP based definition for
clustering and found a much larger ratio of relapse infections comparatively. We also found that
although there was no significant difference in time between infections in relapses compared to
recurrent infections from new strains, relapse intervals were still much shorter overall and most date
differences under 200 days.

Examination of the SNP in its individual gene context and phylogenetic context can be
extremely useful to help discern the likelihood of persistence as a cause of relapse, especially when
there may be a concern for infection from external but closely related strains. In this study, we
examined the emergence of unique mutations within a lineage of relapses, as well as examined the
branching patterns between individuals that shared a common strain. When comparing those
relapses that cluster very closely with other hosts, we observe unique traits (i.e., daptomycin
resistance), which would suggest that the most parsimonious explanation of their occurrence among

within-host isolates is a host-associated lineage rather than a unique clone seeding back into the
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patient. Though we are still not able to rule out entirely that an external source carrying a common
strain could nevertheless cause reinfection in patients who encounter these sources, the nesting of
the infections and the genetic changes suggest a higher likelihood of specific host-associated
exposures related to treatment and possible persistent colonization.

Because SAB may result from a compounding set of risks and exposures, management of
SAB and recurrence typically involves a comprehensive assessment of patient history, physical
examination, and source identification (157). Source control is important, as delays in the removal of
a contaminated source of infection can increase the risk of persistent bacteremia (157) or metastatic
spread to other body sites (195). When central lines or foreign bodies are suspected to be the cause
of the SAB, removal of the foreign body is considered, though it is not always possible if it would
lead to increased morbidity or mortality for the patient. In this study we found genomically similar
episodes of SAB common among patients with foreign body infections. Using genomic analysis as
gold standard for relapse increased the association with foreign body exposure. Further, we had
previously reported that the odds of MRSA infections associated with a foreign body was nearly five
times greater among patients that had a previous MRSA infection within a year compared to those
that did not have a previously reported infection (196). Although it may not always be possible to
remove a foreign body to eliminate relapse infections, clinicians should maintain high suspicion of
devices and implants as a source of recurrent SAB and advise patients accordingly in their post-
recovery of a known SAB.

Two genes known from previous studies to be commonly associated with antimicrobial
resistance, zprl and 7poB, gained non-synonymous mutations multiple times across relapses
occurring in separate subjects. Changes to 7poB and »pfF have been implicated in resistance to

rifampin and daptomycin, and also potential cross-resistance to vancomycin treatment through
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multiple multistep evolutionary pathways (160,179,197,198). In our study, neatly all subjects, and all
but one subject that experienced relapse, received vancomycin as a part of their course of treatment
for their first infection. Multiple different amino acid changes were detected in isolates with a
rifampin-resistant phenotype, both in the index infection and in acquired resistance over the course
of resistance. Among these isolates, we detected one relapse lineage in which the index isolate
carried asparagine at position 481 and which had a rifampin intermediate resistance profile, followed
by relapses with a change to histidine. The change of asparagine at this position to histidine and
subsequent susceptibility to rifampin is consistent with the opposite change from histidine to several
other amino acids leading to phenotypic rifampin resistance (199). In two subjects, at least two
different changes at multiple sites of the rpoB amino acid sequence were altered between episodes,
with intermittent reappearance of the index allelic profile. One subject’s isolates also carried the
Ser529Leu mutation, known to be associated with vancomycin intermediate resistance (VISA) and
heteroresistance (hVISA), but developed no change in rifampin or vancomycin resistance. We also
noted emergence of phenotypic rifampin resistance, notably with one subject carrying a resistant
clone in their original infection and no noticeable change to the MIC in rifampin as the alleles
changed. Multiple simultaneous mutations in 7poB have been associated with an increased resistance
to rifampin (199). The amino acid changes present in this study demonstrate the wide diversity in
the mutational profile of 7poB. Additional phenotypic investigation of phenotypic cross-resistance
and combination therapy on the emergence of these mutations is needed.

We also identified two point mutations in #prl that resulted in changes at the same amino
acid site (Ser337Thr and Ser337Leu) within two patient lineages which corresponded with
emergence of phenotypic resistance to daptomycin. For one of these lineages (Ser337Thr), a

corresponding intermediate resistance to vancomycin was also recorded without the emergence of
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any known genetic markers for VISA or hVISA, though we simultaneously detected a stop gained in
the protein nusG, a known global transcription regulator (200). In this sequence of isolates, we did
not capture possible intermediary isolates that could suggest whether there was a specific sequence
or evolutionary pathway that could suggest the order in which resistance and intermediate
phenotypes were gained. Since patterns of two-step evolution of resistance phenotypes in S. aureus,
for example by regulation of »wa/K and then gain of function of membrane charge increase for mprF
(201), a possible hypothesis here could be a similar stepwise change in gene expression elsewhere
followed by changes to membrane charge.

This study is subject to several limitations. The incidence of recurrence among bloodstream
infection episodes in our study was 9.8%, which is consistent with the rate seen in other studies
(159,165,167,168). Nevertheless, the number of recurrent infections we detected is a limited sample
for generalization. We also characterized cases from a singular geographic area. The smaller sample
size and unique demographic structure of this area could make it difficult to detect the same risk
factors associated with demographics or clinical factors.

Whole-genome sequencing was able to provide additional support for case-identification of
new and relapsing infections in the context of the clinical history of previous infections. The
complexity of host-associated factors, within-host selection pressures, strain background and type of
antibiotic treatment all play interacting roles in the emergence of relapse, but specific mutations can
help create stronger evidence for how best to identify the patterns of host and pathogen factors that
lead to relapse for unique individuals. Relapsing isolates undergo positive adaptation to the host, and
convergently mutating genes are consistent with long-term usage or high exposure to antibiotics, but
other traits necessary for survival in the cardiovascular system may still play an important role in

persistence. Ongoing work is necessary to understand the length of survival of individual strains of
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S. aureus at different body sites on individual hosts. Uniting the frequency of genetic mutations,
genetic relatedness, and known clinical risk factors for recurrence lay the groundwork for better

prediction of future relapse.



105

Supplemental Material

MRSA infection detected J

Patient chart reviewed for
previous MRSA episode

No prior MRSA

‘ New case '
Yes prior MRSA
-
Infection and last recorded MRSA
episode episode >30 days apart ?

> 30 days

I Recurrence has occurred
X

( Genomic Assessment ) Clinical Assessment
Infection isolate and >30 days since last Resolution of symtoms
previous isolate are: positive culture a source site and

<= 25 SNPs different Yes (Any) metastatic sites
Cluster most closely to

another isolate of the

same patient No new antibiotics Central venous
No (All) prescribed after catheters changed
1 definitive therapy over a wire
Site of infection is
different from the Source believed to be
previous infection and different from the
subject used previous infection

suppresive antibiotics

(New InfectiorD Q\Iew mfecuolD

Yes

( ReI:pse ) ( Relapse )

Figure S4.1: Clinical and Genomic Criteria for defining Recurrent new and relapsing
infections. The flowchart is formatted as a decision tree with round ovals indicating terminals for
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VAN MICs

Gene | Product |Isolate | Allelic or Phenotype | Literature Literature
Source | mutational of mutation | Support refute/no
change detected evidence
ACM | arginine clinical Presence Diep 2008a
E (arc | catabolic | isolates increased (202)
and mobile pathogenicity
opp3) | element in bacteremia
model
(rabbits)
Agr virulence | clinical Increased Altman
regulator | isolates genetic 2018b(174),
diversificatio | Cheung 1994
n compared | (176),
to agr+ Tsuji 2009
strains and (175),
colonizers; Chong 2013
dysfunction | (177)
leads to
increased
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AgrA clinical | Non-synonymous, | High-level Hachani 2023 | Howden
(a7),
isolates | truncation rifampin Giulieri 2008, (83)
2018 (170),
resistance Benoit 2018
(172)

AraC | AraC clinical | premature stop Untested, Young 2012
family isolates but present | (203)
transcripti in the BSIs
onal separate
regulator from nasal

carriage
ausA clinical | Non-synonumous, | Escape from | Hachani 2023
isolates | truncation epithelial cell | (171)
endosomes

clpX clinical | Non-synonymous | Reduction of | Baek 2015

isolate expression of | (179)
virulence

cna collagen- | clinical | non-synonymous | Decreased Iwata 2020
binding isolates attachment | (204)
adhesin to collagen

coa coagulase | laborato | deletion Loss of Liu 2021 (73),

ry strain coagulase Altman 2018
function, (174)




decreased

virulence
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dfrB

Clinical

isolates

Non-synonymous

Trimethopri

m resistance

Young 2021

(183)

edinB

epidermal
cell
differentia
tion

inhibitor

laborato

ry

strains

Presence of
gene
increases
ADP-
ribosylation,
increased
prevalence of
bacteremia
during
pneumonia

and bacterial

load

Courjon 2015

(205)

CSS

virulence

regulator

clinical

insertion sequence

Increased
expression of
ESAT -like
secretion
system

virulence

Altman 2018

(174)




factors

(when agr-)
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essB

ESAT-6

secretion

system

componen

t

laborato

ry

strains

ST398

Deletion
results in
decreased
neutrophil
killing and
lethality in

blood

Wang 2016

(206)

fnbA

fibronecti
n-binding

protein A

clinical

isolates

Non-synonymous

SNPs

Enhanced
binding to
Fn,
associated
with cardiac
device
infections
from

bacteremia

isolates[62]

Hos 2015 (69)

fusA

clinical

isolates

Fusidic acid
resistance by
target

alteration,

Lannergard

2009 (207)
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a SCV
phenotype
fusB clinical Fusidic acid | Lannergard
isolates resistance by | 2009 (207)
protecting
translation
apparatus
fusC clinical Fusidic acid | Lannergard
isolates resistance by | 2009 (207)
protecting
translation
apparatus
hglAB laborato Presence Malachowa
C ry assists with | 2011 (208)
strians survival in
blood
ica intracellula | laborato Loss of Kropec 2005
radhesin | ry function (209)
locus strains shows a
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conferring greater
poly-N- susceptibility
acetylgluc to Ab-
osamine dependent
productio killing by
n leukocytes
katA | catalase clinical | stop codon and Loss of Lagos 2016
enzyme isolate truncation catalase (210)
activity but
still results in
septic
arthritis
IJukED | leucotoxin | laborato Presence Alonzo 2011
ED ry target murine | (211)
strains phagocytes
leading to
cytotoxic
effects at
infection site
mgrA | virulence | laborato Association | Li 2019 (212), | Howden
regulator | ry of loss of Rom 2017 2008 (83)
strains function (213)

leads to




increased
susceptibility
to host
defense
response
cells via mprF
and ditA
expression,
possibly loss
of fnbA
expression,
and general
decreased
impact on
host health
ina
bacteremia
model;
mutation
leads to
increased

virulence in a
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mouse
model
mprF | cell clinical | non-synonymous, | Increased J12020 (214),
membrane | isolates | deletions, daptomycin | Baek 2015
structure resistance (179),
Chen 2015
(197)
mpsB | cation clinical Small colony | Douglas 2021
translocati | isolates; phenotype, (181)
onincell |laborato suppression
membrane | ry of agr
strains activation
due to
lowered
membrane
potential
mspA | membrain | clinical Role in toxin | Duggan 2020
e protein | and production, | (215)
laborato resistance to
ry innate

immue cells,
and iron

homeostasis
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parC | topoisome | clinical | insertion confers Gao 2010
rase IV isolate quinolone (158)
resistance (eg
CIP)
psm- | phenol- clinical | promoter SNP Decreased Aoyagi 2014
mec soluble isolates biofim (210)
modulin formation
alpha type and
increased
PMSa3 and
Hld
expression
purR | purine laborato | Non-synonymous | Increased Goncheva
biosynthes | ry strain | snp clumping in | 2019 (217),
is blood related | Alkam 2021
regulation, to (218)
and fibronectin
regulation binding,
of increases in
fibronecti SarA
n binding expression
protein which has

other




virulence

factor down
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stream
events
PVL | Panton- laborato Increased Diep 2008ab
(lukS/ | Valentine |ty pathogenesis | (219)
F) leukocidin | strains in early
stages of
bacteremia
rel synthesis | clinical | Non-synonymous | Shortened Chen 2023
of isolates | (D134Y, A301T, lag phase, (220),
®)prpGpp E384K, V670G), | increased Bryson 2020
during AA and the fifth is a 4- | fitness in (22),
starvation bp deletion nutrient- Gao 2013
encompassing poor (160),
codon NG697 that conditions; Gao 2010
results in a increased (158)

frameshift causing
a premature stop
codon at position
701; Gao showed a

Phe 128 Tyr

resistance to
antimicrobial
s and
defensins;
possibly

related to agr




substitution from a

nucleotide sub)

upregulation
for Gao

2010

116

tImN

ribosomal
RNA large

subunit

clinical

isolate

insertion

Confers
linezolid
resistance,
uniquely
from
previous 23
rRNA

mutations

Gao 2010

(158)

rot

regulation

laborato

ry strain

Change in
sepsis
virulence (ie
survival) in
mice,
background

dependent

Rom 2021
(71),
Rom 2017

(213)

Howden

2008 (83)

RpiRe

laborato
ry strain
(USA30

0-LLAC)

altering protein

expression

Repressed

RNAIII to
mimick rot
deletion,

leading to

Balasubraman

ian 2016 (221)
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bloodstream
infection
phenotype
rpoB | RNA Non-synonymous Giulieri 2018
polymeras (170),
e Baek 2015
(179,
Gao 2013
(160),
Gao 2010
(158),
Villar 2011
(178)
rpoD | RNA laborato | excision of an Decreased Suligoy 2020
(sigA) | polymeras | ry strain | IS256 element capacity to (222)
e sigma infect bone
factor and
increased
virulence to
mouse
rsp transcripti | clinical | Non-synonymous | Reduced Das 2016
on factor |isolates | and premature stop | lethality, (223)

repressor

codon
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of surface reduced
protein cytotoxicity
SaeRS | regulatory | laborato | deletion Increased Liu 2021 (73), | Voyich
system ry strain survival in Beenken 2014 | 2009 (224)
mouse (72),
blood; in Nygaard 2010
balance with | (173)

sarA
protease
production
for virulence;
in lab, lack of
SaeRS
increases
mortality,
but down
regulation of
leukosidins
and
immunomod
ulatory
genes, and

some
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adhesion
genes)
sar virulence | laborato Loss of Cheung 1994
regulation | ry strain virulence (176),
factors Beenken 2014
leading to (72),
loss of Zielinska
attachment | 2012 (225)
to heart
valves; loss
of virulence
that is
connected to
protease-
mediation
SCCM | MGE clinical Higher Nakano 2022
ec type | harboring | isolates association (182),
v mecA with Young 2021
bacteremia (183)
or central
line

infections
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selw productio | clinical Superantigen | Vrieling 2020
nof SAg | isolates; activation of | (220)
SelW laborato T-cell
ry proliferation
strains
srtA sortase A | laborato Deletion Wang 2015
ry results in (227)
strains reduced
mortality and
disseminatio
n to tissues
after
introduction
to the
bloodstream
in an
injection
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Chapter 5: Metagenome-wide characterization of
shared antimicrobial resistance genes in sympatric

people and lemurs in rural Madagascar

Reprinted material from: Talbot, B. M., Clennon, J. A., Rakotoarison, M. F. N., Rautman, L., Durry,
S., Ragazzo, L. J., Wright, P. C., Gillespie, T. R., & Read, T. D. (2024). Metagenome-wide
characterization of shared antimicrobial resistance genes in sympatric people and lemurs in rural

Madagascar. Peerf, 12, ¢17805. https://doi.org/10.7717 /peer].17805

Abstract

Background. Tracking the spread of antibiotic resistant bacteria is critical to reduce global
morbidity and mortality associated with human and animal infections. There is a need to
understand the role that wild animals in maintenance and transfer of antibiotic resistance genes
(ARGs). Methods. This study used metagenomics to identify and compare the abundance of
bacterial species and ARGs detected in the gut microbiomes from sympatric humans and wild
mouse lemurs in a forest-dominated, roadless region of Madagascar near Ranomafana National
Park. We examined the contribution of human geographic location toward differences in ARG
abundance and compared the genomic similarity of ARGs between host source microbiomes.
Results. Alpha and beta diversity of species and ARGs between host sources were distinct but

maintained a similar number of detectable ARG alleles. Humans were differentially more
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abundant for four distinct tetracycline resistance-associated genes compared to lemurs. There
was no significant difference in human ARG diversity from different locations. Human and
lemur microbiomes shared 14 distinct ARGs with highly conserved in nucleotide identity.
Synteny of ARG-associated assemblies revealed a distinct multidrug-resistant gene cassette
carrying dfrAl and aadAl present in human and lemur microbiomes without evidence of
geographic overlap, suggesting that these resistance genes could be widespread in this
ecosystem. Further investigation into intermediary processes that maintain drug-resistant bacteria

in wildlife settings is needed.

Introduction

The global estimated number of human deaths attributed to antibiotic-resistance among
bacterial infections in 2019 alone was 1.27 million, with Sub-Saharan African countries
experiencing the highest proportion of the burden (25). Antimicrobial resistance in bacteria is a
heterogeneous problem, with multiple organisms, biological mechanisms, and anthropogenic
activities contributing to its presence and spread. Pathogen spread is known to play a major role
in antimicrobial resistance gene (ARG) distribution, with evidence of enteric infections among
symptomatic humans and animals having less antibiotic susceptibility compared to asymptomatic
individuals (230). Bacteria can acquire antibiotic resistance through de novo mutations, but they
may also acquire resistance through horizontal gene transfer on mobile genetic elements
(MGEs). MGE movement through a bacterial community depends on the species present, as
MGE sharing can be restricted by species compatibility and host range (231-233), but the

presence of ARGs and its transference into closely related species can facilitate epidemic spread
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of pathogens (234). Nearly all bacterial pathogens associated with infectious diseases have been
found to contain antimicrobial resistance genes, so it becomes imperative to capture the extent to
which illness in an area may drive antibiotic resistance.

Although reducing antimicrobial resistant infections in humans and animals is a global
priority, there remain major gaps in measurements of the global prevalence of antibiotic resistant
organisms across species and region. Knowledge of transmission dynamics and prevalence of
community-acquired antimicrobial resistant species shared between overlapping humans and
animals is limited. Detecting the distribution and diversity of specific antimicrobial resistant
genes (ARGSs) within and between human and animal microbiomes can further identify potential
spillover events. Although antibiotics are lifesaving during some infections, agricultural and
medical overuse of antibiotics contribute to the current rise of resistant organisms in human and
animal populations (24). Further, and consequently, domestic animals, peri-domestic rodents,
and wildlife all harbor ARGs, and each group can act uniquely as a sentinel for emerging or
increased spread of antibiotic resistance (21,235-237). Comparisons of resistomes are well
documented between human and agricultural animals (236,238), agricultural soil(30), and in
wastewater (28), showing widespread ARG diversity that is geographically specific. A lesser
focus has been on comparative studies of ARGs in wildlife animals overlapping with human
communities.

In this paper, we examined human and brown mouse lemur gut microbiomes to
investigate the extent of ARG sharing between humans and wildlife in rural Madagascar where
there are opportunities for humans and lemur spatial overlap. Whether shared environment could
be enough to result in shared microbiomes/resistomes is of interest, given that in Madagascar,

lemur species exist across a gradient of human-transformed space, from undisturbed wild to
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being kept as pets in some households. The gradient of lifestyle has had a parallel effect on
pathogen prevalence and ARG abundance. In ring-tailed lemurs, for example, it was shown that
ARGs were in greater abundance in captive populations compared to wild, and ARGs that could
impact human health were correlated to the level of human disturbance in the location of varying
lemur populations (29). Further, mouse lemurs dwelling in more human-disturbed areas harbored
pathogenic bacteria also found in nearby dwelling human, rodents, and livestock (239). It is
unknown whether the ARGs identified in wild populations share a similar genetic profile to the
profile of the human microbiomes present in the area. Information on general human and lemur
interactions, even no interactions, could be informative of the dispersal of reservoirs for
transmission.

The landscape of genomic analyses capable of comparing bacterial communities ranges
from fast but less sensitive 16S sequencing to highly discriminatory but labor intensive
metatranscriptomics (240). Application of metagenomic sequencing can strike the balance for
understudied microbiomes and allow for comparing diversity at the microbial species scale
without a priori assumptions of what species should be expected (240), and capture more gene-
level diversity which cannot be evaluated from taxonomy gene marker techniques (241).
Although challenges remain for positive identification of rare species from short-read
sequencing, it is nevertheless a powerful approach for examining patterns in abundantly present
and known species (241), for diagnosis of present pathogens (242), and for identifying
compositional differences between environmental samples (28). Additionally, genetic closeness
of detected species or genes of interest shared by humans and animals can be used to infer
zoonotic transfer and further combined with epidemiological information to identify links

between ARG presence, species richness, and risks of illness and transmission. However, the
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abundance of antibiotic resistance genes may be underestimated, and a latent, or undocumented
diversity in established databases, population of ARGs exists within and between different hosts
and environments (243). Sequencing metagenomic analysis can help identify the reservoirs of
rare or unknown species and offer a starting place for hypothesis generation for complimentary
methods, such as functional metagenomics, to fill in the species knowledge gaps (244).

Here, we aimed to identify the ARG burden and diversity between humans and wild
lemurs near Ranomafana National Park in Madagascar. This unigque system provides an
opportunity to examine this interplay in low-resource, rural, tropical communities where
exceptional biodiversity and human-wildlife overlap create unusually high potential for novel
zoonotic events. Comparison of the respective bacterial species and ARG profile lays the
foundation for understanding ecological and evolutionary patterns outside of agricultural and
clinical settings. This has implications for documenting potential downstream or indirect
selection pressure that anthropogenic drug use has on an ecosystem regardless of direct human

and animal interaction.

Materials & Methods

Sample Collection and Demographic Survey

As a component of a One Health research platform in Ifanadiana District, Madagascar, a
household survey was conducted from June to August 2017 in eight communities in roadless
areas < 5km from Ranomafana National Park to collect information regarding household
member demographics, antibiotic usage, household illness, exposure to wildlife, and previous

iliness with diarrheal disease. Within these communities, we have documented diverse global
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health challenges including high prevalence of enteric infections and resistance genes regardless
of antibiotic class, and zoonotic human-wildlife linkages (239,245-248). Human participation in
the study and collection of survey data were approved of and reviewed by the Emory Internal
Review Board (IRB00093812). Before survey administration, informed oral consent was
gathered and documented. Household members were also asked to voluntarily submit a fecal
sample regardless of history of diarrheal illness. Fecal sample IDs were linked to their
corresponding household survey responses, and deidentified for downstream analysis. Fecal
samples were collected from captured wild brown mouse lemurs (Microcebus rufus) along
footpaths near the villages. The mouse lemurs were trapped using banana-baited Sherman traps
(XLR, Sherman Traps Inc., FL), and set overnight at 16:00 and checked at 05:00. One microliter
of fresh fecal samples was collected from individual trapped lemurs by using a sterile tongue
depressor and transferring the sample into a cryovial filled with approximately 0.8mL RNAlater.
The Emory University Institutional Animal Care and Use Committee provided full approval for
this research (#3000417) and the field research procedures were approved by Madagascar’s
Ministry of Environment, Ecology and Forests (permit nos: 028/17; 083/17; 136/17; 146/17,;

164/17).

DNA extraction and sequencing

DNA was extracted from fecal samples using a standard Zymo Inc. bead-beating Kit.
Whole metagenome shotgun sequencing was performed on the NextSeq 2000 platform using
[llumina DNA library preparations. Sequencing produced separate forward and reverse paired-
end fastq files, which served as inputs for bioinformatic processing. All mouse lemur

metagenomic samples and select human fecal samples from each of the surveyed eight
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communities were included for metagenomic sequencing and downstream analyses. Human
samples were selected through stratified random sampling per village. To be included for
selection, households had to include at least one adult, one school-aged child (5-17 years), and
one child under 5 years. Eligible households were grouped by their home village and a random
three households were selected within each community, sampling without replacement. From the
selected households, a sample was chosen for each age group. If only one household member
represented an age category, then their sample was selected. If more than one household member
was represented by an age group, then a second random sampling was done to choose the

representative sample for that age group.

Bioinformatic processing and quality control

An overview of the bioinformatic workflow is shown in Supplemental Figure S1. Data
quality was assessed with FastQC (v.0.11.9) before and after adaptor trimming and removal of
host reads (249). Read quality trimming was conducted using Kneaddata (v0.10.0) with --
trimmomatic, which employs Trimmomatic (v0.39-2) (250) and Bowtie2 (251) to remove
adaptor reads and reads mapping to the human genome refence GRCh37 (252), keeping reads at
or above Phred 33. Reads from lemur microbiomes were additionally mapped against a draft
genome assembly of Microcebus murinus (GCF_000165445.2) (253), selected for its high level
of completeness of assembled chromosomes, representation of male and female chromosomes,
and shared ancestry to M. rufus. The M. murinus assembly was indexed using bowtie2-build. The
forward and reverse paired-end reads from lemur microbiomes were mapped to the indexed
assembly using Bowtie2 (v2.5.0) and saved as a SAM file. Unmatched reads (and therefore non-

host reads) were subsequently removed using SAMtools’ sort and fastq functions (254). After
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filtering, only metagenomic sequences with 1 x 10° reads or more were considered for further
analysis or assembly. Metagenomes were assembled using SPAdes (v3.15.4) (255) on the
trimmed and decontaminated paired-end fastq files using the —meta parameter. Separate forward
and reverse fastq files were used as input with the -1 and -2 flags, respectively. The human

DNA-scrubbed analysis sequences are available under the Bioproject PRINA1008138.

Classification of bacterial species and ARGs

Taxonomic composition of the filtered reads was first calculated using MetaPhlAn4
(256), with flags --input_type fastq, --unclassified_estimation, and --bowtie2out, to estimate
relative abundance of the both classified and unclassified reads which did not match gene
markers in the database. This was followed by a second analysis against the Bowtie2 indices to
calculate relative abundance of bacterial-associated reads only using the flags --input_type
bowtie2out, --t rel_ab, --ignore_eukaryotes, --ignore_archaea. The vOct22 Bowtie2 database
available for MetaPhlAn4 was downloaded using the command: metaphlan --install --bowtie2db
and used as a reference for taxonomic markers. To calculate the abundance of ARGs, we
enumerated the reads per kilobase per million (RPKM) relative to the amount of detected
bacterial reads in the sample. We derived this formula from Munk et al (28), but accounting for
reads. The formula is as follows:

Gene reads
10°

X
(Length of gene, kilobases) X (Total bacterial reads)

Filtered reads were first processed through KMA (257) using the AMR Finder Plus nucleotide

sequence database to identify ARGs and virulence genes (258). ARGs were specifically subset

from virulence genes based on classification from the Bacterial Antimicrobial Reference Genes
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database for sequences related to antibiotic resistance (PRINA313047). Unique genes were
categorized based on annotated gene symbols and unique alleles were categorized based on
sequences matching to present NCBI nucleotide reference sequences. Results were included if
the detected allele had a template coverage greater than or equal to 60 percent and a query
identity greater than or equal to 90 percent, and if they had at least three reads assigned. The
results file was then joined with a .mapstat file generated by KMA to quantify the number of
reads assigned to each reference sequence. To contextualize the reads relative to bacterial
content, the filtered fastq files were also run through Kraken2 (259) using the flags --paired, --
report, --classified-out, and --unclassified-out, and referencing the Kraken2 Standard database
(26 September 2022) to obtain the number of reads rooted at the bacterial level and the number
of unclassified reads, or reads unable to be identified using the database classifications, in the

sample. RPKM was calculated for each ARG allele.

Statistical analysis of species and ARG diversity

Final statistical analyses were conducted in R (260). Continuous values and counts of
discrete data were assessed for normal distribution. The Wilcoxon rank sum test in the stats
package (v4.0.4) was used to compare human and lemur metagenomes differences in median
total detected reads, proportion of reads mapping to higher order taxa, Shannon indices for
bacterial species and ARG allele diversity, RPKM of ARG reads mapping to specific antibiotic
classes, and median number of species per sample. Alpha and beta diversity metrics were
calculated using the vegan package (261). Shannon diversity was calculated based on the
presence and absence of detected species or alleles. For this system, two measures of alpha

diversity were used to help to capture a better understanding of detected species. The Shannon
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diversity index allows for comparison of both the richness and evenness of the community
structure thus relying on both the abundance and the overall number of species, while Chaol
gives a greater weight to low abundance species present in a sample to help predict the likely
number of missing species (Bo-Ra Kim et al., 2017). Principle component analyses (PCA) were
performed on the relative abundances of species and RPKM values of ARG alleles transformed
into centered log-ratios to account for the compositional nature of metagenomic data (262).
Subsequently, Aitchison distance was calculated to assess between-sample differences in
species/allele diversity. Chaol and rarefaction statistics were calculated using the iNext package
using the sum of the presence of each species or allele detected within human or lemur

microbiomes as input (263).

Differential gene abundance analysis

Differential gene abundance between humans and lemurs for antibiotic resistance genes
was conducted on the read counts, summarizing the allele hits to the level of the gene using
ALDEXx2 (v.1.35.0) (262). First, the raw read counts were transformed using the command
aldex.clr(), with Monte-Carlo sampling set to 128 and the measured denominator set to “all”. To
account for both composition and scale in the read counts, uncertainty was added to the model
using a gamma value of 0.5. A sensitivity analysis for significance of unique features at various
values of gamma was conducted for reads summarized at the gene level and per corresponding
antibiotic class associated with resistance (See Supplemental Figure S3) (264). To statistically
evaluate the transformed abundances, aldex.effect() and aldex.ttest() were used to perform
Welch’s T-test and a Wilcoxon rank sum test, and corrected for false discovery using Benjamini-

Hochberg corrected p-values (<0.05). Final results were plotted using the aldex.plot() function.
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Sequence comparison of antibiotic resistance genes shared between humans and lemurs
AMR Finder Plus (258) was used to identify contigs with ARGs. Contigs with the same ARG
detected in at least one human and one lemur microbiome were extracted from their sample
assembly using bedtools getfasta. These sequences were used to create a custom nucleotide
BLAST database (v2.12.0). Each sequence was then queried against the database to identify the
pairwise percent identity of each gene compared to other detected genes of the same type. A
second BLAST comparison was conducted by extracting the 1000 base pair regions before and
after ARGs commonly present in human and lemur samples, and the pairwise percent identities
were quantified. To gain additional insight into the genomic contexts of highly similar ARG-
regions, ARG-bearing contigs were extracted from the assemblies and annotated using Bakta
(v1.7.0) (Schwengers et al., 2021). For ARG-regions in which commonly found ARGs between
pairs of subjects had greater than 90% similarity, the gene synteny of the annotated contigs was

inspected and visualized using Gggenes (265).

Results

The diversity and abundance of bacterial species and ARGs differ between
humans and lemurs.

A total of 73 human-derived samples and 15 lemur-derived samples were selected for
shotgun metagenome sequencing. Of these samples, 57 human samples had greater than or equal

to 1 x 10° total reads after decontamination of human reads. After mapping to the lemur genome

assembly, 11 lemur samples had greater than 1 x 10° reads for analysis. The metagenomes of
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these 68 samples were further characterized for bacterial species abundances and presence of
antibiotic resistance genes.

There was a higher total number of reads in lemur samples compared to human samples
after decontamination (Fig. 5.1A) which could not be explained by a large number of small reads
present. Although both human and lemur read libraries had average read lengths within an
acceptable range for downstream mapping and assembly, the average sequence length for lemurs
was higher and tightly ranged (147 to 139 reads) (p<0.05) (Fig. 5.1B). For the majority of human
and lemur microbiomes, the most abundant taxa identified belong to kingdom Bacteria (Fig.
5.1C). However, lemur metagenomes noticeably contained higher relative abundances of reads
unable to be classified taxonomically. A comparison of unclassifiable reads to taxonomically
classified reads did not show significant differences in GC content, Q30 score, average length, or
minimum length (Fig. S5.2). This suggests that much of the diversity of taxa in lemur
microbiomes is not represented even in large database collections used for widescale taxonomic

composition classification.
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Figure 5.1. Human and lemur metagenomes are different in the classification of sequence
reads to higher order taxa. Sequences were filtered for adaptor sequences, tandem repeats, and
reads mapping to human or lemur reference assemblies. (a) The number of total read pairs is
significantly higher in lemur fecal metagenomes compared to human fecal metagenomes
(Wilcoxon Rank Sum, p<0.05). (b) The average length of reads within the lemur fecal
metagenomes is higher than human fecal metagenomes (Wilcoxon Rank Sum, p<0.05). (c) The
relative abundances of kingdom-level taxa was quantified using MetaPhlAn4. Reads unable to be
identified as belonging to a higher order were designated as “unclassified.” In general, humans
and lemurs have the majority of the abundance of taxa assigned to Bacteria or Unclassified;
however, lemur fecal metagenomes are characteristically higher in the abundance of unclassified

reads.
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Although different in rank of abundance, human and lemur fecal metagenomes include
a high abundance of bacteria from the phylum Bacillota (Firmicutes), and human metagenomes
are also dominated by Bacteriodota. Several lemur samples are contrastingly dominated by
species from Pseudomonadota (Proteobacteria) (Fig. 5.2A). Humans and lemurs shared 55 of
452 known bacterial species (12.2%) that had at least 0.01% abundance within a single
metagenome and occurred in at least 10% of all samples, suggesting there are many rare species
detected in the system. The Shannon index between the two groups was higher in humans
(P<0.05) (Fig. 5.2B). Distinct clustering by sample source was also observed when examining
the compositional differences between sample sources. Lemur microbiomes grouped more with
other lemur microbiomes without overlapping human microbiomes, and human samples
overlapped regardless of the village of residence (Fig. 5.2C). By Chaol estimates, when
considering detectable species including those in the lowest abundance (<10% of samples) there
were fewer species able to be sampled from lemurs (590, 95% confidence interval (CI): 496-729)

compared to humans (1091, 95% CI: 1057-1144) (Fig. 5.2D).
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Figure 5.2. Bacterial species communities are distinct between humans and wild lemurs.

(a) Relative abundance of bacterial phyla detected in human and lemur derived metagenomes. (c)
Principle component analysis using Aitchison distance on centered log-ratio transformed
abundances of individual species stratified by the home village for each human sample or if it was
sourced from a lemur, and demonstrates component dissimilarity between human and lemur
samples. (c) The Shannon diversity indices of the species detected in human and lemur
metagenomes show a difference in the mean value between host sources. Statistical significance was
determined by Wilcoxon rank sum analysis at p<0.05. (d) Rarefaction curves of human- and lemur-
associated bacterial species, where the x-axis is the sampling effort of available individual bacterial

species and the y-axis is the estimated richness.
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A different pattern emerged when examining the overall composition and abundance of
ARGs detected in human and lemur metagenomes. We identified reads mapping to 107 unique
ARGs, which comprises 217 unique alleles. Two lemur samples had no reads matching ARGs in
our database. Individual microbiomes varied in abundance of ARGs grouped by the class of
antibiotic to which they confer resistance, but all human microbiomes carried genes associated
with tetracycline and trimethoprim, and 55/57 human metagenomes carried resistance genes to
beta-lactam antibiotics. In contrast, there was no one shared antibiotic class among detected
ARGs in lemur microbiomes, but all classes seen in human microbiomes were represented in at
least one lemur microbiome (Fig. 5.3A). Lemur microbiomes had no statistical difference in
ARG richness compared to human microbiomes (P<0.05) (Fig. 5.3B). Still, lemur microbiomes
clustered distinctly in their ARG diversity from human microbiomes, however human
microbiome ARG profiles from all resident villages overlapped with one another (Fig. 5.3C).
Concordantly, rarefaction estimates, alongside Chaol calculations suggested that the estimated
maximum number of ARG alleles to be sampled are likely similar for lemurs (201, 95% CI: 166-

264) and humans (206, 95% CI: 160-302) (Fig. 5.3D).
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Figure 5.3. Antibiotic resistance gene abundances are distinct between humans and wild
lemurs. (a) Relative abundance of genes by their associated antibiotic resistance classes detected in
human and lemur derived metagenomes. (b) Principle component analysis using Aitchison distance
on the centered log-ratio tranformed abundances of unique ARGs stratified by the home village for
each human sample or if it was sourced from a lemur show a distinct grouping of lemur samples
with other lemurs and separate from humans. (c) Shannon diversity index of the unique ARG alleles
detected in human and lemur metagenomes and demonstrates a difference in mean values between
host source. Statistical significance was determined by Wilcoxon rank sum analysis at p<<0.05. (d)
Rarefaction curves of human- and lemur-associated ARG alleles, where the x-axis is the sampling

effort of available alleles and the y-axis is the estimated richness.

Five antibiotic resistance genes were in significantly greater abundance among human
microbiomes compared to the lemur microbiomes (Fig. 5.4A-C). These genes consisted of dfrF

and five separate tetracycline-resistance genes, tet(32), tet(40), tet(W), and tet(Q). The effect size
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of the difference remained significant for these genes when considering the difference in
variance in the data points between the two groups (Fig. 4.4B). When grouped by associated
antibiotic class of resistance, no associated class groups were differentially abundant between

humans and lemurs (Fig. S5.3).
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Figure 5.4. Antibiotic resistance genes vary in abundance between human and lemur
microbiomes. Raw read counts summarized at the gene level were compared for differential
abundance using ALDEx2. Red triangles indicate a significant difference in abundance by an effect
value >2. Blue outlining indicates 95% confidence that the value does not intersect zero. Black dots
indicate rare and non significant genes while gray dots signify abundant but non-significant genes (a)
Bland-Altman plot demonstrating the relationship between the difference between groups in median
centered log-ratio (clr) values of each gene and the relative abundance of those genes. (b) An effect
plot of the difference between groups in median clr values of each gene and the difference in

dispersion, with the dotted lines representing values where dispersion and difference are equal. (c) A



141

volcano plot demonstrating the abundance in the clr values of each gene. The dotted x-intercept line
indicates values at a posterior predictive p-value of 0.001, and the y-intercept line indicates a 1.5-fold

difference in log abundance.

Humans and lemurs share highly conserved integron-associated ARGs.

To capture more specific ARG dynamics between humans and lemurs, we quantified and
compared assembled ARGs that were detectable in both human and wild lemur metagenomes. A
total of 14 ARGs were detected in common between human metagenomes, with all 57 human
metagenomes sharing at least one gene with at least one of three lemur metagenomes.

ARGs of the same type were compared between each metagenome containing that gene.
Overall, ARGs from different metagenomes were highly similar, with a median nucleotide
sequence identity of 99.51 (98.55-99.79) for human-human, 99.67 (99.24-100) for human-lemur
pairs, and 100 (100-100) for lemur-lemur comparisons (Figure 5A). Similarly high levels of
sequence identity were found within each ARG (Fig. 5.5B). The largest ranges of diversity were
among pairwise comparisons of tet(O) and tet(Q) genes, respectively (Fig. 5.5B). We also
compared the genetic context surrounding the shared ARGs to determine the similarity of
genomic context regardless of ARG sequence conservation. Sequence identity of the 1000 base-
pair flanking regions were also nearly identical between samples. Specifically, the regions
around four ARGs (aadAl, dfrAl, gacEdeltal, and sull) were from seven human metagenomes
and one lemur metagenome showed highly similar pairwise sequence comparison of the human-
human and human-lemur source pairs (Fig.5.5C). Only one gene, Isa(D), had a pairwise identity

score less than 100 percent (Fig. 5.5D).
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pairwise source comparisons of the percent identity were then stratified by the specific ARG-region

quety.
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Because the contexts of these genes were so well conserved, we investigated the gene
synteny to understand if there were shared AMR genes in close genetic proximity. ARGs that
were co-occurring within assembled contigs included dfrAl with aadAl, sull, and gacEdelta. Of
the eight samples containing dfrAl, seven contained a conserved aadAl gene and one sample
had a broadly categorized aadA region (Fig. 5.6). Five of these samples had a sull downstream
of aadAl, and three contained intl1 (encoding class 1 integrase), including the single lemur
sample. Of the seven human microbiomes containing a dfrAl-aadA pairing, residents were from
four different villages, with one pairing from the same household. The single lemur sample was

collected closest to a village that none of the human residents carrying this cassette were from.



HUMO0038
Vil 1

HUMO0444
Vil 3

HUMO738
Vil 2

HUMO0829
Vil 2

Sample

HUMO0830
Vil 2

HUMO0848
Vil 6

HUM0894
Vil 6

LMR0024
Vil 5

UspA pM - iper attl riboswitch Other

144

<@ A4 i >E-dEaiiEam
5000 0 5000
dirAl Other Other
> G >
5000 0 5000
atlriboswitch tnpM Other
<pdAl <Gl - (> G- CEammp- 4
-4000 Y attl riboswitch Other 4000
Yabmaaai> ¢
~4000 0 4000
attl riboswitch
Other
D <sgar] @l
-4000 0 4000 800¢
Other attl riboswitch
P> EED> [T o> @8 <UT_{ | (<] <] <iEmaiEn
0 50‘00 lO(IJOD

attl riboswitch
Other Other tnpM

> A8 <1 ) 6B Gida@ > )

repBA regulator

4000 8000
attl riboswitch

) B q B <EmeeeeegE < > ma (> E- A

12000

0

5000 10000

Start

. yhbS - sulP |:| estX . UspA gene . Other
[] tom [ suz [ dfrar [ xerD
Genes

. tniB l:l sull I:‘ aadAl . aph(6)-Id
B e ] o [ cada [ aph)ib
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annotations were identified using Bakta. Samples from individuals are represented for each line and

annotated with the individual and geographic source. Genes present on two or more contigs, or

antibiotic resistance-associated genes labeled and represented by colored arrows. Other detected

genes unique to the contig are labeled as "other". Sequence coordinates atre aligned relative to the

present dfrAl gene on their respective contigs. Arrows indicate the strand direction of the detected

gene.
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Discussion

To our knowledge, this is the first study to directly compare the antibiotic resistance
profiles from human and wild lemur microbiomes from the same geographic space, thus
providing further insight into antibiotic resistance gene flow between residential human and
wildlife host populations. We quantified and compared the bacterial species and ARG
abundances present in human and lemur metagenomes and found their overall profiles to be
distinct in both bacterial species and ARG distribution, while human microbiomes from different
villages were largely comparable to one another. We also detected some differentially abundant
genes among human microbiomes conveying resistance to tetracycline and aminoglycosides.
Lastly, we assessed the genomic similarity of ARGs shared between human and lemur
microbiomes and found a shared multidrug resistant mobile gene cassette.

Understanding the bacterial composition of microbiomes from hosts within a larger
ecological community helps to establish the biological baseline for future surveillance of
spillover. In this analysis, humans and lemurs were largely distinct in their microbiome species
and ARG abundance and distribution. We found that lemur microbiomes were far less rich in
known bacterial species compared to human microbiomes despite the quantity of available DNA
in the sample. This is likely explained by a limitation in the detectability of uncharacterized
species in our chosen database, which also highlights a larger issue of the current state of curated
taxonomic databases available for metagenomic analysis. Even with this bias, though, it is
reasonable to conclude that the populations from wildlife, being under-sampled across studies,
would likely drive this difference even further from humans.

In contrast the Shannon index for ARGs was not different between lemur microbiomes

and human microbiomes, and the number of ARGs detected between the two groups were highly
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similar. Humans and lemurs shared proportionally few types of ARG alleles, but both groups had
a similar absolute number of ARG allele types detected. The diversity of alleles suggests less
detection bias that would be preferential toward human microbiomes. It is still possible that the
full scope of ARGs is yet to be known (243), but in this system there is evidence to suggest that
at least what can be known about antibiotic resistance genes is comparable between humans and
wildlife. The structure of resistomes within the gut microbiomes of vertebrates outside of
humans are influenced by numerous host-associated factors and environmental factors, including
habitat and the threatened status of the wildlife population (236). For this study, mouse lemurs
were sampled along roadways specifically to detect patterns in the resistomes in an area of
human and wildlife crossover. The unique life histories and diet of non-human primates from
human communities would lead to an expectation that gut bacterial species and present ARGs
are likely distinct, as has been demonstrated with comparative analyses of the gut microbiomes
of humans and non-human apes (266). Our study is consistent with this pattern when comparing
human to sympatric lemur microbiomes, as the lemur microbiome is largely divergent in species
and ARGs present. Nevertheless, the presence of highly conserved ARGs could be the result of
shared host traits selecting for specific microbial functions within the gut or from shared lineages
acquired from common overlapping environment.

Some antibiotic-resistance genes were more abundant among humans, though resistance
to no one class was more abundant. It is notable that four of the five differentially expressed
genes belonged to tetracycline-resistance genes and one aminoglycoside-resistance genes.
Phenicol and tetracycline class drugs have been used extensively in agriculture (36) and thus
could end up trickling into natural settings, impacting how often wildlife become exposed to

these ARGs compared to humans. The synergy of clinical and agricultural use could explain why
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there are overlaps in top abundance. For example, Since 2009, the World Health Organization
has recommended that sulfamethoxazole + trimethoprim, doxycycline, or tetracycline be used as
first-line choices for pre- and postexposure treatment to Yersinia pestis, the pathogen causing
plague and which is endemic in Madagascar and responsible for periodic large outbreaks,
including during 2017 (267,268). The diversity of region-specific usages of antibiotics suggests
that there is likely no single pressure resulting in the maintenance of the most abundant ARGs,
but it does call for a One Health awareness toward the stewardship of different classes so that
these drugs can remain effective for interventions, such as management of plague.

Fourteen assembled ARGs were shared between humans and lemurs, though there were
69 distinct ARGs among assembled metagenomes. Presence of shared genes is a signifier of
potential ARG reservoirs for human and agricultural pathogens. Among the shared ARGs,
several have been detected in pathogen samples with phenotypic resistance to their
corresponding antibiotic class, including aph(3’’)-1b (269), aph(6)-1d (270), gacEdeltal (37),
and cfxA6 (271). DfrAl, aadAl, aph(3")-Ib, aph(6)-1d, all have a high risk of contributing
currently or in the future to pathogen multidrug resistance (244). The Isa(D) gene, responsible
for lincosamide resistance, was detected in diseased farm-raised fish and attributed to emerging
fish pathogens (272). We did not identify a clear village-level association between lemurs and
humans that had these shared genes. Therefore, the high similarity could be explained by strong
selective pressures within the environment to conserve these gene structures, or it could be
explained by ongoing drift of bacteria horboring these genes moving between human and lemur
populations via uncharacterized pathways, such as river systems or intermediary contact between
wildlife and other domestic or peri-domestic animals. Many of these genes have a prevalence in

other global areas where genetic sequences of ARGs sourced from different metagenomes are
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also highly conserved (273). For either scenario, detection of clinically significant ARGs in wild
lemur populations that may not be directly interacting with human communities signifies just
how diffuse the community resistome is and may make combating drug resistance more difficult
as human and wildlife are brought more and more into contact.

We did identify a common class 1 integron in close genomic context with multiple drug
resistance genes present in several human and one lemur microbiome. Common characteristics
of a class 1 integron are encoding of intl1 at the 5 coding end, followed by with a variable
cassette region and then encoding of qacEdelta and sull at 3’ coding sequence (274). Other
globally distributed gene cassettes harboring trimethoprim-resistant dfrA and aminoglycoside-
resistant aadA genes are known to be associated with class 1 integrons (275-277). Specifically,
these gene cassettes have also been found in known patient samples in Madagascar’s capital
Antananarivo among ESBL-producing Enterobacteriaceae, with the most frequent cassette
pairing being drfA17-aadA5 (275). Contrastingly, we did not identify this specific cassette
among any of the microbiomes under consideration in this study from our rural community
members. The dfrAl-aadAl cassette among our study samples is dispersed between several
members of different villages, though more investigation is necessary to understand if its
prevalence is hallmark of the specific region. Class 1 integrons harboring dfrAl1 can move
between species of gram negative organisms in vivo (278). In the context of our study and the
growing body of evidence that human-driven antibiotic use drives higher antibiotic resistance
profiles in animals and in wildlife, we should be concerned that even non-agriculture animals are
maintaining highly similar ARGs to humans in their microbiomes. Stewardship efforts necessary
for this system may focus on closing off pathways between human-developed space and wildlife

and conservative use in agriculture. Detection of ARGs through metagenomics or other
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screening is a useful tool for increased surveillance efforts, but it will take additional research to
develop meaningful relationships between genetic abundance and the frequency of spread
between species or changes in phenotypic resistance to antibiotics. Optimistically, the advent of
technologies such as long-read sequencing offer a compliment to identifying species genomes
directly as sequences and as reference scaffolds for short read sequences. Given that antibiotic
resistance is often a trait maintained when bacteria are consistently exposed to antibacterial
chemicals, more work must be done to monitor whether individual genes are continually being
reintroduced to wildlife metagenomes from humans to better understand how stable the lemur

metagenome niche is as an ARG reservoir.

Conclusions

In this study, we took a metagenomic approach to characterize ARG presence in a
specific ecological system and uncover previously unexplored comparisons between humans and
wildlife. Our observations add to the growing effort to characterize the global extent of ARG
presence, the range of which is still limited especially in lower- and middle-income countries.
These findings reflect some known global patterns of drug resistance prevalence and highlight
unique patterns for this geographic area. This research supports a continued effort to monitor
antibiotic usage for humans and in agriculture, especially effects on non-pathogen members of
microbiomes, and their further dissemination into the ecosystem. As more research reveals the
extent of ARG transmission through an environment, it is evident that there is an increased
needed to investigate intermediary processes beyond individual players’ proximities to one

another that can lead to drug resistant gene movement through ecological space.
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carry out this study (reference number IRB00093812)
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DNA Deposition

The following information was supplied regarding the deposition of DNA sequences:
The metagenomic sequence reads for this project are available in the Sequence Read Archive:
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The following information was supplied regarding data availability: The analysis code is

available on GitHub and Zenodo: https://github.com/bmtalbot/Humans and Lemurs 2017.
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The accompanying data are available on Zenodo: Talbot, B., Clennon, J., Rakotoarison, F.,
Rautman, L., Durry, S., Ragazzo, L., Wright, P., Gillespie, T., & Read, T. (2023). Datasets for
Metagenome-wide characterization of shared antimicrobial resistance genes in sympatric people
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Figure S5.1. A schematic of the overall bioinformatic workflow of sampled human and lemur

metagenomes .

Quality comparison of Kraken2-classified Lemur microbiome metagenome reads

The nucleotide sequence quality between unclassified and classified reads was compared to
understand its impact on categorize metagenomic reads into taxa for lemur sequence. Reads were
run through a comprehensive Kraken2 database (PlusPFP release date 2024-01-12) which includes
taxa Refseq markers for bacteria, human, virus, plasmids, plants, protozoa, fungi, and UniVec_Core

sequences. Kraken2 was run with the flags --unclassified-out to generate unclassified reads from



153

each read pair sequences, --classified-out for the classified reads per paired sequence, --report to

generate the quality report, and --paired to indicate the two paired end sequences for each sample. A

quality report was produced summarizing the paired-end sequences of each sample.
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Figure S5.2. Comparison of quality metrics between classified and unclassified reads from lemur

microbiomes. Boxplots were generated from the values of each sequence of a read pair per sequence

after analysis with Kraken?2 against the Kraken PFP database for the following four metrics: (a) The

GC percentage per sequence, (b) percentage of reads at Q30 score, () the average Phred sequence

quality, and (d) the minimum sequence length.

Evaluation of differential abundance calculations using ALDEXx2 for ARGs grouped by gene

families and primary antibiotic class association

Raw reads of ARGs were assessed with ALDEXx2 to identify differential gene abundances between

humans and lemurs, accounting for sparseness and composition in the data. Differential abundance
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grouped at the gene family and the antibiotic class the gene is associated with conferring resistance
against. The Aldex2 central log transformation (clr) function was used to generate final analyses. To
test the effect of scaling on the outcome of differential abundance, a sensitivity analysis was
performed using the function aldex, which introduces different levels of uncertainty using the

gamma parameter.
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Figure S5.3. Sensitivity of detecting significant differential abundances at different levels of
uncertainty using ALDEx2. Raw read abundances of ARGs were summed by either antibiotic
class associated with resistance (a-b) or by the gene family associated with the positive allele hit (c-d).

Plots were generated using the plotGamma function in ALDEx2 (v.1.35.0). (a) The percent of
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significant entities for reads grouped by antibiotic class was not significant for any value of gamma.
(b) Individual lines indicate unique entities of antibiotic classes and their corresponding effect size of
differential abundance at different values of gamma. Gray indicates that an effect size is not
significant. (c) The percent of significant entities for reads grouped by gene family was significant
between gamma values of 0 and 3. (d) Individual colored segments indicate significant effect sizes
for differential expression of eight unique gene families up through a gamma value of 1. Five entities

remain significant up through gamma = 2, and two remain positive up through gamma = 3
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Chapter 6: Conclusion

Summary and Discussion

The future of pathogenic disease detection and transmission relies on revealing pathogen
genetic and evolutionary biology through genomics. Therefore, the goal of this thesis was to test the
boundaries of genomics for pathogen surveillance in and outside of healthcare settings and identify
opportunities to expand our understanding bacterial pathogen host adaptation. In Chapter 2, I
advocated for a reconsideration of “SNP threshold” as “SNP ranges” to better account for the
diverse evolutionary forces that produce genetic differences. In Chapter 3, I tested the strength of
association between genetic distance and hospital exposure and identified stable clusters of putative
transmission of MRSA. I'looked at the issue of genetic clustering of MRSA strains further in
Chapter 4 by identifying risks of relapsing strains and differentiating new infections from persistent
infections occurring for the same host. Finally, in Chapter 5 I described the antimicrobial resistome
for an under sampled geographic area and revealed that there are highly conserved AMR genes
shared between humans and lemurs. Collectively, these chapters demonstrate how genetic distance,
content, and context reveal the likelihood of bacterial strain transmission and persistence.

Mutations (in the broad sense DNA changes including SNPs, indels, and inversions) is the
fundamental mechanism of generating genomic change in bacteria, which is why de novo mutation
accumulation is foundational for estimating the amount of change at a calendar scale for
epidemiological investigations. Mutation rates are dependent on the fidelity of the cellular replication
machinery. Whether a new mutation ultimately survives in a bacterial population (“fixation”) is
dependent on the interplay of strength of selection and the chance of stochastic loss. Building

phylogenies based on number of mutations accumulating at homologous sites common across
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bacterial genomes (the “core”) is highly reliable for inferring evolutionary divergence, and this
principle grounds for each chapter. However, comparative genomics at increasingly short time scales
(days, for example) reveal evolutionary patterns associated with non-neutral selection for traits that
affect pathogenesis. Additionally, there may ways in which the molecular clock can be confounded
because of the genetic architecture and behavior of bacterial chromosomes, including selection for
mutations that affect the DNA replication rate and homologous recombination which can bring in
multiple novel genetic changes all in one event. In Chapter 3 we demonstrated that core SNP
distances were stable when the population diversity was considered and showed that epidemiological
exposures were more predictable among isolates with SNP distances smaller than 13. However, we
also noticed that many clusters of a similar difference in time having widely different cumulative
pairwise distances. Therefore, our evidence supports that SNP accumulation is a good marker for
between host exposures, but more work is necessary to reveal associations of disease and
transmission at even smaller time scales than our investigation period. One potential way to
investigate time and SNP distance is to collect more infection colony samples to account for the
genetic diversity. It is also important to monitor how the individual host factors can shift the
strength of evolutionary forces driving genetic differences. In Chapter 4, we were able to look more
closely at lineages that continually seed the blood of the same host and cause relapse and identified a
trend in positive selection, not just neutral accumulation of SNPs. It is also documented that an
invasive state can increase the mutation rate (80) and can result in specific mutations that are specific
to pathogenesis (169). All the isolates in this study were derived from an invasive state, blood, and
we detected convergent mutations in genes associated with bacteremia and antibiotic resistance.
Therefore, non-neutral changes are important for identifying potential risks of relapse within a

patient and could be used as markers that help reduce the burden of disease that could contribute to



158

future outbreaks. We were limited to single bacterial isolates at each time point and likely missed
some of the standing variability within a patients’ infection. In a healthcare setting, it is possible to
collect more than one isolated colony from a single patient infection and doing so can help pick up
on rare genes that are of clinical interest for patient care and infection prevention within the clinic
(279). Altogether, future models that generate thresholds of relatedness for cluster detection should
incorporate information about expectations of the standing genomic variation (“the cloud of
diversity”)(79), screen for potential host-adaptation, and consider the patient state (a carrier or
someone experiencing disease) to better identify clusters of infections with common epidemiological
linkages.

Throughout this research, I demonstrated that genomic and metagenomic technologies are
useful for simplifying signatures of pathogen detection. In a clinical setting, diagnosis of relapse
requires many different pieces of information related to exposures, medical history, and is subject to
differences in clinical discretion. The lack of concordance between clinical and genomic definitions
of relapse in Chapter 4 demonstrates that often clinical information alone is not accurate enough to
identify strains that caused a previous infection for the same person. Our evidence suggests that
combining genomics with clinical information can help reduce the noise of some more complicated
aspects of diagnosis or clue-in clinicians to persistent infections when the original infection source is
unknown.

The relationship between resistant organisms spreading between humans and wildlife is an
important topic, especially as changes in climate and land use change the geographic movement of
humans and wildlife. In Chapter 5, we were limited in how we could characterize the overall
network of interactions that could result in shared AMR genes in humans and lemurs. However, the

complexity of this community network is not unlike the complexity of hospitalized patients who
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seem to cluster with related infections but do not have an apparent overlap, or who have loose
overlaps that could suggest transmission. Given that there is increasing interest in using
metagenomics at a diagnostic level, including the ability to detect novel pathogens and a lack of need
to produce cultures, much can be learned about effective methods and limitations from studies
involving unique ecosystems like the one in Chapter 5. For example, there is still much that needs
to be done to relate the quantity of AMR genes detected to species spread, pathogenesis, and
phenotypic expression. How to best normalize and quantify metagenomic sequences, and how many
to sample, is still an ongoing dialogue.

As a technical argument, this body of work largely supports the impressive detective power
that genomics has for clinical and public health practice. Why is it that the technology is not widely
adopted for all pathogens in all spaces where disease detection occurs? Like the adoption of most
technologies, it’s a combination of issues. Cost and access to equipment still play a role in how much
sequencing can be done, even as the overall price of next-generation sequencing technologies has
decreased. The expertise to understand how to best use and analyze data also plays a role. Expertise
in both evolutionary principles and comparative genomics is not typically in core curricula of
accredited Schools of Public Health (280). The information in Chapter 2 offers an opportunity to fill
in gaps in understanding for public health practitioners about biological mechanisms for genomic
differences. Furthermore, sequences alone are not enough to come to good scientific conclusions or
important decisions on healthcare. Infrastructure, including databases, information management
systems, and server capacity, also impact who can use genomics for public health practice. Chapters
3, 4, and 5 all focused on sequences from a single community, but to answer important comparative
analysis questions within each chapter, it was necessary to draw upon the curation of reference data

available in public databases. As a global community, concerted efforts have been made to create
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large databases of sequences, which offers ongoing opportunities to query these databases and look
for larger trends in pathogen spread and convergence of rare or complicated traits across species
and/or strains. This requitres interdisciplinary teams and increased supportt for technical

infrastructure globally so that communities can put these data to public health use.
Future Directions

There is still much that can be learned about the genomic changes that occur during disease
progression. Identifying or connecting phenotypic differences to genomic variation is frequently a
vital next step when significant genetic mutations are detected. In this research, relapse of infection
is a complex trait that we demonstrated does not have one singular strain background, nor one gene,
and occur in different host niches, but nevertheless there is a general trend of positive selection on
the whole genome. We also collected a comprehensive list of specific genes with known associations
with bacteremia. This suggests that, overall, relapsing lineages, which are these persistent
populations closely associated with the host, are responding and adapting in important ways that
allow for ongoing survival. Two potential future directions for this work include exploration of
changes in expression of genes and statistical modeling to identify environmental and genetic
combinations that predict relapse.

To test if there are expression differences, a set of phenotypic tests could be done to assess
the relationship between the mutations that arose in the same genes for multiple lineages. Some of
these mutations occurred in correlation with previous antibiotic exposure and are known to confer a
resistance phenotype. Others, however, did not demonstrate a specific association to a resistance
phenotype. To test if these mutations confer different resistance profiles, future studies could be
designed to challenge the ancestral strains without the mutation and the progeny strains with the

mutations with different antibiotics to see if there is a difference in growth or survival. Several other



161

genes also had mutations in multiple relapse lineages that are involved in virulence directly or in
regulatory pathways. Here, future work could assess the association between these mutations and
virulence expression by comparing them to strains that do not carry these mutations. Traits of
special interest would be growth rate and important traits for persistence that contribute to the
evolution of drug resistance, such as biofilm formation and adhesion.

Another opportunity for advancement is to perform a boosted regression tree analysis to
assess the combination of pathogen and host traits that predict relapse infection. Boosted regression
trees are useful for predictive analysis because they combine tree-based analysis with ensemble
models. Decision trees are useful when there are complex or non-linear relationships between the
predictors and the outcome of interest, and because their outcomes are easier to interpret without
extensive training in statistics or mathematical modeling. Ensemble approaches, then, combine
smaller, weaker “building blocks” together to create a new predictive model with more power. They
work well for scenarios where the individual components contribute a weak effect (281). Boosted
regression trees for this data would be useful not only based on the biological and clinical trends that
I identified, but also because exploring this space can test the method’s utility for downstream use
and interpretation in a clinical setting, where quick decisions need to be made for patient care and
infection control. Other machine learning approaches have shown utility in a clinical setting,
especially for cluster detection (7). I have so far tested a boosted regression model to assess the
demographic characteristics from patient data and in the future will add information about MRSA
isolate strain and mutational profiles.

The evolution of pathogenesis and disease ecology are fundamental to epidemiological
practice. Genomics and genetic sequencing expand the availability of information that practitioners

can use to make epidemiological inferences. The expansion of larger sequencing datasets means that
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scientists can screen for convergence of disease-associated traits across a diverse landscape of hosts
and environments. Future work should focus on evaluating and curating these data so that we can

make new predictions about disease and find new solutions to prevent illness globally.
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