
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or
books) all or part of this thesis.

Yixiao Chen April 8, 2023

Efficient Training of Input Convex Neural Networks Using Variable Projection

by

Yixiao Chen

Lars Ruthotto
Adviser

Mathematics

Lars Ruthotto

Adviser

Robert Roth

Committee Member

Ruoxuan Xiong

Committee Member

2023

Efficient Training of Input Convex Neural Networks Using Variable Projection

By

Yixiao Chen

Lars Ruthotto

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Mathematics

2023

Abstract

Efficient Training of Input Convex Neural Networks Using Variable Projection
By Yixiao Chen

Normalizing flows are deep generative models that construct a diffeomorphic mapping
between a simple reference distribution and a complex probability distribution.

Previous studies have utilized the gradient of input convex neural networks (ICNNs) to
represent the diffeomorphism, which guarantees invertibility for any network weights.

Moreover, the resulting mapping constitutes a unique optimal transformation that minimizes
transportation costs, as dictated by optimal transport theory.

Training ICNNs presents a challenging non-convex optimization problem, except for weights of
the last layer.

To address this issue, this thesis proposes a training approach for ICNNs using variable
projection (VarPro).

The proposed method takes advantage of the affine mapping in the last layer of ICNNs, which
preserves convexity of the network.

Empirical results based on a two-dimensional synthetic dataset demonstrate that VarPro
achieves a lower test loss and requires fewer gradient evaluations compared to the mini-batch
gradient descent method Adam.

Efficient Training of Input Convex Neural Networks Using Variable Projection

By

Yixiao Chen

Lars Ruthotto

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Mathematics

2023

Acknowledgements

I am honored to express my deep appreciation to Emory University for providing me with a
wealth of academic resources and invaluable research opportunities. I am incredibly grateful to
my esteemed committee members, Dr. Ruthotto, Dr. Roth, and Dr. Xiong, for their unwavering
support and guidance throughout my research project. Dr. Ruthotto's continuous support and
willingness to answer all my queries unreservedly were crucial in overcoming the challenges I
encountered during the project. His dedication to the field and willingness to share his
knowledge and experience with others is truly inspiring, and I have learned so much from our
interactions. Dr. Roth's direct research experience during my junior year and continued support
throughout this project have been invaluable in shaping my research skills. Dr. Xiong's
inspiration to engage in machine learning research and her insightful advice for conducting
academic research were significant contributions to my success, and I am grateful for her
mentorship.

I am also indebted to Dr. Verma for his guidance and constructive feedback, which played a
vital role in the successful completion of my project. His keen insights and analytical skills have
helped me refine my research question and methodology. Additionally, I extend my
appreciation to my best friend, Oliver Wang, who has been an invaluable study and research
partner throughout the project. His support and encouragement were instrumental in keeping
me motivated.

I also wish to acknowledge the exceptional faculty, including Dr. Xi, Dr. Just, Dr. Mayo, and Dr.
Ananth, for their encouragement of academic research and providing me with opportunities to
explore different fields of study. Their mentorship and guidance have been instrumental in
shaping my academic journey.

Finally, I want to express my heartfelt gratitude to my family for their unwavering love and
support, which has been a constant source of strength and inspiration throughout my academic
journey. I am incredibly fortunate to have such supportive and loving family members who
have always encouraged me to pursue my passions.

Once again, thank you to everyone who has played a role in my success. Your support and
guidance have been invaluable, and I am grateful for the opportunities you have provided me
to grow and excel.

Contents

1 Introduction 1

1.1 Contribution & Outline . 3

2 Background 5

2.1 Convex Potential Flows . 6

2.2 Variable Projection . 10

3 E�cient Method in Training ICNNs 12

3.1 Sample Average Approximation 13

3.2 Training ICNNs with Variable Projection 14

4 Numerical Experiments 19

4.1 Experiment with Moons Dataset 20

5 Discussion 23

6 Conclusion 25

List of Figures

1.1 Normalizing Flows . 2

2.1 Variable Projection for Classification Problem 11

4.1 Convergence of Training and Validation Loss 21

4.2 Generative Sampling for Moons Dataset 22

1

Chapter 1

Introduction

Generative modeling has a wide range of applications in computer vision [3],

natural language processing [15], image generation [4], and many more. For

instance, image generation, such as creating synthetic celebrity portraits,

entails producing new images that closely resemble a limited quantity of

available data [4]. Bridging the gap between these diverse applications, deep

generative models have emerged as a powerful tool to capture the underlying

structure and features of the data.

Deep generative models utilize deep neural networks to learn complex

probability distributions from a finite number of independent and identically

distributed samples. The primary objective of such models is not only to

generate additional samples that are similar to the available data but also

to estimate the density of the underlying distribution. Normalizing flows are

one type of deep generative models that leverage the concept of a di↵eo-

2

morphic1 and orientation-preserving mapping from Rn to Rn to model the

generator [14]. By utilizing this mapping, we can generate new samples from

a reference distribution via the generateor, while also estimating the density

of the complex probability distribution with the inverse of the generator; see

Figure 1.1 for an illustration.

latent space, q = 2 data space, n = 2

generate samples with g✓

estimate density with g
�1
✓

Figure 1.1: Normalizing flows between target and reference distribution[14].
Generate new samples from the target distribution using g✓ and estimate the
target density with g�1

✓ , where ✓ are weights of the neural networks.

A considerable amount of existing literature has attempted to represent

the di↵eomorphic mapping. One notable proposal by [7] involves parame-

terizing normalizing flows via the gradient of input convex neural networks

(ICNNs) using optimal transport theory. Given that ICNNs provides a uni-

versal approximation of convex functions, their gradient establishes a di↵eo-

morphism for any choice of network weights, ensuring the invertibility of the

map. Additionally, this mapping approximates the Kantorovich potentials,

which provide optimality with respect to the lowest transportation cost [7].

ICNNs’ weights are typically updated following the maximum likelihood

1A di↵eomorphic function g : Rn ! Rn is a function that is invertible and both g and
g�1 are continuously di↵erentiable.

1.1 Contribution & Outline 3

training scheme. However, training ICNNs is significantly challenged by large

number of weights and the non-convexity of the loss function in all layers

except for the last one. This is due to the nonlinear nature of ICNNs, and

the preservation of convexity is only guaranteed for weights that enter in

an a�ne manner. To address the challenge of training ICNNs, we draw

inspiration from recent work on training deep neural networks for regression

and classification [12, 10] and exploit the separable structures of ICNNs.

1.1 Contribution & Outline

This thesis proposes a novel approach for training ICNNs using variable

projection (VarPro). The proposed method leverages the a�ne mapping in

the last layer of ICNNs, which guarantees convexity of the objective func-

tion in the last layer’s weights. To be specific, the last layer’s weights are

updated initially by solving a smooth convex optimization problem of mod-

erate size. Since some components of the weights of each layer of ICNNs are

constrained to be non-negative to preserve convexity, we implement an inte-

rior point method that utilizes a log barrier to approximate the constraint in

the objective function.

Based on empirical results obtained from a two-dimensional synthetic

dataset, the e↵ectiveness and e�ciency of the proposed VarPro approach is

demonstrated. Specifically, the results show that VarPro outperforms the

mini-batch gradient descent method, Adam, in terms of achieving a lower

1.1 Contribution & Outline 4

test loss and requiring fewer gradient evaluations.

This thesis will consist of several key chapters. Chapter 2 will provide

an in-depth background on convex potential flow and variable projection,

which will serve as the foundation for the proposed training approach. In

Chapter 3, the proposed approach for training ICNNs will be elaborately

explained, highlighting the e�cient implementation techniques used. The

results of numerical experiments conducted using the proposed approach will

be presented in Chapter 4. In Chapter 5, future directions and potential areas

of improvement for the proposed approach will be discussed. Finally, Chapter

6 will provide a comprehensive conclusion, summarizing the contributions of

the thesis and their significance in the context of the broader field.

5

Chapter 2

Background

In this chapter, we delve into the brief introduction of convex potential flows

(CP-flow) proposed by [7], which serves as the main framework for our study.

We then describe an in-depth explanation of the training problems associ-

ated with it. Our primary focus is on training ICNNs, which serve as the

parametrization for normalizing flows in CP-flow. We also explore the exist-

ing work on utilizing variable projection for training deep neural networks in

regression and classification problems. We note that the last layer of ICNNs,

like most state-of-the-art deep neural networks, comprises an a�ne mapping.

This leads to our main contribution, which proposes a numerically e�cient

method for training ICNNs.

2.1 Convex Potential Flows 6

2.1 Convex Potential Flows

A normalizing flow is a sequence of transformations that maps a reference

distribution ⌘ to a complex target distribution X :

g✓(z) = f✓k
� f✓k�1

� . . . � f✓1(z).

where z ⇠ ⌘, f✓k
: Rn ! Rn are the transformations, and k is the depth

of the network. Each transformation must be invertible and di↵erentiable

with a tractable Jacobian determinant to allow for e�cient sampling and

likelihood computation [14].

To represent each transformation, [7] proposed using input convex neural

networks (ICNNs). Specifically, they model the inverse of the generator using

gradient of ICNNs �✓ : Rn ! R with having weights ✓ 2 Rp. The weights

are then trained such that the r�✓ : Rn ! Rn ensures that r�✓(x) ⇠ ⌘,

where x ⇠ X . The gradient of �✓ is a di↵eomorphism for any choice of ✓

due to the convexity of the function. Moreover, the mapping approximates

the Kantorovich potentials, which ensures optimality according to optimal

transport theory. After training, new samples can be produced using g✓(z) :=

r��1
✓ (z), which leads to a convex optimization problem described in detail

in [7].

The normalizing flows that [7] used are parameterized by l-layer (fully)

2.1 Convex Potential Flows 7

input convex neural networks (ICNNs) introduced in [1], which take the form:

ui = �i(L
+
i ui�1 +Kix+ bi), for i = 1 . . . l � 1, (2.1)

�✓(x) = u` = L
+
l ul�1 +Klx, u0 = x. (2.2)

Here, ui represents the layer activations, ✓ = {L+
i ,Ki,bi} denotes the param-

eters or weights, and �i are non-linear activation functions. To ensure con-

vexity, it is necessary to constrain the parameters L+
i to be non-negative and

the activation functions to be convex and non-decreasing, as demonstrated

in [1] and [2]. The corresponding gradient and Hessian can be expressed as

following:

r�✓(x) = rul�1(x)L
+>
l +K

>
l

r2�✓(x) = r2
ul�1(x)L

+>
l

which are both linear in the last layer’s weights.

Since [7] leverages the gradient of the ICNNs to represent each trans-

formation, the resultant mapping is a composition of gradients of ICNNs.

Therefore, we can only utilize the linearity of the weights in the last layer of

the last ICNN to the entire training process. In this project, we will discuss

the e�cient training method for one ICNN whose gradient represents the

di↵eromophic mapping.

To learn the weights ✓ of ICNNs, we adopt the maximum likelihood train-

ing scheme. Given the assumption of normalizing flows following a di↵eo-

2.1 Convex Potential Flows 8

morphic function, we can use the change of variable formula to approximate

the likelihood of a given data point x from the target distribution X [14]:

⇢X (x) ⇡ ⇢✓(x) = ⇢⌘

�
g
�1
✓ (x)

�
detrg

�1
✓ (x)

= (2⇡)�
n
2 exp(�1

2
||g�1

✓ (x)||2) detrg
�1
✓ (x).

Here, ⇢X denotes the true target density, ⇢✓ is the approximate target den-

sity, and ⇢⌘ is the reference density. A common practice for utilizing this

approximation to train optimal weights is by minimizing the negative log-

likelihood:

Ex⇠X [� log ⇢X (x)] ⇡ Ex⇠X [� log ⇢✓(x)]

= Ex⇠X


�n

2
log(2⇡) +

1

2
||g�1

✓ (x)||2 � log(
��detrg

�1
✓ (x)

��)
�
.

Since the first term of the negative log-likelihood is a constant, we can ignore

it and focus on minimizing the second and third terms:

argmin
✓

J (✓) = Ex⇠X


1

2
||g�1

✓ (x)||2 � log(
��detrg

�1
✓ (x)

��)
�
.

This is also equivalent to minimizing the Kullback-Leibler (KL) divergence

between the true density and modeled density:

DKL [⇢X k ⇢✓] :=
Z

Rn

⇢X (x) log

✓
⇢X (x)

⇢✓(x)

◆
dx = Ex⇠X


log

✓
⇢X (x)

⇢✓(x)

◆�
.

2.1 Convex Potential Flows 9

Since the density ⇢X (x) is unknown and independent of our model, we aim

to minimize the other term which corresponds exactly to the negative log-

likelihood.

For gradient of input convex neural networks as the inverse of the gener-

ator specifically, we have the following loss function:

J [�✓] = Ex⇠X


1

2
kr�✓(x)k2 � log detr2�✓(x)

�
. (2.3)

Stochastic gradient descent method, and its variants, Adam [8], are com-

monly used for weights training. A key observation here is the objective

function is convex in �✓, since both r�✓(x) and r2�✓(x) are linear trans-

formation of �✓, and the square norm of a convex function preserve convexity

and the log-determinant of a matrix is concave. Therefore, the addition be-

tween two convex function presevre convexity. The non-convexity of the loss

function J in the weights µ of all layers except for the last presents a signif-

icant challenge. This is due to the nonlinear nature of ICNNs and the fact

that preservation of convexity is only guaranteed for weights that enter in an

a�ne manner. Nevertheless, since the last layer of ICNNs is indeed an a�ne

mapping that preserve convexity proved by [2], we could exploit this fact to

make the training more e�cient.

2.2 Variable Projection 10

2.2 Variable Projection

Variable projection (VarPro) is a method initially developed for solving non-

linear separable least square problems, as defined by Golub and Pereyra

[6]. The key idea here is to eliminate the linear parameters in the objective

function by solving a convex optimization problem. For details, see [5]. This

method o↵ers a significant advantage in terms of convergence since it requires

fewer iterations to converge than the minimization of the full objective prob-

lem due to the better-conditioned reduced problem. Numerical experiments

have been conducted to verify the e�cacy of this approach [13].

Both [12] and [10] have explored the use of VarPro for training deep

neural networks (DNNs) on regression and classification tasks. Since most

of state-of-art architecture of DNNs’ last layers are a�ne mapping, the main

idea is to use VarPro to obtain a reduced loss function from the original

loss function. By solving an optimization problem for linear weights in the

last layer in terms of function of the other nonlinear weights, we implicitly

account for the coupling between the linear weights and the nonlinear weights

when eliminating the linear parameters from the loss function, which leads

to a faster convergence as illustrate by Figure 2.1.

2.2 Variable Projection 11

Iteration 1 Iteration 15 Iteration 30 Iteration 45

F
u
ll
G
N

accuracy: 75.96% accuracy: 75.02% accuracy: 88.46% accuracy: 89.22%

G
N
vp

ro

accuracy: 75.96% accuracy: 98.07% accuracy: 99.93% accuracy: 99.97%

Training data

Figure 2.1: Binary classification problem trust region Gauss-Newton-Krylov and
Tikhonov regularization with and without VarPro [12]. We observe that Gauss-
Newton-Krylov with VarPro (GNvpro) completes the classification task with fewer
iteration and higher accuracy than Gauss-Newton-Krylov without VarPro (Full
GN) because GNvpro implicitly accounts for coupling.

12

Chapter 3

E�cient Method in Training

ICNNs

In this chapter, we introduce the numerical e�cient approach for training

ICNNs. Motivated by existing work of VarPro training for least square loss

and cross-entropy loss, we employed Varpro training scheme for negative log-

likelihood loss. We begin by approximating the expectation by sample aver-

age and rewriting the loss function in terms of linear weights and nonlinear

weights, followed by detailed explanation of how to solve the inner and outer

problems for training ICNNs. Finally, we will present the implementation of

the training schemes.

3.1 Sample Average Approximation 13

3.1 Sample Average Approximation

In this work, we leverage the separable structure of ICNNs as defined in (2.1),

�✓(x) = ul = L
+
l ul�1 +Klx

where the last layer is an a�ne mapping:

�✓(x) = w
>
fµ(x), (3.1)

Here, fµ = [ul�1,x]T : Rn ! Rm denotes all but the last ICNN layer, m

is the width or the number of neurons of the penultimate layer, µ are the

weights of all but the last layers, i.e. {L+
1 ,K1,b1, ...,L

+
l�1,Kl�1,bl�1}, and

w 2 Rm are the weights of the last layer, i.e. [L+
l ,Kl]T . Notably, the model

is linear in w, and thus, the objective function is convex in w. However, to

preserve the convexity, all components in w except those mapping input path

to output are constrained to be non-negative, which follows the structure of

the layer of ICNNs. The nonegativity constraints defined the feasible set of

w, which will be introduced when training ICNNs.

To approximate the expected value in the loss function in (2.3), we use

sample average approximation (SAA) that leads to a deterministic optimiza-

tion problem that using large batches of randomly chosen sampleN (su�cient

3.2 Training ICNNs with Variable Projection 14

large sample to avoid overfitting):

J [�✓] ⇡ J [�✓] =
1

N

NX

j=1


1

2
kr�✓(xj)k2 � log detr2�✓(xj)

�
,

and then minimize J with respect to the parameters of �.

Given the separability of ICNNs (3.1), we can rewrite the loss function

as:

J(µ,w) =
1

N

NX

j=1

"
1

2
krfµ(xj)wk2 � log det

mX

i=1

wir2
f
(i)
µ (xj)

#

where f
(i)
µ denotes the ith component of fµ.

3.2 Training ICNNs with Variable Projection

We divided the training problem of ICNNs into the inner problem:

w(µ) = argmin
w2A

J(µ,w), where A is the feasible set (explained in 3.1)

and reduced problem:

Jred(µ) = J(µ,w(µ))

according to the VarPro training scheme.

3.2 Training ICNNs with Variable Projection 15

The inner problem is indeed a constraint convex optimization problem:

min J(µ,w), s.t. wi � 0 for i = 1, 2, . . . ,m� n.

Here, we use log barrier method to reformulate the objective function via an

indicator function:

J(µ,w) +
m�nX

i=1

I�(wi),

where I�(u) = 0 if u � 0, I�(u) = 1 otherwise.

Here, the indicator function is approximated by logarithmic barrier:

Jlog(µ,w) = J(µ,w)� 1

t0

m�nX

i=1

log(wi),

and the approximation improves as t0 ! 1 since the duality gap is defined

by m/t0 [2]. This approximation allows us to have twice di↵erentiable loss

function whose gradient and Hessian are:

rJlog(µ,w) = rJ(µ,w)� 1

t0


w

�1
1 , . . . , w

�1
m�n, 0, . . . , 0

�T
, (3.2)

3.2 Training ICNNs with Variable Projection 16

where last n entries of the vector in the second term is zero;

r2
Jlog(µ,w) = r2

J(µ,w) +
1

t0

2

666666666666664

w
�2
1

. . .

w
�2
m�n

0

. . .

0

3

777777777777775

(3.3)

Then we employ Newton’s method for each centering steps and updating

t0 until the duality gap is smaller than the tolerance.

Algorithm 1 Log Barrier Method for Updating w

given feasible initial w, t0 := t
(0)
0 > 0, c > 1, duality gap tolerance ✏1,

newton decrement tolreance ✏2.
repeat

1. Centering Step and Update:
repeat

i. Compute Newton step and decrement.

�wnt := �r2
Jlog(µ,w)�1rJlog(µ,w)

�
2 := �rJlog(µ,w)Trwnt

ii. Stopping criterion for newton. quit with w
⇤(t0) if �2

/2 < ✏2

iii. Line search. Choose step size t by backtracking line search.
iv. Update. w := w + t�wnt

Obtain updated w := w
⇤(t0)

2. Stopping criterion for barrier method : quit if m/t0 < ✏1

3. Shrinking duality gap by updating t0: t0 := ct0

Then, after we obtain the reduced optimization problem, the nonlinear

3.2 Training ICNNs with Variable Projection 17

weights can be updated in di↵erent ways, e.g., using gradient descent or

`BFGS. Noted here, the gradient of the reduced objective function is:

rµJred(µ) = Jµw(µ)TrwJ(µ,w(µ)) +rµJ(µ,w(µ)) (3.4)

where Jµw(µ) is the Jacobian of w(µ). In previous work using VarPro in

training DNNs by [12, 10], the optimality condition of the inner problem is:

rwJ(µ,w(µ)) = 0

Then, they updated the nonlinear weights without tracking the gradient of

the inner problem. Nevertheless, since we use interior point method for solv-

ing the inner problem the gradient may not be zero for optimality condition

when the solution is close to the boundary [2].

However, when we perform the gradient check using Taylor Remainder,

the gradient of the reduced problem is still accurate even when we do not

track the gradient of the inner problem. Here, we can formulate the first-

order Taylor Remainder gradient check as the following:

error = |Jred(µ) + hrJred(µ)
>�µ� Jred(µ+ h�µ)|

where�µ is a small perturbation of all the network weights except for the last

layer µ. We observe that the error converge like O(h2) as h ! 0, indicating

the first term in 3.4 is still small.

3.2 Training ICNNs with Variable Projection 18

h error ratio

1.00e+00 1.76e-02 -
5.00e-01 4.33e-03 4.06e+00
2.50e-01 1.06e-03 4.08e+00
1.25e-01 2.75e-04 3.85e+00
6.25e-02 6.68e-05 4.12e+00

Table 3.1: Taylor reminder graident check for the gradient of nonlinear weights

Here, the error converge approximately like O(h2) due to the fact that

we use log barrier to approximate the constraint. We will discuss alternative

method in the discussion section for solving this interior point method.

Then, we can updated the nonlinear weights with `BFGS without tracking

the gradient when solving the inner problem.

Finally, we present the entire algorithm below:

Algorithm 2 E�cient Training ICNNs with VarPro

Inputs: A Large Batch T = {xj : j = 1, 2, . . . , N} from distribution X ,
Forward propagate

1: for j = 1, . . . , N for T do

2: �✓(xk) = w
T
fµ(xk)

3: end for

Evaluate Jc with SAA and applying VarPro

4: w(µ) = argminw2A J(µ,w) (Solving by Algorithm 1)
5: Jc = Jred(µ) = J(µ,w(µ))
6: rJc = rµJred(µ)
7: Optimize µ with `BFGS or gradient descent method
8: Repeat until convergence

19

Chapter 4

Numerical Experiments

In this section, we demonstrate the e↵ectiveness and e�ciency of our training

scheme in moons dataset (two dimension synthetic dataset). We present

the baseline training scheme with Adam and then compare it with variable

projection training schemes. We perform the experiment on Google Colab

with Python 3 Google Compute Engine backend, a part of Google Cloud

Platform (GCP), which provides scalable and customizable virtual machines

to meet various computational requirements. We largely utilize the pytorch

optimization package in updating weights with Adam and `BFGs optimizer.

Experiments with the two dimension AI synthesis dataset Moons show

that variable projection training scheme is more e�cient in updating weights

of ICNNs in terms of achieving a lower test loss and fewer gradient evaluation

than the basline training method with Adam.

4.1 Experiment with Moons Dataset 20

4.1 Experiment with Moons Dataset

We consider test loss and number of gradient evaluation as the two primary

metrics. We define the gradient evaluation of a single forward propagation

and backward propagation for one sample as one work unit. Although train-

ing with variable projection (VarPro) necessitates additional computational

cost for solving the inner problem, this extra cost is negligible compared to

the cost of one work unit. We also leverage the fast computation of Hessian

matrices in [11] for VarPro training.

We use the stochastic approximation and updating all weights of ICNNs

using Adam as our baseline. The ICNN used for experiment has 4 hidden

layers and 32 neurons per hidden layer. We use the PyTorch Adam optimizer

with learning rate = 0.05. We use a mini-batch with size 64. We then employ

the VarPro training schemes and updating the nonlinear weights with Adam

(Adam VarPro) and `BFGs (`BFGs VarPro) for the same initialization of

weights. For sample average approximation, we use a large batch with size

512 for Adam VarPro and size 1024 for `BFGs VarPro.

We found that the convergence of `BFGs largely depends on initialization

of weights. This is expected since `BFGs, like other quasi-Newton methods, is

sensitive to the initilization [9]. Additionally, Adam VarPro resulting results

in higher training and validation loss at convergence since this do not follow

the principle of sample average approximation and the expectation in 2.3 is

intractable. However, this method serve as a good warm up for initialization,

4.1 Experiment with Moons Dataset 21

which results in our preferable training scheme Adam-`BFGs VarPro.

Training Validation Test
Full Adam �1.15± 0.07 �1.12± 0.04 �1.13± 0.03
Adam VarPro �1.04± 0.14 �0.98± 0.11 �0.96± 0.13
Adam-`BFGs VarPro �1.35± 0.04 �1.33± 0.06 �1.32± 0.05

Table 4.1: Training, validation, and test results for training ICNNs. The sample
size for both validation and test are 5000. We report mean loss and standard
deviation where the smaller values indicate better fit.

Figure 4.1: We plot the convergence of the training and validation loss among
three methods versus number of working units. Adam VarPro and Adam-`BFGs
VarPro both converge faster than Full Adam with less working units, but Adam-
`BFGs VarPro converge to lower training loss.

4.1 Experiment with Moons Dataset 22

Figure 4.2: Left: Training with Full Adam. Right: Training with Adam-`BFGs
VarPro. For each graph, Top Left: samples from the target distribution. Top
Right: distribution of the inverse map outputs. Bottom Left: samples from the
reference distribution. Bottom Right: generated samples.

23

Chapter 5

Discussion

The numerical results presented in Figure 4.1 suggest that training ICNNs

with variable projection (VarPro) results in a lower test loss and fewer gra-

dient evaluation for training the moons dataset. However, the generated

samples in Figure 4.2 imply that representing the di↵eomorphic mapping by

one ICNN may not be the best mapping we would like to adpot eventually.

We could implement this variable projection technique to train other ICNN-

based models. Applying this training scheme to original mapping described

in [7] could result in faster convergence and lower test loss. Nevertheless, we

can only use variable projection for the last ICNN since the original mapping

is a composition of ICNNs.

In addition to original mapping, we consider to apply this training scheme

to the triangular convex flows introduced recently. Since the mapping is

parametrize with fully input convex neural networks and partially input con-

24

vex neural networks (a slightly di↵erent architecture which will results in

a more complicated inner problem), we could potentially apply the VarPro

training scheme to both networks to reach a better result.

Finally, other alternative constraint optimization method like primal-dual

interior point method [2] could be also applied to solve the inner problem

more e�ciently.

25

Chapter 6

Conclusion

We train an ICNN e�ciently with variable projection (VarPro). This method

exploits the fact of the a�ne mapping in the last layer of ICNNs. Addition-

ally, VarPro training scheme implicitly account for coupling between linear

weights and nonlinear weights leading to a lower test loss. Numerical experi-

ments demonstrate the e↵ectiveness and e�ciency of VarPro training scheme.

Future directions including using more e�cient and e↵ective method in solv-

ing the inner problems and applying this training schemes to partial input

convex neural networks, and other maps that parametrize with ICNNs.

Bibliography

[1] B. Amos, L. Xu, and J. Z. Kolter. Input Convex Neural Networks.

arXiv.org, cs.LG, 09 2016. 7

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, 2004. 7, 9, 15, 17, 24

[3] Y.-J. Cao, L.-L. Jia, Y.-X. Chen, N. Lin, C. Yang, B. Zhang, Z. Liu,

X.-X. Li, and H.-H. Dai. Recent Advances of Generative Adversarial

Networks in Computer Vision. IEEE Access, 7:14985–15006, Dec. 2018.

1

[4] I. Demir and U. A. Ciftci. Where Do Deep Fakes Look? Synthetic Face

Detection via Gaze Tracking. arXiv, Jan. 2021. 1

[5] G. Golub and V. Pereyra. Separable nonlinear least squares: the variable

projection method and its. Inverse Prob., 19(2):R1, Feb. 2003. 10

26

BIBLIOGRAPHY 27

[6] G. H. Golub and V. Pereyra. The Di↵erentiation of Pseudo-Inverses

and Nonlinear Least Squares Problems Whose Variables Separate on

JSTOR. SIAM J. Numer. Anal., 10(2):413–432, Apr. 1973. 10

[7] C.-W. Huang, R. T. Q. Chen, C. Tsirigotis, and A. Courville. Con-

vex Potential Flows: Universal Probability Distributions with Optimal

Transport and Convex Optimization. arXiv, cs.LG, 12 2020. 2, 5, 6, 7,

23

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,

2014. 9

[9] D. C. Liu and J. Nocedal. On the limited memory BFGS method for

large scale optimization. Math. Program., 45(1):503–528, Aug. 1989. 20

[10] E. Newman, J. Chung, M. Chung, and L. Ruthotto. slimTrain – A

Stochastic Approximation Method for Training Separable Deep Neural

Networks. arXiv, 2021. 3, 10, 17

[11] E. Newman and L. Ruthotto. hessQuik: Fast Hessian computation of

composite functions. Journal of Open Source Software, 7(72):4171, 2022.

20

[12] E. Newman, L. Ruthotto, J. Hart, and B. v. B. Waanders. Train Like a

(Var)Pro: E�cient Training of Neural Networks with Variable Projec-

tion. arXiv, cs.LG, 07 2020. 3, 10, 11, 17

BIBLIOGRAPHY 28

[13] D. M. O’Leary and B. W. Rust. Variable Projection for Nonlinear Least

Squares Problems. NIST, Aug. 2012. 10

[14] L. Ruthotto and E. Haber. An Introduction to Deep Generative Mod-

eling. GAMM Mitteilungen, cs.LG, 03 2021. 2, 6, 8

[15] S. Wang, Y. Yang, Z. Wu, Y. Qian, and K. Yu. Data Augmentation

Using Deep Generative Models for Embedding Based Speaker Recog-

nition. IEEE/ACM Trans. Audio Speech Lang. Process., 28:2598–2609,

Aug. 2020. 1

	Introduction
	Contribution & Outline

	Background
	Convex Potential Flows
	Variable Projection

	Efficient Method in Training ICNNs
	Sample Average Approximation
	Training ICNNs with Variable Projection

	Numerical Experiments
	Experiment with Moons Dataset

	Discussion
	Conclusion

