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Abstract

From species-wide to single colony: Multi-scale analysis of the ubiquitous

pathogen Staphylococcus aureus

By Vishnu Raghuram

Whole genome sequencing (WGS) is a powerful tool for both large- and small-scale

analysis of any given species. With the increasing accessibility of WGS, bacterial

pathogens have been sequenced at an explosive rate over the past decade. This

abundance of sequencing data has allowed us to answer questions about pathogens in

the context of human infection like never before. In this dissertation, I use collections

of sequences from a ubiquitous opportunistic pathogen, Staphylococcus aureus, as a

model system to answer questions regarding speciation, genome evolution, mutation

signatures and human clinical sampling strategies. S. aureus is a prominent

healthcare-associated pathogen that causes bloodstream, skin, and respiratory

infections. S. aureus comprises many genomically distinct strains having abundant but

selective gene exchange. Therefore, diverse sampling of S. aureus is key to

understanding the introduction and evolution of new lineages in a given population.

Here, I (1) used a dataset of > 80,000 S. aureus sequences to outline genomic

characteristics that distinguish strains and substrains; (2) developed a software

pipeline for rapid mutational analysis of specific loci and identified signatures of

convergent evolution on a key S. aureus virulence regulator; (3) described optimal

clinical sampling strategies for maximising observed genomic diversity; and finally

(4) showed how strain specific microdiversity can impact polymicrobial interactions.

The overall goal of this work is to describe methods and provide resources to the

broader scientific community for analysis of large bacterial sequence datasets as well

as sampling strategies for small-scale pathogen evolution studies.
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Chapter I – Introduction

Using WGS to study pathogen evolution across scales

This dissertation is about estimating population diversity across different scales using

the globally prevalent pathogen Staphylococcus aureus. An accurate estimation of

population diversity requires close examination of population structure, genome

evolution, mutation signatures, and sampling strategies. In this chapter (Chapter I), I

will introduce concepts around speciation in bacteria, our current knowledge of the

population structure of S. aureus (Sequence Types and Clonal Complexes), virulence

regulation and adaptation, and pangenome ascertainment. These concepts will serve

as the foundation for my PhD research.

The true spectrum of diversity and the number of lineages of S. aureus is unknown. In

the context of pathogens, this is important as genetic diversity can lead to acquisition

of new traits. Understanding the population structure and identifying genetic markers

that can aid in distinguishing between different lineages is key to understanding the

speciation of S. aureus. This can be done using complete and diverse sampling of S.

aureus genomes and this is explored in Chapter II. Such large species-wide datasets

allow us to examine the evolution and diversity of critical virulence determinants in S.

aureus. S. aureus is a successful global pathogen largely due to its ability to produce a

number of virulence factors. It is important to assess whether specific patterns of

variation in virulence regulators can be observed across multiple clonal lineages and

this is explored in Chapter III. The impact of appropriate sampling is not only

significant for understanding species-wide macrodiversity, but also for

understanding microdiversity in highly homogeneous environments. Clinical and
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within-host diversity studies repeatedly sample from the same hosts leading to

clusters of highly similar isolates. However, the number of isolates required to get an

accurate representation of the total diversity within a given sampling space is not

clear. Sampling strategies and analysis methods for capturing and measuring

microdiversity of S. aureus populations from clinical samples are explored in Chapter

IV. This microdiversity in S. aureus can cause variations in polymicrobial interactions

during co-infection scenarios. S. aureus colonises several sites on the human body

where other microbes also reside/infect. One well studied S. aureus co-infection is with

Pseudomonas aeruginosa in wounds and in the cystic fibrosis (CF) lung. Interactions

between diverse S. aureus and P. aeruginosa strains co-isolated from the same CF lung

samples are explored in Chapter V.
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Bacterial species, strains and genomes

While there is no concrete definition of a ‘species’, biologists are in general agreement

that, barring purely taxonomic reasons, a typical species is a distinct cluster in the

tree of life, with forces driving cohesion within the cluster while driving separation

between other clusters (1,2). These separations are differences in phenotypic and

genotypic traits. A prevailing theory for the evolution of a new bacterial species

suggests a combination of both slow, gradual accumulation of minor changes

(phyletic gradualism) and bursts of relatively large changes between periods of stasis

(punctuated equilibrium) (Fig 1) (3).

Fig 1: Simplified schematic depicting two proposed mechanisms of speciation.
Figures represent change in “morphology” (phenotypic and/or genotypic traits) on the x axis
over time in the y axis. Figure adapted from Wikipedia.

Relatively short generation times and large effective population sizes in combination

with drift and selective forces allow bacteria to experience accumulation of both

https://www.zotero.org/google-docs/?mKfBHY
https://www.zotero.org/google-docs/?a4UEUg
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adaptive and non-adaptive mutations which may lead to acquisition of novel

phenotypic traits (4–6). In addition, due to mechanisms in place for environmental

gene uptake, homologous recombination and large-scale horizontal gene transfer

(HGT), bacteria also experience rapid genomic restructuring leading to formation of

new sub-lineages or even new species (3,7–10). Highly recombinogenic bacterial

species diversify in rates that are significantly different from highly clonal species,

adding another layer of complexity to the mechanisms that drive speciation (11).

Methods of assigning species/subspecies have largely involved examining phenotypes

and morphologies under laboratory conditions till the early-2000s after which PCR

based methods gained more popularity (12). However, phenotype-based species

identification methods have in the past led to two distinct organisms assigned to the

same species (13–15). 16S ribosomal RNA sequencing offered relatively accurate

genus-level distinction in its early days but sequencing the full gene, which was not

commonplace, was necessary for species or strain level distinction (16). With the

advent of large-scale bacterial whole genome sequencing (WGS) since the 2010s,

species and strain identification has become a lot more reliable as in most cases each

bacterial species is a collection of genomically-distinct organisms (17). Whole genome

sequencing of populations directly from environmental or clinical samples

(metagenomic sequencing) circumvents the need for laboratory cultivation and

culture media biases (18). In-situ metagenomics also allows characterization of

several cohabiting natural populations (19,20).

With the increasing ease of access and dropping costs of WGS, the amount of publicly

available sequences have more than doubled in the past 5 years (Fig 2). These large

https://www.zotero.org/google-docs/?7z5cWf
https://www.zotero.org/google-docs/?YybnRI
https://www.zotero.org/google-docs/?dtMXAe
https://www.zotero.org/google-docs/?8eAsK8
https://www.zotero.org/google-docs/?7FF4b5
https://www.zotero.org/google-docs/?KKqjpF
https://www.zotero.org/google-docs/?FbdiIp
https://www.zotero.org/google-docs/?lRNkwo
https://www.zotero.org/google-docs/?NiCGiF
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repositories of sequences allow examinations of population structures on a

species-wide and community-wide scale like never before.

Fig 2: Bar chart showing number of bacterial short-read sequences deposited per year from
January 2010 to February 2023 in NCBI.

WGS and metagenomics have augmented experimental evolution and mutation

accumulation studies to identify the drivers of genetic change on a short evolutionary

time-scale, while also allowing investigation of large scale gene flow events across

populations on longer evolutionary time-scales. Studying the evolution of individual

organisms in the context of the total population can provide insights into the

emergence of potentially new lineages (21–24).

Staphylococcus aureus

General background

S. aureus is a gram-positive opportunistic human pathogen that is prevalent

worldwide, causing several diseases such as bacteremia, osteomyelitis, endocarditis,

pneumonia, and skin infections (25). S. aureus is also one of the most frequent

https://www.zotero.org/google-docs/?0wJvsr
https://www.zotero.org/google-docs/?XXm4hT
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pathogens infecting the respiratory tract of individuals with CF in the US (Cystic

fibrosis foundation, 2018). S. aureus can contaminate medical equipment such as

catheters and surgical devices, which is a major mode of transmission in hospital

settings. S. aureus strains carrying a mobile genetic element conferring broad

spectrum β-lactam resistance, called Methicillin Resistant Staphylococcus aureus

(MRSA), are particularly problematic. According to the Center for Disease Control

(CDC) 2019 antibiotic resistance threat report, MRSA caused 323,700 cases and 10,600

deaths in 2017, consuming $1.7 billion in healthcare costs. In addition, the CDC also

estimated 119,247 S. aureus bloodstream infections and 19,832 related deaths occurred

in the US in 2017 (26). Though S. aureus can survive on abiotic surfaces, it is largely

associated with human, bovine and other mammalian hosts (27–29). 20 – 30% of

humans are colonised by S. aureus at any given time (30). Though colonisation is

typically asymptomatic, S. aureus has the capacity to infect any human tissue. This

disease-causing capacity of S. aureus is closely tied to its ability to produce a plethora

of extracellular toxins such as haemolysins, phenol-soluble modulins, and

leukotoxins (31,32). Due to this broad spectrum of virulence factors, some of which

being lineage specific, a universal vaccine for S. aureus has not been developed despite

several efforts (33). The current protocol for treatment of S. aureus infections involves

drainage of the infection site where possible and/or prolonged antimicrobial

treatment (25). Several drug classes are available for the treatment of both MRSA and

MSSA (Methicillin Sensitive S. aureus), however, antimicrobial resistance in S. aureus

has been observed for every class of drug thus far and therefore it is essential to

discover new drugs, drug targets and also develop alternative treatment strategies.

https://www.zotero.org/google-docs/?iwo6JZ
https://www.zotero.org/google-docs/?xuVE7T
https://www.zotero.org/google-docs/?3UPSNt
https://www.zotero.org/google-docs/?oTn9Y7
https://www.zotero.org/google-docs/?195rrm
https://www.zotero.org/google-docs/?11oHmk
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Sequence Types, Clonal Complexes and genomic characterization

S. aureus has a single ~2.8 Mbp chromosome with an average of 2370 genes and

varying plasmid content (34,35). Multi-locus Sequence Typing (MLST) is used to

assign “Sequence Types” (STs) to different strains of S. aureus based on alleles of

seven specific housekeeping genes. Two strains with identical alleles for all seven of

these housekeeping genes are considered to be the same ST. STs are then assigned to

broader clonal groups or clonal complexes (CCs) if each ST shares five out of the seven

alleles with another ST (Fig 3) (36). The MLST based typing methods were developed

and widely used during the late 90s and early 2000s for phylogenetic grouping of

bacterial populations (37,38).

https://www.zotero.org/google-docs/?YsIpTG
https://www.zotero.org/google-docs/?JWEI75
https://www.zotero.org/google-docs/?XhsFWY
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Fig 3: Core genome unrooted maximum likelihood phylogeny of 380 diverse S. aureus strains
comprising several STs and CCs (25).

Top ten most abundant CCs in NCBI are coloured, remaining CCs are grey. Core genome
alignment was built using parsnp v1.5.3 and phylogeny was constructed using IQ-TREE v1.6.12.

Though limited by the technology of the time, phylogenies constructed based on the

seven MLST alleles in S. aureus are still mostly congruent with population structures

shown by whole-genome phylogenies constructed in the ‘Next Generation

Sequencing’ (NGS) era, and therefore, this method of strain and substrain naming is

still used today (36,39). Currently, 1258 STs of S. aureus have been described (40).

There is specific geographic distribution of different STs, with the ST8 MRSA clone –

USA300 being the most dominant strain in the US. CC8 and CC5 lineages, two of the

most sampled and sequenced lineages of S. aureus, can be found worldwide. However,

it is important to acknowledge the sampling bias as most S. aureus genomes in NCBI

are human associated and are from the USA or Europe. Moreover, only 35% of S. aureus

sequences uploaded to NCBI had any location associated with them as of 2017 (41).

Though there are 1258 described STs, with possible more undetermined/novel STs,

only ten STs represent over 67% of all sequenced S. aureus (40). This could be due to

multiple non-mutually exclusive possibilities – 1) There is a severe oversampling of

specific STs and the current data do not capture the true prevalence of S. aureus clones,

2) The current most prevalent STs have a significant selective advantage over all other

STs, 3) the evolutionary forces driving S. aureus favour formation of rare STs, 4) the

current method of using MLST to classify lineages has limited resolution.

https://www.zotero.org/google-docs/?JrARfi
https://www.zotero.org/google-docs/?WwyhIl
https://www.zotero.org/google-docs/?ZCGKlA
https://www.zotero.org/google-docs/?kBWIO2
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S. aureus and polymicrobial interactions

As S. aureus can colonise several body sites such as the skin, lungs, gastrointestinal

tract, and nasopharynx, there are numerous opportunities for polymicrobial

interactions at those sites. S. aureus co-infections have been documented for multiple

microbial species including but not limited to Enterococcus, Haemophilus, Streptococcus

and of course other Staphylococci (42–44). These interactions may be either

cooperative or competitive, and in some cases, lead to worse patient outcomes

(45,46). Some of the most well studied S. aureus co-infections are with Pseudomonas

aeruginosa in the CF lung. There is some evidence that suggests CF afflicted

individuals having both S. aureus and P. aeruginosa may experience more severe

disease compared to mono-infected individuals (47–49). It has been well documented

that P. aeruginosa outcompetes and kills S. aureus in laboratory settings, however, this

killing is less pronounced in chronic infection models (50–53). Though P. aeruginosa

produces several factors that can kill S. aureus such as LasA, pyocyanin, quinolines and

phage inducing metabolites (54,55), mechanisms promoting increased S. aureus

survival in co-infection environments have been proposed. Mucoid conversion by P.

aeruginosa and small colony variant formation, acetoin production and pH alteration

by S. aureus can promote S. aureus survival (53,56). However, the factors driving

coexistence between these two species are poorly understood. Studies examining

interactions between S. aureus and P. aeruginosa isolated from the same CF sample can

provide more insight into drivers of coexistence.

https://www.zotero.org/google-docs/?TKSC0z
https://www.zotero.org/google-docs/?LtX9TW
https://www.zotero.org/google-docs/?Qafoi0
https://www.zotero.org/google-docs/?jhzbqq
https://www.zotero.org/google-docs/?CA84Es
https://www.zotero.org/google-docs/?6aXfRV
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Quorum sensing and regulation of virulence

S. aureus recognizes environmental cues and adapts to the colonised

microenvironment accordingly to elicit diverse types of infections. This adaptation

includes regulating immune evasion, cell-cell attachment, biofilm formation and

toxin secretion, allowing S. aureus to switch between acute and chronic infection

lifestyles (57,58). Therefore, regulation of virulence in response to the environment is

a critical component of the S. aureus life-cycle. The key switch linking environmental

sensing and virulence in S. aureus is the agr quorum sensing system.

Quorum sensing (QS) is a well-documented phenomenon in many bacterial species

where there is a cell density dependent global transcriptional change in the bacterial

population (59,60). The QS signalling molecule, typically a small molecule for

gram-negatives and a small peptide for gram-positives, is secreted and sensed by

individual bacterial cells leading to further induction of its own release (59,61).

Therefore, this molecule is called an ‘autoinducer’. The autoinducer generally varies

according to the exact species of bacteria that produces it (62). This is especially true

for gram-positive bacteria, where individual species can be subdivided based on the

exact amino acid sequence of the small peptide that is produced (63–66). When the

concentration of the autoinducer exceeds a certain threshold in the environment, the

population reaches a “quorum”, and this results in a collective behavioural change. QS

controls behaviours such as bioluminescence, biofilm formation, virulence factor

secretion and motility (59).

The agr QS system in S. aureus comprises four genes – agrBDCA and a small RNA –

RNAIII. AgrD encodes a precursor protein that is processed by the membrane-bound

https://www.zotero.org/google-docs/?xLZ2gv
https://www.zotero.org/google-docs/?RidqRG
https://www.zotero.org/google-docs/?PY8oOQ
https://www.zotero.org/google-docs/?CKWgie
https://www.zotero.org/google-docs/?wy0Hlb
https://www.zotero.org/google-docs/?KPmXoj
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peptidase AgrB, converting AgrD into the autoinducer peptide (AIP) which serves as

the QS signal. The secreted AIP is then recognized by a two-component regulatory

system (TCS) – AgrC, a histidine kinase, and AgrA, a response regulator. As mentioned

earlier, some gram-positives can produce a diverse range of AIPs even within the

same species. The S. aureus agrD is polymorphic, and can code for one of four possible

AIPs. These four possible small peptides, known as agr specificity groups, each have a

distinct amino acid sequence. As agrB is responsible for AIP secretion and agrC is an

AIP sensor, both genes also have polymorphic sites that are specific to the

corresponding AgrD. Due to the nature of these specific sites, there is limited

cross-reactivity between the AIP of one specificity group and the agr system of a

different specificity group. A given S. aureus strain can belong to only one of the four

specificity groups, and S. aureus can be genotyped based on their agr groups – agr

group 1/2/3/4 (67–72) .

https://www.zotero.org/google-docs/?mT8t3G
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Fig 4: The agr (accessory gene regulator) operon is a global transcriptional regulator in S.
aureus.

1: A schematic depiction of the agr operon showing two divergent promoters (P2 and P3)
driving agrBDCA and small RNA RNAIII. 2: AgrD is a precursor protein that is processed by AgrB
into an AIP and subsequently released. 3: The AIP is the QS signalling molecule that is
recognized by a sensor kinase AgrC, which in turn phosphorylates AgrA – the response
regulator. 4: AgrA activates the two divergent promoters, continuing the QS cycle. AgrA and
RNAIII also regulate other virulence genes elsewhere in the genome (not shown here). Figure
adapted from Raghuram et al, 2022 (73).

In typical TCS fashion, AgrC phosphorylates AgrA, leading to AgrA transcriptionally

activating two divergent promoters in the agr operon, P2 and P3. P2 drives the

expression of agrBDCA while P3 drives RNAIII and a haemolysin called delta-toxin,

which is encoded within RNAIII (67,69). RNAIII is the primary effector of the agr

system, controlling virulence genes such as delta-toxin (Hld), α-haemolysin (Hla), as

well as other transcriptional regulators such as MgrA, which promotes dispersal and

transmission by downregulating attachment and biofilm associated proteins (74,75).

AgrA also upregulates an important family of S. aureus pore forming toxins, phenol

soluble modulins (PSMs) (76,77). PSMα is a potent cytolytic toxin that promotes

neutrophil lysis and S. aureus survival during phagocytosis (78). PSMα expression is

also closely correlated with the expression of Hla (79). Hld can cause mast-cell

degranulation and induce a strong pro-inflammatory response (80). In addition to

pore-forming toxins, S. aureus also secretes various factors that interfere with

neutrophil homing, complement activation, fibrinogen formation and host antibody

responses (32). Therefore, the virulence factors controlled by agr are important for

adaptation and survival in different environments.

Though agr mediated virulence promotes disease progression, paradoxically many

clinical isolates have defective agr genes. Typically, attenuated expression of agr

https://www.zotero.org/google-docs/?G9HGGS
https://www.zotero.org/google-docs/?hDecDE
https://www.zotero.org/google-docs/?LPuJHN
https://www.zotero.org/google-docs/?WKWXCR
https://www.zotero.org/google-docs/?Xb3CBF
https://www.zotero.org/google-docs/?xItuIE
https://www.zotero.org/google-docs/?kxB2YY
https://www.zotero.org/google-docs/?bcJ0cD
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mediated virulence factors would lead to reduced disease severity and decreased host

cell damage (81,82). However, there may be short term evolutionary benefits to having

impaired agr activity. agr- strains may have traded their ability to produce

energetically expensive virulence factors in favour of a non-toxic but less

immune-exposed niche (83,84). This niche adaptation may contribute to worse

clinical outcomes in chronic infections such as bacteremia and osteomyelitis (85,86).

Defective agr function is also associated with decreased susceptibility to vancomycin

(87). Environmental factors also play a key role in influencing the agr response. The

emergence of agr- mutants is enriched during aerobic conditions compared to hypoxic

conditions (88). Global metabolic regulators codY and purR have also been shown to

regulate agr controlled haemolysins (89,90). Overall, these data suggest that the

benefits of agr mediated virulence are situational, and that the recurring accounts of

agr mutants suggests there may be selection for attenuated agr activity in certain

contexts. S. aureus may be actively adapting to different infection niches by

modulating agr activity. Results from many independent studies suggest that agr-

strains have sacrificed long-term viability through successful between-host

transmissions for increased adaptation to specific environmental niches within the

host. However, this has yet to be consistently shown across multiple clonal lineages. It

is important to evaluate whether genome-wide patterns of variation in agr can be

observed because it is crucial for understanding the mechanisms driving virulence

regulation.

In addition to agr mutations, another more prominent layer of variability are the four

agr specificity groups mentioned before. While S. aureus is not phylogenetically

https://www.zotero.org/google-docs/?OtsjTA
https://www.zotero.org/google-docs/?FVQNIc
https://www.zotero.org/google-docs/?cfapTP
https://www.zotero.org/google-docs/?TEq1eU
https://www.zotero.org/google-docs/?YadGjo
https://www.zotero.org/google-docs/?k0kVEA
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structured based on the agr groups, there is strong evidence to suggest that the four

agr groups are closely tied to clonal lineages (91,92). Each CC of S. aureus exclusively

contains a single agr group and the only observed exception to this rule is CC45

(92,93). This however is regardless of phylogenetic grouping of S. aureus, meaning,

phylogenetically related CCs can have different agr groups and phylogenetically

distant CCs can have the same agr group. In other words, each agr group does not form

its own monophyletic clade. This suggests that agr divergence is a foundational event

that preceded formation of the CCs as we see them today.

Clonal lineages and population structure

CCs define groups of related STs and are an easier way to assess population structure,

with each CC forming a distinct monophyletic group with long branches. The

evolutionary history of S. aureus suggests that individual CCs were first formed due to

large recombination events followed by clonal expansion within CCs, with biological

barriers such as competence systems and restriction modification systems selectively

preventing between-CC recombination (39,94–96). This has resulted in genomically

distinct CCs with gaps in similarity between CCs: i.e strains within the same CCs are

very closely related but strains between CCs have 1000s of SNPs.

However, these barriers are not absolute. Though S. aureus is not a highly

recombinogenic species, multiple studies have shown that mobile genetic elements

(MGEs) are hotspots for recombination (97,98). MGEs such as phages, plasmids and

pathogenicity islands are typically involved in transfer of antimicrobial resistance

genes and virulence factors (99). For example, the SCCMec element (Staphylococcus

Chromosomal Cassette mec) that contains the mecA gene, which is responsible for

https://www.zotero.org/google-docs/?n35bOz
https://www.zotero.org/google-docs/?rZXa8H
https://www.zotero.org/google-docs/?vZuAZY
https://www.zotero.org/google-docs/?dMmBJA
https://www.zotero.org/google-docs/?v1WKcA
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Methicillin resistance in MRSA strains, is exchanged between different Staphylococci

(100–103). Non-MGE genes proximal to MGEs can also be exchanged (97).

The genomically distinct nature of S. aureus CCs are also evidenced by niche-specific

adaptations across different CCs. Correlations between specific CCs of and their host

tropism have been reported. CC5, CC8, CC22, CC30 and CC45 are typically

human-associated and can spread through hospital and community settings. On the

other hand, lineages including CC97, CC121, CC133 and CC151 are commonly associated

with livestock (96,104,105). Extensive host-switching has also been documented in

the evolutionary history of S. aureus with several zoonosis events, with CC97 and

CC398 being associated with bovine-to-human transmission (105,106). This host

tropism shown by lineages is associated with host-specific adaptations in certain

virulence factors/MGEs. For example, Leukotoxin lukM-lukF-PV genes are prevalent

in bovine isolates and are associated with severe bovine mastitis (107,108)

Antimicrobial resistance genes outside of beta-lactam resistance are more commonly

associated with human-adapted lineages and are less prevalent in bovine-adapted

isolates (109). Identifying CC specific genes, especially AMR genes and virulence

factors, are critical for predicting and subverting outbreaks. Multiple reviews have

outlined the different host-specific genetic correlates in S. aureus across a diverse

array of host species and most of these genetic elements are in MGEs (pathogenicity

islands or prophages). (104,110).

There is also some evidence to suggest that specific agr groups may be associated with

disease outcomes. agr group 4 isolates are associated with exfoliatin production, agr

https://www.zotero.org/google-docs/?taQwge
https://www.zotero.org/google-docs/?1lPnFo
https://www.zotero.org/google-docs/?IkapDI
https://www.zotero.org/google-docs/?9jls5o
https://www.zotero.org/google-docs/?R9EMlg
https://www.zotero.org/google-docs/?CXzxXU
https://www.zotero.org/google-docs/?vNDbji
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group 3 isolates are associated with menstrual toxic shock syndrome, and agr group 2

isolates are associated with increased vancomycin tolerance (63,111–113).

As stated earlier, CCs are also exclusive to specific agr groups. Strains within a given

CC comprise only one agr group with very limited exceptions (92,93,114). The agr

group separation was an important event in the evolutionary history of S. aureus that

predated but is still linked to the CC-based subspeciation (91). As agr activation

causes global transcriptional changes, and gene content varies between CCs, agr may

have distinct regulons across different CCs. This link between agr and the CC specific

gene content is yet to be explored.

The Pangenome and species-wide diversity

Gene gain, loss and allelic variation are common phenomena in bacteria and are a

major contributor of intra-species variation. These genome evolution events can be

shaped by both adaptive and neutral forces depending on the biological context

(115–117). This would lead to members of the same species having similar but not

identical genomes across different environments. Therefore, observing genomes from

one or few members can vastly underestimate the capacity of a species. A

“Pangenome” – a collection of all genes/alleles that are found within a group of

organisms, encompassing diverse members is required to fully understand the

capacity of a species. Genes in the pangenome can be broadly classified into the “core”

– genes present in all/most members (>95%), the “accessory” – genes only present

in some members ( > 95%). The “accessory” genome can be further divided into

“intermediate” - genes present in many (> 10% but < 95%) and “unique/rare” –

genes that are almost never present (<10%).

https://www.zotero.org/google-docs/?wkqbNc
https://www.zotero.org/google-docs/?k4fxVA
https://www.zotero.org/google-docs/?2Uj1ZC
https://www.zotero.org/google-docs/?ES7Tyb
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While S. aureus is considered more clonal than highly promiscuous species such as

Streptococcus pneumoniae (36), the above outlined literature suggests the presence of

large-scale recombination events in the past, on-going recombination events in

MGEs, lineage specific genetic markers, and lineage specific restriction barriers

preventing indiscriminate gene exchange. These selective gene transfer events can

add to phylogenetic noise and uncertainty, making inferences regarding CC

divergence challenging. However, with diverse sampling and identifying genomic

regions that are common to almost every strain in the species – the “core”, it is

possible to identify the lineage specific genes that keep the CCs separate. The

“accessory” genes - genes that are present in some members of the populations but

never all, can also potentially predict the emergence of future lineages. However,

genes designated “core” and “accessory” are context dependent and are highly

influenced by the sampled population (118,119). As discussed in the previous section,

host/environmental factors can affect the total gene content thereby leading to some

genes designated “core” in specific environments but “accessory” in others (118,119).

This core and accessory designations can also vary when considering within-CC vs

between CC comparisons (120). Meaning, the more diverse genomes that are

considered, the smaller the core genome and the larger the accessory genome.

As of February 2023, there are over 93,000 whole genome sequences (WGS) of S.

aureus publicly available [Fig 2]. This offers the opportunity to examine S. aureus on a

species-wide scale, estimating the total genetic makeup of the species while also

serving as a natural laboratory for observing the emergence of new CCs.

https://www.zotero.org/google-docs/?5KzmSg
https://www.zotero.org/google-docs/?sUzxii
https://www.zotero.org/google-docs/?SJSeRS
https://www.zotero.org/google-docs/?qFJZ6A
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The goals of this dissertation

Macrodiversity

This dissertation is primarily about estimating population diversity across different

scales. In the macro-scale, the species wide diversity of S. aureus and the number of

clonal lineages is unknown. Due to the potentially varying gene content across

lineages, identifying differences in pangenome content within and between lineages

can serve as markers for S. aureus subspeciation. To do this, a large-scale pangenomic

study integrating all publicly available S. aureus sequences with uniform processing is

required. In Chapter II, I used 83,000 publicly available genome sequences of S. aureus

to build a species-wide pangenome, the largest S. aureus pangenome to date. I outline

workflows for efficient processing of large datasets and explore the genetic makeup of

diverse S. aureus lineages to understand how different combinations of genes can form

different lineages. Such large diverse datasets can be used for examining evolution of

specific, clinically relevant genes on a species wide scale.

For example, the agr operon, a key virulence determinant in S. aureus, is frequently

lost in chronic infection scenarios. It is hypothesised that this loss of agr may provide

increased fitness within a specific niche but in turn leads to lack of long-term

transmission. However, the true prevalence of these agr mutations was unknown. In

Chapter III, I analysed the allelic diversity of the S. aureus agr Quorum Sensing operon

and found that more than 5% of strains in the public database had

nonfunctional agr systems. I also provided new insights into the evolution of these

genetic mutations in the agr system. In the process, I developed computational tools

to aid in rapid analysis of allelic diversity of specific genes across large datasets.
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Microdiversity

In contrast to macro-scale diversity on a species-wide scale, microdiversity within

small, homogeneous populations pose a different challenge. The most common

approach to sampling microbial populations within an infected or colonised host is to

sequence genomes from a single colony. Here, clinically relevant genes or mutations

can go undetected if they are harboured by minority subpopulations not represented

in one colony. Alternative strategies are to sequence multiple single colonies, or

perform metagenomic sequencing - pooling and sequencing the total population. A

direct comparison between single isolate and pooled population sequences can help

devise optimal sampling strategies for clinical and within-host diversity studies. In

Chapter IV, I attempt to answer the question of how many colonies obtained from a

single patient is enough to obtain an accurate picture of the total population diversity

within the patient while keeping in mind time and labour costs. I compared genomic

diversity between pure colonies and pooled populations of S. aureus obtained from

skin swabs and to evaluate sampling strategies for clinical and within-host studies.

Capturing total population diversity is also important during polymicrobial infection

scenarios. Different strains of S. aureus and their interactions with different strains of

a co-infecting species can lead to different outcomes. One of the most frequent

co-infections involve S. aureus and P. aeruginosa in the Cystic Fibrosis lung. In Chapter

V, I used co-culture data from diverse S. aureus and P. aeruginosa strains sampled

from CF patients to assess outcomes of competition and coexistence.



20

Finally, in Chapter VI, I summarise my contributions to the field while also discussing

potential future work that can further our understanding of S. aureus evolution and

virulence regulation.

My main goal for this dissertation was to answer four main questions – 1) How do we

capture the complete species-wide diversity of an organism? 2) How do we capture

complete allelic diversity of specific genes? 3) How do we capture maximum diversity

in highly homogeneous environments? and 4) How does this microdiversity change

properties of the species in clinical environments?

S. aureus is both a model system to answer these questions and an important pathogen

where we can potentially translate what is learned into better treatments. The overall

goal of this work is to provide tools and resources to the broader microbial genomics

community that can aid in analysis of bacterial sequence datasets from various

sources.
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Abstract

Staphylococcus aureus is a major causative agent of both hospital and community

acquired infections in humans worldwide. Due to the high incidence of infection, S.

aureus is also one of the most sampled and sequenced pathogens today. However,

most available sequences are biassed towards the few lineages of S. aureus

associated with human infections. In this paper, we used all publicly available

genome sequences of S. aureus as of May 2021 (83,383 genomes) to evaluate the true

spectrum of diversity of the species. We outlined strategies for dereplication to

counter sampling biases as well as to decrease computational resources needed for

analyses. After significant filtration and dereplication, we reduced the dataset to

8,166 isolates of diverse S. aureus strains and constructed a pangenome. Using this

pangenome, we identified naturally occurring thresholds that separate different

subspecies of S. aureus based on core genes, which we termed “Strain groups”. We

also found conserved compositions of accessory genes unique to each strain group.

Using the fixation index, we identified accessory genes that were specific to one or

few strain groups, and also accessory genes that were agnostic of strain groups.

Understanding gene gain/loss and gene exchange between different strains of S.

aureus can provide valuable insights into the past evolutionary history as well as

future subspeciation of S. aureus.
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Importance

We analysed the genetic diversity of Staphylococcus aureus, a globally prevalent

bacteria that causes infections in humans. We started with a publicly available

dataset of 83,383 genome sequences and rationally reduced it to 8,166 genomes by

removing duplicates while still maintaining diversity. We constructed a pangenome

with the reduced dataset, i.e., a union of all genes found in a population, and used

this to outline relationships between the core (genes present in all or most

members of the population) and the accessory (genes present only in some

members) genome. This dataset captures all the diversity of S. aureus, making it an

excellent resource for understanding genetic diversity and genome evolution of

pathogens. Additionally, this study outlines strategies for processing large genomic

datasets which will also benefit the greater microbial genomics community.
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Introduction

The first pangenome constructed by Tettelin et al was of Streptococcus agalactiae

using 8 genomes, and showed that only 80% of a given genome was shared by all

isolates (1). This was one of the first studies to demonstrate that a significant

amount of the total genomic content of a bacterial species cannot necessarily be

represented by a single, or even 8 genomes. The next natural question is how many

genome sequences are required to get all possible genes for a given species?

Tettelin et al also hypothesised that the number of genomes required to discover all

possible genes in S. agalactiae is non-existent. In other words - the pangenome is

open, the more genomes that are added, the more genes will be discovered.

However, we know that this cannot be true as the number of bacterial cells and

genes are finite. Therefore, the terms “open” and “closed” pangenomes merely

indicate the outer bounds of the sampled diversity.

The total gene content of a given species may be shaped by either selective

pressures or random drift (2). While the core genome may be stable, the accessory

genes are readily exchangeable and/or highly evolvable, leading to a theoretically

infinite pangenome many times the size of the number of genes in a single genome

(3,4). However, as stated earlier, this cannot be true. With the massive increase in

publicly available microbial genome sequence data over the past decade and a half,

a species pangenome can be now estimated with 100s to 1000s of genomes (5–8).

This magnitude of data allows us to move towards closing the pangenome for

several species, provided adequate diverse sampling of the species has been

performed. The challenge with using publicly available genomes as the starting

https://www.zotero.org/google-docs/?aPjB7Z
https://www.zotero.org/google-docs/?UZfk02
https://www.zotero.org/google-docs/?OT8Kkc
https://www.zotero.org/google-docs/?ajAQ76


34

dataset is that there can be several steps of manual curation and clean-up before

the data are usable. Taxonomic misidentifications, contamination, data

redundancy and sampling biases are the major contributors. If these hurdles are

overcome, the collection of all publicly available genomes of a given species

(post-quality filtering) would be the best resource to capture all the (sequenced)

genetic diversity.

S. aureus is a ubiquitous nosocomial pathogen responsible for more than 100,000

bloodstream infections in 2017 in the US alone (9). Several pangenome studies with

S. aureus genomes have been performed using a range of diverse datasets for

epidemiological investigations (8,10–14), vaccine candidate discovery (15,16), and

evolutionary phylogenomics (5,17–19). The analysis methods used by the above

mentioned studies are variable, leading to a prediction of 4000 - 21000 gene

families in the S. aureus pangenome, with up to approximately 60 sequence types

(ST) and 40 clonal complexes (CC). This large variation in the total number of gene

families is due to a combination of the diversity of the dataset as well as the

pangenome estimation tool used (Tools that split paralogs by default, e.g. ROARY,

show larger numbers of gene families (20)). S. aureus lineages are discontinuous,

with large genomic gaps separating the different CCs possibly due to selective

barriers for genetic exchange (21). The standard system of Multi-locus Sequence

typing (MLST), though useful for rapid strain typing, is outperformed by

whole-genome based methods for lineage assignment (22,23).

Current literature on S. aureus speciation suggests that the species is shaped by

large recombination events forming CCs, selective genetic barriers between CCs

https://www.zotero.org/google-docs/?PIXnaT
https://www.zotero.org/google-docs/?oR77XF
https://www.zotero.org/google-docs/?ejuNl3
https://www.zotero.org/google-docs/?V5S8Ju
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https://www.zotero.org/google-docs/?NmL0Qr
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preventing exchange, and long periods of evolution within CCs (21,24). Both large

recombination events and long-term clonal evolution manifest as long branches on

phylogenetic trees. Therefore, approaches beyond phylogenetics alone may be

required to provide a complete picture of the relationship between lineages.

The complete range of diversity and the number of lineages of S. aureus was not

known at the start of the study. How many lineages are there and can they be

distinguished by specific genetic markers? To answer this question, a large-scale

pangenomic study integrating all publicly available S. aureus sequences with

uniform processing is required.

In this study, we used publicly available genomes of the ubiquitous pathogen S.

aureus to construct the most complete pangenome to date. We processed ~83,000

genome sequences of S. aureus using the standardised comprehensive microbial

genome analysis pipeline, Bactopia to acquire consistently assembled and

annotated genomes (25). We filtered this set to remove low quality, misidentified,

and contaminated sequences and then dereplicated by removing

identical/near-identical genomes, leaving us with a final set of 8,166 genomes that

still represents all the diversity found in the initial dataset. We then used the final

set to build a species-wide pangenome.

This pangenome was then used to identify a natural threshold to subdivide the S.

aureus species into subspecies akin to conventional clonal complex assignments but

with higher resolution - termed “Strain groups”. By comparing the core (> 95% of

population) and accessory genome ( < 95%), we identified that the accessory

genome composition within a strain group was conserved for the abundant,

https://www.zotero.org/google-docs/?jKO2lC
https://www.zotero.org/google-docs/?cSfS4v
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established clones of S. aureus. In addition, we also found a cluster of different

strain groups having similar accessory genome content, suggesting active gene

exchange between these strain groups. Moreover, we also found a subset of

accessory genes specific to certain strain groups as well as a subset that is

randomly present throughout the population. We believe this study has laid the

foundation for several upcoming projects uncovering genome evolution and

subspeciation in S. aureus. This study is not only a resource for the S. aureus

community, but we also believe it can also be a reference for future large-scale

pangenome studies incorporating tens of thousands of sequences.
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Results

Filtering

83,383 genomes were processed by the Bactopia pipeline and based on read and

assembly quality, were divided into four ranks - Gold, Silver, Bronze and Exclude.

Only Samples falling in ‘Gold’ or ‘Silver’ ranks were considered for further

analysis. Samples flagged by Bactopia and/or CheckM as non-S. aureus or as having

non-S.aureus reads were then removed, followed by samples that appear to be

intraspecies mixtures based on minor-allele frequency (Fig 1).

Fig 1: Samples with high average minor allele frequency (MAF), low bactopia quality or
high number of variants were filtered out.

The x-axis shows the total number of variants when compared with the Bactopia
auto-chosen reference, and the y-axis shows the average minor allele frequency. Each dot
is one of 83,383 genomes. Red dots are samples ranked ‘Bronze’ or ‘Exclude’ by Bactopia
and were discarded. Samples in the top quadrant (Average MAF > 0.05) were considered to
be contaminated and were discarded. Samples in the right quadrant ( > 100,000 total
variants) were considered non-S. aureus and were discarded. The remaining samples in the
bottom left quadrant (< 0.05 Average MAF and < 100,000 total variants) were used for
further analysis.

Based on the above plot - the non-S. aureus samples are the points with > 100,000

variant positions (x axis) when compared to a S. aureus reference sequence (
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variation >5% of the genome). Samples with average minor allele frequency > 0.05

(y axis) were considered intraspecies mixtures. Red points are samples ranked

‘Bronze’ or ‘Exclude’. Leaving only black points in the bottom left quadrant. This

filtered 83,383 samples down to 56,771.

Clustering

This set of 56,771 samples were grouped into Sequence Types (ST) based on

PubMLST defined groupings and all-vs-all pairwise mash distances were

calculated for each ST. Samples with unassigned STs were grouped together. Based

on a pilot study using a dataset of 380 genomes defined by our previous Staphopia

V1 study as a ‘Non-redundant diversity’ set (NRD), we identified that a mash

distance of 0.0005 corresponds to approximately 50 SNPs (26,27). We also further

explained the rationale in a blog post (28) In other words, samples < ~50 SNPs

apart were clustered together. A representative was chosen from each cluster at

random. This collapsed 56,771 into 7,654 genomes.

https://www.zotero.org/google-docs/?z9232j
https://emergent.emory.edu/blog/posts/derep_blog/
https://www.zotero.org/google-docs/?BleGAV
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Fig 2: Sankey diagram showing the fate of 83,383 S. aureus genomes after processing and
filtering.

As the initial set of 83,383 genomes only comprised publicly available data from

short-read sequencing, we also added to this set complete S. aureus genomes that

were assembled using long-read/hybrid methods. We added 1,476 complete S.

aureus assemblies from NCBI to our dereplicated set of 7,654 genomes and redid

the same mash-distance based clustering protocol. This led to our final set of 8,166

genomes (Fig 2). For the purposes of this document we will use ‘the final dataset’

to refer to our dereplicated set of 8,166 genomes.
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Pangenome construction

Fig 3: Description of the pangenome of S. aureus.
Histograms depicting the (A) frequency distribution of genes in our dataset, (B) the average
dosage of each gene per genome, (C) the average length distribution of each gene, and (D)
the distribution of the number of genes per genome.

We used Bakta to annotate the final dataset and ran PIRATE to build the

pangenome. According to some basic metrics from PIRATE, 10,714 unique genes

(including alleles) were found, out of which 20.2% (2054 genes) were found in >

95% of the dataset. These 2,054 genes were considered to be core genes. 7.3% (741

genes) were found at intermediate frequencies (more than 10% of the dataset but

less than 95%) and these were considered intermediate genes. 72.5% (7,379 genes)

were found in less than 10% of the dataset and these were considered rare/unique

genes. The intermediate genes and rare genes collectively were considered the

accessory genome. Most genes (90%) were in single copy and the average gene

length was 733bp. The average number of genes per genome was 2,370 (Fig 3).
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Lineage assignment

The current method for S. aureus lineage assignment uses Multi-locus sequence

typing (MLST) to assign STs and STs that are identical by 5 alleles or more are

considered to be in the same Clonal Complex (CC). Currently, according to

PubMLST, 10 CCs of S. aureus are defined. In our initial filtered set of 56,771

genomes, 20% of samples belonged to the group of unassigned CCs.

While major prominent CCs have been defined, we still do not know the true

spectrum of diversity in S. aureus - how many CCs are there? Identification of

emerging/minority CCs can help establish relatedness and gene flow between CCs.

To begin to answer these questions, we performed core genome alignment using

PIRATE for the final dataset and calculated all vs all pairwise SNP distances using

snp-dist (29).

Fig 4: Natural boundaries in core genome SNP distances can be used to categorise strains.
For our dataset of 8166 isolates, all-vs-all pairwise SNP distances were calculated and
plotted as a histogram. Sample pairs less than 750 core genome SNPs apart were grouped
into the same cluster or “strain groups” (Sample pairs to the left of the red line).

https://www.zotero.org/google-docs/?Dsnu1l
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The above histogram shows that the strains fall into 3 natural groups based on SNP

distances with prominent valleys in-between each group. This suggests the first

group with the least SNP distances (< 750, red line) are likely comparisons of

strains from the same lineage. The second and third group may correspond to

strains from different but related lineages, and completely unrelated lineages

respectively. Moreover, we found that strain pairs that belong to the same CC

according to the current definition ( >= 5/7 MLST allele match) have a core SNP

distance > 750, causing them to bleed into the second group (Fig S1). This suggests

that the natural grouping of S. aureus strains is better defined by core gene SNPs

compared to MLST alleles alone. From hereon, we used the 750 core gene SNP

threshold to assign strain groups to the final dataset by clustering strains < 750

core gene SNPs apart (Fig 4). This led to 136 clusters, these clusters will be referred

to as ‘strain groups’. These strain groups were also assigned to the total set of

56,771 samples prior to dereplication based on the assigned strain group of each

dereplicated cluster.

Gene discovery and lineage discovery

We wanted to estimate the rate of discovery of new genes and new lineages or

strain-groups using our pangenome compared to a random set of S. aureus

genomes obtained from NCBI. This is primarily to answer the question - is a

dereplicated dataset better for sampling diversity than a random dataset? To

answer this, we calculated the total number of gene families discovered with an

increasing number of genomes sampled (One genome to one thousand genomes).

We performed this calculation for a random set of 1000 genomes from our
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dereplicated set and a random set of 1,000 genomes from the total set of 56,771

genomes before dereplication. We then repeated this subsampling five times.

Similarly, We also calculated the total number of strain groups discovered with an

increasing number of genomes (Fig 5).

Fig 5: The dereplicated dataset provides an increased number of genes and an increased
number of strain groups with the same number of genomes sampled compared to the total

dataset.
The x-axis depicts the number of genomes sampled and the y-axis depicts (A) the total
number of genes as described by PIRATE or, (B) the total number of strain groups as
described in Fig 4. Red dots correspond to the dereplicated set and blue dots correspond to
the non-dereplicated set. The light coloured dots represent the number of genes or number
of strain groups for each iteration of the random sampling. The dark coloured dots
represent the median obtained from all five iterations.

We found that although the rate of gene or strain-group discovery is similar for the

first ~100 genomes, the dereplicated dataset discovered an average of 1,031 new

genes (Fig 5A) and 20 new strain groups (Fig 5B) more than the non-dereplicated

set after 1000 genomes. This suggests that a random dataset can sample common

genes and lineages of S. aureus but our dereplicated dataset has a better sampling of

minority/rare lineages. This highlights the importance of a diverse initial dataset
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for achieving pangenome completeness - a random set from ~56k genomes has

less total diversity than a random set from our dereplicated ~8k genomes.

Relationship between core and accessory genome

We constructed a Maximum Likelihood phylogeny using IQ-TREE with the core

genome alignment obtained from PIRATE. We then rooted the tree at an ST93

strain and coloured the tips based on SNP groups as described in Raghuram et al

(27) (Fig 6A).

Another method to observe natural strain groupings would be to visualise accessory

gene composition. To perform this, we created a gene presence-absence matrix for

the final dataset comprising only accessory genes (present in > 10% but < 95% of

samples) and used tSNE for dimensionality reduction and plotted the resulting

coordinates. We then coloured each point based on the core-gene strain groups

after the fact (Fig 6B).

Fig 6: Prominent strain groups from their own clades on a core genome phylogeny and
distinct clusters based on their accessory genome composition.

(A) Maximum likelihood phylogeny (GTR+FO model, 1000 ultrafast bootstrap replicates) of

https://www.zotero.org/google-docs/?JpWZd6
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8,166 S. aureus strains with each tip coloured by the designated strain group. Scale bar
indicates the number of substitutions per site. The conventional CC mapping is stated to the
right of the corresponding clades. (B) tSNE plot with each dot depicting one of the 8,166
genomes and its position in 2D space representing the accessory genome composition. Dots
are coloured based on their strain group designations and the corresponding conventional
CC assignment is also stated next to each strain group cluster.

Based on the above figure (Fig 6), we see that the conventional CC groupings and

accessory gene composition mostly overlap - suggesting that accessory gene

composition is unique to each CC at least for the major defined CCs. Our strain

group assignment is also in concordance with the accessory gene clusters as well as

the conventional CCs. However, our strain groups have resolved previously

unassigned CCs into their own clusters, which is also in concordance with their

accessory genome composition.

The large cluster of mixed SNP groups in the middle of the tSNE plot (Fig 6B)

corresponds to two major distinct clades on the tree (Fig 6A). Suggesting gene

exchange between these two clades has led to a distinct core genome but a similar

accessory genome, making these strains an interesting case for studying gene

exchange between different lineages.

In addition to grouping unassigned samples, the current method of CC assignment

appears to lead to some false groupings. For example, CC1 likely needs to be split

into multiple CCs based on both core gene and accessory gene groupings (Fig S1).

This further demonstrates the need for a better system of assigning lineages. We

believe our SNP groups provide better resolution for the analysis of population

structure.
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Fig S1: Pairwise core-genome SNP distance histogram (LEFT) and tSNE based on
accessory genome composition (RIGHT) suggest CC1 S. aureus strains defined by MLST

are likely multiple strain groups.

Lineage specific genes and fixation index

Next, we wanted to understand the prevalence of different intermediate genes

across different strain groups. This would help us identify lineage specific markers

if any. FST or fixation index is a measure of genetic segregation of a trait between

different populations (30). In this context, the populations refer to our strain

groups and traits refer to presence/absence of specific genes. In addition to

identifying lineage or strain groups specific markers, we also wanted to know if

markers with specific genomic context (Chromosomal, plasmid or phage

associated) are more or less likely to be fixed in a strain group. We used geNomad to

predict mobile genetic elements (MGEs) and calculated FST for each gene (31). FST of

0 indicates a gene that displays no genetic segregation, i.e it is indiscriminately

found across members of different populations. In contrast, FST of 1 indicates

perfect genetic segregation, i.e it is only found in specific populations.

https://www.zotero.org/google-docs/?2wpV6t
https://www.zotero.org/google-docs/?jNg6pm
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Fig S2: Intermediate FST genes show bimodal distribution of either high or low FST.
Ridgeline plot depicting FST distribution for Core (> 95%), intermediate (10 - 95%) and rare
(<5%) genes. Height of plot normalised for total number of genes in each group.

Upon examining the distribution of FST across core, intermediate, and rare genes we

found that as expected, the core genes have low (near 0) FST as by definition they

are found in all members of the population and are not strain group specific (Fig

S2).

Fig 7: Mobile genetic elements were not associated with high or low FST in intermediate
genes.

(A) Dot plot showing percentage prevalence of only intermediate genes (> 10%, < 95%) on
the x-axis and the corresponding FST on the y-axis. Histograms along the x and y axis show
density of dots along each axis. (B) Violin plot showing distribution of FST for each geNomad
prediction category. There is no significant difference in the FST across the three different
categories (Kruskal Wallis test, p > 0.01). Colour of dots show geNomad prediction
(Chromosomal, plasmid, phage).
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Similarly, we also found rare genes to have low FST. This is likely due to the fact that

since they are present in very few members, they are not fixed in any specific strain

group. Interestingly, the FST distribution across intermediate genes showed a

distinct bimodal distribution compared to the core and rare genes. This suggests

some intermediate genes are strain-group specific while others are not (Fig S2, Fig

7A). We also observed no significant difference in the FST distribution between

Chromosomal, plasmid and phage associated genes (Kruskal Wallis p > 0.01) (Fig

7B). Genes with geNomad prediction probability < 0.5 were not considered for this

analysis. Collectively, these results show that specific chromosomal and MGE

present in intermediate frequencies in the populations are strain-group specific

and can be used as markers to differentiate between S. aureus lineages. The FST can

also be used to examine patterns of distribution of specific virulence factors across

the S. aureus species-wide phylogeny. We selected a few well known S. aureus toxins

- Panton-Valentine Leukocidin (PVL), Toxic Shock Syndrome toxin 1 (TSST), and

different types of Staphylococcal Enterotoxins (SEA, SEB, SEG, SEO). PVL comprises

two phage-encoded proteins, LukF-PV and LukS-PV, both acting synergistically to

form pores in host-cell membranes (32). TSST and SEs are superantigens, highly

potent toxins that can elicit severe inflammatory responses and other

immunomodulatory effects (33). Then, We mapped the presence/absence of these

toxins and their corresponding FST scores to our core genome phylogeny (Fig 9)

https://www.zotero.org/google-docs/?0WelFf
https://www.zotero.org/google-docs/?zJdG85
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Fig 8: Strain-group specificity and co-occurrence of specific Staphylococcal toxins.
Core genome phylogeny is the same as described in Fig 6A. Heatmap on right shows
presence absence and FST of specific Staphylococcal toxins - Panton-Valentine Leukocidin
(LukF and LukS), Toxic Shock Syndrome Toxin (TSST), and Staphylococcal Enterotoxins
type A, B, G, O (SEA, SEB, SEG, SEO).

Fig S3: There are no agr group specific intermediate genes aside from agrD.
Dot plot showing percentage prevalence of only intermediate genes (> 10%, < 95%) on the
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x-axis and the corresponding FST on the y-axis. FST scores calculated for agr type-based
population segregation. The three dots > 0.75 FST correspond to the agrD of three out of four
agr groups which are known to be lineage specific (27). The agrD of the fourth agr group is
absent in this plot as it is present in < 10% of the population.

We found that PVL (LukF and LukS), TSST, SEA and SEB were not lineage specific

and had low FST (~ 0.25). Interestingly, the enterotoxins SEG and SEO, not only had

high FST (> 0.9) suggesting they are strain-group specific, they also appeared to

largely co-occur. This result demonstrates that there are patterns of fixation and

co-occurrence of toxins across specific lineages of S. aureus and understanding

these patterns can provide insight into their emergence and pathogenic potential.

https://www.zotero.org/google-docs/?THvIAL
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Discussion

Why our pangenome is “not another pangenome”

In this study, we used the publicly available collection of over 80,000 genomes

labelled as S. aureus and reduced that dataset to approximately 1/10th the size

(~8000) while still maintaining the genetic diversity. Here, we outlined an

approach for uniform data processing and filtering steps to identify possible

misidentifications and contaminated genomes. Out of 83,383 input short-read

genome sequences, we discovered that 15,363 genomes (18%) were either not S.

aureus or contained detectable amounts of non-S. aureus reads (Fig 1, Fig 2). This

emphasises the importance of appropriate cleanup steps while using publicly

available datasets. Moreover, using minor allele frequencies, we also discovered

530 genomes (0.6%) having intra-species mixtures, suggesting the sequencing

source may not have been a pure single colony (See Chapter IV for more details).

Here, we de-duplicated the complete public dataset of all S. aureus genomes,

leading to the largest S. aureus pangenome constructed to date that still represents

the total sequenced diversity. Dereplication also significantly reduced data storage

and computation time of downstream analysis steps while also reducing artifactual

results from unequal sampling. The workflow outlined here could be used for any

bacterial species. We found that our dereplicated set provided faster discovery of

new genes and new strain groups compared to a random non-dereplicated set,

further highlighting the importance of dereplication (Fig 5).

What did we learn about S. aureus?

Currently, the most common method to assign lineages/sublineages in S. aureus is
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to use MLST-based groupings. MLST assignment, despite being based on alleles of

only seven core genes, still provides an accurate picture of the species structure.

However, as highlighted here, there are cases where MLST alone is not sufficient to

resolve differences between lineages (eg: CC1 - vastly different STs grouped into

the same CCs). Though alternate MLST schema as well as core-genome and

whole-genome MLST schema have been developed for S. aureus (34–36), they are

still allele based methods and do not take into account other types of genomic

variation (23). In this study, we used natural grouping of individual genomes based

on core gene SNP distances to assign lineages. As has been documented before, S.

aureus appears to be split into two broad clades, with CC groupings within each

clade. Upon observing the pairwise core-gene SNP distances across our

dereplicated dataset, we found three distinct distributions - within lineage (or

within CC), between-lineage in the same clade, and between-clade, with clear

valleys between each distribution. These valleys serve as naturally occurring

thresholds which we can use to delineate the species structure of S. aureus (Fig 4).

Our strain group assignment was also in concordance with the conventional CC

assignment for the prominent CCs (Fig 6A). In addition, we was also able to resolve

spurious CC assignments using our strain group SNP threshold (Fig S1)

It is hypothesised that the formation of S. aureus lineages was driven by large

recombination and rearrangement events followed by clonal expansion, giving rise

to the distinct lineages we see today. This process of sub-speciation may be driven

by biological barriers preventing between-CC homogenization. These barriers

include but are not limited to restriction modification systems, phage host range,

https://www.zotero.org/google-docs/?GxHwQd
https://www.zotero.org/google-docs/?uj7QEI
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and CRISPR interference (24,37–41). Upon observing core and accessory genome

content, we observed that the accessory genome composition was largely unique to

the core genome of specific lineages. In addition, previous studies show that the

evolutionary history of S. aureus was also shaped by the agr quorum sensing

operon, predating the CC divergence (27,42,43). Each CC is almost exclusively

linked to one out of the four agr types with no agr type exchange between CCs (See

Chapter III for more details). This suggests that the CC genetic background is a

barrier to agr exchange. This is corroborated by the fact that we did not see gene

fixation patterns specific to agr groups independent of the phylogeny aside from

agrD (Fig S3).

From examining the strain-group specific fixation patterns of intermediate

frequency accessory genes, we found that 184 out of 741 intermediate frequency

genes (25%) had an FST > 0.9 (Fig 7A). This suggests that most intermediate genes

are not lineage-specific, which is in stark contrast to E. coli according to a recent

study where they found 84% of intermediate genes to be lineage specific (44). We

also found that though most intermediate genes were predicted to be phage related,

we saw no significant association between FST and MGEs (Fig 7B).

A key observation was that of a bimodal FST distribution pattern for our

intermediate genes (Fig S2), with 558 out of 741 (75%) of genes having FST either >

0.75 or < 0.25, meaning 75% of all intermediate genes are either nearly fixed in

specific lineages or are completely randomly distributed. The intermediate genes

with low FST are maintained in the population yet have high turn over, i.e they are

gained and lost repeatedly (Fig 8 - LukFS, TSST, SEA, SEB). In contrast to rare

https://www.zotero.org/google-docs/?TCVemp
https://www.zotero.org/google-docs/?STCek5
https://www.zotero.org/google-docs/?qTcal2
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genes that also have high turnover but are not maintained, i.e they are gained, lost

and almost never gained again. Whether or not pangenomes are adaptive is up for

debate (2,45–47). However, there is evidence to suggest that the rate of deletion of

genes is greater than the rate of acquisition (48,49), and that the acquisition and

maintenance of new genes is at least slightly beneficial (50–52). Collectively, our

results are consistent with the hypothesis that rare genes are acquired neutrally

while intermediate genes are adaptive to specific micro-niches, hence their

maintainence. Movement between different niches can lead to further gain/loss of

genetic material (53).

The next natural question is what does this mean for S. aureus strain formation? We

did observe the prominent strain groups having distinct accessory genome

compositions as well as several minority strain groups across the core-genome

phylogeny with overlapping accessory genome compositions (Fig 6B). This

suggests that these lineages are currently undergoing active recombination events,

presumably exchanging intermediate genes, and may be in the process of lineage

formation. Understanding these gene gain/loss and fixation events would serve as a

natural laboratory for observing speciation in S. aureus. Overall, these results show

that the core genome makes the species, and the accessory genome makes the

strain.

What can we do further?

Understanding the species-wide mutational landscape of specific genes along with

their associated lineages can provide important insights into past evolutionary

history as well as predict future patterns (28). Our pangenome can be used to

https://www.zotero.org/google-docs/?qaPjEp
https://www.zotero.org/google-docs/?NyT4AT
https://www.zotero.org/google-docs/?nQTfEY
https://www.zotero.org/google-docs/?9TKmTR
https://www.zotero.org/google-docs/?nw6WZC
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examine the lineage specificity and mutational signatures of specific key genes

involved in virulence (PVL, agr), antibiotic resistance (vraS), or genes having

known associations with diseases such as bacteremia (sarZ (54), tcaA (55)). Apart

from individual genes/operons, this pangenome is also a resource for analysis of

plasmids, phages, other mobile genetic elements, pseudogenization patterns, and

gene turnover rates in S. aureus.

https://www.zotero.org/google-docs/?G64I16
https://www.zotero.org/google-docs/?MMDQFI
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Methods

Genome collection and processing by Bactopia

Bactopia v1.7.0 was used to download and process all genomes used in this dataset.

Bactopia is a software pipeline for comprehensive analysis of bacterial genomes

based on Nextflow (25,56). The command bactopia search "Staphylococcus

aureus" --prefix saureus was used to download all S. aureus short-read sequences

available on Sequence Read Archive (SRA) as of May 2021. Then, each genome was

processed using a custom nextflow wrapper script (57). In short, Bactopia used

SKESA to assemble genomes, Bakta to annotate and Snippy for variant calling

(58,59). Assembly quality was evaluated using QUAST and CheckM (60,61).

Filtering low quality samples:

Only samples having greater than 50× coverage, mean per-read quality greater

than 20, mean read length greater than 75 bp, and an assembly with less than 200

contigs were considered for the analysis (corresponding to ‘Gold’ and ‘Silver’ ranks

as designated by Bactopia. Samples that were detected as not S. aureus according to

kmer based identification or CheckM were then removed. Coverage for all samples

were capped at 100x.

Filtering mixed strain samples:

For every sample, bactopia performs variant calling using Snippy against an

auto-chosen reference sequence based on the smallest MASH distance to a

complete S. aureus genome in RefSeq (59,62). For each variant identified, the allele

frequencies were calculated from the bam files using bcftools mpileup (63).

Samples having average allele frequency > 0.05 were considered mixed strains and

https://www.zotero.org/google-docs/?WQcqJ6
https://www.zotero.org/google-docs/?dTpseH
https://www.zotero.org/google-docs/?Eq35vZ
https://www.zotero.org/google-docs/?GnC7T6
https://www.zotero.org/google-docs/?6uBq5N
https://www.zotero.org/google-docs/?xoGHQW
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therefore removed. This process reduced 83,383 samples to 56,771.

Clustering and dereplication:

Samples were grouped by their MLST types as assigned by Bactopia and for each ST,

an all vs all MASH distance estimation was run. Samples with a MASH distance <

0.0005 were clustered and a random representative was chosen. Samples with

unknown STs were grouped together and treated the same. This reduced the

filtered set of 56,771 to a set of 7,654. Since Bactopia collected and processed only

short read S. aureus data, we added 1476 complete S. aureus genome sequences to

this set and performed the MASH distance based clustering again. Cluster

representatives were again chosen at random, however, where possible, we

replaced the cluster representative with a randomly chosen complete genome. The

resulting final dereplicated set comprised 8166 genomes and was used for

pangenome construction.

Pangenome analysis:

Bakta 1.5.1 (64) with default parameters was used to annotate the dereplicated set

of 8166 genomes and the resulting gff files were used for pangenome construction

with PIRATE 1.0.5 (65). PIRATE was run using default parameters with the

additional flags -a to obtain core genome alignments and -k “--diamond” to use

DIAMOND for the amino-acid sequence comparisons (66). snp-dists v0.7.0 was

run on the PIRATE core genome alignment to obtain all-vs-all pairwise SNP

distances (29). The PIRATE core genome alignment was also used to construct a

core genome phylogeny with IQ-TREE 1.6.12 (GTR+FO model, 1000 ultrafast

bootstrap replicates) and was visualised using the R package ggtree (67,68).

https://www.zotero.org/google-docs/?ZykuAG
https://www.zotero.org/google-docs/?Y1HLY3
https://www.zotero.org/google-docs/?LkjUrn
https://www.zotero.org/google-docs/?mR5YVf
https://www.zotero.org/google-docs/?1621T4
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geNomad v1.5 was used to predict mobile genetic elements (31). AgrVATE v1.0.5 was

used to assign agr groups (27).

Statistical analysis and data visualisation:

All statistics and tSNE were performed in R using packages stats and rstatix

(69,70). All plots were visualised using R package ggplot2 (71). Other visualisations

were performed using draw.io and Sakneymatic (72,73).

https://www.zotero.org/google-docs/?ykwDhT
https://www.zotero.org/google-docs/?Po69RR
https://www.zotero.org/google-docs/?1gAYeD
https://www.zotero.org/google-docs/?dOU8kx
https://www.zotero.org/google-docs/?AR3OT9
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Abstract

Staphylococcus aureus is a prominent nosocomial pathogen that causes several

life-threatening diseases such as pneumonia and bacteremia. S. aureus modulates

expression of its arsenal of virulence factors through sensing and integrating

responses to environmental signals. The agr (accessory gene regulator) quorum

sensing (QS) system is a major regulator of virulence phenotypes in S. aureus. There

are four agr specificity groups each with a different autoinducer peptide sequence

(encoded by the agrD gene). Though agr is critical for expression of many toxins,

paradoxically, S. aureus strains often have non-functional agr activity due to

loss-of-function mutations in the four-gene agr operon. To understand patterns in

agr variability across S. aureus, we undertook a species-wide genomic investigation.

We developed a software tool (AgrVATE;

https://github.com/VishnuRaghuram94/AgrVATE) for typing and detecting

frameshift mutations in the agr operon. In an analysis of over 40,000 S. aureus

genomes, we showed close association between agr type and S. aureus clonal complex.

We also found strong linkage between agrBDC alleles (encoding the peptidase, the

autoinducing peptide itself, and the peptide sensor respectively) but not agrA

(encoding the response regulator). More than five percent of genomes were found to

have frameshift mutations in the agr operon. While 52% of these frameshifts occur

only once in the entire species, we observed cases where the recurring mutations

evolve convergently across different clonal lineages with no evidence of long-term

phylogenetic transmission, suggesting that strains with agr frameshifts were

evolutionarily short lived. Overall, genomic analysis of agr operon suggests evolution
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through multiple processes with functional consequences that are not fully

understood.

Importance

Staphylococcus aureus is a globally pervasive pathogen that produces a plethora of toxic

molecules that can harm host immune cells. Production of these toxins is mainly

controlled by an active agr quorum sensing system, which senses and responds to

bacterial cell density. However, there are many reports of S. aureus strains with genetic

changes leading to impaired agr activity, often found during chronic bloodstream

infections, and may be associated with increased disease severity. We developed an

open-source software called AgrVATE to type agr systems and identify mutations. We

used AgrVATE for a species-wide genomic survey of S. aureus, finding that more than

5 % of strains in the public database had non-functional agr systems. We also provide

new insights into the evolution of these genetic mutations in the agr system. Overall,

this study contributes to our understanding of a common but relatively understudied

means of virulence regulation in S. aureus.
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Introduction

Staphylococcus aureus is a ubiquitous nosocomial pathogen that continues to plague

healthcare settings and threaten public health. The CDC reported that 119,247 S. aureus

bloodstream infections and 19,832 deaths occurred in the US in 2017 (1). S. aureus

causes a wide range of diseases such as pneumonia, osteomyelitis, endocarditis and

skin infections (2). To elicit such diverse types of infections, S. aureus must be able to

recognize environmental cues and adapt to its microenvironment (3, 4). The agr

(accessory gene regulator) quorum sensing (QS) system is a key switch that links

environmental sensing and virulence in S. aureus (5). The agr operon comprises two

divergent promoters, P2 and P3, each driving the four genes essential for QS

(agrBDCA) and a small RNA (RNAiii), respectively (Fig 1A) (6, 7). AgrD is a precursor

protein that is processed by the membrane-bound peptidase AgrB, into the

autoinducer peptide (AIP). The secreted AIP is then recognized by a classical

two-component regulatory system – AgrC, a histidine kinase, and AgrA, a response

regulator which transcriptionally activates P2 and P3 thereby continuing the

autoinduction. S. aureus has been found to have four agr specificity groups, each with a

distinct autoinducer peptide sequence. Other Staphylococcus species have their own

specific agr autoinducer peptides (5, 8-10). Autoinduction and activation of P2 and P3

leads to S. aureus upregulating a large arsenal of extracellular toxins such as phenol

soluble modulins, haemolysins and leukotoxins. The agr system also downregulates

factors that facilitate cell-cell attachment, biofilm production and immune evasion

(11-15). Collectively, these sum to a cell-density dependent switch between adherent

and virulent modes.
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Though the agr system regulates many important pathogenesis-related functions,

many clinical isolates with impaired agr activity have been reported, which in some

conditions may lead to worse patient outcomes (16-21). Typically, agr+ strains produce

factors that are associated with increased virulence and attenuated expression of

these agr mediated virulence factors seemingly lead to reduced disease severity and

decreased host cell damage (22-24). While this appears paradoxical, there are several,

non-exclusive, speculations as to why strains may have evolved non-functional agr

systems (25). QS systems are ‘public goods’ that promote evolutionary cheating

strategies (26-29). Impaired agr activity may be related to intra/inter-species

competition between strains with different agr groups, which tend to suppress each

other with no obvious effect on colonisation ability (30-34). Defective agr function

may provide pleiotropically selected phenotypes, such as decreased susceptibility to

vancomycin (35, 36). agr- strains may have traded their ability to produce

energetically expensive virulence factors but may be limited in their ability to compete

with the host immune system (37-39). This attenuated toxicity appears to be

inconsequential or sometimes even beneficial in chronic diseases such as cystic

fibrosis, bacteremia and osteomyelitis, where agr- S. aureus may show increased

persistence and higher mortality rates compared to agr+ strains (20, 21, 24, 31, 40).

Phase variable agr- mutants may exist in environments that fluctuate between

selection for toxicity and persistence (41). However, reduced/lack of expression of agr

mediated virulence may be detrimental to colonisation in some other circumstances

(42).

It has been proposed that agr- strains have sacrificed long-term viability through
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successful between-host transmissions for increased adaptation to specific

environmental niches within the host (40, 43-45). However, studies to date have

typically focused on small numbers of strains in limited clinical settings. It is

important to assess whether specific patterns of variation in agr can be observed from

a genome-wide scale spanning multiple clonal lineages of S. aureus, as it is crucial for

understanding the mechanisms driving virulence regulation. The amount of publicly

available genome sequences of S. aureus has grown rapidly over the past decade (46),

offering the opportunity to examine the evolution and diversity of critical virulence

determinants in S. aureus from a species-wide standpoint.

In this study, we developed a bioinformatics pipeline for rapid identification of the agr

group from a given S. aureus genome as well as putative null mutations in the agr

operon. (https://github.com/VishnuRaghuram94/AgrVATE) and used it to analyse the

42,999 S. aureus genomes from the Staphopia database of consistently assembled and

annotated public genome sequences compiled in 2017 (46). We found that there was a

high degree of purifying selection for specific alleles of agr genes based on agr group

and clonal complex. We detected frameshift mutations in 5.7% of all analysed agr

operons, most of which were singular events. We also detected instances of identical

frameshift mutations in agr genes of unrelated strains across different clonal

complexes, suggesting that there is a mechanism promoting mutations at these

specific sites. Overall, these results highlight the highly variable nature of the agr

operon and suggest conserved mechanisms for acquiring genetic changes that may

affect agr mediated virulence regulation.

The following are definitions for the terminology we will be using consistently in this

https://github.com/VishnuRaghuram94/AgrVATE
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study: Group-1, Group-2, Group-3, and Group-4 refer to S. aureus strains that belong

to one of the four agr specificity groups. A cluster refers to a collection of an agr gene

where either the nucleotide or amino-acid sequence of the gene is 100% identical

among all sequences within that collection. A cluster representative is a random

sequence chosen to represent each cluster, whose sequence is identical to all other

sequences within that cluster. A nucleotide sequence cluster representative is referred

to as an allele. An amino acid sequence cluster representative is abbreviated to AACR.

Frameshift mutations in the coding regions of the agr operon are referred to as

“putative agr null” mutations as the true phenotype is unknown. Strains reported to

have impaired agr activity are referred to as agr- while strains with canonical agr

activity are referred to as agr+ .

Results

AgrVATE: A tool for kmer based assignment of agr groups and agr operon frameshift

detection

We designed the AgrVATE (agr Variant Assessment & Typing Engine) bioinformatic

workflow to process S. aureus genome sequences to assign agr groups and detect

frameshift mutations in the agr operon. Current methods for agr group assignment

involve traditional PCRs or alignment searches against ad hoc databases (42, 47-49).

AgrVATE was designed to be a fast, standardised workflow for assigning agr groups

that is conveniently installable through the Conda package manager (50). AgrVATE

contains a database of 4 distinct collections of kmers, where each collection

corresponds exclusively to a single agr group. This kmer database is used to perform a

BLASTn search against a given input genome to assign the agr group. The process of
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building and verifying this kmer database is outlined in the methods section. AgrVATE

then extracts the agr operon by in-silico PCR using usearch (51) and performs variant

calling using Snippy v4.6 (52) to detect putative agr null mutations such as

frameshifts and early stops. As a reference for the variant calling, the cluster

representative from the largest cluster for each agr group is used. The advantage of

in-silico PCR over global alignment methods for extracting the agr operon is that if the

agr operon contains large indels/possible novel sequences which would normally

break alignments, the operon will still be extracted as we only rely on the primers

“binding” to the up and downstream regions of the operon. AgrVATE analysis took < 4

seconds per whole genome assembly on a Linux server with 12 core CPU and 96GB

RAM. The AgrVATE workflow is outlined in Fig S1.

We ran AgrVATE on 91 S. aureus genomes that had been typed for haemolysis activity,

a phenotype that is generally associated with functional agr systems (16). These 91

genomes included clinical samples taken from cystic fibrosis patients from the Emory

Cystic Fibrosis Center (53). We found 15 genomes had putative agr null mutations, 14

of which tested negative for sheep blood haemolysis (Table S1). The one putative null

that displayed haemolysis on sheep blood agar had a frameshift mutation in the C

terminal end of agrC. The haemolysis phenotype of this strain was relatively weak

(CFBR_17 – Fig S2). We also observed 10 samples that were negative for haemolysis

despite having no frameshift mutations in the agr operon (Table S1), suggesting that

other genetic factors reduced haemolysis activity and agr frameshifts are not the sole

indicator. In patient CFBR311, AgrVATE found two different agr groups (group-1 and

group-2) from the genome sequence of the S. aureus population isolated from CF
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sputum (CFBR_EB_Sa110 – Table S1), showing that this patient is colonised by S.

aureus of heterologous agr groups. Genome sequences of 8 individual colonies

(CFBR_EB_Sa111 to CFBR_EB_Sa118 – Table S1) from this patient showed an agr

group-2 majority (6 out of 8) and an agr group-1 minority (2 out of 8), thereby

validating the AgrVATE prediction. This illustrated an advantage of using a

kmer-based approach, as AgrVATE could identify the presence of multiple agr groups.

Each agr group assignment was also scored, thereby indicating the proportions of

each agr group if more than one is present. Collectively, these findings demonstrate a

potential use-case for AgrVATE in clinical settings, where we identified CF patient

isolates having agr mutations and showed one instance where AgrVATE identified a

patient colonised by S. aureus of heterologous agr groups.
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agr type distribution in the Staphopia database

Fig 1: Distribution of agr groups across 40,890 S. aureus genomes from the Staphopia
database.

AgrVATE was used to assign the agr groups and genomes with unknown agr groups were
filtered out. (A): A schematic depiction of the agr operon showing two divergent promoters (P2
and P3) driving agrBDCA and small RNA RNAiii. (B): Frequency of each agr group in the
Staphopia database. (C): Frequency of agr groups across the major clonal complexes (CC) of S.
aureus. (D): Relative proportions of agr groups from S. aureus isolated from different body sites
in percentage.

AgrVATE identified the agr groups for 42,491 genomes out of 42,999 in the Staphopia

database, with 25,539 group-1 (60.10%), 9639 group-2 (22.68%), 6224 group-3

(14.65%) and 1,089 (2.56%) group-4 genomes (Fig 1B). Each clonal complex

contained only one agr group, except CC45 which had both group-1 and group-4 agr,

as had been reported previously (54, 55) (Fig 1C). 1,601 out of the 42,491 genomes
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showed the presence of more than one agr group (Table S1). However, all of these

genomes had the secondary agr group call on short, low coverage contigs and there

were no instances of multiple agr group calls on the same contig. This also shows that

AgrVATE can identify agr groups in fragmented genome assemblies where the agr

genes are broken across multiple contigs. These genomes were considered to be

contaminated by sequences from S. aureus of other agr groups and were not included

for further analysis (Fig S3), leaving 40,890 genomes with high confidence agr group

assignments. From the limited number of strains with the associated metadata, we

found the distribution of agr groups across blood (3,755 genomes), skin (2,602

genomes) and nasal (4,257 genomes) isolates to be similar to the overall distribution

of agr groups. Group-2 genomes (CC5) were enriched in respiratory tract isolates

(1,107 genomes) (Fig 1D, Chi-squared p < 0.01).

The remaining 508 genomes were reported to be low confidence/unknown agr group

calls by AgrVATE. We used a mash sketch (56) built from all publicly available

complete genomes of Staphylococcus species to determine if these 508 genomes were

indeed S. aureus. We found that 312 genomes did not belong to the S. aureus species and

were likely mis-annotated submissions in NCBI and therefore discarded from this

analysis. From the remaining 196 samples we found complete agr deletions (63

genomes), samples with their agr operons fragmented across low quality contigs,

leading to unreliable base calls (82 genomes), and agr group-1 operons which have

relatively low sequence identity (<96%) to a canonical S. aureus agr group-1 (51

genomes). Upon further investigation by BLASTn, we found 35 of these 51 operons

belong to S. argenteus species while the remaining 16 were S. aureus operons. The fate
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of all 42,999 genomes in the Staphopia database after processing them through

AgrVATE is outlined in Fig S3.

agr cluster recombination within clonal complexes is rare

39,174 complete agr operons were extracted by AgrVATE from 40,890 genomes in the

Staphopia database and clustered with 100% nucleotide identity, resulting in a total of

5,143 unique agr operon sequences. The remaining 1,716 genomes had their agr

operon sequences fragmented across multiple contigs and therefore were not included

for further analyses. 97% of all extracted operons were of length 3481 to 3484bp.

While a single CC could harbour multiple agr operon clusters, there was no agr operon

cluster that was shared between genomes of different CCs, as would be expected to be

produced by recombination events that introduced entire agr operons from one CC to

another. When individual genes were clustered at the 100% identity threshold, we

found 1,086 unique agrA, 440 agrB, 2,544 agrC and 51 agrD alleles. As expected, there

was remarkably low sequence variability in agrD and each allele represented a single

agr group. All alleles of agrB and agrC were exclusive to a particular agr group (Fig 2A).

Across the 5143 unique agr operon sequences, we observed an average within-agr

group SNP distance of 15 and between-agr group SNP distance of 167.
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Fig 2: AgrA evolves independently of agr group with only two major amino acid sequence
configurations across S. aureus.

(A) Scoring agr group exclusivity in clusters of unique AgrABC amino acid sequences. Extracted
amino acid sequences of each agr gene were clustered with 100% identity to obtain all possible
AA sequence configurations. Each cluster was then scored based on the number of agr groups
the cluster sequence was found in (1 = One agr group, 4 = Four agr groups) represented by a
circle. Only clusters with more than 50 sequences are shown. The colour of each circle
represents the number of sequences within the cluster. The red and blue arrows indicate the
major (AgrAK136) and minor cluster (AgrAR136) of AgrA AA sequences respectively. (B) Amino acid
sequence alignment of the two major alleles of AgrA. (C) Maximum likelihood phylogeny
(GTR+FO model, 1000 ultrafast bootstrap replicates with average bootstrap support of 97.8%)
of 334 S. aureus strains with each tip representing a unique ST. Tip colours represent the AgrA
alleles and the corresponding heatmaps show the agr group and clonal complex of each tip.
Scale bar indicates number of substitutions per site. All tips representing the AgrAR136 allele are
confined to the clade highlighted in blue. (D) Linkage disequilibrium (LD) block plot of the agr
operon and 1000bp flanking regions. Each point on the block indicates R2 values of LD
calculated by plink for a given pair of SNPs. The y axis indicates distance between SNP pairs.

With two exceptions, there was little evidence of agr recombination between CCs. In
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the first exception, an agrB allele found in 1027 CC15 genomes was also found in 244

CC5 and 150 CC12 genomes. A different agrB allele was also found in 20 CC15 and 17

CC5 genomes. This suggests that agr gene alleles can be shared between CCs of the

same agr group, though relatively rare. The second, when comparing the agr alleles

across group-1 and group-4 CC45 genomes, we found that both agr groups had the

same agrA allele but different group-specific agrBDC alleles. Specifically, out of 1,686

CC45 genomes in the Staphopia database, 1,294 were group-1 and 392 were group-4.

94% of all CC45 genomes, which included 1,217 group-1 and 384 group-4 genomes

have identical agrA alleles. However, each agr group had distinct agrBDC alleles,

differing by an average of 179 SNPs. This suggested that a recombination event led to

stable introduction of group-4 specific agrBDC alleles in CC45.

Though most agrA alleles were CC-specific, there were multiple instances of the same

agrA allele being found in different CCs and different agr groups. This lack of agr group

specificity in agrA became more apparent while analysing the amino acid sequences.

83% of all AgrA amino acid sequences were identical and therefore have the same

Amino-Acid sequence Cluster Representative (AACR). CC5, CC8, CC30 and CC45

exclusively had this major AACR of AgrA, encompassing all four agr groups (Fig 2A -

Red arrow, Fig 2B). 9% had an alternate amino acid sequence of AgrA which differed

from the major AACR by a single amino acid (K136R) (Fig 2A-Blue arrow, Fig 2B). This

included mainly CC15 and other rare CCs. We designated the major AgrA AACR AgrAK136

and the minor AgrA AACR AgrAR136. Upon constructing a Maximum Likelihood

phylogeny using IQ-TREE (57) from a curated set of 334 genomes from the Staphopia

database each representing a unique ST, called Non-Redundant Diversity (NRD) set
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(46), we found that S. aureus can be broadly divided into two clades or sub-species: all

genomes harbouring AgrAR136 are limited to one clade of S. aureus (Fig 2C, blue tips,

blue highlighted clade). The remaining rare AgrA amino acid sequences (6%) were

variants of one of the two major AACRs. To observe the linkage between individual agr

genes, we identified SNPs in the region comprising the agr operon and the 1000bp

flanking regions on our filtered NRD set of 334 genomes using Snippy (52). We then

measured Linkage Disequilibrium (LD) between these SNPs by calculating the Pearson

coefficient (R2) using plink (58). SNP pairs with R2 > 0.8 were considered to be in LD.

The resulting LD plot (Fig 2D) showed that SNPs in the variable region of agrBDC are in

LD with each other but not with agrA, and that agrA is in LD with the flanking regions

of the operon Overall, this suggests that agrBCD coevolve and are unlinked to agrA or

the rest of the genome, while agrA evolution is linked to the S. aureus genome.

Non-functional agr operons are common across diverse S. aureus genomes

In 39,174 agr operons, there were 405 sites that had a frameshift mutation in at least

one genome. 52% of frameshifts (210 sites) occurred in only one genome, but a small

minority of sites were more frequently mutated - 24 sites had frameshifts in at least

10 genomes and 5 sites had frameshifts in more than 100 genomes. At least one

frameshift mutation was found in each agr gene (Fig 3A). We observed a total of 2,997

agr operons with at least one frameshift mutation, only 91 of which had two. We did

not observe any agr operons with more than two frameshift mutations. The rate of

mutations in the agr operon follows the expected Poisson distribution with a mean of

0.0765 (Fig S4). The agrC gene had acquired the greatest number of different
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frameshift mutations, including truncation mutations in CC5, CC8, CC22 and CC30

(865 genomes) (Fig 3A, B). The most frequent frameshift was the insertion of an

adenine in the terminal end of agrA, occurring in 561 genomes (35 unique agr operons)

across multiple CCs (p.Ile238fs – Fig 3B). This mutation has previously been

investigated by Traber & Novick and was found to cause delayed agr activation (59).

Another mutation toward the end of the gene occurring in a polyA tract found in agrB,

occurred in 114 genomes (34 unique agr operons), mainly CC15 and CC5 (p.Phe201fs –

Fig 3B). A frameshift that resulted in loss of the start-codon in agrC was observed in

86 genomes (25 unique agr operons) of CC8, CC30, CC22 and some other rarer CCs

(p.Val? – Fig 3B). In relatively low frequency (69 genomes), we observed complex

mutations such as collapsed repeats, tandem duplications and large (> 30bp) in-frame

and out-of-frame indels. However, such mutations were mostly singular sporadic

events, and no mutation was recurrent in more than three different genomes. Two of

these cases were an Insertion Sequence (IS) element insertion in the agr operon. One

being a 1,326bp insertion of an IS256 family transposon sequence found commonly in

Staphylococcus species (60), and the other a 1057bp insertion of an IS1252 transposon

sequence found in Enterococcus species (61).

Frameshifts in the delta-toxin gene (hld), present within the RNAiii transcript (Fig 1A)

were rare, with only 4 genomes having one of two mutations - a deletion at position

76 leading to a frameshift, or a G to A substitution in position 44 leading to a

premature stop. We found 3943 indels in RNAiii, 3931 of which were single nucleotide

indels. The most common mutation occurring 2025 times was the insertion of a T at

position 406 of RNAiii, found exclusively in agr group-3 genomes, suggesting that
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this might be a common variant. It is unknown whether these single nucleotide indels

have a functional impact on RNAiii. On the other hand, we also found 8 genomes with

large >30 bp indels in RNAiii which may affect function. Namely, two agr group-1

genomes with a 42bp deletion at position 391, four agr group-2 genomes with a 41bp

insertion at position 2, and one agr group-3 strain with a 31bp insertion at position 9.

Fig 3: Presence of putative non-functional variants of the agr operon.
(A) Frequency of frameshift mutations in coding regions of unique agr operon sequences

across the Staphopia database. Arrows indicate agr genes and bars indicate number of
frameshifts at the corresponding position (binwidth = 40). Bar colours represent each agr
group. (B) Frequency (RIGHT) and Effect (LEFT) of commonly occurring frameshift mutations
across unique agr operon sequences. Bars are coloured based on agr group and arrows are
coloured based on agr gene, black outlines represent canonical protein length and red outlines
represent truncated protein lengths. Labels (CENTER) indicate the amino acid change due to
the frameshift mutation. (C) Normalised percentage of samples with non-canonical two
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component regulator (TCS) gene lengths. Histidine kinase (HK) and response regulator (RR)
genes of TCS were extracted from the Staphopia database and commonly occurring gene
lengths ( > 5000 genomes ) were excluded. The remaining strains were considered to have
non-canonical gene lengths.

We compared the number of genomes with indels in the agr operon to other

two-component regulatory systems (TCS) to determine if the frequency of potentially

deleterious mutations in the agr operon was significantly different. This was done by

extracting the histidine kinase (HK) and response regulator (RR) genes of TCS arlRS,

kdpDE, nreBC, phoPR, srrAB and walKR from the Staphopia database and calculating the

number of genomes with HK or RR genes with non-canonical gene lengths. The

length of the reference gene for each HK and RR was considered the canonical length

and the length of each annotated gene in the Staphopia database best matching the

reference gene was identified (BLASTn). At least 42,500 hits for each HK or RR were

extracted out of 42,999 genomes in the Staphopia database. Hits for each HK and RR

with length not equal to their corresponding reference were considered

non-canonical gene lengths due to indels. Frequently occurring alternate gene lengths

(observed in > 5000 genomes) were considered common alleles and not mutated

variants. We found that the agr TCS has a significantly greater number of variable

gene lengths when compared to TCS arl, kdp, nre, pho, srr and wal (p < 0.0001, negative

binomial regression). When normalised to 1kb, we found ~4.5% of all agrC (HK) and

agrA (RR) genes analysed were of variable lengths. In contrast, only ≤1.5% of all other

HKs and RRs analysed had variable gene lengths (Fig 3C). Overall, agrAC had a higher

percentage of non-canonical gene lengths compared to the corresponding genes from

other two-component systems, suggesting higher frequencies of indels.
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To estimate whether factors such as agr group, clonal complex, host body site and

infection/colonisation status can serve as predictors of null mutations, we trained

models using a general linear model (GLM), random forest (RF), Extreme Gradient

Boosting (XGB) and K-Nearest Neighbours (KNN) to predict the presence/absence of

frameshift mutations in the agr operon. All 4 models had high negative predictive

value and low precision which could be due to the imbalanced nature of the test

dataset (See methods) (Table S2). This suggested that the likelihood of acquiring

frameshift mutations in the agr operon cannot be predicted by the site of infection and

pathogenicity status alone.

Some agr frameshift mutations have occurred repeatedly through convergent

evolution

We noticed that certain frameshift mutations in the agr genes occurred frequently

across different strain backgrounds. To test whether these recurrent mutations could

be explained by a purely random mutational process, we simulated frameshifts in a

random set of wild type operons and compared the resulting frequency distribution to

the real distribution of mutation sites in the genomes carrying agr frameshifts

(referred to as frameshift+ genomes). We chose a set of dereplicated genomes from

CC8, CC22, CC5 and CC30 to reduce sampling bias affecting frameshift counts (See

Methods for dereplication strategy). These are the most abundant CCs in the

Staphopia database and carry many of all identified frameshift mutations. We found

that though the total number of mutation events in the real and simulated dataset

were similar (~300), the number of unique sites mutated in the simulated dataset was

greater than the real dataset. This showed that the simulated distribution was
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significantly different from the real distribution of frameshifts in the agr operon

(Kolmogorov-Smirnov p < 0.01). (Fig 4A). Moreover, we calculated the consistency

index of each frameshift site on CC specific maximum likelihood trees using

HomoplasyFinder (62). In short, a consistency index of one for a given site on an

alignment indicates that the nucleotides at that site are consistent with phylogeny,

and a consistency index of 0 indicates that the nucleotides at the site are

homoplasious (evolved independent of phylogeny).
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Fig 4: Identical agr mutations evolve independent of phylogeny across different clonal
complexes.

(A) Bars show frequency of mutations at a given site in descending order. LEFT – frequency of
each mutation in a dereplicated set of CC8, CC30, CC22 and CC5 samples. RIGHT – frequency of
each mutation in a set of randomly selected CC8/CC30/CC22/CC5 agr operons with simulated
indels. (B) Minimum number of changes on tree vs number of occurrences of frameshift
mutations. LEFT- Each circle represents a position on the agr operon that has acquired a
mutation in at least 2 samples in a dereplicated set of CC8, CC30, CC22 and CC5 sequences. The
x axis represents the number of times the position has acquired a frameshift mutation. The
consistency index and minimum number of changes on tree was measured at these sites for
each CC from the respective phylogenetic tree (GTR+FO model, 1000 ultrafast bootstrap
replicates with average bootstrap support of at least 71%) Blue line follows y=x distribution.
The outlier CC8 point (black arrow) corresponds to a previously characterised agrA mutation
that is not a true agr null (59). RIGHT – The consistency index and minimum number of
changes on the tree were measured for phylogenies for the respective CCs where the tree tips
were randomly shuffled. 100 shuffled trees were generated per CC.

We found a trend of decreasing consistency index with increasing frequency of each

recurring frameshift. We observed an almost identical trend when the tips of the trees

are shuffled to have the frameshift+ genomes at random positions on the tree,

mimicking non-ancestral, independent acquisition of each frameshift. In other

words, the minimum number of changes on the phylogeny equal the number of

occurrences of frameshift mutations. As these mutations were being acquired

repeatedly, independent of phylogeny, they are reflected in the number of changes on

the tree (Fig 4B). The outlier mutation (Fig 4B, black arrow) that appeared to have

transmitted to multiple isolates in CC8 was an agrA mutation at the 3’ end found to

cause delayed agr activation by Traber & Novick and therefore is not a true agr null

(59). Overall, this showed that there is a preference for specific sites in the agr operon

to acquire potentially null-inducing mutations and that identical mutations can occur

independently across different S. aureus lineages.
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Discussion

In this study, we used Staphopia, the largest available database of consistently

assembled and annotated S. aureus genome sequences (n = 42,999) to analyse patterns

in evolution and diversity of the agr quorum sensing system. Our goal was to place

previous work on the evolutionary genetics of agr in the context of the thousands of

genomes currently available. We developed a bioinformatics tool, AgrVATE, for rapid

genome-based classification of agr specificity groups and for identification of

putative null mutations in the agr operon

(https://github.com/VishnuRaghuram94/AgrVATE). Our findings to a large extent

were consistent with previous studies but the increased scale of the analysis revealed

new features. We confirmed that only the 4 previously known autoinducing peptides

that define agr groups 1-4 were present in S. aureus (Fig 1B, Fig S3). To our knowledge,

there has been no credible report of any other peptide reported, although other

Staphylococcus species have agr operons encoding different cyclic peptides (63). We

also found, as previously reported (10, 64), that agrBDC alleles are agr group specific

while agrA alleles are independent of agr group (Fig 2A). In addition, we found that

agrBDC are in linkage disequilibrium while being unlinked to agrA (Fig 2D). Moreover,

with the exception of CC45, clonal complexes were exclusively linked to specific agr

groups and specific alleles within these groups (Fig 1C). A third major result was that,

while the agr operon was rarely deleted completely in any strain, ~ 5% of all analysed

agr operons have at least one frameshift mutation in the coding regions, indicating

that potential non-functional agr variants are relatively common (Fig 3A, B). agr

defective strains have been frequently reported (16-21), and we showed through
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genomic comparison that agrAC more frequently accumulated frameshift mutations

compared to other S. aureus two component systems (Fig 3C). Using the somewhat

limited publicly available metadata, we could not link agr null strains to a particular

body site or type of infection. While most of these frameshift mutations are singular

evolutionary events, we found a handful of sites across unrelated strains that have

independently acquired a disproportionately high number of frameshifts (Fig 4A)

with no evidence of long-term phylogenetic transmission (Fig 4B), suggesting

selection or a generative mechanism for high frequency mutations. At least one of

these frameshifts has been studied functionally (59), but many of these frequent

frameshifts were only detected through large-scale genomic analysis reported here.

This study re-emphasizes that S. aureus is not phylogenetically structured according

to agr groups: i.e strains belonging to each agr group do not fall into their own

monophyletic clades (Fig 2C) (64). This pattern can be best explained by rare

homologous recombination of the agrBCD genes. Strikingly, all strains within a clonal

complex (except the previously mentioned CC45) belonged to only a single agr group.

While there have been reports of multiple agr groups within the same sequence type in

S. aureus (54, 55), we did not observe any such instances across more than 40,000

genomes. It has been proposed that clonal complexes in S. aureus emerge from

recombination and/or genome rearrangement events and remain stable due to the

presence of barriers to recombination and HGT between CCs (65, 66). These results

suggest that agrBDC recombination may be the impetus for formation of clonal

complexes. CC45 may be in the process of CC formation after a recent switch in agr

group and may thus be an interesting natural laboratory for understanding the
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evolutionary dynamics that drive this process.

We observed strong purifying selection in agrA. Most of the CC specific nucleotide

changes in agrA were synonymous changes, with 83% of all AgrA sequences being

identical. The only significant non-synonymous change we observed on a

species-wide scale was a single amino-acid substitution at position 136 (9% of all

AgrA sequences). This alternate AgrA (AgrAR136) was found only within one clade

comprising CC15 and other rare CCs of S. aureus (Fig 2B, C). Overall, this shows that

nucleotide differences in the agr operons, even in operons belonging to the same agr

group, can serve as a predictor of the subspecies and clonal complex, however the

functional impact of these alternate alleles, if any, are unknown.

We know that agr function is not always essential for S. aureus survival, as

non-functional agr variants are commonplace and are frequently isolated from

patients (16-21). For example, there is a relatively high occurrence of nasal

colonisation by strains with downregulated agr expression in hospital settings (67).

Nasal carriage is an important step for initiation of S. aureus infection, and it has been

observed that the presence of isolates with impaired agr function in the bloodstream is

often associated with isolates of identical agr function in the nasal cultures (68, 69).

This suggests that complete virulence capacity is not an absolute requirement for

colonisation and transmission of S. aureus in the hospital environment (43). However,

community associated transmission by agr defective strains is thought be curtailed

and the agr- strains do not remain long enough to establish a circulating population

outside the initial location (45, 67). This brings to light the possible evolutionary

trade-off for strains that become agr defective. Though some short-term
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transmission may have occurred, our phylogenetic analyses show no evidence of

stable lineages of putative agr null populations (Fig 4B). In addition, we also found

that frequency of mutations in the agr TCS is enriched when compared to other TCS in

S. aureus (Fig 3C). The relatively common occurrences of independently acquired agr

mutations suggests that they may be adaptive convergent mutations in response to

specific selective pressures. It is also important to note that this study does not

investigate non-synonymous substitutions and mutations in genes outside the agr

operon which may affect agr activity. A recent study (70) showed that isolates with

reduced toxin production need not necessarily harbour agr mutations. Our haemolysis

results from CF S. aureus strains (Table S1) also support this, as we see strains without

agr mutations showing reduced haemolysis. This highlights the multi-faceted nature

of agr mediated virulence and that the true frequency of phenotypically agr null is

likely higher than what we report in this study.

The Staphylococcus agr system is a central feature of virulence gene regulation that has

been studied for more than forty years but much regarding the evolution and

maintenance of agr remains poorly understood. There are two particularly interesting

negative findings in this study: the absence of non-canonical “intermediate” AIPs in

42,999 strains, and the absence of any strain that has acquired agrD from a

Staphylococcus outside of S. aureus. The evolutionary mechanism behind the diversity

of S. aureus agr was hypothesised to be random mutation of the agr locus to give rise to

multiple sequence configurations, followed by selection for only functional

configurations leading to the four agr specificity groups that exist today (32). This

model implies intermediate or transitional agr groups, which were presumably
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non-functional agr operons, were driven to extinction by diversifying selection,

allowing only functional agr systems to become successful lineages. The absence of

intermediates suggests a strong selection for maintenance for four group specificities

in S. aureus that leaves producers of novel peptides at a disadvantage. The high

number of frameshifts suggests that not producing any peptide at all may confer

higher fitness in some environments and could be a viable transitory strategy.

Similarly, while there is abundant evidence for HGT of antibiotic resistance genes

from other Staphylococcus species (71-75), we did not find evidence of S. aureus

acquiring agr genes encoding novel AIP specificities. Close relatives of S. aureus such

as S. argenteus and S. schweitzeri share the agr group-1 AIP, though S. argenteus and S.

schweitzeri also developed their own distinct AIPs (76). This may suggest that while a

common ancestor of these three Staphylococcal species may have also been agr

group-1, environmental niche selection drove the emergence of species specific agr

groups. It may be that AIP specificity plays a role beyond just intra-species

competition that we do not yet understand.

Methods

AgrVATE workflow:

AgrVATE was written in Bash and uses freely available software. AgrVATE only

requires a S. aureus genome assembly in FASTA format as input and the outputs

include the detected agr group, the extracted agr operon and a table with annotated

variants if any. The installation and usage instructions as well as descriptions of all

output files can be found on Github

(https://github.com/VishnuRaghuram94/AgrVATE). It is recommended to run

https://github.com/VishnuRaghuram94/AgrVATE
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AgrVATE on Unix based operating systems. The methods for building AgrVATE and

running it on Staphopia genomes are outlined below.

Identifying a unique set of 31mers for each agr group:

We first assigned agr groups based on the AIP amino acid sequence to all genomes in

the Staphopia database (46) where a canonical AgrD protein was annotated by Prokka

v1.14.6 (40,812 AgrDs) (77). We then extracted the agr operons from these 40,812

genomes by in-silico PCR using usearch v11.0.667_i86linux32 (51). To identify kmers

unique to each agr group, DREME v5.1.1 (78) was used to identify 31bp kmers (31mers)

that were unique to the agr operon of each agr group, resulting in four distinct groups

of 31mers (evalue < 0.0001). AgrVATE uses this output of 31mers unique to each agr

group as a database to conduct a BLASTn v2.10.1 (79) search against an assembly of a

given S. aureus genome to identify the agr group. We also used AgrVATE to re-assign

agr groups to the preliminary set of 40,812 genomes and the group assignments

matched in 40,725 cases. In the 87 cases where the initially assigned agr group did not

match the AgrVATE assignment, we found that the genome assemblies were

contaminated with another S. aureus isolate of a different agr group. In these cases,

AgrVATE will assign the agr group with the most kmer matches while also noting that

more than one group was found.

agr operon and agr gene extraction:

In-silico PCR was performed for 43,000 S. aureus whole genome sequences in the

Staphopia database using usearch -search_pcr tool (51) with the following primers –

5’aaaaaaggccgcgagcttgggaggggctca’3 & 5’ttatatttttttaacgtttctcaccgatgc’3. Both

primers were required to bind and 8 mismatches in total were allowed. Extracted agr
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operons were clustered with 100% identity using usearch -fastx_uniques (51) to

obtain all possible unique agr operon configurations. This unique set of operons was

annotated using Prokka v1.14.6 (77), agr genes were extracted and clustered again

with the same parameters to obtain all possible nucleotide and amino-acid

configurations of each agr gene.

Identifying variants in the agr operon:

The most frequently occurring agr operon nucleotide configuration was determined

for each agr group and used as a reference. Variant calling was performed using snippy

v4.6.0 (52). Only loss of start, gain of stop and frameshift mutations occurring within

the coding regions of the agr operon were considered possible non-functional

variants. AgrVATE filters the snippy output and reports the above-mentioned

mutations in tabulated format.

Staphopia metadata

Metadata associated with S. aureus genomes submitted to the NCBI Short Read Archive

was downloaded as a table using the Run Browser tool. This was then subjected to a

series of bioinformatic filters to clean up key fields such as collection date and

location, host body site and host status. Additional data from supplemental tables of

several published S. aureus genome sequencing studies was also added. The data and

scripts can be accessed at

https://github.com/Read-Lab-Confederation/staphopia_metadata/. The table used in

this study was ‘Stage3.4.csv’ (commit 4548f17, 2020-08-14).

https://github.com/Read-Lab-Confederation/staphopia_metadata/
https://github.com/Read-Lab-Confederation/staphopia_metadata/
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Whole genome phylogeny and Linkage Disequilibrium

The Staphopia database non-redundant diversity (NRD) set which contains 380

genomes was filtered to contain only genomes where the full agr operon was extracted

by AgrVATE and all four agr genes as well as the genes up and downstream of the agr

operon were annotated by Prokka v1.14.6 (77), resulting in 355 genomes. These 355

genomes were further filtered to include only genomes where the agr group prediction

was unambiguous, leading to 334 genomes. A core genome alignment was constructed

for these 334 using parsnp v1.5.3 (80) and this alignment was used to build a

maximum likelihood phylogeny using IQ-TREE v1.6.12 (57) with the GTR+FO model

and 1000 ultrafast bootstrap replicates using S. argenteus as the outgroup (GenBank

accession: AP018562.1). The outgroup was then removed, and the tree was

reconstructed with the tip closest to the outgroup (ST93) as the root. The resulting

tree was then plotted using the R package ggtree (81).

The genomic region comprising the agr operon and 1000bp on each side was extracted

from the initial filtered NRD set of 355 genomes and this region was aligned using

snippy-core v4.6.0 (52). The full alignment (core.full.aln) file was then converted to a

vcf file using snp-sites v2.5.1 (82), and this vcf file was used to calculate Pearson’s

coefficient for Linkage Disequilibrium (LD) using plink v1.90b6.21 (options: --r2

inter-chr) (58). The resulting table was used to build a LD plot using R.

Comparing indel rate of agr to other S. aureus global regulators

USA 300 strain NRS384 (accession NZ_CP027476.1) was used as a reference to extract

histidine kinase (HK) and response regulator (RR) genes belonging different S. aureus

two component regulatory systems (arlRS, kdpDE, nreBC, phoPR, srrAB, walKR). A TCSs
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was chosen if the number of Gene Ontology enrichment hits exceeded ten in the

regulon of a constitutive RR strain where all other TCSs are deleted (Rapun-Ariaz et

al, 2020; Table S1 (83) ). The length of the reference gene for each HK and RR was

considered the canonical length and the length of each annotated gene in the

Staphopia database best matching the reference gene was identified (BLASTn). Hits

for each HK and RR with length not equal to their corresponding reference were

considered non-canonical gene lengths due to indels. Commonly occurring variant

gene lengths (> 5000 strains) were still considered canonical and filtered out. We

performed negative binomial regression on 1kb normalised count data of frequency of

variable gene lengths across the TCS offsetting for canonical gene length and total

number of genes. Tukey’s method was used for multiple comparisons. Statistical tests

were performed using the nb.glm() function from the MASS R package (84) and

multiple comparisons were performed using the emmeans R package (85).

Classifiers for predicting frameshift mutations in the agr operon:

R package caret (86) was used to train classifiers using repeated k-fold cross

validation (10-fold, 3 repeats). The training dataset comprised 400 randomly sampled

frameshift-positive and frameshift-negative strains each to overcome imbalanced

representation of each class (24:1). Strain metadata was obtained from the Staphopia

database and only features annotated in > 25% of all strains were included. Strains

with unknown host status and host body site data were filtered out. The final dataset

contained 11500 frameshift-negative and 486 frameshift positive strains.
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Dereplication of Staphopia database genomes:

CC5, CC8, CC22 and CC30 genomes were separated into frameshift+ and wild-type

groups within each CC based on the presence/absence of frameshift mutations in the

agr operon. For each CC, the two groups were independently clustered using a Mash

(56) distance threshold of 0.0005 and a representative for each cluster was chosen at

random. This Mash distance threshold was chosen empirically based on a comparison

of pairwise Mash distances and pairwise SNP distances within the Staphopia database

NRD set. Mash distances < 0.0005 represent a median SNP distance of 47 with a

maximum of 282 (Fig S5). SNP distances were calculated from parsnp v1.5.3 (80) core

genome alignments using snp-dists v0.7.0 (87). Each frameshift+ cluster was limited

to a size of 50 genomes and each wild-type cluster was limited to a size of 200

genomes to produce evenly sized clusters and to prevent underrepresentation of

frameshift+ genomes. In total, 1093 genomes represented CC5, 1110 CC8, 404 CC22

and 705 CC30.

Simulating mutant agr operons:

A combined total of 312 genomes from the dereplicated set of CC5, CC8, CC22 and CC30

genomes were frameshift+, which equated to 312 mutational events as each genome in

the dereplicated set contained only one frameshift in the agr operon. To simulate a

similar number of mutations, we used Mutation-Simulator v2.0.3

(https://github.com/mkpython3/Mutation-Simulator) to induce insertions or

deletions at a rate of 0.0002 (parameters: --insert 0.0002 --deletion 0.0002) in 350

randomly selected wild-type genomes from the dereplicated set, leading to 307

simulated indels.

https://github.com/mkpython3/Mutation-Simulator
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Calculating consistency indices:

Core genome alignments of the dereplicated genomes for each CC was performed

using parsnp v1.5.3 (80) and maximum likelihood phylogenetic trees were constructed

using IQ-TREE v1.6.12 (57) using the GTR+FO model with 1000 ultrafast bootstrap

replicates. Java version of HomoplasyFinder was fed the phylogeny and a presence

absence matrix of agr operon frameshift positions to obtain the consistency index for

each position. The phylogenies for each CC were then imported to R using the ggtree

package (81) and the tip labels were randomised 100x to produce 100 shuffled trees.

The consistency indices for agr operon frameshift positions were calculated for all

shuffled trees in the same fashion. Kolmogorov-Smirnov test was used to compare the

distributions of consistency indices using the R function ks.test().

Sputum sample collection and whole genome sequencing:

The whole genome sequences for 64 out of the 91 CF strains analysed in this study are

associated with a previous publication and can be found in the accession

PRJNA480016 (88). The remaining 27 strains are from sputum samples provided by 3

CF patients and can be found in the accession PRJNA742745. The methods for

processing these 24 strains are as follows:

Sputum samples were collected from patients at the Emory Adult Cystic Fibrosis

Center and spread onto Mannitol Salt Agar (MSA) the same day. Both volumes of 10μL

or 100μL of resuspended sputum were plated for each sample. Three sputum samples

from three different patients were collected and processed as mentioned above in the

laboratory of Dr. Stephen P. Diggle at Georgia Institute of Technology. From each
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sample, 4-8 single colony isolates were picked, grown overnight in Luria Broth media,

and re-streaked on Staphylococcus isolation agar (SIA) for further purification before

being frozen with 25% glycerol and stored at -80°C. SIA agar is composed of 30gL-1

Trypticase Soy Broth, 15gL-1 agar, and 70gL-1 NaCl. At least one ‘pool’ or population

sample was collected per patient by scraping all remaining colonies on a single

inoculation loop, resuspending the collected colonies in Luria Broth and incubating

the liquid culture overnight at 37 °C. Overnight cultures of population samples were

also further purified on SIA before being made into frozen stocks. Population samples

are always recovered by scraping the entire plate, never as single colonies, throughout

the rest of the experiments. Haemolysis phenotyping was conducted for all single

colony isolates and population samples using Congo-Red agar as previously described

(88).

To extract genomic DNA for sequencing, each sample was streaked on SIA. An

inoculation loop was used to collect cells directly from the plate and one loop-full of

cells was suspended in 50 mM EDTA. To lyse the cells, 20μL of freshly prepared

10mgmL-1 lysozyme, and 100μL of 5mgmL-1 lysostaphin were added to the cell

mixtures which were then incubated for 1hr at 37°C. Genomic DNA was then extracted

using the Promega®, Wizard Genomic DNA Purification Kit. All samples were

sequenced at the Microbial Genome Sequencing Center (Pittsburgh, PA, USA) using

the Illumina Nextera kit on the NextSeq 550 platform. Single colony isolates were

sequenced at a depth of 150Mb and population samples were sequenced at a depth of

625Mb. Raw paired-end sequence files were screened for quality and minimum length

using FastQC v0.11.9 (89). Raw sequence files were then fed into the Bactopia analysis
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pipeline version 1.4.10 (90). Bactopia output was used to determine sequence type and

clonal complex identities for each sample. Assemblies produced by Bactopia were then

analysed in AgrVATE for agr type and frameshift status.

Data availability

Source code for AgrVATE as well as the R code, supplemental information and datasets

for generating the figures in this study can be found in

https://github.com/VishnuRaghuram94/AgrVATE . CF isolate genome sequences used

in this study can be found under BioProject accessions PRJNA480016 and

PRJNA742745. The accessions, agr groups, sequence type and clonal complex, and

frameshift information for 40,890 S. aureus genomes used in this study can be found

in supplemental dataset S1.

Supplementals

Supplemental tables and figures for this chapter can be found in the manuscript

https://journals.asm.org/doi/10.1128/spectrum.01334-21
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Abstract

As pathogenic bacteria go through cycles of growth and adaptation within a host, the

genetic makeup of the population changes. The most common approach to sampling

microbial populations within an infected or colonised host is to sequence genomes

from a single colony obtained from a culture plate. However, it is recognized that this

method may not capture the complete genetic diversity in the population. An

alternative is to sequencing a mixture containing multiple colonies (“pool-seq”), but

this has the disadvantage that it is a non-homogeneous sample, making it difficult to

perform specific experiments. We compared differences in measures of genetic

diversity between eight single-colony isolates (singles) and pool-seq on a set of 2286

S. aureus culture samples. The samples were obtained by swabbing three body sites on

human participants quarterly for a year, who initially presented with a

methicillin-resistant S. aureus skin and soft-tissue infection (SSTI). We compared

parameters such as sequence quality, contamination, allele frequency, nucleotide

diversity and pangenome diversity in each pool to the corresponding singles.

Comparing singles from the same culture plate, we found that 17% of pooled samples

contained mixtures of sequence types (STs). We showed that pool-seq data alone

could predict the presence of multi-ST populations with 95% accuracy. We also

showed that pool-seq could be used to estimate the number of polymorphic sites in

the population. Additionally, we found that the pool may contain clinically relevant

genes such as antimicrobial resistance markers that may be missed when only

examining singles. These results highlight the potential advantage of analysing
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genome sequences of total populations obtained from clinical cultures rather than

single colonies.



113

Data summary

Genomes sequenced for this study are available under accession PRJNA918392. Raw

data and code for analysis are available at

https://github.com/VishnuRaghuram94/GASP.

Importance

While pooled population sequencing has been employed to study within-host

diversity, the differences in attainable information between single and pooled

sequences are not clear. A direct comparison between single isolate and pooled

population sequences can help devise optimal sampling strategies for clinical and

within-host diversity studies. In this study, we attempt to answer the question of how

many colonies obtained from a single patient is enough to obtain a representation of

the total population diversity within the patient while keeping in mind time and

labour costs. These findings have implications for using whole genome sequencing

(WGS) in the clinical microbiology laboratory to identify and speciate pathogens and

to determine their antimicrobial susceptibilities.

https://github.com/VishnuRaghuram94/GASP
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Introduction

Large-scale WGS of bacterial pathogen species offers hope for more accurate

infectious disease surveillance and a better understanding of within-host evolution

during human disease and asymptomatic colonisation (1–3). Typically, bacterial

genomics-based surveillance studies sequence DNA isolated from single bacterial

colonies cultured on selective media from each clinical sample tested (1,4–6). The

single-colony bacterial culture can be further tested in the laboratory for phenotypes

such as antibiotic resistance and toxicity.

However, individual colonies do not provide insight into the genetic diversity of the

population of the species in the sample as there could be multiple strains present in

the sample (7–9). Even if only one strain is present, there will be accumulated

microdiversity between individual isolates that is roughly proportional to the duration

between initial colonisation and time of sampling, assuming the absence of

bottlenecks (5,10).

A few studies have undertaken sequencing multiple single colonies from clinical

samples (9,11,12). This strategy can allow the comparison of phenotypes associated

with intra-sample genetic variation and the construction of phylogenetic trees to

trace the relationship between samples. However, costs rise linearly with each

additional colony sequenced per sample, necessitating a cost-benefit analysis of how

many colonies to sequence. Sequencing colonies from isolation plates of a single

sample is an alternative approach (12–15). This is sometimes called “sweep

sequencing”, “population sequencing” or “pool-seq”, and the latter term will be used

https://www.zotero.org/google-docs/?Hc98Sw
https://www.zotero.org/google-docs/?dVP9xl
https://www.zotero.org/google-docs/?9qkHuB
https://www.zotero.org/google-docs/?L6hq2o
https://www.zotero.org/google-docs/?7SESoU
https://www.zotero.org/google-docs/?J78R7L
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here. In pool-seq, multiple colonies from the same species can be sampled genetically

at the same economic cost as sequencing an individual isolate. Pool-seq has generally

been found to be reliable in measuring sequence variation and allele frequency (11,16).

However, the disadvantages of this method are the perceived complexity of the

bioinformatic analysis and the complications of assessing phenotypic characteristics

of the population of bacterial clones, such as antibiotic resistance, when these assays

typically require clonally purified single colonies.

The single-isolate sequencing is a convenient sampling strategy based on the

assumption that strain mixtures are rare and capturing within-strain microdiversity

is not worth the additional expense of sequencing. While the cost of raw sequence

production has steadily declined, costs of labour and infrastructure, such as DNA

extraction, library preparation, physical sample storage, and bioinformatic analysis,

have not scaled down at the same rate (17). There has also been little analysis of what

the increased sequencing and storage costs from sampling multiple colonies or pools

yield over single colonies. However, pool-seq can still provide insights into the

natural history of even well-studied pathogens, and inform us about the fate of

adaptations that enhance virulence and antibiotic-resistance (1,18–21). Therefore,

optimising sampling strategies and genomic workflow design is essential to minimise

the number of samples processed while maximising the information obtained from

each clinical sample.

In this work, we use samples from an ongoing study of Staphylococcus aureus

colonisation on humans to compare the three strategies outlined above: single-isolate

sequencing, sequencing collections of multiple single colonies, and pool-seq. S. aureus

https://www.zotero.org/google-docs/?cVjHxW
https://www.zotero.org/google-docs/?iwwXQY
https://www.zotero.org/google-docs/?lF3rS4
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is a ubiquitous nosocomial pathogen prevalent worldwide, causing invasive disease

syndromes such as bacteremia, endocarditis and osteomyelitis (22,23). Like other

prominent pathogens, WGS has significantly improved S. aureus epidemiologic

studies, and our ability to track the spread of antibiotic resistance and virulence across

populations (2,24–28). Here, we used samples from human participants who had an

index methicillin-resistant S. aureus (MRSA) skin and soft tissue infection (SSTI) as

part of an ongoing study, SEMAPHORE (Study of the Evolution of MRSA, Antibiotics

and Persistence Having the Outcome of Recurrence). The study was designed to

examine clinical and demographic characteristics of the participants, and the

genomes of the colonising S. aureus to identify factors associated with recurrent skin

infections. However, for this paper, we focused on the relationship between the

pool-seq and collections of single isolate genome sequencing. We first quantified the

amount of variation within the collections of single genome and pool-seq and then

investigated three specific questions: 1) Could the pool-seq data identify clonal S.

aureus populations (comprising a single ST) from mixtures of diverse lineages?; 2)

Could pool-seq data be used to estimate the number of sites within single-ST

populations undergoing polymorphisms?; 3) Was pool-seq more sensitive in

detecting antimicrobial resistance (AMR) genes than sequencing single clones?

https://www.zotero.org/google-docs/?oZxDnJ
https://www.zotero.org/google-docs/?DUJjMj
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Results

Fig 1: Schematic representation of colony collection strategy, names, and descriptions of
isolate groups analysed in this study.

Samples from the SEMAPHORE study were plated on CHROMAgar Staphylococcus

aureus and a “collection” of eight individual S. aureus colonies (“singles”) was

obtained (Fig 1). The remaining S. aureus colonies on the plate were pooled and

sequenced, hereon referred to as “pools” or “pool-seq”. The collective sequencing

data obtained from all eight singles for each pool were referred to as “expected

pools”. Similarly, sequencing data sampled from two random singles and four random

singles were combined to generate “downsampled pools”. This study had 85

participants with 254 samples (254 pools and 254 collections of 8 singles - 2032

singles total). All FASTQ files (pool-seq and singles) were capped to 100x S. aureus

genome coverage.
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82% of collections (eight single genomes) and their corresponding pools have only

one Multilocus Sequence Type (MLST).

We found a wide range of SNP distances between singles from the same collection,

with a minimum of 0 and a maximum of 15,315. For 241 out of 254 collections (~95%),

the maximum SNP distance between any two pairs of isolates was < 100 (Fig 2A),

suggesting that most collections comprised only closely related isolates. However, 12

collections (5%) showed clear signs of mixed infections, with a maximum SNP

distance > 4000. When we compared the MLST amongst the singles for each

collection, all 12 of these collections had at least one isolate that was a different ST

from the remaining. This showed that comparing STs and pairwise SNP distances

between single isolates within collections could identify potential mixed infections, as

single ST collections had lower maximum pairwise SNP distances.

In 209/254 collections (~82%) the ST types for the eight singles and the pool were

identical, suggesting they were single ST samples. In the remaining 45 collections

(~18%) either at least one single or the pool had a different ST (Fig 2B, C). For 37 out

of these 45 collections, the ST of the pool was untypeable either due to presence of

multiple alleles for the same gene or an unknown/undetectable allele. While 59 STs

were identified, 51% of singles (1051/2032) belonged to ST8 and ST5 (Fig 2B,D). We

observed no significant differences in the occurrence of multi-ST pools across the

different timepoints, body sites and culturing methods (Chi-squared test, p>0.01).

These data suggested that a given collection usually had a low level of S. aureus

diversity, and that we can find ST mixtures by comparing SNP distances and ST types

within collections of single colonies.
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Fig 2: Pairwise SNP distance between and within collections.
(A) Boxplots showing per-collection SNP distance distributions. For each collection shown in
the y-axis, the x-axis shows the corresponding distribution of core genome SNP distances in
log scale. Black vertical lines show the median SNP distances and boxes show the interquartile
range. Whiskers represent values up to 1.5 times the first or third quartile. Black dots represent
outliers beyond the whiskers range. (B) Barplot showing number of genomes per Sequence
Type (ST). Multilocus Sequence Typing (MLST) was performed by the software tool mlst (see
methods). x-axis shows the number of isolates assigned to the corresponding ST shown in the
y-axis. (C) Bar plot showing number of STs detected per participant. MLST typing was
performed for all eight singles from a participant and the number of unique STs detected per
participant was plotted. (D) Maximum likelihood phylogeny representing at least one isolate
from all collections. All non-identical genomes from each collection were aligned by snippy
and a core genome phylogeny was constructed using fasttree (see methods). Tree tips are
coloured by ST, only top 10 most frequent STs are shown, and remaining are grouped into
“Other”.
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Pool-seq samples with elevated average minor allele frequency, elevated number of

contigs, higher nucleotide diversity and untypable MLST were associated with strain

mixtures

We examined what features of the pool-seq data could be used to assess whether there

was a single clonal ST genotype present, or mixture of genotypes, focusing on five

measures: MLST, assembly quality, nucleotide diversity, gene number and minor

allele frequency (MAF).

We found that we could use MLST software to determine the ST of the pool-seq data

from 185 out of 224 samples. 183/185 (99%) of the typable samples were associated

with single ST collections. In the remaining 39 untypable pool-seq samples, 17 (45%)

were associated with ST mixtures.

Sequencing reads from both singles and pool-seq were processed identically using the

Bactopia pipeline with the same quality control parameters (29). Both single and

pool-seq reads had a final average quality score of 36.3 (Welch’s t-test p > 0.01). We

expected the genome assemblies (generated using the SKESA assembler (30)) from

single colonies to be higher quality than pool-seq, as the latter may contain multiple

S. aureus strains and possibly contaminating species from the culture plate. We

evaluated assembly quality using CheckM and QUAST (31,32), observing that, while

most pools and singles had comparable coverage (Fig 3A, Wilcoxon p>0.01, effect

size=0.052), pools had higher number of contigs (Fig 3B, Wilcoxon p < 0.01, effect size

= 0.20), higher heterogeneity (Fig 3C, Wilcoxon p < 0.01, effect size 0.347), and

contamination scores (Fig 3C, Wilcoxon p < 0.01, effect size = 0.239). 32 out of 224

pools (14%) had more than 200 contigs in contrast to only 5 out of 1792 singles

https://www.zotero.org/google-docs/?WxeJwr
https://www.zotero.org/google-docs/?k8q2vU
https://www.zotero.org/google-docs/?3jhhGM
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(0.2%). The CheckM heterogeneity score indicates source of the contamination – a

heterogeneity score < 50% indicates that the source of contamination is

phylogenetically distant and vice versa (30). While all singles had contamination and

heterogeneity scores of 0, the pools ranged from low heterogeneity contamination to

high heterogeneity contamination (Fig 3C). 7 pools (3%) had a heterogeneity score >

50 with a contamination score >10, suggesting they were contaminated by

phylogenetically similar sources. 15 pools (6%) had a heterogeneity score < 50 with a

contamination score >10, suggesting they are contaminated by phylogenetically

distant sources. Overall, these results suggested that genome assembly quality can be

useful for assessing population heterogeneity.
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Fig 3: Assembly quality can be used to assess population heterogeneity.

(A) There was no significant difference in the assembly coverage between pools and singles.
Violin plot showing distribution of assembly coverage between pools and singles. Assembly
coverage for each pool and single was calculated by Bactopia against an auto-chosen reference
(see methods). Circles indicate single ST collections and triangles indicate multi-ST
collections. (B) Pool assemblies were more likely to have a higher number of contigs than
single assemblies. Violin plot showing distribution of number of assembly contigs in pools and
singles. Pooled samples were processed identically to singles with Bactopia using SPAdes.
Circles indicate single ST collections and triangles indicate multi-ST collections. (C) Pooled
samples have varying sources of contamination while singles are pure. CheckM
contamination and heterogeneity scores showed that all single colonies have no
contamination while 6% of pools are contaminated by phylogenetically distant sources and 3%
of pools are contaminated by phylogenetically similar sources. The blue line marks a
heterogeneity score of 50 below which the source of contamination is considered
phylogenetically distant and vice versa. Circles indicate single ST collections and triangles
indicate multi-ST collections.
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Allele frequency (AF) - i.e., the fraction of reads piled up over a particular variant

position is a useful metric of genomic heterogeneity. We mapped the pooled

sequences against the closest complete S. aureus reference genome (see methods) to

obtain the variant sites. The eight singles were also aligned to the same reference as

the corresponding pool. For each sample in a collection, we calculated the average

minor allele frequency, i.e., the total number of variant sites divided by the sum of all

minor allele frequencies (MAF). If all reads mapped to only the reference or only the

alternate alleles, the average MAF would always be 0, as would be expected from ideal

single pure cultures. We plotted the average MAF against the total number of variant

sites for 254 pools (Fig 4A). We split the plot into four quadrants based on two

parameters - the number of variants cutoff of 2800 sites (or 0.1% of the S. aureus

genome) suggesting only few variant sites, and average MAF cutoff of 0.05 below

which we deemed the sample as having no minor alleles. 223 pools (~88%) had a total

number of variant sites less than 0.1 % of the S. aureus genome (Fig 4A left quadrant).

55 out of these 223 had an average MAF < 0.05 (Fig 4A bottom left quadrant)

suggesting highly homogeneous samples. In contrast, there were 14 pool-seqs with

more than 2800 variants (~0.1%) of MAF > 0.05 (top right quadrant of Fig 4A).

Pool-seqs in the bottom right quadrant (average MAF < 0.05 with > 2800 variants)

show samples that are distant from their reference sequence though still

homogeneous. To assign a diversity score based on MAFs, we used the product of the

total number of variants and the average MAF, which we termed the “MAF Index”.

The MAF Index was higher for samples with both a large number of variants compared

to reference as well as a high average MAF (i.e., top right quadrant – Fig 4A). The MAF
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index of single-ST pools were not significantly greater than the MAF index of singles

(Welch’s t test, p>0.01). However, within the pools, the multi-ST pools had

significantly greater MAF index than the single ST pools (Welch’s t test, p< 0.01).

AFs are measured based on whether or not a given position in a read maps to the

reference, but our calculations did not take into account the possibility of multiple

alternate alleles (which we assumed to be very rare given that the number of variants

was only a small percentage of the chromosome). Therefore, we also calculated

intra-sample nucleotide diversity between the true pooled sequences and our

expected pools as an analogous method for measuring genomic heterogeneity. Using a

software called InStrain (33), we estimated Nucleotide diversity (π), which is for each

position, 1 minus the sum of the frequency of each base squared. This value was then

averaged across the whole genome. We used InStrain to measure the average π across

our singles, downsampled pools (four and two colony pools), expected pools and true

pools. The π value was significantly greater in pools compared to singles (Welch’s

test, p < 0.01). However, in 216 pools (96%), the diversity observed in the true pools

were less than the expected diversity observed from an in-silico mixture of two S.

aureus isolates 30,000 SNPs apart in a 99:1 ratio (Fig 4B LEFT black horizontal line -

see methods). This analysis suggested most pools comprised only single strains.

Moreover, similar to average MAF, π of multi-ST pools was significantly greater than

π of single-ST pools (Welch’s test, p < 0.01). In cases where there was an increased

diversity value for our expected pools or downsampled pools compared to our true

pools, we may have overestimated the diversity of our true pool by assuming the

single colonies were present in equal abundance. Alternatively, since we pooled only

https://www.zotero.org/google-docs/?vYTzLT
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the remaining colonies on the plate after picking singles, we may have negated some

diversity from the true pool. In the 12 cases where the true pools had a diversity value

greater than the corresponding expected pools (5%), the 8 colonies sampled did not

capture the entire diversity of the pool.
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Fig 4: Average MAF and average π can be used to detect multi-ST pools
(A) The MAF index could be used to assess multi-ST pools. Dot plot depicting the number of
variant positions and the average MAF for single-ST (circles) and multi-ST (triangle) pools.
The x-axis indicates the number of variant positions compared to a reference. The y-axis
indicates the average minor allele frequency (MAF). The average MAF was calculated by
summing the MAFs of all intermediate alleles and dividing by the total number of variant
positions. Red dots correspond to single ST pools and triangles correspond to multi-st pools.
The black horizontal line indicates an average MAF of 0.1. The black vertical line indicates 0.1%
of the S. aureus genome (2800 sites). The frequency of the dots at their corresponding x and y
positions are indicated by the histogram above the x and y axis respectively. (B) Average
nucleotide diversity suggested most pools comprise single strains. 94% of pools had
nucleotide diversity less than a theoretical 99:1 mixture of two strains. LEFT: Dots and
colours indicate average nucleotide diversity value for each pool, expected pool (reads from
eight singles combined in equal proportions), downsampled pools (reads from four and two
random singles combined in equal proportions) and singles. Grey dashed lines connect
corresponding samples. Black solid horizontal lines indicate the average nucleotide diversity
value for in-silico mixtures of two S. aureus genomes 30,000 SNPs apart. The ratio of each
mixture is indicated over each solid black line. The frequency of the dots at their corresponding
x positions are indicated by the histogram to the right.

So far, we have shown that the number of contigs, contamination, minor allele

frequencies, and nucleotide diversity are significantly different between pools and

singles (Fig3, Fig4). Next, we wanted to measure the magnitude of these parameters’

contribution to the variability between pools and singles.

We performed principal component analysis (PCA) for five different parameters we

measured (CheckM contamination, CheckM heterogeneity, MAF Index, Nucleotide

diversity, and number of contigs) . We found that PC1 and PC2 explained ~78% of the

total variance (Fig S1A). All five parameters had positive loadings in PC1 (>0.4) and the

CheckM contamination score had positive loadings in PC2 (>0.6) (Table S1). This

result suggested that the deviation of some pools from the singles were mainly due to

contamination (PC1) and allelic variation (PC2).

We also performed an all vs all Pearson’s correlation across the 5 different parameters

mentioned above (Fig S1B). We found CheckM contamination, number of contigs, and

CheckM heterogeneity were positively correlated with each other, suggesting that
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contamination reduced the assembly quality (larger number of contigs). However,

these three parameters did not have high positive correlation with the MAF index nor

with Nucleotide diversity. This showed that contamination and allelic diversity can

independently drive heterogeneity in the pool, and that pooling multiple colonies may

impact sequencing and assembly quality regardless of intra-species diversity.

From our analysis thus far, we have shown that there are pools that behave like

singles, and there are true mixtures. As we mentioned earlier (Fig 2), detecting

multiple MLST types in the pool or measuring pairwise SNP distances between singles

from within a collection are a reliable way to ascertain true mixtures. However, when

the MLST calls are unreliable (unassigned types/undetectable alleles) or

hypothetically if we did not have single colonies, alternative methods would be

required. Therefore, we wanted to test whether the above mentioned parameters

(Number of contigs, CheckM contamination, CheckM heterogeneity, MAF index,

Nucleotide diversity) could serve as predictors for mixed pools and homogeneous

pools.

We performed a logistic regression using the number of contigs, CheckM

contamination and heterogeneity, the MAF index, and nucleotide diversity as

predictor variables to calculate the probability that a given pool is mixed (See

methods). Here, we defined a mixed pool or multi-ST pool as a pool with multiple ST

calls, or a pool corresponding to a collection of singles where the maximum pairwise

SNP distance is > 2800 (0.1% of the S. aureus genome). Our logistic regression model

showed strong predictive ability with a McFadden R2 of 0.59, sensitivity of 1,

specificity of 0.94, and a receiver operating characteristic (ROC) curve with an area
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0.86 (Fig S1C). The maximum variance inflation factor (VIF) across our predictor

variables was < 2.3 indicating low multicollinearity. Overall, these results show that by

using information from multiple statistics, the pool-seq data alone was sufficient to

predict the presence of multi-strain populations with high accuracy.

Fig S1: Variation in pools was primarily driven by contamination and allelic diversity.
(A) PCA loading plot for principal components (PC) 1 (x-axis) and 2 (y-axis) explaining 70% of
the total variance. White dots represent singles and red dots represent pools. 256 pools and
2032 singles were used for PCA. The density of the dots at their corresponding x and y positions
are indicated by the histogram above and to the right of the plot respectively. The variance
explained by each PC is indicated in the corresponding axis labels. (B) Pearson’s correlation
coefficient matrix across five different diversity metrics. Each square indicates the Pearson r
for comparing the corresponding parameters as labelled in the x and y axis. Scale indicates
Pearson’s r ( Darker = higher r). (C) Receiver operating characteristic (ROC) curve of the
logistic model predicting multi-ST pools from parameters in A and B. Area under the curve
(AUC) = 0.86.
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PC1 PC2 PC3 PC4 PC5

MAF Index 0.462809 -0.5268234 0.1029145 -0.186782 -0.6802838

Number of contigs 0.4541359 0.288277 -0.5902644 -0.5812948 0.1560169

CheckM
Contamination

0.4020166 0.6543029 0.0179086 0.5201767 -0.3733174

CheckM
Heterogeneity

0.4418238 0.1308287 0.7578247 -0.2563222 0.3842866

Nucleotide Diversity 0.4719563 -0.4405963 -0.2576384 0.5393737 0.4752164

Table S1: Summary of all five principal components (PC1 - PC5) for five parameters used in
Fig S1. All 254 pools and 2032 singles were used for principal component analysis.

Numbers of variants in pool-seq and eight singles from the same sample are

correlated but pool-seq had greater number

One of the advantages of pool-seq over groups of singles is the potential to discover

mutant subpopulations that may be missing in samples of individual clones. We

measured the number of variant positions that were shared between the pool and at

least one of the eight singles. For each collection, we calculated the number of variant

positions seen both in the pool and in at least one of the corresponding eight singles

as a fraction of the total number of variant positions observed. For analysing variants

in the singles, and the expected and downsampled pools that were built from singles,

we only considered sites with an AF > 0.95. We found that 152 collections out of 254

(~60%) had shared variant fraction >0.5, meaning, more than half the variants found

in each pool and the corresponding singles were identical for 60% of our samples (Fig

S2A). Curiously, we observed 30 collections (~12%) having a shared fraction < 0.05.
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This is what would be expected if these singles and pool-seq were not from the same

sample (Fig S2B). These collections may have been mis-sampled and we opted not to

use them for further comparisons of pools and singles within the same sample. This

brought down our total number of collections from 254 to 224. Out of the 224, 204

were cases where the pool-seq and all eight singles had the same sequence type.

We found that the number of variants found in the pools was greater than the

combined number of variants from the eight singles in 178 out of 224 samples(

~79%). This was as expected as the pools should more often contain more individual

isolates than the collections.

To illustrate this point further we compared the number of variants detected in the

pools against eight singles combined (expected pool), four random singles and two

random singles combined (downsampled pools) and one random single. This was

done to answer the question - How many variants would we have seen if we had

sampled only eight colonies/only four/only two/only one? We considered a variant

present in the expected or downsampled pools if it was present in at least one of the

sampled singles at an AF > 0.95.

We found that 198 pools (~88%) captured more than 75% of all the variants in a

collection (Fig 5A). This was significantly greater than the number of expected pools

(129 pools or 56%) that captured a fraction of variants > 0.75 (Kolmogorov Smirnov p

< 0.01). If we had sampled only one single colony for each collection, only 39% of the

singles would have captured a fraction of variants > 0.75 (Fig 5A - “one colony”).
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Though the number of variants observed in the pools were usually greater than in the

singles, we found that the more singles a variant was present in, the more likely we

were to detect the same variant in the pool. We counted the number of singles each

variant was present in and plotted it against the AF of the same variant in the pool and

found a strong positive correlation (Pearson r = 0.83) (Fig 5B).

Figure S2: Collections with <5% of their total variants shared between pools and singles were
discarded.

(A) Number of shared allelic sites revealed differences in the amount of diversity captured by
single colonies and pools. Each bar indicates a collection, and the height of the bar indicates
the fraction of variants shared between the pools and at least one of the eight corresponding
singles. Black vertical line indicates the threshold for shared fraction below which the singles
and pools are not from the same sample (< 5% of variants shared) (B) Expected fraction of
allelic sites shared between a pool and a random collection of eight singles. Each bar indicates
a collection and the height of the bar indicates the fraction of variants shared between the pool
and at least one of eight singles from a random other collection. The maximum observed
fraction did not exceed ~5% after 10 repetitions.
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Fig 5:Pools were a better representation of the total number of variants in the population
(A) Pools captured more variants than eight single colonies combined. Each bar indicates a
collection and the height of the bar indicates the fraction of variants found in the
corresponding sample group (Pools, expected pools, four colony pools, two colony pools,
single colony) to the total number of variants found in all samples in the collection (Pool plus
all eight singles). For example, a bar with height 0.25 in the fifth row (One colony) shows that
if one random single colony was examined from the specific collection corresponding to the
bar, we would find 50% of the total number of variants found in the collection (Pool plus all
eight singles). Bars for each sample group are ordered by lowest to highest. A value of one
indicates 100% of the variants found in both the pools and all eight singles combined are
represented in the sample group. (B) Allele frequencies in the pool were proportional to the
number of singles the variant was detected in. Boxplots showing allele frequencies of variants
detected in zero singles up to eight singles. Allele frequency of each variant found in the pool
increased as the variant was found in more colonies in the corresponding singles. Boxes show
the interquartile range and whiskers represent values up to 1.5 times the first or third quartile.
White dots represent outliers beyond the whiskers range. Black horizontal line in each boxplot
indicates the mean.
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Numbers of segregating sites in pools and singles from the same sample are positively

correlated

As a bacterial population expands from an introduction event, mutations accumulate

as a function of time (34,35). Subpopulations can segregate from the parent

population by accumulating nucleotide variants at different sites across the genome

and the total diversity across different subpopulations can be altered by bottlenecks

and selective sweeps (8). The number of segregating sites (or within-population

polymorphic sites) can therefore be an important indicator of the demographic

history of the population, and it would be useful to know how well the pool-seq data

could be used to estimate this value. Because we compared pools and singles to a

common reference, a certain number of variants were likely fixed in the ancestor of

the population. We expected these to have an AF of 1 or close to 1 (0.95 or greater) in

both the pools and singles and filtered them out. We also filtered out samples where

the ST of the pools and collection did not match the ST of the auto-chosen reference,

as this would lead to an elevated number of variants. We found a moderate positive

correlation between the number of segregation sites in the true pools and expected

pools of the 198 samples that had matched ST across the pools, singles and the

reference (Fig 6A; Pearson r = 0.352). The number of segregating sites in the collection

ranged from 8 to 1658. While the number of segregating sites was comparable

between the true and expected pools, we also wanted to measure whether the

proportion of the variants in the singles could reliably predict the proportion of the

same variants in the pools. For each collection of sequences, we plotted the AF of the

segregating sites observed in both the expected pool sequences and the true pooled

https://www.zotero.org/google-docs/?xvKqUx
https://www.zotero.org/google-docs/?0hOK2T
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sequences and calculated Pearson's coefficient (r). If the AF of a variant present in an

expected pool was equal to the AF of the same variant present in the true pool, we

inferred that the proportion of the variant in the two populations was comparable. In

other words, the variant frequencies in the eight singles combined (for example, if

variant present in seven out of eight singles, AF = 0.875, if variant present in six out of

eight singles, AF = 0.75… and so on) was equivalent to the variant frequencies in the

pool. In contrast, if the AF of variants between the expected and true pools were not

comparable, the pool-seq was significantly different from the expected pools. The

distribution of r values indicated only 82 collections (41%) with r > 0.5 (Fig 6B). This

result showed that in only less than half of our collections with matched ST, the

proportion of the variants in the singles are positive predictors of the proportion of

the same variant in the pool.
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Fig 6 legend: Allelic variation in pools and singles from the same sample were positively
correlated

(A) The number of segregating sites in the true pools were proportional to the number of
segregating sites in the expected pool. For single-ST collections (collections where all eight
singles, the pool and the auto-chosen reference were called the same ST), the number of sites
with allelic variation was comparable between the true pools (y-axis) and the expected pool
(x-axis) (eight singles combined). If the same site was fixed in all eight singles and in the pool,
it was not included. Blue regression line depicts a linear relationship with a Pearson’s r of
0.352. (B) AFs of variants in the expected pool did not reliably predict the AFs of the same
variants in the true pool. Frequency distribution plot showing Pearson’s r for all 198 single ST
collections. x-axis depicts Pearson’s r and y-axis depicts number of collections.
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A median of one more AMR gene was detected in the pools compared to singles

Finally, we wanted to know if the pools could harbour subpopulations with clinically

relevant genes that may be missing in singles. We annotated AMR genes using

AMRFinderPlus and counted the number of antimicrobial drug classes for which

resistance determinants were found in our pools, individual singles, and in the

pangenome of our expected (all genes eight singles combined) and downsampled (all

genes from two or four random singles combined) pools (36). In 177 collections

(79%), the number of AMR classes was identical in pools and the expected pool. This

group represented the bulk of the low-diversity samples in the study. However,

overall, we observed a median of one additional AMR class in our true pools compared

to the expected/downsampled pools and singles (Fig 7, black vertical line). This

showed that additional genes could be detected in the pool that are absent in the

pangenome of the singles and that these genes can be of clinical relevance. We would

like to note that in all cases where we found mecA in the pools (134 out of 226 pools),

we found mecA in at least one of the eight corresponding singles. A summary file with

all detected resistant determinants for all collections is reported in the supplemental

file ‘Supplemental_dataset_1.xlsx’ available in the github

https://github.com/VishnuRaghuram94/GASP.

We initially used the total number of genes and the number of AMR classes in the

pools as predictor variables in our logistic regression model in Fig S1. We found that

the number of genes were highly multicollinear with CheckM contamination (VIF > 5)

and the number of AMR classes had no predictive power (near identical AUC,

https://www.zotero.org/google-docs/?y4wTkj
https://github.com/VishnuRaghuram94/GASP
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Accuracy, sensitivity and specificity with or without the AMR class parameter), and

therefore did not include them in our final analysis.

Next, we wanted to measure the abundances of AMR genes present in both pools and

the pangenome of the singles compared to AMR genes present in the pools alone. We

hypothesised that in cases where an AMR gene was found in the pools but absent in

the singles, the AMR gene was present at low abundances. To test this, we used

Salmon (37) to estimate the abundance of AMR genes found in both pools and singles,

and compared the abundances to when it was found in the pools alone [Fig S3]. We

found that the mean copy number of genes belonging to a particular class of antibiotic

was significantly lower when it was found only in the pools for eight out of nine AMR

classes (Welch’s t test with Bonferroni correction).

https://www.zotero.org/google-docs/?QXCWD4
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Fig 7: A median of one additional AMR class can be observed in the pools compared to singles.
Ridgeline plot showing number of AMR gene classes detected in pools, the pangenome of
expected and downsampled pools (pangenome of eight, four and two singles combined), and a
random single colony. The x-axis shows the number of AMR classes detected in the sample by
AMRFinder and the y-axis shows the corresponding sample. Black vertical line shows the
median number of AMR classes detected for each sample group. White circles under each
ridgeline represent individual collections and the number of AMR classes detected.

Fig S3: Mean read abundance is lower for AMR genes present only in the pools compared to
AMR genes present in both pools and singles.

For each class of AMR, we estimated the number of reads mapped to each AMR gene in the
AMRFinder database relative to the number of reads mapped to rpoD (relative copy number).
All genes were normalised to 1 kb. For each AMR class, the relative copy number of genes found
in both the pool and the corresponding single (“Both”) were compared against genes for the
same AMR class found only in the pool (“Pool”) using Wilcoxon rank sum test with Bonferroni
correction. ns = p > 0.01; ** = p < 0.001; *** = p < 0.0001; **** = p < 0.00001.
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Discussion

From this study, we derived insights into strategies for sampling genomic diversity of

S. aureus asymptomatically colonised human skin and mucosal surfaces. We found

that in most cases (83%), S. aureus populations were clonal, representing only one ST.

Interestingly, there were no significant differences in the incidence of multi-ST

populations across the three anatomic sites sampled (anterior nares, oropharynx

(throat), inguinal skin), four different timepoints (at participant enrollment, three

months, six months, nine months and twelve months after enrollment), nor across

different culturing methods (direct vs enrichment, see methods). Many of the

conclusions learned from this study could be applied by sampling other bacterial

pathogens (or S. aureus on other hosts/ anatomic sites). Still, as genetic diversity in the

populations may be greater or lesser, different cost benefit tradeoffs may apply.

The primary question that we sought to address was: how many sampled colonies are

sufficient to capture the total intra-species diversity within a host? To answer this

question, we compared pure single colonies, in-silico single-colony mixtures

(expected pools and downsampled pools), as well as total pools of 10s – 100s of

colonies (Fig 1). One significant finding was that in our samples, the S. aureus

within-host diversity for a given body site and time point was relatively low – most

(83%) collections were of a single clonal lineage (Fig 2). In these cases, there was not a

significant amount of additional information that could be obtained from the pooled

samples (Fig 5).
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Fig 8 legend: Number of new variants or new AMR genes observed with the addition of more
sequencing runs.

Dot plot depicting number of new variants (A) or new AMR genes (B) observed for additional
sequencing runs. Red dots depict the first sequencing run being the pool, and the additional
runs being single colonies (1 = Pool, 2 = Pool + one single, 3 = Pool + two singles…). White dots
depict only singles (1 = one single, 2 = two singles, …)

Assuming sequencing one pool incurs one unit cost (cost of time, labour and resources

for sample preparation, storage, sequencing, and analysis), every single colony added

on top of the pool would incur an additional unit cost. For our dataset, one additional

unit cost over the pool (pool + one single) yielded a median of 19 new variants and 0

new AMR gene classes (Fig 8). Moreover, we also showed that the pool alone is

sufficient to predict the presence of a multi-ST population (Fig 3,4, S1).
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The study had some limitations. First, we negated diversity from the true pool by

picking singles prior to pooling the remaining colonies. Our assumption was that the

population in a single colony may be present multiple times on a plate with 100s of

colonies, but this assumption is less likely to hold true in scenarios where there were <

15 - 20 colonies left after picking singles. Ideally, the number of colonies in a pool

should be relatively constant across all samples but in some cases very few colonies

appeared on the selective agar. In other cases, the density of colonies was too great to

measure colony counts accurately. Moreover, laboratory culture media could also

cause biases in population growth. Re-dilution and re-plating were not realistic in a

high-throughput setting, so the colony count of these pools was higher.

Second, our sampling space is narrow - all our samples are from one geographical

location, comprising only nares, throat, and skin swab-acquired S. aureus. Therefore,

the amount of diversity we measured across singles and pools from a given sample

may not apply to cultures from other clinical contexts of S. aureus or other S. aureus

strain types typically colonising people worldwide. Despite these drawbacks, the data

in this study allowed us to compare three strategies for sampling: individual single

colonies, collections of up to eight colonies and pool-seq.

Sampling single colonies in pure culture is the traditional approach for assessing the

genotypic and phenotypic characteristics of bacterial pathogens. Only one sequencing

library is required and the bioinformatic analysis methods are straightforward.

However, sampling only one colony will result in missing multi-strain infections

(17% of the time in our case) and therefore provide an overly simplistic view of the

population structure of the pathogen.



142

The more single colonies sequenced, the better the estimation of true population

diversity (assuming there are no systematic sampling biases in how colonies are

picked from the culture plate). Having collections of single colonies also allows the

construction of within-host phylogenies, observing gene gain/loss events and

inferring demographic changes over longitudinal sampling. However, there is still no

guarantee that the total diversity in the population is represented in the sample

subset. Moreover, the cost of processing and physical and data storage scales linearly

with the number of independent colonies sampled. Deciding the number of colonies to

sample will be a complex calculus of budget and a priori estimation of the population

diversity of the pathogen aligned with goals of the study.

Ideally, pool-seq would provide the best estimation diversity in the population and

many more single colonies can be aggregated than sequenced individually. After

pooling colonies, the stock can be treated as a single sample for storage, sequencing,

and analysis therefore the cost is equal to one single colony, making pool-seq the best

value for identifying variation. Here, we have shown that pool-seq can be used to

accurately estimate the presence of multi-ST infections, can measure segregating

sites within single-ST populations, and are most sensitive at finding AMR genes. The

analysis of pool-seq data, which are effectively single-species metagenomes, are

more complex than single colony sequencing due to variation, especially in multi-ST

samples, and the possibility of contamination. This heterogeneity also leads to

unreliable phenotypic ascertainment. However, predicted phenotypes could be

validated by replating the pool to pick singles.
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Based on our analysis, we recommend that many studies may benefit from using a one

plus pool design, that is sequencing one single colony + pooling and sequencing all

remaining colonies. Using the sample diversity measurements we show in this study,

many of which are obtained from the default outputs of Bactopia, a streamlined

beginner-friendly analysis pipeline, we can ascertain whether significant differences

exist between the single colony and the pool (Fig 3,4). This can aid in deciding

whether sequencing additional colonies from the pool is required. We believe this

approach provides more information than a single colony while demanding little

additional time and labour for sample collection, storage, and analysis. A

disadvantage of processing pooled samples is the reduced sequence quality and

increased likelihood of contamination (Fig 3). However, with the additional

sequencing of at least one pure single colony, this disadvantage can be mitigated.

Methods

Strain sampling

Participants were enrolled into the SEMAPHORE study after presenting with a S.

aureus positive SSTI. Up to four timepoints (every three months for one year) and up

to three body-sites (Anterior nares, oropharynx, and inguinal skin) were sampled for

each participant. Each swab was streaked out onto BBLTM CHROMAgarTM

Staphylococcus aureus (SACA). Suspected S. aureus colonies were verified with a catalase

and StaphaurexTM Latex Agglutination tests. Then, eight individual colonies (singles)

were subcultured onto blood agar and sequenced. The remaining colonies were

pooled, sub-cultured onto blood agar, then sequenced. In cases where there was no

growth from directly plating the swabs, each swab was enriched for growth in tryptic
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soy broth (TSB) overnight. These overnight cultures were then plated, and colonies

were picked as mentioned above. 181 pools and 1448 singles were directly plated on

SACA (Direct cultures). The remaining 73 pools and 584 singles did not show growth

upon direct plating and therefore were enriched in TSB and then plated (Enrichment

cultures).

In this study, we only analysed swabs from which eight singles and a pool were

obtained. Swabs where fewer than eight singles were obtained were not considered. In

total, we obtained 254 pools from 85 participants and eight singles corresponding to

each pool giving us a total of 2286 genome sequences.

Library preparation and sequencing

Genomic DNA extractions were performed using Qiagen kits. Library preparation and

whole genome sequencing were performed by the Children’s Hospital of Pennsylvania

High Throughput Sequencing core using Illumina MiSeq or Hiseq platforms.

Genome assembly, annotation and variant calling using Bactopia

All obtained sequences were processed using the Bactopia analysis pipeline (29).

Bactopia performed adapter trimming using BBTools (38), genome assembly using

SKESA (30) and the assembly quality was assessed using QUAST and CheckM (31,32).

Genome annotation was done using Prokka (39) and AMR genes were annotated using

AMRFinderPlus (36). Variant calling was performed by Snippy (40) using an

automatically selected reference sequence based on the closest MASH (41) distance to

a complete S. aureus genome sequence in NCBI RefSeq. MLST types were identified

using MLST (42).

https://www.zotero.org/google-docs/?YBra0W
https://www.zotero.org/google-docs/?wRQ3Vp
https://www.zotero.org/google-docs/?uOKnrW
https://www.zotero.org/google-docs/?aSdo3Z
https://www.zotero.org/google-docs/?mk0UfS
https://www.zotero.org/google-docs/?Rnwb8x
https://www.zotero.org/google-docs/?auIWIO
https://www.zotero.org/google-docs/?xDRL6C
https://www.zotero.org/google-docs/?Fg1awX
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Pairwise SNP distance calculation, dereplication, and phylogeny

For each group of eight singles in a collection, we used Parsnp v1.5.3 to align the single

colony isolated genomes and used snp-dists v0.7.0 to calculate pairwise SNP distances

(43). To dereplicate singles, isolates with SNP distance < 10 were collapsed into

clusters and a random isolate was chosen as the cluster representative using

Assembly-Dereplicator (44). The final set comprised 294 singles, where each

collection is represented at least once. This resulting set of singles was aligned again

using parsnp and a core genome phylogeny was constructed using FastTree (45,46).

Phylogeny was visualised using ggtree (47)

Number of variants, segregating sites, and allele frequency calculation

We calculated allele frequencies from bam files generated by Bactopia using bcftools

mpileup (48). The reference for each pool was auto-chosen by Bactopia based on the

closest complete S. aureus genome in terms of MASH distance (41). All singles were

then aligned to the same reference as their corresponding pool. Only variants with a

QUAL score > 50 and with at least a read depth of 25 were considered for the analysis.

For each collection, we calculated the allele frequencies for every position across the

genome where there was at least one read piled up with a base call differing from the

reference allele. Variants with frequencies < 0.05 were considered 0 (absence) and >

0.95 were considered 1 (fixed). The allele frequencies for the expected and

downsampled pools were calculated based on the number of singles the variant was

fixed in. For eg: if a variant was present in one out of the eight singles at a frequency >

0.95 (fixed), its allele frequency in the expected pool would be ⅛ or 0.125. Two or four

random singles out of the eight were selected to measure the allele frequencies in the

https://www.zotero.org/google-docs/?sqr6Lu
https://www.zotero.org/google-docs/?PVesXO
https://www.zotero.org/google-docs/?fty5ff
https://www.zotero.org/google-docs/?RKVJOe
https://www.zotero.org/google-docs/?Vqso3C
https://www.zotero.org/google-docs/?aNwJZq
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downsampled pools. Variants with intermediate frequencies in the singles (>0.05 & <

0.95 were not considered).

To calculate the number of segregating sites across the true and expected pools, we

wanted to exclude variants that occurred simply as a result of alignment against a

specific reference. If a given variant was fixed in the expected pool (present in eight

out of eight singles at an AF > 0.95) and also in the true pool (AF > 0.95), we

considered these variants to be ancestral and did not count them as segregating sites.

All remaining sites with AF > 0.05 were counted.

We calculated nucleotide diversity (π) using InStrain (33) using the auto-chosen

reference and the alignment bam file from Bactopia. Expected pools (eight colonies)

and downsampled pools (two and four colonies) were generated by combining equal

proportions of reads from all eight, two or four colonies. For each collection, we used

reformat.sh from the bbtools suite (38) to sample reads 12.5% from all eight colonies

for the expected pool, 50% of reads from two randomly selected colonies for the

two-colony downsampled pool, and 25% of reads from four randomly selected

colonies for the four-colony downsampled pool. All artificial pools (expected and

downsampled) contained 1 million reads.

Logistic regression

Logistic regression was performed in R using the glm function (49). 70% of 254

pool-seq samples were used as the training set and the remaining 30% was used as

the test set. A pool was considered multi-ST if the MLST alleles in the pool and the

corresponding eight singles were not identical. Continuous probabilities from the

logistic regression model were converted to binary using a cutoff of 0.89 (If

https://www.zotero.org/google-docs/?hxhAtb
https://www.zotero.org/google-docs/?ZOx5QN
https://www.zotero.org/google-docs/?ELkbbj
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probability > 0.89, the prediction was considered to be multi-ST). This cutoff was

estimated using the optimalCutoff function from the R package InformationValue

(50). McFadden R2 was calculated using the pR2 function from the R package pscl (51).

Variance Inflation Factor was calculated using the vif function from the R package car

(52).

Statistical analyses and data visualization

All statistics and PCA were performed in R using packages stats and rstatix (49,53). All

plots were visualised using R package ggplot2 (54). Other graphics were created using

bioicons and draw.io (55,56).

Data availability

All code and raw data are available at https://github.com/VishnuRaghuram94/GASP.

All genome sequences used in this study are available under PRJNA918392.
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Abstract

Respiratory infections with bacterial pathogens remain the major cause of morbidity

in individuals with the genetic disease, cystic fibrosis (CF). Some studies have shown

that CF patients that harbour both Staphylococcus aureus and Pseudomonas aeruginosa

in their lungs are at even greater risk for more severe and complicated respiratory

infections and earlier death. However, the drivers for this worse clinical condition are

not well understood. To investigate the interactions between these two microbes that

might be responsible for their increased pathogenic potential, we obtained 28 pairs of

S. aureus and P. aeruginosa from the same respiratory samples from 18 individuals with

CF. We compared the survival of each S. aureus CF isolate cocultured with its

corresponding co-infecting CF P. aeruginosa to when it was cocultured with non-CF

laboratory strains of P. aeruginosa. We found that the S. aureus survival was

significantly higher in the presence of their co-infecting P. aeruginosa compared to

laboratory P. aeruginosa strains, regardless of whether the co-infecting isolate was

mucoid or nonmucoid. We also tested how a non-CF S. aureus strain, JE2, behaved with

each P. aeruginosa CF isolate and found that its interaction was similar to how the CF S.

aureus isolate interacted with its co-infecting P. aeruginosa pair. Altogether, our work

suggests that interactions between S. aureus and P. aeruginosa that promote

coexistence in the CF lung are isolate-dependent and that this interaction appears to

be driven mainly by P. aeruginosa.
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Importance

Previous studies have shown that in laboratory settings, Pseudomonas aeruginosa

generally kills Staphylococcus aureus. However, these bacteria are often found

co-infecting the lungs of cystic fibrosis (CF) patients, which has been associated with

worse patient outcomes. To investigate the interactions between these two bacteria,

we competed 28 co-infection pairs obtained from the same lung samples of 18

different CF patients. We compared these results to those we previously reported of

each CF S. aureus isolate against a non-CF laboratory strain of P. aeruginosa. We found

that S. aureus survival against its corresponding co-infection P. aeruginosa was higher

than its survival against the laboratory strain of P. aeruginosa. These results suggest

that there may be selection for coexistence of these microbes in the CF lung

environment. Further understanding of the interactions between P. aeruginosa and S.

aureus will provide insights into the drivers of coexistence and their impact on the

host.
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Introduction

The majority of the mortality in the inherited disease cystic fibrosis (CF) is due to

bacterial lung infections. It is now appreciated that these respiratory infections are

polymicrobial. The most common pathogens identified by culture methods include

Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae,

Stenotrophomonas maltophilia, Achromobacter species, and the Burkholderia cepacia

complex. Of these, S. aureus has taken over as the microbe most commonly isolated,

while P. aeruginosa remains associated with the majority of the morbidity and

mortality in people living with CF (1).

Studies from our group and others have shown that CF patients that have lung

infections with both S. aureus and P. aeruginosa are at greater risk for more severe

disease and complicated respiratory infections than those infected with either S.

aureus or P. aeruginosa alone (2-4), while other studies have shown no difference in

the clinical outcomes between CF patients infected with P. aeruginosa alone vs. those

co-infected with P. aeruginosa and S. aureus (2, 5, 6). Differences in the patient cohorts

as well as the nature of the isolates themselves have been suggested as potential

reasons for these disparate findings. However, it remains poorly understood how

these species can coexist (i.e., survive together in the same environment) in the CF

lung despite studies from our lab and many others showing that S. aureus is typically

killed when cocultured with P. aeruginosa in vitro (7-10).

To begin to address this question, we examined a collection of S. aureus isolates from

respiratory samples obtained from the Emory Cystic Fibrosis Biospecimen Registry.
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We previously reported the outcomes of competition between these CF S. aureus

isolates and isogenic nonmucoid and mucoid variants of the laboratory P. aeruginosa

strain PAO1 using a coculture assay developed in our laboratory. We categorised these

CF S. aureus isolates based on the competition outcomes: Killed by nonmucoid PAO1

but not mucoid PAO1, killed by both, or killed by neither. However, it is not known how

these CF S. aureus fare against P. aeruginosa isolates that were present in the same CF

respiratory sample – hereon referred to as “co-infection pairs”.

In this study, we competed 28 co-infection pairs of S. aureus and P. aeruginosa against

each other. These isolates were obtained from the respiratory samples of 18 different

CF patients. We also compared the survival of the co-infection pairs in competition

against the previously reported outcomes of each CF S. aureus isolate against mucoid

and nonmucoid PAO1. We found that S. aureus survival against its corresponding

co-infection P. aeruginosa pair was higher than its survival against a non-CF

laboratory P. aeruginosa. This was true regardless of the P. aeruginosa mucoid status,

suggesting possible adaptation between these microbes in the CF lung environment.

Moreover, we found that survival of non-CF S. aureus strain JE2 was comparable to

that of CF S. aureus when competed against CF P. aeruginosa. This suggests that P.

aeruginosa primarily drives the coexistence of these two microbes. These findings set

the stage for future studies that will dissect the mechanisms that allow both microbes

to survive together in the CF lung.
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Materials and Methods

Bacterial strains

All bacterial isolates used in this study were obtained from patients enrolled in the

Emory Cystic Fibrosis Biospecimen Registry (CFBR) (Table 1). The S. aureus isolates

have been previously described, sequenced (11), and characterised (10); their previous

reported interaction with mucoid and nonmucoid P. aeruginosa PAO1 is included in

Table S1. S. aureus JE2 is a USA300 derivative (12). P. aeruginosa isolates were obtained

from the same clinical samples. The mucoid phenotype of P. aeruginosa was assessed

by visualisation after overnight growth on Lysogeny broth (LB) agar and Pseudomonas

Isolation Agar (PIA; BD Difco) at 37°C. The P. aeruginosa co-infection isolates have

also been sequenced; the draft assemblies and the raw Illumina reads have been

deposited in NCBI and are available under BioProject accession number PRJNA776003.

Coculture assay

We performed a quantitative coculture assay previously described in detail (10). We

grew isolates of interest overnight at 37°C in LB from single colonies, taken from PIA

for P. aeruginosa and Staphylococcus Isolation Agar (SIA; TSA BD BBL with 7.5% NaCl)

for S. aureus. These cultures were back-diluted to an optical density of 0.05 and mixed

in a 1:1 ratio, or with sterile LB as monoculture controls; 10 µL of each mixture was

placed onto a 0.45 µm Millipore filter (Millipore-MM_NF-HAWP02500) on a TSA

plate (BD BBL) and incubated at 37°C for 24 hours. After incubation, filters were

removed using sterile forceps and the bacteria were resuspended in 1.5 mL of sterile

LB before serial dilution in LB and plating onto PIA and SIA. After incubation at 37°C
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overnight, colonies were counted and colony forming units (CFU) per mL was

calculated. The fold change of S. aureus CFU/mL was calculated by dividing the

CFU/mL of S. aureus (either CF isolate or JE2 control) grown with P. aeruginosa (either

CF isolate or nonmucoid/mucoid PAO1) over the CFU/mL of each S. aureus isolate

grown in monoculture (Figure S1). The fold change of P. aeruginosa CFU/mL was

calculated by dividing the CFU/mL of P. aeruginosa (either CF isolate or

nonmucoid/mucoid PAO1 control) grown with S. aureus (either CF isolate or JE2

control) over the CFU/mL of each P. aeruginosa isolate grown in monoculture. All

coculture experiments were performed in technical duplicates and at least three

biological replicates. Average CFU/mL for each biological replicate was calculated

from the two technical replicates and this average was used to calculate the CFU/mL

fold change for each biological replicate. Average CFU/mL fold change was calculated

across all biological replicates for each coculture group and these data are represented

in boxplots. To ensure consistency, S. aureus JE2 paired with PAO1 (both mucoid and

nonmucoid) was included as a control in each assay. We observed a JE2 CFU/mL fold

change of ~10-1 when cocultured with mucoid PAO1 and ~10-3 to 10-4 when cocultured

with nonmucoid PAO1 with high reproducibility.

Statistical analysis

The CFU/mL fold change values for the groups of co-infection pairs were tested for

normality using the Shapiro-wilk test. p values < 0.05 were considered non-normal

distributions. The CFU/mL fold change values were then statistically compared using

the Welch’s t-test or the Wilcoxon rank sum test depending on whether or not the

data were normally distributed and p values <0.05 were considered statistically
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significant. Statistical tests were performed using the shapiro.test, t.test and

wilcox.test function in R. Welch’s t-test with false discovery rate correction was used

to compare all individual co-infection pairs using the pairwise_t_test function from

the rstatix package (Table S2).
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Results

S. aureus survives better with its co-infecting CF P. aeruginosa

To determine the interaction between co-infection pairs, we performed coculture

experiments on S. aureus isolates with P. aeruginosa isolates that were obtained from

the same respiratory sample. We calculated the CFU/mL fold change for S. aureus

grown in the presence of its co-infecting P. aeruginosa isolate compared to S. aureus in

monoculture (Table 1). We then compared this data to what we had previously

obtained for these same S. aureus isolates in the presence of P. aeruginosa strain PAO1

(10). Since our previous studies had determined that S. aureus survived better in the

presence of mucoid P. aeruginosa compared to nonmucoid P. aeruginosa (10), we

separated our analysis depending on whether the co-infecting P. aeruginosa isolate

was mucoid or nonmucoid.

We compared the CFU/mL fold change of CF S. aureus cocultured with their mucoid

co-infection partner P. aeruginosa (“CF Sa vs CF Pa”) to the CFU/mL fold change of the

same CF S. aureus cocultured with the non-CF mucoid PAO1 (“CF Sa vs. Mucoid PAO1”)

(Figure 1A, left “mucoid” panel, p=5.089e-11). Similarly, we compared the CFU/mL

fold change of CF S. aureus cocultured with their nonmucoid co-infection partner P.

aeruginosa (“CF Sa vs. CF Pa”) to the CFU/mL fold change of the same CF S. aureus

cocultured with the non-CF nonmucoid PAO1 (“CF Sa vs Nonmucoid PAO1”) (Figure

1A, right “nonmucoid” panel, p=1.847e-05). As seen in each panel in Figure 1A, the

data showed the “CF Sa vs. CF Pa” survival was significantly higher than the “CF Sa vs.

Mucoid/Nonmucoid PAO1” survival, indicating that the CF S. aureus isolates survived

better when cocultured with their co-infecting P. aeruginosa (overall p < 0.05).
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Patient Information S. aureus P. aeruginosa CFU/mL fold
change of Sa

with PaPatient
ID

Date of
collection Isolate name Isolate name Mucoidy

102 4/24/2012 Sa_CFBR_17 CFBR102_Pae_20120424_S_Pa38 mucoid 7.47E-01

105

10/25/2011 Sa_CFBR_29
CFBR105_Pae_20111025_S_EBPa06 mucoid 9.08E-01

CFBR105_Pae_20111025_S_EBPa07 mucoid 9.13E-01

1/17/2012 Sa_CFBR_30 CFBR105_Pae_20120117_S_EBPa09 mucoid 7.50E-01

4/16/2012 Sa_CFBR_31 CFBR105_Pae_20120416_S_EBPa11 mucoid 7.93E-01

6/27/2012 Sa_CFBR_32 CFBR105_Pae_20120627_S_EBPa13 mucoid 9.16E-01

8/2/2012 Sa_CFBR_33 CFBR105_Pae_20120802_S_EBPa15 mucoid 7.45E-01

120 6/27/2012 Sa_CFBR_18 CFBR120_Pae_20120627_S_Pa41 nonmucoid 1.01E+00

123 2/22/2012 Sa_CFBR_19
CFBR123_Pae_20120222_S_Pa44 nonmucoid 9.74E-03

CFBR123_Pae_20120222_S_Pa43 mucoid 3.61E-01

134 3/26/2012 Sa_CFBR_10
CFBR134_Pae_20120326_S_Pa20 nonmucoid 5.13E-01

CFBR134_Pae_20120326_S_Pa19 mucoid 1.16E+00

149 6/27/2012 Sa_CFBR_20 CFBR149_Pae_20120627_S_Pa45 mucoid 5.97E-01

152 1/25/2012 Sa_CFBR_06 CFBR152_Pae_20120125_S_Pa14 mucoid 3.27E-01

170 2/1/2012 Sa_CFBR_07 CFBR170_Pae_20120201_S_Pa15 mucoid 1.04E+00

171 2/8/2012 Sa_CFBR_23 CFBR171_Pae_20120208_S_Pa84 nonmucoid 1.08E+00

196 2/21/2012 Sa_CFBR_08 CFBR196_Pae_20120221_S_Pa17 mucoid 9.64E-01

201 1/17/2012 Sa_CFBR_24

CFBR201_Pae_20120117_S_Pa80 nonmucoid 4.15E-01

CFBR201_Pae_20120117_S_Pa81 nonmucoid 6.15E-01

CFBR201_Pae_20120117_S_Pa82 mucoid 5.04E-01

219 5/29/2012 Sa_CFBR_09 CFBR219_Pae_20120529_S_Pa18 mucoid 6.47E-01

309 5/10/2017 Sa_CFBR_37 CFBR309_Pae_20170510_S_EBPa20 nonmucoid 3.66E-03

336 4/5/2017 SA_CFBR_08 CFBR336_Pae_20170405_S_EBPa24 mucoid 2.54E-01

447 4/5/2017 Sa_CFBR_43 CFBR447_Pae_20170405_S_EBPa28 mucoid 1.55E-04

509 5/25/2017 Sa_CFBR_46 CFBR509_Pae_20170525_S_EBPa32 nonmucoid 2.85E-04

515 2/17/2017 Sa_CFBR_47 CFBR515_Pae_20170217_S_EBPa34 nonmucoid 1.47E+00

530 4/5/2017 Sa_CFBR_48
CFBR530_Pae_20170405_S_EBPa36 nonmucoid 1.13E+00

CFBR530_Pae_20170405_S_EBPa37 mucoid 2.02E+00
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Table 1: Survival of S. aureus (Sa) isolates when cocultured with concurrently isolated P.
aeruginosa (Pa), grouped by patient ID.

Fold change was calculated as described in Materials and Methods. Date of sample isolation
and mucoid status of P. aeruginosa isolate is also indicated.
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Figure 1: S. aureus (Sa) survives better with its co-infecting cystic fibrosis (CF) P. aeruginosa
(Pa).

CFU/mL fold change of S. aureus when cocultured with P. aeruginosa was determined as
described in Materials and Methods. Purple horizontal line shows the CFU/mL fold change of
the reference S. aureus strain JE2 when cocultured with mucoid P. aeruginosa PAO1 (left panels
in A and B) or nonmucoid P. aeruginosa PAO1 (right panels in A and B). Black horizontal line
inside the boxplot shows the median and red horizontal line shows the mean. The white boxes
represent the interquartile range (IQR) and the whiskers represent values up to 1.5x the first or
third quartile. Values larger or smaller than 1.5 x IQR are represented by black dots. Blue solid
line shows a fold change of 1 suggesting no change when grown with P. aeruginosa compared to
monoculture. (A): Boxplot of CFU/mL fold change of cystic fibrosis (CF) S. aureus cocultured
with its concurrently isolated CF P. aeruginosa or mucoid/nonmucoid PAO1. Dots represent
average CFU/mL fold change of each S. aureus isolate and the grey dashed lines connect dots
that correspond to the same S. aureus isolate. Wilcoxon signed rank test showed significant
difference between the mean CFU/mL fold change of CF S. aureus when cocultured with CF P.
aeruginosa compared to the mean CFU/mL fold change of CF S. aureus when cocultured with
mucoid (p=5.089e-11, Shapiro-wilk p=0.001) or nonmucoid PAO1 (p=1.847e-05, Shapiro-wilk
p=3.648e-05). Arrows represent outliers, as described in text. (B) Boxplot of CFU/mL fold
change of CF S. aureus or reference strain JE2 cocultured with its concurrently isolated CF
mucoid/nonmucoid P. aeruginosa. Dots represent average CFU/mL fold change of each S. aureus
isolate and the grey dashed lines connect dots that correspond to the same P. aeruginosa
isolate. Wilcoxon signed rank test/Welch’s t test showed no significant difference between the
mean CFU/mL fold change of CF S. aureus when cocultured with CF P. aeruginosa compared to
the mean CFU/mL fold change of reference strain JE2 when cocultured with CF P. aeruginosa (p
=0.26/0.25, for mucoid/nonmucoid, respectively, Shapiro-wilk p=0.013/0.078, ns = not
significant). Average fold change was calculated from at least three biological replicates (see
Table S1 for raw data).

To distinguish whether the increase in S. aureus survival was due to reduced killing by

P. aeruginosa or increased resistance by S. aureus, we measured the survival of non-CF

S. aureus JE2 against each CF P. aeruginosa isolate. We calculated the CFU/mL fold

change of JE2 in coculture with CF P. aeruginosa, as described above. We then

compared the survival of JE2 against CF P. aeruginosa with the survival of the

co-infecting CF S. aureus against the same CF P. aeruginosa. We found no significant

difference in the response shown by the CF and non-CF S. aureus to the CF P.

aeruginosa. This was true regardless of whether the S. aureus strains were tested

against mucoid or nonmucoid P. aeruginosa (Figure 1B, p=0.26 for “mucoid”, p=0.25

for “nonmucoid”). These results suggested that the increased survival of CF S. aureus

may be driven by reduced killing by P. aeruginosa, as the CF-adapted P. aeruginosa
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showed reduced killing of even a non-CF S. aureus strain.

Mucoid and nonmucoid P. aeruginosa isolates were collected concurrently from

Patients 123, 134, 201, and 530 (Table 1). Previous studies had noted that mucoid P.

aeruginosa strains were more permissive than nonmucoid isolates to S. aureus (13).

Interestingly, we only found this to be the case for P. aeruginosa isolates from Patient

123: as expected the mucoid isolate from this patient was more permissive than the

nonmucoid isolate when cocultured with their co-infecting S. aureus isolate. On the

other hand, mucoid and nonmucoid isolates that were collected concurrently from

Patients 134, 201, and 530 seemed to show similar results to one another; all seemed

to promote coexistence (Table 1).

Figure 2: P. aeruginosa (Pa) survives similarly with its co-infecting cystic fibrosis (CF) S.
aureus (Sa) and JE2.

CFU/mL fold change of P. aeruginosa when cocultured with S. aureus was determined as
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described in Materials and Methods. Purple horizontal line shows the CFU/mL fold change of
mucoid P. aeruginosa PAO1 or nonmucoid PAO1 when cocultured with S. aureus JE2. Boxplot of
CFU/mL fold change of mucoid and nonmucoid CF P. aeruginosa cocultured with its
concurrently isolated CF S. aureus or reference strain JE2. Black horizontal line inside the
boxplot shows the median and the red horizontal line shows the mean. The white boxes
represent the interquartile range (IQR) and the whiskers represent values up to 1.5x the first or
third quartile. Values larger or smaller than 1.5 x IQR are represented by black dots. Blue solid
line shows a fold change of 1. Dots represent average CFU/mL fold change of each P. aeruginosa
isolate, and the grey dashed lines connect dots that correspond to the same P. aeruginosa
isolate. Wilcoxon signed rank test showed no significant difference between the mean CFU/mL
fold change of CF P. aeruginosa when cocultured with its concurrently isolated CF S. aureus
compared to the mean CFU/mL fold change of CF P. aeruginosa when cocultured with reference
strain JE2 (p=0.88/p=0.19, for mucoid/nonmucoid, respectively. Shapiro-wilk p=4.533e-13/
0.0001228, ns = not significant).

We did observe a few outliers in Figure 1A. In the left panel, the white arrow highlights

the data related to Patient 447: Sa_CFBR_43 vs. CFBR447_Pae_20170405_EBPa28.

In the right panel, the black arrow highlights the data related to Patient 509:

Sa_CFBR_46 vs. CFBR509_Pae_20170525_EBPa32. Both these S. aureus isolates

were killed more readily by their co-infecting pair. The two P. aeruginosa isolates were

also able to readily kill the reference S. aureus strain JE2 (comparing Figure 1A and

Figure 1B and Figure S1). These isolates are being investigated further.

To determine whether P. aeruginosa and S. aureus co-infecting isolates were

specifically coevolving together to promote coexistence, we performed coculture

experiments with non-co-infecting isolates. We chose 3 P. aeruginosa isolates (2

nonmucoid and 1 mucoid) and cocultured them with 4 different S. aureus isolates from

different patients and calculated the CFU/mL fold change of S. aureus. For these

studies we did not choose any of the outlier P. aeruginosa or S. aureus isolates (Figure

1A, white or black arrow). We found that the two nonmucoid strains (Figure S2, panel

A and B) showed the same level of killing of the non-co-infecting S. aureus as they did

with their co-infecting isolate. Interestingly, this was independent of whether the



167

non-co-infecting S. aureus was killed by its own co-infection isolate. On the other

hand, we noted that the mucoid P. aeruginosa isolate (Figure S2, panel C) was able to

kill non-co-infecting S. aureus isolates, even though these S. aureus isolates coexisted

with their respective co-infection isolates, as did the S. aureus isolate co-infecting

with this mucoid P. aeruginosa. (Figure S2, Table S3). This suggests that coexistence

may also be affected by specific isolate-dependent interactions.

P. aeruginosa survives similarly with its co-infecting CF S. aureus as it does with JE2

While P. aeruginosa has not been previously found to be negatively impacted by S.

aureus, we also tested the survival of P. aeruginosa with its co-infecting S. aureus as

well as with JE2 (Table S1). As seen in Figure 2, most P. aeruginosa isolates survived

similarly in the presence of their co-infecting S. aureus isolate compared to their

survival in the presence of JE2. This happened regardless of whether the P. aeruginosa

was mucoid (left hand panel; Figure 2; p=0.88) or nonmucoid (right hand panel;

Figure 2; p=0.19). This indicated that there was little effect on survival of P. aeruginosa

by coculture of the S. aureus under the conditions of this assay.
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Discussion

Multiple studies have shown that CF patients co-infected with both S. aureus and P.

aeruginosa are at greater risk for more severe and complicated respiratory infections

(2-4, 6); however, the mechanisms responsible for these outcomes are not well

understood. To uncover the reason for the worsening clinical manifestation, the

processes allowing these two microbes to survive together need to be better

understood. Various studies have shown different stages of growth and environmental

conditions including media and planktonic vs. biofilm modes of growth can promote

the coexistence of S. aureus and P. aeruginosa (9, 14, 15). In some other cases, it has

been found that bacterial segregation promotes survival (15). On the other hand, many

in vitro studies have shown P. aeruginosa itself or P. aeruginosa factors, such as

secreted LasA and rhamnolipids, can lyse or kill S. aureus (7, 16-19). We and others

have previously observed decreased expression of some of these factors in the context

of mucoid conversion of P. aeruginosa promotes coexistence with S. aureus (13, 20).

Some other studies have noted the physiological conditions that allow S. aureus and P.

aeruginosa to survive and grow together (8, 21, 22). Many of the studies to uncover the

mechanism of competition or coexistence have utilised laboratory isolates, however

more recently investigations have been performed with S. aureus and P. aeruginosa

clinical isolates (23-26).

Our goal here was to add to this growing list of studies by investigating pairs of

clinical isolates of these bacteria obtained from the same patient sample on the same

day. By studying paired, particularly longitudinal isolates, we hoped to glean insights

into novel mechanisms of interactions between these two pathogens. We examined 28
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pairs of isolates obtained from 18 CF individuals; 5 of these people provided multiple

samples longitudinally. We hypothesised that isolates of S. aureus would survive better

with P. aeruginosa obtained concurrently compared to a typical P. aeruginosa

laboratory strain. And any P. aeruginosa or S. aureus that behaved differently could be a

source for future comparative studies to identify potential mechanisms of

coexistence.

Overall, our data generally supported our hypothesis: we showed that CF S. aureus

isolates survive better with their co-infecting P. aeruginosa isolates compared to P.

aeruginosa PAO1. We also separated our data based on the mucoid status of P.

aeruginosa isolates in this study (mucoid or nonmucoid) since we know that this

phenotype impacts the interaction with S. aureus (13). We noted that the difference in

survival was more pronounced when comparing the interaction between S. aureus and

the nonmucoid P. aeruginosa isolates vs. S. aureus and the mucoid P. aeruginosa isolates

(Figure 1A). This suggests, as has been previously shown, that mucoidy itself is

already an adaptation that facilitates coexistence (13). We also observed no difference

in the interaction of these co-infecting pairs in our longitudinal samples (all

coexisted). Interestingly, when the S. aureus reference strain JE2 was cocultured with

these P. aeruginosa CF isolates, it showed equivalent susceptibility to P. aeruginosa

killing as the co-infecting S. aureus isolate (Figure 1B). Thus, these results are not

perfectly aligned with our original hypothesis as the reference S. aureus strain was not

from co-infection, which has led us to conclude that P. aeruginosa is the main driver of

this coexistence, as has been suggested by previous studies from our lab and others

(13, 27). Moreover, we competed non-co-infecting CF isolates of P. aeruginosa and S.
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aureus, we found that S. aureus can either be killed by or coexist with P. aeruginosa

regardless of whether or not the two isolates are co-infection pairs (Figure S2). This

suggests that coexistence is isolate-dependent and while P. aeruginosa may be the

main driver of coexistence, S. aureus also plays a role.

The two observed outlier S. aureus and P. aeruginosa co-infection pairs in Figure 1A

(white and black arrow) are currently being investigated. The fact that these two P.

aeruginosa strains are able to kill both their corresponding co-infection S. aureus

partner as well as JE2 supports the idea that P. aeruginosa drives the interaction. In

addition, one of these outlier S. aureus isolates (SA_CFBR_43) may have P. aeruginosa

strain PAO1-specific resistance mechanisms according to our previous study (10).

We are aware that our study has its limitations. While the S. aureus and P. aeruginosa

were obtained from the same clinical sample, the interactions we are examining are

all in vitro and our assay, by design, promotes the interaction between these two

different species. Also, we only examined individual isolates that had been retrieved

by the clinical microbiology laboratory. We know that P. aeruginosa is phenotypically

and genotypically heterogeneous in this environment (28, 29) and some recent

studies have also suggested that S. aureus may be similarly heterogenous (6, 26, 30,

31). Thus, the single isolates that we examined may only represent a subset of the

genotypes/phenotypes present in the respiratory sample. Currently we are obtaining

panels and pools of isolates from clinical CF samples to determine the genotypic and

phenotypic variability and their impact on coexistence. Thus, whether and how these

genotypes/phenotypes correlate with the clinical status of a person with CF at the time

the sample was collected will be an important area for future investigations.
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It is also the case that S. aureus and P. aeruginosa are not the only inhabitants in the CF

lung, and that other microbes might impact the interactions of these two bacteria.

However even with these recognized shortcomings, our study supports the hypothesis

that S. aureus and P. aeruginosa isolated from the same CF respiratory sample have

adapted to promote their coexistence within the CF lung. And since co-infection is a

more deadly situation for people living with CF, understanding what drives S.

aureus-P. aeruginosa coexistence could allow us to devise ways of disrupting this

interaction to improve patients’ prognosis.

Supplementals

Supplemental tables and figures for this chapter can be found in the manuscript

https://journals.asm.org/doi/10.1128/spectrum.00976-22
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Chapter VI – Conclusions and future directions

In this dissertation, I examined the genetic diversity in S. aureus at the species-wide

scale (Macrodiversity) as well as within clouds of clonal isolates from one human

body site (Microdiversity). My results provided new insights into the complex

genetic landscape of this important bacterial species. I highlighted the significance

of understanding subspeciation in S. aureus, as well as that of sampling strategies

and strain diversity in accurately characterising genetic variation. The implications

of my research extend to both clinical and evolutionary microbiology, providing

valuable insights for future studies in these fields. I will summarise and discuss the

key findings of my research in this final chapter.

Macrodiversity

As I performed the analysis for the first results chapter (Chapter II) I learned about

the technical aspects of how to sample genome level diversity of a bacterial species.

First, we started with all publicly available S. aureus genome sequences in NCBI as

of May 2021 - ~80,000 genomes. With a series of filtration steps, we reduced the

dataset down to ~8000 genomes while still maintaining as much of the total

diversity as possible. We outlined an approach for uniform data processing,

filtering and deduplication steps to identify possible misidentifications,

contaminated genomes, and to reduce redundancy. We then used the resulting

curated dataset of ~8000 genomes to build a species-wide S. aureus pangenome. We

believe the pangenome construction approach described in Chapter II can be a

resource for the greater microbial genomics community.
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Our goals with this pangenome were to 1) Assign lineages to all isolates and identify

the total number of S. aureus CCs or lineages that have been sampled; 2) Delineate

the species wide core and accessory genome, as well as identify lineage specific

genes and genes undergoing horizontal exchange between lineages; and 3) Build a

complete representative dataset that can be used for answering several questions

regarding S. aureus genome evolution and subspeciation.

Subspecies formation in S. aureus is hypothesised to be driven by a combination of

cohesive forces driving homogenization within lineages and strong barriers driving

separation between lineages. Restriction modification systems, phage host range,

and CRISPR interference to name a few (1–6). We found that the species fall into

natural clusters separated by genetic identity. We termed these clusters “strain

groups” and found accessory genes specific to these strain groups, as well as

accessory genes that were found indiscriminately across multiple strain groups. We

observed that the accessory genome composition was specific to the core genome

for the prevalent, established strain groups (Strain groups comprising CC8, CC5,

CC30, CC45, CC22). Conversely, we also observed smaller strain groups across the

phylogeny with similar accessory genome compositions. This indicated that they

may be actively experiencing recombination events. We then used the ‘Fixation

index’ or FST to estimate which genes are undergoing rapid turnover. We found

specific accessory genes to be randomly distributed across the phylogeny as well as

other accessory genes to be highly strain group specific, suggesting that they are

fixed or nearly fixed within specific clades. Some of these strain group specific

accessory genes included the Staphylococcal enterotoxin type G and type O (SEG &

https://www.zotero.org/google-docs/?NIipx1
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SEO). Moreover, we also found that SEG and SEO are highly co-occurring. This is a

significant finding as SEG and SEO are potent but relatively understudied

superantigens (7–10). Their co-occurrence in specific strain groups suggests

mechanisms driving co-selection and potentially functional dependence, making

this an interesting avenue of research to follow up on. Strain groups specificity of

other Staphylococcal toxins as well as genes associated with severe disease states

such as CF, bacteremia and SSTIs can also be examined using our dataset. In

addition, analysis of genome-wide co-occurrences can provide more insight into

gene interactions and patterns of bacterial genome evolution (11). Furthermore,

our pangenome can also serve as a database for studying the prevalence and

transmission of phages, plasmids, and other mobile genetic elements (MGE). MGEs

are a major source of toxins and antibiotic resistance markers in S. aureus and being

able to detect and characterise the lineage specificity (or lack thereof) of different

MGEs can serve as a powerful tool for epidemiological investigations. Finally,

estimating genome-wide dN/dS ratios, pseudogenization, and gene turnover rates

can identify hotspots in the genome undergoing selection, provide evidence for

adaptive changes, and highlight genes contributing to long-term fitness (12–14).

Overall, I believe this study has established the groundwork for further research

into uncovering the past and future evolutionary trajectories of S. aureus.

In Chapter III, we found more evidence that the agr quorum sensing operon may

have played a key role in determining the evolutionary trajectory of S. aureus. We

analysed over 40,000 S. aureus genome sequences and their agr operons and

observed strong linkage between clonal complex (CC) and the agr group. We found

https://www.zotero.org/google-docs/?ej20ij
https://www.zotero.org/google-docs/?LF26QV
https://www.zotero.org/google-docs/?DyBTgZ
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that in all cases but one, isolates of given CC contained only one agr group. The only

exception being CC45, having two agr groups. We also found that there are unique

agr gene alleles for each CC, including cases where two CCs have the same agr

group. In addition, we found that the hypervariable region of the agr operon forms

a distinct haplotype block with conserved flanking regions. This suggests the

hypervariable region is a strong candidate for recombination, however we only

observed one case of potential between CC-exchange of agr, in CC45, as mentioned

before. Though there is evidence for transfer of many genes under strong selection

(e.g antibiotic resistance genes) between S. aureus CCs or from other Staphylococcus

species, we did not find evidence of S. aureus CCs having non-cognate AIPs, nor did

we find novel AIPs outside the four defined agr groups (15–19). This suggests

strong selection for maintaining four specific agr groups. We did find that close

relatives of S. aureus - S. argenteus and S. schweitzeri share the agr group-1 AIP

though the other Staphylococci have their own distinct AIPs as well (20). This

suggests that diversifying selection may have also driven emergence of species

specific agr groups. Moreover, in Chapter II, we did not observe any accessory

genes that were unique to agr groups (except agrD) independent of phylogeny. This

implies that the genetic background of the CCs may prevent exchange of agr. This

result makes the fact that we found CC45 to be the only CC having multiple agr

groups all the more interesting, as CC45 may be in the midst of divergence/new-CC

formation.

When non-cognate agr recombinants were engineered by Tan et al, 2022, the

native agr dependent phenotypes (haemolysis, pigment, exoprotein secretion) were

https://www.zotero.org/google-docs/?8kiLsj
https://www.zotero.org/google-docs/?5zbV13
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not observed, suggesting dysregulation of agr regulated genes (21). This

dysregulation is similar to one observed in a Δagr isolate, or an agr mutant isolate

(22). Altman et al, 2018 and Giulieri et al, 2022 suggested that agr mutants have

increased signatures of genome-wide positive selection compared to agr+ isolates

of the same genetic background (12,22). This suggests that the engineered agr

recombinants, due to the agr dysregulation, may also undergo a similar level of

increased positive selection. This explains the lack of naturally occurring agr

recombinants as the transmission capabilities of agr- isolates are reduced. Based on

these results, I hypothesise that agr dysregulation mediated by either non-cognate

agr recombination or mutations, can lead to increased genome-wide mutation

rates. This hypothesis can be tested by conducting an evolution experiment

comparing the mutation rates of a Wild-type strain and an isogenic mutant strain

having non-cognate agr group. (CC8 strain with CC5 agr).

Apart from the evolutionary implications, my work on the agr operon also has

clinical relevance. We found that ~5% of all agr operons have frameshift mutations,

likely rendering them non-functional. This was significantly higher than the

number of frameshift mutations observed in other core genes similar to agr.

Showing that these mutations are indeed frequent across a large set of diverse

strains. This result is significant because the attenuated toxicity mediated by loss of

agr may lead to increased persistence in chronic infection scenarios, altering

antibiotic resistance and causing worse outcomes (23–29). Moreover, we found

that ~50% of these agr frameshifts were identical mutations occurring across

unrelated clonal lineages with no evidence of agr gene exchange. This indicated

https://www.zotero.org/google-docs/?nuHGZi
https://www.zotero.org/google-docs/?eUd7ch
https://www.zotero.org/google-docs/?XqwZqo
https://www.zotero.org/google-docs/?Htx14V
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convergent evolution of frameshift mutations, suggesting they may indeed be

adaptive. In addition, we found that these agr mutants did not survive long-term to

establish a stable lineage circulating across populations. This suggested they may

have traded in their ability to initiate new infections and spread in favour of

increased niche-specific adaptation. This result highlights the importance of using

genomics as a surveillance or diagnostic tool for detecting mutants that can

potentially alter treatment strategies.

Microdiversity

Typically, genomic surveillance efforts for pathogenic bacteria use sequencing data

from single or multiple independently sequenced individual colonies. However,

individual colonies may not encapsulate the complete population diversity found in

the host. Capturing total diversity is important as mutant subpopulations or strains

with different AMR profiles may be missed while only sampling one or few

individual colonies.

First, it is key to understand the factors that impact sequence diversity and our

ability to detect them. To illustrate this, I simulated a mixed population by using

sequencing reads from an artificial ancestral state reconstruction of S. aureus

(Staph-ASR). I conducted in-silico mutagenesis of our Staph-ASR genome by

randomly inducing mutations at the rate of 1/100bp, 1/1000bp and 1/10000bp. I

mixed our WT Staph-ASR sequencing reads with each of the 3 mutant genome

reads in different proportions. I then calculated the minor allele frequency (MAF) at

each position on the mixed genome and plotted a histogram of MAF frequencies.
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Fig 1: Relative proportions and relative genetic identity are major determinants of our
ability to detect sequence mixtures

Each box contains a histogram depicting distribution of minor allele frequencies. Reads
from two simulated S. aureus genomes were mixed in varying proportions. Both genomes
are identical except one contains either 1 mutation every 10,000 bp/every 1000 bp/ every 100
bp. Random reads from the two genomes were mixed in ratios of 50:50, 60:40, 70:30,
80:20, 90:10 and 95:5 . Each row shows a varying number of mutations and each column
shows the mixture proportions as mentioned in the facet headings (top or right).

This simulation highlights the difficulty scale associated with detecting population

heterogeneity. Two factors – relative genetic identity between the mixed

population and the ratio in which the individual members of the population are

mixed, are major determinants of our ability to detect population heterogeneity.

The higher the relative genetic identity between the individual members of the

population, the harder it is to detect, as the number of intermediate allele

frequencies decreases with increased genetic identity. This means a mixture of two

isolates of the same Sequence Type (ST) will be significantly harder to detect

compared to a mixture of two isolates of different Clonal Complexes (CC). Similarly,

populations where one member is an extreme majority (95:5) are also difficult to
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detect, as opposed to an equal mixture (50:50) .

In Chapter IV, we compared pure single colonies with the total population they

were isolated from to evaluate the effectiveness of different sampling strategies.

We analysed 254 pooled populations (pools) of S. aureus and eight pure single

colonies from each of the 254 pools. These samples were obtained from skin swabs

across different body-sites and timepoints from 85 human participants. We set out

to answer 3 main questions - 1) Could the pool-seq data identify clonal S. aureus

populations (comprising a single ST) from mixtures of diverse lineages? - Yes,

based on assembly quality, allele frequencies, nucleotide diversity and

contamination metrics between clonal populations and mixed populations, we

were able to distinguish them with 95% accuracy. 2) Could pool-seq data be used to

estimate the number of variant sites within single-ST populations? - Yes, the

number of variant sites and their allele frequencies were approximately

proportional between the pools and singles. However, the exact allele frequencies

for each variant in the pools did not have strong correlation with the allele

frequencies of the same variant in the singles. 3) Was pool-seq more sensitive in

detecting AMR genes than sequencing single clones? - Yes, overall, we detected

more AMR genes in the pools compared to the singles. However, we do not know

whether this genotypic AMR would translate to altered minimum inhibitory

concentrations (MICs) in the lab. Due to the heterogeneous nature of pools,

phenotypic tests may not be reproducible. This makes estimating the true MIC of

the population to a given antibiotic a challenge. Developing high-throughput

workflows to predict AMR from population sequences and to measure MICs from



185

mixed or metagenomic samples would greatly benefit clinical microbiology.

Collectively, pooled sampling provided more information than a single colony,

making it the best value for estimation of diversity. Once a pool is collected, it can

effectively be treated as a single stock for culturing, storage, sequencing and

analysis. The pool can also be restreaked to obtain pure colonies for downstream

experiments if required. Chapter IV demonstrates the potential for heterogeneity in

highly homogeneous environments, as well as strategies for detecting this

heterogeneity. Strain specific variation should be an important consideration even

while monitoring conspecific microbial communities, especially in clinical settings.

The concept of a “Strain” extends beyond simply naming conventions or

descriptive details. Highly related isolates of the same species can still exhibit

distinct behaviours (30).

The dynamics of polymicrobial interactions are also subject to strain specific

variations. S. aureus (Sa) and P. aeruginosa (Pa) are a well studied microbial

community as they are both ubiquitous nosocomial pathogens capable of causing

chronic infections. Sa - Pa strain specific interactions have been documented with

many recent studies using clinical isolates to investigate this interspecies crosstalk

(31–34). However the precise genetic determinants that alter outcomes of Sa - Pa

interactions are not well studied. In Chapter V, we quantified changes in Sa survival

against Pa obtained from CF lung samples and compared them to the survival of the

same Sa against lab adapted Pa. We used 28 pairs of Sa-Pa with varying strain

backgrounds and we found that Sa-Pa pairs from chronic infections coexist. We

also found that this coexistence is mainly driven by Pa, as lab Sa, a strain that CF Pa

https://www.zotero.org/google-docs/?8ylvIu
https://www.zotero.org/google-docs/?MwEPbF
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has never encountered before, was also not antagonised by the CF Pa. These results

are in line with other similar studies examining Sa - Pa interactions using clinical

isolates. (31,32,35–37). However, most interestingly, we found outliers that defy

these trends. Two Sa isolates were greatly susceptible to their respective

co-infection Pa compared to lab Pa. Finding genomic determinants, if any, of Sa

susceptibility to Pa, as well as increased antagonism displayed by Pa can help

elucidate novel mechanisms of interactions between these two bacteria. Studies

investigating the outlier Sa-Pa pairs are currently underway in the Goldberg lab.

The impact of other S. aureus strain-background related factors such as the CC and

agr group on interaction with P. aeruginosa have not been well studied.

Understanding the effect of P. aeruginosa on agr-mediated virulence by S. aureus

Chapter V further emphasises that specific genotypic or phenotypic characteristics

related to the strain can be drivers of heterogeneity within an ecosystem.

Therefore, it is important to devise sampling and analysis strategies that

incorporate capturing this microdiversity.

https://www.zotero.org/google-docs/?7squV6
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Infectious disease microbiology in the era of big data

Living organisms experience their surrounding environment on a unique range of

scales. If one were to study any given organism, the scale at which research is

conducted is a deliberate choice. ‘Scale’ here simply refers to context, and the

context determines the nature of the research questions that can be answered. The

scale at which a phenomenon is observed is not the only scale that is impacted by

said observation, nor is it the only phenomenon that is occurring. Therefore,

connecting observations made at different scales of space and time is the key to

understanding patterns in any given ecosystem. These were some of the key points

put forth by Dr. Simon Levin in the 1992 paper ‘The problem of pattern and scale in

ecology’ (38). With better sample collection and monitoring technologies, and a

better understanding of the importance of scale, it has become significantly easier

to develop models that analyse and describe biological patterns. As the amount of

data available is growing exponentially, it is feasible now more than ever to

aggregate data across vastly different scales, giving multiple perspectives on the

same phenomena.

Over the last two decades, multidisciplinary science has become the norm, allowing

us to find appropriate bridges between different scales. Vast improvements in

technology, especially with regards to high-throughput whole genome sequencing

has completely changed our approach to infectious disease research.

https://www.zotero.org/google-docs/?No60uu


188

Fig 2: Bar chart showing total number of short-read sequences available per species from
January 2010 to February 2023 in NCBI.

The amount of publicly available bacterial sequences have rapidly increased over

the last 10 years, and most of the sequencing efforts are focused on pathogenic

bacteria, S. aureus being one of them (Fig 2). This offers the opportunity to examine

these pathogens from a species-wide scale spanning several decades, as well as

from a smaller scale of person-to-person/person-to-environment contact

required for transmission. Both scales are necessary to understand the evolution of

this pathogen and provide much needed insights on the different paths to bacterial

infection and survival. This PhD dissertation is but a short example of how

combining data across scales, multidisciplinary science, and technological

advancements can come together to provide new insights into infectious disease

microbiology.
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