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ABSTRACT

On Graphs With A Given Endomorphism Monoid

Benjamin Shemmer

Hedrĺın and Pultr proved that for any monoid M there exists a graph

G with endomorphism monoid isomorphic to M. We will give a con-

struction G(M) for a graph with prescribed endomorphism monoid M.

Using this construction we derive bounds on the minimum number of

vertices and edges required to produce a graph with a given endomor-

phism monoid for various classes of finite monoids. We state bounds

for the class of all monoids as well as for certain subclasses – groups,

k-cancellative monoids, commutative 3-nilpotent monoids, rectangular

groups, completely simple monoids, a variety of strong semillatices and

others.
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Chapter 1

Introduction

This work is concerned with properties of finite graphs. We shall

assume the reader is familiar with the basic definitions and concepts of

Graph Theory [W]. The following will be of central importance.

Definition. An endomorphism of a (finite) graph G is a function

f : V (G) → V (G) where f(x)f(y) ∈ E(G) whenever xy ∈ E(G).

We recall some algebraic concepts: given a nonempty set S and an

associative binary operation · on S, S = (S, ·) is a semigroup. If there

exists an element e ∈ S such that xe = ex = x for all x ∈ S then

we say that e is the unity of S and S is a monoid. We recall that a

transformation monoid on a set X is a set of mappings f : X −→ X

closed under composition and containing the identity mapping. For

a monoid we shall write M = (X, ·, e) where e is the unity of M. If

S = (S, ·) is a semigroup then S1 = (S ∪ {1}, ·, 1) is a monoid where

1 is a new element (i.e. 1 /∈ S) and the operation · is extended to

S∪{1} such that 1 ·1 = 1 and x1 = 1x = x for all x ∈ S. The set of all

endomorphisms of any graph G, along with the identity endomorphism,

form a monoid under composition (the so called endomorphism monoid

of G).

In [F1] and [F2] Frucht proved that every finite group is isomorphic

to the automorphism group of some finite graph. The analogous result
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for monoids was given by Hedrĺın and Pultr [HP1,HP2] (or [PT]) who

proved that for any monoid M there exists a graph G such that End(G)

is isomorphic to M and if M is finite then we can assume that G is finite

as well. This result inspired many analogous theorems for restricted

classes of graphs. For a good survey see the monograph by Pultr and

Trnková [PT].

Our main goal is to give bounds on the minimum number of edges and

vertices required to realize a given monoid as the endomorphism monoid

of a graph. For a monoid M let ν(M) denote the least number n such

that there exists a graph G of order n with End(G) ∼= M. Analogously,

for α ∈ (0, 1] we define ν(M, α) with the added restriction that G has

at most n1+α edges. Observe that ν(M) = ν(M, 1). Likewise, let ε(M)

denote the least number s such that there exists a graph G with s edges

and End(G) ∼= M. For a class of monoids M we set

νM(m) = max
|X|=m

{ν(M) | M = (X, ·, 1) ∈ M},

νM(m,α) = max
|X|=m

{ν(M, α) | M = (X, ·, 1) ∈ M},

εM(m) = max
|X|=m

{ε(M) | M = (X, ·, 1) ∈ M}.

If M is the class of all monoids then we shall omit the index M.

From a result of Hedrĺın and Pultr [HP3], it follows that ν(m) ≤ m

for any infinite cardinal m and by a counting argument we immediately

obtain that, under GCH, ν(m) = m for any infinite cardinal m. It is an

open question whether there is a model of set theory in which ν(m) < m

for some infinite cardinal m.

In what follows we will restrict ourselves to the finite case. From

results of Hedrĺın and Pultr [HP1] it follows that ν(m) ≤ cm2 for some

c > 0. On the other hand, Babai [B1] showed that for any finite group

H distinct from the cyclic groups of order 4, 5 and 6, there exists a finite
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graph G such that the group of all automorphisms of G is isomorphic

to H and |V (G)| = 2|H| + 1. This motivated the question, posed

by Babai and Nešetřil, of whether there exists a constant c such that

ν(m) ≤ cm. This was answered in the negative in [KR1] by showing

that ν(m) ≥ (
√

2+o(1))(m
√

logm). In fact, one can show an analogous

result for a subclass of monoids. A monoid M = (X, ·, e) is called three-

nilpotent if M has a zero 0 and abc = 0 for all a, b, c ∈ X \ {e}. Let

CN denote the class of all finite, commutative three-nilpotent monoids.

We show that νCN (m) ≥ (1 + o(1))m
√

logm.

An upper bound on ν was obtained by Babai [B2] and, independently,

by Koubek and Rödl in [KR1], where ν(m) ≤ (
√

2 + o(1))m
3
2 was

attained (the Babai bound is of the same order). In [KR1] it was also

proved that νN (m) ≤ O(m logm) where N denotes the class of all finite

three-nilpotent monoids. Our aim is to give some related results.

In Chapter 2 we give a lower bound on ε(m), as well as some other re-

lated lower bounds which follow from basic counting arguments. Specif-

ically, we show that:

Theorem 1. For all m, m2

2
(1 + o(1)) ≤ ε(m) ≤ (1 + o(1))m2.

Theorem 2. For all m, (1 + o(1))
(

1+α
2

) 1
1+α m

2
1+α ≤ ν(m,α) ≤ (1 +

o(1))m
2

1+α

where the lower bound holds for α ∈ (0, 1] and the upper bound holds

for α ∈ (0, 1
3
).

Note that while the upper and lower bounds on ν(m) are still far

apart, the bounds on ε(m) and ν(m,α) are only separated by a con-

stant.

In Chapter 3 we introduce some ad hoc tools and give an explicit
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construction for a graph on n ≤ O(m
3
2 ) vertices with prescribed en-

domorphism monoid. The upper bounds in Theorems 1–6 are all a

consequence of said construction. We also give an example of a monoid

which shows that the upper bound of O(m
3
2 ) cannot be improved using

our construction.

We were unable to improve the general upper bound on ν(m). How-

ever, it is known that for 3-nilpotent monoids, which almost all monoids

are (see [KR2]), the upper bound can be significantly improved (see

[KR1]). This led us to consider other special classes. This discussion

begins in Chapter 4 where classes of monoids based on groups are con-

sidered. Let G denote the class of all finite groups. We prove that

Theorem 3. νG(m) ≤ (2 + o(1))m
√

log logm.

We observe that such graphs, with endomorphism monoid isomorphic

to a group, are cores. A comparison of this result with Babai’s result

[B1] for automorphism groups leads to the following open problem.

Problem: Is there a constant c such that νG(m) ≤ cm?

We investigated two generalizations of groups. Given nonempty sets

B and C and a group H let S = (B × H × C, ·) and define a binary

operation · on S by (b, h, c) · (b′, h′, c′) = (b, hh′, c′). Then S = (S, ·) is a

monoid known, unfortunately, as a rectangular group (see monographs

of semigroups [CP] and [H]).Let RG be the class of all monoids M = S1

where S is a finite rectangular group. Then:

Theorem 4. For all m, νRG(m) ≤ (2 + o(1))m
√

logm.

The second generalization of groups are k-right cancellative monoids.

For a natural number k ≥ 1 we say that a monoid M = (X, ·, e) is k-
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right cancellative if |{y ∈ X | xy = x′}| ≤ k for all x, x′ ∈ X and weakly

k-right cancellative if for some generating set A, |{a ∈ A | xa = x′}| ≤ k

for all x, x′ ∈ X. Clearly, every k-right cancellative monoid is weakly

k-right cancellative. Also, it is well-known that H is a group if and only

if it is 1-cancellative. Let Ck be the class of all finite, weakly k-right

cancellative monoids. It follows from a simple probabilistic argument

that:

Theorem 5. For all m, νCk
(m) ≤ (5 + o(1))m

√
k lnm.

Note that this result is weaker for finite groups than Theorem 3. In

the last section of Chapter 4 we investigate the class CS of all monoids

M = S1 where S is a finite, completely simple semigroup (the precise

definition is given in the relevant section). Completely simple semi-

groups – see [CP], the third chapter, or [H] – are the basic building

blocks used in a structural description of semigroups. We prove:

Theorem 6. For all m, νCS(m) ≤ (2 + o(1))m
7
6 .

In Chapter 5 we will generalize the P-graph construction (to be de-

fined) from Chapter 3 in order to derive bounds for new monoid classes.

Among these are the so called “strong semilattices of C-semigroups”

where C is one of the following: groups, abelian groups, rectangular

groups or completely simple semigroups. Our general approach will

be as follows. Suppose {M (i) | i ∈ I} is a collection of monoids with

ν(M (i)) “small” for all i ∈ I and M is a subdirect product of the M (i).

Then we can extend the P-graph construction to products and derive

a bound on ν(M) in terms of the ν(M (i)) which substantially improves

the bound we would have gotten from applying our earlier construction

directly to M . We will apply these tools to three particular classes;

finite abelian groups denoted A, finite normal band monoids denoted
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NB, and finite semilattice monoids denoted L. Formal definitions for

each class will be given in Chapter 5. For now we point out that finite

abelian groups and semilattices are subdirect products of cyclic groups

and two-element semilattices, respectively. Normal bands, like semilat-

ices, are also subdirect products with factors from a finite collection to

be described later.

Theorem 7. Let M be any of the classes L, A, NB. Then

νM(n) = O(n).

In Chapter 5 we will determine more precise constants for each class.

The result for abelian groups modifies the result

νG(n) ≤ (2 + o(1))n
√

log log n

of Theorem 3 for the class G of finite groups. Note, also, that our result

for abelian groups is distinct from the Babai result [B1] mentioned

above as we require that our graph have no proper endomorphisms.

The last chapter is devoted to classes of monoids built out of semi-

groups and semilattices. This construction was intensely studied in

the monograph by Petrich [P]. We will show that the resulting object,

the so called strong semilattice of semigroups, can be handled by our

construction.

For a collection C of semigroups we shall write S(C) for the class

of monoids which are either strong semilattices of C-semigroups or are

strong semilattices of C-semigroups with added new identity. We will

consider several cases for C: groups G, abelian groups A, rectangular

groups RG and, completely simple semigroups CS. We shall define

these classes precisely in Chapter 5.

In the last chapter we will prove:
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Theorem 8. The following bounds hold for strong semilattices of

C-semigroups

νS(A)(n) ≤ 21n, νS(G)(n) ≤ (2 + o(1))n
√

log log n,

νS(RG)(n) ≤ (2 + o(1))n
√

log n, νS(CS)(n) = (2 + o(1))n
7
6 .

We conclude our introduction with Figure 1.1, a diagram for the

classes of semigroups considered here ordered by inclusion.
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SCS

SRG

SG

SA

RB

RG

G

AA

NB

S

Figure 1.1: Poset of semigroup classes
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Chapter 2

Lower Bounds

We begin by proving the lower bounds from Theorems 1 and 2.

Theorem 1 – Lower Bound. For all m, ε(m) ≥ m2

2
(1 + o(1)).

Proof: We begin by observing that a graph with m endomorphisms

has at most t isolated vertices whenever tt > m (which implies t =

(1 + o(1)) log m

log log m
).Let G be a graph with End(G) ∼= M = (X, ·, e)

where |X| = m and |E(G)| = q. By our observation |V (G)| < 2q + t.

We will use this to bound q from below.

The number of (labeled) graphs with at most q edges and at most

2q + t vertices is

2q+t∑

j=0

q∑

i=0

((
j

2

)

i

)
< (2q + t)q

((
2q+t

2

)

q

)

< (2q + t)q

[
(2q + t)2e

2q

]q

(∗)

As any m-element monoid can be represented by a graph counted in

(∗) this quantity must exceed mm2(1+o(1)), the number of monoids on m

elements [KRS] (see also [KR2]). Taking logarithms we get,

log[(2q + t)q] + q log

[
(2q + t)2e

2q

]
> m2 logm(1 + o(1)) (∗∗)
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substituting q = m2

2
(1 + o(1)) and t = (1 + o(1)) log m

log log m
the left-hand

side of (∗∗) becomes

log
m2

4
+
m2

2
log(m2)(1 + o(1)) = m2 logm(1 + o(1))

as required. Thus, ε(m) which is at least the minimum q satisfying the

above inequality, is greater than m2

2
(1 + o(1)). �

Theorem 2 – Lower Bound. For all m and α ∈ (0, 1], ν(m,α) ≥
(1 + o(1))

(
1+α

2

) 1
1+α m

2
1+α .

Proof: The lower bound follows from a counting argument analogous

to the one used in proving Theorem 1. Let n = ν(M,α). The number

of sufficiently sparse graphs on at most n vertices is given by

n∑

j=0

j1+α∑

i=0

((
j

2

)

i

)
≤ n2+α

(
n2

2n1+α
e

)n1+α

which, for sufficiently large n, is less than nn1+α

. By assumption every

monoid of size at most m is represented by one of the nn1+α

graphs and

so

nn1+α ≥ mm2(1+o(1))

which is equivalent to

n(log n)
1

1+α ≥ (logm)
1

1+αm
2

1+α (1 + o(1)). (∗)

For each m, the minimum real number n0 = n0(m) for which (∗) holds

satisfies
logm

log n0

=
1 + α

2
(1 + o(1)).

Combining this equality with (∗) yields that for each m

n ≥ n0(m) = (1+o(1))m
2

1+α

(
logm

log n0

) 1
1+α

= (1+o(1))

(
1 + α

2

) 1
1+α

m
2

1+α .�
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Remark: The only other result in this work regarding edges is Propo-

sition 3.6. There we improved the constant term from 15 to 7 in the

following result of Hedrĺın and Pultr. For any monoid M = (X, ·, 1)

there exists a graph G with at most (15 + o(1))m edges such that

End(G) ∼= M. It may be of interest to find the smallest constant with

this property.

Finally, we modify the lower bound on νN (m) from [KR1] for commu-

tative monoids. We recall that a monoid M = (X, ·, 1) is commutative

3-nilpotent if M has a zero 0 and abc = 0 for all triples {a, b, c} where

a, b, c ∈ X \ {1} and ab = ba for all a, b ∈ X. Let CN be the class of

all finite, commutative 3-nilpotent monoids. Then:

Theorem 2.1. For all m, νCN (m) ≥ (1 + o(1))m
√

logm.

Proof: The proof is a simple modification of the proof in [KR1] where

a similar argument was used to bound the number of all (not necessarily

commutative) semigroups. Let X be an m-element set and e ∈ X. Let

X \{e} = A∪B be a partition. Select an element 0 ∈ B and a mapping

g : A× A −→ B such that g(x, y) = g(y, x) for all x, y ∈ A. We define

a binary operation by

x · y =





x if y = e,

y if x = e,

0 if x ∈ B or y ∈ B,

g(x, y) if x, y ∈ A.

A routine verification yields that (X, ·, e) is a 3-nilpotent commutative

monoid and for distinct mappings g1 and g2 we obtain distinct monoids.
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For a fixed A with |A| = t there exist (m − t − 1)(
t

2)+t symmetric

mappings and hence we have at least

1

m!
m

(
m− 1

t

)
(m− t− 1)(

t

2)+t >
1

m!
(m− t− 1)

1
2
t2

non-isomorphic monoids of this type.

Setting t = m− m
log m

then yields at least

1

m!
(
m

logm
− 1)

1
2
(m− m

log m
)2 = 2( 1

2
+o(1))m2 log m

non-isomorphic monoids. As in Theorems 1 and 2 we compare this

quantity with the number of all graphs on an n-element set, obtaining

2(n

2) ≥ 2
m

2

2
log m(1+o(1))

which yields

νCN (m) = n ≥ (1 + o(1))m
√

logm. �

The remainder of this work is concerned with upper bounds on ν(m).

In what follows we describe a construction for a graph G = G(M) on

less than O(m
3
2 ) vertices with a prescribed endomorphism monoid M

and at most m2 edges.
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Chapter 3

Construction

3.1 A Reduction to P-graphs

Before giving the details of our construction we introduce the notions

of P-graph and P-endomorphism. We will prove that the problem of

representing a monoid as the endomorphism monoid of a graph can be

reduced to the problem of representation by a P-endomorphism monoid

of a P-graph.

Definition. A partition graph (shortly a P-graph) is a graph FP

where F is an undirected graph equipped with a partition (coloring) P
of the vertex set V (F ) = ∪t

i=0Vi where each Vi is an independent set in

F .

Definition. A P-endomorphism of FP is a graph homomorphism of

F such that f(Vi) ⊆ Vi for all i ∈ [0, t].

By EndP(FP) we denote the set of all P-endomorphisms. Then

EndP(FP) contains the identity map on V (F ) and is closed under com-

position of mappings. Thus, EndP(FP) is a transformation monoid.



14

Our construction has three parts: a P-graph FP (to be defined in

Section 3.3), a rigid graph H (that is a graph with no non-trivial en-

domorphisms) and an amalgamation ∗ of the two.

The Rigid Graph. Similar graphs were considered in [HN]. We

present a somewhat simplified version from [PT]. For every q ≥ 3 there

exists a rigid graph H = Hq on 4q + 1 vertices and less than 4q2 edges

such that every z ∈ V (H) is contained in a clique of size q. Formally,

we set

• V (H) = {0, 1, . . . , 4q}

• E(H) = {{z, z′} | z, z′ ∈ Z, |z − z′| < q} ∪ {{0, 4q}, {0, 3q − 1}}.

From [PT] we know thatH is rigid and, clearly, every vertex z ∈ V (H)

belongs to a clique of size q. Moreover, no x ∈ {3q, 3q + 1, . . . , 4q − 2}
is adjacent to 0 or 2q − 1 and there exists no joint neighbor of 0 and

2q − 1. These facts are exploited in the following construction.

The Amalgamation. Let FP be a P-graph with V (F ) = ∪t
i=0Vi

and suppose that for every i = 1, 2, . . . , t each v ∈ Vi has a neighbor

from V0 and every v ∈ V0 has at most one neighbor from Vi for all

i = 1, 2, . . . , t. We set q = t + 2 and let H = Hq be the rigid graph

defined above. We define the graph G = FP ∗ H (see Figure 3.2) as

follows: set V (G) = V (F )∪V (H) and E(G) = E(F )∪E(H)∪L where

L =
t⋃

i=1

{{3q − 1 + i, v} | v ∈ Vi} ∪ {{0, v}, {2q − 1, v} | v ∈ V0}.

The next theorem reduces a representation problem of monoids by

endomorphism monoids of graphs to a representation of monoids by

P-endomorphism monoids.



15

Proposition 3.1. Let G = FP ∗ H be the graph described above.

Then EndP(FP) ∼= EndG.

Proof: We show that g : V (G) → V (G) is an endomorphism of G if

and only if g is the identity on H and restricts to a P-endomorphism

of FP . Consider a P-endomorphism f : V (F ) → V (F ) of FP . Define

g : V (G) → V (G) by

g(w) =

{
f(w) if w ∈ V

w if w /∈ V.

Then g preserves E(F ) and E(H) and, as f(Vi) ⊆ Vi for all i ∈ [0, t], g

preserves L as well. Hence, g is an endomorphism of G.

Conversely, let g be an endomorphism of G and pick z ∈ V (H). Since

every vertex z ∈ V (H) belongs to a clique of G of size q = t + 2 and

every clique of G containing v ∈ V (F ) has size at most t + 1 we have

g(z) ∈ V (H). Since H is rigid we infer that g(z) = z for all z ∈ V (H).

Next we prove that g(V0) ⊆ V0. Let v ∈ V0, then {0, v} and {2q− 1, v}
are edges of G. On the other hand, the neighborhoods of 0 and 2q − 1

are disjoint in H. Hence g(v) /∈ {0, 1, . . . , 4q}. Since {0, v} ∈ E(G) and

g(0) = 0 but {0, y} ∈ E(G) for no i ∈ I \ {0} and y ∈ Vi we infer that

g(V0) ⊆ V0. Finally, we prove that g(Vi) ⊆ Vi for all i ∈ I. Consider

i ∈ I \{0} then for every y ∈ Vi there exists x ∈ V0 with {x, y} ∈ E(G).

Then {g(x), g(y)} ∈ E(G) and hence y ∈ V (FP) ∪ {0, 2q − 1}. Further

{3q − 1 + i, v} ∈ E(G) which implies {3q − 1 + i, g(v)} ∈ E(G). Since

{0, 3q − 1 + i}, {2q − 1, 3q − 1 + i} /∈ E(G) and since z ∈ V (FP) is a

neighbor of 3q−1+i exactly when z ∈ Vi we conclude that g(v) ∈ Vi (see

Figure 3.1). Thus g(Vi) ⊆ Vi for all i ∈ I. Since g is an endomorphism

of G we infer that {g(x), g(y)} ∈ E(FP) for all {x, y} ∈ E(FP), and

therefore, the restriction of g to V (FP) is a P-endomorphism of FP , as
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v

H

v′

Vi

0 3q − 1 + i

V0

2q − 1

Kq−1

Kq−1

Kq−1

Figure 3.1: Amalgamation

required. �

3.2 Translations of Monoids

Before giving the remaining details of our construction we discuss the

set of left (right) translations of a monoid, a notion upon which almost

all representations of a monoid as an endomorphism monoid are based.

Let M = (X, ·, 1) be a monoid and x ∈ X. Then a mapping l :

X → X is called a left translation by x if l(y) = xy for all y ∈ X. By

ML we denote the set of all left translations of M under composition.

Analogously, a right translation r ∈ MR is a mapping given by y 7→ yx.

The following statement was originally formulated for semigroups. We

adjust it to our purposes as follows.
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Lemma 3.2. [CP] Let M = (X, ·, 1) and M′ = (X,�, 1) be monoids

where x� y = y · x for all x, y ∈ X. Then ML ∼= M and MR ∼= M′. �

The following characterization will be useful to us.

Lemma 3.3. [GH] Let M = (X, ·, 1) be a monoid. A mapping g :

X → X is a left (or right) translation by some x ∈ X if and only if

g ◦ r = r ◦ g for each right (or left) translation r ∈ MR (or r ∈ ML,

resp.). �

These statements provide a basis for identifying and realizing monoids.

3.3 The graph FP

We fix the following notation for Chapters 3 and 4. Fix a natural

number t > 1 and let
(
[t]
2

)
= {(i, j) | 1 ≤ i < j ≤ t}. For a given set A

let P(A) = {B | B ⊆ A}. Fix a monoid M = (X, ·, 1) where |X| = m,

a set of generators A and a map φ :
(
[t]
2

)
→ P(A) via (i, j) 7→ Bij. We

define a P-graph FP = FP(M, φ) as follows:

• V (F ) =
⋃t

i=0 Vi where Vi = X × {i};

• P = {Vi | i ∈ [0, t]};

• E0 = {{(x, 0), (x, i)} | x ∈ X, i ∈ [1, t]};

• Eij = {{(x, i), (xa, j)} | x ∈ X, a ∈ Bij} for all (i, j) ∈
(
[t]
2

)
;

• E = E0 ∪ (
⋃{Eij | (i, j) ∈

(
[t]
2

)
}).

Furthermore, let R(x, x′) = {a ∈ X | xa = x′} and set B(x, x′) =
⋃

ij{Bij | Bij ∩R(x, x′) = ∅}. Finally, suppose φ satisfies the following:
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Figure 3.2: G = FP ∗H

Condition (P). B(x, x′) = A \R(x, x′) for every x, x′ ∈ X.

Remark 1. Note that the graph FP = G(M, φ) satisfies the two

requirements made in the previous section:

(i) all sets Vi are independent;

(ii) the edges between V0 and Vi form a perfect matching for all i ∈ [1, t].

Remark 2. By definition B(x, x′) ⊆ A \ R(x, x′). Therefore, in or-

der to verify condition (P), it will be sufficient to prove the opposite

inclusion.

Remark 3. Note that (P) implies

⋃

ij

Bij = A.
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If |X| = 1 this is trivial. Otherwise, for every a ∈ A we have a /∈ R(1, a′)

for any a′ 6= a. Hence, by (P) we get that a ∈ B(1, a′) and thus a ∈ Bij

for some (i, j) ∈
(
[t]
2

)
. If

⋃

ij

Bij = A and |Bij| ≤ 1 for all (i, j) ∈
(

[t]

2

)

then (P) is true. Hence, if t ≥
√

2|A| then we can satisfy (P) because
(

t

2

)
≥ |A|.

With the above construction we are able to state our central technical

result.

Proposition 3.4. Let FP be the graph defined above. Then the graph

G = G(M, φ) = FP ∗H introduced in Proposition 3.1 (see Figure 3.2)

has the following properties:

(i) |V (G)| = (t+ 1)m+ 4t+ 9 < (t+ 1)(m+ 4) + 5,

(ii)

|E(G)| =|E(F )| + |V (F )| + |V0| + |E(H)| ≤



∑

(i,j)∈([t]
2 )

|Bij|


m+ 2mt+ 2m+ 4(t+ 2)2,

(iii) if (P) holds then End(G) ∼= M.

Proof: Since properties (i) and (ii) immediately follow from the con-

struction (because |Eij| = |Bij|m for all (i, j) ∈
(
[t]
2

)
, and |E0| =

|⋃t

i=1 Vi| = tm) we will verify (iii) only. By Proposition 3.1, End(G) ∼=
EndP(FP) and, to establish the isomorphism, it remains only to prove

that EndP(FP) ∼= M.
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Lemma 3.5. EndP(FP) ∼= M.

We introduce the following notation. Let f ∈ EndP(FP). Then

f(Vi) ⊆ Vi for i ∈ [0, t] and consequently f(x, i) = (x′, i) for some

x′ ∈ X. For each f ∈ EndP(FP) let {f i}t
i=0 be the class of maps where

f i : X → X via x 7→ x′.

Fact. For each f ∈ EndP(FP) and for all 0 ≤ i, j ≤ t, f i = f j holds.

Proof of Fact: Fix x ∈ X, f ∈ EndP(FP) and i ∈ [1, t]. It suffices to

show that f i = f 0. From f(V0) ⊆ V0 it follows f(v) ∈ V0 for all v ∈ V0.

Thus {f(v), f(w)} ∈ E0 for all {v, w} ∈ E0. As {v, w} ∈ E0 if and only

if v = (x, 0) and w = (x, i) for some x ∈ X and i ∈ [1, t], we conclude

that {(f 0(x), 0), (f i(x), i)} ∈ E0 for all x ∈ X and i ∈ [1, t] and hence,

f 0(x) = f i(x) for all x ∈ X and i ∈ [1, t]. �

Since f i depends only on f (and, in particular, is independent of i)

there is a well defined map on X given by f̃ = f i, i ∈ [0, t]. Let

D = {f̃ | f ∈ EndP(FP)}. Since D is closed under composition and

contains the identity mapping it is a transformation monoid. We shall

sometimes refer to elements of D as determining mappings.

Proof of Lemma 3.5: By Lemma 3.2 it suffices to show that EndP(FP) ∼=
ML. We do this in two stages – first showing EndP(FP) ∼= D and then

showing D ∼= ML.

Claim 3.51. The map ψ : EndP(FP) → D sending f 7→ f̃ is an

isomorphism.

Proof: The map is onto by definition. We need to show it is one-

to-one and respects composition. Let f, g ∈ EndP(FP) be distinct and
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pick v ∈ V (F ) such that f(v) 6= g(v). There exists x ∈ X and i ∈ 0 . . . t

such that v = (x, i). Thus, (f i(x), i) = f(x, i) 6= g(x, i) = (gi(x), i) and

so f̃(x) 6= g̃(x) and consequently the map is one-to-one. Secondly, we

have

(f̃ g̃(x), i) = f(g̃(x), i) = f(g(x, i)) = (f ◦ g)(x, i) = (f̃ g(x), i).

Thus, f̃ g = f̃ g̃ and ψ is an isomorphism. �

Claim 3.52. D = ML.

Proof: We show both inclusions. To establish ML ⊆ D we first need

to characterize the maps in D.

Lemma 3.53. Let g : X → X. Then g ∈ D if and only if for every

(i, j) ∈
(
[t]
2

)
, every x ∈ X and every a ∈ Bij there exists b ∈ Bij with

g(xa) = g(x)b.

Proof: Assume g ∈ D. Then there exists f ∈ EndP(FP) with g = f̃ .

Choose x ∈ X, (i, j) ∈
(
[t]
2

)
and a ∈ Bij. Since {(x, i), (xa, j)} ∈

Eij we get that {f(x, i), f(xa, j)} ∈ Eij where f(x, i) = (g(x), i) and

f(xa, j) = (g(xa), j). Hence there exists b ∈ Bij with g(xa) = f̃(xa) =

f̃(x)b = g(x)b and the condition is satisfied.

Conversely, let g : X → X and assume that for every x ∈ X, every

(i, j) ∈
(
[t]
2

)
and every a ∈ Bij there exists b ∈ Bij with g(xa) = g(x)b.

We define f : V (F ) → V (F ) by f(x, i) = (g(x), i) for all x ∈ X and

all i ∈ [0, t] and we show that f is a P-endomorphism of FP . By the

definition of f we have f(Vi) ⊆ Vi for all i ∈ [0, t] and consequently

{f(v), f(w)} ∈ E0 for all {v, w} ∈ E0. It remains to prove that for every

pair (i, j), 1 ≤ i < j ≤ t and every {v, w} ∈ Eij we have {f(v), f(w)} ∈
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Eij. Select (i, j) ∈
(
[t]
2

)
and an edge {v, w} ∈ Eij. There exists x ∈ X

and a ∈ Bij with {v, w} = {(x, i), (xa, j)}. By assumption there exists

b ∈ Bij with g(xa) = g(x)b. From the definition of f it follows that

f(xa, j) = (g(xa), j) = (g(x)b, j) and, as {(g(x), i), (g(x)b, j)} ∈ Eij we

get that {f(x, i), f(xa, j)} ∈ Eij, as required. �

Proof of 3.52 (continued): We first show ML ⊆ D. Let ra be

a right translation by some a ∈ A. If g : X −→ X is a left trans-

lation of M then, by Lemma 3.3, for every x ∈ X and a ∈ A we

have g(xa) = g ◦ ra(x) = ra ◦ g(x) = g(x)a. Thus, g satisfies the

conditions of Lemma 3.53 with b = a and we get that ML ⊆ D.

It remains to show the reverse inclusion D ⊆ ML. Let g ∈ D and

f ∈ EndP(FP) with g = f̃ and choose a ∈ A. We prove that g com-

mutes with the right translation ra of a. Indeed, if g(x)a = ra(g(x)) 6=
g(ra(x)) = g(xa), then a /∈ R(g(x), g(xa)) which implies, by (P), that

a ∈ B(g(x), g(xa)). It follows that there exists (i, j) ∈
(
[t]
2

)
with

a ∈ Bij and Bij ∩ R(g(x), g(xa)) = ∅. Thus, {(x, i), (xa, j)} ∈ Eij

while {f(x, i), f(xa, j)} = {(g(x), i), (g(xa), j)} /∈ Eij as g(xa) 6= g(x)b

for all b ∈ Bij, contradicting that f is an endomorphism. Consequently

g commutes with ra and as ra was arbitrary (among right translations

by generators) we get that g ∈ ML, as desired. �

This completes the proof of Lemma 3.5 and, hence the proof of Propo-

sition 3.4 as well. �

Observe that the upper bounds in Theorems 1 and 2 follow:

Theorem 1 – Upper Bound. For all m, ε(m) ≤ (1 + o(1))m2.
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Proof: In order to satisfy condition (P) it suffices, by Remark 3, to

set each Bij equal to a singleton such that

⋃

(i,j)∈([t]
2 )

Bij = A and
∑

(i,j)∈([t]
2 )

|Bij| ≤
(
t

2

)
.

By (iii) in Proposition 3.4, G(M, φ) ∼= M. Hence, by (ii), we have

|E(G)| ≤
(

t

2

)
m + 2mt + 2m + 4(t + 2)2 which, from t =

√
2m + 1 (see

Remark 3) yields |E(G)| ≤ m2(1 + o(1)). �

Theorem 2 – Upper Bound. For all m and α ∈ (0, 1
3
), ν(m,α) ≤

(1 + o(1))m
2

1+α

Proof: For a given monoid M and α ∈ (0, 1
3
) set t = (1 + o(1))m

1−α

1+α .

Then
(

t

2

)
> m and hence, by Remark 3, condition (P) is satisfied.

Thus, by Proposition 3.4, there exists a graph G with |V (G)| = (t +

1)(m+ 4) + 5 = (1 + o(1))m
2

1+α while

|E(G)| ≤m2 + (2 + o(1))m
2

1+α + 2m+ (4 + o(1))m
2−2α

1+α =

m2(1 + o(1)) = |V (G)|1+α

as required. �

Finally, we derive a bound for graphs with bounded average degree.

Proposition 3.6. For every monoid M = (X, ·, 1) with |X| = m

there exists a graphG such that End(G) ∼= M, |E(G)| ≤ (7+o(1))|V (G)|
and |V (G)| = m2 + 5m+ 9. Thus the average degree is less than 14.

Proof: If we set t = m then, by Remark 3, we can satisfy (P) and

|V (G)| = m2 +5m+9. By Proposition 3.4, |E(G)| ≤ (m−1)m+2m2 +

2m+ 4(m+ 2)2 = (7 + o(1))m2 ≤ (7 + o(1))|V (G)|. �
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3.4 Example

In this section we will construct a monoid M(n) of size m = 2n+3 such

that every graph G(M(n), φ) with End(G(M(n), φ)) ∼= M(n) satisfies
(

t

2

)
≥ n. Consequently every such graph has Θ(n

3
2 ) vertices.

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be disjoint n-

element sets. Let 0, c and 1 be pairwise distinct elements with 0, c, 1 /∈
X ∪ Y and E = {{xi, yj} | i 6= j}. We define a binary operation � on

the set Z = X ∪ Y ∪ {0, c, 1} by

z � w =





z if w = 1,

w if z = 1,

c if {z, w} ∈ E,

0 otherwise.

One can easily verify that M(n) = (Z,�, 1) is a monoid. Clearly, X∪Y
is a minimal set of generators for M(n). We prove the following bound.

Proposition 3.7. For every n > 1, if φ :
(
[t]
2

)
−→ P(X ∪ Y ) is

a mapping such that End(G(M(n), φ)) is isomorphic to M(n), then
(

t

2

)
≥ n and |V (G(M(n), φ))| ≥ (2n+ 3)

√
n = Ω(m

3
2 ).

Proof: Let φ :
(
[t]
2

)
−→ P(X ∪ Y ) with φ(j, k) = Bjk for all (j, k) ∈

(
[t]
2

)
. Let us denote M = M(n). The statement easily follows from the

following fact.

Fact. If End(G(M, φ)) ∼= M, then for all i ∈ [1, n] there exist (j, k), (j′, k′) ∈
(
[t]
2

)
such that Bjk ∩X = {xi} and Bj′k′ ∩ Y = {yi}.

Indeed, if End(G(M, φ)) ∼= M, then for every i ∈ [1, n] there exists

(j, k) ∈
(
[t]
2

)
with Bjk ∩X = {xi}. Consequently, |

(
[t]
2

)
| ≥ n and hence,
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the underlying set of G(M, φ)) has cardinality at least (2n+ 3)
√

2n =

Ω(m
3
2 ). �

Proof of Fact: We argue by contraposition, that is, suppose there

exists i ∈ [1, n] with {xi} 6= Bjk ∩ X for all (j, k) ∈
(
[t]
2

)
. If {yi} 6=

Bj′k′ ∩ Y for all (j′, k′) ∈
(
[t]
2

)
then the proof is analogous.

By Claim 3.54, every left translation of M is a determining mapping

of G(M, φ), i.e. ML ⊆ D. Since, by Lemma 3.2, ML ∼= M it suffices

to show that there exists a determining mapping g ∈ D which is not a

left translation of M. Consider a mapping g : Z → Z such that

g(z) =





yi if z = 1,

c if z ∈ X,

0 if z ∈ Y ∪ {0, c}.

Observe that g is not a left translation of M. Indeed, from g(1) = yi it

follows that if g is a left translation then it is a left translation by yi.

But g(xi) = c 6= 0 = yi � xi and hence g is not a left translation by yi.

We show that g is a determining mapping using Lemma 3.53. Fix

z ∈ Z, (j, k) ∈
(
[t]
2

)
and a ∈ φ(j, k). First assume z 6= 1. Then

za ∈ {c, 0} and hence g(za) = 0. Since g(z) ∈ {c, 0} and a 6= 1 we

conclude that g(z)a = 0 and the condition from Lemma 3.53 is fulfilled

with b = a. Secondly, assume that z = 1. If a ∈ Y then g(z)a = 0

and g(za) = g(a) = 0 and again it suffices to set b = a. If a ∈ X

then g(za) = g(a) = c. From {xi} 6= Bjk ∩ X it follows that there

exists a′ ∈ Bjk ∩ X with a′ 6= xi. Then g(z)a′ = yia
′ = c and the

condition of Lemma 3.53 is fulfilled. Thus, g is a determining mapping

and End(G(M, φ)) is not isomorphic to M. �
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Chapter 4

Special Classes of Monoids

4.1 Groups and Generalizations

For a given monoid M there may be several choices for the map φ, other

than a singleton map, yielding End(G(M, φ)) ∼= M. In some cases we

can exploit the algebraic structure of a monoid to construct a more

“efficient” map. We will require the following technical proposition.

Proposition 4.1. For every finite non-empty set A there exists a

family {Ai | i ∈ I} of subsets of A such that {a} =
⋂{Ai | i ∈ I, a ∈

Ai} for all a ∈ A and |I| = 2dlog |A|e.

Proof: Let k = dlog |A|e. Then there exists an injective mapping

f : A → {0, 1}k for k = dlog |A|e. For each projection πi : {0, 1}k →
{0, 1} with i ∈ [1, k] let Aij = (πi ◦ f)−1(j), j = 0, 1. Then the family

{Aij | i ∈ [1, k], j = 0, 1} has the required properties. �

Proposition 4.2. Let H be a group with a set A of generators. Then

there exists a family F = {Bij | (i, j) ∈
(
[t]
2

)
} of subsets of A such that

End(G(H, φ)) is isomorphic to H and t ≤ 2
√

dlog |A|e + 2.
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Proof: We show that condition (P), required for Proposition 3.4(iii),

is satisfied by a suitable choice of Bij. Choose x, x′ ∈ H. Since H

is a group R(x, x′) is a singleton. Suppose, that R(x, x′) = {a0}. By

Proposition 4.1, there exists a family F = {Bij | (i, j) ∈
(
[t]
2

)
} of

subsets of A such that {a} =
⋂{Bij | Bij ∈ F , a ∈ Bij} for all a ∈

A. Hence, for a ∈ A \ {a0} there exists (i, j) ∈
(
[t]
2

)
with a ∈ Bij

and a0 /∈ Bij. Then a ∈ B(x, x′) and as a ∈ A \ {a0} was arbitrary

B(x, x′) = A \ {a0} = A \ R(x, x′), that is, condition (P) is satisfied.

Hence, by Proposition 3.4, End(G(H, φ)) ∼= H. Since in order to use

the construction we require
(

t

2

)
≥ |F| = 2dlog |A|e it suffices to take

t ≤ 2
√

dlog |A|e + 2. �

Let G be the family of finite groups.

Theorem 3. νG(m) ≤ (2 + o(1))m
√

log logm.

Proof: We show that νG(m) ≤ (2 + o(1))m
√

log logm. If H is an m-

element group then there exists a set A of generators with |A| ≤ dlogme
and, by a combination of Propositions 3.4 and 4.2, there exists a graph

G on (m+ 4)(2
√
dlog logme+ 3) + 5 = (2 + o(1))m

√
log logm vertices

such that End(G) ∼= H, as required. �

Next we generalize Theorem 3 to a class of monoids generalizing

groups. Let B and C be non-empty sets and H be a group. Then a

semigroup S = R(B,H, C) = (B ×H × C, ·) where (b, h, c)(b′, h′, c′) =

(b, hh′, c′) is called a rectangular group (see monographs of semigroups

[CP] and [H]). Clearly, any rectangular group is isomorphic to a prod-

uct of a non-empty left-zero semigroup (that is a semigroup satisfying

the identity xy = x), a group and a right-zero semigroup (that is a

semigroup satisfying the identity xy = y). We shall consider monoids

of the form M = S1 where S is a rectangular group. First we recall a
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well-known folklore statement describing generating sets of rectangular

groups (the proof is an easy exercise).

Lemma 4.3. Let M = S1 be a monoid where S = R(B,H, C) is a

rectangular group. Then U ⊆ B ×H × C is a set of generators if and

only if there exists a set A of generators of H satisfying:

(a) for every b ∈ B there exist h ∈ H and c ∈ C with (b, h, c) ∈ U ;

(b) for every c ∈ C there exist h ∈ H and b ∈ B with (b, h, c) ∈ U ;

(c) for every a ∈ A there exist b ∈ B and c ∈ C with (b, a, c) ∈ U . �

Using this lemma we obtain the following result.

Proposition 4.4. For every finite rectangular group S = R(B,H, C)

and for every set A of generators of H, there exist a set U of generators

of M = S1 and a family {Bij | (i, j) ∈
(
[t]
2

)
} of subsets of U such

that End(G(M, φ)) is isomorphic to M and t ≤ 2
√
q + 2 where q =

dlog |B|e + dlog |A|e + dlog |C|e.

Proof: Choose b0 ∈ B, c0 ∈ C. Let e be the unity of H and let

U = U1 ∪ U2 ∪ U3 where

U1 = {(b, e, c0) | b ∈ B},
U2 = {(b0, a, c0) | a ∈ A},
U3 = {(b0, e, c) | c ∈ C}.

By Lemma 4.3, U is a set of generators of M. By Proposition 4.1,

there exist families {Bi | i ∈ I1} of subsets of {(b, e, c0) | b ∈ B},
{Ci | i ∈ I2} of subsets of {(b0, e, c) | c ∈ C} and {Ai | i ∈ I3} of

subsets of {(b0, a, c0) | a ∈ A} such that



29

• {(b, e, c0)} =
⋂{Bi | i ∈ I1, (b, e, c0) ∈ Bi} for all b ∈ B;

• {(b0, e, c)} =
⋂{Ci | i ∈ I2, (b0, e, c) ∈ Ci} for all c ∈ C;

• {(b0, a, c0)} =
⋂{Ai | i ∈ I3, (b0, a, c0) ∈ Bi} for all a ∈ A,

where |I1| = 2dlog |B|e, |I2| = 2dlog |C|e, and |I3| = 2dlog |A|e. Next

we prove that the family

{Bij | (i, j) ∈
(

[t]

2

)
} = {Bi | i ∈ I1} ∪ {Ci | i ∈ I2} ∪ {Ai | i ∈ I3}

with t = d2√q + 1e where

q = dlog |B|e + dlog |A|e + dlog |C|e

yields End(G(M, φ)) ∼= M. Clearly, |
(

t

2

)
| ≥ |I1| + |I2| + |I3|. Observe

that for all u ∈ U

{u} =
⋂

{Bij | (i, j) ∈
(

[t]

2

)
, u ∈ Bij}. (4.1)

To complete the proof, by Lemma 3.5, we will verify condition (P).

We show that for all x, x′ ∈ (B ×H × C) ∪ {1}

B(x, x′) = U \R(x, x′). (4.2)

By Remark 2, it is sufficient to show that U \R(x, x′) ⊆ B(x, x′).

First observe that if |R(x, x′) ∩ U | ≤ 1 then, by (1), for every u ∈
U \R(x, x′) there exists (i, j) ∈

(
[t]
2

)
with u ∈ Bij and Bij∩R(x, x′) = ∅.

Thus equation (2) holds. To complete the argument we must consider

the case |R(x, x′)∩U | > 1. Therefore we describe R(x, x′) for x, x′ ∈ X.

Clearly,

R(x, x′) =





{x′} if x = 1,

∅ if x 6= 1 and x′ = 1 or

x = (b, h, c), x′ = (b′, h′, c′), b 6= b′,

{(b̄, h−1h′, c′) | b̄ ∈ B} if x = (b, h, c) and x′ = (b, h′, c′).
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Observe that |R(x, x′)| > 1 only if x = (b, h, c) and x′ = (b, h′, c′).

Next observe that if c′ 6= c0, then, by the definition of U , R(x, x′) ⊆ U3

and hence |R(x, x′) ∩ U | ≤ 1 (since c′ in R(x, x′) is fixed). Similarly, if

c′ = c0 and h−1h′ 6= e we obtainR(x, x′) ⊆ U2 and hence |R(x, x′)∩U | ≤
1 holds (since h−1h′ in R(x, x′) is fixed) as well. Thus |R(x, x′)∩U | > 1

if and only if c′ = c0 and h−1h′ = e (this is equivalent to h = h′) in which

case R(x, x′) = U1. Consequently (since {(b0, e, c0)} = U1 ∩ U2 ∩ U3)

U \R(x, x′) = U2 ∪ U3 \ {(b0, e, c0)}.

If u = (b0, e, c) ∈ U3 \ {(b0, e, c0)} then, by the property of {Ci | i ∈
I2}, there exists (i, j) ∈

(
[t]
2

)
with u ∈ Bij ⊆ {(b0, e, c) | c ∈ C} and

(b0, e, c0) /∈ Bij. Hence Bij ∩ R(x, x′) = ∅ and thus u ∈ B(x, x′). If

u = (b0, a, c0) ∈ U2 \ {(b0, e, c0)} then, by the property of {Ai | i ∈ I3},
there exists (i, j) ∈

(
[t]
2

)
with u ∈ Bij ⊆ {(b0, a, c0) | a ∈ A} and

(b0, e, c0) /∈ Bij. Hence Bij ∩R(x, x′) = ∅ and thus u ∈ B(x, x′) and (2)

holds. �

Let RG denote the class of monoids M = S1 where S is a finite

rectangular group.

Theorem 4. For all m, νRG(m) ≤ (2 + o(1))m
√

logm.

Proof: We need to show that νRG(m) ≤ (2 + o(1))m
√

logm. If M =

S1 is a monoid on an m-element set where S = R(B,H, C) is a rectan-

gular group then, by Propositions 4.4 and 3.4, there exists a graph G on

a set of size (m+4)(2
√
q+3)+5 with q = dlog |B|e+dlog |A|e+dlog |C|e

where A is a set of generators of H such that End(G) is isomorphic to

M. Clearly, q ≤ 3 + logm and, hence, (m+ 4)(2
√

logm+ 3 + 3) + 5 ≤
(2 + o(1))m

√
logm, from which the statement follows. �
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We recall that for the class RZ of all monoids M = R1 where R is

a finite right-zero semigroup (i.e. xy = y for all elements x and y) one

can show νRZ(m) ≤ 6m+ 9. This follows from the construction in the

proof of Theorem 3 in [KR3].

For a natural number k ≥ 1, we say that a monoid M = (X, ·, e) with

a set of generators A is weakly k-right cancellative if |{a ∈ A | xa =

x′}| ≤ k for all x, x′ ∈ X. Recall that a finite monoid is a group if and

only if it is 1-right cancellative. In this sense it is a generalization of a

group.

Proposition 4.5. Let M = (X, ·, e) with |X| = m be a finite weakly

k-right cancellative monoid with respect to a set of generators A. Then

there exists a family {Bij | (i, j) ∈
(
[t]
2

)
} of subsets of A such that

End(G(M, φ)) is isomorphic to M with t = d
√

2|A| + 1e.
Moreover, for s = min{m2|A|,

(
|A|
k

)
|A|} if |A| ≥ (k + 1)e ln s then

t ≤
√

2(k + 1)e ln s+ 1.

Proof: We show that there exists a family of subsets of A satisfying

condition (P). Then we can apply Proposition 3.4. Specifically, we

show that, with t as above, there exists a family {Bij | (i, j) ∈
(
[t]
2

)
}

such that for every pair x, x′ ∈ X and every a ∈ A with a /∈ R(x, x′)

there exists (i, j) ∈
(
[t]
2

)
with

(i) a ∈ Bij;

(ii) Bij ∩R(x, x′) = ∅.

First, observe that if t = d
√

2|A| + 1e then
(

t

2

)
≥ |A| and we can

satisfy the above conditions with each Bij a singleton, that is, by taking

Bij = {a} where a runs through A and (i, j) runs through
(
[t]
2

)
.
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If, moreover |A| ≥ (k + 1)e ln s we can improve the bound on t using

the following probabilistic argument: for each (i, j) ∈
(
[t]
2

)
a set Bij

is a random subset of A obtained by placing each a ∈ A, randomly,

in Bij with probability 1
k+1

. The choices are made independently for

(i, j) ∈
(
[t]
2

)
. Fix a set R ⊆ A with |R| ≤ k and a ∈ A \ R. For each

(i, j) ∈
(
[t]
2

)
let Eij denote the event that a ∈ Bij and R ∩ Bij = ∅.

Since

Prob(R ∩Bij = ∅) =

(
1 − 1

k + 1

)|R|

≥
(

1 − 1

k + 1

)k

≥ 1

e

we conclude that Prob(Eij) ≥ 1
(k+1)e

which, in turn, yields

Prob(
∧

1≤i<j≤t

¬Eij) ≤
(

1 − 1

(k + 1)e

)(t

2)
(∗)

In order to ensure condition (P) we need to satisfy
∧

1≤i<j≤t ¬Eij for

all R = R(x, x′) and a ∈ A \R(x, x′). We consider two cases:

Case 1. If m2 <
(
|A|
k

)
then, in view of (∗), we need

(
1 − 1

(k + 1)e

)(t

2)
m2|A| < e−

(t

2)
(k+1)em2|A| < 1

which is satisfied if t ≥
√

2(k + 1)e ln(m2|A|) + 1.

Case 2. If m2 ≥
(
|A|
k

)
we use the fact that M is weakly k-right concellative with

respect to the set of generators A. In order to verify condition (P), it

suffices to show conditions (i) and (ii) hold with {R(x, x′) | x, x′ ∈ X}
replaced by the broader family

(
[A]
k

)
, the set of all k-tuples of A. This

is because for each x, x′ and a /∈ R(x, x′) we may verify (i) and (ii) for

R ∈
(

A

k

)
with a /∈ R and R(x, x′) ⊆ R. Thus, we need

(
1 − 1

(k + 1)e

)(t

2) (|A|
k

)
|A| < 1
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which is satisfied if t ≥
√

2(k + 1)e ln(
(
|A|
k

)
|A|) + 1. �

For a natural number k ≥ 1, let Ck consist of all finite, weakly k-right

cancellative monoids.

Theorem 5. For all m, νCk
(m) ≤ (5 + o(1))m

√
k lnm.

Proof: We will show that νCk
(m) ≤ 5m

√
k lnm for m ≥ m0. By

Proposition 3.4, there exists a graph G with endomorphism monoid M

on at most (t + 1)(m + 4) vertices. Since ln s ≤ 3 lnm, Proposition

4.5 gives t ≤
√

6(k + 1)e lnm+ 1. Consequently, since k ≥ 2 implies√
6e(k + 1) < 5

√
k we get, for sufficiently large m, that νCk

(m) ≤
(m+ 4)(t+ 1) < 5m

√
k lnm. �

4.2 Completely Simple Monoids

The aim of this section is to prove Theorem 6. One of the most impor-

tant classes of semigroups generalizing groups is the class of completely

simple semigroups, see [CP].

Definition 4.6. [CP] A semigroup S is completely simple if and only

if there exists no proper two-sided ideal of S and there exist no distinct

idempotents e and f of S with ef = fe = e.

While this is the standard definition we use an equivalent (see Rees

Theorem – Theorem 1.3.2 in [H] or Theorem 3.5 in [CP]), more com-

binatorial description which will allow us to parallel the techniques in

Section 3. Let B and C be sets, H = (H, ·, e) be a group with identity

e and let P = {pc,b}c∈C,b∈B be a |C| × |B| matrix with entries from H.
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Then R(B,H, C;P ) is a semigroup (B ×H × C,�) where

(b, h, c) � (b′, h′, c′) = (b, hpc,b′h
′, c′)

(here the product hpc,b′h
′ is considered in the group H). It is well-

known that R(B,H, C;P ) is a semigroup. Rees’ Theorem says that

a semigroup S is completely simple if and only if it is isomorphic to

R(B,H, C;P ) for some sets B and C, a group H and a |C| × |B|
matrix P with entries from H.

Note that a semigroup S is a rectangular group, discussed in the

previous section, if and only if S is isomorphic to R(B,H, C;P ) where

pb,c = e for all b ∈ B and c ∈ C. One can easily verify that if B or

C is a singleton set then R(B,H, C;P ) is a rectangular group. This

follows from Proposition 4.7. Consequently in view of Theorem 4 we

can restrict ourselves to the case when both B and C have cardinality

at least 2. We recall the important properties of matrix representations.

Proposition 4.7. [CP] Let sets B, C and b0 ∈ B, c0 ∈ C be given.

Let H be a group and P be a |C| × |B|-matrix over H. Then there

exists a |C| × |B|-matrix P ′ over H such that

(i) p′c,b0 = p′c0,b = e for all b ∈ B and c ∈ C;

(ii) the semigroups R(B,H, C;P ), and R(B,H, C;P ′) are isomorphic. �

We say that a |C|×|B| matrix P over a group H is (c0, b0)-standardized

for b0 ∈ B and c0 ∈ C if pc,b0 = pc0,b = e for all b ∈ B and c ∈ C.

We say that a monoid M is completely simple if M is isomorphic to

S1 for a completely simple semigroup S. Let CS denote the class of all

finite, completely simple monoids.

In what follows we assume that finite, non-empty sets B and C, ele-

ments b0 ∈ B, c0 ∈ C, a finite group H and a (c0, b0)-standardized |C|×
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|B| matrix P over H are given. Let M = (X, ·, 1) = R(B,H, C;P )1

be a completely simple monoid such that X = {B×H ×C} ∪ {1} and

|X| = m = |B||H||C| + 1. First we give a folklore statement regarding

generators of M (generalizing Lemma 4.3).

Lemma 4.8. A set U ⊆ B × H × C is a set of generators of M

whenever there exists a set A of generators of H such that

1. for every b ∈ B there exist h ∈ H and c ∈ C with (b, h, c) ∈ U ;

2. for every c ∈ C there exist h ∈ H and b ∈ B with (b, h, c) ∈ U ;

3. for every a ∈ A there exist b ∈ B and c ∈ C with (b, a, c) ∈ U . �

Let U ⊆ A ×H × B be a set of generators and let φ :
(
[t]
2

)
→ P(U)

be a mapping with (i, j) 7→ Bij. Instead of using condition (P), we

will use Lemma 4.9 which gives three conditions on φ that imply (P).

Then, for a suitable t, we construct φ satisfying these conditions. The

construction then yields an upper estimate on t.

Lemma 4.9. Suppose the family {Bij | (i, j) ∈
(
[t]
2

)
} satisfies:

(h1) For every c, c′ ∈ C with c 6= c′ there exists (i, j) ∈
(
[t]
2

)
such that

U ∩ (B ×H × {c}) ⊆ Bij and Bij ∩ (B ×H × {c′}) = ∅.

(h2) For every (b, h, c) ∈ U and every (b′, h′) ∈ B ×H with (b, h) 6= (b′, h′)

there exists (i, j) ∈
(
[t]
2

)
such that (b, h, c) ∈ Bij and (b′, h′, c) /∈ Bij.

(h3) For every (b, h, c) ∈ U , every c′ ∈ C and every h′ ∈ H with pc′,bh 6= h′

there exists (i, j) ∈
(
[t]
2

)
such that (b, h, c) ∈ Bij and if (b̄, h̄, c) ∈ Bij

then pc′,b̄h̄ 6= h′.

Then φ satisfies condition (P) and, thus, End(FP ∗H) ∼= M.
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Proof: Recall that we need to show for every pair x1, x2 ∈ X

B(x1, x2) =
⋃

ij

{Bij | Bij ∩R(x1, x2) = ∅} = U \R(x1, x2).

As B(x1, x2) ⊆ U \R(x1, x2) is clear, we show only the reverse inclu-

sion. We consider several cases:

(a) If x2 = 1 then R(x1, x2) ∩ U = ∅. Consequently, condition (P)

becomes B(x1, x2) = U . To show this equality fix (b, h, c) ∈ U . By

(h1) (applied with c′ arbitrary), there exists (i, j) ∈
(
[t]
2

)
such that

U∩(B×H×{c}) ⊆ Bij and thus (b, h, c) ∈ Bij. Since Bij∩R(x1, x2) =

∅, by assumption, (b, h, c) ∈ B(x1, x2). As (b, h, c) was an arbitrary

element from U we get B(x1, x2) = U .

(b) If x1 = 1 then R(x1, x2) = {x2}. Consequently, condition (P)

becomes B(x1, x2) = U \ {x2}. As above, one containment is clear

and we need to show only B(x1, x2) ⊃ U \ {x2}. To this end set

x2 = (b2, h2, c2), we are going to show that an arbitrary x = (b, h, c) ∈
U \ {x2} belongs to B(x1, x2). We distinguish two subcases: namely,

c 6= c2 and c = c2.

If c 6= c2 then, by (h1), there exists (i, j) ∈
(
[t]
2

)
such that U ∩ (B ×

H × {c}) ⊆ Bij and Bij ∩ B ×H × {c2} = ∅. Thus (b, h, c) ∈ Bij and

Bij ∩R(x1, x2) = ∅. Hence, (b, h, c) ∈ B(x1, x2).

If c = c2 then (b, h) 6= (b2, h2) and so, by (h2), there exists (i, j) ∈
(
[t]
2

)
such that x2 /∈ Bi,j and (b, h, c) = (b, h, c2) ∈ Bij. Consequently,

R(x1, x2) ∩Bij = ∅ and (b, h, c) ∈ B(x1, x2), as required.

(c) The remaining case is x1 = (b1, h1, c1), x2 = (b2, h2, c2). Then

R(x1, x2) = {(b̄, h̄, c2) | b̄ ∈ B, h̄ ∈ H, h1pc1,b̄h̄ = h2}. (4.3)

Again, we need to show

U \ {(b̄, h̄, c2) | b̄ ∈ B, h̄ ∈ H, h2 = h1pc1,b̄h̄} ⊂ B(x1, x2).
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Assume, therefore, that (b, h, c) ∈ U \ R(x1, x2). If c 6= c2 then,

by (h1) (applied with c′ = c2), (b, h, c) ∈ B(x1, x2). Thus we can

assume that c = c2 which implies that h2 6= h1pc1,bh. Consequently

pc1,bh 6= h−1
1 h2 and, by (h3) (applied with h′ = h−1

1 h2 and c′ = c1),

there exists (i, j) ∈
(
[t]
2

)
with (b, h, c) ∈ Bij and if (b̄, h̄, c) ∈ Bij then

pc1,b̄h̄ 6= h−1
1 h2 (i.e. h1pc1,b̄h̄ 6= h2). Since we have just established

that (b, h, c) ∈ Bij it remains to show that Bij ∩ R(x1, x2) = ∅. To

this end let (b̄, h̄, c̄) ∈ Bij. If c̄ 6= c2 then, by (3), (b̄, h̄, c̄) /∈ R(x1, x2).

If c̄ = c2(= c) then h1pc1,b̄h̄ 6= h2 and, by (3), (b̄, h̄, c̄) /∈ R(x1, x2)

as well. In either case Bij ∩ R(x1, x2) = ∅ follows. Consequently,

B(x1, x2) = U \R(x1, x2), completing the proof. �

Observe that for i = 1, 2, 3 if a family Fi satisfies condition (hi) then

the family F = F1 ∪ F2 ∪ F3 satisfies (h1), (h2) and (h3). In Lemma

4.10 we will construct families satisfying (h1) and (h2).

Lemma 4.10. For every set U ⊆ B × H × C of generators of M

there exist a family F1 = {Yi | i ∈ I1} of subsets of U satisfying (h1)

with |I1| = 2dlog |C|e and a family F2 = {Xi | i ∈ I2} of subsets of U

satisfying (h2) with |I2| = 2dlog |B ×H|e.

Proof: Let U ⊆ B × H × C be a set of generators. By Proposition

4.1, there exists

• a family {Ti | i ∈ I1} of subsets of C such that |I1| = 2dlog |C|e and

{c} =
⋂{Ti | i ∈ I1, c ∈ Ti} for all c ∈ C.

• a family {Wi | i ∈ I2} of subsets of B×H such that |I2| = dlog |B×H|e
and {y} =

⋂{Wi | i ∈ I2, y ∈ Wi} for all y ∈ B ×H.

Define Yi = {(b, h, c) ∈ U | c ∈ Ti} for all i ∈ I1, Xi = {(b, h, c) ∈ U |
(b, h) ∈ Wi} for all i ∈ I2 and consider the families F1 = {Yi | i ∈ I1}
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and F2 = {Xi | i ∈ I2}. If c1 and c2 are distinct elements of C then there

exists i ∈ I1 with c1 ∈ Ti and c2 /∈ Ti. Hence U ∩ (B ×H × {c1}) ⊆ Yi

and (B × H × {c2}) ∩ Yi = ∅. Thus F1 satisfies (h1). If (b, h, c) ∈ U

and (b′, h′) ∈ B ×H with (b, h) 6= (b′, h′) then there exists i ∈ I2 with

(b, h) ∈ Wi and (b′, h′) /∈ Wi. Then (b, h, c) ∈ {(b, h)} × C ⊆ Xi and

({(b′, h′)}×C)∩Xi = ∅, thus (b′, h′, c) /∈ Xi. Whence F2 satisfies (h2).

�

Next we give two constructions for a family satisfying condition (h3).

Then, depending on the size of C, we choose the smaller family F3 and

show that it has size O(m
1
3 ) yielding |G(M, φ)| = O(m

7
6 ).

Lemma 4.11. For every set U ⊆ B×H×C of generators of M there

exists a family F3 of subsets of U satisfying (h3) of size 2|C|dlog |H|e.

Proof: By Lemma 4.1, there exists a family {Hi | i ∈ I3} of subsets

of H such that {h} =
⋂{Hi | i ∈ I3, h ∈ Hi} for all h ∈ H and

|I3| = 2dlog(|H|)e. For every c ∈ C and i ∈ I3 define a set Di,c =

{(b̄, h̄, c̄) ∈ U | pc,b̄h̄ ∈ Hi}. Let (b, h, c) ∈ U , c′ ∈ C and h′ ∈ H with

pc′,bh 6= h′ be given. Then there exists i ∈ I3 with pc′,bh ∈ Hi and h′ /∈
Hi. We prove that (b, h, c) ∈ Di,c′ and if (b̄, h̄, c̄) ∈ Di,c′ then pc′,b̄h̄ 6= h′.

Thus Di,c′ satisfies the statement stronger than condition (h3) for given

(b, h, c), c′ and h′. Since pc′,bh ∈ Hi we conclude that (b, h, c) ∈ Di,c′ .

If (b̄, h̄, c̄) ∈ Di,c′ then pc′,b̄h̄ ∈ Hi. On the other hand, h′ /∈ Hi and we

infer that pc′,b̄h̄ 6= h′. Whence the family {Di,c | i ∈ I3, c ∈ C} satisfies

condition (h3). �

Lemma 4.12. There exists a set U ⊆ B × H × C of generators

of M and a family F3 of subsets of U satisfying (h3) of size
⌈
|B|
|C|

⌉
+

2dlog log |H|e.
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Proof: First we construct a set U ⊆ B×H×C of generators. Clearly,

there exists a family {Bi | i ∈ I3} of subsets of B such that B =
⋃

i∈I3
Bi, I3 =

⌈
|B|
|C|

⌉
and |Bi| ≤ |C| for all i ∈ I3. For every i ∈ I3

choose a surjective mapping ψi : C → Bi. Let A be a set of generators

of H with |A| ≤ log |H| and e /∈ A (e is the unity of H). Then

U = {(ψi(c), e, c) | c ∈ C, i ∈ I3}∪{(b0, a, c0) | a ∈ A}. By Lemma 4.8,

since B =
⋃{Im(ψi) | i ∈ I3}, U is a set of generators. Next we shall

construct a family of subsets of U . By Proposition 4.1, there exists a

family {Ai | i ∈ I4} of subsets of A such that {a} =
⋂{Ai | i ∈ I4, a ∈

Ai} for all a ∈ A and |I4| = 2dlog |A|e ≤ 2dlog log |H|e. Without loss

of generality we can assume that I3 ∩ I4 = ∅. Now define

• Di = {(ψi(c), e, c) | c ∈ C} for i ∈ I3,

• Di = {(b0, a, c0) | a ∈ Ai} for i ∈ I4,

• F3 = {Di | i ∈ I3 ∪ I4}.

Since |I3∪I4| ≤
⌈
|B|
|C|

⌉
+2dlog log |H|e it suffices to prove that condition

(h3) is satisfied. For this purpose assume that (b, h, c) ∈ U , c′ ∈ C and

h′ ∈ H with pc′,bh 6= h′ are given. First assume that h = e. Then,

h /∈ A, there exists i ∈ I3 with b = ψi(c). Clearly, then (b, h, c) ∈ Di

and if (b̄, h̄, c) ∈ Di then (b̄, h̄, c) = (b, h, c). Thus (b̄, h̄, c) ∈ Di implies

pc′,b̄h̄ 6= h′ and thus in this case condition (h3) is satisfied. Secondly,

if h 6= e then h ∈ A, b = b0 and c = c0 and there exists i ∈ I4 with

h ∈ Ai and h′ /∈ Ai. Hence (b, h, c) ∈ Di and if (b̄, h̄, c̄) ∈ Di then

b̄ = b0, c̄ = c0 and h̄ ∈ Ai. Since P is (c0, b0)-standardized pc′,b̄ = e and

consequently pc′,b̄h̄ = h̄. On the other hand, as h̄ ∈ Ai and h′ /∈ Ai, we

have pc′,b̄h̄ = h̄ 6= h′. Thus (h3) is satisfied. �

We recall that CS is the class of all monoids M = S1 where S is a

finite, completely simple semigroup.
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Theorem 6. For all m, νCS(m) ≤ (2 + o(1))m
7
6 .

Proof: We need to show that νCS(m) ≤ (2 + o(1))m
7
6 . Let M =

(X, ·, 1) be a completely simple monoid isomorphic to R(B,H, C;P )1

for some finite non-empty sets B and C, a finite group H and a |C|×|B|
matrix P over H. Let |X| = m. If |C| ≤ m

1
3

dlog |H|e
then we can apply

Lemmas 4.10 and 4.11 to a set U ⊆ B × H × C of generators of M

yielding a family F = F1∪F2∪F3 of subsets of U satisfying conditions

(h1), (h2) and (h3) with

|F| ≤ 2dlog |C|e + 2dlog |B ×H|e +

⌈
m

1
3

dlog |H|e2dlog |H|e
⌉

≤ 2
(
dm 1

3 e + dlog |B ×H × C|e + 1
)

= (2 + o(1))m
1
3 .

If |C| ≥ m
1
3

dlog |H|e
then we can apply Lemmas 4.10 and 4.12 to obtain a

set U ⊆ B×H×C of generators of M and a family F = F1∪F2∪F3 of

subsets of U satisfying conditions (h1), (h2) and (h3). First we bound

the size of F3. Indeed, by Lemma 4.12

|F3| =

⌈ |B|
|C|

⌉
+ 2dlog log |H|e =

⌈ |B||C||H|
|C|2|H|

⌉
+ 2dlog log |H|e

≤ m log2 |H|
m

2
3 |H|

(1 + o(1)) =
m

1
3 log2 |H|
|H| (1 + o(1))

≤ 1.2m
1
3 (1 + o(1))

where the last inequality holds since log2 x

x
≤ 1.2 for all x ∈ N.

By Lemma 4.10 we have

|F1 ∪ F2| ≤ 2dlog |B ×H|e + 2dlog |C|e ≤ o(m
1
3 )
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and consequently |F| ≤ (2 + o(1))m
1
3 .

Finally, since t is the smallest natural number such that
(

t

2

)
≥ |F|

we get, in either of the above cases, that t = (2 + o(1))m
1
6 and, using

Lemma 4.9, we conclude that νCS(m) = (2 + o(1))m
7
6 . �
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Chapter 5

Generalizing the P-graph

5.1 A general construction

The aim of this section is to extend the (generalized) P-graph construc-

tion, described below, to subdirect products of monoids. We reformalize

our definition of P-graph as follows.

Definition. A pair G = (G,P) is a partition-graph (or a P-graph for

short) if G = (V,E) is a graph and P = {Vi | i ∈ I} is a partition of

V into independent sets and there exists 0 ∈ I (we shall distinguish

the set V0 by the term “axis”) such that for any i ∈ I \ {0} the graph

induced on V0 ∪ Vi is a star forest saturating Vi. More explicitly the

following holds:

(d1) for every i ∈ I \ {0} and for every x ∈ Vi there exists y ∈ V0 with

{x, y} ∈ E;

(d2) for every i ∈ I and every y ∈ V0 there exists at most one x ∈ Vi with

{x, y} ∈ E.

We call |I| the width of G, and denote it by w(G).
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Definition. We say that a P-graph G represents a monoid M =

(M, ·, e) if the axis V0 can be identified with M such that:

(r1) the restriction of every f ∈ EndP(G) to M is a left translation of M ;

(r2) for every left translation λ of M there exists f ∈ EndP(G) with f(x) =

λ(x) for all x ∈M ;

(r3) for distinct f, f ′ ∈ EndP(G) there exists x ∈M with f(x) 6= f ′(x).

It is easy to see that P-graphs constructed in Proposition 3.4 represent

monoids in the sense of our definition.

Observe that if G represents a monoid M (we assume that M = V0)

then the restriction of a given f ∈ EndP(G) to M is a left translation

by f(e) and hence, if f and f ′ are distinct P-endomorphisms, then

f(e) 6= f ′(e).

For a monoid M let Π(M) denote the least natural number n such

that there exists a P-graph G representing M with |V (G)| ≤ n and

End(G) ∼= M . For a class M of monoids set

ΠM(m) = max{Π(M) |M ∈ M, |M | = m}.

As before, we can restrict ourselves to an investigation of P-endomorphism

monoids. Using our enhanced notation, we can restate Proposition 3.1

as follows.

Theorem 5.1. Let G be a P-graph. Then there exists a graph H

with EndP(G) ∼= End(H) and |H| = |G| + 4w(G) + 5.

The above construction for the graph H yields the best known upper

bound for the general case. For products, however, instead of apply-

ing the construction directly we will get an improved bound by “piec-

ing together” the P-graphs corresponding to the factors in an efficient
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way. Let M (1),M (2), . . . ,M (r) be monoids. The elements of a product

monoid
∏r

i=1M
(i) are r-tuples (m(1),m(2), . . . ,m(r)) with multiplica-

tion defined coordinatewise. A submonoid M ⊂ ∏r

i=1M
(i) is called a

subdirect product if the projection π(i) : M →M (i) is surjective for all

i.

Recall that a family {f (i) : X → X(i) | i ∈ I} of mappings is

separating if for every pair {x, y} of distinct elements of X there ex-

ists i ∈ I with f (i)(x) 6= f (i)(y). Observe that the set of projections

{π(i) | 1 ≤ i ≤ r} is separating.

We can now give our construction of a (generalized) P-graph with

given endomorphism monoid.

Construction 5.2. Let us assume that

(a) G = {G(i) = (G(i),P(i)) | i ∈ I} is a family of disjoint P-graphs where

for each i ∈ I

• G(i) = (V (i), E(i)),

• P(i) = {V (i)
j | j ∈ J (i)},

• 0(i) ∈ J (i) is the axis of G(i);

(b) V0 is a set such that for every i ∈ I

• 0 /∈ J (i),

• |V0| ≥ |V (i)

0(i) |,

• V0 ∩ V (i) = ∅;

(c) F = {f (i) : V0 → V
(i)

0(i) | i ∈ I} is a family of surjective mappings.

Define a P-graph G(G,F, V0) = G = ((V,E),P) where

• V = V0 ∪ (
⋃

i∈I V
(i)),
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• P = {V0} ∪ {V (i)
j | i ∈ I, j ∈ J (i)},

• V0 is the axis of G,

• E = (
⋃

i∈I E
(i)) ∪ {{v, f (i)(v)} | v ∈ V0, i ∈ I} ∪ (

⋃
i∈I F

(i))

where F (i) ⊆ V0 × V (i) consists of all pairs {u, v} where u ∈ V0 such

that

{u, v} ∈ F (i) just when {f (i)(u), v} ∈ E(i).

We observe that

|G| = |V0| +
∑

i∈I

|G(i)| and w(G) = 1 +
∑

i∈I

w(G(i)). (5.1)

Theorem 5.3 describes the P-endomorphism monoid of G(G,F, V0).

Theorem 5.3. Let F = {f (i) : M → M (i) | i ∈ I} be a separating

family of surjective monoid homomorphisms and G = {G(i) | i ∈ I} be

a family of P-graphs such that G(i) represents M (i) for all i ∈ I. Then

G(G,F,M) represents M , consequently Π(M) ≤ |M | + ∑
i∈I Π(M (i)).

Proof: Given family G and F set V0 = M and let G = G(G,F, V0)

be as in Construction 5.2. Since G(i) represents M (i) we conclude that

V
(i)

0(i) = M (i).

We prove that G represents M by verifying the three conditions

(r1),(r2) and (r3). To prove (r1) consider a P-endomorphism f of G.

Then necessarily f(M) ⊆M . First we prove that

f (i)(f(m)) = f(f (i)(m)) for all m ∈M and i ∈ I. (5.2)

By definition, {m, f (i)(m)} ∈ E for all m ∈ M and i ∈ I. Since f is a

P-endomorphism we obtain {f(m), f(f (i)(m))} ∈ E and f(f (i)(m)) ∈
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M (i) = V
(i)

0(i) because f (i)(m) ∈M (i). Since, by (d2), there exists at most

one v ∈M (i) with {f(m), v} ∈ E and, by construction, v = f (i)(f(m))

we conclude that f(f (i)(m)) = f (i)(f(m)) and (2) is proved.

Then for every i ∈ I the restriction of f to V (i) is a P-endomorphism

of G(i) and since G(i) represents M (i) we obtain, by (r1) applied to G(i),

that the restriction of f to M (i) is λ
(i)

f(e(i))
. By (2), f(e(i)) = f(f (i)(e)) =

f (i)(f(e)). Hence, for every v ∈M and every i ∈ I we have

f (i)(f(v)) = f(f (i)(v)) = λ
(i)

f (i)(f(e))
(f (i)(v)) = f (i)(f(e))f (i)(v) = f (i)(f(e)v).

Since {f (i) | i ∈ I} is a separating family of mappings we conclude that

f(v) = f(e)v = λf(e)(v) for all v ∈M and (r1) is proved.

To prove (r2) consider a left translation λx ofM . Since G(i) represents

M (i) we may apply (r2) to λ
(i)

f (i)(x)
to obtain a P-endomorphism g(i) of

G(i) such that the restriction of g(i) to M (i) is λ
(i)

f (i)(x)
. Define g : V → V

setting for v ∈ V

g(v) =

{
λx(v) if v ∈M

g(i)(v) if v ∈ V (i) for some i ∈ I.

We are going to verify that g is a P-endomorphism of G. Since g(i) is

a P-endomorphism of G(i) for all i ∈ I and since M is an independent

set in G it suffices to show that {g(u), g(v)} ∈ E(G) whenever {u, v} ∈
E(G) for u ∈ M and v ∈ V (i) for some i ∈ I. If u ∈ M and v ∈ V (i)

for some i ∈ I then {u, v} ∈ E(G) if and only if either v = f (i)(u) or

{f (i)(u), v} ∈ E(G(i)). Since

g(f (i)(u)) = g(i)(f (i)(u)) = λ
(i)

f (i)(x)
(f (i)(u)) = f (i)(x)f (i)(u) = f (i)(xu)

and xu = λx(u) = g(u) we infer that g(f (i)(u)) = f (i)(g(u)). Thus

if v = f (i)(u) then {g(u), g(v)} = {g(u), f (i)(g(u))} ∈ E(G). Assume

now that {f (i)(u), v} ∈ E(G(i)). Combining f (i)(g(u)) = g(f (i)(u)) =
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g(i)(f (i)(u)) and g(i) is a P-endomorphism of G(i) we infer that {f (i)(g(u)), g(v)} =

{f (i)(g(u)), g(i)(v)} ∈ E(G(i)). Consequently, {g(u), g(v)} ∈ E(G) and

(r2) is proved.

To prove (r3) consider two P-endomorphisms f and g of G. We prove

that if f(m) = g(m) for all m ∈ M then f = g. Choose i ∈ I. By (2),

f(e(i)) = f(f (i)(e)) = f (i)(f(e)) and g(e(i)) = g(f (i)(e)) = f (i)(g(e)) for

all i ∈ I. Hence if f(e) = g(e) then f(e(i)) = g(e(i)) and applying (r1) to

G(i) we infer that f(x) = g(x) for all x ∈M (i). By (r3) applied to G(i),

we infer that f(v) = g(v) for all v ∈ Vi. Since i ∈ I was arbitrary we

conclude that f = g and (r3) is proved. Whence G(G,F,M) represents

M as desired.�

To apply Theorem 5.3 we require a technical folklore lemma about

separating families.

Lemma 5.4. Let X be a set of size n > 1. If {f (i) : X → X(i) | i ∈ I}
is a separating family of mappings then there exists I ′ ⊆ I such that

|I ′| ≤ n− 1 and {f (i) : X → X(i) | i ∈ I ′} is a separating family.

Proof: We prove the statement by induction over n. If n = 2 then the

statement is trivial, it suffices to set I ′ = {i} for i ∈ I such that fi is not

constant. Assume that |X| = n and that the statement is true for all

sets Y with |Y | < n. Since {f (i) : X → X(i) | i ∈ I} is separating there

exists i0 ∈ I such that f (i0) is non-constant. Consequently, there exists

a partition {Y1, Y2} of X such that f (i0)(y1) 6= f (i0)(y2) for all y1 ∈ Y1

and y2 ∈ Y2. Let g(i) be the restriction of f (i) to Y1 and h(i) be the

restriction of f (i) to Y2. Then {g(i) : Y1 → X(i) | i ∈ I} and {h(i) : Y2 →
X(i) | i ∈ I} are separating families because {f (i) : X → X(i) | i ∈ I} is

a separating family. By the induction hypothesis, there exist I1, I2 ⊆ I

such that |I1| ≤ |Y1| − 1, |I2| ≤ |Y2| − 1, {g(i) : Y1 → X(i) | i ∈ I1} and
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{h(i) : Y2 → X(i) | i ∈ I2} are separating families because |Y1|, |Y2| < n.

Then {f (i) : X → X(i) | i ∈ {i0} ∪ I1 ∪ I2} is a separating family and

|{i0} ∪ I1 ∪ I2| ≤ 1 + |I1| + |I2| ≤ 1 + |Y1| − 1 + |Y2| − 1 = |X| − 1. �

Next we give a consequence for classes of monoids which are subdirect

products of finitely many monoids. Let M be a class of monoids for

which there exist natural numbers a and b such that Π(M) ≤ a for all

M ∈ M and

b = max
M∈M

min{w(G) | G represents M and |G| ≤ a}.

Corollary 5.5. Let M = (M,·, e) be a monoid for which there exists

a separating family {f (j) : M → M (j) | j ∈ J} of surjective monoid

homomorphisms such that M (j) ∈ M for all j ∈ J . Then there exists

a P-graph G representing M such that |G| ≤ (a+ 1)|M | and w(G) =

b|M |.

Proof: By Lemma 5.4, we can assume that |J | ≤ |M | − 1. We apply

Construction 5.2 and Theorem 5.3 which ensures the existence of a

P-graph G representing M such that

|G| ≤ |M |+(|M |−1)a ≤ (a+1)|M |, w(G) ≤ 1+(|M |−1)b ≤ |M |b.

�

5.2 Application

The aim of this section is to prove Theorem 7.

Definition. A semilattice monoid is a commutative monoid M satis-

fying x2 = x for all x ∈M .
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Proposition 5.6. Let S = (S, ·, e) be a semilattice monoid. Then

there exists a P-graph G representing S such that |G| ≤ 4|S| and

w(G) ≤ 2|S|. Thus, ΠL(n) ≤ 4n.

Proof: Let M be the single element class consisting of a two-element

semilattice. It is well-known that every semilattice monoid is a sub-

direct product of two-element semilattices [P] and thus Corollary 5.5

applies. Clearly, there exists a P-graph G (an edge and an isolated ver-

tex) representing a two-element semilattice with |G| = 3 and w(G) = 2.

The statement then follows from Corollary 5.5. �

Below we will use the following notation. For a semigroup S = (S, ·)
we write S1 = (S ∪ {1}, ·) or S0 = (S ∪ {0}, ·) where 1 or 0 is a new

element which is not in S and 1s = s1 = s for all s ∈ S ∪ {1} and

0s = s0 = 0 for all s ∈ S ∪ {0}. Then S1 is a monoid with an outer

identity and S0 is a semigroup with an outer zero.

Next we prove an auxiliary technical lemma that plays a key role in

the next section. By the above definition, if M = (M, ·, e) is a monoid

then M0 is a monoid M with adjoined outer zero.

Lemma 5.7. Let G be a P-graph representing a monoid M , then

there exists a P-graph H representing M0 such that

|H| = |G| + w(G) + 3 and w(H) = w(G) + 2.

Proof: Let us assume that G = (G = (U, F ),P) where P = {Ui |
0 ≤ i ≤ l − 1} and U0 is the axis of G. Let M = (M, ·, e) be a

monoid. Assume that 0 /∈ M and M0 = (M ∪ {0}, ·, e). Below we

will relabel 0 by v0 and suppose that v0, v1,. . . ,vl+1, and w are pairwise

distinct and U ∩ {v0, v1, . . . , vl+1, w} = ∅. For i with 0 ≤ i ≤ l − 1 set

Vi = Ui ∪ {vi}, Vl = {w, vl}, Vl+1 = {vl+1}, and V =
⋃l+1

i=0 Vi. Finally
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set E = F ∪ E1 ∪ E2 where E1 = {{vi, vj} | 0 ≤ i < j ≤ l + 1}
and E2 = {{u,w} | u ∈ U}. Let H = (H = (V,E),R) where R =

{Vi | 0 ≤ i ≤ l + 1} and the axis is V0. Clearly, H is a P-graph with

|H| = |G|+w(G) + 3 and w(H) = w(G) + 2. It remains to prove that

H represents M0 - the details of (r1),(r2) and (r3) are below.

Details of 5.7 Since G represents M we have U0 = M and thus,

(recalling that 0 and v0 are identified) V0 = M ∪ {0} = M0. To prove

(r1) for H and M0 consider a P-endomorphism f of H. First observe

that {vi | 0 ≤ i ≤ l + 1} induces a unique clique of size l + 2 in H and

hence f({vi | 0 ≤ i ≤ l+1}) = {vi | 0 ≤ i ≤ l+1}. For j = 0, 1, . . . , l+1

we have Vj ∩ {vi | 0 ≤ i ≤ l + 1} = {vj} and consequently f(vj) = vj

for all j = 0, 1, . . . , l + 1, in particular, f(0) = 0. First assume that

f(e) ∈ M ⊆ V0. Observe that for v ∈ V we have {v, w} ∈ E if and

only if v ∈ U . Since Vl = {w, vl} we conclude that f(w) = w and

f(U) ⊆ U . Thus the restriction g of f to U is a P-endomorphism of

G. Applying (r1) to G and M we conclude that g(x) = λM
f(e)(x) for all

x ∈ M and hence f(x) = λM0

f(e)(x) for all x ∈ M0. On the other hand,

if f(e) = 0 then f(w) = vl because {e, w}, {0, vl} ∈ E and {0, w} /∈ E.

Since {u,w} ∈ E for all u ∈ U and since {x, vl} ∈ E exactly when

x ∈ {vi | 0 ≤ i ≤ l + 1, i 6= l} we infer that f(Vi) = {vi} for all

i ∈ {0, 1, . . . , l + 1}. Thus f(x) = λM0

0 (x) for all x ∈ M0 and (r1) is

proved for H and M0.

To prove (r2) consider a left translation λM0

a : M0 → M0. First

assume that a ∈ M . Applying (r2) to G and M there exists a P-

endomorphism g of G such that g(x) = λM
a (x) for all x ∈M . Define a

mapping f : V → V by

f(v) =

{
g(v) if v ∈ U

v if v ∈ {vi | 0 ≤ i ≤ l + 1} ∪ {w}.
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Since g is a P-endomorphism of G we obtain that f is a P-endomorphism

of H. Clearly, f(x) = λM0

a (x) for all x ∈ M0. If a = 0 then we define

a mapping f : V → V by f(v) = vi for every i = 0, 1, . . . , l + 1 and

every v ∈ Vi. It is easy to verify that f is a P-endomorphism of H and

f(x) = λM0

0 (x) for all x ∈M0. Thus (r2) for H and M0 is proved.

To prove (r3) consider two distinct P-endomorphisms f and g of H.

We have already proved above that if h is a P-endomorphism of H

satisfying h(e) = 0 then h(Vi) = {vi} for all i = 0, 1, . . . , l + 1. Thus

we may assume f(e), g(e) ∈M for otherwise f(e) 6= g(e) and would be

done. In the proof of (r1) we established that f(e), g(e) ∈ M implies

f(U), g(U) ⊆ U and, moreover, from f 6= g it follows that the restric-

tions f and g to U are distinct. An application of (r3) to G and the

restrictions of f and g to U completes the proof of (r3) for H. �

Definition. A normal band monoid is a monoid of the form M = S1

where S is an arbitrary semigroup satisfying x2 = x and xuvx = xvux

for all x, u, v ∈ S.

Every normal band monoid is a subdirect product of monoids from

the five element class M∗ consisting of the monoids M where

• M is a two-element semilattice monoid.

• M = S1 where S is a two-element left (or right)-zero semigroup – that

is a semigroup S = SL satisfying xy = x for all x, y ∈ S or S = SR

satisfying xy = y for all x, y ∈ S.

• M = (S0)1 where S is a two-element left (or right)-zero semigroup.

The above facts were established in [G]. Lemma 5.7 describes the P-

graphs representing each of the five aforementioned factors which may

∗This is the class of subdirectly irreducible normal band monoids, that is, monoids

which can not be realized as a subdirect product.
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appear in a product containing a normal band monoid.

Lemma 5.8. For every subdirectly irreducible normal band monoid

M there exists a P-graph G representing M with |G| ≤ 17 and w(G) ≤
6.

Proof: Let M = (M, ·, e) be a subdirectly irreducible normal band

monoid. If M is a semilattice monoid then there exists a P-graph G

representing M with |G| = 3 ≤ 17 and w(G) = 2 ≤ 6.

Next assume that e is an outer identity of M and M \{e} = {x, y} is a

two-element left(or right)-zero semigroup SL (or SR, respectively). Now

consider the P-graph G = (G = (V,E),P = {Ui | i ∈ I}) where I =

{0, 1, x, y}, V = (M×{0, 1})∪ ((M \{e})×{x, y}), Ui = V ∩ (M×{i})
for all i ∈ I and

E ={{(z, 0), (z, 1)} | z ∈M} ∪ {{(z, 0), (z, i)} | z ∈M \ {e}, i ∈ {x, y}}∪
{{(z, 1), (zi, i)} | z ∈M, i ∈ {x, y}}.

Depending on whether M = (SL)1 or M = (SR)1 we obtain two P-

graphs G = GL and G = GR (see Figure 5.1 and 5.2 for (SL)1 and

GL). Clearly, P and E are correctly defined and G is a P-graph with

|G| = 10 ≤ 17 and w(G) = 4 ≤ 6.

To prove that GL represents (SL)1 we observe that all P-endomorphisms

of GL are of the form (u, v) 7→ (g(u), v) where g is either the identity or

g(e) = g(x) = x, g(y) = y or g(e) = g(y) = y, g(x) = x. Similarly the

only P-endomorphisms of GR are of the form (u, v) 7→ (g(u), v) where

g is either the identity or the constant mapping with value x or y.

Finally, consider M = {x, y, e, 0} where 0 is an outer zero of M and e

is the outer identity. By Lemma 5.7 there exists P-graph representing

M with |G| = 17 and w(G) = 6. �

The following theorem summarizes facts about normal band monoids.
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e e

e

x x x x

x

x

y y y y
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y

Figure 5.1: multiplication table for (SL)1

e

x

y

0 1 x y

Figure 5.2: P-graph GL for (SL)1
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Theorem 5.9. Let M = (M, ·, e) be a normal band monoid. Then

there exists a P-graph G representing M such that |G| ≤ 18|M | and

w(G) ≤ 6|M |. Thus, ΠNB(n) ≤ 18n.

Proof: Let M be the class consisting of subdirectly irreducible nor-

mal band monoids. As every normal band monoid is a subdirect prod-

uct of monoids from M we can apply Corollary 5.5. The statements

follows from a combination of Lemma 5.8 and Corollary 5.5. �

Next we give an easy technical lemma about finite cyclic groups.

Lemma 5.10. For every finite cyclic group C there exists a P-graph

G representing C with |G| ≤ 3|C| and w(G) = 3.

Proof: Let C be a finite cyclic group and let a ∈ C be a generator

of C. Consider a P-graph G = (G = (V,E),P = {Ui | i ∈ I}) where

I = {0, 1, 2}, V = C × I, Ui = V ∩ (C × {i}) for all i ∈ I and

E = E1 ∪ E2, where

E1 = {{(z, 0), (z, i)} | z ∈ C, i ∈ {1, 2}} and

E2 = {{(z, 1), (za, 2)} | z ∈ C}.

Clearly, P and E are defined so that G is a P-graph with |G| = 3|C|,
w(G) = 3. Due to the edges of E1 for any P-endomorphism f of

G there exists a mapping g : C → C such that f(z, i) = (g(z), i)

for all z ∈ C and i = 0, 1, 2. Due to the edges of E2 we infer that

ag(x) = g(x)a holds for all x ∈ C. Since a is a generator of C and

the only mappings that commute with the translations λa = ρa are

translations λai = (λa)
i for all natural numbers i = 0, 1, . . . we deduce

that EndP(G) ∼= C. �
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Theorem 5.11. Let M = (M, ·, e) be an Abelian group. Then there

exists a P-graph G representing M such that |G| ≤ 4|M | and w(G) ≤
1 + 3 log |M |. Thus, ΠA(n) ≤ 4n.

Proof: Consider a finite Abelian group M = (M, ·, e). It is well-

known that M is a direct product of finite cyclic groups, say,

{M (i) = (M (i), ·, e(i)) | i ∈ I}.

Clearly, we can assume that |M (i)| > 1 for all i ∈ I and hence |M | =
∏

i∈I |M (i)| ≥ ∑
i∈I |M (i)| and |I| ≤ log |M |. For each i ∈ I let π(i) :

M → M (i) be the canonical projection and set F = {π(i) | i ∈ I},
then F is a separating family of surjective monoid homomorphisms. By

Lemma 5.10, there exists a family G = {G(i) | i ∈ I} of P-graphs

such that G(i) represents M (i), |G(i)| = 3|M (i)|, w(G(i)) = 3 for all

i ∈ I. We apply Construction 5.2 to obtain G = Π(G,F,M). By

(1), |G| = |M | +
∑

i∈I 3|M (i)| ≤ 4|M | and w(G) = 1 +
∑

i∈I 3 =

1+3I ≤ 1+3 log |M |. By Theorem 5.3, G represents M and the proof

is complete. �

Combining Theorems 5.1, 5.9 and 5.11 with Proposition 5.4 we derive

the following bounds.

Theorem 5.12. Let n be an integer. For semilattice monoids, normal

band monoids, and Abelian groups the following bounds hold respec-

tively:

νL(n) ≤ 12n+ 5

νNB(n) ≤ 42n+ 5

νA(n) ≤ 4n+ 12 log n+ 9.

Theorem 7 follows immediately from Theorem 5.12.
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Chapter 6

Semilattice extension

This section is devoted to the proof of Theorem 8. We supply the

necessary concepts, omitted in Section 5.1, below. The main concept

of this section is that of a strong semilattice of semigroups.

Definition. Let (Y, ·) be a semilattice partially ordered by y ≤ z if

and only if yz = z. Let {Sy | y ∈ Y } be a family of pairwise disjoint

semigroups and let {φy,z : Sy → Sz | y, z ∈ Y, y ≤ z} be a family of

semigroup homomorphisms such that

• φy,y is the identity mapping for every y ∈ Y ;

• if x, y, z ∈ Y with x ≤ y ≤ z then φy,z ◦ φx,y = φx,z.

Let S =
⋃

y∈Y Sy and for s ∈ Sy ⊆ S and t ∈ Sz ⊆ S where y, z ∈ Y

define

s · t = φy,yz(s)φz,yz(t)

where the right multiplication is in Syz. Then S is a semigroup which

is the strong semilattice of semigroups {Sy | y ∈ Y } determined by

{φy,z | y, z ∈ Y, y ≤ z}. If C is a class of semigroups such that Sy ∈ C for

every y ∈ Y then we say that S is a strong semilattice of C-semigroups.
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Definition. For a class C of semigroups let S(C) be the class of all

finite monoids M of the following form

• M is a monoid which is a strong semilattice of C semigroups;

• M = S1 where S is a strong semilattice of C-semigroups (here S is not

a monoid).

Recall that A, G, RG, and CS are the classes of all abelian groups,

groups, rectangular groups, and completely simple semigroups respec-

tively.

Let RG1 be the class of all monoids M of the form M = S or M = S1

where S ∈ RG. Similarly, let CS1 be the class of all monoids M of the

form M = S or M = S1 where S ∈ CS.

Theorem 8 gives bounds on νS(C) where C is one of the following four

classes A,G,RG, or CS.

In this section we are going to prove the following more detailed form

of Theorem 8.

Theorem 6.1 Let M be a monoid. Then

1. if M ∈ S(A) then there exists a P-graph G representing M such that

|G| ≤ 9|M | and w(G) < 3|M |, thus νS(A)(n) ≤ 21n;

2. if M ∈ S(G) then there exists a P-graph G representing M such that

|G| ≤ 2|M |
√

log log |M | + 12|M | and w(G) < 5|M |, thus νS(G)(n) ≤
2n

√
log log n+ 32n;

3. if M ∈ S(RG) then there exists a P-graph G representing M such that

|G| ≤ 12|M | + 2|M |
√

log |M | and w(G) < 3|M |, thus νS(RG)(n) ≤
24n+ 2n

√
log n;
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4. if M ∈ S(CS) then there exists a P-graph G representing M such

that |G| ≤ (2 + o(1))|M | 76 and w(G) ≤ (4 + o(1))|M |, thus νS(A)(n) ≤
(2 + o(1))n

7
6 .

Proof: The proof of Theorem 6.1 is based on the special proper-

ties of strong semilattices of semigroups given in Proposition III.7.2 in

[P]. From these properties follows a general representation theorem for

strong semilattices of semigroups. Theorem 6.1 is obtained by a substi-

tution of known bounds for the factors from each of the classes in the

representation theorem.

Theorem 6.2 [P] Let (Y, ·) be a semilattice and S = (S, ·) be a

strong semilattice of {Sy | y ∈ Y } determined by {φy,z : Sy → Sz |
y, z ∈ Y, y ≤ z}. Assume that 0 /∈ Sy for every y ∈ Y and let Ty = Sy

if y is the greatest element of Y under ≤ and Ty = (Sy)
0 otherwise. For

y ∈ Y let us define a mapping fy : S → Ty such that

fy(s) =

{
φz,y(s) if s ∈ Sz for z ∈ Y with z ≤ y

0y if s ∈ Sz for z ∈ Y with z 6≤ y.

Then {fy : S → Ty | y ∈ Y } is a separating family of surjective

homomorphisms.

Combining Construction 5.2 with Theorem 6.2 yields the following

theorem.

Theorem 6.3 Let (Y, ·) be a semilattice and S = (S, ·) be a strong

semilattice of {Sy | y ∈ Y }. Then

1. if S = M is a monoid and if there exists a family {Gy | y ∈ Y } of

P-graphs such that Gy represents Sy for every y ∈ Y then there exists
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a P-graph G representing S such that

|G| ≤ |M | + 3|Y | +
∑

y∈Y

(|Gy| + w(Gy)) ≤ 4|S| + 2
∑

y∈Y

|Gy|

and w(G) = 1 + 2|Y | + ∑
y∈Y w(Gy);

2. if there exists a family {Gy | y ∈ Y } of P-graphs such that Gy repre-

sents (Sy)
1 for every y ∈ Y then there exists a P-graph G representing

M = S1 such that

|G| ≤ |M | + 3|Y | +
∑

y∈Y

(|Gy| + w(Gy)) ≤ 4|M | + 2
∑

y∈Y

|Gy|

and w(G) = 1 + 2|Y | + ∑
y∈Y w(Gy).

Proof: To prove the theorem we will apply Construction 5.2 and

Theorem 5.3. Assume that {fy : M → S0
y | y ∈ Y } in Case 1) and

{fy : M → (S1
y)

0 | y ∈ Y } in Case 2) is a separating family of monoid

homomorphisms. By assumption, there exists a family {Gy | y ∈ Y }
of P-graphs such that Gy represents Sy for every y ∈ Y in Case 1) and

Gy represents S1
y for every y ∈ Y in Case 2). By Lemma 5.7, there

exists a family {Hy | y ∈ Y } of P-graphs such that Hy represents S0
y

for every y ∈ Y in Case 1) and Hy represents (S1
y)

0 for every y ∈ Y in

Case 2). We apply Construction 5.2 on the families {Hy | y ∈ Y } and

{fy | y ∈ Y } to obtain a P-graph G such that

|G| = |M | +
∑

y∈Y

|Hy| = |M | + 3|Y | +
∑

y∈Y

(|Gy| + w(Gy))

and w(G) = 1 + 2|Y | + ∑
y∈Y w(Gy). By Theorem 5.3, G represents

M . Thus it remains only to find a separating family of monoid homo-

morphisms {fy : M → S0
y | y ∈ Y } in Case 1) and {fy : M → (S1

y)
0 |

y ∈ Y } in Case 2).
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Consider Case 1). By Theorem 6.2, there exists a separating family

{f ′
y : M → Ty | y ∈ Y } of surjective semigroup homomorphisms where

either Ty = Sy or Ty = (Sy)
0. Since f ′

y is a surjective semigroup homo-

morphism and M is a monoid we infer that Ty is a monoid and f ′
y is

a monoid homomorphism and thus there exists a separating family of

monoid homomorphisms {fy : M → S0
y | y ∈ Y } and the proof of Case

1) is complete.

Consider Case 2). By Theorem 6.2, there exists a separating family

{f ′
y : M → Ty | y ∈ Y } of surjective semigroup homomorphisms where

either Ty = Sy or Ty = (Sy)
0. Let us define fy : S1 → (S1

y)
0 for every

y ∈ Y such that fy(s) = f ′
y(s) for all s ∈ S and fy(1) = 1. Then

{fy | y ∈ Y } is a separating family because f−1
y (1) = {1} and fy is a

monoid homomorphism because f ′
y is a semigroup homomorphism and

1 is an outer identity of S1 and of (S1
y)

0. Hence the proof of Case 2)

follows. �

Next we prove an auxiliary lemma.

Lemma 6.4 If S is a strong semilattice of groups (or abelian groups)

then S1 is also a strong semilattice of groups (or abelian groups, re-

spectively).

Proof: Assume that S is a strong semilattice of {Sy | y ∈ Y } deter-

mined by {φy,z : Sy,→ Sz | y, z ∈ Y, y ≤ z} where (Y, ·) is a semilattice,

Sy is a group for all y ∈ Y , and ey is the identity in Sy. Let a be an

element with a /∈ Y , then (Y ∪ {a}, ·) where ay = ay = y for all

y ∈ Y ∪ {a} is a semilattice. Let Sa = ea be the singleton group. For

every y ∈ Y ∪ {a} let φa,y be the mapping such that φ(ea) = ey. Then

φa,y : Sa → Sy is a group homomorphism for all y ∈ Y ∪ {a}. Clearly,

the family {φy,z | y, z ∈ Y ∪ {a}, y ≤ z} satisfies the conditions on
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a family homomorphisms from the definition of strong semilattice of

semigroups. Let T be a strong semilattice of {Sy | y ∈ Y ∪ {a}} deter-

mined by {φy,z | y, z ∈ Y ∪ {a}, y ≤ z}. Thus T is a strong semilattice

of groups and if Sy is an abelian group for all y ∈ Y then T is a strong

semilattice of abelian groups.

It remains to prove that T is isomorphic to S1. Clearly, S ⊆ T and

let f : S1 → T be a mapping such that f(s) = s for all s ∈ S and

f(1) = ea. Then f is a bijection and by the definition of a strong

semilattice of semigroups f(st) = st = f(s)f(t) for all s, t ∈ S. For all

y ∈ Y ∪ {a} we have a ≤ y, φa,y(ea) = ey and φy,y is the identity of

Sy. Thus for every s ∈ Sy we infer that eas = sea = s. Since 1 is the

identity of S1 we conclude that f is a semigroup isomorphism and the

proof follows. �

Finally, to complete the proof of Theorem 6.1 we apply Theorem 6.3

to the four classes of monoids. Let C be one of the following classes

of semigroups – abelian groups A, groups G, rectangular groups RG,

or completely simple semigroups CS. By the definition of S(C), if

M ∈ S(C) then M is a strong semilattice of semigroups {Sy | y ∈ Y }
where Sy ∈ C for all y ∈ Y or M = S1 where S is a strong semilattice of

semigroups {Sy | y ∈ Y } where Sy ∈ C for all y ∈ Y . In the first case, if

there exists a family {Gy | y ∈ Y } of P-graphs such that Gy represents

Sy for all y ∈ Y then, by Theorem 6.3(1), there exists a P-graph G

such that G represents M and

|G| ≤ |M | + 3|Y | +
∑

y∈Y

(|Gy| + w(Gy))

w(G) ≤ 1 + 2|Y | +
∑

y∈Y

w(Gy).

In the second case, if there exists a family {Gy | y ∈ Y } of P-graphs

such that Gy represents S1
y for all y ∈ Y then, by Theorem 6.3(2), there
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exists a P-graph G such that G represents M and

|G| ≤ |M | + 3|Y | +
∑

y∈Y

(|Gy| + w(Gy))

w(G) ≤ 1 + 2|Y | +
∑

y∈Y

w(Gy).

If C = A or C = G then, by Lemma 6.4, we can consider only the

first case and used P-representations of groups or abelian groups. If

C = RG (or C = CS) then in the first case Sy ∈ (RG)1 (or Sy ∈ (CS)1)

for all y ∈ Y because Sy is a monoid for all y ∈ Y and in the second

case S1
y ∈ (RG)1 (or S1

y ∈ (CS)1) for all y ∈ Y . Thus it suffices to use

P-representations of monoids from (RG)1 (or (CS)1, respectively).

The proof is divided into four parts depending which class of semi-

group is being considered. If M = Y then M is a semilattice monoid

and Proposition 5.6 gives the required P-graph. Thus we can assume

that M 6= Y and thus |Y | < |M |.

• Suppose C = A. By Theorem 5.11, we can assume that |Gy| ≤ 4|Sy|
and w(Gy) ≤ 1 + log(|Sy|) ≤ |Sy| for all y ∈ Y . Thus |Gy| + w(Gy) ≤
5|Sy| and hence

|G| ≤ |M | + 3|Y | +
∑

y∈Y

(Gy + w(Gy) ≤ 4|M | +
∑

y∈Y

5|Sy| ≤ 9|M |.

Moreover,
∑

y∈Y w(Gy) ≤ |M | and hence w(G) ≤ 3|M |. From Theo-

rem 5.1 it follows that νS(A)(n) ≤ 21n.

• Suppose C = G. By Theorem 3, we can assume that

|Gy| ≤ 2|Sy|(
√

log log(|Sy| + 1) + 2) and

w(Gy) ≤ 2 + 2
√

log log(|Sy| + 1)

for all y ∈ Y . Thus

|Gy| + w(Gy) ≤ (2|Sy| + 2)
√

log log(|Sy| + 1) + 4|Sy| + 2.
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From x ≥ log(x+ 1) for all x ≥ 1 we infer
∑

y∈Y

√
log log(|Sy| + 1) ≤

∑

y∈Y

√
|Sy| ≤

∑

y∈Y

|Sy| ≤M.

Hence
∑

y∈Y (|Gy|+w(Gy)) ≤ 8|M |+2|M |
√

log log(|M | + 1) and con-

sequently, |G| ≤ 2|M |
√

log log(|M | + 1) + 12|M |. Moreover, we con-

clude that
∑

y∈Y w(Gy) ≤ 2|Y |+ 2|M | and hence w(G) ≤ 6|M |. From

Theorem 5.1 it follows that νS(G)(n) ≤ 2n
√

log log n+ 36n.

• Suppose C = RG. Since Sy ∈ (RG)1 for all y ∈ Y , by theorem 4, we

can assume that

|Gy| ≤ 2|Sy|(
√

3 + log |Sy|) and w(Gy) ≤ 2
√

3 + log |Sy|

for all y ∈ Y . Thus |Gy| + w(Gy) ≤ (2|Sy| + 2)(
√

3 + log |Sy|). Since
∑

y∈Y

√
3 + log |Sy| ≤

∑

y∈Y

√
|Sy| + 3 ≤

∑

y∈Y

(|Sy| + 3) ≤ 4|M |

we infer that |G| ≤ 2|M |
√

3 + log |M | + 12|M |. Moreover, w(G) ≤
3|M |. From Theorem 5.1 it follows that νS(RG)(n) ≤ 2n

√
log n+ 24n.

• Suppose C = CS. Since Sy ∈ (CS)1 for all y ∈ Y , by Theorem 6, we

can assume that |Gy| ≤ (2+o(1))|Sy|
7
6 and w(Gy) ≤ (2+o(1))|Sy|

1
6 for

all y ∈ Y . Thus |Gy| + w(Gy) ≤ (2 + o(1))|Sy|
7
6 and hence |G| ≤ (2 +

o(1))|M | 76 . From |Sy|
1
6 < |Sy| for all y ∈ Y we infer that

∑
y∈Y w(Gy) ≤

(2 + o(1))|M | and hence w(G) ≤ (4 + o(1))|M |. From Theorem 7 it

follows that νS(CS)(n) ≤ (2 + o(1))n
7
6 .

�

Summarizing we have just proved the following bounds:

Corollary 6.5

ΠS(A)(n) ≤ 9n, ΠS(G)(n) ≤ 2n
√

log log n+ 12n,

ΠS(RG)(n) ≤ 2n
√

log n+ 12n, ΠS(CS)(n) = (2 + o(1))n
7
6 .
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Remark: One of the important generalizations of groups are regular

semigroups. By [P], every commutative regular semigroup is a strong

semilattice of abelian groups and, thus, Theorem 6.1(1) gives an esti-

mate on the size of a finite graph with a given commutative regular

monoid as its endomorphism monoid.
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