Appendix A: Equilibrium Graphs and
Comparative Statics

Equilibrium Analysis and Comparative Statics

Computation of Equilibrium Optimal Value of g*

np- Solve[(q) * (1/ (1+8)) + (1-q) % ((6%2/(1+6)) - p*B) == (1/(1+6)) -c-p=B,q]
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This is the equilibrium value of g. Below q* there is no rejection of offer or conflict as State 1 will make
the generous demand of x; and at q* and above it, rejection of offer is observed with probability 1-q
and terrorism is observed with probability p.
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Graph q* against c, vary B, p, and 6
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-1-Bp+é
{B, 6, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]

- Manipulate [Plot| , {c, 0, 1}, PlotRange - {0, 1}, AxesLabel - {"c", "q*"}],
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p D 0.2
5 D 02

Out[*]=

As ciincreases, q* decreases at a linear rate with all other parameters held constant. The y intercept
decreases for higher values of B and p. The x intercept is lower for higher values of 6

Relationship between g* and ¢
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This shows that the rate of change of q* with respect to c is negative and linear.

Graph g xagainst B, varyc, p, and 6
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{c, 6, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - A1'L]

- Manipulate[Plot| » {B, &, 1}, PlotRange » {0, 1}, AxesLabel » {"B", "q*"}],
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As Bincreases, q* decreases at a non-linear rate with all other parameters held constant. The y inter-
cept decreases for higher values of c and 6. The graph becomes linear and parallel to the x axis when

p=0, since B and p are expressed as a product in the equilibrium expression and becomes non-linear
and decreases for higher values of p

Relationship between q* and B
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This shows that the rate of change of q* with respect to B is negative and non-linear (increasing).
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Graph g*against p,vary ¢, B,and 6
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-1-Bp+é
{c, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]

- Manipulate [Plot| , {p, 0, 1}, PlotRange - {0, 1}, AxesLabel - {"p", "q*"}],
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As p increases, q* decreases at a non-linear rate with all other parameters held constant. The y inter-
cept decreases for higher values of c and 6. The graph becomes linear and parallel to the x axis when
B=0, since B and p are expressed as a product in the equilibrium expression, and becomes non-linear
and decreases for higher values of B
Relationship between g* and p
-1+c+6
Infe]:= D[—, p]
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B(-1+c+9)
outfe]r ———————————————

(-1-Bp+o)?
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B(-1+c+6 aq*
B(-1+crd) » {p, 0, 1}, PlotRange » 2, AxesLabel - {"p", "i"}] ,

n1- Manipulate[Plot|
(-1-Bp+s)? op

{c, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - A1'L]
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This shows that the rate of change of g* with respect to p is negative and non-linear (increasing).
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Graph g*against 6, vary ¢, B,and p
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{c, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{p, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]

- Manipulate [Plot| , {6, 0, 1}, PlotRange » {0, 1}, AxesLabel - {"s", "q*"}],
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As O increases, q* decreases at a non-linear rate with all other parameters held constant. The y inter-
cept and x intercept is lower for higher values of c. The y-intercept is lower for higher values of B and p,
causing the curvature of the graph to become lesser as well.
Relationship between g* and 6
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B a *
n1- Manipulate[Plot|- _c*°P » {6, 0, 1}, PlotRange » 2, AxesLabel - {"s&", "i"}] ,
(1+Bp-6)? 96
{B, 0, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},
{c, 0, 1, Appearance - "Labeled"}, AutorunSequencing - A1'L]
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This shows that the rate of change of g* with respect to ¢ is negative and non-linear.
Computation of Equilibrium Optimal Value of c*
np- Solve[(q) * (1/ (1+8)) + (1-q) * ((6%2/(1+6)) - p*B) == (1/(1+68)) -c-pxB, c]

ouf-= {{c=>1-q-Bpgq-6+qd}}

o= Simplify[1-q-Bpqg-6+q6]

ouf-=- 1 -6+(q <—l—Bp+6)

This is the equilibrium value of c. Below c* there is no rejection of offer or conflict as State 1 will make
the generous demand of x4 and at c* and above it, rejection of offer is observed with probability 1-q and

terrorism is observed with probability p.
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Graph c* against g, vary p, B,and 6

n1- Manipulate[
Plot[1-6+q (-1-Bp+5), {q, ®, 1}, PlotRange » {0, 1}, AxesLabel -» {"q", "c*"}],
{B, 06, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]
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Out[#]=

As g increases, c* decreases at a linear rate with all other parameters held constant. The y intercept
decreases for higher values of 6. The x intercept is lower for higher values of B and p

Relationship between c* and q

Infe]:= D[1—6+q (—1—Bp+6), q]

oufrl= —1-Bp+06
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oc*
-}~ Manipulate[Plot[-1-Bp+&, {q, ®, 1}, PlotRange » 2, AxesLabel - {"q", " "1,
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This shows that the rate of change of c* with respect to q is negative and linear.
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Graph c* against B, vary q, p, and 6

n1- Manipulate[
Plot[1-6+q (-1-Bp+5), {B, ®, 1}, PlotRange » {0, 1}, AxesLabel » {"B", "c*"}],
{9, ©, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]
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As B increases, c* decreases at a linear rate with all other parameters held constant. The x and y inter-
cept decreases for higher values of g and 6. The x intercept is lower for higher values of p
Relationship between c* and B

Infe]:= D[1—6+q (—1—Bp+6), B]

ouf-]l= =P Qq
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oc*
Manipulate[Plot[-pq, {B, ®, 1}, PlotRange -» 2, AxesLabel - {"B", "—"}],
oB

{q, 6, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - A'L'L]
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This shows that the rate of change of c* with respect to B is negative and linear.
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Graph c* against p, vary q, B,and 6

n1- Manipulate[
Plot[1-6+q (-1-Bp+5), {p, ®, 1}, PlotRange » {0, 1}, AxesLabel » {"p", "c*"}],
{9, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]
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As p increases, c* decreases at a linear rate with all other parameters held constant. The x and y inter-
cept decreases for higher values of g and 6. The x intercept is lower for higher values of B

Relationship between c* and p

Infe]:= D[1—6+q (—1—Bp+6), p]

ouf-1= =B q
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oc*
Manipulate[Plot[-Bq, {p, ®, 1}, PlotRange -» 2, AxesLabel » {"p", "—"}],
op

{9, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - A1'L]
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This shows that the rate of change of c* with respect to p is negative and linear.
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Graph c* against 6, vary q, B, and p

n1- Manipulate[
Plot[1-6+q (-1-Bp+5), {5, 0, 1}, PlotRange » {0, 1}, AxesLabel » {"s", "c*"}],
{9, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{p, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]
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Out[#]=

As O increases, c* decreases at a linear rate with all other parameters held constant. The x and y inter-
cept decreases for higher values of q, B, and p . This change is very sensitive to change in q but not as
sensitive for change in B and p.

Relationship between c* and 6

n-D[1-86+q (-1-Bp+5), 8]

ouf-}= =1 +q
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a
Manipulate[Plot[-1+q, {6, 0, 1}, PlotRange -» 2, AxesLabel - {"s", " < "1,
a6
{q, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{p, ©, 1, Appearance - "Labeled"}, AutorunSequencing—»All]
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This shows that the rate of change of ¢* with respect to  is negative and linear.
Computations of Equilibrium Optimal values of B*, p*, and 6*
Equilibrium for B*
np- Solve[(q) * (1/ (1+8)) + (1-q) * ((6%2/(1+6)) - p*B) == (1/(1+6)) -c-pxB, B]
l-c-q-6+96
outf+]= {{B - 9 *9
Pq
Equilibrium for p*
np- Solve[(q) * (1/ (1+6)) + (1-q) * ((6%2/(1+6)) - p*B) == (1/(1+6)) -c-pxB, p]
l-c-q-6+96
ou-- {{p = 472739y
Bqg
Equilibrium for 6*
np- Solve[(q) * (1/ (1+8)) + (1-q) + ((6%2/(1+6)) - p*B) == (1/(1+6)) -c-pxB, 5]

-1+c+q+Bpq

{{e- H

-1+q
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Graph Probability of Demand Rejection against q

-1+c+6 -l+c+6

—}a {1‘q’ q> —}}]’ {q, 0, 1},
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PlotRange » {0, 1}, AxesLabel -» {"q", "1—q"}] , {c, 0, 1, Appearance - "Labeled"},
{B, 6, 1, Appearance - "Labeled"}, {p, 0, 1, Appearance - "Labeled"},

{6, 06, 1, Appearance - "Labeled"}, AutorunSequencing - A'L'L]
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This shows that the equilibrium g* is higher for lower values of ¢, B, p,and 6.
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c U 0.7
B D 07
P U 0.7
5 D 0.2

Out[«]=

This shows that the equilibrium g* is lower for higher values of ¢, B, p, but a low 6. If & is higher, the
piecewise function disappears and only the decreasing linear graph remains.

Probability of demand rejection

1

1-¢" e e —————————

g<q*: 1 makes generous demand;
no conflict occurs

T —"—— N\

. “lictd 1
~1-Bp+s

Probability q

This is an illustration of the graphs computed above.
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Graph Probability of Demand Rejection against c

Infe]:= Mam’pulate[
Plot[Piecewise[{{0, c<1-6+q(-1-Bp+8)}, {1-q,c>1-6+q(-1-Bp+8)}}],
{c, 6, 1}, PlotRange » {1, 0}, AxeslLabel -» {"c", "1—q"}] s
{q, 6, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},
{p, ©, 1, Appearance - "Labeled"},
{6, 0, 1, Appearance - "Labeled"}, AutorunSequencing - All]
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This shows that the equilibrium c* is higher for lower values of ¢, B, p, and é and the probability of
rejection is constant after the equilibrium at 1-q.
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This shows that the equilibrium g* is lower for medium values of ¢, B, p, and 6. If the values are higher,
the piecewise function disappears and only the constant linear graph remains.

Probability of demand rejection

1
c*< c< 1:1 makes aggressive demand;
conflict occurs with probability 1-q
1- q @ = = = -I.
1
1
1
1
1
1
1
1
1
1
1
c<c*: 1 makes generous demand; :
no conflict occurs :
1
/M !
1
0 b Audience cost ¢
c*=1-6+q(-1-Bp+9) 1

This is an illustration of the graphs computed above.
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Probability of Conflict (Reject and Terrorist Attack) = (1-q*)(p) against p, vary q, c,
B, 6

-1+c+6

-1-Bp+é6
PlotRange » {0, 1}, AxesLabel -» {"p", "Pr[confl‘ict]"}] ,
{c, 0, 1, Appearance - "Labeled"}, {B, 0, 1, Appearance - "Labeled"},

Infe]= Man‘ipulate[Plot[{(l— ) *p}, {p, 0, 1},

{q, 6, 1, Appearance - "Labeled"}, {6, 0, 1, Appearance -» "Labeled"}]
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Out[+]= 0.8+
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Probability of conflict i.e. demand rejection and terrorist attack is p(1-q). For both lower and higher
values of the parameters, as p increases, the probability of conflict also increases. This is not trivial
because p is directly proportional to p(1-q).



