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Abstract

Spatial and spatial-temporal point process analysis

By

Ming Wang

Spatial-temporal point pattern data are increasingly available including one-dimens
-ional, directionless observations observed along a line. Our motivating example in-
volves sea turtle nesting data with space and time-specific emergence locations along
Juno Beach, Palm Beach County, Florida for the years 1998-2000. Our objectives
are to assess spatial and temporal heterogeneity in sea turtle nesting patterns, and
detect possible effects due to a 990-foot fishing pier constructed in year 1998-1999.
We mainly focus on one-dimensional spatial and spatial-temporal point processes to
conduct statistical inference through non-parametric and parametric methods, and
yield insights about the first-order and second-order properties of point processes as
well as space-time interaction.

A Log-Gaussian Cox Process (LGCP), a Cox point process with the logarithm
of intensity function following a Gaussian Process, provides a flexible framework for
modeling heterogeneous spatial point processes. The pair correlation function (PCF)
plays a vital role in characterizing second-order spatial dependency in LGCPs and
delivers key inputs on spatial association structures, yet empirical estimation of the
PCF remains challenging, even more so for spatial point processes in one dimension
(points along a line). We consider two common edge-correction approaches during
nonparametric estimation of the PCF, and evaluate their performance via simulation
for one-dimensional spatial data. We also provide a novel algorithm to estimate the
PCF based on theoretical derivation combined with finite sample simulation of the
kth (k <= 4) moment, revealing useful information for optimal spatial designs.

To assess local variations in sea turtle nesting density, we develop a novel hier-
archical Bayesian non-parametric model based on Dirichlet processes. Autoregres-
sive temporal dependencies are incorporated in a three-level hierarchical structure.
This model allows the potential for time-evolving mixed components/weights across
groups. We compare our model with the existing models, e.g., Dirichlet process mix-
ture models, hierarchical Dirichlet process models, and dynamic hierarchical Dirichlet
process models, to show its advantage via simulation and real data application to our
motivating example.
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Chapter 1

Introduction

1.1 Background

Spatial statistics has gained increasing attention, and has been widely applied into

public health and biomedical research. A key feature of spatial analysis is that the

use of location information. There are three main types of spatial data: point data

consisting event locations; geostatistical data containing the measurements taken at

multiple locations; and region data describing event counts within a finite set of

spatial regions, each of which addresses different specific questions of interest. In

this dissertation, we focus on realizations of spatial point process to quantitatively

conduct spatial point pattern analysis. A spatial point process is a stochastic process

with each realization including a finite or countably infinite set of points observed

within a bounded window. One goal is to detect clusters or clustering based on point

process theory and apply stochastic models describing occurrences of events in space.

Methods build on several important concepts listed below

• A point process X is stationary if its distribution is translation invariant, i.e.,

X + s = {ξ + s : ξ ∈ X} has the same distribution as X for any s ∈ Rd.

1



• A point process X is isotropic if its distribution is invariant under rotations

around the origin, i.e., ψX = {ψξ : ξ ∈ X} has the same distribution as X for

any rotation ψ around the origin.

• A point process X is homogeneous or first order stationary if its intensity func-

tion ρ(s) is constant, otherwise X is said to be inhomogeneous.

• A homogeneous point process X is second-order stationary if its second-order

properties (i.e., K−function or pair correlation function) only depend on spatial

distance between points but not the locations of the points, while for a heteroge-

neous point process X, it is called second-order intensity-reweighted stationary

given the intensities are bounded away from 0.

There exist various parametric point process models, and the simplest and most

fundamental one is the Poisson process. Due to its property of complete spatial

randomness, Poisson process is often treated as a baseline for detecting clustering or

inhibition patterns. In the following sections and chapters, we will introduce technical

details as needed. The dissertation is organized as follows: the remainder of Chapter

1 defines another standard and flexible point process model, the Cox process, with

the log-Gaussian Cox process as a special case, and outlines a brief introduction of

concepts for first and second-order properties in spatial point processes which provide

the elements for our extensions to existing spatial-temporal point processes. Chap-

ter 2 presents on evaluation of non-parametric pair correlation functions for spatial

log-Gaussian Cox processes to better understand its performance in one-dimensional

spatial data analysis. Chapter 3 applies our spatial-temporal point pattern analysis to

sea turtle nesting and emergence locations along Juno Beach, Florida to seek refined

estimates of the spatial and temporal heterogeneity. Chapter 4 develops Bayesian

non-parametric modeling for density estimation of sea turtle emergence locations to

2



efficiently estimate the evolution of the density over time.

1.2 First and Second-order properties

1.2.1 Intensity

The intensity, ρ, is a first-order property of a point process defining the expected

number of events occurring per unit area. For an arbitrary Borel set B ⊂ W ⊂ Rd,

let |B| and N(B) denote the area of B and the number of events in B. The intensity

function of X is defined by Diggle (2003) as

ρ(s) = lim
|ds|→0

{E[N(ds)]

|ds|
} (1.1)

As mentioned above, ρ(s)ds is the probability of observing exactly one point in the

infinitesimally small region ds. If a spatial point process is homogeneous, then ρ(s) =

ρ > 0, a constant; otherwise, the process is heterogeneous. When modeling a spatial

point process, our first goal is estimation of the intensity function from data.

For a homogeneous process, ρ̂ = N(W )/|W |. While for an inhomogeneous process,

we first consider parametric estimation. If we assume the intensity function belongs to

a parametric family {ρ(s; θ) : θ ∈ Θ}. One typical example is the family of modulated

Poisson processes defined by Cox (1972), where ρ(s; θ) = exp{θ′z(s)} with z(s) as a

specified vector of covariates observed at location s. Therefore, for n events in the

observed window W , the associated likelihood function can be specified as

L(θ; s1, s2, . . . , sn) ∝ exp

{
−
∫
W

ρ(s; θ)ds

}{ n∏
i=1

ρ(si; θ)

}
(1.2)

The maximum likelihood estimate of θ is obtained by maximizing L; however, this
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approach requires an assumption that we observe locations without error. Paramet-

ric models have also been discussed by others (Diggle, 2003; Waagepetersen, 2007).

Although the parametric approach is useful, estimates may not be reliable if the as-

sumed parametric model deviates greatly from the true intensity function, i.e., if the

covariates do not describe the intensity well. More often, non-parametric methods

for estimating the intensity function are widely applied. Berman and Diggle (1989)

proposed the following intensity estimator using kernel smoothing:

ρ̂(s;h) =
1

nh

n∑
i=1

κ

(
s− si
h

)
(1.3)

where si denotes the location of ith event in X, n the total observed number of events

in W , κ a kernel function satisfying
∫
W
κ(s)ds = 1, and h a smoothing parameter

called the bandwidth. Most commonly, κ is a Gaussian kernel following a standard

normal density, 1√
2π

exp(−s2/2).

The choice of the bandwidth, h, has particular influence on the accuracy of intensity

estimate. According to Diggle (1985) and Berman and Diggle (1989), the bandwidth,

h, can be chosen as the value which minimizes the mean square error, MSE(h) =

E[(ρ̂(s;h) − ρ(s))2]. Another method for selecting h is the direct plug-in approach

by Sheather and Jones (1991), incorporating kernel estimates to replace unknown

quantities in formula for the asymptotically optimal bandwidth. This approach can be

simply applied by using the dpik function in R package Spatstat or KernSmooth.

We discuss bandwidth selection in more detail for our application in the chapters

below.
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1.2.2 K−function and L−function

One important second-order property for characterizing spatial correlation or depen-

dency is K−function (Ripley, 1976). This function evaluates the expected number of

events within a certain distance given an arbitrary event in the study region. Thus,

for a stationary point process X ∈ Rd in a window W , it is defined as

K(r) =
E(ψ(r))

ρ
(1.4)

where ψ(r) = 1
ρ|W |

∑
s1 6=s2∈W I(s1 ∈ W, ‖s1 − s2‖ ≤ r) represents the count of the

neighbors located at a distance less than or equal to a given distance r away from

a randomly chosen point in the window W with ‖.‖ denoting the Lebesgue mea-

sure. If X is stationary, ψ(r) is translation invariant, and the intensity function

ρ is constant. To ease inference, Besag (1977) proposed a variance-stabilized ver-

sion of the K−function known as the L−function. The L−function is defined as

L(r) = (K(r)/δd)
1/d with δd = πd/2

Γ(1+d/2)
representing the volume of a d−dimensional

unit ball. Furthermore, for a stationary Poisson point processes, the K−function and

L−function are written by

K(r)Rd = δdr
d, L(r) = r (1.5)

For our application, K(r)R1 = 2r for an one-dimensional stationary Poisson point

process; while for a two-dimensional Poisson process, K(r)R2 = πr2. The theoretical

K and L−functions for the Poisson point process serve as reference functions to

identify clustering or regularity patterns. K(r) > δdr
d or L(r) > r suggests clustering

or aggregate patterns; K(r) = δdr
d or L(r) = r suggests complete spatial randomness

(CSR); and, if K(r) < δdr
d or L(r) < r indicates segregated patterns with gaps. As

noted by Waller and Gotway (2004), a given realization can include clustered, CSR,

5



and regular behavior at different distances.

The K−function for stationary and isotropic Poisson processes is defined by Ripley

(1977) as:

K(r) =

∫ r

s=0

τdt
d−1g(s)ds (1.6)

where τd = ∂δd
∂d

= 2πd/2

Γ(d/2)
represents the surface area of an unit sphere in Rd, and g(·) is

the pair correlation function (defined in Chapter 1.2.3). If the events are distributed

independently from each other, g(·) = 1, therefore, K(r) = δdr
d as above. A non-

parametric estimate of K function with edge-correction (Ripley, 1976) may be written

as:

K̂(r) =
1

|W |

n∑
i=1

∑
j 6=i

ωijI(‖si − sj‖ ≤ r)

ρ̂(si)ρ̂(sj)
(1.7)

If the point process is stationary, then ρ̂(si)ρ̂(sj) can be replaced by its unbiased

estimator, thus

K̂(r) =
|W |

n(n− 1)

n∑
i=1

∑
j 6=i

ωijI(‖si − sj‖ ≤ r) (1.8)

If the point process is not stationary, then ρ̂(si) and ρ̂(sj) can be estimated using a

leave-one-out kernel smoother as described by Baddeley et al. (2000). In the formulas

above, n is the total number of observed events in the window W , I(‖si− sj‖ ≤ r) is

an indicator function taking value 1 when the distance of points si and sj is less than

or equal to r and value 0 otherwise. Here, |W | denotes the area of the window W .

ωij is an edge-correction factor to adjust for the bias due to edge effects, and Ripley’s

(1976) edge correction is commonly used, where ωij is the inverse of the proportion of

the circumference of the circle centered at event i with radius d(i, j) within the study

area. For one-dimensional spatial data analysis, an analogue of Ripley’s correction is

specified by the reciprocal of the ratio of the interval within the length of 2×|si− sj|

for each point i within the study window W serving as the center point in turn. Also,

Diggle (1989) proposed setting ωij to 2 when the distance |si − sj| is larger than the
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distance of point i to the nearest edge (end) of the line segment defining the study

area W , otherwise ωij is set to 1. In Chapter 2, we will compare the performance of

these two edge-correction methods for one-dimensional data.

1.2.3 Pair correlation function (PCF)

Another important second-order property of spatial point process is the PCF, which

provides a summary of the joint expectation of events and first-order intensity. The

PCF is highly related to the K−function because both of them take into account

spatial correlation. Without assuming stationary, ∀ξ ∈ Rd, η ∈ Rd, the theoretical

definition of PCF provided by Baddeley et al. (2000) is

g(ξ, η) =
ρ(2)(ξ, η)

ρ(ξ)ρ(η)
= 1 +

Cov(N(dξ), N(dη))

ρ(ξ)ρ(η)dξdη
(1.9)

where the second-order intensity ρ(2)(ξ, η) = lim
|dξ|→0;‖dη‖→0

{E[N(dξ)N(dη)]

‖dξ‖‖dη‖
} and ρ(·)

is defined as above. The PCF equals one under complete spatial randomness, i.e.,

homogeneous Poisson processes. A value of PCF greater than one indicates an ag-

gregated (clustered) spatial point pattern. A PCF value less than one suggests an

inhibitive spatial point pattern.

For first and second-order stationary spatial point processes, the PCF reduces to

g(r) = ρ(2)(r)
ρ2

with r as a distance lag. In practice, the empirical PCF (defined below)

is often plotted at varying distance lags in order to detect the scale of clustering or

regularity compared with complete spatial randomness suggesting appropriate para-

metric models to fit to the data. Furthermore, many statisticians prefer the PCF

over the K-function defined above, because the PCF may yield more stable estimates

of second-order property than the K-function in some cases, e.g., the Cox process

models (Brix, 1999).
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A non-parametric estimate of PCF can be obtained via ĝ(r) = ρ̂(2)(r)
ρ̂2

, where ρ̂(2) is

the empirical estimate of the second-order intensity using kernel smoothing techniques

(Møller et al., 1998).

ρ̂(2)(r;h) =
n∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij
ν|W |

(1.10)

where ν = σdr
d−1 with σd = 2πd/2

Γ(d/2)
as the surface area of unit sphere in Rd. Therefore,

for one-dimensional and two-dimensional isotropic spatial point processes, PCFs are

estimated via

ĝ(r)R1 =
1

2|W |

n∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij
ρ̂(si)ρ̂(sj)

ĝ(r)R2 =
1

2πr|W |

n∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij
ρ̂(si)ρ̂(sj)

Specially, for homogeneous point processes, ρ̂(si)ρ̂(sj) can be replaced by the unbi-

ased estimator n(n−1)
|W |2 . κh(·) denotes the scaled kernel specified as κh(s) = 1

h
κ( s

h
) with

κ as a kernel function such as the Epanecnikov kernel by κ(t) = 3
4
(1− t2

h2
)I[−h ≤ a ≤

h]. |W | and Ripley’s isotropic edge correction factor ωij are defined as the same as

above. The PCF can also be derived from the K−function, shown as g(r) = K′(r)
τdrd−1 .

Intuitively, an estimate of g(r) can be obtained by K̂(r), however, this is not easy

because K̂(r) is usually a step-function. In such cases, numerical methods (e.g., ap-

proximation by splines) provide a better approach. On the other hand, the issues of

how to choose the bandwidth of second-order product intensity also need exploration

due to their impact on the accuracy of the estimator. Recent work related to band-

width selection for the PCF estimation are shown by Guan (2008), who proposed

a composite likelihood cross-validation approach. Other PCF estimators as well as

bandwidth selection strategies are summarized by Stoyan and Stoyan (1994).

To link non-parametric estimates to parametric PCFs involves the selection of a
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Figure 1.1: Parametric PCFs with σ2 = 1 and β = c(0.01, 0.03, 0.06, 0.1, 0.2), where
the solid line is for the smallest β.

Figure 1.2: Parametric PCFs with σ2 = c(0.1, 0.6, 1.1, 1.6, 2.1) and β = 0.1 where the
solid line is for the smallest σ2.
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parametric family and parameter estimation. Examples of commonly used parametric

PCF families for stationary and isotropic spatial point processes are shown in Figure

1.1 and 1.2, where σ is the variance and β is a scale parameter (Møller et al., 1998).

To choose an appropriate parametric correlation model for a specific observed spatial

point pattern, non-parametric estimates of PCFs versus different distance lags are al-

ways preliminarily analyzed. Afterwards, the parameter estimates for the parametric

PCF models can be achieved by a minimum contrast method or maximum likelihood

as detailed below.

1.3 Cox process: Log-Gaussian Cox process

A Cox process called a double stochastic process arises as an inhomogeneous Poisson

process with a random intensity measure which itself is a realization of a stochastic

process (Diggle, 2003; Christakos, 1992). A Cox process is characterized by a random

intensity process Λ = {ρ(s) : s ∈ Rd}. Conditional on Λ = ρ(s), X is a Poisson

Process with intensity function ρ(s) which means there is no interaction between

points given ρ(s). Further, for any bounded Borel set B ⊂ Rd, if Λ = ρ(s) is known,

X ∩ B is Poisson distributed with mean
∫
B
ρ(s)ds which must be non-negative and

finite. For simplicity, we consider cases where Λ as well as X is stationary and

isotropic.

A log Gaussian Cox Process (LGCP) is a member of a family of Cox processes,

where heterogeneity is modeled by Λ = exp(Y ) where Y = {Y (s) : s ∈ Rd}

is a real-valued Gaussian Process, i.e., the joint distribution of any finite vector

(Y (s1), Y (s2), . . . , Y (sn)) is Gaussian (Møller et al., 1998). By assuming station-

arity and isotropy, the Gaussian distribution of Y is specified by the mean µ =

E(Y (s)) and the variance σ2 = V ar(Y (s)). The correlation function for Y is ζ(r) =

10



Cov(Y (s1), Y (s2))/σ2 where r = ‖s1 − s2‖ is the Euclidean distance between points

s1 and s2.

In particular, we discuss one of the most useful characteristics for a univariate

log Gaussian Cox process, the nth order product densities ρ(n), n = 1, 2, . . .. The

moments of the intensity process are given by

ρ(n)(s1, s2, . . . , sn) = E
n∏
i=1

ρ(si) (1.11)

for different s1, s2, . . . , sn ∈ Rd. ρ(n)(s1, s2, . . . , sn)ds1ds2 · · · dsn represents the prob-

ability that X has a point in each of the n infinitesimally small disjoint regions, ds1,

ds2, · · · , dsn. For X a stationary log Gaussian Cox process,

ρ(n)(s1, s2, . . . , sn) = exp

{
nµ+ σ2

[
n

2
+

∑
1≤i<j≤n

ζ(rij)

]}
= ρn

∏
1≤i<j≤n

g(rij)

where rij = ‖si − sj‖. Hence, the intensity and PCF can be respectively written as:

ρ = ρ(1)(s) = exp(µ+ σ2/2) (1.12)

g(r) = g(‖si − sj‖) = ρ(2)(s1, s2)/ρ2 = exp(σ2ζ(r)) (1.13)

where ζ(r) = 1 when r = 0. As σ2 → 0, a log Gaussian Cox Process tends to a

homogenous Poisson process; If ζ(·) = 1, a mixed Poisson process can be obtained

with a randomized density Λ which is log Gaussian distributed.

In addition, if X is stationary, then ρ(1)(s) = ρ and g(s1, s2) = g(‖s1 − s2‖).

Thus, µ(s) = µ = log(ρ)− σ2/2 and ζ(s1, s2) = ζ(‖s1 − s2‖) = log(g(‖s1 − s2‖))/σ2,

indicating the Gaussian process Y is stationary. Inversely, stationarity of Y also
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implies stationarity of X based on the above information. Note that the distribution

of X is completely determined by (ρ, g(.)) or (µ, σ2, ζ(.)), which makes parametric

models accessible. LGCPs possesses appealing theoretical properties, which can be

flexibly extended to spatial-temporal modeling.

There exists an extensive literature on log-Gaussian Cox processes for spatial-

temporal point data. Diggle et al. (2005) focused on the development of on-line

spatial-temporal disease surveillance system for non-specific gastroenteric disease in

the country of Hampshire, UK, using a non-stationary log-Cox Poisson process to

model spatial-temporal intensity including a deterministic component for spatial and

temporal variation in the normal disease pattern, and an unobserved stochastic com-

ponent for localized departure from normal pattern. Under the assumption of sep-

arability in the PCF between space and time, they used moment-based methods to

estimate the spatial and temporal correlation structures. They provide methods of

minimizing the empirical and theoretical descriptors for estimation and prediction of

potential anomalies, thus alerting a public health department to take action. Møller

et al. (1997) applied a planar Cox process with a log Gaussian intensity process to

analyze stand structural heterogeneity in forestry using an exponential covariance

function as a parametric model for the covariance. By using a minimum contrast

estimation procedure, the estimates of the parameters were achieved; therefore, com-

pletely determining the distribution of the log Gaussian Cox process. During model

checking, they found the model provided a better fit than a Matern cluster process by

comparing the L−, F− and G−functions. Finally, using an empirical Bayesian ap-

proach, they predicted the unknown environmental heterogeneity in the soil through

the envelopes from the posterior distribution of the log intensity given the observed

pattern of trees. Brix and Diggle (2001) explored the properties of Cox process models

for space-time point process data to describe and predict the space-time variation in
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intensity and corresponding spatial-temporal correlation structures. Specifically, they

assume that the time lag between successive observations is sufficiently small that a

continuous space-time model is approximated, using a spatial Ornstein-Uhlenbeck

process. Afterwards, they derived moment-based methods of parameter estimation

and developed a Metropolis-Hastings of Markov chain Monte Carlo algorithm to sim-

ulate from the posterior distributions of the observed process data.

However, the assumption of a separable space-time covariance structure is prag-

matic, and the robustness of predictions to departure from this assumption needs

exploration. Toward this end, Møller and Ghorbani (2010) conducted second-order

analysis on the PCF and K−function for inhomogeneous spatial-temporal point pro-

cess including Cox process. Assuming the second-order spatial-temporal separabil-

ity, they considered a log-Gaussian Cox process with an additive covariate structure.

More important, they propose the diagnosis procedures for checking the hypothesis of

spatial-temporal separability using simulated and real data. Also, Møller et al. (1998)

investigated an univariate and multivariate log-Gaussian Cox process, and summa-

rized first, second and third-order statistical properties for clustered point patterns

analysis. We will explore the performance of a log-Gaussian Cox processes with

non-separable space-time covariance function due to our specific motivating example

described next.

1.4 Motivating Example

Our motivating data set involves nesting and emergence locations of sea turtles along

Juno Beach, Palm Beach County, Florida from the 1998-2000 nesting seasons. The

primary interest aims to employ statistical methodology for spatial-temporal point

processes to access spatial and temporal heterogeneity of sea turtle emergences and
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nesting, and also to assess possible effects due to a 990-foot fishing pier constructed

in 1998-1999.

Palm Beach County contracted the Marine life Center of Juno Beach to gather data

containing sea turtle emergence locations at sub meter resolution each nesting season

over 6 miles (9.7 km) along the beach. Data inculde Universal Transverse Mercator

(UTM) coordinates of each emergence, nest fate, sea turtle species, human activities

and so on. Our data were collected on three species of sea turtles, loggerhead (Caretta

caretta, CC ), green (Chelonia mydas, CM ) and leatherback (Dermochelys coriacea,

DC ) daily from year 1998 to 2000. The three species exhibit varied sample sizes

with CC providing 8,000-10,000 emergences per year. According to the Florida Fish

and Wildlife Conservation Commission, Juno Beach is divided into 11 Index Nesting

Beach Survey Zones (“INBS zones”) of approximately 0.5 mile shown in Figure 1.3.

Of note is a major construction project with potential impacts on sea turtle nesting,

namely the construction of the 990 foot-long Juno Beach Fishing Pier in northern

Palm Beach County in year 1998-1999. Here, we focus on detecting changes in nesting

and emergence patterns near the pier.

Figure 1.3: Juno Beach Sea Turtle Nesting Data 1998-2000

14



In this dissertation, we consider statistical inference and modeling for one-dimensional

spatial-temporal point processes using the PCF to provide insight into the underly-

ing pattern in Chapter 2. These data were analyzed through non-parametric analysis

as well as a qualitative model via a Log Gaussian Cox Process (LGCP) in Chap-

ter 3. Also, in Chapter 4, the intensity estimates were investigated by Bayesian

non-parametric modeling and novel statistical methodology proposed to incorporate

temporal autocorrelation within the spatial-temporal processes.
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Chapter 2

Evaluation of non-parametric pair

correlation functions for spatial

Log-Gaussian Cox Processes

2.1 Introduction

The pair correlation function (PCF) plays a vital role in characterizing interpoint

spatial dependency in spatial point processes. It is recommended by many authors,

because it is more interpretable as a function of distance than the often-used second-

order K−function which is a cumulative function of distance (Penttinen and Stoyan,

2000). That is, the estimated PCF provides inference regarding clustering or reg-

ularity in the process at any particular distance, while the estimated K−function

provides inference regarding clustering or regularity up to a given distance. Nonpara-

metric estimates of the K−function or PCF often aid exploratory analyses assessing

the degree of clustering or regularity in spatial point patterns (Ripley, 1977). In our

motivating example, these estimates deliver key insights regarding association struc-
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ture within a log-Gaussian Cox Process (LGCP), allowing investigators to propose

parametric correlation families and estimate parameters through, for example, the

minimum contrast method (Diggle et al., 2005; Stoyan et al., 1993).

In this section, we evaluate the performance of different approaches in estimating

the PCF for one-dimensional spatial point patterns. This type of data arises when

one observes events occurring along a line segment, without directionality. However,

estimating the PCF remains challenging, especially when we consider a spatial point

process in one dimension (points along a line). We are particularly interested in

two elements of the PCF estimation for one-dimensional data namely, edge-effect

adjustments and evaluation of bias and variance under infill asymptotics.

Adjustment for edge-effects is necessary because of bias arising due to events occur-

ring outside the observation window (Doguwa, 1990). Most work on edge-correction

methods has been done for two-dimensional spatial data, with little work in the one-

dimensional case. For instance, Diggle (1985) demonstrated a kernel method for

estimating the local intensity with an end-effect correction, which was illustrated us-

ing simulated data from an one-dimensional stationary Cox process; however, this

paper did not consider the second-order properties. Also, Ripley (1988) proposed an

edge-correction approach which can be computed for a window of arbitrary shape, and

we consider the one-dimensional case. We provide details of these two edge-correction

methods and compare them in estimation of the PCF for LGCPs via simulation.

Our second focus relies on evaluation of bias and variance of the non-parametric

PCF estimates for one-dimensional spatial data under infill asymptotics. Two types

of asymptotics exist in the spatial statistics literature, namely increasing domain

asymptotics and infill asymptotics (Lahiri, 1996; Zhu and Zhang, 2006). The former

assumes a stochastic process observed in an increasing region which eventually be-

comes unbounded as the sample size goes to infinity, thus the (expected) distance
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between any pair of locations is bounded away from zero. In contrast, infill asymp-

totics represents observing an increasing number of events from a spatial process in

a fixed bounded domain where events become increasingly closer together, thus the

minimum distance between events goes to zero as sample size goes to infinity. The

consistency of the nonparametric PCF estimate using case-control data under in-

creasing domain asymptotics has been discussed (Guan et al., 2010). Due to the wide

application of LGCPs, we would like to explore infill asymptotics for one-dimensional

LGCPs via theory and simulation.

In addition, we develop an efficient algorithm for PCF estimation via Monte Carlo

simulations. We also develop an edge-correction method for PCF estimation, and

measure the resulting reduction in the edge-effect bias, especially for moderately

large distance lags, compared with the methods by Diggle and Ripley mentioned

above. It is worth mentioning that various software packages provide simulation

and analysis of LGCPs for two-dimensional spatial data, e.g., the “spatstat” package

in R )Baddeley and Turner, 2005; Baddeley, 2010). However, those packages are

not directly applicable to one-dimensional spatial data. In the end, we provide a R

package for one-dimensional spatial point pattern analysis.

The rest of the contents is organized as follows: In Section 2.2, we provide an

overview of LGCPs and existing edge-corrected kernel-based estimators of the PCF.

We derive infill asymptotic bias and variance for nonparametric PCF estimators in

Section 2.3. In Section 2.4, we conduct simulation studies to identify consistency

properties of two classic edge-correction methods for one or two dimensional LGCPs,

and compare these to a new, heuristic edge-correction method. Section 2.5 provides

discussion and directions for further research.
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2.2 Methods

A non-parametric estimate of the PCF is given by ĝ(r) = ρ̂(2)(r)/[ρ̂(si)ρ̂(sj)], where

ρ̂(si)ρ̂(sj) can be replaced by an unbiased estimator N(N − 1)/|W |2 under an as-

sumption of stationary. Also, a kernel estimate of ρ(2) is provided by Baddeley et al.

(2000).

ρ̂(2)(r;h) =
N∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij
ν|W |

,

where ν = τdr
d−1 with τd = 2πd/2/Γ(d/2) as the surface area of a unit sphere in

in dth−dimensional space Rd and ωij is the edge-correction factor. This leads to a

non-parametric estimate of the PCF:

ĝ(r) =
|W |

νN(N − 1)

N∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij

In particular, for one-dimensional spatial data, ν = 2, while for two-dimensional

spatial data, ν = 2πr. κ(·) is a a kernel function with κh(t) = κ(t/h)/h. Throughout

this article, we adopt the Epanechnikov kernel, i.e.,

κ(s) =


3
4
(1− s2) if |s| ≤ 1

0 otherwise.

The parameter h denotes the bandwidth, a smoothing parameter. Here, we select

h = 0.1
√

5/
√
ρ as suggested by Fiksel (1988).

For edge-correction, we consider the use of an edge-corrected weight ωij. Events

near the boundary of the window W may have other potential neighboring events

outside the window which are not included above, thus an uncorrected PCF estimator

may be biased in this region. For two-dimensional data, Ripley (1988) suggest the use

of inverse probability sampling to obtain an unbiased estimate of the PCF, where ωij
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is the reciprocal of the ratio of the interval within the length of 2× ‖si − sj‖ taking

point i as the center point that lies within the study area. For one-dimensional

spatial data, Diggle (1985) proposes setting ωij to 2 when the distance ‖si − sj‖ is

larger than the distance of point i to the nearest edge of the line segment defining

the study area, otherwise ωij is set to 1. However, whether the performance of these

two methods is satisfactory for one-dimensional LGCPs under infill asymptotics is

unclear. Performance for any edge-correction approach deteriorates for large values

of r, leading to recommendations to focus attention on values of r less than half

the length of the study segment. We propose a heuristic edge-corrected method to

moderately reduce the bias for such situations, where ωij is the reciprocal of the

proportion of the interval of an annulus with si as the center and radii r1 = r − h′

and r2 = r+h′ that lies within the study area. For r < h′, we use Diggle’s correction

method. We illustrate and assess performance of his method below.

2.3 Statistical inference

In this section, we derive the bias and variance of the non-parametric PCF estimate.

We assume the following regularity conditions:

1. The PCF g(·) is bounded and continuous.

2. The kth order product intensity is bounded for k = 1, 2, 3, 4, i.e., there exists

C > 0 such that ρ(k)(s1, s2, . . . , sk) = E
(∏k

l=1 ρ(sl)
)
< C.

3. The kernel density κ satisfies with
∫
xκ(x)dx = 0 and

∫
x2κ(x)dx <∞.

Theorem 2.3.1. Under regularity conditions 1–3, the infill asymptotic bias and vari-
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ance of ĝ(r) under the framework of LGCPs are given by

Bias(ĝ(r)) =
λ2|W |$(r)

ν∆2

[
1 +

∆4

∆2
2

+ 4
∆3

∆2
2

+
2

∆2

]
−
λ2|W |

(
2$(r) + 4λξ(r) + λ2%(r)

)
ν∆2

2

− exp(σ2ζ(r)),

Var(ĝ(r)) =
λ4|W |2$2(r)

ν2∆2
2

[M2(r)|W |2

λ4$2(r)
−

2
(
2$(r) + 4λξ(r) + λ2%(r)

)
$(r)∆2

+
∆4

∆2
2

+
4∆3

∆2
2

+
2

∆2

]
.

∆k = E

(∫
W

ρ(s)ds

)k
,

$(r) =

∫
W

∫
W

κh(r − ‖u− v‖)ω(u, v)g(‖u− v‖)dudv,

ξ(r) =

∫
W

∫
W

∫
W

κh(r − ‖u− v‖)ω(u, v)
∏

m,n∈{u,v,h}
m6=n

g(‖m− n‖)dudvdh,

%(r) =

∫
W

∫
W

∫
W

∫
W

κh(r − ‖u− v‖)ω(u, v)
∏

m,n∈{u,v,h,g}
m6=n

g(‖m− n‖)dudvdhdg,

Mk(r) = E[ϑk(r)], where ϑ(r) =
1

|W |

N∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij.

In particular, after rearrangement, the bias of ĝ(r) for one-dimensional LGCPs is

Bias(ĝ(r)R1) =
λ2|W |
2∆2

[
$(r)

(
1 +

∆4

∆2
2

+ 4
∆3

∆2
2

)
− 4λξ(r)

∆2
− λ2%(r)

∆2

]
− exp(σ2ζ(r)),

Var(ĝ(r)R1) =
M2(r)|W |4

4∆2
2

− λ4|W |2$2(r)

4∆2
2

[2
(
2$(r) + 4λξ(r) + λ2%(r)

)
$(r)∆2

− ∆4

∆2
2

− 4∆3

∆2
2

− 2

∆2

]
.

Evaluation require calculation of ∆k as follows. To begin, note that ∆1 = E
(∫

W
ρ(s)ds

)
= λ|W |, but for higher orders, calculation of ∆k is not trivial, and we consider two

potential methods. First, we calculate the average of (
∑

s∈W ρ(s)ds)k to obtain an

approximation based on N ′ simulated events. This approximation improves as N ′

increases, so we assess the accuracy. The variability of the estimates under different

choices of N ′, where N ′=100, 500, 1000, 5000, and 10000. From Figure 2.1, we see

that as N ′ increases, the variability of the estimates decreases, thus leading to nar-

rower confidence intervals. Also, we find that the empirical standard errors associated
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with N ′=100, 500, 1000, 5000, and 10000 for the cases with µ = 3, σ2 = 0.2 and scale

parameter β = 0.1 are 20.278, 9.031, 6.216, 2.882 and 2.020. To assess performance,

we fit a linear relationship between the ratios of the error and the square root of N ′,

yielding estimates for the intercept and slope of 0.009 and 1.003 respectively, provid-

ing some information about the convergence rate. Similar findings exist for ∆k with

k = 3, 4, therefore, the desired estimate can be obtained according to different initial

values and preliminary simulations. For ∆2, we need to run at least 20,000 simulations

to get standard error less than 1.5, and the estimate is ∆2 ≈ 511.3. Table 2.1 shows

that the point estimates do not change much for larger values of N ′. Therefore, based

on a similar philosophy using 250,000 simulations, the third-order and fourth-order

estimates are ∆3 ≈ 12223.32 (sd = 15.86) and ∆4 ≈ 303307.8 (sd = 561.00).

We can also refine the simulation to calculate ∆k based on further mathematical

derivation. Taking ∆2 as an example, we see that

∆2 = exp(2µ+ σ2) lim
N→∞

N∑
n 6=m

exp(σ2ζ(
|n−m|
N

))
|W |2

N2

where lim
N→∞

N∑
n6=m

exp

(
σ2ζ(
|n−m|
N

)

)
|W |2

N2
≈ |W |2+2|W |2

[
β2 exp

(
σ2 exp(− 1

β
)

)
E(

1

Ψ2

|Ψ > 0)− β exp

(
σ2 exp(− 2

β
)

)(
E(

1

Ω
|Ω > 0) + βE(

1

Ω2
|Ω > 0)

)]
with Ψ and Ω fol-

lowing Poisson distributions, i.e., Ψ ∼ Pois
(
σ2 exp(− 1

β
)
)

; Ω ∼ Pois
(
σ2 exp(− 2

β
)
)

.

Although this method simplifies the simulation, requiring only draws from the two

Poisson distribution, it still does not have a closed form and has limitations especially

when σ2 or β are small. As a result, we prefer the first method to estimate ∆k.

To calculate the multiple integrations in $(r), ξ(r) and %(r), some numerical

techniques will be necessary, i.e., the Gaussian-Hermite Quadrature method. The

basic idea is to replace integrals by summations of the value of the integrand at a
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sequence of points within the range of integration. In general,

∫
R

· · ·
∫
R

f(x1, . . . , xm)dx1 · · · dxm ≈
M∑
i=1

ωif(yi1, . . . , yim)

where ωi are the weights and (yi1, . . . , yim) are called the nodes. The most commonly

used rule is the Gauss-Legendre rule. Here, we use MATLAB Quadrature function to

compute approximate values of the multiple integrals. For instance, given r = 0.2, we

get the following results $(r) ≈ 2.069, ξ(r) ≈ 2.233 and %(r) ≈ 2.5025 when we use

Diggle’s edge correction method, yielding an estimated bias of -0.036, which is similar

to our simulation result -0.032. Figure 2.2 shows the results for the estimated bias

based on the theoretical formula and simulation for scenarios 1 and 4. The similarity

between estimates provides some verification of our theoretical derivation; however,

due to the approximation of the Taylor expansion, there still exists a gap between

the estimate and the true value. This combined algorithm based on theoretical for-

mulation and finite sample simulation of the kth (k <= 4) moment has comparable

results and fast calculation compared with the non-parametric approach.

2.4 Simulation

W first assess the performance of Ripley’s correction method in two-dimensional spa-

tial data through simulation. We investigate three scenarios with µ = 2, 4, 6, σ2 = 3

and an exponential correlation structure with a scale parameter β = 0.01 under in-

fill asymptotics, and 1000 Monte Carlo data sets generated from the unit square

[0, 1]× [0, 1] for each scenario. Figure 2.3 shows the non-parametric estimates versus

the underlying true values of PCF and the boxplots of estimates at ten distinct dis-

tance lags in each set-up. Figure 2.4 provides the bias of the PCF and K−function

estimates. Note that ĝ(0) is undefined and in practice, estimation of ĝ(r) are unstable
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Table 2.1: The estimates (standard error) of ∆2, ∆3 and ∆4 for different N ′

µ = 3, σ2 = 0.2 µ = 3, σ2 = 1
∆2 ∆3 ∆4 ∆2 ∆3 ∆4(SD)

(SD) (SD) (SD) (SD) (SD) (SD)

N ′ = 100
510.75 12197.84 302265.08 1350.23 69043.19 4517442
(20.28) (763.80) (27109.45) (165.16) (20756.86) (4068465)

N ′ = 500
511.03 12211.46 302829.81 1355.92 69672.89 4591710
(9.03) (337.50) (11918.64) (71.82) (9193.27) (1976767)

N ′ = 1000
511.15 12217.14 303059.06 1357.54 69822.23 4593132
(6.22) (235.66) (8456.84) (51.62) (6410.37) (1212178)

N ′ = 5000
511.16 12216.77 303042.17 1357.25 69758.43 4573329
(2.88) (108.39) (3840.12) (23.19) (2774.77) (489640)

N ′ = 10000
511.17 12217.60 303084.79 1357.58 69864.93 4605783
(2.02) (76.08) (2701.53) (16.49) (2067.03) (435673)

Figure 2.1: The histograms of ∆2 for four scenarios. From top to bottom, N ′ =
100, 500, 1000, 5000, 10000.
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at very small values of r. Moreover, we can see that the PCF estimates adjusted by

Ripley’s correction perform well for moderate distance values, i.e., 0.02 < r < 0.25.

As we expect, as µ increases, the bias of PCF estimates decreases, and the variability

of the estimates also decreases. In particular, the degree of bias reduction of the

PCF at distance lags r = 0.05, 0.10, 0.15 is shown in Figure 2.5, which shows the

bias decreasing to 0 with some oscillations as µ increases to 6. The results indicate

that non-parametric estimates of the PCF are consistent under infill asymptotics and

that Ripley’s edge-correction performs well in our simulation studies for the two-

dimensional spatial data.
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Figure 2.2: The estimated bias based on the theoretical derivation and simulation

Next we conduct extensive simulations to assess the performance of the two edge-

correction approaches on the bias of non-parametric PCF estimates for one-dimensional

LGCPs. Nine scenarios with different set-ups of parameters are listed as follows: 1)

25



0.00 0.05 0.10 0.15 0.20 0.25

0
5

1
0

1
5

2
0

Estimated PCF, mu=2

r

g
(r

)

gtrue(r)
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Figure 2.3: Non-parametric PCF estimates and the corresponding boxplots at ten
distinct distance lags for two-dimensional LGCPs
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µ = 3, σ2 = 0.2; 2) µ = 5, σ2 = 0.2; 3) µ = 8, σ2 = 0.2; 4) µ = 3, σ2 = 1; 5)

µ = 5, σ2 = 1; 6) µ = 8, σ2 = 1; 7) µ = 3, σ2 = 3; 8) µ = 5, σ2 = 3; 9) µ = 8, σ2 = 3.

The same exponential correlation form with β = 0.1 is used for all scenarios. Without

loss of generality, suppose that each realization of an one-dimensional log-Gaussian

Cox process is simulated within the line region [0, 1]. For each scenario, we gen-

erate 1000 realizations, and calculate the mean and standard deviation of the non-

parametric edge-corrected PCF estimates. Let gtrue(r) denote the true underlying

PCF, ĝrip(r) as the PCF estimate with Ripley’s edge-correction, and ĝdig(r) denotes

the estimate with Diggle’s edge-correction. We note that the theoretical formula of

the PCF is g(r) = exp{σ2 exp(− r
β
)} where r is the length of the interval for any pair

of points.

According to the definition of LGCPs, the intensity measure ρ(s) follows a Gaussian

Process and may be used to generate events X(s) by acting as its intensity. Our

procedures to simulate one realization of one-dimension LGCPs are as follows:

• Generate a realization {Y (s) : s ∈ I} from a stationary Gaussian process with

mean µ and covariance function

Cov(si, sj) = σ2 exp

(
−‖si − sj‖

β

)

where I = {0, 1
K
, 2
K
, . . . , K−1

K
, 1} with K = 100 and ‖si − sj‖ is the length of

the interval between si and sj;

• Given Y (s), generate one realization ρ(s) = exp(Y (s)) of the intensity process;

• For each grid, generate N(s) from a Poisson distribution with mean ρ(s)/K;

• Generate {X(s), i = 1, 2, . . . , N(s)} which are uniformly distributed in the sth

grid, and remove the points outside the interval [0,1];
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Figure 2.6: Mean of PCF estimates adjusted by Ripley’s edge-correction method and
Diggle’s edge-correction method with 95% empirical confidence interval from 1000
realizations of one-dimensional LGCPs and the bottom plots give five plots of PCF
estimates with Diggle’s edge-correction method randomly sampled from the full set
of simulation. The plots are for scenarios 1, 4, 6, 7 respectively from left to right. In
the top row of plots, the black dashed line is the true underlying PCF; the red line
represents the PCF estimates with Diggle’s edge-correction method; the blue dashed
line means the PCF estimates with Ripley’s edge-correction method.
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Figure 2.7: Relative ratio of the mean PCF estimates adjusted by Ripley’s edge-
correction method and Diggle’s edge-correction method versus the true value for sce-
narios 1, 4, 6, 7 respectively from left to right. The dashed gray line represents the
maximum of 1000 minimum pairwise distances from 1000 Monte Carlo data.

The plots for the mean of PCF estimates in scenarios 1, 4, 6, 7 are shown in

Figure 2.6, where ĝdig performs better than ĝrip in terms of bias reduction; however,

the estimates at small distance lags r are not reliable for all scenarios because in some

realizations with small µ or σ2, the minimum pairwise distance may be greater than

the smallest value of r in the plot, thus few pairs will be incorporated in the formula

to calculate the estimate of PCF. Therefore, we do not provide the 95% confidence

interval for the estimates at distance lag r less than the maximum of 1000 minimum

pairwise distances. We also find out that as σ2 increases, the bias will increase. In the

middle two plots, the confidence intervals tend to be narrower as µ increases, which is

similar as two-dimensional cases and can be explained and confirmed by theoretical

inference. Five random samples of the PCF estimates with Diggle’s edge-correction

method are plotted at the bottom to show the variability of estimated PCFs from the

same underlying process. Similar findings are obtained from Figure 2.7 showing the
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ĝ
(r

)

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

gtrue(r)
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Figure 2.8: Mean of PCF estimates adjusted by Diggle’s edge-correction method with
95% empirical confidence intervals from 1000 realizations of one-dimensional LGCPs
on [0, 1]. The top two plots are based on simulations under Scenarios 1 and 2; the
middle two plots on simulations under Scenarios 4 and 5; and the bottom two plots
on simulations under Scenarios 7 and 8. In each plot, the black dashed line is the
true underlying PCF; the red line represents the mean of PCF estimates with Diggle’s
edge-correction method.
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ĝ(
r) 

mu=3
mu=5
mu=8

0.1 0.2 0.3 0.4 0.5

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

distance lag r

B
ia

s 
of

ĝ(
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Figure 2.9: Bias of PCF estimates adjusted by Diggle’s edge-correction method from
1000 realization of one-dimensional LGCPs on [0, 1]. The left panel is for scenarios
1-3, and the right panel is for scenarios 4-6.
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Figure 2.10: Bias of PCF estimates under increasing domain asymptotics based on
1000 realizations of one-dimensional LGCPs on [0, 1]. The left plot is for distance lag
r = 1; the middle plot is for distance lag r = 3 and the right plot is for distance lag
r = 5.
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relative ratio of the mean PCF estimates with both edge-corrections, illustrating that

Diggle’s method versus the true value is preferable for one-dimensional spatial data

analysis for the scenarios under consideration. More information about the effect

of µ and σ2 on PCF estimation appears in Figures 2.8-2.9. As above, we find that

for the scenarios with the same µ, greater σ2 leads to larger range of variation and

increased bias. Also, for distance lags 0.2 < r < 0.5, estimation becomes more reliable

as the number of point pairs increases, however this does not hold for very small

distance lags, consistent with previous studies in literature (Diggle, 2003). Another

interesting note is that for the scenarios with equal σ2, as µ increases under infill

asymptotics, the expected number of points increases, and the bias of PCF estimates

at small distance lags decreases due to the emergence of more pairs of points with

short inter-point distances, but there exists little difference for very small distance

lags r < 0.1. In conclusion, the bias of non-parametric PCF estimation under infill

asymptotics is sensitive to both µ and σ2, but particularly to σ2. Also, Diggle’s edge-

correction method is recommended for one-dimensional spatial LGCPs with relatively

small value of σ2 to reduce bias at moderate distance lags, but additional analysis is

necessary to fully determine this edge-correction’s feasible usage.

Additional results on the bias of PCF estimates under increasing domain asymp-

totics are shown in Figure 2.10. We first simulate spatial points from one realization

of LGCPs with µ = 1, σ2 = 1 and β = 0.5 in a fixed interval length [0, 300]. Af-

terwards, we can choose subset windows with lengths of 10, 20, 30, 40, 60, 80, 100

and 150 to generate the increasing domains. In this case, Ripley’s edge-correction

method performs better than Diggle’s under increasing domain asymptotics, and, as

the interval length increases, the bias decreases and a wider interval window would

be needed to reduce bias at larger distance lags. This gives some evidence that the

choice of edge-correction method for one-dimensional spatial data depends on the
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sample design the asymptotics of interest and the research questions.

In addition, we discuss the issues about nonparametric PCF estimates for large

distance lags. Simulation results show that the means of the non-parametric PCF

estimates decrease for distance lags r > 0.5, where partial results for scenarios 1 and

3 shown in Figure 2.11. To investigate the reason for this, we check the number of

unique pairs of points for calculating the non-parametric estimate of the PCF, and

note that after r > 0.5, all of the observed pairs would be edge-corrected, and that

weights in Diggle’s correction methods only depend on the pointwise distances, which

is not large enough to fully correct the edge effect for large r. To adjust the substantial

bias for large r >= 0.5, we propose another edge-corrected method, where ωij is the

reciprocal of the proportion of the interval of an annulus with si as the center and

radius r1 = r −
√

5h and r2 = r +
√

5h that lies within the study area, while for

r < 0.5, we use the same ωij as Diggle’s correction method. From Figure 2.12, we can

see the proposal performs better than either of the Ripley’s or Diggle’s correction for

relatively larger distance lags.

2.5 Conclusion and Discussion

In this article, we investigate the bias and variance of non-parametric estimators of

the PCF from log-Gaussian Cox processes, especially one-dimensional spatial data

via simulation and theoretical inference. The non-parametric PCF estimates are im-

portant, because those values could be used, say in the minimum contrast method,

to estimate parametric forms of log-Gaussian Cox processes. In most cases, empirical

estimation remains challenging for a number of reasons, and more so if we consider a

spatial point process in one dimension (points along a line). Our results provide infor-

mative to build optimal sampling designs and obtain efficient parametric modeling.
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Figure 2.11: The left panel is for scenario 1 and the right panel is simulated from
scenario 2. The top two plots indicate the number of unique pairs used for calculating
non-parametric estimate of PCF and the number of pairs having edge-correction
adjustment, and the bottom two plots show the mean of the PCF estimates adjusted
by Diggle’s edge-correction method with 95% empirical confidence interval from 1000
realizations of one-dimensional LGCP on [0, 1].
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Figure 2.12: The PCF estimates with different edge-correction methods for scenarios
1 and 2

We consider two asymptotic settings, infill asymptotics and increasing domain asymp-

totics, but our focus is primarily on the former. We evaluated two edge-correction

approaches to assess their impact on the performance of non-parametric estimators

of PCF. Our simulations suggest that Diggle’s edge-correction is easy to implement

and has less bias than Ripley’s approach at moderate distance lags, and performs well

under infill asymptotics. We provided an algorithm based on theoretical formulation

combined with finite sample simulation of the kth (k <= 4) moment with respect to

the integration of the intensity function to estimate the PCF. Compared with the

non-parametric approach, this algorithm has comparable results and fast calculation.

Also, we propose a new edge-correction method for larger distance lags to (slightly)

improve existing methods by further reducing bias.

The derivation of the bias and the variance for the estimate of the PCF is not

trivial. Accordingly, we found out that bias decreases as the mean of the Gaussian

process defining intensity, µ, increases, and also that the bias increases as the variance
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of the intensity, σ2, increases given fixed values of other parameters. This trend can

be tracked for both infill and increasing domain asymptotics. For the increasing

domain asymptotics, we found the bias decreases as the study region increases, which

agrees with our general expectation. Future work will explore the impact of additional

elements of the estimator on performance. The bandwidth is of particular interest to

build on earlier work of Fiksel (1998).

2.6 Appendix

2.6.1 The bias of ĝ(r)

Using the law of iterated expectation, we have E(ĝ(r)) = E
[
E(ĝ(r)|ρ(·))

]
. Let

ψ̂(r) =
N∑
i=1

∑
j 6=i

κh(r − ‖si − sj‖)ωij

ϑ =
ψ̂(r)

|W |

M =
νN(N − 1)

|W |2

Therefore, ĝ(r) = ϑ
M

. Based on the delta method, we have

E(ĝ(r)) = E(
ϑ

M
) ≈ E(ϑ)

E(M)

[
1 +

V ar(M)

(E(M))2
− Cov(ϑ,M)

E(ϑ)E(M)

]
. (2.1)

First, note that E(N(N − 1)) = E[E(N(N − 1))|ρ(·)]. Also, under the framework of

LGCP, we have V ar(N |ρ(·)) = E(N |ρ(·)) =
∫
W
ρ(s)ds, and E(N2|ρ(·)) =

∫
W
ρ(s)ds+
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(
∫
W
ρ(s)ds)2. Hence, we find

E(N(N − 1)) = E

(∫
W

ρ(s)ds

)2

. (2.2)

For log-Gaussian Cox processes, we know that λ = E(ρ(s)) = exp(µ + 1
2
σ2), and

V ar(ρ(s)) = [exp(σ2)− 1] exp(2µ+ σ2). Thus, we have E(ρ(s)2) = V ar(ρ(s)) + λ2 =

exp(2µ+ 2σ2). Therefore,

E(

∫
W

ρ(s)ds)2 = E
[

lim
N→∞

( N∑
n=1

ρ(
n

N
)
|W |
N

)( N∑
m=1

ρ(
m

N
)
|W |
N

)]
= E

[
lim

N→∞

( N∑
n=m

ρ2(
n

N
)
|W |2

N2
+

N∑
n 6=m

ρ(
n

N
)ρ(

m

N
)
|W |2

N2

)]

= lim
N→∞

[ N∑
n=m

E(ρ2(
n

N
))
|W |2

N2
+

N∑
n 6=m

E(ρ(
n

N
)ρ(

m

N
))
|W |2

N2

]

= lim
N→∞

[
exp(2µ+ 2σ2)

N∑
n=m

|W |2

N2
+

N∑
n6=m

E(exp(Y (
n

N
)) exp(Y (

m

N
)))
|W |2

N2

]

= lim
N→∞

[
exp(2µ+ 2σ2)

N∑
n=m

|W |2

N2
+

N∑
n6=m

E(exp(Y (
n

N
) + Y (

m

N
)))
|W |2

N2

]

= lim
N→∞

[
exp(2µ+ 2σ2)

N∑
n=m

|W |2

N2
+

N∑
n6=m

exp
(

2µ+ σ2(1 + ζ(
|n−m|
N

))
) |W |2
N2

]

= exp(2µ+ 2σ2) lim
N→∞

(
|W |2

N
) + exp(2µ+ σ2) lim

N→∞

N∑
n 6=m

exp(σ2ζ(
|n−m|
N

))
|W |2

N2
.

Unfortunately, there is no closed form for this result, thus we calculate the average

of (
∑

s∈W ρ(s)∆s)2 to obtain the approximation based on N simulated data sets,

which has discussed in Section 2.3. Also, we know that E(M) = ν
|W |2E(N(N − 1)) =

ν
|W |2E(

∫
W
ρ(s)ds)2. Next,

V ar(N(N − 1)) = V ar
[
E(N(N − 1))|ρ(·)

]
+ E

[
V ar(N(N − 1))|ρ(·)

]
= V ar

[
(

∫
W
ρ(s)ds)2

]
+ E

[
4(

∫
W
ρ(s)ds)3 + 2(

∫
W
ρ(s)ds)2

]
= E(

∫
W
ρ(s)ds)4 − (E(

∫
W
ρ(s)ds)2)2 + 4E(

∫
W
ρ(s)ds)3 + 2E(

∫
W
ρ(s)ds)2.
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We can derive that

E(

∫
W

ρ(s)ds)3 = E
[

lim
N→∞

( N∑
n=1

ρ(
n

N
)
|W |
N

)( N∑
m=1

ρ(
m

N
)
|W |
N

)( N∑
j=1

ρ(
j

N
)
|W |
N

)]

= E
[

lim
N→∞

( N∑
n=m=j

ρ3(
n

N
)
|W |3

N3
+

N∑
n 6=m
m=j

ρ(
n

N
)ρ2(

m

N
)
|W |3

N3
+

N∑
n 6=m
n=j

ρ2(
n

N
)ρ(

m

N
)
|W |3

N3

+

N∑
n=m
m 6=j

ρ2(
n

N
)ρ(

j

N
)
|W |3

N3
+

N∑
n6=m 6=j

ρ(
n

N
)ρ(

m

N
)ρ(

j

N
)
|W |3

N3

)]

= lim
N→∞

( N∑
n=m=j

exp(3µ+
9

2
σ2)
|W |3

N3
+ 2

N∑
n6=m
m=j

exp(3µ+
5

2
σ2 + 2σ2ζ(

|n−m|
N

))
|W |3

N3

+
N∑

n 6=m
m=j

exp(3µ+
5

2
σ2 + 2σ2ζ(

|n− j|
N

))
|W |3

N3
+

N∑
n6=m 6=j

E(ρ(
n

N
)ρ(

m

N
)ρ(

j

N
))
|W |3

N3

)

= exp(3µ+
9

2
σ2) lim

N→∞
(
|W |3

N2
) + 2 lim

N→∞

N∑
n 6=m
m=j

exp(3µ+
5

2
σ2 + 2σ2ζ(

|n−m|
N

))
|W |3

N3

+ lim
N→∞

N∑
n 6=m
m=j

exp(3µ+
5

2
σ2 + 2σ2ζ(

|n− j|
N

))
|W |3

N3

+ lim
N→∞

N∑
n 6=m 6=j

E(ρ(
n

N
)ρ(

m

N
)ρ(

j

N
))
|W |3

N3

where the first term above approaches to 0 as limN→∞
|W |3
N2 → 0. The second and

third terms also approximately to 0 because exp(3µ+ 5
2
σ2+2σ2ζ( |n−m|

N
)) and exp(3µ+

5
2
σ2 + 2σ2ζ( |n−j|

N
)) are bounded and limN→∞N(N − 1) × |W |3

N3 → 0. For the fourth

term, E(ρ( n
N

)ρ(m
N

)ρ( j
N

)) = exp(3µ+ 3
2
σ2+σ2(ζ( |n−m|

N
)+ζ( |m−j|

N
)+ζ( |n−j|

N
)). Similarly,

E(
∫
W
ρ(s)ds)3 does not have a closed form, thus it is also approximated by simulated

data. A similar argument holds for E(
∫
W
ρ(s)ds)4. Afterwards, we find

V ar(M)

(E(M))2
=

V ar(N(N − 1))

(E(N(N − 1)))2

=
E(
∫
W ρ(s)ds)4

(E(
∫
W ρ(s)ds)2)2

+
4E(

∫
W ρ(s)ds)3

(E(
∫
W ρ(s)ds)2)2

+
2

E(
∫
W ρ(s)ds)2

− 1.
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Second, by a change of variables (Federer, 1969), we can derive that

E(ϑ) = E(
ψ̂(r)

|W |
)

=
1

|W |
E(E(ψ̂(r)|ρ(·)))

=
1

|W |
E
[ ∫

W

∫
W
κh(r − ‖u− v‖)ω(u, v)ρ(2)(u, v)dudv

]
=

λ2

|W |

∫
W

∫
W
κh(r − ‖u− v‖)ω(u, v)g(‖u− v‖)dudv

=
λ2

|W |

∫
W

[ ∫ L

0

∑
v∈W :‖u−v‖=t

κh(r − ‖u− v‖)ω(u, v)g(‖u− v‖)dt
]
du

=
λ2

|W |

∫
W

[ ∫ L

0

∑
v∈W :‖u−v‖=t

κh(r − t)ω(u, v)g(t)dt
]
du.

where L is the maximum pairwise distance in the fixed window under infill asymp-

totics, otherwise, L→∞ for increasing domain. Under one-dimensional spatial point

processes, the summation on the right hand side of Equation (11) is simply the num-

ber of points in v ∈ W that are situated at the same distance of t from u. Thus,∑
v∈W :‖u−v‖=t ω(u, v) should be the number of points on the surface of the boundary.

Given ω(u, v) as Diggle’s edge correction factor, E(ϑ) = 2λ2
∫ L

0
κh(r − t)g(t)dt.

Third, for Cov(ϑ,M), we need to find E(N(N − 1)ψ̂(r)). Motivated by the ex-

pression, we can rewrite

N(N − 1)ψ̂(r) =
N∑
i=1

∑
j 6=i

N∑
k=1

∑
l 6=k

%(si, sj)%(sk, sl)

where %(si, sj) = κh(r−‖si− sj‖)ωij and %(sk, sl) = 1. After regrouping the summa-

tion above, we have seven types of combinations, {(si, sj), (si, sj)}, {(si, sj), (sj, si)},

{(si, sj), (sk, sj)}, {(si, sj), (sk, si)}, {(si, sj), (si, sl)}, {(si, sj), (sj, sl)}, {(si, sj), (sk, sl)}

with summation denoted by SA, SB, SC , SD, SE, SF , SG respectively. Obviously,
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SA = SB =
∑N

i=1

∑
j 6=i %(si, sj), and we find

E(SA) = λ2

∫
W

∫
W
κh(r − ‖u− v‖)ω(u, v)g(‖u− v‖)dudv

= λ2$(r).

SC , SD, SE and SF have the same expectation. We can derive the expectations for

SC and SG as follows

E(SC) = E(

∫
W

∫
W

∫
W
κh(r − ‖u− v‖)ω(u, v)ρ(3)(u, v, h)dudvdh)

= λ3

∫
W

∫
W

∫
W
κh(r − ‖u− v‖)ω(u, v)

∏
m,n∈{u,v,h}

m6=n

g(‖m− n‖)dudvdh

= λ3ξ(r),

E(SG) = E(

∫
W

∫
W

∫
W

∫
W
κh(r − ‖u− v‖)ω(u, v)ρ(4)(u, v, h, g)dudvdhdg)

= λ4

∫
W

∫
W

∫
W

∫
W
κh(r − ‖u− v‖)ω(u, v)

∏
m,n∈{u,v,g,h}

m 6=n

g(‖m− n‖)dudvdhdg

= λ4%(r).

Finally, we sum all the above results to find E(N(N−1)ψ̂(r)) = 2λ2$(r)+4λ3ξ(r)+

λ4%(r) = λ2η where η = 2$ + 4λξ(r) + λ2%(r). Accordingly, we obtain Cov(ϑ,M)
E(ϑ)E(M)

=

η
$(r)E(

∫
W ρ(s)ds)2

− 1. In the end, we have

E(ĝ(r)) =
λ2|W |$(r)

νE(
∫
W ρ(s)ds)2

[
1 +

E(
∫
W ρ(s)ds)4

(E(
∫
W ρ(s)ds)2)2

+ 4
E(
∫
W ρ(s)ds)3

(E(
∫
W ρ(s)ds)2)2

+
2

E(
∫
W ρ(s)ds)2

]
− λ2|W |η
νE(

∫
W ρ(s)ds)2

.
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In particular, for one-dimensional data, the above estimator can be written as

E(ĝ(r)R1) =
λ2|W |2

∫ L
0 κh(r − t)g(t)dt

E(
∫
W ρ(s)ds)2

[
1 +

E(
∫
W ρ(s)ds)4

(E(
∫
W ρ(s)ds)2)2

+ 4
E(
∫
W ρ(s)ds)3

(E(
∫
W ρ(s)ds)2)2

+
2

E(
∫
W ρ(s)ds)2

]
− λ2|W |η

2E(
∫
W ρ(s)ds)2

.

Also, using Taylor expansion, we can get that

∫ L

0
κh(r − t)g(t)dt =

∫ r

r−L
κh(m)g(r −m)dm

≈
∫ r

r−L
κh(m)(g(r)− ġ(r)m+

g̈(r)

2
m2)dm

≈ g(r)

∫ r

r−L
κh(m)dm− ġ(r)

∫ r

r−L
κh(m)mdm

+
g̈(r)

2

∫ r

r−L
κh(m)m2dm

Then, the bias of the estimated PCF can be obtained by E(ĝ(r)) − g(r). After

plugging in the exponential correlation, i.e., g(r) = exp(σ2exp(− r
β
)), we know that

ġ(r) = −σ
2

β
exp(− r

β
)g(r) and g̈(r) =

σ2

β2
exp(− r

β
)g(r)

[
1 + log(g(r))

]
Hence, the bias of ĝ(r) is approximated by

E(ĝ(r))− g(r) =
λ2|W |2

2E(
∫
W ρ(s)ds)2

[
2

∫ L

0
κh(r − t)g(t)dt

(
1 +

E(
∫
W ρ(s)ds)4

(E(
∫
W ρ(s)ds)2)2

+4
E(
∫
W ρ(s)ds)3

(E(
∫
W ρ(s)ds)2)2

)
− 4λξ(r)

|W |E(
∫
W ρ(s)ds)2

− λ2%(r)

|W |E(
∫
W ρ(s)ds)2

]
− exp(σ2 exp(− r

β
))

Based on estimates from simulation, E(
∫
W
ρ(s)ds)4 is greater than (E(

∫
W
ρ(s)ds)2)2,

therefore, the bias from the above formula should be negative. Given fixed µ, as

the variance σ2 increases, the absolute value in the square brackets will increase,

suggesting an increase in the absolute value of overall bias; however, it is not easy to
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detect consistent trends of bias when µ increases for a given value of σ2.

2.6.2 The variance of ĝ(r)

We can also get the variance estimate of ĝ(r) by the delta method as follows:

V ar(ĝ(r)) = V ar(
ϑ

M
) ≈ (E(ϑ))2

(E(M))2

[ V ar(ϑ)

(E(ϑ))2
− 2

Cov(ϑ,M)

E(ϑ)E(M)
+
V ar(M)

(E(M))2

]

The key part here is to calculate V ar(ϑ) = E(ϑ2) − E(ϑ)2. Similarly as above, we

know that

ψ̂(r)2 =
N∑
i=1

∑
j 6=i

N∑
k=1

∑
l 6=k

%(si, sj)%(sk, sl)

where %(si, sj) = κh(r−‖si− sj‖)ωij and %(sk, sl) = κh(r−‖sk − sl‖)ωkl. We denote

S∗A, S∗B, S∗C , S∗D, S∗E, S∗F , S∗G which have the same types of summations as defined

above.

E(S∗A) = E(

∫
W

∫
W
κ2
h(r − ‖u− v‖)ω2(u, v)ρ(2)(u, v)dudv)

= λ2

∫
W

∫
W
κ2
h(r − ‖u− v‖)ω2(u, v)g(‖u− v‖)dudv

= µ∗A

Similarly,

E(S∗E) = λ3

∫
W

∫
W

∫
W
κh(r − ‖u− v‖)κh(r − ‖u− h‖)ω(u, v)ω(u, h)Ξdudvdh

= µ∗E , where Ξ =
∏

m,n∈{u,v,h}
m6=n

g(‖m− n‖)

E(S∗G) = λ4

∫
W

∫
W

∫
W

∫
W
κh(r − ‖u− v‖)κh(r − ‖h− g‖)ω(u, v)ω(h, g)Ωdudvdhdg

= µ∗G, where Ω =
∏

m,n∈{u,v,g,h}
m 6=n

g(‖m− n‖)
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However, S∗C , S∗D and S∗F cannot be simplified, thus we use µ∗C , µ∗D and µ∗F denoting

their expected value.

E(S∗B) = E(

∫
W

∫
W
κ2
h(r − ‖u− v‖)ω(u, v)ω(v, u)ρ(2)(u, v)dudv)

= λ2

∫
W

∫
W
κ2
h(r − ‖u− v‖)ω(u, v)ω(v, u)g(‖u− v‖)dudv

= µ∗B

Therefore, the variance estimate can be written as

V ar(ĝ(r)) ≈ (E(ϑ))2

(E(M))2

[ V ar(ϑ)

(E(ϑ))2
− 2

Cov(ϑ,M)

E(ϑ)E(M)
+
V ar(M)

(E(M))2

]
=

λ4|W |2$(r)2

ν2(E(
∫
W ρ(s)ds)2)2

[E(ϑ2)|W |2

λ4$2
− 2η

$E(
∫
W ρ(s)ds)2

+
E(
∫
W ρ(s)ds)4

(E(
∫
W ρ(s)ds)2)2

+
4E(

∫
W ρ(s)ds)3

(E(
∫
W ρ(s)ds)2)2

+
2

E(
∫
W ρ(s)ds)2

]
=

λ4|W |4(
∫ L

0 κh(r − t)g(t)dt)2

(E(
∫
W ρ(s)ds)2)2

[ E(ϑ2)

|W |2λ4(
∫ L

0 κh(r − t)g(t)dt)2

− η

|W |
∫ L

0 κh(r − t)g(t)dtE(
∫
W ρ(s)ds)2

+
E(
∫
W ρ(s)ds)4

(E(
∫
W ρ(s)ds)2)2

+
4E(

∫
W ρ(s)ds)3

(E(
∫
W ρ(s)ds)2)2

+
2

E(
∫
W ρ(s)ds)2

− 2
]

where E(ϑ2) can be obtained by the summation of µ∗i , i ∈ {A,B,C,D,E, F,G}.From

the above derived formula, the variance decreases as µ increases or σ2 decreases.
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Chapter 3

Spatial-temporal point pattern

analysis of sea turtle nesting and

emergence locations

3.1 Introduction

Research on sea turtles often focuses on emergence (nesting and non-nesting) lo-

cations or hatchling success on nesting beaches because those studies provide vital

information on the reproductive cycles and success of these endangered threatened

species. Such ecological and environmental investigations can provide information

regarding varieties of potential factors impacting nesting behavior, and thus more

effective protection strategies can be applied to prevent declines of sea turtle popula-

tion. According to Florida’s sea turtles (1992), “Concern for the plight of sea turtles is

growing and around the world. Conservationists, governmental agencies, public and

private organizations, corporations and individuals are working to protect sea tur-

tles on nesting beaches and at sea.” There exist a lot of literatures on point pattern
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analysis of emergences, i.e., Weishampel et al. (2003) evaluated the spatial-temporal

patterns of sea turtle nesting behaviors along an east central Florida beach by auto-

correlation analysis and indicated emergence patterns of loggerhead and green turtles

were non-random; Antworth et al. (2006) monitored spatial and temporal nesting

patterns and hatching success on Canaveral National Seashore, and pointed out that

higher density of nests were deposited on the southern end than the northern end and

growing populations were detected over the nineteen-year study period. These works

of statistical estimation and comparison based on descriptive statistics offer valuable

insights into the assessment of management policies on preserving nesting beaches for

sea turtles as well as possible influential factors for particular species.

Our motivating data involves emergence (nesting and non-nesting) locations of sea

turtles along Juno Beach, Palm Beach County, Florida from the nesting seasons of

year 1998-2000. Juno Beach has been recognized as one of the most densely nested

beaches in southeast Florida. Based on the resting reports along Florida’s east coast

from 2001 to 2010, Juno Beach has the highest nesting concentrations of leatherback

turtles and the second highest nesting concentrations of loggerhead and green turtles.

Obviously, Juno Beach plays a pivotal and representative role in evaluating how

point pattern of nesting locations change over space and time. We provide detailed

description of our data in Chapter 1.

Waller and Leong (2007) quantified local impacts of a beach nourishment project

on emergence and nesting patterns by calculating the relative ratio of pre- and post-

nourishment kernel density estimates at each point along Juno Beach, and found sig-

nificant reduction of loggerhead and green turtle emergences in the northern portion

of the nourishment zone and a significant increase just to the south of the nourishment

zone. Later, by utilizing Waller and Leong’s approach, Welch (2007) provides com-

prehensive analysis and summary of the effects of pier and nourishment construction
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projects on sea turtle nesting to help design “turtle-friendly” future beach nourish-

ment profiles. Annual Juno Beach nesting reports since 2000 monitor spatial-temporal

sea turtle nesting patterns and reproductive success, and also identify the impacts of

construction projects. Most of these focus on frequency approaches (histograms, scat-

ter plots and tables). However, few studies have investigated the spatial and temporal

distribution patterns of sea turtles along Juno Beach by using stochastic techniques.

To fill this gap, we propose point processes methodology to investigate spatial and

temporal heterogeneity of loggerhead turtle emergences and nesting, and further as-

sess potential effects due to local fishing pier construction. Our data includes 8,832

loggerhead emergences comprised of 4,357 nesting and 4,475 non-nesting emergences

(false crawling) for the year 1998; 8,672 loggerhead emergences with 4,326 nesting and

4,346 non-nesting emergences (false crawling) for the year 1999; 10,003 loggerhead

emergences including 5,139 nesting and 4,864 non-nesting emergences (false crawling)

for the year 2000.

Figure 3.1: The data structure and Displacement of CC nesting sites to loess beach

Many tools for the statistical analysis of spatial point process can detect clusters
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and/or clustering. Based on Besag and Newell (1991)’s terminology, a cluster defines

local collection of events occurring at a higher rate than elsewhere. Tests to detect

clusters typically evaluate a p-value for each potential cluster, creating a challenging

multiple test situation. In comparison, the term clustering indicates a summary

aspect of an observed pattern tests for clustering pattern evaluate the entire data

set with a single p-vlaue. The first and second-order properties of spatial point

process can also be applied for both of these via Monte Carlo inference. For instance,

comparison of estimated intensities can find out where patterns differ, and thus detect

unusual collection of events (clusters); second-order properties such as K− function

or pair correlation function (PCF) typically compare spatial-temporal dependency

across varied distance lags and over whole pattern, thus assessing clustering. In this

article, we apply both approaches into spatial and temporal pattern analysis. We also

evaluate the hypothesis of space-time separability to assess space-time interaction.

More importantly, we develop corresponding R programming for one-dimensional

spatial-temporal point processes analysis, implementing results from Chapters 1 and

2.

Building from our analytic framework, we use a Log-Gaussian Cox Process to

capture environmental variation in the intensity function. Here, we apply spatial-

temporal log-Gaussian Cox processes and corresponding results for loggerhead nests

in observed in 1998. We fit our parametric model using minimum contrast method

(detailed below) to further understand the potential clustering/inhabitative point

patterns across space and time. The details of spatial-temporal point process tech-

niques including non-parametric estimation and the testing of space-time separability

as well as log-Gaussian Cox processes are provided in Section 3.2. In Section 3.3, we

summarize results for our spatial-temporal point pattern analysis as well as para-

metric model fitting. Finally, in Section 3.4, we discuss the impact of our results on
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protection of loggerhead turtles and outline future studies.

3.2 Methods

3.2.1 Data preprocessing

Our GPS data require some preprocessing before we can apply the methods in Chapter

1 and 2. We first rotate the UTM coordinates by θ = argtan(β) with β as the slope

estimate from linear regression in order to minimize transformation of points from

the beach to a line. Next, we perform local regression to define a curve that describes

the deterministic part of the variation in the data. The span parameter is chosen as

0.1 to smooth local noise without losing general beach features.

The displacement of all emergences of loggerhead turtles onto a horizontal line

after rotation and loess defines data around a linear beach for year 1998-2000, shown

in Figure 3.1. INBS zones as well as the area of the nourishment project and pier are

also provided. Accordingly, we calculate the distance of sequential pairs of locations

ordered by rotated east coordinate along the linear beach to form an one-dimensional

spatial point process. Table 3.1 shows the emergence count per unit distance by

INBS zones for year 1998-2000 to ensure their comparability among zones due to

varied zone length (range: 0.27-1.1 miles or 0.43-1.77 km). After comparison, we

can see there exists a reduction of nests count in INBS zone 4, especially in year

1999, and an increase in INBS zone 5, indicating potential spatial heterogeneity and

environmental impact near the pier. The next section will further evaluate the spatial

and temporal variation through estimated first-order and second-order properties of

point processes.
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Table 3.1: Emergence count per unit distance by INBS zones for years 1998-2000
INBS zone Nests count 1998 Nests count 1999 Nests count 2000

1 218 213 241
2 244 264 259
3 290 245 295
4 272 195 269
5 308 344 343
6 353 290 385
7 269 285 310
8 277 265 319
9 241 234 281
10 300 334 384
11 258 274 304

3.2.2 Notation

For one-dimensional spatial-temporal point process in R1 ×R, we consider the point

pattern projected onto the X-axis in Figure 3.1 as a realization of a locally finite

random subset X in the study region A = W × T consisting a sequence of events

{(si, ti) : i = 1, 2, . . . , n} with s ∈ R1 denoting location, t ∈ R representing time

within a bounded spatial region W and a time interval [0, T ]. Let N(B) denote the

number of events within study region B, and N denote the total number of events

within region A. The locally finite observed spatial component process Xs includes

the events with times in the time interval [0, T ]. Similarly, Xt denotes the locally

finite observed temporal component process consisting the events in the area W . first

define important terminology for spatial-temporal point point analysis. Immediately

after, we introduce spatial-temporal properties through definitions and estimation in

details.

• A point process X has space-time clustering if a statistically significant excess

of events, occurs within a limited space-time subset.

• A point process X has space-time interaction if pairs of events which are close

to each other in space are also close to each other in time.

• First-order spatial-temporal separability is defined by ρ(s, t) = ρ(s)ρ(t)/N .
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• Second-order spatial-temporal separability id defined by K(u, v) = Ks(u)Kt(v).

3.2.3 Spatial-temporal Intensity

The first-order property of a space-time process is the intensity function defining the

expected number of events occurring per unit area and time. For a spatial-temporal

point process X, the intensity ρ(s, t) is defined as follows

ρ(s, t) = lim|ds×dt|→0
E(N(ds× dt))
|ds× dt|

where ds× dt is a small region around the point (s, t) with ds denoting an infinitesi-

mally small line segment and dt an infinitesimally time interval. Hence, ρ(s, t)|ds×dt|

defines the probability that one event occurs in ds×dt, which satisfies
∫
W

∫
T
ρ(s, t)d(s, t) =

N assuming that events cannot occur at exactly the same point in space-time. If we

have the intensity for a spatial point process Xs, ρ(s), and the intensity for a temporal

point process Xt, ρ(t), and we assume a separable spatial-temporal intensity function,

ρ(s, t) may be estimated as a product form given by ρ̂(s, t) = ρ̂(s)ρ̂(t)/N ; otherwise,

a two-dimensional space-time kernel estimator may be used.

In addition, if the process X is homogeneous, the intensity will be a constant, and

can be estimated by N
|W |×T , whilst for heterogeneous processes, non-parametric tech-

niques are widely applied. For instance, for separable processes, the kernel intensity

estimator can be written as (Berman and Diggle, 1989):

ρ̂(s, t;hs, ht) =
1

Nhsht

N∑
i=1

κs

(
s− si
hs

)
κt

(
t− ti
ht

)

where si and ti are the location and time index of ith event, κ is the kernel function

which is a Gaussian kernel in common, and h is a smoothing parameter or bandwidth
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often based on the direct plug-in approach by Sheather and Jones (1991) which has

been described in Chapter 1.

In our application, to find out where nesting patterns differ between months (May-

August), we use spatial intensities to detect the clusters under an assumption of het-

erogeneous Poisson point processes. In particular, for each pairwise comparison of

intensities from month i and j (i 6= j, i, j ∈ {5, 6, 7, 8}), we calculate the natural log-

arithm of the relative ratios of monthly intensities, i.e., r̂(s) = log{ρ̂i(s)/ρ̂j(s)}, along

the the beach surface following the general approach of Kelsall and Diggle (1995). We

apply a random labelling Monte Carlo method to get the 95% tolerance envelopes

based on pointwise quartiles at each grid point based on 1000 simulations. The lo-

cations along the beach where the observed value of r̂(s) stays outside the tolerance

regions reveal significance difference between two month groups. This approach is

useful in discerning locally significant changes in nesting locations that may be diffi-

cult to detect using the traditional, less sensitive method of analysis by zones (Waller

and Leong, 2005).

3.2.4 Spatial-temporal K−function and PCF

In this section, we extend spatial K−function and pair correlation function to spatial-

temporal point processes, thus exploring second-order spatial-temporal dependency.

Under the assumption of second-order (intensity-reweighted) stationarity, the non-

parametric estimate of K-function is given by

K̂(u, v) =
1

|W ||T |

N∑
i=1

∑
j 6=i

I(|si − sj| ≤ u, |ti − tj| ≤ v)ω(si, sj)ω(ti, tj)

ρ̂(si, ti)ρ̂(sj, tj)
(3.1)

where I(‖si − sj‖ ≤ u, |ti − tj| ≤ v) is an indicator function with value 1 when the

distance of points si and sj is no larger than u and associated time lag between ti
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and tj is less than or equal to v simultaneously and 0 otherwise. ω(si, sj) and ω(ti, tj)

denote edge correction factors to adjust bias, where Diggle’s edge-correction (1985) is

applied. K(u, v) is used to evaluate the expected number of events within a certain

distance u and time interval v given an arbitrary event in the study region. When X

follows complete spatial-temporal randomness, K(u, v) =
∫ v
−v

∫ u
−u du

′dv′ = 4uv, while

K(u, v) > 4uv indicates aggregate spatial-temporal patterns and K(u, v) < 4uv shows

regular spatial-temporal patterns.

PCF is another informative second-order statistic related to the joint expecta-

tion of events and first-order intensity. Without assuming stationary, the theoretical

definition of PCF provided by Baddeley et al. (2000) is

g((si, ti), (sj, tj)) =
ρ(2)((si, ti), (sj, tj))

ρ(si, ti)ρ(sj, tj)

= 1 +
Cov(N(Di), N(Dj))

ρ(si, ti)ρ(sj, tj)|Di||Dj|
, D = ds× dt

where ρ(2)(·) is the second-order intensity. Note that the PCF equals one for com-

pletely random spatial-temporal point patterns, i.e., a Poisson process; A value of

PCF greater than one indicates aggregate spatial-temporal point patterns; at that

space-time lags, the PCF less than one suggests inhibitive spatial-temporal point

patterns. There exists a close relationship between the PCF and K−function, where

K(u, v) =
∫ v
−v

∫ u
−u g(u′, v′)du′dv′ (past and future events included). A non-parametric

estimate of the PCF for X can be obtained by

ĝ(u, v) =
1

|W ||T |

N∑
i=1

∑
j 6=i

κhs(u− ‖si − sj‖)κht(v − |ti − tj|)ω(si, sj)ω(ti, tj)

ρ̂(si, ti)ρ̂(sj, tj)

where the edge correction factor ω(si, sj), ω(ti, tj) and κ(·) are defined the same as

before. In our study, we use both K−functions and PCFs to detect clustering. In
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next section, K−functions are utilized to test space-time separability by simulation.

3.2.5 Space-time clustering and interaction

Hypothesis testing of space-time separability is important in investigation of spatial-

temporal structure, providing suggestions for subsequent model fitting. There exist

two types of separability, first-order separability and second-order separability, which

have been briefly introduced above.

As we know, a non-parametric estimate of spatial-temporal intensity function is

given by kernel smoothing which could induce space-time dependency into the data.

To assess separable space-time intensity functions, Schoenberg (2004) proposed sev-

eral non-parametric test statistics, and found a Cramer-von Mises type statistic had

the greatest power to detect gradual departures from separability. This statistic is

defined by

S1 =

∫
W

∫
T

(ρ̂(s, t)− ρ̂(s)ρ̂(t)/N)2 dtds

Given discrete time and a relatively small grid size in space partition, the above

statistic can be approximated by
∑

s∈W
∑

t∈T (ρ̂(s, t)− ρ̂(s)ρ̂(t)/N)2. However, in

Schoenberg’s work, he only considered hypothesis testing on one realization (quite

variable sometimes), and did not provide any information on the sensitivity of this

statistic. Here, we will evaluate this approach regarding its performance in preserving

Type I error and we will testing power for one-dimensional spatial-temporal point

processes by simulation for better understanding. Under a null hypothesis of space-

time separability, ρ̂(s, t) and ρ̂(s)ρ̂(t)/N should be similar, thus large values of the

above statistic indicate a departure from separability hypothesis. The p-value can be

achieved by independent simulated realizations of inhomogeneous Poisson processes

with a separable intensity function of ρ̂(s)ρ̂(t)/N . In our data analysis, if the null
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hypothesis is rejected, the joint spatial-temporal (two-dimensional) kernel estimate

will be utilized in our situation.

For second-order separability, we consider hypothesis tests of space-time clustering

and interaction under an assumption of reweighted second-order stationary. Note

that the K−function is commonly used as measure of spatial-temporal clustering or

interaction. The null hypothesis of no spatial-temporal clustering means the data

are realizations from inhomogeneous Poisson process with the estimated intensity

function which we simulate using a permutation method, and we propose

S2 =
∑
u

∑
v

(
K̂(u, v)− 2u ∗ 2v

)2

where u and v are distance and temporal lags which are less than half the spa-

tial segment length for u and less than half the temporal period for v. As Diggle

(1995) mentioned, absence of spatial-temporal clustering is a special case of absence

of spatial-temporal interaction. Therefore, for space-time interaction, we consider

two common functional summary statistics

ψ̂1 =
∑
u

∑
v

(
K̂(u, v)− K̂s(u)K̂t(v)

)2

ψ̂2 =
∑
u

∑
v

K̂(u, v)

K̂s(u)K̂t(v)

Under the null hypothesis of no space-time interaction, K(u, v) should be the product

of the estimates from separate space and time K−functions under the null hypothesis

(Diggle et al. 1995; Gatrell et al. 1996), i.e., K(u, v) = Ks(u) × Kt(v), thus ψ̂1 is

expected to be 0 and ψ̂2 is expected to be 1. ψ1 proposed by Diggle (1995) and ψ2

suggested by Møller et al (2012) may yield different results and we will be compared

them in different settings. Tolerance envelopes will be constructed by random label-
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no no
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Figure 3.2: Testing procedures for spatial-temporal point process

ing of temporal components holding the event locations fixed, where the marginal

spatial and temporal structures are preserved. We consider two permutations, one is

random labeling for each point and the other one is random labeling for daily points.

In Figure 3.2, we summarize the testing procedures for an arbitrary realization of

spatial-temporal point processes, which will be followed up in simulation studies of

performance and applied in our case study.

Simulation Studies

We investigate four scenarios via simulation: a homogeneous Poisson process (the null

hypothesis), an inhomogeneous Poisson process (separable intensity function and non-

separable intensity function), a log-Gaussian Cox process with separable covariance

function, and a log-Gaussian Cox process with non-separable covariance function.

Throughout our simulations for one-dimensional spatial-temporal point process, we

generate points in the line interval [0, 1] and the time interval [1, 30], where discrete

times are assumed at steps of 1 (day). For each scenario, 500 realizations with 100

permutations are performed.
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• Homogenous Poisson Process : The intensity is a constant, i.e., λ(s, t) =

λ = 10. Note that space and time are separable.

– Simulation Algorithm: Generate the total number of points N from

Poisson distribution with mean λ|W ||T |; Uniformly distribute these points

within the spatial region, and randomly select the time with replacement

from the set of discrete times.

– Results: Three sample realizations from homogeneous Poisson processes

with λ = 10 are shown in Figure 3.3. 1) For each realization, we first test

if the process is homogeneous, and the 95% tolerance envelope is based on

100 simulated realizations from a homogenous Poisson process with λ̂ =

N/|W ||T |. Type I error is calculated as 0.06, and the testing result for one

realization is shown in Figure 3.4. 2) We test spatial-temporal interaction

based on random labeling of temporal components. By random labeling.

We find a Type I errors of 0.052 (ψ̂1) and 0.06 (ψ̂2); By random labeling

daily points, Type I errors are 0.056 (ψ̂1) and 0.05 (ψ̂2). The results for

one-realization are shown in Figure 3.5. Overall, for homogeneous Poisson

processes, these test statistics perform well. We find random labeling each

point and daily points have comparable performance in detecting space-

time interaction under the null hypothesis.

• Inhomogeneous Poisson process : We consider two types of intensity func-

tions, one is separable, i.e., λ(s, t) = exp(3s) exp(−0.1t) and the other one is

non-separable, i.e., λ(s, t) = exp( 10s
5−0.1t

). Note that there exists spatial-temporal

clustering compared to realizations from a homogenous Poisson process, but

there is no residual space-time clustering or interaction based on realizations

from the inhomogeneous Poisson processes (ie., the observed clustering is de-

fined entirely by the intensity function; in other words, observations are condi-
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Figure 3.3: Three realizations for a spatial-temporal homogeneous Poisson process
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Figure 3.4: Testing for space-time clustering based on a spatial-temporal homoge-
neous Poisson process; For the left panel, the points in green are the upper bound of
the 95% tolerance envelope, the points in red are the lower bound of the 95% tolerance
envelope, and the points in black are the estimates based on the data realization; For
the middle panel, the positive sign means the estimate stays above the upper 95%
bound, and the negative sign means the estimate stays below the lower 95% bound;
The right panel shows the observed test statistic (in red) and the histogram of the
statistic values across simulations.
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Figure 3.5: Testing for space-time interaction based on a spatial-temporal homoge-
neous Poisson process; The top panel is based on random labeling on each point, and
the bottom panel is based on random labeling on daily points; For the left two plots,
the points in green are the upper bound of the 95% tolerance envelope, the points in
red are the lower bound of the 95% tolerance envelope, and the points in black are
the estimates based on the data realization; For the right two plots, the line (in red)
shows the observed test statistic and the histogram of the statistic values are based
on simulations.

59



tionally independent given the intensity function.).

– Simulation Algorithm: Find an upper bound λmax, and simulate a ho-

mogeneous Poisson process with λmax as above; calculate the intensity at

each simulated point using the defined intensity function; generate random

samples from a uniform distribution U(0, 1) to thin the simulated Poisson

process yielding a set of remaining events consistent with the heterogeneous

intensity via an acceptance-rejection algorithm.

– Results: Six sample realizations from the same spatial-temporal inhomo-

geneous Poisson process are shown in Figure 3.6. 1) For each realization, we

first test if the intensity function is separable. For the case with separable

intensity function, Type I error is 0.023 ; for the case with non-separable

intensity function, the power is 0.58. Testing results for one realization

in each case are shown in Figure 3.7. 2) For the inhomogeneous Poisson

process with non-separable intensity function, we further test space-time

clustering based on the realizations from an inhomogeneous Poisson process

with λ̂(s, t) = λ̂sλ̂t. Type 1 error is 0.04, and the results for one-realization

are shown in Figure 3.8. 3) In addition, we test spatial-temporal interaction

based on random labeling of temporal components. By random labeling of

each point, Type I errors are 0.01 (ψ̂1) and 0.02 (ψ̂2); By random labeling

of daily points, Type I errors are 0.08 (ψ̂1) and 0.04 (ψ̂2). The results for

one realization are shown in Figure 3.9. Overall, for inhomogeneous Pois-

son processes, the statistic S1 perform moderately well (underestimating

Type I error a little) in testing first-order separability; also, random label-

ing of daily points performs better than random labeling of each point in

terms of Type I error, and in particular, the statistic ψ̂2 has better control

of Type I error than ψ̂1.
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Figure 3.6: Three realizations for a spatial-temporal inhomogeneous Poisson process
with separable intensity function (above) and non-separable intensity function (below)
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spatial-temporal inhomogeneous Poisson process with a separable intensity function
(left) and a non-separable intensity function (right)
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Figure 3.8: Testing space-time clustering based on inhomogeneous Poisson process;
For the left panel, the points in green are the upper bound of the 95% tolerance
envelope, the points in red are the lower bound of the 95% tolerance envelope, and
the points in black are the estimates based on the data realization; For the middle
panel, the positive sign means the estimate stays above the upper 95% bound, and
the negative sign means the estimate stays below the lower 95% bound; The right
panel shows the observed test statistic (in red) and the histogram of the statistic
values across simulations.
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Figure 3.9: Testing space-time interaction in a spatial-temporal inhomogeneous Pois-
son process; The top panel is based on random labeling on each point, and the bottom
panel is based on random labeling on daily points; For the left two plots, the points
in green are the upper bound of the 95% tolerance envelope, the points in red are
the lower bound of the 95% tolerance envelope, and the points in black are the esti-
mates based on the data realization; For the right two plots, the line (in red) shows
the observed test statistic and the histogram of the statistic values are based on
simulations.
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• Log-Gaussian Cox process with separable covariance function : The

intensity function Λ = exp(Y ), where Y follows a Gaussian process with mean 2

and covariance function Cov(u, v) = exp(−5u) + exp(−0.01v). Note that there

is no space-time interaction.

– Simulation Algorithm: Simulate one realization of Gaussian random

field Y (s, t) with mean 2 and covariance function Cov(u, v) = exp(−5u) +

exp(−0.01v) over a defined set of spatial-temporal grids; Get the intensity

function λ(s, t) = exp(Y (s, t)), and find an upper bound λmax; Simulate

a homogeneous Poisson process with λmax as above; Generate random

samples from uniform distribution U(0, 1) to thin the simulated Poisson

process leaving a realization following the desired intensity function via an

acceptance-rejection algorithm.

– Results: Three realizations from spatial-temporal Log-Gaussian Cox pro-

cesses are shown in Figure 3.10. 1) We first test space-time cluster-

ing based on the realizations from inhomogeneous Poisson process with

λ̂(s, t) = λ̂sλ̂t. Type I error is 0.075, and the results for one realization

are shown in Figure 3.11. 2) We further test spatial-temporal interaction

based on random labeling of temporal components for daily points. Type

I errors are 0.068 (ψ̂1) and 0.054 (ψ̂2). The results for one-realization are

shown in Figure 3.12. Overall, for Log-Gaussian Cox processes with sepa-

rable covariance function, the statistic S2 perform a slightly inflated Type

I error in testing space-time clustering; We also find that the statistic ψ̂2

with random labeling of daily points performs better than ψ̂1 in term of

preserving Type I error.

• Log-Gaussian Cox process with non-separable covariance function :

The intensity function Λ = exp(Y ), where Y follows up a Gaussian process with
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Figure 3.10: Three realizations for a spatial-temporal Log-Gaussian Cox process with
separable covariance function
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Figure 3.11: Testing space-time clustering in a Log-Gaussian Cox process with a
separable covariance function; For the left plot, the points in green are the upper
bound of the 95% tolerance envelope, the points in red are the lower bound of the
95% tolerance envelope, and the points in black are the estimates based on the data
realization; For the middle panel, the positive sign means the estimate stays above
the upper 95% bound, and the negative sign means the estimate stays below the
lower 95% bound; The right panel shows the observed test statistic (in red) and the
histogram of the statistic values across simulations.
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Figure 3.12: Testing space-time interaction for a Log-Gaussian Cox process with a
separable covariance function by random labeling of daily points; For the left panel,
the points in green are the upper bound of the 95% tolerance envelope, the points
in red are the lower bound of the 95% tolerance envelope, and the points in black
are the estimates based on the data realization; For the right panel, the line (in red)
shows the observed test statistic and the histogram of the statistic values are based
on simulations.
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Figure 3.13: Three realizations for a spatial-temporal Log-Gaussian Cox process with
non-separable covariance function
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mean 2 and covariance function Cov(u, v) = exp(−
√

0.1u2 + 10uv + v2). Note

that there exists space-time interaction.

– Simulation Algorithm: Simulate one realization of Gaussian random

field Y (s, t) with mean 2 and covariance function Cov(u, v) defined by

exp(−
√

0.1u2 + 10uv + v2) over a defined set of spatial-temporal grids;

The intensity function λ(s, t) = exp(Y (s, t)), and we find an upper bound

λmax; Next, we simulate a homogeneous Poisson process with λmax as

above; We generate random samples from a uniform distribution U(0, 1)

and thin the simulated Poisson process leaving a realization following the

desired intensity function via an acceptance-rejection algorithm.

– Results: Three realizations from spatial-temporal Log-Gaussian Cox pro-

cesses are shown in Figure 3.13. We are interested in testing space-time

interaction based on random labeling of temporal components for daily

points. We find power of detecting space-time interaction for ψ̂1 is 0.65

and 0.74 for ψ̂2. The results for one realization are shown in Figure 3.14.

Overall, for Log-Gaussian Cox processes with a non-separable covariance

function, the statistic ψ̂2 performs better than ψ̂1 in term of higher power

in detecting space-time interaction.

3.3 Application to the sea turtle nesting data

3.3.1 Spatial-temporal point pattern analysis

We plot the the kernel density and intensity estimates of loggerhead turtle nestings

along the beach for year 1998-2000, which can be seen from Figures 3.15, 3.16, and

3.17 respectively. Note that the bandwidth h for kernel smoothing is 758.57 (ft)
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Figure 3.14: Testing space-time interaction in a Log-Gaussian Cox process with non-
separable covariance function

based on the whole data using the direct plug-in method mentioned in the Method

section, and for pairwise density comparison, log risk ratios and their 95% tolerance

envelopes based on 1000 random labeling simulation (green dotted line: the upper

envelope bound; red dotted line: the lower envelope bound).

We can see that nesting densities change over space and time within each year.

For instance, for the year 1998, the number of loggerhead nests varies across months

(May:889; June:1,523; July: 1,621; August:319) with the highest occurrences in June

and July and the lowest ones in August. Overall point patterns show significant

relative nesting reduction in the area north of the pier accompanied by an increase

to the south of the pier except in that month of August. This exception may be due

to the small sample size recorded in that month, which can be seen from the kernel

intensity plot. In addition, there is significant nesting reduction in the area north of

the pier accompanied by a noticeable increase to the south in year 1999 compared

with year 1998, and the effect of the pier alleviates in year 2000 which is still in doubt.

Zones 5-9 have the highest nesting intensity in July whilst the others reach their

68



0 5000 10000 15000 20000 25000 30000

1e
−

05
2e

−
05

3e
−

05
4e

−
05

5e
−

05
6e

−
05

Distance(ft)

K
er

ne
l D

en
si

ty

All year
May
June
July
August

Nourishment Project

0 5000 10000 15000 20000 25000 30000

0.
00

0.
05

0.
10

0.
15

0.
20

Distance(ft)

K
er

ne
l I

nt
en

si
ty

All year
May
June
July
August

Nourishment Project

Month

In
te

ns
ity

May June July August

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Zone 6
Zone 7
Zone 8
Zone 9
Zone 10
Zone 11

0 5000 10000 15000 20000 25000 30000

−1
.0

−0
.5

0.
0

0.
5

1.
0

May−June

Distance(ft)

Lo
g 

Re
la

tiv
e 

Ra
tio

Nourishment Project

0 5000 10000 15000 20000 25000 30000

−1
.0

−0
.5

0.
0

0.
5

1.
0

May−July

Distance(ft)

Lo
g 

Re
la

tiv
e 

Ra
tio

Nourishment Project

0 5000 10000 15000 20000 25000 30000

−1
.0

−0
.5

0.
0

0.
5

1.
0

May−August

Distance(ft)

Lo
g 

Re
la

tiv
e 

Ra
tio

Nourishment Project

0 5000 10000 15000 20000 25000 30000

−1
.0

−0
.5

0.
0

0.
5

1.
0

June−July

Distance(ft)

Lo
g 

Re
la

tiv
e 

Ra
tio

Nourishment Project

0 5000 10000 15000 20000 25000 30000

−1
.0

−0
.5

0.
0

0.
5

1.
0

June−August

Distance(ft)

Lo
g 

Re
la

tiv
e 

Ra
tio

Nourishment Project

0 5000 10000 15000 20000 25000 30000

−1
.0

−0
.5

0.
0

0.
5

1.
0

July−August

Distance(ft)

Lo
g 

Re
la

tiv
e 

Ra
tio

Nourishment Project

Figure 3.15: The top two: Kernel estimates of loggerhead nesting density and intensity
(year 1998) by month and zone; The bottom plots: pairwise comparison of monthly
kernel density estimates via Monte-Carlo random labeling
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Figure 3.16: The top two: Kernel estimates of loggerhead nesting density and intensity
(year 1999) by month and zone; The bottom plots: pairwise comparison of monthly
kernel density estimates via Monte-Carlo random labeling
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Figure 3.17: The top two: Kernel estimates of loggerhead nesting density and intensity
(year 2000) by month and zone; The bottom plots: pairwise comparison of monthly
kernel density estimates via Monte-Carlo random labeling
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maxima in June, following by May and August in year 1998; All zones except zone

6 have their highest nesting intensity in June, followed by June, May and August

sequentially in year 1999; For year 2000, we find similar trends to year 1999 except

that zone 10 has a slight higher intensity in July than June. For year 1998, there

exists a significant increase of nests to the north of the pier and a significant decrease

just south of the pier in June compared with July. In comparisons to August, there

is a significant increase on the south side of the pier in May, June and July. In year

1999, we observe significant nesting increases around zone 10 in July compared with

May and June, and also significantly lower nesting intensity between zone 3 and 4

in August compared with May, June and July. For year 2000, we observe significant

increases in nesting intensity on the south of the pier in May compared with June,

July and August.
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Figure 3.18: The non-parametric estimates of K−function for loggerhead nesting
locations (year 1998)

In our second-order non-parametric analysis, we estimate the spatial L−function
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Figure 3.19: The non-parametric estimates of K−function for loggerhead nesting
locations (year 1999)
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Figure 3.20: The non-parametric estimates of K−function for loggerhead nesting
locations (year 2000)
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Figure 3.21: The non-parametric estimates of pair correlation function for loggerhead
nesting locations (From top to bottom: year 1998-2000)
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(solid line) for May-August with a 95% tolerance envelope (dotted lines) calculated

from 99 simulations of a Poisson process for years 1998-2000, plotted in Figures

3.18, 3.19, and 3.20 respectively. The cumulative spatial point patterns change over

time: for 1998, suggesting significant nesting aggregation for 0 < r < 10, 000(ft)

in May, 0 < r < 15, 000(ft) in July and 0 < r < 7, 000(ft) in June and August.

Also, we observe a significant inhibitive pattern for r > 11, 000 in August with values

staying below the lower tolerance limits; in 1999, we observe more clustering in nesting

patterns for larger distance lags r up to 15, 000(ft) in May. In June and August 2000,

only smaller distance lags 0 < r < 5, 000(ft) exhibits significant clustering patterns.

For 2000, no strong evidence of clustering are detected for 0 < r < 15, 000(ft) in

June and August, but there exists significant clustering pattern for May.

We can also investigate the clustering/regular patterns at particular distance lags,

as can be seen from the plots of the estimated PCF for years 1998-2000 in Figure 3.21.

We observe the patterns (at a particular r) change over time; for 1998, significantly

large PCF estimates appear at a smaller distance lag, i.e., r < 5, 000(ft) and a larger

one, i.e., 12, 000(ft) < r < 15, 000(ft); for year 1999, significance due to exceedance

over the upper envelope at a relatively smaller distance lag, i.e., r < 3, 000(ft))

and at distances as large as 10, 000(ft) < r < 15, 000(ft); for year 2000, trends are

similar to year 1999. These second-order analyses illustrate and quantity how and at

what scales spatial clustering in loggerhead nesting pattern change over the course of

nesting seasons.

In all, we have quantified spatial-temporal patterns of loggerhead nesting from

years 1998-2000 by month and zone. The results showed that loggerhead nesting pat-

terns are not completely random, favoring the southern side of beach area and the sea-

sons of June and July; loggerhead nesting exhibits clustering at distance lags less than

5, 000(ft) and at relatively large distance lags between 12, 000(ft) and 15, 000(ft),
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and that this clustering pattern changes over time; The fishing pier significantly de-

creases loggerhead nesting during the first season following the construction; We also

find a significant decrease in loggerhead nesting near Zone 9 in tear 1999 which merits

further investigation. In addition, the results of spatial-temporal point pattern anal-

ysis for loggerhead emergence locations for years 1998-2000 are provided in Figures

3.26-3.32, and the pattern seems quite similar, but there still exist slight differences

compared with nesting patterns.

3.3.2 Log-Gaussian Cox Processes

sum_per

Fr
eq

ue
nc

y

1000 1500 2000

0
50

0
10

00
15

00 P−value=0.0965

Figure 3.22: Testing of separable intensity function for year 1998

In this section, we take only year 1998 loggerhead nesting data for an example to

fit a parametric model of space-time point processes. To begin, we test space-time

separability using 10,000 simulated data from an inhomogeneous Poisson process with

separable space-time intensity estimate λ̂sλ̂t. From Figure 3.22, we see the test statis-

tic is 1753.813 as well as the 95% confidence interval under the null hypothesis is

(1090.557, 1894.797). Based on the one-sided p-value (the probability that the statis-
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Figure 3.23: Testing of space-time clustering and interaction for year 1998

tic S1 is greater than 1753.813) is 0.096 > 0.05, thus the (first-order) spatial-temporal

intensity function can be treated as separable. Also, we test space-time interaction

based on 100 simulated realizations by random labeling of temporal components for

daily points, the p-value is 0.043 which is less than 0.05 shown in Figure 3.23. There-

fore, we can indicate there exists significant space-time interaction, and we will fit a

parametric model with a non-separable covariance function.

Here, we consider log-Gaussian Cox process for parametric mode fitting, where the

non-negative intensity follows a stochastic process defined as λ(s, t) = exp[Y (s, t)]

where Y (s, t) is a Gaussian process. Given assumptions of stationary and isotropy,

we have ρ = E(λ(s, t)) = exp(µ+ 1
2
σ2) and g(u, v) = exp(C(u, v)). Note that C(u, v)

is not space-time separable, which could be chosen from Gneiting’s Family of non-

separable covariance functions shown below.

C(u, v) =
σ2

ψ(|v|2)d/2
ϕ(
‖u‖2

ψ(|v|2)
)
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where ϕ(u) is a completely monotone function, ψ(v) is a positive function with a

completely monotone derivative, and d is the spatial dimension. Gneiting (2001)

provided various choices of functions for φ(u) and ψ(v) (Goeiting, 2002).

To estimate the parameters and determine the functions ϕ(·) and ψ(·), we first con-

duct separable estimation of spatial and temporal covariance functions via minimum

contrast method, where the parametric forms of ϕ(·) and ψ(·) can be recommended.

Based on the moment-based methods of Brix and Diggle (2001) and Diggle et.al

(2004), we get the time-averaged kernel-based estimator of pair correlation function

by

ĝ(u) =
1

2|T ||W |

T∑
t=1

nt∑
i=1

∑
j 6=i

κh(u− ‖si − sj‖)ωij
λ̂0(si)λ̂0(sj)ρ̂2(t)

Thus, for the marginal spatial correlation structure, we try ϕ(u) = exp(−cuγ), and

the estimates are ĉ = 1/27500 and γ̂ = 1.2, and the results are shown in Figure

3.24. Based on our previous simulation studies in Chapter 2, it is reasonable for

us to consider an exponential form here due to invalid estimates of pair correlation

function for small distance lags. Also, σ̂2 = 3.7 and µ̂ = −3.8. In addition, for

temporal covariance function, the non-parametric estimate is

Ĉov(Nt′ , Nt′−v) = Nt′Nt′−v − λ̂t(t′)λ̂t(t′ − v).

Thus, using the data information from 14020 to 14040, we select ψ(v) = (1+vα)a, and

the estimates are α̂ = 0.9 and â = −0.98, and the results are shown in Figure 3.25.

Next, considering space-time non-separability, we assume the following covariance

function

C(u, v) =
σ̂2

(1 + |v|2α̂)β/2
exp

(
ĉ‖u‖2γ̂

(1 + |v|2α̂)βγ̂

)
Note that β quantifies the degree of space-time dependency, and β ∈ [0, 1]. A weighted
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least square approach using the following equation can be applied to estimate β, and

β̂ = 0.56.

W =
∑
i,j

T∑
v=1

(
Ĉ(uij; v)− C(uij; v|β)

1− C(uij; v|β)

)

where Ĉ(uij; v) is the empirical correlation between the points i and j at temporal

lag t. Note that larger values of β̂ means stronger correlation between space and

time, and here, it indicates moderate spatial-temporal correlation. One potential

future work is hypothesis testing for checking its significance (away from 0), which

needs further investigation by considering the boundary issues. Furthermore, the

goodness of fit can be assessed by the permutation method based on the estimated

parametric model, but the complexity of the covariance function raise challenge for

simulating Gaussian random fields, which will be the direction of another future

work. This section shows that how to conduct parametric modeling fitting with

non-separable spatial-temporal covariance function, and provide more mechanistic

information about the point process.
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Figure 3.24: Estimation of spatial pair correlation function for loggerhead nesting
locations, 1998
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Figure 3.25: Estimation of temporal covariance function for loggerhead nesting loca-
tions, 1998

3.4 Conclusion and Discussion

In this chapter, we have conducted spatial-temporal point pattern analysis for logger-

head nesting locations using point process techniques, and quantified patterns of clus-

tering within the date, and determined changes over space and time. Also, extensive

simulation studies have evaluated the performance of testing statistics in hypothesis

tests on space-time separability under different scenarios. Thus, we have a better

understanding of spatial-temporal separability regarding the first-order and second-

order properties of log-Gaussian Cox Processes. However, in practice the underlying

true processes are not observed can be difficult to assess. We compared separable

and non-separable spatial-temporal covariance models, and evaluated statistics for

hypothesis testing. Finally, we illustrate how to fit a non-separable covariance model

via Log-Gaussian Cox Processes in practice, illustrating how this technique could be

applied to real data applications.
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Figure 3.26: The above: Kernel estimates of loggerhead emergence locations (year
1998) by month and zone; The bottom: pairwise comparison of kernel density esti-
mates via Monte-Carlo inference
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Figure 3.27: The above: Kernel estimates of loggerhead emergence locations (year
1999) by month and zone; The bottom: pairwise comparison of kernel density esti-
mates via Monte-Carlo infe rence
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Figure 3.28: The above: Kernel estimates of loggerhead emergence locations (year
2000) by month and zone; The bottom: pairwise comparison of kernel density esti-
mates via Monte-Carlo infe rence
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Figure 3.29: The non-parametric estimates of K−function for loggerhead emergence
locations (year 1998)
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Figure 3.30: The non-parametric estimates of K−function for loggerhead emergence
locations (year 1999)
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Figure 3.31: The non-parametric estimates of K−function for loggerhead emergence
locations (year 2000)
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Figure 3.32: The non-parametric estimates of pair correlation function for loggerhead
emergence locations (From top to bottom: year 1998-2000)
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Chapter 4

Non-parametric Bayesian modeling

for density estimation of sea turtle

nesting locations along Juno Beach

in Florida

4.1 Introduction and motivation data

In this chapter, we focus on spatial-temporal point pattern analysis, in particular,

on density estimation to detect the clusters and their trends evolving over time.

Our data application involves sea turtle nesting locations along Juno Beach, Palm

Beach County, Florida for the years 1998-2000. Palm Beach County contracted the

Marine Life Center of Juno Beach to gather daily data regarding sea turtle emergence

locations along the beach. We provided a detailed data description in Chapter 1, and

conducted kernel density estimation by month and year in Chapter 3. Our earlier

comparisons of density estimates between months, we detected clusters and identified
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unusual collections of events by a random labeling Monte Carlo method. Here, we

develop non-parametric Bayesian models for density estimation to track the evolution

of these clusters in discrete time units (week/month).

Earlier estimates of the density of turtle nesting locations rely on non-parametric

techniques, such as kernel-based estimation (Rosenblatt, 1969; Fan et al., 1996), spline

smoothing (Gu and Wang, 2003), and wavelets (Clemencon, 2000). In our previous

analysis, we use a kernel method, where the basic idea is to place a kernel of density

at each observed location, then sum the kernels together to provide the estimate of

the overall density function at that particular location, where the kernel (shape) and

bandwidth impact density estimation. Figures 4.1 and 4.2 show kernel density and

intensity estimates of sea turtle nesting locations by week for the year 1998. Note

that we select a Gaussian kernel function and the bandwidth for each week is chosen

based on the direct plug-in approach (Sheather and Jones, 1991). We note that there

are 22 weeks in total for year 1998, and the date ranges by week are shown in Table

4.1. The number of events per week varies significantly, from 1 (weeks 1, 2, and 21)

to 438 (week 13). Clearly, the distribution is multi-modal, and when the sample size

is small, the estimation curve can be quite bumpy. Also, the week-specific estimates

do not reveal clear evidence of temporal evolution in the shape of the distributions.

There is an extensive literature on Bayesian density estimation using Gaussian

distributions (Escobar and West, 1994; Richardson and Green, 1997). For instance,

Fraley et al. (2012) produced a density estimate using a Gaussian finite mixture

model and model-based clustering where the optimal model is selected according

to the Bayesian Information Criterion (BIC). To avoid the need to pre-specify the

number of mixture components for finite mixture models, a Dirichlet processes (DP)

prior allows flexibly infinite (non-parametric) mixture modeling. Note that this non-

parametric Bayesian approaches has gained wide popularity, and has been extended
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Figure 4.1: The Kernel density estimates of CC nesting along beach by week
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Figure 4.2: The Kernel intensity estimates of CC nesting along beach by week
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Table 4.1: The week information in sea turtle nesting data for year 1998

Week Date Week Date
1 Apr 17 2 Apr 23
3 Apr 28- May 1 4 May 4-May 9
5 May 10-May 16 6 May 17-May 23
7 May 24-May 30 8 May 31- Jun 6
9 Jun 7-Jun 13 10 Jun 14-Jun 20
11 Jun 21-Jun 27 12 Jun 28- Jul 4
13 Jul 5-Jul 11 14 Jul 12-Jul 18
15 Jul 19-Jul 25 16 Jul 26- Aug 1
17 Jul 26- Aug 1 18 Aug 9-Aug 15
19 Aug 16-Aug 22 20 Aug 23-Aug 29
21 Aug 30-Sep 4 22 Sep 23

to hierarchical data structure (Teh et al., 2006); however, most previous work assumes

exchangeability in sampling. More recent approaches include dependency, particu-

larly temporal dependency (Griffin, 2009; Tang and Ghosal, 2007; Dunson, 2006;

Rodriguez and Horst, 2008), which we describe in detail. Here, we consider countable

infinitely mixtures of Gaussian distributions at each time period (week), and incor-

porate temporal dependency into our density estimation to provide insight into sea

turtle nesting density evolution over time. We present our model in the framework of

dependent DP priors and provide an analytic framework for wider application. For

comparison, we also compare our approach to a Dirichlet process mixture model and

a hierarchical Dirichlet process model.

The rest of the chapter is organized as follows: In Section 4.2, we describe the

Dirichlet Process Mixture model as well as associated computational algorithms and

inference. Similarly, we provide an overview of hierarchical Dirichlet Process models

including computational and statistical inference in Section 4.3. In Section 4.4, we

show the details of our proposed algorithm and associated inference. Section 4.6

provides simulation results based on these alternative approaches, and compares their

performance. Finally, short discussion and directions for further research will be seen
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in Section 4.7 .

4.2 Dirichlet Process Mixture model

4.2.1 Model

We first fit a Dirichlet process mixture (DPM) model for each week separately. Let

X = {x1, x2, . . . , xn} be a set of observed events in R1. The DPM model can be

written as follow

G ∼ DP (α,H),

θi|G ∼ G, and

xi|θi ∼ f(·|θi),

where θi is denoted as the latent class parameter, which could be a scalar or a vector.

Each data point xi is assigned to a class of distributions with probability density

function f(·|θi). We note that G is a prior distribution on θi, and DP (α,H) is

a DP prior on G with the concentration parameter α and a base distribution H.

Notice that G =
∑∞

k=1 πkδθ∗k , based on a stick-breaking construction, where θ∗i ∼ H,

πk = βk
∏k−1

i=1 (1− βi) with βk ∼ Beta(1, α). This mixture model can assign the

points into classes, where the points in the same class are sampled from the same

distribution with the same class parameter due to the DP prior. Also, this model

enables infinite classes where the number of clusters is unknown or unbounded as

data sample size increases. In another words, the shape of the distribution is driven

by the data, allowing flexible inference. The equivalent model can be written as

zi ∼ Discrete(π),
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θi = θ∗zi , and

xi|zi ∼ f(·|θ∗zi),

where zi is the class label for the ith point.

4.2.2 Algorithm and Inference

A conditional prior distribution for the class parameter θi can be obtained by inte-

grating out G, i.e.,

θi|θ−i, α,H ∼
1

N − 1 + α
Σj 6=iδ(θj) +

α

N − 1 + α
H

where δ(θj) is a distribution concentrated at the point θj, and θ−i denotes class

assignments for all points except xi. Combining this prior with the likelihood, we

derive the conditional posterior for θi as

θi|θ−i, X, α,H ∼ Σj 6=if(xi|θj)δ(θj) + α

(∫
f(xi|θ)H(θ)dθ

)
H(θi).

If there are K unique values of the class parameters, i.e., θ∗1, . . . ,θ
∗
K , then using class

labels, we can also write the conditional posterior, given z−i as

θi|z−i,X, α,H ∼ ΣK
k=1n

−i
k f(xi|θ∗k) + α

(∫
f(xi|θ)H(θ)dθ

)
H(θi),

where n−ik shows the number of points in class k after removing the ith point. If we

choose a conjugate base distribution H, the predictive probabilities can be computed

using sufficient statistics. Thus, efficient Gibbs sampling can be applied to update

the class parameter in each iteration (Escobar and West, 1994).

The algorithm for DPM model has been extensively studied by literature (Escobar
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and West, 1994; Richardson and Green, 1997). The R function “DPdensity” allows

density estimation. In our application, the generic function fits a DPM with mixture

Gaussian distribution for density estimation is used.

G ∼ DP (α,H),

(µi, σ
2
i )|G ∼ G, and

xi|(µi, σ2
i ) ∼ N(µi, σ

2
i ),

where H is specified as normal-inverse-Wishart distribution, i.e., a conjugate prior

H = N(µ|κ, (1/τ)σ2)IW (σ2|ν, ψ),

where the hyperparameters are defined as α = 1, κ = mean(X), τ ∼ Gamma(0.1, 1),

ν = 4, and ψ ∼ IW (4, 1/var(X)).

The basic algorithm is shown as follows:

• Initialization: randomly assign data points into an arbitrary number of K clus-

ters 1 <= K <= N (N : the total number of points)

• For each data point xi, perform the following procedures:

– Remove the point xi from its current cluster. If that cluster becomes

empty, then this component will be deleted. Given the current assignment

of clusters for all the other points, calculate the predictive probability of

this point joining each of the existing clusters as well as being a new class

(ω is normalizing constant). More specifically,

∗ the probability for joining the existing cluster is ωn−ik f(xi|θk), and

∗ the probability for joining the new cluster is ωα
∫
f(xi|θ)H(θ)dθ.
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– Assign the point xi to the K ′ + 1 possible clusters according to the pre-

dictive probabilities, where K ′ is the current total number of clusters. If

a new cluster is created, then θi is sampled from the base distribution H.

Update zi and the number of clusters K ′ based on the assignment.

– For the current assignment, draw a new value from the conditional poste-

rior of cluster parameters θz|xi such that zi = z.

4.3 Hierarchical Dirichlet Process Model

4.3.1 Model

Notice the separate DPM models above do not share cluster parameters across differ-

ent groups (week in our application) because the base distribution H is continuous.

In this section, we consider an extension of the above DPM model, i.e., a hierarchi-

cal Dirichlet Process (HDP) model by placing a DP prior on the base distribution

and incorporating a hierarchical structure. Let Xj = {xj1, xj2, . . . , xjnj
} denote the

observed points in R1 from the jth group (week), j ∈ J with J as the index set.

This model allows different groups of points (by week) to share the same prior on the

cluster parameters, i.e., the atoms of mixture distribution. In our application, given

that sea turtle nesting locations may have similar point patterns within each week

due to limited changes in environmental conditions within a week, it is reasonable to

assign the points to clusters that share group-specific parameters. An advantage of

this model is the borrowing of information across groups, allowing estimation, even

with small sample sizes. The HDP model can be written as follows

G0 ∼ DP (γ,H),
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Gj ∼ DP (αj, G0), j ∈ J,

θji|Gj ∼ Gj, i = 1, 2, . . . , nj, and

xji|θji ∼ f(·|θji),

where xji is the ith point in the jth group and θji denotes a latent class parameter.

As above, the G′js denote the group prior distributions for the class parameters as

a DP with concentration parameter αj and baseline distribution G0, and G0 itself

follows another DP having concentration parameter γ and baseline distribution H.

Similar to DPM models, this HDP model can be represented by a stick-breaking

construction. We write downG0 =
∑∞

k=1 βkδθ∗k , where β|γ ∼ Stick(γ) and θ∗k|H ∼ H.

Furthermore, Gj =
∑∞

k=1 πjkδθ∗k , where πj|αj,β ∼ DP (αj,β). The calculation details

involve πjk = νjkΠ
k−1
l=1 (1− νjl) with νjk|αj, β1, . . . , βk ∼ Beta(αjβk, αj(1 − Σk−1

l=1 βl)).

An analogous representation is called the Chinese restaurant franchise (CRF) (each

customer represents a point), which is popularly used in Markov chain Monte Carlo

(MCMC) sampling schemes for the HDP model (Teh et al., 2006), as discussed next.

Let θ∗jt denote the random variable for the tth table in the jth restaurant, which is

sampled from G0; θ∗∗k denotes iid variables from the base distribution H. The class

parameter θji is associated with table tji in the jth restaurant, θji = θ∗jtji ; the variable

θ∗jt is related to the mixture component kjt, θ
∗
jt = θ∗∗kjt . Several important features

include: njtk denotes the number of customers who are served dish k at table t in

restaurant j; mjk is the total number of tables serving dish k in restaurant j; K is

denoted as the total number of unique dishes served in restaurants; x−ji = X \ xji,

k−jt = k \ kjt, and n−jijt denotes the number of customers at table t except xji in

restaurant j. The marginal probabilities of HDP can be captured by CRF. The

conditional prior distribution of the class parameter θji are obtained by integrating
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out Gj, i.e.,

θji|θj(−i), α,G0 ∼ Σ
mj.

t=1

njt.
α + nj..

δ(θ∗jt) +
α

α + nj..
G0.

Similarly, after integrating out G0, the conditional distribution for θ∗jt is

θ∗jt|θ∗j(−t), γ,H ∼ ΣK
k=1

m.k

γ +m..

δ(θ∗∗k ) +
γ

γ +m..

H

Also, since H is a conjugate prior in our situation, the conditional density of xji with

kjtji = k given all the other data can be obtained by integrating out θ∗∗k as follows:

f−xji(xji; k) =

∫
f(xji|θ∗∗k )

∏
j′i′ 6=ji;kjtji=k

f(xj′i′ |θ∗∗k )h(θ∗∗k )dθ∗∗k∫ ∏
j′i′ 6=ji;kjtji=k

f(xj′i′|θ∗∗k )h(θ∗∗k )dθ∗∗k
,

which is the conditional density of xjt given all the other data.

4.3.2 Algorithm and Inference

There are three sampling schemes mentioned by Teh et al. (2006) and Neal (2000),

allowing MCMC sampling from the desired posterior distribution. Here, we focus on

the CRF algorithm. The generic function fits a HDP model with mixture of normal

distributions for the density estimation as follows:

G0 ∼ DP (γ,H),

Gj ∼ DP (α,G0),

(µji, σ
2
ji)|Gj ∼ Gj, and

xji|(µji, σ2
ji) ∼ N(µji, σ

2
ji),
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where H is specified as normal-inverse-Wishart distribution as a conjugate prior

H = N(µ|κ, (1/τ)σ2)IW (σ2|ν, ψ),

with hyperparameters defined as γ = 1, α = 1, κ = mean(X), τ ∼ Gamma(500, 500),

ν = 1, and ψ ∼ IW (1, 1/var(X)).

According to the sampling scheme introduced by Neal (2000), we update index

variables tji and kjt by taking advantage of exchangeability, and afterwards, the class

parameters θji and θ∗jt are reconstructed from the current index variables and θ∗∗k .

The conditional posterior distribution of tji given the other data items can be obtained

by combining the conditional prior of tji and the likelihood of xji, which is

p(tji = t|t−ji,k) ∝

 n−jijt. f
−xji(xji; k) if table t has been occupied,

αp(xji|t−ji, tji = tnew;k) if t = tnew,

where p(xji|t−ji, tji = tnew;k) =
∑K

k=1
m.k

m..+γ
f−xji(xji; k) + γ

m..+γ
f−xji(xji; k

new), and

kjtnew can be sampled from the following distribution

p(kjtnew = k|t,k) ∝

 m.kf
−xji(xji; k) if k has already exsited,

γf−xji(xji; k
new) if k = knew.

Based on the calculated predictive conditional probabilities from above, we assign xji

to the table previously occupied or to a new table, and if the table is new, then it will

be assigned to the existing k or to knew which is sampled from the base distribution

H. Next, to update the index kjt, the conditional probability follows

p(kjt = k|t,k−jt) ∝

 m−jt.k f−xjt(xjt; k) if k has already exsited,

γf−xjt(xjt; k
new) if k = knew.
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The basic algorithm used here is detailed below:

• Initialization: For each group, randomly assign customers to an arbitrary

table t (1 <= t <= nj), and also randomly assign each table to a cluster k,

1 <= k <= N (N : the total number of customers).

• Sampling tji: For each customer xji, perform the following procedure:

– Remove the customer xji from its current table. If that table becomes

empty, then the probability that this table is reoccupied is 0. Also, the

corresponding kjt may be deleted, and if after deleting kjt, the cluster label

k is unallocated in this value, thus this mixture component should also be

deleted. Given the current assignment of tables for all the other customers,

assign this customer to join any of the existing tables as well as sitting at

a new table based on the conditional probabilities above.

• Sampling kjt: For each table t, perform the following procedures:

– Remove the table t from its current cluster. If that cluster becomes empty,

then the mixture component will be deleted. Given the current assignment

of clusters for all the tables, calculate the predictive probability of this table

joining any of the existing clusters as well as joining a new class based on

the above derivation.
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4.4 Hierarchical Dirichlet Process Autoregressive

Model

4.4.1 Model

As we know, HDP models allow different groups to share the same atoms and ex-

changeable collections of distributions, which does not mirror application with its

sequential daily data. In our case, nesting locations are collected by day, and the

event locations also have week/month assignments. We expect patterns in adjacent

weeks to have closer relationships than pattern far apart, which violates the typical

assumptions in HDP models. To incorporate temporal dependency among the infinite

mixture distributions across weeks, Rodriguez and Horst (2008) applied dependent

Dirichlet processes (DDP) to time series data. This model has the same weights

for all the mixture components across different groups (week) and induces depen-

dency through random permutations of the atoms for the mixture distributions, i.e.,

θ∗jk|θ∗j−1,k ∼ ζ(θ∗j−1,k) with ζ(·) is a known pre-specified function. To consider varying

weights of the atoms, there exist several approaches, i.e., the order-based DDP (Grif-

fin and Steel, 2006), the local DP (Chung and Dunson, 2011), dynamic linear models

with DP components (Caron et al., 2008) and so on, but all of them have limitation

for applications with long-range dependency. Ren and Dunson (2008) proposed an

alternative model called a dynamic hierarchical Dirichlet process (dHDP) model (Ren

et al., 2008). This model defines Gj = (1− ω̃j−1)Gj−1 + ω̃j−1Hj−1 to allow Gj share

features from Gj−1 and may also include the atoms from an innovation distribution

Hj−1, where Hj−1 is from a DP and the probability ω̃j−1 ∼ Beta(aj−1, bj−1). We ex-

tend this model to a hierarchical Dirichlet process autoregressive (HDPA) model by

incorporating hierarchical data structure with a specific form of temporal dependency.
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We use the same notation as the HDP models in Section 4.2. We also consider

a nested structure of weeks within months by having weeks in the same month to

share the same innovation probability ω̃, perhaps reflecting weeks within similar lunar

cycles. The model becomes:

G0 ∼ DP (γ,H),

G∗mj−1
∼ DP (ϕmj−1

, G0), G∗1 ∼ DP (ϕ1, G0),

Hj−1 ∼ DP (αj, G
∗
mj−1

), G1 ∼ DP (α1, G
∗
1),

Gj = (1− ω̃mj−1
)Gj−1 + ω̃mj−1

Hj−1,

θji|Gj ∼ Gj, i = 1, 2, . . . , nj, and

xji|θji ∼ f(·|θji),

where mj indexes month for the jth week taking value {1, 2, . . . ,M}, and the weeks

within the mth month share the same probability generated from Beta(am̃, bm̃) with

a and b as hyperparameters.; ω̃m(j) ∼ Beta(am(j), bm(j)) with a and b as hyperpa-

rameters. This application of a periodic density process has many applications since

annual or monthly patterns exist in economic or financial data. Taking these patterns

into account in developing models is crucial for accurate inference. We also note that

if all ω̃m are ones, the model is a HDP model; if all ω̃m are zeros, the model is a DPM

model, illustrating that both HDP and DPM models are special cases of the more

general formulation. Their graphic representations are shown in Figure 4.3.

101



Figure 4.3: Graphic representations of DPM, HDP and HDPA models

4.4.2 Algorithm and Inference

Similar to dHDP models, we have

Gj = tj1

∞∑
k=1

π1kδθ∗k + tj2

∞∑
k=1

π2kδθ∗k + . . .+ tjj

∞∑
k=1

πjkδθ∗k ,

where tjl = ω̃ml−1

∏j−1
n=l (1− ω̃mn) with ω̃m0 = 1, and

∑j
l=1 tjl = 1. Here, we denote

ηji as the index indicating which mixture distribution is taken based on a multinomial

distribution, and zji denotes which parameter component is chosen. Therefore, we

get

{θ∗k}∞k=1|H ∼ H, ω̃mj
|a, b ∼ Beta(amj

, bmj
),

β|γ ∼ Stick(γ), βmj
|ϕmj

,β ∼ Dir(ϕmj
,β),

πj|αj,βmj
∼ DP (αj,βmj

),

ηji|ω̃ ∼ tj, zji|{π1, . . . ,πj}, ηji ∼ πηji , and
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xji|zji, {θ∗k}∞k=1 ∼ f(θ∗zji).

The Gibbs sampling algorithm for this model is similar to for dHDP models using

a truncated stick-breaking process (Ren et al., 2008), and the procedures is as follows:

• Update ω̃ from

(ω̃m| · · · ) ∼ Beta

am +
∑

j:mj>m

njm, bm +
∑

j:mj>m

m−1∑
h=0

njh

 ,

where njm =
∑nj

i=1

∑
k:mk−1=m δ(ηji = k).

• Update {βmj
}Jj=1 and {πj}Jj=1;

• Update the indicator ηji from

Pr(ηji = l| · · · ) ∝ ω̃ml−1

j−1∏
n=l

(1− ω̃mn)πlzji

zji−1∏
τ=l

(1− πlτ )Pr(xji|θ∗zji).

• Update the indicator zji from

Pr(zji = k| · · · ) ∝ πηji,k

k−1∏
τ=l

(1− πηjiτ )Pr(xji|θ∗k).

• Update {θ∗k}Kk=1 and hyperparameters γ, ϕ and α.

Note that njm =
∑nj

i=1

∑
k:m(k−1)=m δ(ηji = k) and nj0 =

∑nj

i=1 δ(ηji = 1). Similar

to the previous two models, H is specified as normal-inverse-Wishart distribution, a

conjugate prior H = N(µ|κ, (1/τ)σ2)IW (σ2|ν, ψ) where the hyperparameters are de-

fined as κ = mean(X), τ ∼ Gamma(0.1, 1), ν = 4, and ψ ∼ IW (4, 1/var(X)); am ∼

Gamma(1, 1) and bm ∼ Gamma(0.1, 0.1); α ∼ Gamma(1, 1), ϕ ∼ Gamma(0.5, 0.5),

and γ ∼ Gamma(0.5, 0.5).
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4.5 Simulation

To explore the difference between our proposal and the other modeling alternatives,

we conduct a simple simulation to compare results. To mimic our data, we use

the settings shown in Table 4.2 to simulate the data. There are four combinations of

Gaussian mixture distributions with different values for µ, σ2, and p. We consider four

months D1, D2, D3 and D4, each of which has four weeks indexed by the subscript

in the table. We consider similar patterns for the weeks within each month by sharing

the same mixture components and slightly different weights; while between months,

the patterns are quite different due to different components and weights though all

models share a common component N(0, 1). Note that there exists time dependency

between weeks. For each mixture distribution, we generate 100 points, and there are

1600 points within our 16 weeks in total.

We apply the kernel method, DPM models, HDP models, dHDP models, and

HDPA models to estimate the density for each week, where posterior inference is

based on 1000-sample burn in and 5000 samples saving every 10th observation. The

results are shown graphically in Figure 4.4. We find that HDPA models perform the

best in terms of localizing the mixture components more accurately and they also

exhibit the smallest Kullback-Leibler (KL) divergence measures for weeks 3, 7, 11

and 14, as shown in Figure 4.5. Although HDPA models have KL divergence mea-

sure slightly higher than dHDP models in week 3, the difference is quite small. We

see that HDPA models not only incorporate time-dependency but also incorporate

the hierarchical structure (month), therefore, the mixture atoms are captured well,

allowing superiority over the other alternatives. HDP models perform satisfactory

in some weeks (smaller bias), but do not retain the mixture components as well as

HDPA models although HDP estimates borrow information benefit across weeks. Fi-

nally, kernel methods perform the worst showing the highest KL divergence measures.
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Table 4.2: Parameter settings for simulation studies
Comp 1 Comp 2 Comp 3 Comp 4
p µ σ2 p µ σ2 p µ σ2 p µ σ2

D11 0.75 0 1 0.25 3 2
D12 0.73 0 1 0.27 3 2
D13 0.71 0 1 0.29 3 2
D14 0.69 0 1 0.31 3 2

D21 0.65 0 1 0.35 a1 : N(3, 2) 2
D22 0.63 0 1 0.37 a1 : N(3, 2) 2
D23 0.61 0 1 0.39 a1 : N(3, 2) 2
D24 0.59 0 1 0.41 a1 : N(3, 2) 2

D31 0.55 0 1 0.30 a2 : N(a1, 2) 2 0.15 2 2
D32 0.53 0 1 0.30 a2 : N(a1, 2) 2 0.17 2 2
D33 0.51 0 1 0.30 a2 : N(a1, 2) 2 0.19 2 2
D34 0.49 0 1 0.30 a2 : N(a1, 2) 2 0.21 2 2

D41 0.45 0 1 0.20 a3 : N(a2, 2) 2 0.20 2 2 0.15 10 1
D42 0.43 0 1 0.20 a3 : N(a2, 2) 2 0.20 2 2 0.17 10 1
D43 0.41 0 1 0.20 a3 : N(a2, 2) 2 0.20 2 2 0.19 10 1
D44 0.39 0 1 0.20 a3 : N(a2, 2) 2 0.20 2 2 0.21 10 1

DPM models outperform kernel methods by considering infinity clusters of Gaussian

components, thus providing more adaptive results.

4.6 Results

We summarize the kernel density and intensity estimates by month for the sea turtle

nesting data in Figure 4.6 and 4.7. Similarly, the results based on DPM models, HDP

models and HDPA models appear in Figure 4.8, 4.9 and 4.10 respectively. Note that

the sample sizes are extremely small in weeks 1-3 (late April) and weeks 20-22 (late

August), containing only one or two points, thus the estimation line is quite flat and

close to 0 in Figure 4.2. Therefore, we do not consider these weeks here.

To understand the temporal trend, we aggregate the estimation plots by month in

Figures 4.6-4.10, where weeks 4-7 represent May, weeks 8-11 June, weeks 12-15 July,
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Figure 4.4: Summary of the density estimates for each week by month
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Figure 4.5: The density estimates and Kullback-Leibler divergence measures for weeks
3, 7, 11 and 14
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Figure 4.6: Kernel density estimates of loggerhead nesting along Juno Beach, 1998
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Figure 4.7: Kernel intensity estimates of loggerhead nesting along Juno Beach, 1998
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and weeks 16-19 August. Although the kernel estimation curve in Figure 4.6 looks

smoother, but peaks in the density estimate are vague in some weeks, e.g., week 6.

The DPM model assumes an infinite mixture Gaussian distribution, and the model

fitting is conducted independently among weeks. From Figure 4.8, the estimates

for week 9 look similar to that in Figure 4.1, whilst there are several weeks having

smoother estimates than kernel estimates, e.g., week 5, where peaks are more notice-

able. Compared with the DPM model, the HDP model performs better because it

allows different groups to share the same atoms of the mixture distribution. As a re-

sult, the estimates in Figure 4.9 more readily identify multi-modality. Moreover, some

week’s density estimates look smoother, but lose vital local information. For instance,

in week 9, the HDP estimate has local peaks, but ignores temporal dependency by

assuming exchangeability among week groups. To avoid this limitation, we apply the

HDPA model to incorporate the temporal (first-order) autoregressive correlation in

density estimation. From the results shown in Figure 4.10, we can see the impact of

temporal dependency. For weeks 3-10, the peak in the southern (right) side of the

beach stays quite stable, and only slight changes in density estimates appear on the

northern (left) side of the beach. There exist tremendous change of pattern in week

11, and more nesting locations appear on the north side. Later on, the cluster pattern

move to the middle, and thus back to the south side again. Within each plot, due

to small changes of temperature or other environmental factors within each month,

the shape of those density estimates looks similar, and only the magnitude varies. To

better learn the difference in density estimation based on these four methods, we ran-

domly choose four weeks, i.e., week 7, 9, 14, and 19, to compare their performances,

and the results are presented in Figure 4.11. We see that the kernel estimates tend to

smooth the estimate more, while DP models allow local detail. However, independent

infinite countable clusters tend to raise more local peaks as in week 9, and it is not

clear if these are appropriate. HDP models allow sharing information across groups,
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thus smoothing results; and HPA models not only share the same atoms across groups

but also incorporate time-dependency, thus linking mixture components within the

same month through the hierarchial structure.
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Figure 4.8: DPM density estimates of loggerhead nesting along Juno Beach, 1998

4.7 Conclusion and Discussion

We proposed a Bayesian non-parametric modeling formulation for density estimation

by incorporating sequential temporal dependency and hierarchical structure, and com-

pare our formulation with existing Bayesian non-parametric models as well as kernel

methods via simulation and a data application. Simulation shows that HDPA models

perform best in terms of detecting the mixture components accurately and provide

the smallest KL divergence measures. We find that dHDP models do not perform

as well as HDPA models without considering a higher hierarchical structure (month-

level) although it performs comparably with HDPA models in some weeks. We also
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Figure 4.9: HDP intensity estimates of loggerhead nesting along Juno Beach, 1998
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Figure 4.10: HDPA intensity estimates of loggerhead nesting along Juno Beach, 1998
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Figure 4.11: Comparing density estimates of loggerhead nesting for weeks 7, 9, 14,
and 19

find HDP models gain better performance than either DPM models or kernel ap-

proaches by allowing groups share the same set of Gaussian atoms. Kernel methods

are influenced by bandwidth selection, and do not retain flexibility as DPM models.

In our application, we estimate the density of loggerhead turtle (CC) nesting lo-

cations in the year 1998, allowing similar patterns between weeks within the same

month via HDPA models, and provide a clearer picture of pattern change across the

nesting season. We observe cluster patterns in the southern beach area in May to

late June, and these move to the northern part in week 11, and then slowly back to

the southern part in July, with little further change in August.

For future work, we may consider more complex simulation settings to further

evaluate our proposed model’s performance in the identification of evolutionary mix-

ture components over time. We may consider mixture beta distributions to replace

Gaussian distributions if we assume the data observation window is fixed. The non-
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parametric Bayesian approaches with Beta process prior could handle the boundary

estimation issues, but may also involve considerable computational complexity. In

addition, we may include temporally evolving mixture atoms to the model to gain

generality and efficiency. All of those questions are of research interest and may be

applied to other similar data applications.
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Figure 4.12: Kernel density estimates for each week by month in simulation
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Figure 4.13: DPM density estimates for each week by month in simulation
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Figure 4.14: HDP density estimates for each week by month in simulation
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Figure 4.15: dHDP density estimates for each week by month in simulation
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Figure 4.16: HDPA density estimates for each week by month in simulation
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Chapter 5

Summary and future research

Spatial-temporal point processes have wide applications in epidemiology, social sci-

ence, environmental health, neuroimaging analysis and so on. There exists a grow-

ing body of methods for detecting clusters and clustering patterns based on non-

parametric or parametric approaches. Our current work proposes new methods

and evaluates their performance for one-dimensional spatial(-temporal) point pro-

cess analysis, including non-parametric estimation of K−function and PCF as well

as algorithms for simulating realizations from different types of point processes.

Specifically, we have (i) evaluated non-parametric pair correlation function esti-

mate for log-Gaussian Cox processes under infill asymptotics; (ii) analyzed spatial-

temporal point patterns of sea turtle nesting locations; (iii) conducted Bayesian non-

parametric modeling for density estimation by incorporating temporal dependency

and hierarchical structure. Future work may include (i) derivation of asymptotic

properties for non-parametric PCF estimates, especially for one-dimensional point

processes; (ii) investigation of marked point process for sea turtle nesting data to ex-

plore species interaction; (iii) consideration of Dirichlet process models with mixture

beta distributions to handle the fixed boundaries in real data applications.
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Chapter 6

Appendix

6.1 R program for Chapter 2

####################################################################################

########## Non-parametric estimates of spatial K-function ##########

####################################################################################

### Note: data: the points observed along the line;

### lag: the distance lag which corresponds to K(r);

### Edge correction factor (inside matrixS): 1/2 based on Diggle’s correction method

one_khat <- function(data, lag, status){

label <- switch(status,

homo = 1,

inhomo = 2,

)

pts <- data$points

len <- length(pts)

pairdis <- as.matrix(dist(pts))

K.space <- c()

for (k in 1:length(lag)) {

C <- matrix(1, nrow=len, ncol=len)

matrixS <- (pairdis<lag[k])*((pairdis>pts)*1+(pairdis>(max(pts) - pts))*1+C)

if (label == 1){

diag(matrixS) <- 0

K.space[k] <- sum(matrixS)*max(pts)/(len*(len-1)) }

else {

space.ins <- data$lambda_s

matrixS <- matrixS/matrix(kronecker(space.ins,space.ins), ncol=len, byrow=TRUE)

diag(matrixS) <- 0

K.space[k] <- sum(matrixS)/diff(range(pts)) }

}

return(list(lag = lag, k_est = K.space))

}

####################################################################################

########## Non-parametric estimates of spatial-temporal K-function ##########

####################################################################################

### Note: data: the points observed along the line and dates;

### s: the distance lag which corresponds to K(s,t);

### t: the temporal lag which corresponds to K(s,t);

### Edge correction factor (inside matrixS and matrixT): 1/2 based on Diggle’s correction method
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one.stkhat <- function (data, s, tm, status) {

label <- switch(status,

sep = 1,

nonsep = 2,

homo =3,

)

pts <- data$points

times <- data$date

len <- length(pts)

### Read into the intensity estimates;

if(!is.null(data$lambda_st)) { st.ins <- data$lambda_st }

if(!is.null(data$lambda_s)) {space.ins <- data$lambda_s }

if(!is.null(data$lambda_t)) {time.ins<- data$lambda_t }

slimits <- range(pts)

tlimits <- range(times)

tlow <- min(tlimits)

thigh <- max(tlimits)

A <- diff(range(pts))

T <- diff(range(times))

K.st <- matrix(0,length(s),length(tm))

K.space <- rep(0,length(s))

K.time <- rep(0,length(tm))

pairdis <- as.matrix(dist(pts))

pairt <- as.matrix(dist(times))

for (si in 1:length(s)) {

for (ti in 1:length(tm)) {

C <- matrix(1, nrow=len, ncol=len)

matrixS <- (pairdis<s[si])*((pairdis>pts)*1+(pairdis>(max(pts) - pts))*1+C)

matrixT <- (pairt>0)*(pairt<tm[ti])*((pairt>=times)*1+(pairt>=(thigh - times))*1+C)

diag(matrixS) <- 0

diag(matrixT) <- 0

if (label == 1){

matrixS1 <- matrixS/matrix(kronecker(space.ins,space.ins), ncol=len, byrow=TRUE)

matrixT1 <- matrixT/matrix(kronecker(time.ins,time.ins), ncol=len, byrow=TRUE)

K.time[ti] <- sum(matrixT1)/T

K.space[si] <- sum(matrixS1)/A

matrixW <- matrixS1*matrixT1

K.st[si,ti] <- sum(matrixW)/(A*T)*len^2 }

else if (label ==2){

matrixS1 <- matrixS/matrix(kronecker(space.ins,space.ins), ncol=len, byrow=TRUE)

matrixT1 <- matrixT/matrix(kronecker(time.ins,time.ins), ncol=len, byrow=TRUE)

K.time[ti] <- sum(matrixT1)/T

K.space[si] <- sum(matrixS1)/A

matrixW <- matrixS*matrixT/matrix(kronecker(st.ins,st.ins), ncol=len, byrow=TRUE)

K.st[si,ti] <- sum(matrixW)/(A*T) }

else {

K.time[ti] <- sum(matrixT)*T/(len^2)

K.space[si] <- sum(matrixS)*A/(len^2)

matrixW <- matrixS*matrixT

K.st[si,ti] <- sum(matrixW)*(A*T)/(len^2) }

} # ti

} # si

return(list(s_lag = s, t_lag = tm, ks = K.space, kt = K.time, kst = K.st))

}

####################################################################################

########## Non-parametric estimates of pair correlation function ##########

####################################################################################

### Note: data: the points observed along the line;

### lag: the distance lag which corresponds to g(r);

### Edge correction factor (matrixB): 1/2 based on Diggle’s correction method

one.ghat <- function(data, lag, bw, max.win){

118



pts <- data$points

len <- length(pts)

if (is.null(max.win)) {

max.win <- max(pts) }

pairdis <- as.matrix(dist(pts))

## edge-correction matrix below

matrixB <- (pairdis>pts)*1+(pairdis>(max.win - pts))*1+matrix(1, nrow=len, ncol=len)

diag(matrixB) <- 0

g.space <- c()

for (k in 1:length(lag)) {

matrixA <- 1/sqrt(2*pi*bw)*exp(-((lag[k]-pairdis)/bw)^2/2)

diag(matrixA) <- 0

g.space[k] <- sum(matrixA*matrixB)*max.win/(2*len*(len-1))

}

return(list(lag=lag, g_est=g.space))

}

####################################################################################

########## Non-parametric estimates of pair correlation function ##########

####################################################################################

### Note: data: the points observed along the line;

### lag: the distance lag which corresponds to g(r);

### Edge correction factor (inside matrixS): 1/2 based on Diggle’s correction method

one.stghat <- function(data, lag, bw, max.win){

unique.date_subset <- unique(data$date)

if (is.null(max.win)) {

max.win <- max(data$points) }

maxt_subset <- diff(range(data$date))

# Get the summary;

g_est <- c()

for (si in 1:length(lag)){

total <- c()

for (i in unique.date_subset){

data_sub <- data[data$date==i,]

pts <- data_sub$distance

space.ins <- data_sub$lambda_s

time.ins <- data_sub$lambda_t[1]

len <- length(pts)

pairdis <- as.matrix(dist(pts))

matrixA <- 1/sqrt(2*pi*bw)*exp(-((lag[si]-pairdis)/bw)^2/2)

matrixS <- ((pairdis>pts)*1+(pairdis>(max.win - pts))*1+matrix(1, nrow=len, ncol=len))

diag(matrixA) <- 0

diag(matrixS) <- 0

matrixW <- matrixA*matrixS

for (k in 1:len){

for (j in 1:len){

matrixW[k,j] <- matrixW[k,j]/(space.ins[k]*space.ins[j]*(time.ins)^2)

} #j

} #k

total <- c(total, sum(matrixW))

}

g_est[si] <- sum(total)/(2*max.win*maxt_subset)

}

return(list(lag=lag, gst_est=g_est, total=total))

}

####################################################################################

########## The existing parametric forms of pair correlation function ##########

####################################################################################

### Note: u: distance lags

pcf_para <- function(u, sigma, phi, model, additionalparameters){

if (model=="exponential") { g_fit <- exp(sigma*exp(-(u/phi))) }

else if (model=="gaussian") { g_fit <- exp(sigma*exp(-(u/phi)^{2})) }

else if (model=="cardinal") { g_fit <- exp(sigma*(sin(u/phi)/(u/phi))) }

else if (model=="stable") { g_fit <- exp(sigma*exp(-sqrt(u/phi))) }

else if (model=="hyperbolic") { g_fit <- exp(sigma/(1+u/phi)) }

else if (model=="bessel1") { g_fit <- exp(sigma*exp(-(u/phi)^{2})*besselJ(u/phi, 0)) }

119



else if (model=="bessel2") { g_fit <- exp(sigma*exp(-(u/phi)^{2})*besselJ(u/phi, 1)) }

else if (model=="spherical") {

index <- as.numeric(u/beta<1)

g_fit <- ifelse(index==1, exp(sigma*((u/phi)^3/2+1-(3*u/(2*phi)))), 1) }

else if (model=="card2") {

g_fit <- exp(sigma*(sin(u/(beta*phi))/(u/(beta*phi)))) }

return(g_fit=g_fit)

}

6.2 R program for Chapter 3

############################################################################################

########## Simulate One-dimensional Spatial-temporal Homogeneous Poisson Process ##########

############################################################################################

### Note: lambda: a constant (fixed) value;

### npoints: the total number of points to be generated;

### nsim: the number of realizations to be generated.

One_rpp_homo <- function (lambda, s.region, t.region, npoints = NULL, nsim, replace = TRUE)

{

if (missing(s.region))

s.region <- c(0, 1)

if (missing(t.region))

t.region <- c(1, 30)

s.region <- sort(s.region)

t.region <- sort(t.region)

s.area <- s.region[2] - s.region[1]

t.area <- t.region[2] - t.region[1]

pattern <- list()

index.t <- list()

ni <- 1

if (is.numeric(lambda) & length(lambda) == 1) {

while (ni <= nsim) {

if (is.null(npoints)==TRUE) {

if (t.area==0)

{ npoints <- round(rpois(n=1,lambda=lambda * s.area),0) }

else

{ npoints <- round(rpois(n=1,lambda=lambda * s.area * t.area),0) }

}

x <- runif(npoints, min=s.region[1], max=s.region[2])

times <- runif(npoints,min=t.region[1],max=t.region[2])

samp <- sample(1:npoints,npoints,replace=replace)

times <- times[samp]

times <- sort(times)

index.times <- sort(samp)

pattern.interm <- list(x=x,t=times,index.t=index.times)

pattern[[ni]] <- cbind(x=pattern.interm$x,t=pattern.interm$t)

index.t[[ni]] <- pattern.interm$index.t

ni <- ni+1

}

}

else stop("lambda must be a single positive value.")

invisible(return(list(xt = pattern, index.t = index.t, lambda = lambda)))

}

##############################################################################################

########## Simulate One-dimensional Spatial-temporal Inhomogeneous Poisson Process ##########

##############################################################################################

### Note: lambda: a function of space and time or an array;

### npoints: the total number of points to be generated;

### nsim: the number of realizations to be generated.

One_rpp_inhomo <- function (lambda, s.region, t.region, npoints, nsim, replace, lmax, nx=100, nt=100)

{

if (missing(s.region))

s.region <- c(0, 1)
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if (missing(t.region))

t.region <- c(1, 30)

s.region <- sort(s.region)

t.region <- sort(t.region)

s.area <- s.region[2] - s.region[1]

t.area <- t.region[2] - t.region[1]

lambdamax <- lmax

pattern <- list()

index.t <- list()

if (is.function(lambda)) {

xrang <- range(s.region, na.rm = TRUE)

xmin <- xrang[1]

xmax <- xrang[2]

xinc <- (xmax-xmin)/nx

xc <- xmin-xinc/2

xgrid <- rep(0,nx)

xgrid[1] <- xc + xinc

for (i in 2:nx) { xgrid[i] <- xgrid[i-1]+xinc }

tinc <- t.area/(nt - 1)

t.grid <- list(times = seq(floor(t.region[1]), ceiling(t.region[2]),length = nt), tinc = tinc)

Lambda <- array(NaN, dim = c(nx, nt))

for (it in 1:nt) {

L <- lambda(xgrid, t.grid$times[it])

Lambda[, it] <- L }

ni <- 1

while (ni <= nsim) {

if (is.null(npoints)) {

en <- sum(Lambda,na.rm=TRUE)*xinc*t.grid$tinc

npoints <- round(rpois(n=1,lambda=en),0) }

if (is.null(lambdamax)) { lambdamax <- max(Lambda,na.rm=TRUE) }

npts <- round(lambdamax*s.area*t.area,0)

x <- runif(npts, min=s.region[1], max=s.region[2])

times.init <- runif(nt,min=t.region[1],max=t.region[2])

samp <- sample(1:nt,npts,replace=replace)

times <- times.init[samp]

prob <- lambda(x,times)/lambdamax

u <- runif(npts)

retain <- u <= prob

if (sum(retain==FALSE)==length(retain)) {

lambdas <- rep(0,nx)

for(ix in 1:nx){

lambdas[ix] <- median(Lambda[ix,],na.rm=TRUE) }

lambdamax <- max(lambdas,na.rm=TRUE)

prob <- lambda(x,times)/lambdamax

retain <- u <= prob

if (sum(retain==F)==length(retain)) stop ("Please check the parameters")

}

x <- x[retain]

samp <- samp[retain]

samp.remain <- (1:nt)[-samp]

times <- times[retain]

neffec <- length(x)

while(neffec < npoints) {

x2 <- runif(npoints-neffec, min=s.region[1], max=s.region[2])

wx <- x2

if(replace==FALSE)

{ wsamp <- sample(samp.remain,npoints-neffec,replace=replace)

} else

{ wsamp <- sample(1:nt,npoints-neffec,replace=replace) }

wtimes <- times.init[wsamp]

prob <- lambda(wx,wtimes)/lambdamax

u <- runif(npoints-neffec)

retain <- u <= prob

x <- c(x,wx[retain])

times <- c(times,wtimes[retain])

samp <- c(samp,wsamp[retain])
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samp.remain <- (1:nt)[-samp]

neffec <- length(x)

}

interm <- data.frame(x=x, times=times, index.times=samp)

interm <- interm[order(interm$t),]

pattern.interm <- list(x=interm$x,t=interm$times,index.t=interm$index.times)

pattern[[ni]] <- cbind(x=pattern.interm$x,t=pattern.interm$t)

index.t[[ni]] <- pattern.interm$index.t

ni <- ni+1

}

}

else if (is.array(lambda)) {

if (length(dim(lambda)) != 2)

stop("lambda must be a 2D-array")

Lambda = lambda

nx <- dim(Lambda)[1]

nt <- dim(Lambda)[2]

xrang <- range(s.region, na.rm = TRUE)

xmin <- xrang[1]

xmax <- xrang[2]

xinc <- (xmax-xmin)/nx

xc <- xmin-xinc/2

xgrid <- rep(0,nx)

xgrid[1] <- xc + xinc

for (i in 2:nx) { xgrid[i] <- xgrid[i-1]+xinc }

tinc <- t.area/(nt - 1)

t.grid <- list(times = seq(floor(t.region[1]), ceiling(t.region[2]),length = nt), tinc = tinc)

ni <- 1

while (ni <= nsim) {

if (is.null(npoints)) {

en <- sum(Lambda,na.rm=TRUE)*xinc*t.grid$tinc

npoints <- round(rpois(n=1,lambda=en),0) }

if (is.null(lambdamax)) { lambdamax <- max(Lambda,na.rm=TRUE) }

npts <- round(lambdamax*s.area*t.area,0)

times.init <- runif(nt,min=t.region[1],max=t.region[2])

samp <- sample(1:nt,npts,replace=replace)

times <- times.init[samp]

retain.eq.F <- FALSE

while(retain.eq.F==FALSE) {

x <- runif(npts, min=s.region[1], max=s.region[2])

prob <- NULL

for(dx in 1:length(x)) {

nix <- findInterval(vec=xgrid,x=x[dx])

nit <- findInterval(vec=t.grid$times,x=times[dx])

if (nix==0 | nit==0) {

prob=c(prob,NA)

} else {

prob <- c(prob,Lambda[nix,nit]/lambdamax) }

}

M <- which(is.na(prob))

if (length(M)!=0) {

x <- x[-M]

times <- times[-M]

samp <- samp[-M]

prob <- prob[-M]

npts <- length(x)

}

u <- runif(npts)

retain <- u <= prob

if (sum(retain==F)==length(retain)) retain.eq.F <- FALSE

else retain.eq.F <- TRUE

}

if (sum(retain==FALSE)==length(retain)) {

lambdas <- rep(0,nx)

for(ix in 1:nx){

lambdas[ix] <- median(Lambda[ix,],na.rm=TRUE) }

122



lambdamax <- max(lambdas,na.rm=TRUE)

prob <- lambda(x,times)/lambdamax

retain <- u <= prob

if (sum(retain==F)==length(retain)) stop ("Please check the parameters")

}

x <- x[retain]

samp <- samp[retain]

samp.remain <- (1:nt)[-samp]

times <- times[retain]

neffec <- length(x)

while(neffec < npoints) {

x2 <- runif(npoints-neffec, min=s.region[1], max=s.region[2])

wx <- x2

if(replace==FALSE)

{ wsamp <- sample(samp.remain,npoints-neffec,replace=replace)

} else

{ wsamp <- sample(1:nt,npoints-neffec,replace=replace) }

wtimes <- times.init[wsamp]

prob <- NULL

for(nx in 1:length(wx)) {

nix <- findInterval(vec=xgrid,x=wx[nx])

nit <- findInterval(vec=t.grid$times,x=wtimes[nx])

if (nix==0 | nit==0)

{ prob=c(prob,NA)

} else

{ prob <- c(prob,Lambda[nix,nit]/lambdamax) }

}

M <- which(is.na(prob))

if (length(M)!=0) {

wx <- wx[-M]

wsamp <- wsamp[-M]

wtimes <- wtimes[-M]

prob <- prob[-M]

}

if (neffec > 0) {

u <- runif(length(prob))

retain <- u <= prob

x <- c(x,wx[retain])

times <- c(times,wtimes[retain])

samp <- c(samp,wsamp[retain])

samp.remain <- (1:nt)[-samp]

neffec <- length(x)

}

}

interm <- data.frame(x=x, times=times, index.times=samp)

interm <- interm[order(interm$t),]

pattern.interm <- list(x=interm$x,t=interm$times,index.t=interm$index.times)

pattern[[ni]] <- cbind(x=pattern.interm$x,t=pattern.interm$t)

index.t[[ni]] <- pattern.interm$index.t

ni <- ni+1

}

} else

stop("lambda must be a function or an array.")

invisible(return(list(xt = pattern, index.t = index.t, lambda = lambda)))

}

#########################################################################################

########## Simulate One-dimensional Spatial-temporal Log-Gaussian Cox Process ##########

#########################################################################################

### Note: the function GaussRF is used to generate Gaussian process (RandomFields library);

### npoints: the total number of points to be generated;

### nsim: the number of realizations to be generated.

One_rlgcp <- function(s.region, t.region, replace, npoints, nsim, nx=100, nt=100, model,lmax)

{

if (missing(s.region)) s.region <- c(0,1)

if (missing(t.region)) t.region <- c(1,30)
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s.region <- sort(s.region)

t.region <- sort(t.region)

s.area <- s.region[2] - s.region[1]

t.area <- t.region[2] - t.region[1]

tau <- c(start=t.region[1],end=t.region[2],step=(t.region[2]-t.region[1])/(nt-1))

lambdamax <- lmax

pattern <- list()

index.t <- list()

Lambdafin <- list()

ni <- 1

xrang <- range(s.region, na.rm = TRUE)

xmin <- xrang[1]

xmax <- xrang[2]

xinc <- (xmax-xmin)/nx

xc <- xmin-xinc/2

xgrid <- rep(0,nx)

xgrid[1] <- xc + xinc

for (i in 2:nx) { xgrid[i] <- xgrid[i-1]+xinc }

t.grid <- list(times=seq(floor(t.region[1]), ceiling(t.region[2]),length=nt), tinc=t.area/(nt-1))

while(ni<=nsim)

{

S <- GaussRF(x=xgrid, T=c(t.region, 1), grid=TRUE, model = model) #Please specify your own model;

Lambda <- exp(S)

mut <- rep(0,nt)

for (it in 1:nt) {

mut[it] <- sum(Lambda[,it],na.rm=TRUE) }

if (is.null(npoints)) {

en <- sum(Lambda,na.rm=TRUE)*xinc*t.grid$tinc

npoints <- round(rpois(n=1,lambda=en),0) }

if (is.null(lambdamax)) { lambdamax <- max(Lambda,na.rm=TRUE) }

npts <- round(lambdamax*s.area*t.area,0)

if (npts==0) stop("there is no data to thin")

times.init <- runif(nt,min=t.region[1],max=t.region[2])

samp <- sample(1:nt,npts,replace=replace,prob=mut/max(mut,na.rm=TRUE))

times <- times.init[samp]

retain.eq.F <- FALSE

while(retain.eq.F==FALSE) {

x <- runif(npts, min=s.region[1], max=s.region[2])

prob <- NULL

for(njx in 1:length(x)) {

nix <- findInterval(vec=xgrid,x=x[njx])

nit <- findInterval(vec=t.grid$times,x=times[njx])

if (nix==0 | nit==0)

prob=c(prob,NA)

else

prob <- c(prob,Lambda[nix,nit]/lambdamax)

}

M <- which(is.na(prob))

if (length(M)!=0) {

x <- x[-M]

times <- times[-M]

samp <- samp[-M]

prob <- prob[-M]

npts <- length(x)

}

u <- runif(npts)

retain <- u <= prob

if (sum(retain==F)==length(retain)) retain.eq.F <- FALSE

else retain.eq.F <- TRUE

}

x <- x[retain]
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samp <- samp[retain]

samp.remain <- (1:nt)[-samp]

times <- times[retain]

neffec <- length(x)

if (neffec > npoints)

{

retain <- 1:npoints

x <- x[retain]

samp <- samp[retain]

samp.remain <- (1:nt)[-samp]

times <- times[retain]

}

while(neffec < npoints) {

x2 <- runif(npoints-neffec, min=s.region[1], max=s.region[2])

wx <- x2

if (isTRUE(replace)) {

wsamp <- sample(1:nt,npoints-neffec,replace=replace,prob=mut/max(mut,na.rm=TRUE))

} else

{ prob <- mut[samp.remain]/max(mut[samp.remain]

wsamp <- sample(samp.remain,npoints-neffec,replace=replace,prob=prob,na.rm=TRUE)) }

wtimes <- times.init[wsamp]

prob <- NULL

for(nx in 1:length(wx)) {

nix <- findInterval(vec=xgrid,x=wx[nx])

nit <- findInterval(vec=t.grid$times,x=wtimes[nx])

if (nix==0 | nit==0)

prob=c(prob,NA)

else

prob <- c(prob,Lambda[nix,nit]/lambdamax)

}

M <- which(is.na(prob))

if (length(M)!=0) {

wx <- wx[-M]

wtimes <- wtimes[-M]

wsamp <- wsamp[-M]

prob <- prob[-M]

}

if (neffec > 0) {

u <- runif(length(prob))

retain <- u <= prob

x <- c(x,wx[retain])

times <- c(times,wtimes[retain])

samp <- c(samp,wsamp[retain])

samp.remain <- (1:nt)[-samp]

neffec <- length(x)

}

}

interm <- data.frame(x=x, times=times, index.times=samp)

interm <- interm[order(interm$t),]

pattern.interm <- list(x=interm$x,t=interm$times,index.t=interm$index.times)

pattern[[ni]] <- cbind(x=pattern.interm$x,t=pattern.interm$t)

index.t[[ni]] <- pattern.interm$index.t

ni <- ni+1

}

invisible(return(list(xt=pattern,Lambda=Lambdafin,index.t=index.t)))

}
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