
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Huan He Date

Acceleration Algorithms for Machine Learning Models

By

Huan He
Doctor of Philosophy

Computer Science and Informatics

Joyce C Ho, Ph.D.
Advisor

Yuanzhe Xi, Ph.D.
Co-Advisor

Liang Zhao, Ph.D.
Committee Member

Yousef Saad, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH
Dean of the James T. Laney School of Graduate Studies

Date

Acceleration Algorithms for Machine Learning Models

By

Huan He
B.A., Shanghai Finance University, Shanghai, 2014

M.Sc., Emory University, GA, 2018

Advisor: Joyce C Ho, Ph.D., Yuanzhe Xi, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2022

Abstract

Acceleration Algorithms for Machine Learning Models
By Huan He

Machine Learning has revolutionized the fields of computer vision, natural lan-
guage understanding, speech recognition, information retrieval and more. However,
with the progressive improvements in deep learning models, their number of param-
eters, latency, resources required to train, etc. have all have increased significantly.
There are many recent examples that can illustrate the tremendous growth in sci-
entific data generation in the literature. It is estimated that there are thousands
of wireless sensors currently in place, which generates about a gigabyte of data per
sensor per day. Consequently, it has become important to pay attention to these
footprint metrics of a model as well, not just its quality. Nowadays, there is a greater
need to develop efficient machine learning models to cope with future demands that
are in line with similar energy-related initiatives. Either training or inference efficient
algorithms are important for a number of data-intensive areas, as they affect many
related industries. However, despite the fact that advanced and powerful machine
learning models are proposed, there is a huge demand and space for such efficient and
fast machine learning methods for large and complex data-intensive fields.

Acceleration Algorithms for Machine Learning Models

By

Huan He
B.A., Shanghai Finance University, Shanghai, 2014

M.Sc., Emory University, GA, 2018

Advisor: Joyce C Ho, Ph.D., Yuanzhe Xi, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2022

Acknowledgments

I would like to thank my esteemed supervisors – Dr. Ho and Dr. Xi for their

invaluable supervision, support and tutelage during the course of my PhD degree.

Additionally, I would like to express gratitude to Dr. Saad for his treasured support

which was really influential in shaping my research methods and critiquing my results.

I would also like to thank Dr.Liang Zhao for his impressive discussions on my work

and inspiring suggestions for this dissertation.

Thanks my friends, lab mates, colleagues and research team for a cherished time

spent together in the lab, and in social settings. My appreciation also goes out to my

family and friends for their encouragement and support all through my studies.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Contributions . 3

1.2.1 SGranite: . 3

1.2.2 Fast-CP: . 5

1.2.3 GDA-AM: . 5

1.2.4 MedDiff: . 6

1.3 Organization . 7

2 Background 8

2.1 Parallel Processing . 8

2.1.1 The Map-Reduce algorithm 8

2.2 Acceleration via mathematical methods 9

2.2.1 Stochastic Gradient Descent 10

2.2.2 Nonlinear Acceleration Techniques 10

3 Accelerating Tensor Decomposition via Parallel Algorithms 12

3.1 Background and Notations . 13

3.2 SGranite . 16

3.2.1 Example of Useful Regularization Terms 18

3.2.2 Parallel Algorithm using Spark 22

3.3 Experimental Results . 26

4 Acceleration Tensor Decomposition via numerical methods 32

4.1 Generalized CP decomposition using SGD 33

4.2 Extrapolated Stochastic Gradient Descent 34

4.3 Theoretical Analysis . 36

4.4 Experimental Results . 39

5 Accelerating general minimax optimization via Anderson Accelera-

tion 42

5.1 Minimax Optimization . 42

5.2 Our Method: GDA-AM . 44

5.2.1 Fixed-Point Iteration and Anderson Mixing (AM) 45

5.2.2 AM and Generalized Minimal Residual (GMRES) 47

5.2.3 GDA-AM . 48

5.3 Convergence results for GDA-AM . 53

5.4 Related Work . 58

5.5 Experiments . 59

5.6 Theoretical Results . 64

5.6.1 Discussion of obtained rates 73

6 Accelerating Sampling Procedure for diffusion based generative mod-

els 88

6.1 Motivation of Synthetic EHRs . 88

6.2 Background in Diffusion Models . 90

6.3 Related Work . 94

6.4 Proposed Method: MedDiff . 96

6.5 Experiments . 101

7 Conclusion and Future Work 110

7.1 Conclusion . 110

7.2 Future Work . 111

Bibliography 113

iv

List of Figures

1.1 Dissertation Contributions . 4

2.1 What’s Map-Reduce? . 8

3.1 An illustration of CP decomposition for a sparse tensor. Shaded squares

stand for nonzeros. The original tensor is approximated by the weighted

sum of R rank-one tensors. 16

3.2 A graphical example of our method: Suppose there are 2 workers, we

will have 8 blocks and 4 strata after partition. We run this process

iteratively until convergence. In each epoch, start from strata one,

each worker runs SGD for its own assigned block in parallel. Check

the convergence until all strata are iterated. We repeat above algo-

rithm again if the stopping criteria is not satisfied. All intermediate

results are saved as Resilient Distributed Datasets (RDD) collections

and cached in memory. 22

3.3 A graphical example of one stratum training: Given one stratum of

training data and factor matrices A(1), A(2), A(3), we run SGD on each

block in parallel. Then factor matrices A(1), A(2), A(3) are updated and

used as the initialization for the next stratum training. 25

3.4 Influenza . 28

3.5 MIMIC . 28

3.6 Speed-up . 28

3.7 A comparison of the learned latent factors with and without constraints

using R = 3. Year from 2003 to 2015 31

4.1 Convergence plots for the SGD-based methods for the 3 datasets. In

A, R = 60, batch size=2000, each epoch contains 3000 iterations. In

B, R = 100, batch size=5000, each epoch contains 100 iterations. In

C, R = 10, batch size=500, each epoch contains 300 iterations. 41

5.1 Left:f(x, y) = (4x2 − (y − 3x + 0.05x3)2 − 0.1y4)e−0.01(x2+y2). Mid-

dle: −3x2 − y2 + 4xy. Right: f(x, y) = 2x2 + y2 + 4xy + 4
3
y3 − 1

4
y4.

We can observe that baseline methods fail to converge to a local min-

imax, whereas GDA-AM with table size p = 3 always exhibits desirable

behaviors. 44

5.2 Figure 5.2a: The blue line is the spectrum of matrix G(Sim) while

the red line is spectrum of matrix I − G(Sim). Our method trans-

forms the divergent problem to a convergent problem due to the trans-

formed spectrum. Figure 5.2b: Convergence rate comparison be-

tween SimGDA-AM and EG for different condition numbers of A and

fixed table size p = 10, 20, 50. Figure 5.2c: Convergence rate com-

parison between SimGDA-AM and EG for increasing table size on a

matrix A with condition number 100. 55

5.3 An illustration of the spectrum of G (red) and the closing circle (blue) in

Theorem 5.3.2. 56

5.4 Comparison in terms of iteration: minxmaxy f(x,y) = xTAy+bTx+

cTy. We use different problem size and fix p = 10, η = 1 for all

experiments. 61

5.5 Comparison between methods in terms of time. 61

5.6 Effects of table size p and step size η, n = 500 62

5.7 Numerical range of fixed-point operator (Simultaneous GDA-AM) G =[
I− ηB −ηAηAT I − ηC

]
for bilinear-quadratic games. 81

6.1 A graphical model summarizing the idea of diffusion model for gener-

ating synthetic electronic health records. This illustrates the Markov

chain of the reverse (and forward) process of generating a sample by

slowly removing noise. As can be shown, the forward process adds

noise to the original patient record. 91

6.2 The scatter plots of dimension-wise probability. Each point depicts one

unique diagnosis code. The x-axis and y-axis represent the Bernoulli

success probability for real and synthetic datasets, respectively. The

diagonal line shows the ideal case. 104

6.3 Kernel density estimation for each feature. Black : true density. Blue:

KDE wit generated samples. The benchmark (true) estimated distri-

bution is obtained from the original dataset using a Gaussian Kernel.

We can observe that with the classifier guided sampling, MedDiff is

able to match local modes and thus generate realistic and useful con-

ditioned samples. 105

6.4 Visualization of the forward and backward process. It is worth to

mention that we are able to reconstruct the noised input XT by by

fixing the posterior variance σt as 0 and running the denosing step. . 105

6.5 Two numerical solutions . 107

6.6 Results of accelerated sampling versus regular sampling with different

T and k. 108

6.7 Data augmentation performance of GDA-AM as a function of the number

of synthetic records . 109

vii

List of Tables

3.1 Symbols and their associated definitions 14

3.2 Table of AUC, running time, and average overlapping using different

methods. The highest AUC value means extracted phenotypes have

stronger discrimination. The lowest running time indicates our dis-

tributed method can significantly accelerate the computation time.

Compared to CP-APR and FlexiFact, adding angular penalty im-

proved the distinction significantly. 30

5.1 Test accuracies under FGSM and PGD attack. Trade refers to [142]. . 63

5.2 Best inception scores and FID for Cifar10 and FID for CelebA (IS is a

less informative metric for celebA). 63

5.3 ResNet architecture used for our CIFAR-10 experiments. 86

5.4 ResNet architecture used for our CelebA (64× 64) experiments. . . . 87

viii

List of Algorithms

3.1 SGD updating process

3.2 SGranite

4.1 Extrapolation of gradient sequence for mode n

4.2 Fast-CP

5.1 Anderson Mixing Prototype (truncated version)

5.2 Simultaneous GDA-AM

5.3 Alternating GDA-AM

5.4 Anderson Mixing Prototype

5.5 QR-updating procedures

6.1 DDPM-Training

6.2 Sampling

6.3 Anderson Mixing Prototype

6.4 Accelerated Conditioned Sampling

1

Chapter 1

Introduction

1.1 Motivation

Machine Learning has revolutionized the fields of computer vision, natural language

understanding, speech recognition, information retrieval and more. However, with

the progressive improvements in deep learning models, their number of parameters,

latency, resources required to train, etc. have all have increased significantly. There

are many recent examples that can illustrate the tremendous growth in scientific data

generation in the literature [24, 31, 39]. Meanwhile, there has been rapid growth in

the quantity and variety of data. Unfortunately, these large sets of data are usually

high dimensional (e.g. patients, their diagnoses, and medications) and cannot be

adequately represented as matrices. Thus, many existing algorithms can not analyze

them. To accommodate these high dimensional data, tensor factorization [46] has

attracted much attention and emerged as a promising solution. However, tensor

factorization is a computationally expensive task, and existing methods developed to

factor large tensors are not flexible enough for real-world situations, e.g. sparsity,

simplex, and non-negativity constraint.

On the other hand, although the huge data volume has provided a great platform

2

for training machine learning models, the privacy concern is a common barrier for

researchers to obtain access to real world data. As a result, this obstacle has hindered

the research of effectiveness of machine learning models on real world. One approach

that could overcome privacy issues is to use synthetic datasets that capture as many

of the complexities of the original data set (distributions, non-linear relationships,

and noise). There have been several distinguished efforts conducted in a variety of

domains about synthetic EHR generation [10, 11, 20, 117, 134]. There are several

noticeable drawbacks of these models, including mode-collapse for GANs or poor

sample diversity and quality for autoencoders. A recent proposed denosing diffusion

probalistic model [54] can avoid this issue and generate high fidelity samples, but it

suffers from a major drawback that the sampling process is extremely slow.

As a result, there is a huge demand and space for either training or inference effi-

cient machine learning algorithms for large and complex data-intensive fields despite

the fact that advanced and powerful machine learning models are proposed. It is

tempting to use parallel processing algorithms to simplify the problem by separat-

ing the machine learning tasks to different independent parts and running them in

parallel. When the model and data can be stored on a single machine, we can use

multi-core processing. Here, we assume that the whole model and the data can be fit

into the memory of a single machine with multiple cores. For example, [90] propose to

use multiple cores to perform SGD of multiple mini-batches in parallel where multiple

cores share the same memory. However, modern machine learning models or data are

so large that it is often impossible for the whole model and data to fit into one single

machine. When it is not possible to store the whole data-set or a model on a single

machine, it becomes necessary to store the data or model across multiple machines.

[93] shows that distributed training can address this issue effectively by proposing

both synchronous and asynchronous training frameworks.

However, there are three main limitations of distributed algorithms. 1) Distributed

3

algorithms means expensive equipment and maintenance costs which is a common

barrier for most researchers. 2) Distributed algorithms often harms the model per-

formance due to the overwriting during asynchronous updates, otherwise it is often

as slow as sequential processing. 3) Such computational requirements make it diffi-

cult for practitioners to readily adopt. For example, in the healthcare setting, there

is limited access to such high-performance systems and data cannot be transferred

due to patient privacy concerns. As a result, it is necessary to design smart parallel

algorithms that can fully utilize available resources.

Alternatively, numerical algorithms have attracted lots of attention due to its

demonstrated performance and stability. For example, [63] proposed Adam which is

a commonly used optimizer. It gains popularity because it converges much faster than

the basic gradient descent. For another example, recent proposed algorithm, Regular-

ized Nonlinear Extrapolation [109] utilizes the extrapolation algorithm to accelerate

logistic regression. However, there is still much space to investigate its performance

and theoretical analysis for other machine learning tasks. Furthermore, existing pro-

posed numerical based algorithms [89, 109] can still exhibit very poor convergence

properties. It is necessary to develop more advanced acceleration algorithm to address

the limitations of existing numerical algorithms.

1.2 Research Contributions

Our contributions are summarized as follows:

1.2.1 SGranite:

We propose SGranite, a distributed tensor decomposition framework that can incor-

porate a variety of regularization terms to constrain the latent factors. In particular,

we show that integrating three forms of regularization terms can achieve easier-to-

4

Figure 1.1: Dissertation Contributions

interpret factors, provide robustness in the presence of noise, and map to existing

domain knowledge. Moreover, SGranite is very fast and scalable. Using a Spark-

based implementation, we demonstrate the ability to decrease computation time by

distributing both the data as well as the parameters without sacrificing accuracy. The

contributions of our work can be summarized as follows:

1. Flexibility: Our framework supports a variety of meaningful constraints such

as sparsity, diversity, and distinguish-ability.

2. Scalability: Our scalability analysis of SGranite on a large tensor constructed

from healthcare data achieves near linearity speed-up as we scale to the number

of machines. Moreover, our framework achieves at least a 4× speed-up compared

to an existing state-of-the-art distributed tensor factorization method.

3. Accuracy: Our empirical results in two health-related case studies show that

incorporating the variety of constraints improves interpretability and robustness

compared to the standard decomposition models.

5

1.2.2 Fast-CP:

We propose Fast-CP, an accelerated SGD-based CP decomposition model for large-

scale tensors on a personal computer. Our model accelerates the convergence speed by

mixing past iterates in a systematic fashion and decreases variance of the stochastic

gradients. Fast-CP is up to 4 times faster than the state-of-the-art tensor SGD

algorithm [67] across three different datasets, and can execute in a reasonable time

for large datasets. Our contribution can be summarized as follows:

1. Efficient extrapolation step: We propose a computationally cheap technique

that we call extrapolation to speed up the convergence of stochastic gradient

updates for large-scale tensor CP decomposition with various loss functions.

2. Improved convergence: While SGD is memory efficient, it usually performs

poorly in terms of convergence rate and quality. We illustrate how extrapolation

of gradient sequences can fix this issue and yield better factor matrices.

3. Robustness: We show that Fast-CP improves the learning stability and lowers

the variance of its base optimizer with negligible computation and memory cost.

4. Generalizability: We empirically demonstrate Fast-CP can significantly im-

prove the performance of various types of tensors and different variants of SGD

algorithms including the standard (vanilla) version and Adam.

1.2.3 GDA-AM:

We propose a different approach to solve minimax optimization. Our starting point is

to cast the GDA dynamics as a fixed-point iteration. We then highlight that the fixed-

point iteration can be solved effectively by using advanced non-linear extrapolation

methods such as Anderson Mixing [4], which we name as GDA-AM. redAlthough first

6

mentioned in [6], to our best knowledge, this is still the first work to investigate and

improve the GDA dynamics by tapping into advanced fixed-point algorithms.

We demonstrate that GDA dynamics can benefit from Anderson Mixing. In par-

ticular, we study bilinear games and give a systematic analysis of GDA-AM for both

simultaneous and alternating versions of GDA. We theoretically show that GDA-AM

can achieve global convergence guarantees under mild conditions.

We complement our theoretical results with numerical simulations across a variety

of minimax problems. We show that for some convex-concave and non-convex-concave

functions, GDA-AM an converge to the optimal point with little hyper-parameter

tuning whereas existing first-order methods are prone to divergence and cycling be-

haviors.

We also provide empirical results for GAN training across two different datasets,

CIFAR10 and CelebA. Given the limited computational overhead of our method, the

results suggest that an extrapolation add-on to GDA can lead to significant per-

formance gains. Moreover, the convergence behavior across a variety of problems

and the ease-of-use demonstrate the potential of GDA-AM to become the minimax

optimization workhorse.

1.2.4 MedDiff:

We introduce MedDiff, a novel denoising diffusion probabilistic model. MedDiff gen-

erates realistic synthetic patient records that build upon diffusion models to achieve

high quality, robust samples while also being simple enough for practitioners to train.

We further accelerate the generation process of MedDiff using Anderson acceleration

[5], a numerical method that can improve convergence speed of fixed-point sequences.

In summary, our contributions are as follows:

1. We investigate the effectiveness of diffusion based models on generating discrete

Electronic Health Records (EHRs).

7

2. We proposed a novel method to accelerate the generation process, which is the

main drawback of diffusion models.

3. We further adopt a novel conditioned sampling technique to generate discrimi-

native synthetic EHR.

4. We show that MedDiff can generate realistic synthetic data that mimics the

real data and provides similar predictive value according to our analysis and

assessments.

1.3 Organization

I describe my several projects in this thesis. It is organized as follows. Chapter 2

introduces the basic background of acceleration algorithms. Chapter 3 introduces

projects on accelerating tensor decomposition via parallel algorithms. Chapter 4 pro-

poses the accelerated tensor decomposition framework without a high-performance

computing machine using numerical algorithms. Chapter 5 proposes a novel algo-

rithm to solve minimax optimization and its related deep learning models. Chapter

6 introduces the project on accelerating diffusion generative models using numerical

algorithms. Chapter 7 concludes the thesis.

8

Chapter 2

Background

In this chapter, I will briefly introduce the background of parallel processing and

numerical algorithms for developing efficient machine learning models.

2.1 Parallel Processing

Parallel Processing simply means algorithms are deployed across the multiple proces-

sors . A typical ML algorithm involves doing a lot of computation (work/tasks) on a

lot of data set . Traditionally, machine learning has been executed in single processor

environments, where algorithmic bottlenecks can lead to substantial delays in model

processing, from training to classification to distance and error calculation and be-

yond. Training such models commonly can be held in a MapReduce Framework (sits

across many machines).

2.1.1 The Map-Reduce algorithm

Figure 2.1: What’s Map-Reduce?

MapReduce is a programming

framework that allows us to

perform distributed and paral-

9

lel processing on large data sets

in a distributed environment.

MapReduce consists of two dis-

tinct tasks, Map and Reduce.

As the name Map-Reduce suggests, the reducer phase takes place after the map-

per phase has been completed. So, the first is the map job, where a block of data is

read and processed to produce key-value pairs as intermediate outputs. The output

of a Mapper or map job (key-value pairs) is input to the Reducer. The reducer re-

ceives the key-value pair from multiple map jobs. Then, the reducer aggregates those

intermediate data tuples (intermediate key-value pair) into a smaller set of tuples or

key-value pairs which is the final output.

2.2 Acceleration via mathematical methods

Optimization is at the heart of machine learning. Most of the machine learning prob-

lems are, in the end, optimization problems. Gradient descent (GD) has been one

of the most commonly used first-order method due to its simplicity to implement

and low computational cost per iteration. Although practical and effective, GD con-

verges slowly in many applications. To accelerate its convergence, there has been a

surge of interest in accelerated gradient methods, where “accelerated” means that

the convergence rate can be improved without much stronger assumptions or signif-

icant additional computational burden. Nesterov has proposed several accelerated

gradient descent (AGD) methods in his celebrated works which have provable faster

convergence rates than the basic GD.

10

2.2.1 Stochastic Gradient Descent

The stochastic gradient descent method solves the above problem by repeatedly up-

dating m. Given some initial value of m0, each update is as follows:

mk := mk−1 − γ∇fik (mk−1) (2.1)

where γ is the learning rate and ik ∈ {1, . . . , n} is some set of indices chosen at

iteration k.

Since convergence of vanilla SGD can be slow, several algorithms have been intro-

duced to speed up the process. Adam’s method, one instance of momentum-based

iterations, has been developed specifically for machine learning. ‘ADAM’ [63], which

stands for ADAptive Moment estimation, uses an estimate of first moment (mean)

and second moment (variance):

mj = β1mj−1 + (1− β1)gj , m̂j = mj/(1− βj
1) (2.2)

vj = β2vj−1 + (1− β2)g
2
j , v̂j = vj/(1− βj

2) (2.3)

wj = wj−1 − α
m̂j

(v̂j)1/2 + ϵ
, (2.4)

to accelerate the convergence of vanilla SGD. Commonly recommended parameters

are β1 = 0.9, β2 = 0.999, ϵ = 10−8.

2.2.2 Nonlinear Acceleration Techniques

When a sequence of numbers, vectors, matrices or tensors converge slowly, or even

diverge, extrapolation techniques can be used to transform the current sequence into a

new sequence, which, under certain assumptions, converges faster. There exist many

such sequence transformations which range across a wide range of disciplines with

varying goals and various degree of success. For a review, see [13].

11

Classical acceleration techniques take a sequence x0,x1, . . . ,xn, e.g., vectors in

Rd, and produce an accelerated sequence {t(k)n } of the form

t(k)n = a0xn + a1xn+1 + · · ·+ akxn+k, (2.5)

where the ai’s usually depend on k and n but satisfy the constraint
k∑

i=0

ai = 1.

Most existing extrapolation techniques are based on the assumption that xn sat-

isfies a k-term kernel of the form:

a0(xn − x) + a1(xn+1 − x) + · · ·+ ak(xn+k − x) = 0,∀n, (2.6)

where x is the exact limit for the original sequence and the scalars a0, . . . , ak and x

are unknowns with a0ak ̸= 0 and satisfy the constraint. (2.6) is called Shanks kernel

in the literature.

12

Chapter 3

Accelerating Tensor Decomposition

via Parallel Algorithms

In the past few decades, there has been rapid growth in the quantity and variety

of data. Unfortunately, these large sets of data are usually high dimensional (e.g.

patients, their diagnoses, and medications) and cannot be adequately represented as

matrices. As a motivating example, search activities on diseases such as influenza

can be used and correlated with actual influenza surveillance data. Estimation of

influenza-like illness (ILI) rates is a well-studied task [70, 99], Google Flu Trends,

while flawed, demonstrated a link between influenza related search queries and the

Centers for Disease Control and Prevention’s (CDC) [58]. Similarly, programs such

as the National Institute of Health’s All for Us, are looking to gather data and make

it publicly available to researchers to enable precision medicine. Extracting influenza

patterns or clinical characteristics from such high-dimensional data can pose chal-

lenges, even before considering whether the data has been appropriately labeled.

Thus, many existing algorithms can not analyze them. To accommodate these high

dimensional data, tensor factorization has attracted much attention and emerged as a

promising solution. For example, our work on ‘Phenotyping through Semi-Supervised

13

Tensor Factorization’ successfully uncovered predictive and clinically interesting phe-

notypes for type-2 diabetes and resistant hypertension patients [50]. However, tensor

factorization is a computationally expensive task, and existing methods developed to

factor large tensors are not flexible enough for real-world situations, e.g. sparsity,

simplex, and non-negativity constraint. Increasingly large amounts of health-related

data are released on the Internet and have great potential for enabling better disease

surveillance and disease management.

A vast majority of the algorithms for disease surveillance or disease prediction

adopt a supervised learning approach, but the need for labels can limit the possible

scope of the task. However, unsupervised learning methods such as tensor factor-

ization have been successfully applied in many application domains including social

network analysis [95, 96, 136] and health analytics [51, 52, 56, 125, 138].

3.1 Background and Notations

This section briefly introduces tensor decomposition and related work. The list of

operations and symbols used in this thesis are listed in Table 3.1.

Tensor and Tensor Operations

Tensors are generalizations of matrices and vectors to higher dimensions. An N -way

tensor is denoted as X ∈ RI1×I2×···×IN and each element of the tensor represents the

interactions between N types of data. Each dimension of the tensor is referred to as a

mode. Tensors can be unfolded or flattened as a matrix, which is called matricization.

X(n) denotes the matricization of X along mode-n.

Definition 1. A rank-one N-way tensor is the outer product of N vectors: X = a(1) ◦

a(2) ◦ · · · ◦a(N). Each element of a rank-one tensor is the product of the corresponding

vector elements (i.e., xi1i2···iN = a
(1)
i1
a
(2)
i2
· · · a(N)

iN
).

14

Table 3.1: Symbols and their associated definitions

Symbol Definition
X , X, x, x Tensor, Matrix, Column Vector, Scalar
1 All one matrix
X(n) n-mode matricization of a tensor X
X(r, :) rth row of X
X(:, r) rth column of X
A(n) nth factor matrix
xn nth element of vector x
∥ · ∥2, ∥ · ∥F Matrix 2 norm, Frobenius norm
∗ Hadamard (elementwise) product
⊘ Hadamard (elementwise) division
◦ outer product
⊗ Kronecker product
⊙ Khatri-Rao product (column-wise ⊗)

Definition 2. The Khatri-Rao product of two real-valued matrices A ⊙ B of sizes

IA × R and IB × R, respectively, produces a matrix Z of size IAIB × R such that

Z =

[
a1 ⊗ b1 · · · aR ⊗ bR

]
, where ⊗ is the Kronecker product.

The matrix Zn represents the Khatri-Rao product of all the factor matrices except

A(n) such that Zn = A(1) ⊙ · · · ⊙A(n−1) ⊙A(n+1) ⊙ · · · ⊙A(N).

CP decomposition

The CANDECOMP / PARAFAC (CP) model [46] is one of the most popular and well-

studied tensor decomposition methods. In CP decomposition, the observed tensor,

X , is approximated using a sum of rank-one tensors (orM):

X ≈M =
R∑

r=1

A(1)(:, r) ◦A(2)(:, r) ◦ · · · ◦A(N)(:, r). (3.1)

Figure 3.1 provides an example of the CP decomposition for a sparse tensor, where

each rank-one tensor represents a latent factor. Fitting a CP decomposition involves

minimizing an objective function between the tensor X and a model tensor X . In

15

general, it takes the form of summation of element-wise loss functions over all entries,

and is chosen based on assumptions about the underlying distribution of the data.

minimizeF (X ,M) ≡
∑

i1i2···iN

f (xi1...iN ,mi1...iN) (3.2)

For the numeric data, it is common to assume that the tensor elements follow a

Gaussian distribution, which corresponds to the least squares approximation. The

objective function f associated with the least squares approximation is defined as:

F (X ,M) =
∑
i1···iN

(xi1···iN −mi1 ···iN)
2. (3.3)

For count data, an appropriate assumption about the underlying distribution of

the data is Poisson [18, 44] and the following KL-divergence fitting function f is used:

F (X ,M) =
∑
i1···iN

(mi1···iN − xi1···iN logmi1 ···iN). (3.4)

The CP decomposition with the loss function (3.4) is often referred to as CP-APR

[18, 44]. Using a Poisson model leads to a much better explanation for the zero

observations encountered in sparse data, where these zeros correspond to events that

are unlikely to be observed.

For binary data, it is natural to assume the tensor elements follow a Bernoulli

distribution and the objective function f takes the following form:

F (X ,M) =
∑
i1···iN

(log(1 +mi1···iN)− xi1···iN logmi1 ···iN). (3.5)

Both (3.4) and (3.5) require a non-negative constraint.

The CP decomposition for different data types as shown in Equations (3.3), (3.4)

and (3.5) is a finite sum problem. Stochastic gradient descent algorithm is one of the

key tools for such an optimization problem. Consider a finite sum problem defined

16

Figure 3.1: An illustration of CP decomposition for a sparse tensor. Shaded squares
stand for nonzeros. The original tensor is approximated by the weighted sum of R
rank-one tensors.

as follows:

min
m∈Rd

{
F (x,m)

def
=

n∑
i=1

fi(x,m)

}
(3.6)

where there are n given data points x, each fi is an error function evaluated at the

ith datapoint, and we want to obtain m that gives us the lowest error value that is

summed over all datapoints.

SGD methods with this acceleration techniques have been shown effective for

deep learning training [108, 110]. These methods compute an extrapolated set of

parameters in neural networks by mixing the information from the past few iterates

and can dramatically reduce the number of epochs. However, simple adoption of such

techniques fails to speed up tensor CP decomposition.

3.2 SGranite

We propose SGranite [48], a distributed and flexible constrained CP model, to

impose a variety of constraints on the latent factors. Our algorithm uses distributed

stochastic gradient descent (DSGD) approaches to scale the CP decomposition on

count data to huge datasets. SGranite has the following benefits:

17

• Simultaneously supports multiple constraints on the factor matrices.

• Learns patterns even when data cannot be stored on a single server.

• Maintains computational efficiency across a large number of workers.

A distributed framework for incorporating a variety of constraints in CP decompo-

sition is appealing for several reasons including the ability to extract patterns from

large datasets that cannot be readily stored on a centralized server, to encode prior

knowledge, to improve interpretability, and to democratize high-dimensional learning

by running on standard commodity servers.

We builds on several existing nonnegative CP decomposition algorithms to model

sparse count data using the Poisson distribution [19, 52]. Let X denote an observed

tensor constructed from count data with size I1 × I2 × · · · × IN and M represent a

same-sized tensor of Poisson parameters for X . In addition to KL divergence, we

introduce generalized constraints on the factor matrices, R(A(n)) to the objective

function. Thus, the optimization problem is defined as:

min f(M) =
∑
i⃗

(mi⃗ − xilogmi⃗) +
∑
k

βkRk

(
A(n)

)︸ ︷︷ ︸
regularization terms

s.t.M = Jλ;A(1), · · · ,A(N)K

λr ≥ 0, ||a(n)
r ||1 = 1, ∀r

A(n) ∈ [0, 1]In×R, ∀n

(3.7)

The Poisson parameters, m, can be determined by minimizing the negative log-

likelihood of the observed data x. We also maintain the stochasticity (i.e., elements

sum to 1) and non-negativity constraints (i.e., factor elements and weights, or λ, must

be non-negative) that were introduced in the original CP-APR model [19].

18

3.2.1 Example of Useful Regularization Terms

Equation 3.7 supports a variety of regularization items, R(A(n)). While we describe

three forms of special regularizations that are useful for analyzing health data, SGran-

ite was developed to handle any regularization that is either smooth and differentiable

or has an easy-to-compute proximal operator [97].

Diversity on A(n) For analyzing flu patterns or clinical characteristics of patient

subgroups, it is preferable for the rank-one factor components to be distinct from each

other. This allows domain experts to more easily interpret the patterns. While several

mechanisms for encouraging diversity have been proposed [52, 62, 125], we adopt the

angular penalty term in [52] that encourages diversity between rank-one tensors by

penalizing overlapping elements. There are two benefits to this regularization. It

does not require prior knowledge to construct a similarity matrix that is used in [62].

Similarly, it does not require the discovered patterns to be orthogonal to one another

[125], which may be too restrictive. Under angular regularization, any element that

has large values in multiple columns in the factor matrix are penalized. Thus, the

angular penalty for the nth factor matrix, A(n), is formulated as follows:

Rk

(
A(n)

)
=

R∑
r=1

r∑
p=1

max

(
0,

(anp)
Tanr

∥anp∥2∥anr ∥2
− θn

)2

Sparsity and Smoothness on A(n) Sparsity and smoothness constraints have

been introduced in a wide range of applications to improve interpretability and in-

crease robustness to noise. Our framework supports a general class of ℓp penalties

including simplex constraint term (||ar||1 = 1, air ∈ [0, 1]); ℓ2 regularization on the

weight and the first factor matrix, λA(1) to mitigate overfitting to large count data;

and the ℓ0-norm regularization which caps the number of non-zeros elements in the

factor.

19

We first consider the simplex constraint term, which can yield sparse factors while

providing a probabilistic interpretation. For the nth factor matrix, A(n), we restrict

the elements to lie on the ℓ1-ball of diameter s, where s is a user-specified parameter,

such that:

Rk

(
A(n)

)
=

R∑
r=1

(s− ||a(n)
r ||1)

When s = 1, this results in the projection of the factor onto the probabilistic (or

canonical) simplex [26]. By decreasing s to be less than 1, the resulting factors will

be sparser.

The ℓ2-norm regularization was introduced in [52] to encourage terms in the factor

matrix vectors to be similar-sized. Together with the simplex projection, the interac-

tion of these two regularizations achieved further sparsity by driving specific elements

to 0 more quickly in a similar manner to the elastic net regularization [145].

Rk

(
A(n)

)
=

R∑
r=1

∥a(n)r ∥2

The ℓ0-norm regularization, introduced in [3], is an alternative to the simplex

projection that limits the number of non-zero elements. While its usage in Equation

3.7 results in a non-convex optimization problem, the hard thresholding properties

can yield easy to interpret factors (top-k elements). To perform hard-thresholding on

the nth factor matrix, A(n), the regularization term is:

Rk

(
A(n)

)
=

R∑
r=1

∥a(n)r ∥0

Discriminative Factors In some scenarios, the discovered patterns should be dis-

criminative of a certain outcome of interest. For example, we may want to use the

clinical characteristics to predict things like mortality or whether or not the patient is

likely to be readmitted in 30 days. [62] introduced a logistic regression regularization

20

that encouraged the derivation of latent factors that can distinguish in-hospital mor-

tality outcomes. SGranite also adopts the regularization term to derive discriminative

latent factors when such information exists. Without loss of generality, we assume

that the first mode has labeled records. Then the discriminative regularization is of

the form:

Rk

(
A(1)

)
= logP (A(1), y|θ) (3.8)

The probability of a sample a(i, :) (ith row in A(1)) having the outcome of interest,

P (A(1), y|θ), is obtained by training a logistic regression model on the factor matrix

A(1).

Sparse, Diverse, and Discriminative Patterns To demonstrate the flexibility

of SGranite, we introduce all three forms of regularization into our final optimization

problem. Thus, the final objective function is:

f(M) =
∑
i⃗

(mi⃗ − xi logmi⃗)+

β1

N∑
n=1

R∑
r=1

r∑
p=1

max

(
0,

(anp)
Tanr

∥anp∥2∥anr ∥2
− θn

)2

+

β2

N∑
n=1

R∑
r=1

(s− ||a(n)
r ||2) + β3 logP (A(1), y|θ)

(3.9)

SGD Updates

This section provides details of how to solve our optimization problem efficiently

(Equation 3.9). SGranite uses an alternating minimization approach, cycling through

each mode while fixing all the other modes. For each mode, the resulting subproblem

is solved using stochastic gradient descent (SGD). To derive the SGD updates, we first

re-write the objective function as a scalar-valued function of the parameter vector y

using the same approach as [1]. The parameter vector y represents the vectorization

21

of the factor matrices, with the weights λ absorbed into the first factor matrix.

y =



vec(λA(1))

vec(A(2))

...

vec(A(n))


As a result, the gradients of the objective function can be formed by vectorizing the

partial derivatives with respect to each component of this parameter vector:

∇f(y) =
[
vec(

∂f

∂A(1)
) · · · vec(∂f

∂A(n)
)

]

For notational convenience, we also represent the matricized form of the tensor

decomposition as:

Jλ;A(1), · · · ,A(N)K(n) = λA(n)(A(−n))T

where

A(−n) = A(N) ⊙ · · · ⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1).

Thus, the partial derivatives of Equation 3.9 with respect to the factor matrix, A(n)

are the following:

∂f

∂A
(n)
r

=
[
1−X(n) ⊘ Z(n)

]
a(−n)
r +

β1

∑
p ̸=r

max (0, g(a(n)r , a(n)p))
∂g(a

(n)
r , a

(n))
p

∂a
(n)
r

+

β2a
(n)
r + β3y

1

1 + exp(yA
(1)
r)

θ

(3.10)

We refer the reader to [52, 62] for the detailed derivation of the gradients.

For large datasets, the calculation of the derivatives simultaneously for all modes is

22

computationally expensive. Thus, SGranite uses an SGD approach to avoid storing

the entire tensor in memory. For faster convergence, we adopt a variant of SGD

named Adaptive Moment Estimation (Adam) to adaptively update the learning rate

[64]. Our preliminary experiments on a single machine showed that SGD with Adam

converged faster and more accurately than using a fixed learning rate.

Algorithm 3.1 SGD updating process

for l = 1, . . . , L do
Randomly select n samples.
Calculate the gradients for samples using Equation 3.10.
Compute the decaying averages of past and past squared gradients.
Take a step using averaged gradients.

end

Figure 3.2: A graphical example of our method: Suppose there are 2 workers, we
will have 8 blocks and 4 strata after partition. We run this process iteratively until
convergence. In each epoch, start from strata one, each worker runs SGD for its own
assigned block in parallel. Check the convergence until all strata are iterated. We
repeat above algorithm again if the stopping criteria is not satisfied. All intermediate
results are saved as Resilient Distributed Datasets (RDD) collections and cached in
memory.

3.2.2 Parallel Algorithm using Spark

Although SGD scales well to sparse data, we would like to distribute the computation

to achieve results faster. FlexiFact proposed distributing the computation by dividing

23

the tensor such that no two blocks share any elements (along with any dimension) [8].

Thus, the SGD algorithm can be run in parallel on each block without sacrificing ac-

curacy. We refer the reader to [8, 33] for detailed proof of convergence. SGranite uses

the same approach to distribute the non-zero elements of the count tensor using this

tensor partition. However, we note several main differences between our framework

and Flexifact: (1) support for sparse, count data by using an appropriate objective

function (KL divergence), (2) flexibility to incorporate a variety of constraints beyond

sparsity and non-negativity, and (3) distributed computation using Apache Spark.

Unlike SGranite, FlexiFact uses the Hadoop Map-Reduce platform to distribute

the data collection across multiple nodes. Unfortunately, a Hadoop workflow spends

an exorbitant amount of time on disk operations, as it needs to read and write in-

termediary results on the disk. On the other hand, Apache Spark [139] has been

proposed as an alternative that eliminates unnecessary disk operations for iterative

algorithms. By performing the data analytic operations in-memory and in near real-

time, Spark can achieve lower computation times. Thus, the proposed method is

developed using Spark to distribute the computation.

Tensor Partition First, we define a stratum as a set of independent blocks, and

we denote the number of blocks in each stratum by d. Suppose we have d available

workers, in order to iterate all regions of X , we need d3 blocks and thus d2 strata.

For a stratum s we have d blocks Z
(s)
i for i = 0, 1, · · · , n − 1. A detailed partition

24

function for a size of I × J ×K tensor X is provided below:

bi = (i⌈I/d⌉, (i+ 1)⌈I/d⌉)

bj = (j⌈J/d⌉, (j + 1)⌈J/d⌉)

bk = (k⌈K/d⌉, (k + 1)⌈K/d⌉)

js,i = (j + s)

ks,i = (j + s) mod d

Z
(s)
i = X(bi,bjs,i ,bks,i)

(3.11)

Figure 3.2 provides an example of how to divide a count tensor for 2 available workers.

Block Parallelization Prior to introducing how SGranite iteratively solves the

optimization problem in parallel, we introduce some definitions. A full epoch is de-

fined as when the algorithm has seen all the d3 blocks in the tensor. Since we need

d2 strata to cover all the blocks, we need to perform d2 inner iterations. Therefore,

we refer to each stratum training as a single inner iteration. Thus, in SGranite, the

computation of each stratum is performed sequentially in each epoch. But for each

stratum, we run SGD on the d2 blocks in parallel. After each inner iteration, we

update the factor matrices and use them as the initialization for the next stratum.

Figure 3.3 provides an example of training using a single stratum. Upon the comple-

tion of an epoch (all strata have been run), the factor matrices are combined from

all the workers, and then re-normalized for identifiability. The normalization can be

performed for a user-specified mode, otherwise it defaults to the first mode. Conver-

gence is checked between epochs by measuring the changes in the KL divergence to

see if it is below a given tolerance. The details for the parallel-version of SGranite is

described in Algorithm 3.2.

25

Figure 3.3: A graphical example of one stratum training: Given one stratum of
training data and factor matrices A(1), A(2), A(3), we run SGD on each block in parallel.
Then factor matrices A(1), A(2), A(3) are updated and used as the initialization for the
next stratum training.

Algorithm 3.2 SGranite

Randomly initialize factors
Partition the tensor and construct d2 strata
for m = 1,2,. . . do

for l = 1 : d2 do
Assign each block in lth strata to a worker
Each worker runs Algorithm 1 in parallel
Update the factors Jλ;A(1); · · · ;A(N)K

end
Gather results from each worker
Normalize factor matrices according to the specified mode

end

Return Jλ;A(1); · · · ;A(N)K

Spark Implementation Details The non-zero elements of the count tensor are

stored in a list using the coordinate format and loaded as Resilient Distributed

Datasets (RDDs), and then it is shared throughout our cluster as a broadcast vari-

able. A broadcast variable in Spark is immutable, meaning that it cannot be changed

later on. This may seem inconvenient but it truly suits our case since we only need

to read values from the tensor to calculate gradients in each iteration.

We do not broadcast factor matrices since we need to update them in each it-

eration. Due to our partition function, each worker has a chance to update factors

matrices with different boundaries. The best way is to partition factor matrices using

26

Block ID. In this way, we can reduce the memory and communication cost. Specifi-

cally, we applied map and aggregateByKey functions to partition the factor matrices

into blocks. The function map transforms each entry of the sparse tensor into an

element in the RDD whose key is a block ID. Then aggregateByKey groups each

block together and persists in memory. In each inner iteration, we use groupWith

to build a stratum partitioned using partitionBy and then use mapPartitions to

assign tasks to each node.

We found storing factor matrices RDDs and partitioned result in a significant

acceleration, but not doing this will cause virtual memory issues in our experiments.

Our experiments suggest such a design will enable us to obtain better speed-up and

scalability.

3.3 Experimental Results

Datasets: We use the following two publicly available datasets:

• Influenza: Using Google Flu Trends historical data1 from 2003 to 2015, we

generated a tensor to uncover temporal influenza patterns that are unique and

similar across multiple states. For each region in the United States, we collected

the number of search queries related to influenza on a weekly basis over 11 years.

The resulting tensor is 12 regions × 52 weeks × 11 years. Although the data

quality has been shown to be low [92], this dataset is used to demonstrate the

feasibility of SGranite on search data.

• MIMIC-III [61]: MIMIC-III is large database containing de-identified health

data associated with approximately sixty thousand admissions of critical care

unit patients from the Beth Israel Deaconess Medical Center collected between

2001 and 2012. For each patient, we extract medications and the International

1https://www.google.org/flutrends

27

Classification of Diseases (ICD-9) diagnosis codes. ICD-9 codes are aggregated

using Clinical Classification Software (CCS) categories2, a standard preprocess-

ing step in healthcare analysis. Similarly, medications are grouped using the

Anatomical Therapeutic Chemical (ATC) Classification via the RxNorm REST-

ful Web API, a web service developed by the National Library of Medicine3. The

aggregation step results in a 38159 patient × 234 diagnosis × 511 medication

tensor.

Baselines: We will compare SGranite to both centralized and distributed CP de-

composition methods.

• CP-APR [19]: The first algorithm proposed for modeling sparse count data us-

ing a Poisson distribution. There is no support for constraints, and the updates

are performed using multiplicative updates. The algorithm has been ported to

Python by the authors of [52].

• Granite [52]: A centralized extension of CP-APR that incorporates the angular

penalty, ℓ2, and the simplex projection as regularization terms. The authors

shared a python implementation of Granite fit using SGD.

• FlexiFact [8]: A distributed algorithm based on the DSGD approach that fac-

torizes a coupled tensor and matrix using a similar partition method. However,

it uses least squares as an objective and only supports non-negativity and ℓ1

constraints. For a fair comparison, we implemented the algorithm in Spark

according to the paper.

Scalability and speed-up First, we assess the quality of the approximation (mea-

sured by KL divergence) for SGranite and the other baseline methods. Figure 3.4

2The mapping from ICD-9 to CCS can be found at https://www.hcup-us.ahrq.gov/

toolssoftware/ccs/ccs.jsp.
3Details for the RxNorm RESTful Web API can be found at https://mor.nlm.nih.gov/

download/rxnav/RxNormAPIREST.html.

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://mor.nlm.nih.gov/download/rxnav/RxNormAPIREST.html
https://mor.nlm.nih.gov/download/rxnav/RxNormAPIREST.html

28

and 3.5 show the KL divergence as the function of the number of epochs on both

datasets. For the centralized algorithms (CP-APR and Granite), each epoch corre-

sponds to a full iteration. The plots demonstrate that SGranite converges at least

4× faster than FlexiFact and also faster than the centralized algorithms. Moreover,

the quality of the approximation is better than any of the existing methods. This sug-

gests that SGD-based methods may help escape undesirable local minima (compared

to CP-APR). The figure also highlights the importance of appropriately modeling the

data distribution as opposed to using the least-squares loss (FlexiFact) may not yield

the best approximation.

Next, we evaluate the scalability of our algorithm with respect to the number of

workers. We calculate the speed-up as the ratio between the total execution time and

the sequential execution time. Figure 3.6 demonstrates the speed-up of SGranite with

respect to the number of workers. As can be seen in the figure, the speed up for the

MIMIC tensor is very close to the ideal speed-up, as it is relatively large. However,

there is a limited improvement on the Influenza tensor, a small dataset. This is due to

the communication cost that is incurred in coordinating the different nodes. We note

that because SGranite caches the updated factor matrices in memory to minimize

disk accesses between consecutive iterations, it is able to scale to a large dataset and

a large number of workers. Since this speed-up would not be possible on a system

like Hadoop, we do not provide a comparison with FlexiFact.

Figure 3.4: Influenza Figure 3.5: MIMIC Figure 3.6: Speed-up

29

Qualitative and Quantitative Assessment of the Constraints To examine the

impact of the constraints, we first compare the results from SGranite on the influenza

dataset both with and without the angular and simplex regularization terms. Figure

3.7a shows the latent factors learned without the regularization terms, and Figure

3.7b shows the latent factors learned with the regularization terms. From these plots,

we observe that the learned factors without regularization are highly correlated and

can be difficult to distinguish from one another. In Figure 3.7a, it is hard to discern

any noticeable pattern across the weeks and the different regions. In comparison,

Figure 3.7b demonstrates the potential of incorporating both diversity and sparsity.

We can observe that factor 2 predominantly captures the peak influenza season that

occurs both towards the end of December and in mid-February in region 7, whereas

factor 3 is slightly delayed and captures the influenza trend in regions 1 and 10.

Furthermore, all three factors capture the peak in influenza season that occurs in late

December and early February through March.

Next, we quantitatively assessed the impact of the logistic regression and angular

penalty on the MIMIC-III dataset. To evaluate the discriminative power and dis-

tinctiveness of the learned factors, we used the in-hospital mortality cohort similar to

that proposed in [62]. We used 37,000 patients, including all 5,014 patients who died

during admission. We split our dataset into 80% training and 20% testing. We mea-

sured the discrimination on the test set using the area under the receiver operating

characteristic curve (AUC). Distinctiveness is measured using the average overlap or

the degree of overlapping between latent factors. It is defined as the average of cosine

similarities between all latent factor pairs:

Avg Overlap =

∑R
r1

∑R
r2>r1

cos(a
(2)
r1 , a

(2)
r2) + cos(a

(3)
r1 , a

(3)
r2)

R(R− 1)
(3.12)

30

Table 3.2 summarizes the AUC, total computation time (or running time), and

the average overlap. We observe that SGranite can not only accelerate the ten-

sor decomposition but also provides better prediction than other baseline methods.

Moreover, the average overlap is smaller than Granite even without the angular con-

straints. This suggests that the partition function may also have some beneficial

impact in terms of reducing overlapping factors. Moreover, incorporating the angu-

lar constraints further helps the discriminative ability of the model. This suggests

that adding diversity constraints to yield less correlated latent features may also help

the resulting predictive model. Therefore, SGranite supports a variety of flexible

constraints and yields improved predictive performance.

Model AUC Time Avg Overlap

CP-APR [19] 0.63 > 1 hour 0.3
FlexiFact [8] 0.65 35 mins 0.37
Granite [52] 0.67 > 1 hour 0.3
SGranite (β1 = 0) 0.68 20 mins 0.1
SGranite (β1 > 0) 0.71 25 mins 0.07

Table 3.2: Table of AUC, running time, and average overlapping using different meth-
ods. The highest AUC value means extracted phenotypes have stronger discrimina-
tion. The lowest running time indicates our distributed method can significantly
accelerate the computation time. Compared to CP-APR and FlexiFact, adding an-
gular penalty improved the distinction significantly.

31

(a) No angular penalty and simplex projection (β1 = β2 = 0)

(b) Angular penalty and simplex projection constraints

Figure 3.7: A comparison of the learned latent factors with and without constraints
using R = 3. Year from 2003 to 2015

32

Chapter 4

Acceleration Tensor Decomposition

via numerical methods

Although parallel algorithms are powerful, limitations of such methods include ex-

pensive costs, vulnerability to data leakage and so on. Alternatively, numerical algo-

rithms can often accelerate training dramatically. The most obvious benefits is that

they do not require access to high-performance computing resources. Other benefits

include that they usually can accelerate a wide range of problems and are immune

to data-leakage and thus appropriate for sensitive data. We can view the training

procedure as fixed-point iterations and use numerical methods to further speed up

the convergence. Advanced numerical techniques like the minimal residual method

have been widely studied and proven to be successful for well-defined problems. How-

ever, existing approaches focus solely on numeric data and may not yield desirable

results for binary or count data. Therefore, we proposed FAST-CP[49], a novel algo-

rithm to accelerate the convergence of the SGD-based tensor decomposition model

via gradient extrapolation. First, we found näıve adoption of extrapolation did not

improve training. We speculated this was due to the intrinsic noisy updates for SGD

method and proposed to perform extrapolation periodically to meet the smoothness

33

assumption of extrapolation. Further, by incorporating different loss functions based

on the inherent data distribution, our algorithm modeled various tensor data types,

accelerated convergence in terms of speed and quality, and improved the learning sta-

bility of SGD. Our empirical results on three real-world datasets demonstrated that it

decreases the total computation time while providing accurate results for downstream

tasks without necessitating a high-performance computing platform or environment.

We begin by explaining how SGD works for variety of CP objective functions.

Next we present our novel extrapolation technique that improves the convergence of

SGD methods and obtains a more optimal convergence point. Then we provide some

theoretical convergence analyses to support our method.

4.1 Generalized CP decomposition using SGD

Gradient descent is a common technique used to deal with CP decomposition asso-

ciated with various loss functions f . If we define Y = X −M, the partial derivative

of F in Equation (3.3) with respect to A(n) can be written as

∂F

∂A(n)
= −2Y(n)Zn, (4.1)

where Y(n) is the matricization of Y along mode-n and Zn is the Khatri-Rao product

of all factor matrices except A(n). The operation on the right hand size of (4.1) is

called the matricized tensor times Khatri-Rao product (MTTKRP).

Similarly, the partial derivative of F in Equation (3.4) with respect to A(n) can

be written as

∂F

∂A(n)
= −(1−Xn ⊘Y(n))Zn, (4.2)

and the partial derivative of F in Equation (3.5) with respect to A(n) can be written

34

as

∂F

∂A(n)
= −(1⊘Y(n) −Xn ⊘Y(n))Zn, (4.3)

For Equations (4.1)–(4.3), even when X is sparse, Y is usually a fully dense ten-

sor. If S =
∏N

i=1 Ii, then the calculation of gradients for CP decomposition involves

an intermediate sequence of N matricized-tensor times Khatri-Rao products (MT-

TKRPs) with a dense tensor of size S. These operations cost O(RS), even when X

is sparse. Thus, for large-scale tensor problems, the computational and storage costs

of computing the exact gradient may be infeasible.

In recent years, SGD algorithms have been proposed to alleviate the difficulty of

applying standard gradient descent in tensor decomposition problems. To create a

random sparse instance Ỹ(n) ofY(n), one can sampleK indices uniformly with replace-

ment. This uniform sampling is one of the most common strategies used for fitting

dense tensors. However it may not be appropriate for sparse tensors since nonzeros

will rarely be sampled. A stratified sampling-based SGD algorithm has recently been

proposed in [67] to fix this issue. Different from previously proposed tensor SGD

algorithms[9, 111], this algorithm samples both zero and non-zero elements of X and

constructs Ỹ as an unbiased estimation of Y .

While SGD-based algorithms are memory efficient, both uniform sampling and

stratified sampling-based approaches often require too many iterations to converge in

practice. Moreover, the SGD-based CP algorithm can oscillate around the minimal.

Thus, we are interested in designing an algorithm that can further accelerate SGD

algorithms and yield more accurate results.

4.2 Extrapolated Stochastic Gradient Descent

Classical extrapolation methods reviewed in Section 2.2.2 can be quite effective but

they all rely heavily on some intrinsic smoothness characteristics of the sequence. This

35

smoothness is expressed by either the Shanks kernel or the differential of the function

f . Preliminary experiments show that extrapolation on factor matrices did not yield

any considerable speedup. This is because the factor matrices generated by SGD

algorithms are both random and noisy, which violates the smoothness assumption

required by classical extrapolation methods.

In the deep learning community, a similar idea called smoothing has been explored

to avoid sharp minima and obtain better generalization performance [47, 130]. The

basic idea is to uniformly average a sample of past gradients to obtain the so-called

extragradient. In fact, these smoothing techniques correspond to a special case in

tensor SGD algorithms when only the last gradient matrix is used to update the

current factor matrix. Since the convergence of these smoothing methods depends on

the magnitude of the extragradient and classical nonlinear acceleration techniques can

produce a gradient with smaller norm than the extragradient, applying extrapolation

techniques on gradient sequences can lead to faster convergence.

In this thesis, we adopt the Vector Epsilon Algorithm (VEA) [132] framework to

implement our gradient sequence extrapolation. This framework uses the general-

ized matrix inverse to extend the scalar ϵ-algorithm to sequences of matrices. The

algorithm is summarized in the following formula:

ϵ
(i)
−1 = 0

ϵ
(i)
0 = ∆A

(n)
i

ϵ
(i)
k+1 = ϵ

(i+1)
k−1 +

(ϵ
(i+1)
k −ϵ

(i)
k)∥∥∥ϵ(i+1)

k −ϵ
(i)
k

∥∥∥2
F

for k > 0.

(4.4)

The final output of those sequences defined in ϵ-algorithm represent the Shanks trans-

forms of the original sequence ∆A
(n)
i . As soon as a new iterate ∆A

(n)
i becomes

available we can immediately compute ϵ
(i−1)
1 , ϵ

(i−2)
2 , The VEA implementation is

detailed in Algorithm 4.1.

After we obtain the extrapolated gradient matrix, we use it to update the current

36

factor matrix with the same stepsize as the baseline optimization algorithm. Note

that this is different from VEA where the original sequence is not interlaced with the

extrapolated one. We call this extrapolated SGD method as FAST-CP and detail its

major operations in Algorithm 4.2. We further extend the extrapolation idea of SGD

to Adam and validate its effectiveness (compared with Adam) on CP decomposition

in the experiments. When Adam is used as the baseline optimizer, we still pass the

stochastic gradient sequence in Algorithm 4.1.

Algorithm 4.1 Extrapolation of gradient sequence for mode n

1: For the first time: Initialize a table T(n) with 2k + 1 columns. Set a window size
k.

2: Input: The latest gradient matrix ∆A
(n)
i and factor matrix A

(n)
i+1, current itera-

tion number i, table T(n)

3: Output: Updated factor matrix A
(n)
i+1, table T(n)

4: j = 1, z = 0 and an empty array Y
5: Set Y(:, 1) = ∆A

(n)
i

6: while j < 2k + 1 and j < i do
7: Compute △ε = Y(:, j)−T(n)(:, j)
8: Calculate z = z+△ε/ ∥△ε∥2F
9: Y(:, j + 1) = z
10: Reset z = T(n)(:, j)
11: j = j + 1
12: end while
13: Set T(n) = Y and E(n) = T(n)(:, 2k + 1)
14: if i ≤ 2k and j mod 2 == 1 then {when i is too small}
15: E(n) = E(n)/

∥∥E(n)
∥∥2
F

16: end if
17: Update A

(n)
i+1 := A

(n)
i+1 − γE(n)

18: return A
(n)
i+1, T

(n) =0

4.3 Theoretical Analysis

In this section, we provide some theoretical justifications for the proposed method

shown in Algorithm 4.1.

Following most convergence analyses for SGD methods [74, 144], we make the

37

Algorithm 4.2 FAST-CP

1: Input: N -way tensor X , batch size K, learning rate γ, max epoch number M ,
number of SGD updates per epoch I, gradient sequence length k

2: Output: CP decomposition A(1), · · · ,A(N)

3: Initialize factors A(1), · · · ,A(N)

4: while Not converged or max epoch number not reached do
5: Shuffle indices of tensor X
6: for i = 1 : I do
7: Get samples either using uniform sampling or stratified sampling
8: for all modes do {optimize all at once}
9: Calculate gradients ∆A(n) according to (4.1)–(4.3)

10: Update A
(n)
i+1 = A

(n)
i − γ∆A

(n)
i

11: Update A
(n)
i+1 and T(n) according to Algorithm 4.1

12: end for
13: end for
14: Check convergence
15: end while
16: return A(1), · · · ,A(N) =0

following three assumptions for the tensor gradient sequence:

Assumption 1 The objective function F is continuously differentiable and the gra-

dient of F is Lipschitz continuous with Lipschitz constant L > 0.

Assumption 2 The stochastic gradient computed by Equations (4.1)–(4.3) is an

unbiased estimator of the true gradient.

Assumption 3 The variance of the stochastic gradients is bounded. That is there

exists a constant σ2 > 0 such that

E

[
∥ ∂F

∂A(n)
−∆A(n)∥2

]
≤ σ2

for all modes n.

We first review the known convergence result for mini-batch SGD on non-convex

functions from [34].

Theorem 4.3.1. Under the assumptions 1-3, after T mini-batch gradient updates,

38

each with K samples, the mini-batch SGD returns an iterate x which satisfies

E
[
∥∇F (x)∥2

]
≤ O

(
L(F (x0)− F ∗)

T
+

σ
√
L(F (x0)− F ∗)√

KT

)
,

where x0 is the initial guess and F ∗ is a lower bound on the values of F .

Theorem 4.3.1 indicates that when the mini-batch size is small, the converge rate

is dominated by the term
σ
√

L(F (x0)−F ∗)
√
KT

which has possible speedup as K increases.

On the other hand, when the mini-batch size becomes large, further increasing the

mini-batch size has little effect on the convergence as the convergence rate will be

dominated by the first term L(F (x0)−F ∗)
T

. In the numerical experiments, we carefully

tune this hyperparameter and choose the optimal one for baseline methods.

In the next theorem, we review the asymptotic convergence for SGD with extra-

gradients when only one worker and no momentum term are used.

Theorem 4.3.2 (Theorem 4.4 [74]). Under the same assumptions as in Theorem

4.3.1, when the stepsize γ ≤ 1
L
, the sequence xt generated by extragradients satisfies

E

[
1

T

T−1∑
t=0

∥∇F (xt)∥2
]

(4.5)

≤ 2

γT
E [F (x0)− F ∗] +

(
4γ2L2

K
+

γL

K

)
σ2, (4.6)

where x0 is the initial guess and F ∗ is a lower bound on the values of F .

Although Theorem 4.3.2 cannot show that SGD with extragradients achieves a

speedup over mini-batch SGD, its superior performance in terms of faster convergence

and better generalization has been demonstrated in various deep learning tasks [23,

35, 74].

39

4.4 Experimental Results

All experiments were run using Python on a Dual Socket Intel E5-2683v3 2.00GHz

CPU with 64 GB memory. 1

Datasets

We use the following three publicly available tensors that are from small to large and

consist of continuous, count and binary data respectively.

• Human Connectome Project (HCP): Human Connectome Project collects mea-

surements of structural and functional neural connections in vivo within and

across individuals2. We use the constructed tensor from [124]. It is a 68×68×212

binary tensor consisting of structural connectivity patterns among brain regions

for 212 individuals. Each entry encodes the presence or absence of fiber con-

nections between the brain regions.

• MNIST: A dataset of handwritten numbers from 250 different people, available

from the National Institute of Standards and Technology (NIST) [71]. The

MNIST dataset contains 60,000 images in the training set, each of size 28× 28

pixels with 256 gray levels. We normalize each element by using the global mean

(0.1307) and standard deviation (0.3081). After the normalization process, a

60000× 28× 28 numeric tensor is obtained.

• Yelp: A dataset that contains 4M ratings from 1M users in Yelp across 149

months3. The tensor modes correspond to 1,029,432 Yelp users, 144,072 busi-

nesses and 149 months. Each entry represents the user rating (integer from 1

to 5) for the business. We use this dataset to demonstrate the scalability of .

1Our implementation is available at https://github.com/hehuannb/fast-cp.
2http://www.humanconnectomeproject.org/data/hcp-project/
3http://www.yelp.com/datasetchallenge

http://www.humanconnectomeproject.org/data/hcp-project/
http://www.yelp.com/datasetchallenge

40

Baseline Methods

In this experiment, four baselines have been selected to evaluate the performance.

The baseline methods contain alternating minimization including CP-ALS[45] and

CP-APR[18, 44] and SGD-based methods including GCP-SGD and Adam[67].

• CP-ALS[45]: The standard method for fitting the CP model to numeric data.

The algorithm alternates among the modes, fixing every factor matrix but A(i).

CP-ALS has a closed-form solution for each mode but requires significant mem-

ory.

• CP-APR [18, 44]: An algorithm proposed for modeling sparse count data using

a Poisson distribution. This algorithm employs an alternating optimization

scheme that sequentially optimizes one factor matrix while holding the others

fixed. We use the state-of-the-art CP-APR[44] as a baseline model which uses

limited-memory quasi-Newton approximations.

• GCP-SGD [67]: An algorithm for fitting the generalized CP decomposition

using SGD. It adopts both uniform sampling and stratified sampling strategies.

When the tensor is dense, we use the uniform sampling. When the tensor is

sparse, we choose stratified sampling since it is more efficient and converges

faster. It uses SGD as the base optimizer.

• GCP-Adam [67]: The only difference is that GCP-Adam uses Adam [63] as

the base optimizer, which usually converges faster than SGD in deep learning

applications.

41

A: MNIST B: Yelp C: HCP

Figure 4.1: Convergence plots for the SGD-based methods for the 3 datasets. In A,
R = 60, batch size=2000, each epoch contains 3000 iterations. In B, R = 100, batch
size=5000, each epoch contains 100 iterations. In C, R = 10, batch size=500, each
epoch contains 300 iterations.

42

Chapter 5

Accelerating general minimax

optimization via Anderson

Acceleration

Since the operator of many machine learning training loops is not a simple linear

operator, it is natural to ask the question of whether numerical techniques can help

other machine learning tasks? In this section, we answer this question affirmatively

by introducing GDA-AM that solves minimax optimization efficiently and accurately.

5.1 Minimax Optimization

Minimax optimization has received a surge of interest due to its wide range of appli-

cations in modern machine learning, such as generative adversarial networks (GAN),

adversarial training and multi-agent reinforcement learning [38, 73, 78]. Formally,

given a bivariate function f(x,y), the objective is to find a stable solution where

the players cannot improve their objective, i.e., to find the Nash equilibrium of the

43

underlying game [121]:

argmin
x∈X

argmax
y∈Y

f(x,y). (5.1)

Definition 3. Point (x∗,y∗) is a local Nash equilibrium of f if there exists

δ > 0 such that for any (x,y) satisfying ∥x− x∗∥ ≤ δ and ∥y − y∗∥ ≤ δ we have:

f (x∗,y) ≤ f (x∗,y∗) ≤ f (x,y∗) .

To find the Nash equilibria, common algorithms including GDA, EG and OG, can

be formulated as follows. For the two variants of GDA, simultaneous GDA (SimGDA)

and alternating GDA (AltGDA), the updates have the following forms:

Simultaneous : xt+1 = xt − η∇xf(xt,yt), yt+1 = yt + η∇yf(xt,yt)

Alternating : xt+1 = xt − η∇xf(xt,yt), yt+1 = yt + η∇yf(xt+1,yt).

(5.2)

The EG update has the following form:

xt+ 1
2
= xt − η∇xf(xt,yt), yt+ 1

2
= yt + η∇yf(xt,yt)

xt+1 = xt − η∇xf(xt+ 1
2
,yt+ 1

2
), yt+1 = yt + η∇yf(xt+ 1

2
,yt+ 1

2
).

(5.3)

The OG update has the following form:

xt+1 = xt − η∇xf(xt,yt) +
η

2
∇xf(xt−1,yt−1),

yt+1 = yt + η∇yf(xt,yt)−
η

2
∇yf(xt−1,yt−1).

(5.4)

It is commonplace to use simple algorithms such as gradient descent ascent (GDA)

to solve such problems, where both players take a gradient update simultaneously or

alternatively. Despite its simplicity, GDA is known to suffer from a generic issue

for minimax optimization: it may cycle around a stable point, exhibit divergent

behavior, or converge very slowly since it requires very small learning rates [36, 82].

Given the widespread usage of gradient-based methods for solving machine learning

44

problems, first-order optimization algorithms to solve minimax problems have gained

considerable popularity in the last few years. Algorithms such as optimistic Gradient

Descent Ascent (OG) [22, 82] and extra-gradient (EG) [36] can alleviate the issue of

GDA for some problems. Yet, it has been shown that these methods can still diverge

or cycle around a stable point [2, 80, 98]. For example, these algorithms even fail to

find a local minimax (the set of local minimax is a superset of local Nash [59, 126])

as shown in Figure 5.1.

(a) Cycling Behavoir (b) Diverging Behavoir (c) Converging to a non-optima

Figure 5.1: Left:f(x, y) = (4x2 − (y − 3x + 0.05x3)2 − 0.1y4)e−0.01(x2+y2). Middle:
−3x2− y2 + 4xy. Right: f(x, y) = 2x2 + y2 + 4xy+ 4

3
y3− 1

4
y4. We can observe that

baseline methods fail to converge to a local minimax, whereas GDA-AM with table size
p = 3 always exhibits desirable behaviors.

5.2 Our Method: GDA-AM

Our contributions: In this thesis, we propose a different approach to solve mini-

max optimization. Our starting point is to cast the GDA dynamics as a fixed-point

iteration. We then highlight that the fixed-point iteration can be solved effectively by

using advanced non-linear extrapolation methods such as Anderson Mixing [4], which

we name as GDA-AM. redAlthough first mentioned in [6], to our best knowledge, this

is still the first work to investigate and improve the GDA dynamics by tapping into

advanced fixed-point algorithms.

We demonstrate that GDA dynamics can benefit from Anderson Mixing. In par-

ticular, we study bilinear games and give a systematic analysis of GDA-AM for both

45

simultaneous and alternating versions of GDA. We theoretically show that GDA-AM can

achieve global convergence guarantees under mild conditions.

We complement our theoretical results with numerical simulations across a variety

of minimax problems. We show that for some convex-concave and non-convex-concave

functions, GDA-AM can converge to the optimal point with little hyper-parameter tun-

ing whereas existing first-order methods are prone to divergence and cycling behav-

iors.

We also provide empirical results for GAN training across two different datasets,

CIFAR10 and CelebA. Given the limited computational overhead of our method, the

results suggest that an extrapolation add-on to GDA can lead to significant perfor-

mance gains. Moreover, the convergence behavior across a variety of problems and the

ease-of-use demonstrate the potential of GDA-AM to become the minimax optimization

workhorse.

5.2.1 Fixed-Point Iteration and Anderson Mixing (AM)

Definition 4. w⋆ is a fixed point of the mapping g if w⋆ = g (w⋆) .

Consider the simple fixed-point iteration wt+1 = g(wt) which produces a sequence

of iterates {w0, w1, · · · , wN}. In most cases, this converges to the fixed-point, w∗ =

g(w∗). Take gradient descent as an example, it can be viewed as iteratively applying

the operation: wt+1 = g (wt) ≜ wt−αt∇f (wt) , where the limit is the fixed-pointw⋆ =

g (w⋆) (i.e.∇f (wt = 0) . SimGDA updates can be defined as the repeated application

of a nonlinear operator:

wt+1 = G(sim)
η (wt) ≜ wt − ηV (wt) with w =

x
y

 , V (w) =

 ∇xf(x,y)

−∇yf(x,y)


Similarly, we can write AltGDA updates as wt+1 = G

(alt)
η (wt). An issue with fixed-

46

point iteration is that it does not always converge, and even in the cases where it

does converge, it might do so very slowly. GDA is one example that it could result

in the possibility of the operator converging to a limit cycle instead of a single point

for the GDA dynamic. A way of dealing with these problems is to use acceleration

methods, which can potentially speed up the convergence process and in some cases

even decrease the likelihood for divergence.

There are many different acceleration methods, but we will put our focus on an

algorithm which we refer to as Anderson Mixing (or Anderson Acceleration). In short,

Anderson Mixing (AM) shares the same idea as Nesterov’s acceleration. Given a fixed-

point iteration wt = g (wt−1), Anderson Mixing argues that a good approximation to

the final solution w∗ can be obtained as a linear combination of the previous p iterates

wt+1 =
∑p

i=0 βig (wt−pt+i). Since obtaining the proper coefficients βi is a nonlinear

procedure, Anderson Mixing is also known as a nonlinear extrapolation method. The

general form of Anderson Mixing is shown in Algorithm 5.1. For efficiency, we prefer

a ‘restarted’ version with a small table size p that cleans up the table F every p

iterations because it avoids solving a linear system of increasing size.

Algorithm 5.1 Anderson Mixing Prototype (truncated version)

Input: Initial point w0, Anderson restart dimension p, fixed-point mapping g : Rn →

Rn.

Output: wt+1

for t = 0, 1, . . . do

Set pt = min{t, p}.

Set Ft = [ft−pt , . . . , ft], where fi = g(wi)− wi for each i ∈ [t− pt . . t].

Determine weights β = (β0, . . . , βpt)
T that solves minβ ∥Ftβ∥2 , s. t.

∑pt
i=0 βi =

1.

Set wt+1 =
∑pt

i=0 βig (wt−pt+i).

end

47

5.2.2 AM and Generalized Minimal Residual (GMRES)

Developed by Saad and Schultz [103], Generalized Minimal Residual method (GM-

RES) is a Krylov subspace method for solving linear system equations. The method

approximates the solution by the vector in a Krylov subspace with minimal residual,

which is described below.

Definition 5. Assume we have the linear system of equations Ax = b with A ∈

Rn×n,b ∈ Rn and an initial guess x0. Then we denote the initial residual by r0 =

b−Ax0 and define the tth Krylov subspace as Kt = span{r0,Ar0, · · · ,At−1r0}.

The tth iterate xt of GMRES minimizes the norm of the residual rt = b−Axt in

Kt, that is, xt solves

min
xt∈x0+Kt

∥b−Axt∥2 .

The following formulation is equivalent to GMRES minimization problem and more

convenient for implementation. It computes x̂t such that

x̂t = argmin
x̂t∈Kt

∥b−A (x0 + x̂t)∥2 = argmin
x̂t∈Kt

∥r0 −Ax̂t∥2 .

Using a larger Krylov dimension will improve the convergence of the method, but will

require more memory. For this reason, a smaller Krylov subspace dimension t and

‘restarted’ versions of the method are used in practice [104].

The convergence of GMRES can be studied through the magnitude of the residual

polynomial.

Theorem 5.2.1 (Lemma 6.31 of [104]). Let x̂t be the approximate solution obtained

at the t-th iteration of GMRES being applied to solve Ax = b, and denote the residual

as rt = b−Ax̂t. Then, rt is of the form

rt = ft(A)r0, (5.5)

48

where

∥rt∥2 = ∥ft(A)r0∥2 = min
ft∈Pt

∥ft(A)r0∥2, (5.6)

where Pp is the family of polynomials with degree p such that fp(0) = 1,∀fp ∈ Pp,

which are usually called residual polynomials.

Although GMRES is applied to a system of linear equations not a fixed-point

problem, there is a strong connection between Anderson Mixing and GMRES. In AM

we are looking for a fixed-point x such that Gx− b− x = 0 and by rearranging this

equation we get

b+ (G− I)x = 0⇔ (I−G)x = b.

Theorem 5.2.2 shows that if GMRES is applied to the system (I−G)x = b and AM is

applied to g(x) = Gx+b with the same initial guess and I−G is non-singular, then

these are equivalent in the sense that the iterates of each algorithm can be obtained

directly from the iterates of the other algorithm.

Theorem 5.2.2 (Equivalence between AM with restart and GMRES [122]). Consider

the fixed point iteration x = g(x) where g(x) = Gx+b for G ∈ Rn×n and b ∈ Rn. If

I −G is non-singular, Algorithm 5.1 produces exactly the same iterates as GMRES

being applied to solve (I−G)x = b when both algorithms start with the same initial

guess.

Theorem 5.2.2 can also be generalized to the restart version of AM an GMRES

as well.

5.2.3 GDA-AM

We propose a novel minimax optimizer, called GDA-AM, that is inspired by recent

advances in parameter (or weight) averaging [131, 137]. We argue that a nonlinear

49

adaptive average (combination) is a more appropriate choice for minimax optimiza-

tion.

We propose to exploit the dynamic information present in the GDA iterates to

“smartly” combine the past iterates. This is in contrast to the classical averaging

methods (moving averaging and exponential moving averaging) [135] that “blindly”

combine past iterates. A näıve adoption of Anderson Mixing using the past p GDA

iterates for both simGDA and altGDA has the following form:

Anderson mixing : xt+1 =

p∑
i=0

βixt−p+i,yt+1 =

p∑
i=0

βiyt−p+i. (5.7)

Since [37, 141] show the AltGDA is superior to SimGDA in many aspects, we briefly

summarized both Simultaneous and Alternating GDA-AM in Algorithms 5.2 and 5.3

with the truncated Anderson Mixing Algorithm 5.1 using a table size p.

50

Algorithm 5.2 Simultaneous GDA-AM

Input: x0,y0, stepsize η, Anderson

table size p

Output: xt,yt

Set w0 = [x0,y0], sx = length(x0)

for t = 0, 1, . . . do

xt,yt = wt[0 : sx− 1],wt[sx : end]

xt+1 = xt − η∇xf(xt,yt)

yt+1 = yt − η∇yf(xt,yt)

wt+1 =

xt+1

yt+1


Use Anderson Mixing with table

size p to extrapolate wt+1

end

xt,yt = wt+1[0 : sx−1],wt+1[sx : end]

return xt,yt

Algorithm 5.3 Alternating GDA-AM

Input: x0,y0, stepsize η, Anderson

table size p

Output: xt,yt

Set w0 = [x0,y0], sx = length(x0)

for t = 0, 1, . . . do

xt,yt = wt[0 : sx− 1],wt[sx : end]

xt+1 = xt − η∇xf(xt,yt)

yt+1 = yt − η∇yf(xt+1,yt)

wt+1 =

xt+1

yt+1


Use Anderson Mixing with table

size p to extrapolate wt+1

end

xt,yt = wt+1[0 : sx−1],wt+1[sx : end]

return xt,yt

Implementation details It is important to note that the Anderson Mixing form

shown in Algorithm 5.1 is for illustrative purpose and not computationally efficient.

For example, only one column of Ft needs to be updated at each iteration. In addition,

the solution of the least-square problem in Algorithm 5.1 can also be solved by a quick

QR update scheme which costs (2n+ 1)p2 [122]. Thus, from Algorithms 5.2 and 5.3,

we can see that the major cost of GDA-AM arises from solving the additional linear

least squares problem compared to regular GDA at each iteration.

Fast Implementation Details

In this section, we discuss the efficient implementation of Anderson Mixing. We start

with generic Anderson Mixing prototype (Algorithm 6.3) and then present the idea

51

of Quick QR-update Anderson Mixing implementation as described in Walker and Ni

[123], which is commonly used in practice. For each iteration t ≥ 0 , AM prototype

solves a least squares problem with a normalization constraint. The intuition is to

minimize the norm of the weighted residuals of the previous m iterates.

Algorithm 5.4 Anderson Mixing Prototype (truncated version)

Input: Initial point w0, Anderson restart dimension p, fixed-point mapping g : Rn →

Rn.

Output: wt+1

for t = 0, 1, . . . do

Set pt = min{t, p}.

Set Ft = [ft−pt , . . . , ft], where fi = g(wi)− wi for each i ∈ [t− pt . . t].

Determine weights β = (β0, . . . , βpt)
T that solves minβ ∥Ftβ∥2 , s. t.

∑pt
i=0 βi =

1.

Set wt+1 =
∑pt

i=0 βig (wt−pt+i).

end

The constrained linear least-squares problem in Algorithm AA can be solved in a

number of ways. Our preference is to recast it in an unconstrained form suggested

in Fang and Saad [30], Walker and Ni [123] that is straightforward to solve and

convenient for implementing efficient updating of QR.

Define fi = g(wi)−wi, △fi = fi+1−fi for each i and set Ft = [ft−pt , . . . , ft], Ft =

[△ft−pt , . . . ,△ft]. Then solving the least-squares problem (minβ ∥Ftβ∥2 , s. t.
∑pt

i=0 βi =

1) is equivalent to

min
γ=(γ0,...,γpt−1)

T
∥ft −Ftγ∥2 (5.8)

where α and γ are related by α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ pt − 1, and

αpt = 1− γpt−1.

Now the inner minimization subproblem can be efficiently solved as an uncon-

52

strained least squares problem by a simple variable elimination. This unconstrained

least-squares problem leads to a modified form of Anderson Mixing

wt+1 = g (wt)−
pt−1∑
i=0

γ
(t)
i [g (wt−pt+i+1)− g (wt−pt+i)] = g (wt)− Gtγ(t)

where Gt = [△gt−pt , . . . ,△gt−1] with △gi = g(wi+1)− g(wi) for each i.

To obtain γ(t) =
(
γ
(t)
0 , . . . , γ

(t)
pt−1

)T
by solving (5.8) efficiently, we show how the

successive least-squares problems can be solved efficiently by updating the factors in

the QR decomposition Ft = QtRt as the algorithm proceeds. We assume a think

QR decomposition, for which the solution of the least-squares problem is obtained by

solving the pt× pt linear system Rγ = Q′ ∗ ft. Each Ft is n× pt and is obtained from

Ft−1 by adding a column on the right and, if the resulting number of columns is greater

than p, also cleaning up (re-initialize) the table. That is,we never need to delete the

left column because cleaning up the table stands for a restarted version of AM. As a

result, we only need to handle two cases; 1 the table is empty(cleaned). 2 the table is

not full. When the table is empty, we initialize F1 = Q1R1 with Q1 = △f0/ ∥△f0∥2

and R = ∥△f0∥2. If the table size is smaller than p, we add a column on the right of

Ft−1. Have Ft−1 = QR, we update Q and R so that Ft = [Ft−1,∆ft−1] = QR. It is

a single modified Gram–Schmidt sweep that is described as follows:

Algorithm 5.5 QR-updating procedures

for i = 1, . . . , pt−1 do

Set R(i, pt) = Q(:, i)′ ∗ △ft−1.

Update △ft−1 ← ∆ft−1 −R (i, pt) ∗Q(:, i)

end

Set Q (:, pt) = △ft−1/ ∥△ft−1∥2 and R (pt, pt) = ∥∆ft−1∥2

Note that we do not explicitly conduct QR decomposition in each iteration, instead

we update the factors (O(p2n)) and then solve a linear system using back substitution

53

which has a complexity of O(p2). Based on this complexity analysis, we can find

Anderson Mixing with QR-updating scheme has limited computational overhead than

GDA (or OG). This explains why GDA-AM is faster than EG but slower than OG in

terms of running time of each iteration.

5.3 Convergence results for GDA-AM

In this section, we show that both simultaneous and alternating version GDA-AM con-

verge to the equilibrium for bilinear problems. First, we do not require the learning

rate to be sufficiently small. Second, we explicitly provide a linear convergence rate

that is faster than EG and OG. More importantly, we derive nonasymptotic rates

from the spectrum analysis perspective because existing theoretical results can not

help us derive a convergent rate.

Bilinear Games

Bilinear games are often regarded as an important simple example for theoretically

analyzing and understanding new algorithms and techniques for solving general min-

imax problems [36, 82, 107]. In this section, we analyze the convergence property

of simultaneous GDA-AM and alternating GDA-AM schemes on the following zero-sum

bilinear games:

min
x∈Rn

max
y∈Rn

f(x,y) = xTAy + bTx+ cTy, A is full rank. (5.9)

The Nash equilibrium to the above problem is given by (x∗,y∗) = (−A−Tc,−A−1b).

We also investigate bilinear-quadratic games from a spectrum analysis perspective.

In addition, we show that analysis based on the numerical range [12] can be also

extended to such games, although it can not help derive a convergent bound for

(5.9). Detailed discussion can be found in Appendix 5.6 and 5.6.

54

Simultaneous GDA-AM

Suppose x0 and y0 are the initial guesses for x∗ and y∗, respectively. Then each

iteration of simultaneous GDA can be written in the following matrix form:

xt+1

yt+1

 =

 I −ηA

ηAT I


︸ ︷︷ ︸

G(Sim)

xt

yt


︸ ︷︷ ︸
w

(Sim)
t

−η

b
c


︸︷︷︸
b(Sim)

.
(5.10)

It has been shown that the iteration in (5.10) often cycles and fails to converge

for the bilinear problem due to the poor spectrum/numerical range of the fixed point

operator G(Sim) [6, 36, 86]. Next we show that the convergence can be improved with

Algorithm 5.2.

Theorem 5.3.1. [Global convergence for simultaneous GDA-AM on bilinear problem]

Denote the distance between the stationary point w∗ and current iterate w(k+1)p of

Algorithm 5.2 with table size p as N(k+1)p = ∥w∗ − w(k+1)p∥. Then we have the

following bound for Nt

N2
(k+1)p ≤ ρ(A)N2

kp (5.11)

where ρ(A) = (1
Tp(1+

2

κ(ATA)−1
)
)2. Here, Tp is the Chebyshev polynomial of first kind of

degree p and 1
Tp(1+

2

κ(ATA)−1
)
< 1 since 1 + 2

κ(ATA)−1
> 1.

It is worthy emphasizing that the convergence rate of Algorithm 5.2 is independent

of learning rate η while the convergence results of other methods like EG and OG

depend on the learning rate.

Remark 5.3.1.1. Both EG and OG have the following form of convergence rate [86]

for bilinear problem

N2
t+1 ≤ (1− c

κ(ATA)
)N2

t ,

where c is a positive constant independent of the problem parameters.

55

(a) Eigenvalues of iteration
matrix of SimGDA and
GDA-AM

(b) Different condition
number

(c) Different table size, con-
dition number κ = 100

Figure 5.2: Figure 5.2a: The blue line is the spectrum of matrix G(Sim) while the
red line is spectrum of matrix I − G(Sim). Our method transforms the divergent
problem to a convergent problem due to the transformed spectrum. Figure 5.2b:
Convergence rate comparison between SimGDA-AM and EG for different condition
numbers of A and fixed table size p = 10, 20, 50. Figure 5.2c: Convergence rate
comparison between SimGDA-AM and EG for increasing table size on a matrix A
with condition number 100.

Alternating GDA-AM

The underlying fixed point iteration in Algorithm 5.3 can be written in the following

matrix form: xt+1

yt+1

 =

 I −ηA

ηAT I− η2ATA


︸ ︷︷ ︸

G(Alt)

xt

yt


︸ ︷︷ ︸
w

(Alt)
t

−η

b
c


︸︷︷︸
b(Alt)

.

According to the equivalence between truncated Anderson acceleration and GM-

RES with restart, we can analyze the convergence of Algorithm 5.3 through the

convergence analysis of applying GMRES to solve linear systems associated with

G = I−G(Alt):

G =

 0 ηA

−ηAT η2ATA

 .

56

Theorem 5.3.2. [Global convergence for alternating

GDA-AM on bilinear problem] Denote the distance between

the stationary point w∗ and current iterate w(k+1)p of Al-

gorithm 5.3 with table size p as N(k+1)p = ∥w∗ − w(k+1)p∥.

Assume A is normalized such that its largest singular value

is equal to 1. Then when the learning rate η is less than 2,

we have the following bound for Nt

N2
(k+1)p ≤

√
1 +

2η

2− η
(
r

c
)pN2

kp

where c and r are the center and radius of a disk D(c, r)

which includes all the eigenvalues of G. Especially, r
c
< 1.

Figure 5.3: An illustration

of the spectrum of G (red)

and the closing circle (blue)

in Theorem 5.3.2.

Theorem 5.3.2 shows that when p >
log

√
2−η
2+η

log r
c

, alternating GDA-AM will converge

globally.

Discussion of obtained rates We would like to first explain on why taking Cheby-

shev polynomial of degree p at the point 1+ 2
κ−1

. We evaluate the Chebyshev polyno-

mial at this specific point because the reciprocal of this value gives the minimal

value of infinite norm of the all polynomials of degree p defined on the interval

Ĩ = [η2σ2
min(A), η2σ2

max(A)] based on Theorem 6.25 (page 209) [104]. In other

words, taking the function value at this point leads to the tight bound.

When comparing between existing bounds, we would like to point our our derived

bounds are hard to compare directly. Alternatively, we can derive another bound for

comparison with existing bounds for simultaneous GDA-AM. If we use the inequality

that Tp(t) ≥ 1
2
((t +

√
t2 − 1)p), we can obtain the bound ρ(A) = 4(

√
κ(ATA)−1√
κ(ATA)+1

)2 =

4(1−O(1√
κ(ATA)

)), which is in a form that is comparable with EG and can compete

with EG + positive momentum. The numerical experiments in figure 2b numerically

verify that our bound is smaller than EG. We wanted to numerically compare our

57

rate with EG with positive momentum. However the bound of EG with positive

momentum is asymptotic. Moreover, it does not specify the constants so we can

not numerically compare them. We do provide empirical comparison between GDA-

AM and EG with positive momentum for bilinear problems in Appendix ??. It

shows GDA-AM outperforms EG with positive momentum. Regarding alternating

GDA-AM , we would like to note that the bound in Theorem 5.3.2 depends on the

eigenvalue distribution of the matrix G. Condition number is not directly related

to the distribution of eigenvalues of a nonsymmetric matrix G. Thus, the condition

number is not a precise metric to characterize the convergence. If these eigenvalues

are clustered, then our bound can be small. On the other hand, if these eigenvalues

are evenly distributed in the complex plane, then the bound can very close to 1.

More importantly, we would like to stress several technical contributions.

1 : Our obtained Theorem 5.3.1 and 5.3.2 provide nonasymptotic guarantees, while

most other work are asymptotic. For example, EG with positive momentum can

achieve a asymptotic rate of 1−O(1/
√
κ) under strong assumptions [6].

2 : Our contribution is not just about fix the convergence issue of GDA by applying

Anderson Mixing; another contribution is that we arrive at a convergent and tight

bound on the original work and not just adopting existing analyses. We developed

Theorem 5.3.1 and 5.3.2 from a new perspective because applying existing theoretical

results fail to give us neither convergent nor tight bounds.

3 : Theorem 5.3.1 and 5.3.2 only requires mild conditions and reflects how the table

size p controls the convergence rate. Theorem 5.3.1 is independent of the learning

rate η. However, the convergence results of other methods like EG and OG depend on

the learning rate, which may yield less than desirable results for ill-specified learning

rates.

58

5.4 Related Work

There is a rich literature on different strategies to alleviate the issue of minimax

optimization. A useful add-on technique, Momentum, has been shown to be effective

for bilinear games and strongly-convex-strongly-concave settings [6, 37, 140]. Several

second-order methods [2, 80, 83, 98] show that their stable fixed points are exactly

either Nash equilibria or local minimax by incorporating second-order information.

However, such methods are computationally expensive and thus unsuitable for large

applications such as image generation. Focusing on variants of GDA, EG and OG

are two widely studied algorithms on improving the GDA dynamics. EG proposed

to apply extra-gradient to overcome the cycling behaviour of GDA. OG, originally

proposed in [101] and rediscovered in [22, 82], is more efficient by storing and re-

using the extrapolated gradient for the extrapolation step. Without projection, OG

is equivalent to extrapolation from past. [87] shows that both of these algorithms

can be interpreted as approximations of the classical proximal point method and

did a unified analysis for bilinear games. These approaches mentioned the GDA

dynamics can be viewed as a fixed-point iteration, but none of them further provides

a solution to improve it. In this work, we fill this gap by proposing the application

of the extrapolation method directly on the entire GDA dynamics. Unlike OG, EG

and their variants [57, 72, 116, 135], which regard minimax problems as variational

inequality problems [14, 89], our work is from a new perspective and thus orthogonal

to these previous approaches.

In addition, several recent works consider nonconvex-concave minimax problems.

[143] introduced a “smoothing” scheme combined with GDA to stabilize the dynamic

of GDA. [77] proposed a method called Stochastic Recursive gradiEnt Descent Ascent

(SREDA) for stochastic nonconvex-strongly-concave minimax problems, by estimat-

ing gradients recursively and reducing its variance. [75] showed that the two-timescale

GDA can find a stationary point of nonconvex-concave minimax problems effectively.

59

[94] proposed a variant of Nesterov’s accelerated algorithm to find ϵ -first-order Nash

equilibrium that is a stronger criterion than the commonly used proximal gradient

norm. [91] proposed a iterative method that finds ϵ -first-order Nash equilibrium in

O(ϵ−2) iterations under Polyak-Lojasiewicz (PL) condition. Focusing on nonconvex

minimax problems, they studied an interesting and difficult problem. Since our work

cast insight on the effectiveness of solving minimax optimization via Anderson Mix-

ing, we expect the extension of this algorithm to general nonconvex problems can be

further investigated in the future.

5.5 Experiments

In this section, we conduct experiments to see whether GDA-AM improves GDA for

minimax optimization from simple to practical problems. We first investigate per-

formance of GDA-AM on bilinear games. In addition, we evaluate the efficacy of our

approach on GANs.

Bilinear Problems

In this section, we answer following questions: Q1: How is GDA-AM perform in terms of

iteration number and running time? Q2: How is the scalability of GDA-AM ? Q3: How

is the performance of GDA-AM using different table size p? Q4: Does GDA-AM converge

for large step size η?

We compare the performance with SimGDA, AltGDA, EG, and OG, and EG

with Negative Momentum([6]) on bilinear minimax games shown in (5.9) without

any constraint.

A,b, c, and initial points are generated using normally distributed random num-

ber. We set the maximum iteration number as 1 × 106, stopping criteria 1 × 10−5

and depict convergence by use of the norm of distance to optima, which is defined as

60

∥w∗−wt∥. Similar to Azizian et al. [6], Wei et al. [127], the step size is set as 1 after

rescaling A to have 2-norm 1. We present results of different settings in Figures 5.4,

5.5, and 5.6.

We first generate different problem size (n = 100, 1000, 5000) and present results

of convergence in terms of iteration number in Figure 5.4. It can be observed that

GDA-AM converges in much fewer iterations for different problem sizes. Note that EG,

EG-NM, and OG converge in the end but requires many iterations, thus we plot only

a portion for illustrative purposes. Figure 5.5 depicts the convergence for all methods

in terms of time. It can be observed that the running time of GDA-AM is faster

than EG. Although slower than OG, we can observe GDA-AM converges in much less

time for all problems. Figure 5.4 and Figure 5.5 answer Q1 and Q2; although there

is additional computation for GDA-AM , it does not hinder the benefits of adopting

Anderson Mixing. Even for a large problem size, GDA-AM still converges in much less

time than the baselines.

Next, we run GDA-AM using different table size p and show the results in Figure

5.6a and Figure 5.6b. Figure 5.6a indicates an increasing of table size results in faster

convergence in terms of iteration number, which also verifies our claim in Theorem

5.3.1. However, we also observe an increased running time when using a larger table

size in Figure 5.6b. Further, we can see that p = 50 converges in a comparable

time and iterations to p = 100. Similar results are found in repeated experiments as

well. As a result, our answer to Q3 is that although a larger p means less iterations, a

medium p is sufficient and a small p still outperforms the baselines. The optimal choice

of p is related to the condition number and step size, which is another interesting topic

in the Anderson Mixing community.

Next, we answer Q4 on convergence under different step sizes. Although GDA-AM usu-

ally converges with suitable step size, our theorem suggests it requires a larger table

size when combined with a extremely aggressive step size. Figure 5.6c shows the

61

convergence under such circumstance. We can observe that although a very large

step size goes the wrong way in the beginning, Anderson Mixing can still make it

back on track except when η > 1. It answers the question and confirms our claim

that GDA-AM can achieve global convergence for bilinear problems for a large step size

η > 0.

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 5.4: Comparison in terms of iteration: minx maxy f(x,y) = xTAy+bTx+cTy.
We use different problem size and fix p = 10, η = 1 for all experiments.

(a) Time comparison for Fig-
ure 5.4a

(b) Time comparison for Fig-
ure 5.4b

(c) Time comparison for Fig-
ure 5.4c

Figure 5.5: Comparison between methods in terms of time.

Robust Neural Network Training In this section, we test the effectiveness of

GDA-AM by training a robust neural network on MNIST data set against adversarial

attacks [40, 69, 79] . The optimization formulation is

min
w

N∑
i=1

max
δi, s.t. |δi|∞≤ε

ℓ (f (xi + δi;w) , yi) (5.12)

62

(a) Effects of p in terms of it-
eration

(b) Time compasion for Fig-
ure 5.6a

(c) Effect of step size η, p =
10

Figure 5.6: Effects of table size p and step size η, n = 500

where w is the parameter of the neural network, the pair (xi, yi) denotes the i-th

data point, and δi is the perturbation added to data point i. The accuracy of our

formulation against popular attacks, FGSM [40] and PGD [69], are summarized in

Table 5.1.. Since solving such problem is computationally challenging, [91] proposed

an approximation of the above optimization problem with a new objective function

as the following nonconvex-concave problem:

min
w

N∑
i=1

max
t∈T

9∑
j=0

tjℓ
(
f
(
xK
ij ;w

)
, yi
)
, T =

{
(t1, · · · , tm) |

m∑
i=1

ti = 1, ti ≥ 0

}
(5.13)

where K is a parameter in the approximation, and xK
ij is an approximated attack

on sample xi by changing the output of the network to label j. We use the public

available implementation [91] 1. We apply our algorithm on top of [91] and compare

our results (p = 50) with [79, 91, 142, 143]. Results are summarized in table 5.1. We

can observe that GDA-AM leads to a comparable or slightly better performance to the

other methods. In addition, GDA-AM does not exhibit a significant drop in accuracy

when ϵ is larger and this suggests the learned model is more robust.

1https://github.com/optimization-for-data-driven-science/Robust-NN-Training

63

Natural FGSM L∞ PGD40L∞
ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.2 ε = 0.3 ε = 0.4

[79] 98.58% 96.09% 94.82% 89.84% 94.64% 91.41% 78.67%
Trade: ε = 0.35 97.37% 95.47% 94.86% 79.04% 94.41% 92.69% 85.74%
Trade: ε = 0.40 97.21% 96.19% 96.17% 96.14% 95.01% 94.36% 94.11%

[91] 98.20% 97.04% 96.66% 96.23% 96.00% 95.17% 94.22%
[143] 98.89% 97.87% 97.23% 95.81% 96.71% 95.62% 94.51%

GDA-AM 98.61% 97.75% 97.74% 97.75% 96.47% 95.91% 95.41%

Table 5.1: Test accuracies under FGSM and PGD attack. Trade refers to [142].

GAN Experiments: Image Generation We apply our method to the CIFAR10

dataset [68] and use the ResNet architecture with WGAN-GP [43] and SNGAN

[85] objective. We also compared the performance of GDA-AM using cropped CelebA

(64×64) [76] on WGAN-GP. We compare with Adam and extra-gradient with Adam

(EG) as it offers significant improvement over OG. Models are evaluated using the

inception score (IS) [106] and FID [53] computed on 50,000 samples. For fair compar-

ison, we fixed the same hyperparamters of Adam for all methods after an extensive

search. Experiments were run with 5 random seeds. We show results in Table 5.2. Ta-

ble 5.2 reports the best IS and FID (averaged over 5 runs) achieved on these datasets

by each method. We see that GDA-AM yields improvements over the baselines in terms

of generation quality.

Table 5.2: Best inception scores and FID for Cifar10 and FID for CelebA (IS is a less
informative metric for celebA).

WGAN-GP(ResNet) SNGAN(ResNet)
CIFAR10 CelebA CIFAR10

Method IS ↑ FID ↓ FID IS FID
Adam 7.76 ±.11 22.45 ±.65 8.43 ±.05 8.21 ±.05 20.81 ±.16
EG 7.83 ±.08 20.73 ±.22 8.15 ±.06 8.15 ±.07 21.12 ±.19

Ours (GDA-AM) 8.05 ±.06 19.32 ±.16 7.82 ±.06 8.38 ±.04 18.84 ±.13

64

5.6 Theoretical Results

Difficulty of analysis on GDA with Anderson Mixing

In the analysis, we study the inherent structures of the dynamics of the fixed point

iteration and provide the convergence analysis for both simultaneous and alternating

schemes. We want to emphasize that the direct application of existing convergence

results of GMRES can not lead to convergent results. A recent paper [12] study the

convergence acceleration schemes for multi-step optimization algorithms using Reg-

ularized Nonlinear Acceleration. We also want to point out that a näıve application

of Crouzeix’s bound to the minimax optimization problem can not be used to derive

the convergent result.

Theorem 5.6.1 ([32]). Let n ≥ 5 be an integer, r > 1, and c ∈ R. Consider the

following constrained polynomial minmax problem

min
p∈Pn:p(c)=1

max
z∈Er

|p(z)| (5.14)

where

Er :=

{
z ∈ C

∣∣∣ |z − 1|+ |z + 1| ≤ r +
1

r

}
(5.15)

and c ∈ C \ Er. Then this problem can be solved uniquely by

tn(z; c) :=
Tn(z)

Tn(c)
, (5.16)

where

Tn(z) =
1

2

(
vn +

1

vn

)
, z =

1

2

(
v +

1

v

)
(5.17)

if

(a) |c| ≥ 1
2

(
r
√
2 + r−

√
2
)
or

(b) |c| ≥ (1/2ar)
(
2a2r − 1 +

√
2a4r − a2r + 1

)
, where ar :=

1
2

(
r + 1

r

)
.

65

This is because the point 0 where all the residual polynomials take the fixed value

of 1 is included in the numerical range of the iteration matrix, which violates the

assumption of Theorem 5.6.1. As a result, it can not be used to prove that the

residual norm is decreasing based on this approach. Instead, we show that although

the coefficient matrix is non-normal, it is diagonalizable. We then give the convergence

results based on the eigenvalues instead of the numerical range. More specifically,

Anderson mixing is equivalent to GMRES being applied to solve the following linear

system:

(I−G(Alt))w = b(Alt), with w0 = w
(Alt)
0 . (5.18)

Writing this linear system in the block form:

 0 ηA

−ηAT η2ATA

w = b(Alt). (5.19)

The residual norm bound for GMRES reads:

∥rt∥2 = min
p∈P1

t

∥p(I−G(Alt))r0∥2. (5.20)

Notice that the matrix (I −G(Alt)) is non-normal. If we apply Crouzeix’s bound in

[21] to our problem as [12] did, then we have the following bound

∥rt∥2
∥r0∥2

≤ min
p∈P1

t

∥p(I−G(Alt))∥ ≤ (1 +
√
2)min

p∈P1
t

sup
z∈W (I−G(Alt))

∥p(z)∥ (5.21)

where W (I −G(Alt)) = {z∗(I − G(Alt))z,∀z ∈ C2n \ {0}, ∥z∥ = 1} is the numerical

range for I −G(Alt). In order to simplify the upper bound in the previous theorem,

we study the numerical range of I − G(Alt) similar to [12]. Writing z =

z1
z2

 and

66

computing the numerical range of I−G(Alt) explicitly yields:

[
z∗1, z

∗
2

] 0 ηA

−ηAT η2ATA


z1
z2

 = η2z∗2A
TAz2 + ηz∗1Az2 − ηz∗2A

Tz1. (5.22)

For a general matrix A, there is no special structure about the numerical range of

I−G(Alt). However, when A is symmetric, we can decompose A as A =
∑n

i=1 λiviv
T
i

where {λi}ni=1 are eigenvalues of A in decreasing order and {vi}ni=1 are associated

eigenvectors, and write ATA =
∑n

i=1 λ
2
iviv

T
i . Then we can compute the numerical

range of G(Alt) as follows:

n∑
i

[
z∗1, z

∗
2

] 0 ηλiviv
T
i

−ηλiviv
T
i η2λ2

iviv
T
i


z1
z2

 =
n∑
i

[
z∗1vi, z

∗
2vi

] 0 ηλi

−ηλi η2λ2
i

 .

vT
i z1

vT
i z2


(5.23)

Following the techniques proposed in [12] to analyze the numerical range of general

2 × 2 matrices, we can show that the numerical range of I − G(Alt) is equal to the

convex hull of the union of the numerical range of

Gi =

 0 ηλi

−ηλi η2λ2
i

 , i = 1, . . . , n. (5.24)

And the boundary of numerical range of Gi is an ellipse whose axes are the line

segments joining the points x to y and w to z, respectively, with

x = 0, y = η2λ2
i , , w =

η2λ2
i

2
−
√
−1η|λi|, z =

η2λ2
i

2
+
√
−1η|λi|. (5.25)

Thus, the numerical range of I −G(Alt) can be spanned by convex hull of the union

of the numerical range of a set of 2-by-2 matrices and the numerical range of each

such a 2-by-2 matrix is an ellipse. We can compute the center o and focal distance

67

d of the ellipse generated by numerical range of I −G(Alt) explicitly. Then a linear

transformation enables us to use Theorem 5.6.1 to show that the near-best polynomial

for the minimax problem on the numerical range of I−G(Alt) is given by tn(z; c) :=

Tn(
z−o
d

)

Tn(
c−o
d

)
if 0 is excluded from the numerical range of I−G(Alt). However, according to

equation 5.25 the numerical range includes the point 0 where the residual polynomial

takes value 1, thus the analysis based on numerical range can not help derive the

convergent result as the upper bound is not guaranteed to be less than 1.

Proofs of theorem

We first provide proof of Theorem. 5.3.1.

Theorem 5.6.2 (Global convergence for simultaneous GDA-AM on bilinear problem).

Denote the distance between the stationary point w∗ and current iterate w(k+1)p of

Algorithm 5.2 with Anderson restart dimension p as N(k+1)p = dist(w∗,w(k+1)p).

Then we have the following bound for Nt Algorithm 5.2 is unconditionally convergent

N(k+1)p ≤
1

Tp(1 +
2

κ(ATA)−1
)
Nkp (5.26)

where Tp is the Chebyshev polynomial of first kind of degree p and 1
Tp(1+

2

κ(ATA)−1
)
< 1

since 1 + 2
κ(ATA)−1

> 1.

Proof of Theorem 5.3.1. Note that I −G(Sim) is a normal matrix which will be

denoted as G for notational simplicity. Thus it admits the following eigendecompo-

sition:

G = UΛUT , UUT = I, Λ = diag(λ1, . . . , λ2n). (5.27)

Based on the equivalence between GMRES and Anderson Mixing, we know that the

convergence rate of simultaneous GDA-AM can be estimated by the spectrum of G.

68

Especially, it holds that

r(k+1)p = Ufp(Λ)UT rkp. fp ∈ Pp (5.28)

where Pp is the family of residual polynomials with degree p such that fp(0) = 1,∀fp ∈

Pp. According to Lemma 5.2.1, we have the following estimation

∥r(k+1)p∥2 = min
fp∈Pp

∥fp(G)rkp∥2 ≤ min
fp∈Pp

max
i
|fp(λi)|∥rkp∥2. (5.29)

Due to the block structure of G, the eigenvalues of G can be computed explicitly as

±ησi

√
−1, i = 1, . . . , n, (5.30)

where σi is the ith largest singular value of matrix A. This shows that the eigenvalues

of G are n pairs of purely imaginary numbers excluding 0 since A has full rank.

Since the eigenvalues of G are distributed in two intervals excluding the origin

I = [−ησmax(A)
√
−1,−ησmin(A)

√
−1] ∪ [ησmin(A)

√
−1, ησmax(A)

√
−1],

it can be shown that the following p-th degree polynomial with value 1 at the origin

that has the minimal maximum deviation from 0 on I is given by:

fp(z) =
Tl(q(

√
−1z))

Tl(q(0))
, q(

√
−1z) = 1− 2(

√
−1z − ησmin)(

√
−1z + ησmin)

(ησmax(A))2 − (ησmin(A))2
(5.31)

where l = [p
2
] and Tl is the Chebyshev polynomial of first kind of degree l. The function

q(
√
−1z) maps I to [−1, 1]. Thus the numerator of the polynomial fp is bounded by 1

on I. The size of denominator can be determined by the method discussed in Chapter

3 of [41]. Assume q(0) = 1
2
(y + y−1), then Tl(q(0)) = 1

2
(yl + y−l). Then y can be

69

determined by solving

q(0) =
(ησmax(A))2 + (ησmin(A))2

(ησmax(A))2 − (ησmin(A))2
. (5.32)

The solutions to this equation are

y1 =
ησmax(A) + ησmin(A)

ησmax(A)− ησmin(A)
or y2 =

ησmax(A)− ησmin(A)

ησmax(A) + ησmin(A)
. (5.33)

Then plugging the value of q(0) into the polynomial fp yields

∥r(k+1)p∥
∥rkp∥

≤ 2
(√η2σ2

max(A)−
√
η2σ2

min(A)√
η2σ2

max(A) +
√

η2σ2
min(A)

)l
= 2
(σmax(A)− σmin(A)

σmax(A) + σmin(A)

)l
= 2
(κ(A)− 1

κ(A) + 1

)l (5.34)

Note that Nt and rt is related through G(wt −w∗) = rt. Therefore,

N(k+1)p = ∥w(k+1)p −w∗∥2 = ∥G−1r(k+1)p∥2 = min
fp∈Pp

∥G−1fp(G)G(wkp −w∗)∥2

≤ min
fp∈Pp

max
i
|fp(λi)|∥wkp −w∗∥2 ≤ 2

(
1− 2

κ(A) + 1

) p
2
Nkp.

(5.35)

Actually a tighter bound can be proved after noting that the problem is essentially

equivalent to polynomial minmax problem on the interval:

Ĩ = [η2σ2
min(A), η2σ2

max(A)],

70

Then it is well known that,

N(k+1)p ≤ min
fp∈Pp

max
λi∈[η2σ2

min(A), η2σ2
max(A)]

|fp(λi)|∥wkp −w∗∥2 ≤
1

Tp(1 + 2
σ2
min

σ2
max−σ2

min
)
Nkp

≤ 1

Tp(1 +
2

κ(ATA)−1
)
Nkp

(5.36)

where Tp Chebyshev polynomial of degree p of the first kind and 1
Tp(1+

2

κ(ATA)−1
)
< 1.

Explicitly,

Tp(1 +
2

κ(ATA)− 1
) =

1

2

[(
1 +

2

κ(ATA)− 1
+

√
(1 +

2

κ(ATA)− 1
)2 − 1

)p
+
(
1 +

2

κ(ATA)− 1
+

√
(1 +

2

κ(ATA)− 1
)2 − 1

)−p]

Next, we give the proof of Theorem 5.3.2.

Theorem 5.6.3 (Global convergence for alternating GDA-AM on bilinear problem).

Denote the distance between the stationary point w∗ and current iterate w(k+1)p of

Algorithm 5.3 with Anderson restart dimension p as N(k+1)p = dist(w∗,w(k+1)p).

Assume A is normalized such that its largest singular value is equal to 1. Then when

the learning rate η is less than 2, we have the following bound for Nt

N2
(k+1)p ≤

√
1 +

2η

2− η
(
r

c
)pN2

kp

where c and r are the center and radius of a disk D(c, r) which includes all the

eigenvalues of G in (5.3). Especially, r
c
< 1.

71

Proof. Since the residual rp of AA at p-th iteration has the form of

rp = (I−
p∑

i=1

Gi)r0,

and AA minimizes the residual, we have

∥r(k+1)p∥22 ≤ min
β
∥rkp − βGirkp∥22 ≤ min

fp∈Pp

∥fp(G)rkp∥22,

where Pp is the family of polynomials with degree p such that fp(0) = 1,∀fp ∈ Pp .

It’s easy to see that G is unitarily similar to a block diagonal matrix Λ with 2 × 2

blocks as follows:  0 ησi

−ησi (ησi)
2

 ∀ i ∈ [n].

Thus the eigenvalues of G can be easily identified as

λ±i =
(ησi(ησi ±

√
(ησi)2 − 4))

2
, i ∈ [n].

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values of A. Furthermore, the eigenvector

and eigenvalue associated with each 2× 2 diagonal block are

 0 ησi

−ησi (ησi)
2


 1

λ±i

ησi

 = λ±i

 1

λ±i

ησi


Thus G is diagonalizable and denote the matrix with the columns of eigenvectors of

G by X. The real part of the eigenvalues of G are at least

R(λ±i) ≥
(ησi)

2

2
, i ∈ [n]. (5.37)

And since |ησi| ≥ |
√
(ησi)2 − 4)|, all the eigenvalues will be included in a disk D(c, r)

72

which is included in the right half plane. Moreover, both c and r being greater than

zero indicates that r
c
< 1. Start from the following inequality:

N(k+1)p =
∥∥w(k+1)p −w∗∥∥

2
=
∥∥G−1r(k+1)p

∥∥
2
≤ min

fp∈Pp

∥∥G−1fp(G)rkp
∥∥
2

= min
fp∈Pp

∥∥G−1fp(G)G (wkp −w∗)
∥∥
2
= min

fp∈Pp

∥∥G−1
p (G) (wkp −w∗)

∥∥
2

= min
fp∈Pp

∥fp(G) (wkp −w∗)∥2

(5.38)

We will use the eigendeomposition of G and the special polynomial (c−t
c
)p to derive

the inequality in Theorem 5.3. Now we know r
c
< 1. If we choose gp(t) = (c−t

c
)p, we

can obtain

min
fp∈Pp

∥fp(G)(wkp −w∗)∥2 ≤ ∥gp(G)(wkp −w∗)∥2

which implies

min
fp∈Pp

∥fp(G)(wkp −w∗)∥2 ≤ ∥gp(XΛX−1)∥∥(wkp −w∗)∥2

Since G is diagonalizable (which has been shown above), we assume the eigendecom-

position of G is G = XΛX−1. Then

min
fp∈Pp

∥gp(G)(wkp −w∗)∥2 ≤ ∥X∥∥X−1∥ max
{λi}2ni=1

∥gp(Λ)∥∥(wkp −w∗)∥2

≤ κG(
r

c
)p∥wkp −w∗∥2

(5.39)

where κG is the condition number of X. The last inequality comes from Lemma 6.26

and Proposition 6.32 in [104].. Since G and Λ are unitarily similar, κG is equal to the

condition number of the eigenvector matrix of Λ. The eigenvector matrix of Λ is a

73

block diagonal matrix with the ith block as

 1 1

λ+i

ησi

λ−i

ησi

. Thus the singluar values of

the eigenvector matrix of Λ is equal to the union of the singular values of these 2-by-2

blocks. Under the assumption that the largest singular value of A are equal to 1 and

the learning rate is less than 2, it is easy to find the singular values of the eigenvector

matrix of Λ are
√
2± ησi. Thus, κG =

√
2+ησmax√
2−ησmax

=
√
2+η√
2−η

=
√

1 + 2η
2−η

.

5.6.1 Discussion of obtained rates

We would like to first explain on why taking Chebyshev polynomial of degree p at

the point 1 + 2
κ−1

. We evaluate the Chebyshev polynomial at this specific point

because the reciprocal of this value gives the minimal value of infinite norm of the all

polynomials of degree p defined on the interval Ĩ = [η2σ2
min(A), η2σ2

max(A)] based

on Theorem 6.25 (page 209) [104]. In other words, taking the function value at this

point leads to the tight bound.

When comparing between existing bounds, we would like to point our our derived

bounds are hard to compare directly. Alternatively, we can derive another bound for

comparison with existing bounds for simultaneous GDA-AM. If we use the inequality

that Tp(t) ≥ 1
2
((t +

√
t2 − 1)p), we can obtain the bound ρ(A) = 4(

√
κ(ATA)−1√
κ(ATA)+1

)2 =

4(1−O(1√
κ(ATA)

)), which is in a form that is comparable with EG and can compete

with EG + positive momentum. The numerical experiments in figure 2b numerically

verify that our bound is smaller than EG. We wanted to numerically compare our

rate with EG with positive momentum. However the bound of EG with positive

momentum is asymptotic. Moreover, it does not specify the constants so we can

not numerically compare them. We do provide empirical comparison between GDA-

AM and EG with positive momentum for bilinear problems. It shows GDA-AM

outperforms EG with positive momentum. Regarding alternating GDA-AM , we would

like to note that the bound in Theorem 5.3.2 depends on the eigenvalue distribution

74

of the matrix G. Condition number is not directly related to the distribution of

eigenvalues of a nonsymmetric matrix G. Thus, the condition number is not a precise

metric to characterize the convergence. If these eigenvalues are clustered, then our

bound can be small. On the other hand, if these eigenvalues are evenly distributed

in the complex plane, then the bound can very close to 1.

More importantly, we would like to stress several technical contributions.

1. Our obtained Theorem 5.3.1 and 5.3.2 provide nonasymptotic guarantees, while

most other work are asymptotic. For example, EG with positive momentum

can achieve a asymptotic rate of 1−O(1/
√
κ) under strong assumptions [6].

2. Our contribution is not just about fix the convergence issue of GDA by applying

Anderson Mixing; another contribution is that we arrive at a convergent and

tight bound on the original work and not just adopting existing analyses. We

developed Theorem 5.3.1 and 5.3.2 from a new perspective because applying

existing theoretical results fail to give us neither convergent nor tight bounds.

3. Theorem 5.3.1 and 5.3.2 only requires mild conditions and reflects how the

table size p controls the convergence rate. Theorem 5.3.1 is independent of the

learning rate η. However, the convergence results of other methods like EG and

OG depend on the learning rate, which may yield less than desirable results for

ill-specified learning rates.

Convex-concave and general case

Given the widespread usage of minimax problems in applications of machine learning,

it is natural to ask about its properties when being applied to general nonconvex-

nonconcave settings. If f is a nonconvex-nonconcave function, the problem of finding

global Nash equilibrium is NP-hard in general. Recently, [59] show that local or global

Nash equilibrium may not exist in nonconvex-nonconcave settings and propose a new

75

notation local minimax as defined below:

Definition 6. A point (x⋆,y⋆) is said to be a local minimax point of f , if there

exists δ0 > 0 and a function h satisfying h(δ) → 0 as δ → 0, such that for any

δ ∈ (0, δ0], and any (x,y) satisfying ∥x− x⋆∥ ≤ δ and ∥y − y⋆∥ ≤ δ, we have

f (x⋆,y) ≤ f (x⋆,y⋆) ≤ max
y′:∥y′−y⋆∥≤h(δ)

f (x,y′) .

[59] also establishes the following first- and second-order conditions to characterize

local minimax:

Proposition 1 (First-order Condition). Any local minimax point (x∗,y∗) satisfies

∇f(x∗,y∗) = 0.

Proposition 2 (Second-order Necessary Condition). Any local minimax point (x∗,y∗)

satisfies

∇yyf(x
∗,y∗) ≼ 0and∇xxf(x

∗,y∗)−∇xyf(x
∗,y∗)(∇yyf(x

∗,y∗))−1∇yxf(x
∗,y∗) ≽ 0

(5.40)

Proposition 3 (Second-order Sufficient Condition). Any stationary point (x∗,y∗)

satisfies ∇yyf(x
∗,y∗) ≺ 0 and ∇xxf(x

∗,y∗)−

∇xyf(x
∗,y∗)(∇yyf(x

∗,y∗))−1∇yxf(x
∗,y∗) ≻ 0 is a local minimax point.

Given the second-order conditions of local minimax, it turns out that above ques-

tion is extremely challenging—GDA-AM is a first-order method. But we can prove the

following result for GDA-AM:

Theorem 5.6.4 (Local minimax as subset of limiting points of GDA-AM). Consider a

general objective function f(x,y). The set of limiting points of GDA-AM for minimax

problem

min
x∈Rn

max
y∈Rn

f(x,y)

76

includes the local minimax points of this function.

The definition of local minimax is stronger than that of first order ϵ point. The

convergence analysis for complexity of finding ϵ stationary point is included in the

next section. The proof of Theorem 5.6.4 needs the result from the following theorem.

Theorem 5.6.5 ([15]). Let δ satisfy 0 < δ ≤ δ0 for some constant δ0 > 0 (refer to

[15] for details), and let bδ ∈ X satisfy
∥∥b− bδ

∥∥ ≤ δ. Let k ≤ ℓ and let xδ
k denote

the kth iterate determined by the GMRES method applied to equation Ax = bδ, with

initial guess xδ
0 = 0. Similarly, let xk denote the kth iterate determined by the GMRES

method applied to equation Ax = b with initial guess x0 = 0. Then, there are constants

σk independent of δ, such that

∥∥xk − xδ
k

∥∥ ≤ σkδ, 1 ≤ k ≤ ℓ

Then, we give the proof of Theorem 5.6.4.

Proof of Theorem 5.6.4. For notational simplicity, we will denote ∇xxf(x
∗,y∗),

∇xyf(x
∗,y∗) and ∇yyf(x

∗,y∗) by Hx∗x∗ , Hx∗y∗ and Hy∗y∗ , respectively. Simulta-

neous GDA can be written as

wt+1 =

xt+1

yt+1

 =

xt − η∇xf(xt,yt)

yt + η∇yf(xt,yt)

 .

Since the function is differentiable, Taylor expansion holds for ∇xf(xt,yt)

and ∇yf(xt,yt) at a local minimx point w∗ = (x∗,y∗),

∇xf(xt,yt) = ∇xf(x
∗,y∗) +Hx∗x∗(xt − x∗) +Hx∗y∗(yt − y∗) + o(∥wt −w∗∥2)

∇yf(xt,yt) = ∇yf(x
∗,y∗) +Hy∗y∗(yt − y∗) +Hy∗x∗(xt − x∗) + o(∥wt −w∗∥2).

77

Use the fact that ∇f(x∗,y∗) = 0 to simplify the above equations and obtain

∇xf(xt,yt) = Hx∗x∗(xt − x∗) +Hx∗y∗(yt − y∗) + o(∥wt −w∗∥2)

∇yf(xt,yt) = Hy∗y∗(yt − y∗) +Hy∗x∗(xt − x∗) + o(∥wt −w∗∥2).

Inserting the above formulas into the iteration scheme, it yields

wt+1 =

xt+1

yt+1

 =

I− ηHx∗x∗ −ηHx∗y∗

ηHy∗x∗ I+ ηHy∗y∗


xt

yt

+

 ηHx∗x∗x∗ + ηHx∗y∗y∗ + ϵ

−ηHy∗y∗y∗ − ηHx∗y∗x∗ + ϵ


where ϵ denotes the higher order error o(∥wt −w∗∥2). According to Theorem 5.2.2,

we know that simultaneous GDA-AM is equivalent to applying GMRES to solve the

following linear system (I -

(1− α)I− ηHx∗x∗ −ηHx∗y∗

ηHy∗x∗ (1− α)I+ ηHy∗y∗

) w=
αI+ ηHx∗x∗ ηHx∗y∗

−ηHy∗x∗ αI− ηHy∗y∗

w= b+ ϵ where b =

 ηHx∗x∗x∗ + ηHx∗y∗y∗

−ηHy∗y∗y∗ − ηHx∗y∗x∗

 . We

now know that GDA-AM is equivalent to GMRES being applied to solve the following

linear system αI+ ηHx∗x∗ ηHx∗y∗

−ηHy∗x∗ αI− ηHy∗y∗

 w̃ = b

The symmetric part of the coefficient matrix of the above linear system is

αI+ ηHx∗x∗ 0

0 αI− ηHy∗y∗

 .

According to Proposition 2, αI−ηHy∗y∗ is positive definite since Hy∗y∗ ≼ 0. If Hx∗x∗

is positive semidefinite, then αI+ ηHx∗x∗ is positive definite and we’re done. Other-

wise, assume λmin(Hx∗x∗) < 0. Then for fixed α, when η < − α
λmin(Hx∗x∗)

, αI+ ηHx∗x∗

will be positive definite. Then according to Theorem 5.2.2, we know GDA-AM indeed

78

converges. Let’s create a new companion linear system as follows

αI+ ηHx∗x∗ ηHx∗y∗

−ηHy∗x∗ αI− ηHy∗y∗

 ŵ = b+ αw∗

Note that ŵ = w∗ and GMRES on this companion linear system is convergent under

suitable choice of learning rate η. Let the iterates of GMRES for w̃, ŵ,w be denoted

by w̃t, ŵt,wt. Then ∥w̃t − ŵt∥ ≤ ∥w̃t − wt∥ + ∥ŵt − wt∥. According to Theorem

5.6.5, we also have ∥w̃t − wt∥ ≤ σkϵ, 1 ≤ k ≤ t. Further more, again according to

Theorem 5.6.5, we know ∥ŵt − ŵt∥ ≤ σk(αw
∗ + ϵ). Starting from an initial point

very close to w∗ and let t → ∞ and α, ϵ → 0, ŵt will converge to w∗ = (x∗,y∗),

which means the local minimax w∗ = (x∗,y∗) is a limiting point of GDA-RAM.

Theorem 5.6.6. For strongly-convex-strongly-concave function f(x,y), GDA-AM will

converge to the Nash equilibrium of this function.

Proof: Since strongly-convex-strongly-concave function f(x,y) has unique Nash equi-

librium which is also the unique minimax point, this minimax point must be the

limiting point of GDA-AM according to Theorem 5.6.4.

Bilinear-quadratic games

Moreover, we can further show that the GDA-AM converges on bilinear-quadratic

games. Consider a quadratic problem as follows,

min
x∈Rn

max
y∈Rn

f(x,y) = xTAy + xTBx− yTCy + bTx+ cTy, (5.41)

where A is full rank, B and C are both positive definite.

Theorem 5.6.7. [Global convergence for simultaneous GDA-AM on bilinear-quadratic

problem] Let r
(Sim)
t be the residual of Algorithm 5.2 being applied to problem (5.41).

79

For some constant ρ < 1,

∥r(Sim)
t ∥2 ≤

(
1− (λmin(J

T + J))2

4λmax (JTJ)

)t/2

︸ ︷︷ ︸
ρt/2

∥r0∥2,
(5.42)

where J =

 ηB ηA

−ηAT ηC

 and λmin and λmax denote the smallest and largest eigen-

value, respectively.

The convergence property of GMRES has been studied in the next theorem. We

use this theorem to show the convergence rate of GDA-AM for bilinear-quadratic games.

Theorem 5.6.8 ([28]). Consider solving a linear system Ex = b using GMRES. Let

rt = b − Ext be the residual at tth iteration. If the Hermitian part of E is positive

definite, then for some positive constant ρ < 1, it holds that

∥rt∥2 ≤
(
1− (λmin(E

H + E))2

4λmax (EHE)

)t/2

︸ ︷︷ ︸
ρt/2

∥r0∥2.
(5.43)

Proof of Theorem 5.6.7. Applying simultaneous GDA-AM to solve the above prob-

lem is equivalent to applying Anderson Mixing on the following fixed point iteration:

xt+1

yt+1

 =

I− ηB −ηA

ηAT I − ηC


︸ ︷︷ ︸

G(Quad−sim)

xt

yt


︸ ︷︷ ︸

w
(Quad−sim)
t

+

−ηb
−ηc


︸ ︷︷ ︸

b
(Quad−sim)

.
(5.44)

We know that we need to study the convergence properties of GMRES for solving

80

the following linear system

 ηB ηA

−ηAT ηC

w = b. (5.45)

For notational simplicity, the superscripts has been dropped. Denote the coefficient

matrix

 ηB ηA

−ηAT ηC

 by J. The symmetric part of J is

J+ JT

2
=

η
2
(B+BT) 0

0 η
2
(C+CT)


which is positive definite. Then immediately by Theorem 5.6.8, the following conver-

gence rate holds For some constant 0 < ρ < 1,

∥rt∥2 = min
p∈P1

t

∥p(J)r0∥2 ≤

(
1− (λmin(J+ JT)

2

(4λmax (JTJ))

)t/2

︸ ︷︷ ︸
ρt/2

∥r0∥2

= ρt/2∥r0∥2

(5.46)

Note that the convergence of GDA-AM for bilinear-quadratic games can also be

analyzed by numerical range as shown in [12]. Although we previously show that

analysis based on the numerical range can not help us derive a convergent bound for

bilinear games, we show analysis in [12] can be extended to bilinear-quadratic games.

When B and C are positive definite, 1 is outside of the numerical range of matrix

G(Quad−sim) as shown in 5.7a. When B or C is not positive definite, 1 can be included

in the numerical range of matrix G(Quad−sim) as shown in 5.7b. That is saying analysis

based on the numerical range [12, 21] to the bilinear-quadratic problem can lead to

81

a convergent result when B and C are positive definite. And analysis based on the

numerical range can not help us derive convergent results when B or C is not positive

definite.

(a) Positive definite B and C (b) Random generated B and C

Figure 5.7: Numerical range of fixed-point operator (Simultaneous GDA-AM) G =[
I− ηB −ηA
ηAT I − ηC

]
for bilinear-quadratic games.

Stochastic convex-nonconvace case

In this section, we study the convergence of GDA-AM for convex-noncovace problem in

the stochastic setting with the same assumptions in [128, 133]. The recent work [128]

proves the convergence of the stochastic gradient descent with Anderson Mixing for

min optimization. The convergence of GDA-AM for minimax optimization builds on

top of it with several modifications. The minimax problem is equivalent to minimizing

a function Φ(·) = maxy∈Y f(·,y) [75]. And we are interested in complexity of a pair

of ϵ-stationary point (x, y) instead of analysis of a point x.

82

Definition 7. [75] A pair of points (x,y) is an ϵ-stationary point (ϵ ≥ 0) of a

differentiable function Φ if

∥∇xf(x,y)∥ ≤ ϵ

∥PY (y + (1/ℓ)∇yf(x,y))− y∥ ≤ ϵ/ℓ

Assumption 1. f : Rd 7→ R is continuously differentiable. f(x) ≥ f low > −∞ for

any x ∈ Rd. ∇f is globally L-Lipschitz continuous; namely ∥∇f(x) − ∇f(y)∥2 ≤

L∥x− y∥2 for any x, y ∈ Rd.

Assumption 2. For any iteration k, the stochastic gradient ∇fξk (xk) satisfies

Eξk [∇fξk (xk)] = ∇f (xk) ,Eξk

[
∥∇fξk (xk)−∇f (xk)∥22

]
≤ σ2 (5.47)

, where σ > 0, and ξk, k = 0, 1, . . ., are independent samples that are independent of

{xi}k

Theorem 5.6.9. For a general convex-nonconcave function f , suppose that As-

sumptions 1 and 2 hold. Batch size nt = n for t = 0, . . . , N − 1. C > 0 is a

constant. βt = µ
4L(1+C−1)

.δt ≥ Cβ−2
t , 0 ≤ αt ≤ min

{
1, β

1
2
t

}
and αt is chosen to

make sure the positive definiteness of Ht. Let R be a random variable following

PR(t)
def
= Prob{R = t} = 1/N , and N̄ be the total number of stochastic GDA-AM

calls needed to calculate stochastic gradients ∇̃fSt (wt) in our algorithm. To ensure

E
[∥∥∥∇̃f (wR)

∥∥∥
2

]
≤ ϵ, total number of stochastic GDA-AM calls needed to calculate

stochastic gradients ∇̃fSt (wt) is O(ϵ−4).

83

Recall that we can recast GDA scheme as the following fixed point iteration.

wt+1 = G(sim)
η (wt) ≜ wt + ηV (wt) with w =

x
y

 , V (w) =

−∇xf(x,y)

∇yf(x,y)


Ignoring the stepsize η and let Wt and Rt record the first and second order diffrence

of recent m iterates:

Wt = [∆wt−m,∆wt−m+1, · · · ,∆wt−1] ,Rt = [∆Vt−m,∆Vt−m+1, · · · ,∆Vt−1]

Similarly as [128],the Anderson mixing can be decoupled into

w̄t+1 = wt −WtΓt, (Projection step)

w̄t+1 = wt + βtV̄t, (Mixing step)

where βt is the mixing parameter, and V̄t = Vt −WtΓt and Γt is solved by

Γt = argmin
Γ∈Rm

∥Vt −RtΓ∥2 + δt∥Γ∥2

We want to argue that similar arguments in [128] can be applied to the problem here.

To see why Anderson mixing works for minimax optimization, we assume function f

is smooth. Then the hessian matrix for G
(sim)
η is

H =

 −∇2
xxf −∇2

xyf

∇2
yxf ∇2

yyf


Notice that in a small neighborhood of wt+1, we have

Rt = −HWt =

 ∇2
xxf ∇2

xyf

−∇2
yxf −∇2

yyf

Wt

84

Thus ∥Vt−RtΓ∥2 ≈ ∥Vt+HWtΓ∥2, which is equivalent to solving for a vector pt such

that Hpk = Vt. This is exactly the second order method for the fixed point iteration

problem. Also at each step the AM is minimizing the residual, the reason that AM is

equivalent to GMRES for linear problem is that this quadratic approximation is exact.

Finally, we rewrite AM as the quasi-newton framework as [128] did. wt+1 = wt+HtVt

where

min
Ht

∥Ht − βtI∥F subject to HtRt = −Xt

Finally, with damping parameter, Anderson mixing has the following form

Wt+1 = Wt + βtVt − αt (Wt + βtRt) Γt (5.48)

we can also apply the very similar arguments to prove key results in lemma 1,

lemma 2 in [128]. There is also a key difference with [128]. Here we are considering

minimax optimization problem. Thus our gradient is actually V (w) =

−∇xf(x,y)

∇yf(x,y)


rather than ∇f(w) =

∇xf(x,y)

∇yf(x,y)

 This will introduce some difficulty to the dynam-

ics of the fixed pointe iteration. However, noticing that ∥V ∥ = ∥∇f(w)∥ and

f (wt+1) ≤ f (wt) +∇f (wt)
T (wt+1 −wt) +

L

2
∥wt+1 −wt∥22

≤ f (wt) + ∇̃f (wt)
T (wt+1 −wt) +

L

2
∥wt+1 −wt∥22

= f (wt) + ∇̃f (wt)
T HtVt +

L

2
∥HtVt∥22

(5.49)

where

∇̃f (wt) =

−∇xf(x,y)

∇yf(x,y)

 (5.50)

we call this the ascent-descent gradient (ADG) which is the gradient for minimax

85

optimization problem

min
x∈Rd

max
y∈Rd

f(x,y).

To see why ∇f (wt)
T (wt+1 −wt) ≤ ∇̃f (wt)

T (wt+1 −wt), we consider their differ-

ence

(∇̃ − ∇)f (wt)
T (wt+1 −wt) = −2∇xf(xt,yt)

T (xt+1 − xt).

For fixed yt, f(xt,yt+1) has the Talyor expansion:

f(xt+1,yt) = f(xt,yt) +∇xf(xt,yt)
T (xt+1 − xt)

+ (xt+1 − xt)
T∇xxf(xt + θ(xt+1 − xt),yt)(xt+1 − xt) (5.51)

Assuming f is convex w.r.t x and apply safeguard to ensure f(xt+1,yt) ≤ f(xt,yt)

can guarantee (∇̃ − ∇)f (wt)
T (wt+1 −wt) ≥ 0. Now applying lemmas in [128], we

can derive the convergence of our method for general convex-nonconcave function

similarly.

Details on the experiments

For our experiments, we used the PyTorch 2 deep learning framework. Experiments

were run one NVIDIA V100 GPU. The residual network architecture for generator

and discriminator are summarized in Table 5.3 and 5.4. We use a WGAN-GP loss,

with gradient penalty λ = 10. When using the gradient penalty (WGAN-GP), we

remove the batch normalization layers in the discriminator. When using SNGAN, we

replace the batch normalization layers with spectral normalization. Hyperparamters

of Adam are selected after grid search. We use a learning rate of 2× 10−4 and batch

size of 64. For table size of GDA-AM , we set it as 120 for CIFAR10 and 150 for CelebA.

We set β1 = 0.0 and β2 = 0.9 as we find it gives us better models than default settings.

2https://pytorch.org/

86

Table 5.3: ResNet architecture used for our CIFAR-10 experiments.

Generator

Input: z ∈ R128 ∼ N (0, I)

Linear 128→ 256× 4× 4

ResBlock 128→ 128

ResBlock 256→ 256

ResBlock 256→ 256

Batch Normalization

ReLu

transposed conv. (256, kernel:3× 3, stride:1, pad: 1

tanh(·)

Discriminator

Input: x ∈ R3×32×32

Linear 128→ 128× 4× 4

ResBlock 128→ 128

ResBlock 128→ 128

ResBlock 128→ 128

Linear 128→ 1

87

Table 5.4: ResNet architecture used for our CelebA (64× 64) experiments.

Generator

Input: z ∈ R128 ∼ N (0, I)

Linear 128→ 512× 8× 8

ResBlock 512→ 256

ResBlock 256→ 128

ResBlock 128→ 64

Batch Normalization

ReLu

transposed conv. (64, kernel:3× 3, stride:1, pad: 1

tanh(·)

Discriminator

Input: x ∈ R3×64×64

Linear 128→ 128× 4× 4

ResBlock 128→ 128

ResBlock 128→ 256

ResBlock 256→ 512

Linear 512→ 1

88

Chapter 6

Accelerating Sampling Procedure

for diffusion based generative

models

Previously, many work have focused on acceleration in terms of training time. In

real world, fast and accurate inference is also very necessary. For example, giving

a weather forecast that takes long time is useless. In this section, we show how to

improve the inference efficiency with a focus on diffusion based generative models in

particular.

6.1 Motivation of Synthetic EHRs

Recent digitisation of health records has provided a great platform for training deep

learning models for precision medicine, personalised prediction of risks and health

trajectories [29, 84]. However, there are many issues concerning patient privacy that

need to be accounted for in order to aggregate more data to train more robust models.

Due to this constraint, it is still hard for researchers to obtain access to real electronic

health record (EHR) data. One approach is to mitigate privacy risks through the prac-

89

tice of de-identification such as perturbation and randomization [27, 81]. However,

this approach is vulnerable to re-identification. [88] demonstrates that under very

mild assumptions about the distribution from which the records are drawn, the ad-

versary with a small amount of background knowledge about an individual can use it

to identify, with high probability, this individual’s record in the anonymized dataset.

Another approach that could overcome privacy issues is to use synthetic datasets that

capture as many of the complexities of the original data set (distributions, non-linear

relationships, and noise). Ideally, synthetic EHRs can offer a potential solution as

they yield a database that is beyond de-identification and hence are immune to re-

identification, while preserving temporal patterns in real longitudinal EHRs. Thus,

generating realistic, but not real data is a key element to advance AI for the healthcare

community. However, realizing this goal in practice has been challenging because the

resulting synthetic data are often not sufficiently realistic for machine learning tasks.

There have been several distinguished efforts conducted in a variety of domains about

synthetic EHR generation [10, 11, 20, 117, 134]. The vast majority of the existing

proposed algorithms for synthetic EHR adopt a variant of Generative Adversarial

Network (GAN) [39], auto-encoder [120] or a combination of them. While GANs and

autoencoders are natural and widely used candidates for generation, there are sev-

eral noticeable drawbacks of these models, including mode-collapse for GANs or poor

sample diversity and quality for autoencoders. In recent years, diffusion (score) based

models [55, 112, 114] have emerged as a family of powerful generative models that

can yield state-of-the-art performance across a range of domains, including image and

speech synthesis [16, 119]. Diffusion models rely on a long Markov chain to generate

samples by gradually reversing a noising process. Diffusion models have been shown

to achieve high-quality, diverse samples that are superior to their GAN-based counter-

parts. In addition to not being limited to high-fidelity samples, other key advantages

of diffusion models include ease of training and tractability, in contrast to generative

90

adversarial networks, and speed of generation, in contrast to autoregressive models

[42]. This leads to the natural question: Is a diffusion model promising for Electronic

Health Records (EHRs) generation as well? We answer this in the affirmative, by in-

troducing MedDiff, a novel denoising diffusion probabilistic model. MedDiff, shown

in Figure 6.1, generates realistic synthetic patient records that build upon diffusion

models to achieve high quality, robust samples while also being simple enough for

practitioners to train. We further accelerate the generation process of MedDiff using

Anderson acceleration [5], a numerical method that can improve convergence speed

of fixed-point sequences. In summary, our contributions are as follows:

1. We investigate the effectiveness of diffusion based models on generating discrete

Electronic Health Records (EHRs).

2. We proposed a novel method to accelerate the generation process, which is the

main drawback of diffusion models.

3. We further adopt a novel conditioned sampling technique to generate discrimi-

native synthetic EHR.

4. We show that MedDiff can generate realistic synthetic data that mimics the

real data and provides similar predictive value according to our analysis and

assessments.

6.2 Background in Diffusion Models

First proposed in [112], diffusion models are latent variable generative models char-

acterized by a forward and a reverse Markov process. The forward process gradually

adds noise to the original data sample, whereas the reverse process reverses the grad-

ual noising process. For the reverse process, the sampling starts with the T th noise

level, xT , and each timestep produces less-noisy samples, xT−1, xT−2, ... until the final

91

Figure 6.1: A graphical model summarizing the idea of diffusion model for generating
synthetic electronic health records. This illustrates the Markov chain of the reverse
(and forward) process of generating a sample by slowly removing noise. As can be
shown, the forward process adds noise to the original patient record.

sample x0 is produced. In essence, the diffusion model learns the “denoised” version

from xt−1 to xt.

Ho et al. [55] proposed a specific parameterization of the diffusion model to

simplify the training process using a score matching-like loss that minimizes the mean-

squared error between the true noise and the predicted noise. They also note that

the sampling process can be interpreted as equivalent to Langevian dynamics, which

allows them to relate the proposed denoising diffusion probabilistic models (DDPM)

to score-based methods in [114]. Here, we introduce the forward process, the reverse

process, and training of DDPM.

Forward Process

Given a data distribution x0 ∼ q(x0), DDPM will gradually add noise to the original

data distribution until it loses all the original information and becomes an entirely

noisy distribution (as shown by the xT sample in Figure 6.1). To be more specific, we

will convolve q(x0) with an isotropic Gaussian noise N (0, σ2
i I) in T steps to produce

a noise corrupted sequence x1,x2, . . . ,xT . xT will converge to an isotropic Gaussian

distribution as T → ∞. Under the variance schedule that produces x1,x2, . . . ,xT ,

92

the distribution is derived as

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (6.1)

Using the reparameterization trick introduced in [66], the following nice property

holds according to [55]

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), ᾱt =

T∏
i=1

αi where αt = 1− βt

Here ᾱ controls the scale of noise added at each time step. At the beginning, noise

should be small so that it is possible for the model to learn well, e.g., β1 < β2 < · · · <

βT and ᾱ1 > ᾱ2 · · · > ᾱT .

Reverse Process

Since the forward process defined above is a Markov chain, the true sample can be

recreated from Gaussian noise xT ∼ N (0, I) by reversing the forward process:

pθ(x0:T) := p(xT)
T∏
i=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ)(xt, t))

(6.2)

Ho et al. [55] noticed that using Bayes’s rule and conditioning on x0, the reverse

process has a closed form expression:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI),

where µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

and β̃t =
(1− ᾱt−1)

1− ᾱt

βt

(6.3)

93

Training

Based on the reverse process, the training process is based on optimizing the varia-

tional lower bound on the negative log likelihood:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T)

q(x1:T |x0)

]
= Eq

[
− log p(xT)−

∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
=: L

(6.4)

For variance reduction purpose, the loss can be rewritten as:

Eq

[
DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸

LT

+
∑
t≥1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

] (6.5)

Based on (6.2), (6.3) and (6.5), Lt−1 can be computed as:

Lt−1 = Eq

[1

2σ2
t

∥µ̃t(xt,x0)− µθ(xt, t)∥2
]
+ C (6.6)

where C is a constant independent of θ. Notice that xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ

where ϵ ∼ N (0, I). Thus if we apply (6.3), the loss can be reformulated as:

Lt−1 − C = Ex0,ϵ

[1

2σ2
t

∥µ̃t

(
xt(x0, ϵ),

βt√
1− ᾱ

ϵ
)
− µθ(xt, t)∥2

]
(6.7)

Since xt is accessible during training, DDPM chooses the following parametrization:

µθ(xt, t) =
1√
ᾱ

(
xt −

βt√
1− ᾱ

ϵθ(xt, t)
)

(6.8)

94

Finally, the training is performed based on the following loss function:

Ex0,ϵ

[β2
t

2σ2
tαt(1− ᾱ)

∥ϵ− ϵθ(
√
ᾱx0 +

√
1− ᾱϵ, t)∥

]
(6.9)

Algorithm

Based on above sections, we can summarize the two key algorithms of DDPM. Al-

gorithm 6.1 displays the complete training procedure with the simplified objective

introduced in [55]. Algorithm 6.2 illustrates the reverse process sampling procedure,

where the goal is to predict the error, ϵ.

Algorithm 6.1 DDPM Training

while L¿ tol do
x0 ∼ q(x0)
t1, t2, . . . , tk ∼ Uniform([T])
ϵ ∼ N (0, I)
Perform gradient descent on the mini batch:

∑k
i=1∇θ∥ϵ−ϵθ(

√
ᾱx0+

√
1− ᾱϵ, t)∥2

end

Algorithm 6.2 Sampling

xT ∼ N (0, I)
for t = T, . . . , 1 do

z ∼ N (0, I) if t > 1, else z = 0

xt−1 =
1√
ᾱ

(
xt − βt√

1−ᾱ
ϵθ(xt, t)

)
+ σtz

end
return x0

6.3 Related Work

To our best knowledge, MedDiff is the first work to leverage the idea of diffusion

based modeling to generate EHRs. Since our work casts insight on the effectiveness of

generating EHR via diffusion based models, we expect the extension of this algorithm

to more complex EHR can be left for further investigation. Here, we discuss the

related works on synthetic EHRs generation and related diffusion based models.

95

Synthetic EHR generation

Closely related to this work are recent efforts that leverage deep generative models

for synthesizing EHRs [7, 20, 117]. MedGAN [20] and CorGAN [117] were intro-

duced to generate patient feature matrices. However, these works rely heavily on the

performance of a pre-trained autoencoder model to reduce the dimensionality of the

latent variable. Without the pre-trained autoencoder, these GAN-based models fail

to generate high-quality samples which highlight the difficulty of using these models

for generalizing to multiple institutions (e.g., smaller clinics or different patient dis-

tributions). MedDiff extends this line of work but is orthogonal to these methods

by leveraging a novel and powerful family of generative model, that do not rely on

the quality of a pre-trained encoder.

Diffusion Models

Diffusion models are a family of likelihood-based generative models that generate

samples by gradually introducing (or diffusing) noise and then reversing the noising

process from the data. Several pioneer diffusion-based or score-based generative mod-

els have been proposed using similar ideas including diffusion probabilistic models,

noise-conditioned score network (NCSN) [114] and denoising diffusion probabilistic

models (DDPM). At its core, diffusion models rely on a long Markov chain to generate

samples by gradually reversing a noising process.

Diffusion models have several advantages over existing generative modeling fam-

ilies. They do not rely on adversarial training which can be susceptible to mode

collapse and are difficult to train. They also offer better diversity coverage, can

accommodate flexible model architectures to learn any arbitrary complex data dis-

tributions. With respect to image and speech synthesis, diffusion-based models can

achieve high-quality, diverse samples that are superior to their GAN counterparts.

However, the process of producing less-noisy samples can be quite expensive in

96

terms of computing time. There have been several recent works to accelerate the

computational speed of the generation process. Denoising Diffusion Implicit Models

(DDIMs) [113] accelerate sampling from pre-trained DDPMs by relying on a family

of non-Markovian processes. They accelerate the generative process through taking

multiple steps in the diffusion process. On the other hand, several other works have

been proposed and applied to different domains including.

6.4 Proposed Method: MedDiff

In this section, we introduce the three components of MedDiff. We first introduce the

base architecture. Next, we propose a numerical method to accelerate the generation

process and explain the motivation of using it. We then equip MedDiff with the

ability to conduct conditioned sampling.

DDIM

MedDiff uses the recently proposed denoising diffusion implicit models (DDIM) [113]

as the backbone as it offers a more flexible framework. Using the same notation

described in the background section, DDIM considers the following distributions:

q(x1:T |x0) := q(xT |x0)
T∏
t=2

q(xt−1|xt,x0) (6.10)

where q(xT |x0) = N (
√
ᾱx0, (1− ᾱT)I) and for all t > 1,

q(xt−1|xt,x0) = N (
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

xt −
√
ᾱtx0√

1− ᾱt

, σ2I) (6.11)

The reason why the distribution is parameterized in this way is to guarantee the

marginal density is equivalent to DDPM. However, the key difference between DDPM

and DDIM is that the forward process of DDIM is no longer a Markov process, which

97

allows different reverse samplers by changing the variance of the reverse noise. It

means DDIM could be compatible with other samplers that will be explained later.

Thus, the reverse process with a prior pθ(xT) = N (0, I) can be computed as

pθ(x0|x1) = N
(x1 −

√
1− ᾱ1ϵθ(x1, 1)√

ᾱ1

, σ2
1I
)

pθ(xt−1|xt) = q(xt−1|xt,
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

), t > 1

(6.12)

The model is trained by minimizing the variation lower bound as well. After training,

sampling can be done using the following equation:

xt−1 =
√
ᾱt−1

(xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t) + σtzt, (6.13)

where zt ∼ N (0, I). If we denote
√
1−ᾱs√
ᾱs

by λs, then the updating rule for continuous

time is

xs =
λs

λt

[xt − ᾱtϵθ(xt)] + ᾱsϵθ(xt) (6.14)

In a recent paper [105], it is showed that DDIM is an integrator of the probability

flow ODE defined in [115]:

dx = [f(x, t)− 1

2
g2(t)∇x log pt(x)]dt (6.15)

where dx = f(x, t)dt + g(t)dW is a SDE and W is Brownian motion. In practice

∇x log pt(x) =
ᾱtϵθ(xt)−xt

λ2
t

so xs can be regarded as the integrator of 1
2
[ᾱtϵθ(xt)− ᾱ2

txt].

Model Architecture

In this section, we provide a general architecture of MedDiff . First of all, we found a

simple fully connected diffusion model is enough for low-dimensional data. However,

we notice that directly applying DDPM or score based methods for images and audio

can not yield satisfying result. As a result, we build on a modified U-Net architecture

98

[55, 102] with some modifications including larger model depth/width, positional

embeddings, residual blocks for up/downsampling and residual connection rescale.

In addition, as we are dealing with 1d data, we choose the 1d convolutional as a

particular form of the U-Net instead of 2d convolutional. Preliminary results show

that this approach enables us to better capture the neighboring feature correlations.

Accelerated Generation Process

Although the above architecture can provide satisfying results, the speed of genera-

tion process can still be a bottleneck. The dilemma is that a small T usually performs

worse than a larger T , but a larger T indicates a longer generation process and time.

To alleviate this issue, we propose an acceleration algorithm from the perspective of

iterative methods. In short, we propose to utilize Anderson Acceleration [5] to run the

generation process. Anderson acceleration (AA) is a method to accelerate the conver-

gence of fixed-point iterations. The idea of Anderson acceleration is to approximate

the final solution using a linear combination of the previous k iterates. Since solving

the proper combination of iterates is a nonlinear procedure, Anderson acceleration is

also known as a nonlinear extrapolation method. We start with the generic Ander-

son acceleration prototype Algorithm 6.3 and explain its implementation. For each

iteration t ≥ 0 , AA solves a least squares problem with a normalization constraint.

The intuition is to minimize the norm of the weighted residuals of the previous k iter-

ates. The constrained linear least-squares problem in Algorithm 6.3 can be solved in

a number of ways. Our preference is to recast it in an unconstrained form suggested

in [30, 123] that is straightforward to solve and convenient for implementing efficient

updating of QR. The idea of Quick QR-update Anderson acceleration implementation

is described in [123] which is commonly used in practice.

Now we give our theoretical motivation and results. There is a long time history of

applying Anderson acceleration to Picard iteration for solving differential equations

99

Algorithm 6.3 Anderson Acceleration Prototype (truncated version)

Input: Initial point w0, Anderson restart dimension k, fixed-point mapping g : Rn →
Rn.

Output: wt+1

for t = 0, 1, . . . do
Set pt = min{t, k}.
Set Ft = [ft−pt , . . . , ft], where fi = g(wi)− wi for each i ∈ [t− pt, t].
Determine weights β = (β0, . . . , βpt)

T that solves minβ ∥Ftβ∥2 , s. t.
∑pt

i=0 βi =
1.
Set wt+1 =

∑pt
i=0 βig (wt−pt+i).

end

[100]. We know we can regard the DDIM as a integrator of an ODE and the updating

rule of DDIM can be regarded as the integrator of (6.15) which is approximated by

1
2
[ᾱtϵθ(xt)− ᾱ2

txt]. Thus, (6.14) can be written as the Picard iteration

xs = xT +

∫ s

T

1

2
[ᾱtϵθ(xt)− ᾱ2

txt]dt︸ ︷︷ ︸
F (xt,t)

(6.16)

and we can then apply Anderson acceleration to this sequence {xt}.

Assuming F (xt, t) is uniformly Lipschitz continuous in x which is a common as-

sumption made in neural ODE literature [17] and following the results from Theorem

2.3 in [118], we can derive the following acceleration guarantees for applying Anderson

acceleration to iterates (intermediate samples) of DDIM.

Theorem 6.4.1. Assume operator F has a fixed point x∗, and satisfies the following

two conditions

1. F is Lipschitz continuously differentiable in a ball B(r) = {x ∈ Rn : ∥x−x∗∥ <

r} for some r > 0.

2. F is locally L-Lipschitz on B(r) where L < 1.

Then if ∥γt∥l1 is uniformly bounded by Cγ for all t > 0, GDA-AM converges to x∗ locally

with contraction ratio L < L̂ < 1.

100

Proof. Here we just give a sketch of proof due to space limit. For more details,

we refer readers to [118]. Set G(x) = F (x, t) − x and δ = x − x∗. For r̂ < r

sufficiently small and x ∈ B(r̂), it can be shown that ∥G(x)−G
′
(x∗)δ∥ ≤ γ

2
∥δ∥2 and

∥δ∥(1 − L) ≤ ∥G(x)∥ ≤ (1 + L)∥δ∥ where γ is the Lipschitz constant of G
′
(x) on

B(r̂). Then we have ∥G(xt)∥ ≤ L̂k∥G(x0)∥ for all 0 ≤ t ≤ T , which obviously holds

for T = 0. Leveraging the two inequalities above, it can be shown that

∥G(xT+1)∥ ≤
L

L̂
+
(

Cαγr̂
2(1−L)

)
L̂−k−1

1− γr
2(1−L)︸ ︷︷ ︸

C≤1

L̂T+1∥G(x0)∥

To ensure C ≤ 1, just reduce r̂ until it satisfies r̂ < 2(1−L)
γ

.

Theorem 6.4.1 provides the theoretical justification for leveraging Anderson ac-

celeration to predict the next denoised intermediate sample. As this combination

requires much fewer iterations and reduced computational costs to generate realistic

samples, it can dramatically save inference time.

Conditioned Sampling

It is not sufficient for the synthesizer model to produce realistic-looking data, it is

equally important that the generated examples also match the label. If a partic-

ular class label is passed to a generative model, it should produce a health record

that matches the distribution of that label. To equip MedDiff with the ability to

conduct conditioned sampling which MedGAN and CorGAN do not have, we incor-

porate the idea of a classifier-guided sampling process [25]. From a conceptual level,

the estimated noise ϵθ(xt, t) in each step is deducted by
√
1− ᾱt∇xt log fϕ (y | xt),

where fϕ (y | xt) is a trained classifier on the noisy xt. Algorithm 6.4 summaries the

corresponding accelerated and conditioned sampling algorithm.

101

Algorithm 6.4 Accelerated Conditioned Sampling

Choose a small integer k as Anderson restart dimension
Given a random noise xT ∼ N (0, I) and label y
for t = T, . . . , 1 do

z ∼ N (0, I) if t > 1, else z = 0
ϵ = ϵθ (xt)−

√
1− ᾱt∇xt log pϕ (y | xt)

Update xt−1 according to equation (6.14)
xt−1 = Anderson(xt,xt−1, k)

end
return x0

6.5 Experiments

In this section, we answer following questions: Q1: Can MedDiff generate high

quality synthetic EHRs compared to existing methods? Q2: Can MedDiff accurately

generate conditioned samples that matches the distribution of the given label? Q3:

Can our proposed acceleration technique alleviate the issue of slow generation process

of a diffusion model? How is its performance under different settings? We first

provide descriptions for two health datasets. Next, we then give an overview of

baseline methods and implementation details. We then evaluate the effectiveness of

the proposed acceleration technique with an ablation study.

Datases

We use the following two publicly available datasets:

1. MIMIC-III [60]: MIMIC-III is large database containing de-identified health

data associated with approximately sixty thousand admissions of critical care

unit patients from the Beth Israel Deaconess Medical Center collected between

2001 and 2012. For each patient, we extract the International Classification of

Diseases (ICD-9) diagnosis codes. We represent a patient record as a fixed-size

vector with 1071 entries for each patient record. The preprocess datasets is a

46520 × 1071 binary matrix. This dataset is used for experiments with binary

102

discrete variables and evaluation of proposed acceleration technique.

2. Patient Treatment Classification: The dataset is Electronic Health Record Pre-

dicting collected from a private Hospital in Indonesia. It contains the 8 different

laboratory test results of 3309 patient used to determine next patient treatment

whether in care or out care. We use this datasets to perform continuous syn-

thetic EHR generation and investigate the effectiveness of conditional generation

of MedDiff . It is available at Kaggle1.

Baselines and Implementation

We compare MedDiff with following methods.

1. MedGAN [20] 2: It generates the representations of patient records with a GAN.

It then decodes them to simulated patient records with an autoencoder.

2. CorGAN [117] 3: Similar to MedGAN, it is a framework that combines Convo-

lutional Generative Adversarial Networks and Convolutional Autoencoders.

3. Noise Conditional Score Network (NCSN) [114]4: Instead of learning directly the

probability of the data log p(x) , this method rather aims to learn the gradients

of log p(x) with respect to x. This can be understood as learning the direction

of highest probability at each point in the input space. Therefore, when the

model is trained, we can improve a sample by moving it along the directions of

highest probability. After training, the sampling process is achieved by applying

Langevin dynamics.

4. DDPM [55]5 : A class of latent variable models inspired by considerations from

1https://www.kaggle.com/manishkc06/patient-treatment-classification
2https://github.com/astorfi/cor-gan
3https://github.com/astorfi/cor-gan
4We adopt the codes from https://github.com/acids-ircam/diffusion_models
5We adopt the codes from https://github.com/lucidrains/denoising-diffusion-pytorch

https://www.kaggle.com/manishkc06/patient-treatment-classification
https://github.com/astorfi/cor-gan
https://github.com/astorfi/cor-gan
https://github.com/acids-ircam/diffusion_models
https://github.com/lucidrains/denoising-diffusion-pytorch

103

nonequilibrium thermodynamics [112]. In our experiments, we found a direct

application of both DDPM and NCSN can not yield high quality samples.

We implemented MedDiff with Pytorch. For training models, we used Adam [65]

with the learning rate set to 0.001, and a mini-batch of 128 for MIMIC-III and 64 for

the patient treatment dataset on a machine equipped with one Nvidia GeForce RTX

3090 and CUDA 11.2. Hyperparamters of MedDiff are selected after grid search

without too much effort. We use a timestep T of 200, a noise scheduling β from

1 × 10−4 to 1 × 10−2 and a table size k = 3. The code will be public available upon

publication.

Quantitative Evaluation

We first evaluate the effectiveness of MedDiff on MIMIC-III (a binary dataset).

Following previous works CorGAN and MedGAN, we use the dimension-wise prob-

ability as a basic evaluation metric to see if MedDiff can learn the distribution of

the real data (for each dimension). This measurement refers to the Bernoulli success

probability of each dimension (each dimension is a unique ICD-9 code). We report

the dimension-wise probability in Figure 6.2. We also use the correlation coefficient

ρ and sum of absolute errors (SAE) as our quantitative metrics. From Figure 6.2, we

can observe MedDiff shows the best performance.

Next, we answer the question that if MedDiff allows the conditioned sampling of

health records with a given label. We use the Gaussian Kernel Density Estimation to

depict the underlying probability density function of the original dataset and gener-

ated samples. We show the results of MedDiff for unconditional sampling in Figure

6.3a and conditional sampling in Figures 6.3b and 6.3c. We can observe that the

distribution of in-care patients and out-care patients are different in terms of shape,

local modes and range. It means the generated samples would be more informative

and useful for data sharing if it comes with a fake label. However all baselines do not

104

(a) ρ = 0.94, SAE =
5.68

(b) ρ = 0.97, SAE =
4.49

(c) ρ =
−0.06, SAE = 366

(d) ρ = 0.98, SAE =
4.16

Figure 6.2: The scatter plots of dimension-wise probability. Each point depicts one
unique diagnosis code. The x-axis and y-axis represent the Bernoulli success proba-
bility for real and synthetic datasets, respectively. The diagonal line shows the ideal
case.

support conditioned sampling for EHRs, this experiment demonstrates the flexibility

and advantage of MedDiff .

Noising and Denoising Visualization

Figure 6.4a shows that the forward process is to destroy the input by adding scaled

random Gaussian noise step by step. If we can reverse the above process and sample

from q(xt−1|xt), we will be able to recreate the true sample from a Gaussian noise

input. We cannot easily estimate q(xt−1|xt), so we learn a model pθ using neural

networks to approximate these conditional probabilities in order to run the reverse

diffusion process. Figure 6.4b shows that given a random noise, MedDiff is able

to generate a new sample. Using one sample for illustration, Figure 6.4 depicts the

forward and reverse process of a diffusion model. In addition, we can observe that

MedDiff is able to reconstruct inputs if it uses a non-perturbed sampling procedure

(set the posterior variance σt as 0) and the noise input for the reverse process is exactly

the last noisy input from a forward process. By setting the posterior variance σt as a

nonzero number and not sharing the destroyed inputs after the forward process, it is

guaranteed to achieve sample diversity with a bare risk of data leakage.

105

(a) Black: KDE for all 3309 patient records. Blue: KDE for 3309 Unconditioned synthetic
records.

(b) Black: KDE for 1317 in-care patient records. Blue: KDE for 1317 conditioned synthetic
in-care patient records.

(c) Black: KDE for 1992 out-care patient records. Blue: KDE for 1992 conditioned synthetic
out-care patient records.

Figure 6.3: Kernel density estimation for each feature. Black : true density. Blue:
KDE wit generated samples. The benchmark (true) estimated distribution is obtained
from the original dataset using a Gaussian Kernel. We can observe that with the
classifier guided sampling, MedDiff is able to match local modes and thus generate
realistic and useful conditioned samples.

(a) Forward Process: Adding random Gaus-
sian noise

(b) Reverse Process: : Intermediate samples

Figure 6.4: Visualization of the forward and backward process. It is worth to mention
that we are able to reconstruct the noised input XT by by fixing the posterior variance
σt as 0 and running the denosing step.

106

Effects of Accelerated Sampling

Next, we evaluate the usefulness of our proposed accelerated sampling algorithm. For

T = 200, we present the evolution process of generating one sample by use of the

regular procedure in Figure 6.5a and MedDiff in Figure 6.5b. Similarly, Figures 6.5c

and 6.5d depict the evolution process of generating one sample for T = 100. Since

T = 200 means the start time step which means the current iteration number of

reverse process is 0, the iteration number can be defined as T − t. When T = 200,

we can observe MedDiff converges in around 80 iterations and the regular sampling

process takes around 160 iterations, which implies a 2× speed up in terms of iteration

number. A similar speed-up in terms of computational time is also observed, which

is shown in the next experiment. In addition, it can be observed from Figures 6.5d

and 6.5c that MedDiff can generate a high-quality sample when the regular sampling

process fails to converge.

We also perform an additional ablation quantitatively study of MedDiff to in-

vestigate whether the MedDiff has actually accelerated the generation process with

different hyperparameters. We use the root mean squared error of the Bernoulli suc-

cess probability of each dimension for the generated samples and original dataset,

which is defined as follows,

RMSE =

√∑D
d=1 (pd − p̂d)

2

D
, (6.17)

where D is the feature size. We run MedDiff using different T and Anderson accel-

eration restart dimension (or table size) k and show the results in Figure 6.6. Figures

6.6a and 6.6c indicate an increasing of table size results in faster convergence in terms

of iteration number. Figures 6.6b and 6.6d show that although there is additional

computation, it does not hinder the benefits of adopting the accelerated algorithm

with a small k. In addition, Figures 6.6a and 6.5d verify that adopting the accelerated

107

(a) Regular Reverse Process for T = 200: it takes about 160 iterations to converge.

(b) Accelerated Reverse Process for T = 200: it takes about 80 iterations to converge, which
implies a 2× speed up.

(c) Regular Reverse Process for T = 100: the generated sample is still very noisy after 100
iterations.

(d) Accelerated Reverse Process for T = 100: After 40 iteration, MedDiff is able to generate
a high-quality sample.

Figure 6.5: Evolution plot of regular generation process (6.5a, 6.5c) and
MedDiff (6.5b, 6.5d).

108

(a) Comparison in
terms of iterations,
T = 100

(b) Comparison in
terms of time, T =
100

(c) Comparison in
terms of iterations,
T = 200

(d) Comparison in
terms of time, T =
200

Figure 6.6: Results of accelerated sampling versus regular sampling with different T
and k.

algorithm can also help to generate high-quality samples if the model is trained with

fewer time step T .

Case Study: Discriminative Analysis

Classification models are often developed on EHR data to determine next patient

treatment whether in care or out care. To evaluate the utility of our synthetic EHRs,

we test how well such prediction tasks are supported by the synthetic conditioned

EHR data. We use an 80/20 training/test split on the patient treatment dataset.

Next, we use the training set (2647 patients) to train the generative model and gener-

ate conditioned in care and out care synthetic data. Then, we report the performance

of the real test set (662 patients) using a classier trained on synthetic data only. A

logistic regression classier trained on this data produced an AUC score of 0.7419,

which is comparable to the real data AUC score of 0.7565.

We also investigate whether the synthetic EHRs generated by MedDiff is ben-

eficial for data augmenting, we augment the training set with varying amounts of

synthetically generated data and repeated the predictive experiments. The results

are shown in Figure 6.7. It can be observed that augmenting the training set with

additional 2.5K synthetic records can outperforms the real data. In addition, training

with 2.5K synthetic data can have comparable prediction ability to real data, which

109

Figure 6.7: Data augmentation performance of GDA-AM as a function of the number
of synthetic records

demonstrates the effectiveness of MedDiff in generating conditioned records.

110

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented our works on developing efficient algorithms for machine

learning models. We first show the effectiveness of parallel algorithms on accelerating

tensor decomposition by proposing SGranite. In SGranite, we propose to incorporate

a generalized form of regularization and special partitioned parallel algorithm. Using

two real world datasets, we demonstrate that SGranites enables a tensor decompo-

sition to efficiently extract more sparse, distinct and discriminative latent factors.

We then present our works on numerical algorithms for accelerating machine learn-

ing models. We proposed Fast-CP for tensor decomposition, GDA-AM for minimax

optimization and MedDiff for synthetic EHR generation. All these works share a key

idea that most machine learning tasks can be viewed as fixed-point iteration problems

and be solved efficiently by extrapolation algorithms. Our experimental result show

that such extrapolation technique accelerates training by using less iterates and time

and thus verify our claim.

111

7.2 Future Work

This dissertation can be extended in the following direction.

• Short-Term Anderson Acceleration: In machine learning, we often encounter

practical situations where the number of parameters is quite large and for this

reason, it is not practical to use a extreme large number of vectors in a scheme

like Anderson acceleration. A recent work [129] proposed a heuristic correction

to achieve fast computation. However, we noted that Anderson Mixing has a

strong connection to second order methods and we are investigating whether or

not the structure of the Hessian can be exploited to the reduce memory cost.

As a result, it is reasonable to improve the algorithm by utilizing the symmetry

in the Hessian. Ideally, this memory efficient method can solve problems that

many traditional methods fail, including nonlinear mappings and indefinite lin-

ear systems. In addition to the short-term recurrence Anderson Acceleration,

another contribution is to explore advanced preconditioning methods in the con-

text of acceleration for machine learning problems. For example, in the usual

setting of a linear system Ax = b, quasi-Newton methods play the role of an

accelerator and the preconditioning is applied to transform the system into one

like MAx = Mb which is easier to solve. However, preconditioners developed

so far in the literature are rather simple and not efficient enough. We can

incorporate advanced preconditioning techniques into extrapolation algorithms

because we find that approximating inverse preconditioning methods can indeed

be more efficient by taking advantage of sparsity for sparse problems.

• Higher-Order MedDiff: MedDiff discussed above can only generate 2 dimen-

sional health records. However, modern health records are usuaaly high-dimensional,

meaning that the effectiveness of generated samples by MedDiff are still lim-

ited. To address this issue and generate more realistic high-dimensional EHRS,

112

it would be important to investigate several principles involved in denoising

diffusion probabilistic models, which include but are not limited to the Markov

chains process, sampling procedure, noise scales progression, and controllable

generation for inverse problem solving.

• Efficient Uncertainty Quantification: The other perspective is to improve de-

cision making by incorporating efficient uncertainty quantification (UQ) that

requires less memory and computational cost. Given the large volume of high-

dimensional data, it is of importance to develop efficient UQ methods. We

can utilize lottery ticket pruning so that it can reduce the parameter counts

of networks and decrease storage requirements. In the meantime, we can avoid

the additional computational cost (multiple runs) of sampling based methods by

training multiple subnetworks independently in one run using snapshot learning

rate scheduling. Preliminary results have shown that this framework can bring

a significant improvement in negative log-likelihood, accuracy, and calibration

error for image classification problems.

113

Bibliography

[1] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. A scalable optimization

approach for fitting canonical tensor decompositions. Journal of Chemometrics,

25(2):67–86, February 2011.

[2] Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann.

Local saddle point optimization: A curvature exploitation approach. Proceed-

ings of Machine Learning Research. PMLR.

[3] Ardavan Afshar, Ioakeim Perros, Evangelos E Papalexakis, Elizabeth Searles,

Joyce C Ho, and Jimeng Sun. COPA: Constrained PARAFAC2 for sparse &

large datasets. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, pages 793–802, 2018.

[4] Donald G. Anderson. Iterative procedures for nonlinear integral equations.

1965.

[5] Donald G Anderson. Iterative procedures for nonlinear integral equations. Jour-

nal of the ACM (JACM), 12(4):547–560, 1965.

[6] Wäıss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, and

Gauthier Gidel. Accelerating smooth games by manipulating spectral shapes.

In The 23rd International Conference on Artificial Intelligence and Statistics,

AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108

of Proceedings of Machine Learning Research, pages 1705–1715. PMLR, 2020.

114

[7] Brett K. Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, San-

jeev P. Bhavnani, James Brian Byrd, and Casey S. Greene. Privacy-preserving

generative deep neural networks support clinical data sharing. Circulation:

Cardiovascular Quality and Outcomes.

[8] Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Faloutsos,

Evangelos E Papalexakis, and Eric P Xing. FlexiFaCT - Scalable Flexible

Factorization of Coupled Tensors on Hadoop. SDM, 2014.

[9] Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Faloutsos,

Evangelos E Papalexakis, and Eric P Xing. FlexiFaCT - Scalable Flexible

Factorization of Coupled Tensors on Hadoop. SDM, pages 109–117, 2014.

[10] Simon Bing, Andrea Dittadi, Stefan Bauer, and Patrick Schwab. Conditional

generation of medical time series for extrapolation to underrepresented popu-

lations, 2022.

[11] Siddharth Biswal, Soumya Ghosh, Jon Duke, Bradley A. Malin, Walter F. Stew-

art, and Jimeng Sun. EVA: generating longitudinal electronic health records

using conditional variational autoencoders. CoRR, 2020.

[12] Raghu Bollapragada, Damien Scieur, and Alexandre d’Aspremont. Nonlin-

ear acceleration of momentum and primal-dual algorithms. arXiv preprint

arXiv:1810.04539, 2018.

[13] Claude. Brezinski, Michela. Redivo-Zaglia, and Yousef. Saad. Shanks sequence

transformations and anderson acceleration. SIAM Review, 60(3):646–669, 2018.

[14] Ronald E. Bruck. On the weak convergence of an ergodic iteration for the solu-

tion of variational inequalities for monotone operators in hilbert space. Journal

of Mathematical Analysis and Applications, 1977.

115

[15] Daniela Calvetti, Bryan Lewis, and Lothar Reichel. On the regularizing prop-

erties of the gmres method. Numerische Mathematik, 91(4):605–625, 2002.

[16] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and

William Chan. Wavegrad: Estimating gradients for waveform generation. In

International Conference on Learning Representations, 2021.

[17] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

Neural ordinary differential equations. Advances in neural information process-

ing systems, 31, 2018.

[18] Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factor-

izations. SIAM Journal on Matrix Analysis and Applications, 33(4):1272–1299,

2012.

[19] Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factor-

izations. SIAM Journal on Matrix Analysis and Applications, 33(4):1272–1299,

2012.

[20] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stew-

art, and Jimeng Sun. Generating multi-label discrete patient records using

generative adversarial networks. In Proceedings of the 2nd Machine Learning

for Healthcare Conference, Proceedings of Machine Learning Research. PMLR,

2017.

[21] Michel Crouzeix and César Palencia. The numerical range is a (1+2)-spectral

set. SIAM Journal on Matrix Analysis and Applications, 38(2):649–655, 2017.

[22] C. Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training

gans with optimism. ArXiv, abs/1711.00141, 2018.

116

[23] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng.

Training gans with optimism. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,

Conference Track Proceedings. OpenReview.net, 2018.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding,

2018. URL https://arxiv.org/abs/1810.04805.

[25] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image syn-

thesis, 2021.

[26] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Effi-

cient projections onto the l1-ball for learning in high dimensions. ICML, 2008.

[27] Khaled El Emam, Sam Rodgers, and Bradley Malin. Anonymising and sharing

individual patient data. 2015.

[28] Howard C Elman. Iterative methods for large, sparse, nonsymmetric systems of

linear equations. PhD thesis, Yale University New Haven, Conn, 1982.

[29] Alvin Rajkomar et al. Scalable and accurate deep learning with electronic health

records. NPJ Digital Medicine, 1, 2018.

[30] Haw-ren Fang and Yousef Saad. Two classes of multisecant methods for non-

linear acceleration. Numerical Linear Algebra with Applications, 16(3):197–221,

2009.

[31] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, and Pierre-Alain Muller. Deep learning for time series classifica-

tion: a review. Data Mining and Knowledge Discovery, 33(4):917–963, mar

https://arxiv.org/abs/1810.04805

117

2019. doi: 10.1007/s10618-019-00619-1. URL https://doi.org/10.1007%

2Fs10618-019-00619-1.

[32] Bernd Fischer and Roland Freund. Chebyshev polynomials are not always

optimal. Journal of Approximation Theory, 65(3):261–272, 1991.

[33] Gemulla, Rainer, Nijkamp, Erik, Haas, Peter J, and Sismanis, Yannis. Large-

scale matrix factorization with distributed stochastic gradient descent. ACM,

New York, New York, USA, August 2011.

[34] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for non-

convex nonlinear and stochastic programming. Math. Program., 156(1-2):59–

99, 2016. doi: 10.1007/s10107-015-0871-8. URL https://doi.org/10.1007/

s10107-015-0871-8.

[35] Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien.

A variational inequality perspective on generative adversarial nets. CoRR,

abs/1802.10551, 2018. URL http://arxiv.org/abs/1802.10551.

[36] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon

Lacoste-Julien. A variational inequality perspective on generative adversarial

networks. In 7th International Conference on Learning Representations, ICLR,

2019.

[37] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol,

Gabriel Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative mo-

mentum for improved game dynamics. In Proceedings of the Twenty-Second

International Conference on Artificial Intelligence and Statistics, Proceedings

of Machine Learning Research. PMLR, 2019.

[38] I. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

https://doi.org/10.1007%2Fs10618-019-00619-1
https://doi.org/10.1007%2Fs10618-019-00619-1
https://doi.org/10.1007/s10107-015-0871-8
https://doi.org/10.1007/s10107-015-0871-8
http://arxiv.org/abs/1802.10551

118

Farley, S. Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial

nets. In NIPS, 2014.

[39] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. NIPS’14, 2014.

[40] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples, 2015.

[41] Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

[42] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wier-

stra. Deep autoregressive networks. In Eric P. Xing and Tony Jebara, editors,

Proceedings of the 31st International Conference on Machine Learning, Pro-

ceedings of Machine Learning Research, 2014.

[43] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems, 2017.

[44] Samantha Hansen, Todd Plantenga, and Tamara G. Kolda. Newton-based op-

timization for kullback–leibler nonnegative tensor factorizations. Optimization

Methods and Software, 30(5):1002–1029, 2015.

[45] R. Harshman. Foundations of the parafac procedure: Models and conditions

for an ”explanatory” multi-model factor analysis. 1970.

[46] Richard A. Harshman, Peter Ladefoged, Heinrich Graf von Reichenbach,

Robert I. Jennrich, Dale Terbeek, Lee Cooper, Andrew L. Comrey, Peter M.

119

Bentler, Jeanne Yamane, and Diane Vaughan. Foundations of the parafac pro-

cedure: Models and conditions for an ”explanatory” multimodal factor analysis.

1970.

[47] Kosuke Haruki, Taiji Suzuki, Yohei Hamakawa, Takeshi Toda, Ryuji Sakai,

Masahiro Ozawa, and Mitsuhiro Kimura. Gradient noise convolution (gnc):

Smoothing loss function for distributed large-batch sgd. ArXiv, abs/1906.10822,

2019.

[48] Huan He, Jette Henderson, and Joyce C Ho. SGranite: Distributed Tensor

Decomposition for Large Scale Health Analytics. The Web Conference, 2019.

[49] Huan He, Yuanzhe Xi, and Joyce C Ho. Fast and accurate tensor decomposition

without a high performance computing machine. In 2020 IEEE International

Conference on Big Data (Big Data), 2020.

[50] Jette Henderson, Huan He, Bradley Malin, Joshua Denny, Abel Kho, Joydeep

Ghosh, and Joyce Ho. Phenotyping through semi-supervised tensor factoriza-

tion (psst). AMIA Annual Symposium proceedings. AMIA Symposium, 2018.

[51] Jette Henderson, Ryan Bridges, Joyce C Ho, Byron C Wallace, and Joydeep

Ghosh. PheKnow-Cloud: A Tool for Evaluating High-Throughput Phenotype

Candidates using Online Medical Literature. AMIA Joint Summits on Trans-

lational Science proceedings. AMIA Joint Summits on Translational Science,

2017:149–157, 2017.

[52] Jette Henderson, Joyce C Ho, Abel N Kho, Joshua C Denny, Bradley A Malin,

Jimeng Sun, and Joydeep Ghosh. Granite - Diversified, Sparse Tensor Factor-

ization for Electronic Health Record-Based Phenotyping. ICHI, 2017.

[53] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a

120

local nash equilibrium. In Advances in Neural Information Processing Systems,

2017.

[54] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic

models. CoRR, abs/2006.11239, 2020. URL https://arxiv.org/abs/2006.

11239.

[55] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems, 33:6840–6851,

2020.

[56] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. Marble - high-throughput phe-

notyping from electronic health records via sparse nonnegative tensor factoriza-

tion. KDD, 2014.

[57] Yu-Guan Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos. On the conver-

gence of single-call stochastic extra-gradient methods. In NeurIPS, 2019.

[58] Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, and Brilliant

L. Detecting influenza epidemics using search engine query data. Nature, 457

(7232), 2008.

[59] Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in

nonconvex-nonconcave minimax optimization? In Proceedings of the 37th In-

ternational Conference on Machine Learning, Proceedings of Machine Learning

Research, pages 4880–4889. PMLR, 2020.

[60] Alistair Johnson, Tom Pollard, Lu Shen, Li-wei Lehman, Mengling Feng, Mo-

hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Celi, and Roger

Mark. Mimic-iii, a freely accessible critical care database. Scientific Data,

2016.

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239

121

[61] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling

Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony

Celi, and Roger G Mark. Mimic-iii, a freely accessible critical care database.

Scientific data, 3:160035, 2016.

[62] Yejin Kim, Robert El-Kareh, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang.

Discriminative and Distinct Phenotyping by Constrained Tensor Factorization.

Scientific Reports, 7(1):1114, April 2017.

[63] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

International Conference on Learning Representations, 12 2014.

[64] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion. arXiv.org, page arXiv:1412.6980, December 2014.

[65] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion, 2017.

[66] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[67] Tamara G. Kolda and David Hong. Stochastic gradients for large-scale tensor

decomposition. arXiv, June 2019. submitted for publication.

[68] A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[69] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine

learning at scale. ArXiv, abs/1611.01236, 2017.

[70] V Lampos, A C Miller, S Crossan, C Stefansen Scientific reports, and 2015.

Advances in nowcasting influenza-like illness rates using search query logs. na-

ture.com.

122

[71] Y. LeCun, L. Bottou, Yoshua Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. 1998.

[72] Qi Lei, Sai Ganesh Nagarajan, Ioannis Panageas, and Xiao Wang. Last iter-

ate convergence in no-regret learning: constrained min-max optimization for

convex-concave landscapes. In AISTATS, 2021.

[73] S. Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart J. Russell. Ro-

bust multi-agent reinforcement learning via minimax deep deterministic policy

gradient. In AAAI, 2019.

[74] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Extrapolation

for large-batch training in deep learning. CoRR, abs/2006.05720, 2020. URL

https://arxiv.org/abs/2006.05720.

[75] Tianyi Lin, Chi Jin, and Michael I. Jordan. On gradient descent ascent for

nonconvex-concave minimax problems. In ICML, pages 6083–6093, 2020. URL

http://proceedings.mlr.press/v119/lin20a.html.

[76] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face

attributes in the wild. In Proceedings of International Conference on Computer

Vision (ICCV), December 2015.

[77] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recur-

sive gradient descent ascent for stochastic nonconvex-strongly-concave minimax

problems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, 2020.

[78] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial at-

tacks. In 6th International Conference on Learning Representations, ICLR

2018,, 2018.

https://arxiv.org/abs/2006.05720
http://proceedings.mlr.press/v119/lin20a.html

123

[79] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial at-

tacks, 2019.

[80] Eric V. Mazumdar, Michael I. Jordan, and S. Sastry. On finding local

nash equilibria (and only local nash equilibria) in zero-sum games. ArXiv,

abs/1901.00838, 2019.

[81] Scott McLachlan, Kudakwashe Dube, and Thomas Gallagher. Using the

caremap with health incidents statistics for generating the realistic synthetic

electronic healthcare record. 2016 IEEE International Conference on Health-

care Informatics (ICHI), 2016.

[82] Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo,

Vijay Chandrasekhar, and Georgios Piliouras. Optimistic mirror descent in

saddle-point problems: Going the extra gradient mile. In 7th International

Conference on Learning Representations, ICLR, 2019.

[83] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of

gans. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, NIPS’17, 2017.

[84] Riccardo Miotto, Li Li, Brian A. Kidd, and Joel T. Dudley. Deep patient: An

unsupervised representation to predict the future of patients from the electronic

health records. Scientific Reports, 6, 2016.

[85] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Y. Yoshida. Spec-

tral normalization for generative adversarial networks. ArXiv, abs/1802.05957,

2018.

[86] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis

of extra-gradient and optimistic gradient methods for saddle point problems:

124

Proximal point approach. In International Conference on Artificial Intelligence

and Statistics, pages 1497–1507. PMLR, 2020.

[87] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis

of extra-gradient and optimistic gradient methods for saddle point problems:

Proximal point approach. In Proceedings of the Twenty Third International

Conference on Artificial Intelligence and Statistics, Proceedings of Machine

Learning Research. PMLR, 2020.

[88] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large

sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008),

2008.

[89] A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational

inequalities with lipschitz continuous monotone operators and smooth convex-

concave saddle point problems. SIAM J. Optim., 2004.

[90] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!:

A lock-free approach to parallelizing stochastic gradient descent, 2011. URL

https://arxiv.org/abs/1106.5730.

[91] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, and Meisam

Razaviyayn. Solving a Class of Non-Convex Min-Max Games Using Iterative

First Order Methods. Curran Associates Inc., Red Hook, NY, USA, 2019.

[92] Olson, Donald R, Konty, Kevin J, Paladini, Marc, Viboud, Cécile, and Si-

monsen, Lone. Reassessing Google Flu Trends Data for Detection of Seasonal

and Pandemic Influenza - A Comparative Epidemiological Study at Three Ge-

ographic Scales. PLoS Computational Biology, 9:e1003256–, 2013.

[93] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang

Chen, Jinyang Gao, Zhaojing Luo, Anthony K.H. Tung, Yuan Wang, Zhongle

https://arxiv.org/abs/1106.5730

125

Xie, Meihui Zhang, and Kaiping Zheng. Singa: A distributed deep learning

platform. In Proceedings of the 23rd ACM International Conference on Mul-

timedia, MM ’15, page 685–688, New York, NY, USA, 2015. Association for

Computing Machinery. ISBN 9781450334594. doi: 10.1145/2733373.2807410.

URL https://doi.org/10.1145/2733373.2807410.

[94] Dmitrii M. Ostrovskii, Andrew Lowy, and Meisam Razaviyayn. Efficient search

of first-order nash equilibria in nonconvex-concave smooth min-max problems,

2021.

[95] Evangelos E Papalexakis. Automatic Unsupervised Tensor Mining with Quality

Assessment. In Proceedings of the 2016 SIAM International Conference on Data

Mining, pages 711–719, Philadelphia, PA, August 2016. Society for Industrial

and Applied Mathematics.

[96] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Par-

Cube - Sparse Parallelizable CANDECOMP-PARAFAC Tensor Decomposition.

TKDD, 10(1):1–25, 2015.

[97] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and

Trends® in Optimization, 1(3):127–239, 2014.

[98] Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer,

Alistair Letcher, Alexander Peysakhovich, Aldo Pacchiano, and Jakob Foerster.

Ridge rider: Finding diverse solutions by following eigenvectors of the hessian.

In Advances in Neural Information Processing Systems, 2020.

[99] Philip M Polgreen, Yiling Chen, David M Pennock, and Forrest D Nelson.

Using Internet Searches for Influenza Surveillance. Clinical Infectious Diseases,

47(11):1443–1448, 2008.

https://doi.org/10.1145/2733373.2807410

126

[100] Sara Pollock, Leo G Rebholz, and Mengying Xiao. Anderson-accelerated con-

vergence of picard iterations for incompressible navier–stokes equations. SIAM

Journal on Numerical Analysis, 57(2):615–637, 2019.

[101] L. Popov. A modification of the arrow-hurwicz method for search of saddle

points. Mathematical notes of the Academy of Sciences of the USSR, 1980.

[102] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation, 2015.

[103] Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific

and Statistical Computing, 1986.

[104] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[105] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of

diffusion models. arXiv preprint arXiv:2202.00512, 2022.

[106] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

Xi Chen, and Xi Chen. Improved techniques for training gans. In Advances in

Neural Information Processing Systems, 2016.

[107] Florian Schaefer and Anima Anandkumar. Competitive gradient descent. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, 2019.

[108] Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlin-

ear acceleration. In Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16, pages 712–720, USA, 2016. Curran

Associates Inc.

127

[109] Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlin-

ear acceleration. In Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16, page 712–720, Red Hook, NY, USA,

2016. Curran Associates Inc. ISBN 9781510838819.

[110] Damien Scieur, Edouard Oyallon, Alexandre d’Aspremont, and Francis

Bach. Nonlinear acceleration of deep neural networks. arXiv preprint

arXiv:1805.09639, 2018.

[111] Shaden Smith, Jongsoo Park, and George Karypis. HPC formulations of op-

timization algorithms for tensor completion. Parallel Computing, 74(Complex

Syst. 3 4 1989):99–117, 2018. ISSN 0167-8191.

[112] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Gan-

guli. Deep unsupervised learning using nonequilibrium thermodynamics. In

Proceedings of the 32nd International Conference on International Conference

on Machine Learning - Volume 37, ICML’15. JMLR.org, 2015.

[113] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit

models. In International Conference on Learning Representations, 2021.

[114] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients

of the Data Distribution. 2019.

[115] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-

fano Ermon, and Ben Poole. Score-based generative modeling through stochas-

tic differential equations. arXiv preprint arXiv:2011.13456, 2020.

[116] Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong

Oh. Efficient algorithms for smooth minimax optimization. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems, 2019.

128

[117] Amirsina Torfi and Edward A. Fox. Corgan: Correlation-capturing convo-

lutional generative adversarial networks for generating synthetic healthcare

records. In FLAIRS Conference, 2020.

[118] Alex Toth and CT Kelley. Convergence analysis for anderson acceleration.

SIAM Journal on Numerical Analysis, 53(2):805–819, 2015.

[119] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling

in latent space. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman

Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[120] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In

ICML, 2008.

[121] John von Neumann and Oskar Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, 1944.

[122] Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations.

SIAM Journal on Numerical Analysis, 49(4):1715–1735, 2011.

[123] Homer F. Walker and Peng Ni. Anderson acceleration for fixed-point iterations.

2011.

[124] Lu Wang, Zhengwu Zhang, and David Dunson. Common and individual struc-

ture of brain networks. The Annals of Applied Statistics, 13:85–112, 03 2019.

doi: 10.1214/18-AOAS1193.

[125] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel N Kho,

You Chen, Bradley A Malin, and Jimeng Sun. Rubik - Knowledge Guided

Tensor Factorization and Completion for Health Data Analytics. KDD, pages

1265–1274, 2015.

129

[126] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax opti-

mization locally: A follow-the-ridge approach. In 8th International Conference

on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,

2020. OpenReview.net, 2020.

[127] Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-

iterate convergence in constrained saddle-point optimization. In International

Conference on Learning Representations, 2021. URL https://openreview.

net/forum?id=dx11_7vm5_r.

[128] Fuchao Wei, Chenglong Bao, and Yang Liu. Stochastic anderson mixing for

nonconvex stochastic optimization. arXiv preprint arXiv:2110.01543, 2021.

[129] Fuchao Wei, Chenglong Bao, and Yang Liu. A class of short-term recurrence

anderson mixing methods and their applications. In International Conference

on Learning Representations, 2022. URL https://openreview.net/forum?

id=_X90SIKbHa.

[130] Wei Wen, Yandan Wang, Feng Yan, C. Xu, Chunpeng Wu, Yiran Chen, and

Hongbing Li. Smoothout: Smoothing out sharp minima to improve generaliza-

tion in deep learning. arXiv: Learning, 2018.

[131] Yue Wu, Pan Zhou, A. Wilson, E. Xing, and Zhiting Hu. Improving gan training

with probability ratio clipping and sample reweighting. ArXiv, abs/2006.06900,

2020.

[132] P. Wynn. Acceleration techniques for iterated vector and matrix. 16:301–322,

1962.

[133] Zi Xu, Huiling Zhang, Yang Xu, and Guanghui Lan. A unified single-loop

alternating gradient projection algorithm for nonconvex-concave and convex-

nonconcave minimax problems, 2021.

https://openreview.net/forum?id=dx11_7vm5_r
https://openreview.net/forum?id=dx11_7vm5_r
https://openreview.net/forum?id=_X90SIKbHa
https://openreview.net/forum?id=_X90SIKbHa

130

[134] Chao Yan, Ziqi Zhang, Steve Nyemba, and Bradley A. Malin. Generating

electronic health records with multiple data types and constraints, 2020.

[135] Minghan Yang, A. Milzarek, Z. Wen, and T. Zhang. A stochastic extra-step

quasi-newton method for nonsmooth nonconvex optimization. arXiv: Opti-

mization and Control, 2019.

[136] Shihao Yang, Mauricio Santillana, John S Brownstein, Josh Gray, Stewart

Richardson, and S C Kou. Using electronic health records and Internet search

information for accurate influenza forecasting. BMC Infectious Diseases, 17(1):

89, May 2017.

[137] Yasin Yazici, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Pil-

iouras, and Vijay Chandrasekhar. The unusual effectiveness of averaging in

GAN training. In 7th International Conference on Learning Representations,

ICLR , 2019, 2019.

[138] Hwanjo Yu Xiaoqian Jiang Yejin Kim, Jimeng Sun. Federated Tensor Fac-

torization for Computational Phenotyping. KDD, 2017:887 895, 2017. ISSN

2154-817X.

[139] M Zaharia, R S Xin, P Wendell, T Das Communications of the, and 2016.

Apache spark: a unified engine for big data processing. dl.acm.org.

[140] Guodong Zhang and Yuanhao Wang. On the suboptimality of negative mo-

mentum for minimax optimization. In AISTATS, 2021.

[141] Guodong Zhang, Yuanhao Wang, Laurent Lessard, and Roger B. Grosse. Don’t

fix what ain’t broke: Near-optimal local convergence of alternating gradient

descent-ascent for minimax optimization. CoRR, 2021.

131

[142] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui,

and Michael I. Jordan. Theoretically principled trade-off between robustness

and accuracy. CoRR, 2019. URL http://arxiv.org/abs/1901.08573.

[143] Jiawei Zhang, Peijun Xiao, Ruoyu Sun, and Zhiquan Luo. A single-loop

smoothed gradient descent-ascent algorithm for nonconvex-concave min-max

problems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, 2020.

[144] Fan Zhou and Guojing Cong. On the convergence properties of a k-step av-

eraging stochastic gradient descent algorithm for nonconvex optimization. In

Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,

Sweden, pages 3219–3227. ijcai.org, 2018.

[145] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic

net. J. R. Stat. Soc. Series B Stat. Methodol., 67(2):301–320, 2005.

http://arxiv.org/abs/1901.08573

