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Abstract

Reaction Dynamics and Vibrational Studies of Atmospheric
Species on Potential Energy Surfaces

By Xiaohong Wang

The potential energy surface (PES) plays a significant role in the theoretical studies of
reaction dynamics and vibrational spectrums. In our work, the PES is obtained using
weighted linear least-square fitting method with respect to tens of thousands of scattered
electronic energies. The key feature of surfaces is that they are explicitly invariant under
all permutations of the same nuclei, which is built into the polynomial basis used for the
fitting.

Lots of fundamental chemical reactions implicate crucial processes in atmospheric chem-
istry. Taking advantage of the above fitting techniques, we can perform detailed dynamics
simulations of such reactions, including H2+CN, photo-dissociation of HOCO, unimolec-
ular decay of Criegee Intermediate, CH3CHOO. The theoretical exploration, usually col-
laborating with the experimental studies, throws insight into the microscopic mechanism
of the reactions.

The availability of PESs also makes it practical to perform quantum vibrational studies
of various systems. Several advanced quantum mechanical methods are implemented and
applied in the dissertation work. Diffusion Monte Carlo is applied to solve the ground
vibrational states numerically exactly. The variational vibrational configuration interac-
tion approach is used to obtain a large range of vibrational states simultaneously. We
have performed the vibrational calculations of many atmospheric species, including C4,
CH3CHOO and CH3NO2, which successfully support and guide the assignment of ex-
perimental observations. Besides, an efficient technique is implemented and tested in the
latest vibrational calculations, which greatly reduces the computational expense without
losing the accuracy.
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Chapter 1

Introduction

Atmosphere contains many different chemical species, and numerous chemical reactions

occur in every second. Many studies have been dedicated to promote the understand-

ing of these atmospheric species and associated reactions. Infrared spectrum (IR) is one

of the most popular and powerful approaches to study the structures and vibrations of

molecules. In order to investigate the mechanism of reactions, various techniques and in-

struments are invented and developed experimentally. In theory, the dynamic simulations

are usually employed to supplement and explain the experimental observations, and are

necessary to obtain deep insights into the microscopic reaction mechanism.

The potential energy surface (PES), which describes the molecular interaction for

different geometries, is the key for the theoretical study. Accurate PES is the prerequisite

for subsequent simulations. Therefore, constructing the PES is the first and the most

significant part of each project. Employing an accurate PES, vibrational calculations

or/and dynamic simulations are performed to provide details or useful aspects of the

chemical system. Quasiclassical trajectory (QCT) approach based on high quality ab

initio PES is applied to describe reactions for most cases. For the vibrational calculations,

1
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we implemented and applied several quantum mechanical approaches, including diffusion

Monte Carlo (DMC) and variational methods.

The dissertation is structured into three parts. The first part involves the main theories

and methods we use. In Chapter 2, we describe the construction of PES, which is invariant

with respect to the permutation of all like atoms. Chapter 2 will also describes the

quasi-classical trajectory approach, covering initial condition sampling and final condition

analysis. In Chapter 3, we describe the vibrational calculations methods, including the

DMC method and the vibrational configuration interaction calculation.

The second part covers dynamic calculations of several chemical systems. Chapter

4 focuses on the association reaction simulation of H+HCN, in which the importance

of including zero-point energy in the dynamic calculation is explored in detail. Chapter

5 describes the construction of a very challenging PES for Criegee intermediate syn-

CH3CHOO. Collaborating with experimental study, we studied the unimolecular decay

of syn-CH3CHOO, resulting in hydroxyl and vinoxy products using QCT simulation. In

Chapter 6, we present a one-dimensional model to describe the tunneling effect in the

dissociation reaction cis-HOCO→H+CO2 as the excitation of specific vibration modes.

In the last part, we present the vibrational calculation applications using different

techniques. We start this part from a relatively small system cyclic C4 molecule in Chapter

7. The energies of ro-vibrational states are calculated using two different approaches, and

the results are compared in detail. Then Chapter 8 describes the IR spectrum calculation

of both syn- and anti-CH3CHOO isomers, including the survey spectrum and the more

accurate calculation of fundamental states. Finally, we introduce a technique which can

greatly reduce the Hamiltonian matrix size, and apply in the vibrational calculations

of C2H4 and CH3NO2. Using the technique, the computational cost is greatly reduced

without scarifying the accuracy.



Part I

Theory and Methods

3



Chapter 2

Potential Energy Surface and

Dynamic Simulation

2.1 Potential Energy Surface

Under the Born-Oppenheimer approximation, the Schrödinger equation can be solved

by separating the electronic and nuclear motions. The solution of molecular electronic

Schrödinger equation at each nuclear configuration is known as potential energy. Then

the nuclear motion is treated as independent of the electrons, and can be determined by

solving the nuclear Schrödinger equation.

The potential energy can be computed by directly solving the electronic Schrödinger

equation at specific nuclear geometry using ab initio software package. The biggest lim-

itation of calculating the potential energy on-the-fly at each possible configuration is

the high computational cost resulting from the large number of points required in the

dynamic and vibrational calculations, which is not practical for the complex polyatomic

systems. An alternate approach is to build the analytical representation of the poten-

4
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tial energy as a function of geometry for the specific chemical system, which is termed

potential energy surface (PES).

The analytical representation of PES have been explored extensively in the literature.

The mathematical function of PES can be fitted using different approaches, such as those

based on the electronic energies, and semi-empirical adjustment of parameters on the

experimental data. In our projects, the PESs are constructed using the direct ab initio

calculation results. The fitting function of PES needs to incorporate the permutation

symmetry of the molecule, which means that the potential energy is invariant with respect

to the permutations of the same nuclei. One of the approaches to enforce the permutation

invariance is to manually replicate the electronic energies when permuting the identical

atoms, as was done for H2CO1 and C2H2
2. However, for the system with a high order

of permutation symmetry, this approach could result in a huge enlarged dataset, which

is not feasible. A more decent approach to build the permutation invariant PES is to

incorporate the symmetry into the expression function. This approach uses basis functions

that explicitly incorporates the permutation invariance. The molecular configuration can

be expressed in different ways, such as Cartesian coordinates and Jacobi coordinate. The

representation of molecular geometry we use is the internuclear distance.

This section will start with a brief overview of Born-Oppenheimer approximation,

the basis of all the following calculations. Two techniques to generate the permutation

invariant fitting basis will be presented, and then followed by the detailed procedure

for generating new potential energy surfaces. Dipole moment is the key to calculate the

intensities of infrared spectrum. Similar techniques of building PES can be applied to

build the dipole moment surface (DMS), which will be briefly discussed in the last part

of this section.
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2.1.1 Born-Oppenheimer approximation

Even for the simplest molecules, its Schrödinger equation is almost impossible to solve an-

alytically. To overcome this difficulty, the Born-Oppenheimer approximation is adopted,

which considers the great difference in masses of electrons and nuclei. The full molecular

Hamiltonian operator is given by:

Ĥ = T̂N + T̂e + V̂NN + V̂eN + V̂ee (2.1)

where T̂e and T̂N refer to the electronic and nuclear kinetic energy, and V̂NN , V̂eN and V̂ee

refer to the nuclear-nuclear repulsion, electron-nuclear attraction and electron-electron

repulsion energy. The Schrödinger equation Ĥψ = Eψ can in principle explain all the

property of molecules. Because the electrons are much lighter, they move much faster

than the nuclei and the electronic motion can be separated from the nuclear motion. As

a consequence, we can regard the nuclei as fixed and solve the purely electronic equation

Ĥelψel = Eelψel, where Ĥel = T̂e + V̂eN + V̂ee (2.2)

Since the nuclei are treated fixed, then the nuclear repulsion energy VNN is just a constant.

The total electronic energy is formed by Ee = Eel +VNN , also known as potential energy.

The separation of electronic and nuclear motion indicate that the total wavefunction

ψ can be approximated as the product function

ψ ≈ ψel(re; rN)χN(rN) (2.3)
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where the two terms are solved from equations

(Ĥel + V̂NN)ψel(re; rN) = Ee(rN)ψel(re; rN)

(T̂N + U(rN))χN(rN) = ENχN(rN)

(2.4)

Thus, by solving the electronic Schrödinger equation we obtain the potential energy Ee at

specific configurations of the molecule. By sampling the molecule at various geometries,

we can obtain a sufficiently large dataset to build the function representing the potential

energy against the nuclear positions, which is known as potential energy surface (PES).

This is the strategy we employed for the projects.

2.1.2 Monomial Symmetrization

To begin, we define the molecular configurations based on the internuclear distance, rij,

of the molecule. Instead of using rij directly, we use Morse variable yij = exp(− rij/α),

where α is constant parameter usually fixed at 2.0 bohr. The transformation will ensure

stable representation of potential energy when the internuclear distance is large. The

number of internuclear distances depends on the size of the molecule. The first approach

of permutation invariant fit is monomial symmetrization, which is straightforward and

relatively easy to understand.3,4

The potential energy surface can be represented by the expansion of monomials of

Morse variables. Take the triatomic molecule A2B for example, there are three inter-

nulcear distances and a single permutation to consider. We first represent the potential

as:

V (y) =
M∑
m=0

Cabc[y
a
12y

b
13y

c
23], m = a+ b+ c

The total degree m over all powers of yij is constrained at most M . However, using this
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mathematical expression, the PES usually does not satisfy permutation invariance unless

replicating the energies when permuting identical nuclei. As shown in Figure 2.1, when

the A(1) and A(2) permute, the variable y12 and y13 map onto y13 and y12 respectively.

Therefore, the invariant basis function can be obtained by symmetrizing the single mono-

mial ya12y
b
13y

c
23 using the corresponding two monomials yc23(ya12y

b
13 + yb12y

a
13). In general, we

Figure 2.1: Permutation of identical nuclei in the A2B triatomic system.

can present the permutation invariant function of PES as:

V (y) =
M∑
m=0

Ci1...idS(yi11 y
i2
2 , ..., y

id
d ), m =

d∑
n=0

in (2.5)

where “S” is the symmetrized operator of monomials. The symmetrized monomial is

obtained by adding all permutation equivalent monomials, which reduces the number

of independent terms in the PES representation. The number of permutation equivalent

monomials is equal to the number of permutations of same atom. Thus, the derivation

of symmetrized basis function can be quite complicated. This approach has been imple-

mented systematically by Xie et al, and successfully applied to many systems, such as

H3O+.4

After generating the symmetrized basis functions, the coefficients can be computed

using direct linear least square fitting method, and we apply the regular routine from
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mathmatical library for this task, such as LAPACK.

2.1.3 Invariant Polynomial

The second approach is based on the theory of polynomial invariants, which will form

more compact and efficient permutationally invariant bases. The classical mathematical

background can be found in Ref 5, which will be skipped here. Essentially, the potential

is expressed as:

V (y) =
M∑
α

hα(p1(y)...pd(y))qα(y) (2.6)

In the expression, d is the fitting dimension, which is equal to N(N −1)/2 for the system

containing N atoms. pi(y) is the k-th primary invariant polynomials and qα(y) is the α-th

secondary invariant polynomial. Both primary and secondary polynomials are invariant

under permutation symmetry group. There are d primary invariant polynomials and hα

is the polynomial of them. The total order of polynomials is constrained to value M as

well.

The number of primary invariant polynomials is equal to the dimension of system,

which is N(N − 1)/2 for N -atom system. Consider the case of A2B, there is a single

primary polynomial associated with the AA bond length, which is p1(y) = y23. Two

primary invariants associate with the two AB distances: p2(y) = (y12+y13)/2 and p3(y) =

(y2
12 + y2

13)/2. There is single secondary invariant q1(y) = 1. For more complex system,

finding the primary and secondary invariant polynomials is not an easy task. The number

of secondary invariant polynomials can be easily expressed using the dimension of system

or the order of symmetry group. We use the computational algebra software MAGMA6

to generate these polynomials.

Note that the two approaches mentioned above are almost numerically equivalent
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using different expressions. The invariant polynomial approach shows better efficiency by

factoring the basis to the product of primary and secondary invariant polynomial. How-

ever, the traid-off of the invariant polynomials is that it loses the flexibility to manipulate

the basis. Usually, to satisfy specific physical properties of the system, we need to revise

the basis function for the better fit. The revision of basis function will be very difficult

for the invariant polynomials because of the factorization to two polynomial terms. One

example is the PES fitting for the long range interaction of molecules. In order to ensure

that the interaction energy is exactly zero at far distance, the basis functions contain-

ing the dependent terms of separate molecules need to be removed. These terms can be

relatively easy to be found and removed for the monomial symmetrization, in contrast

this removal is a quite difficult for the invariant polynomials. This PES fitting strategy

for the interaction energy has been applied to several systems such as methane-water

interaction.7

The efficiency of monomial symmetrization has been improved by Xie et al using a

systematic approach to factorize the polynomial basis into the multiplication of two lower

order polynomials and subtraction of smaller polynomials with the same order.4 Using

this approach, the monomial symmetrization method can run almost at the same speed

with the invariant polynomial method.

2.1.4 Dipole Moment Surface

The dipole moment is a vector, and its value is also dependent on the choice of molecule

coordinate. Thus the presentation dipole moment surface (DMS) is different from PES.
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The dipole moment can be calculated using:

~µ =
∑
i

ωi(X)~xi (2.7)

where X refers to the Cartesian coordinate of molecule, ωi(X) is the effective charge on

the ith nuclei which depends on the molecule configuration, and ~xi is the position vector

of the i−th nuclei. The effective charges are scalar quantities, which can be expressed

using the same approach as PES.

Same with potential energy, the dipole moment is invariant under permutation of like

nuclei. In order to make the dipole moment vector invariant, the function ωi(X) must be

covariant, which means that when permuting identical nuclei i and j, the point charge

pair (ωi(X),ωj(X)) is equal to the (ωj(X’),ωi(X’)). Details of fitting basis to satisfy

covariant property can be found in Ref 3,8.

2.1.5 Procedure for Constructing PES

The procedure to generate new PES usually depends on the system and problems we are

interested in. According to our experience, there are several steps usually taken for the

construction process.

We begin the process by locating the stationary points of the system, which are usually

optimized from direct ab initio calculation or previous calculations. Initial sampling of

the configuration space is performed by running direct molecular dynamics using low-

level electronic structure methods such as density functional theory (DFT), and small

bases. The direct dynamic calculations are initiated from different stationary points, and

are usually simulated at several different energies. Initial samples are chosen from the

direct dynamics trajectories. Then we use the desired high-level method to calculate the



Chapter 2. Potential Energy Surface and Dynamic Simulation 12

electronic energies of sampled geometries. Note that the final electronic structure method

choice needs to consider the required accuracy of tasks and computation expense of the

method. Based on the energies, we obtain the preliminary PES using a linear least-square

fit.

The preliminary PES is improved and tested in various aspects. To ensure the accu-

rate geometries and energetics of stationary points, additional points are usually added

to the dataset by randomly sampling configurations around the stationary points. In

addition, we compare the harmonic frequencies of stationary points with direct ab ini-

tio calculations. This step is extremely important for PES which will be used for the

vibrational spectroscopy calculation. Furthermore, we always test the PES by running

classical molecular dynamics, from which the poorly behaved regions that are not well

sampled can be easily detected. The PES are fixed by adding additional configurations

in the vicinity regions. A new fit is performed after adding more points, and the process

keeps iterating until we are satisfy with the PES.

In this thesis, we present the construction of PES of the following systems, including

H2CN,9 H2CO,10 C4,11 CH3CHOO,12–14 CH3NO2,15 for the purpose of dynamics simu-

lation and IR spectrum calculation. Details of each PES will be found in the following

chapters.

2.2 Molecular Dynamic Simulation

Classical trajectory simulation method is widely used to study the dynamics of chemical

systems. The motions of molecules are determined by solving the Hamilton’s classical
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equations as:
∂H

∂qi
= −dpi

dt

∂H

∂pi
=
dqi
dt

(2.8)

where pi and qi are the coordinate and momentum of i-th atom respectively. H is the

system’s Hamiltonian, which is the sum of kinetic T (p,q) and potential energy V (q),

represented as:

H = T (p,q) + V (q) (2.9)

Initial conditions are crucial in the dynamic simulations, which are usually chosen to

directly compare with experimental results or other calculations or predict the outcome

of chemical reactions. Several methods exist for the initial condition sampling.16 Micro-

canonical sampling and normal mode sampling are the two most commonly used methods

in our projects. Micro-canonical sampling is an efficient and straightforward method, for

which the momentum of system is selected to satisfy the total energy constraint. Without

changing the molecular configuration, the velocity of each atom is randomly distributed

and then scaled so that the total kinetic energy is equal to a specified value E. Next we

will focus on the standard normal mode sampling method.16–18

2.2.1 Normal Mode Sampling

To begin, normal mode analysis is performed by diagonalizing the mass-weighted force

constant matrix, where we obtain the harmonic frequency ωi and normal mode vectors

L. The Hamiltonian of an n-mode system can be approximately represented by the sum
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of energies for each harmonic oscillators, given by:

H(P,Q) = E =
n∑
i=1

Ei =
n∑
i=1

P 2
i + ω2

iQ
2
i

2
(2.10)

where Pi and Qi are the momentum and normal coordinate respectively of i-th mode. In

order to form an uniform distribution in the phase space, the values for Pi and Qi are

chosen randomly by giving each normal mode a random phase as:

Qi = [
√

2Ei/ωi]cos(2πRi)

Pi = −[
√

2Ei]sin(2πRi)

(2.11)

where Ri is a random number.

The Q and P are transformed back to Cartesian coordinate q and momentum p using

the normal mode vector L by:

q = q0 +M−1/2LQ

p = M1/2LP

(2.12)

where q0 is the equilibrium coordinates and M is the diagonal matrix whose elements

are the masses of atoms.

2.2.2 Rotation Sampling

For the rigid rotor, angular momentum can be calculated by summing up the angular

momentums of each atom:

J =
n∑
i=1

Li =
n∑
i=1

ri ×mivi (2.13)
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where ri and mi are the position vector and mass of i-th atom.

Let vi = ω × ri, where ω is the angular velocity of the rigid body, we can derive J in

the form of matrix as:

J =


∑n

i=1mi(y
2
i + z2

i ) −
∑n

i=1mixiyi −
∑n

i=1mixizi

−
∑n

i=1miyixi
∑n

i=1 mi(x
2
i + z2

i ) −
∑n

i=1 miyizi

−
∑n

i=1mizixi −
∑n

i=1 miziyi
∑n

i=1 mi(x
2
i + y2

i )



ωx

ωy

ωz

 (2.14)

By diagonalizing the moment of inertia matrix, the molecule can be transformed to the

principle axis frame. In principle axis frame, the J vector elements can be simplified to:

Jx = Ixxωx; Jy = Iyyωy; Jz = Izzωz (2.15)

The desired angular momentum J can be obtained by adjusting the velocities of each

atom. Note that spurious angular momentum js can be added through the initial normal

mode sampling step. The desired angular momentum jf is added to the molecule by

forming the vector j = jf − js. Rotational velocity ω × ri is added by:

ω = I−1j (2.16)

where I−1 is the inverse of the momenta of inertia matrix.

Once the angular moment vector J is determined, we can calculate the rotational

energy of the molecule. In principle axis frame, the rotational energy can be expressed

by:

Erot =
1

2
(
J2
x

Ix
+
J2
y

Iy
+
J2
z

Iz
) (2.17)
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2.2.3 Zero Point Energy Constraint

After the simulations have finished forming the desired products, the final configurations

and momenta of trajectories can be used to analyze the properties of the products.19

One of the well-known issues of quasi-classical trajectory is the zero-point energy

(ZPE) violation of products. No matter how we sample and assign ZPE to each normal

mode initially, the energies in these modes can fluctuate during the simulations. Such

unphysical flow of ZPE tends to enhance the rate of intramolecular vibration energy

redistribution of the molecule. Besides, the products can be formed with energies less

than their ZPE, which may affect the results of final analysis.

Different models have been proposed and applied to address the ZPE violation issue

of QCT simulation.20–24 Many methods involve the control of energies in each mode

during the simulation, which may cause the discontinuity and noise of trajectories. We

employ two straightforward methods to deal with ZPE violation, soft ZPE constrain and

hard ZPE constrain. Soft ZPE constrain means that the total vibrational energies of all

products have to be larger than the sum of their ZPEs, otherwise the trajectory will be

discarded. Hard ZPE constrain is a similar but more restrictive approach, in which the

vibrational energy of each fragment has to be larger than its ZPE, otherwise the trajectory

is discarded. Usually, the harmonic ZPE is used to determine the ZPE violation, which is

equal to E = 1
2

∑n
i=1 ωi. Anharmonic ZPE of products is a better choice, which is almost

always smaller than the harmonic ZPE.

2.2.4 Final Conditions

The total available energy in the reaction is distributed as the internal energies and

the translation energies of products. For the reaction with more than one product, the
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relative velocity between fragments is also an important property of the reaction. Here

we choose a chemical reaction forming two products C and D as an example.

The relative velocity between two products is the difference between the velocities of

the center of mass of products. The vector between the center of mass of products C and

D is:

R = (XD −XC )̂i + (YD − YC )̂j + (ZD − ZC)k̂ (2.18)

and the relative velocity is:

Ṙ = Ṙxî + Ṙy ĵ + Ṙzk̂ (2.19)

where XC and ẊC are the center of mass position and velocity of product C. Then the

product relative translation energy can be calculated as:

Erel =
1

2
µCDṘ · Ṙ (2.20)

where µCD is the reduced mass of C and D.

The internal energy of product C is:

Eint = TC + VC (2.21)

where TC and VC are the kinetic and potential energies of product C respectively. The

potential energy VC can be easily calculated using potential energy surface.

TC =
1

2

n∑
i=1

mi(ẋi
′2 + ẏi

′2 + żi
′2) (2.22)

Note that the velocity of product C here is in the center-of-mass frame by ẋ′i = ẋi− ẊC .

The separation of vibrational and rotational energies is not trivial for the polyatomic
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molecules. The rotational energy can be calculated classically by:

Erot =
1

2
(
J2
x

Ix
+
J2
y

Iy
+
J2
z

Iz
) (2.23)

where the angular moment J of products can be easily calculated classically. The vi-

brational energy can be determined after calculating the internal energy and rotational

energy.



Chapter 3

Vibrational Calculation

The theoretical modeling of molecular vibrations is an important topic in many related

fields. The vibrational studies usually relate to solve the molecular Hamiltonian, sum of

the kinetic energy and potential energy, which is a very challenging task for the poly-

atomic system. Many different models and techniques are reported to solve the anhar-

monic molecular vibration problems. In this section, we will mainly talk about two tech-

niques. First, the diffusion Monte Carlo (DMC) technique is introduced to numerially

solve for the ground state vibrational properties of molecular systems.25–27 Next, we con-

sider the quantum mechanical approach to solve the nuclear Schrödinger equation using

variational theory. The MULTIMODE program is mostly applied in the vibrational cal-

culations, which implements the vibrational self-consistent field (VSCF) and vibrational

configuration interaction (VCI) approaches. We will employ the PES that are fitted using

the ab initio electronic energies to calculate the potential energy efficiently.

19
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3.1 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) method is widely used to accurately calculate the ground

vibrational state energy and wavefunctions of molecular systems. DMC method also

has been adapted to solve the first excited state, which will not be discussed here. We

begin the derivation of DMC approach from the time-dependent Schrödinger equation.

For simplicity, we only consider the one-dimensional system for now. The Schrödinger

equation is expressed as:

ih̄
∂Ψ

∂t
=

h̄2

2m

∂2Ψ

∂x2
+ V (x)Ψ (3.1)

where V (x) is the potential energy. The solution of Schrödinger equation is:

Ψ(x, t) =
∞∑
n=0

cnφn(x)e−i
En
h̄
t (3.2)

where φn(x) andEn are the eigenstates and eigenvalues of the time-independent Schrödinger

equation of Ĥφn(x) = Enφn(x).

Two transformations are performed in DMC approach. First, the energy scale is

shifted from V (x) to V (x)− ER and En to En − ER. Then the real time is transformed

to imaginary time using τ = it. The obtained imaginary time Schrödinger equation is

h̄
∂Ψ

∂τ
=

h̄2

2m

∂2Ψ

∂x2
− [V (x)− ER]Ψ (3.3)

and the corresponding solution becomes:

Ψ(x, τ) =
∞∑
n=0

cnφn(x)e−
En−ER

h̄
τ (3.4)

Now consider the imaginary time wavefunction for the ground vibrational state, where
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n = 0, three different situations can occur when τ →∞.

1. If E0 > ER, the wavefunction Ψ(x, τ) exponentially vanishes to 0

2. If E0 < ER, the exponential term in Ψ(x, τ) diverges to infinity

3. If E0 = ER, Ψ(x, τ) converges to ground state wavefunction c0φ0

The final convergence is the basis for DMC approach to compute the ground vibra-

tional state energy and wavefunction. The formula of DMC process can be derived from

diffusion-branching process. The imaginary time Schrödinger equation can be analogous

to the diffusion equation

∂C

∂t
= D

∂2C

∂x2
− kC (3.5)

by letting D = h̄2

2m
and k = [V (x)− ER]/h̄. The second-derivative part of Equation 3.5

∂C

∂t
= D

∂2C

∂x2
(3.6)

is the Einstein equation, which can be simulated using the random work process and the

diffusion constant is given by D = (∆x)2

2∆τ
. In the random walk process, each walker takes

a random step with the step size chosen based on Gaussian probability density

P (∆x) =
1√
2πσ

exp

[
−(∆x)2

2σ2

]
(3.7)

where σ = (2D∆τ)1/2. For the imaginary time Schrödinger equation, we have σ =

(h̄∆τ/m)1/2.

The first order part in diffusion equation

∂C(x, t)

∂t
= −kC(x, t) (3.8)
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can be solved easily by

C(x, t+ ∆t) = C(x, t)e−k∆t (3.9)

By analogy, we can get the similar solution of Schrödinger equation

Ψ(x, τ + ∆τ) = Ψ(x, τ)e−(V (x)−ER)∆τ (3.10)

This first-order derivative part can be simulated by a branching process. We define a

weight function W (x) = exp[−(V (x)−ER)∆τ ]. In the branching process, W (x) is calcu-

lated for each walker. The random walkers with W (x) > 1 create offspring at the same

position and walkers with W (x) < 1 are removed. The DMC approach can also be de-

rived using Feynman path integral. The derivation details can be found in Ref 26, which

will not be discussed here.

The actual steps in the DMC simulation can be summarized as follows. The simulation

step size, total propagation time and the number of random walkers are pre-determined.

All random walkers initially start from the reference configuration. In the diffusion step,

the coordinate of random walker j at i-th step is propagated as:

xji+1 = xji + σρji (3.11)

where σ =
√
h̄∆τ/m and ρji is the random value selected from Gaussian probability with

mean 0 and standard derivation 1. The weight function W (x) is calculated for each new

configuration, along with an integer m = min
(
int[W (xji+1) + µ], 3

)
. Here µ is a random

number between 0 and 1, and int is a function returning the integer value. The vanish and

birth of given walker is determined based on m value. If m = 0, the walker is removed;

if m = 1 the walker is accepted at new configuration; if m = 2, 3, then m− 1 walkers are
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added at that configuration. After the birth-death process, the new reference energy ER

is updated as

ER =< V > −αNi −N0

N0

(3.12)

where < V > represents the average potential energy of all of the random walkers at ith

step and α is the parameter which is generally chosen as the inverse of time step. Then

we continue the DMC propagation step. In DMC, usually the first few thousand steps are

used to equilibrate the system. After a few thousand steps, the energies are accumulated

to compute the final ground state energy.

Besides calculating the ground state energy, another application of DMC simulation

is the visualization of ground state wavefunction,which is first applied in Ref 28. The

visualization of wavefunction is based on the distribution of the final walkers. At first,

all the walkers are transformed into the Eckart frame relative to the reference, which

is usually a stationary point. Then a quartic kernel density estimator is applied to the

coordinates of walkers to compute volumetric elements for each type of atom. These

volumetric information is written to a Gaussian cube file, which can be visualized using

the VMD package.

3.2 MULTIMODE

Diffusion Monte Carlo is an efficient method to numerically solve the nuclear Schrödinger

equation exactly. However, this method is restricted to the ground vibrational state and

limited excited states. Now we focus on another quantum approach that will allow us

to calculate the large range of excited states. This approach is based on the variational

theory, which is implemented in the MULTIMODE (MM) program.29,30 The method uses
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the Watson Hamiltonian in normal coordinates, which makes some approximations of the

potential representation to reduce the computation cost. This program has been applied

to a variety of fairly large polyatomic molecules.

3.2.1 Hamiltonian and Potential

For the nonlinear molecules, the Watson Hamiltonian31 is given by

Ĥ =
1

2

∑
αβ

(Ĵα − π̂α)µαβ(Ĵβ − π̂β)− 1

2

N∑
k

∂2

∂Q2
k

− 1

8

∑
α

µαα + V (Q) (3.13)

where α and β indicates the x, y, z coordinates, Ĵα and π̂α are the total and vibrational

angular momentum respectively, µαβ is the inverse of effective moment of inertia, and

V (Q) is the potential energy in terms of normal coordinate Q. Note that this approach

is not applicable for linear molecules because one of the moments of inertia will be zero.

The key approximation in MM is to represent the full potential using hierarchical

n-mode representation (nMR) in normal coordinates.30

V (Q1, Q2, · · · , QN) =
∑
i

V
(1)
i (Qi) +

∑
i,j

V
(2)
ij (Qi, Qj) +

∑
i,j,k

V
(3)
ijk (Qi, Qj, Qk)

+
∑
i,j,k,l

V
(4)
ijkl(Qi, Qj, Qk, Ql) + · · ·+

∑
i,··· ,N

V
(N)
i···N(Qi, · · · , QN)

(3.14)

In the expansion, the one-mode representation V
(1)
i (Qi) corresponds to the potential that

just Qi coordinate varies and all the other normal coordinates fixed at zero. The two-mode

representation contains the one-mode term plus the V
(2)
ij (Qi, Qj), where V

(2)
ij (Qi, Qj) =

V (Qi, Qj)−V (1)
i (Qi)−V (1)

j (Qj) and only Qi and Qj are non-zero. The remaining n-mode

term V
(N)
i···N(Qi, · · · , QN) can be formulated in the same pattern. Because of the limitation
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of computational resources, the potential expansion is usually truncated at the value

smaller than 6. It will be shown later that such truncation will make the calculations of

large systems more feasible.

3.2.2 Variational Calculation

To solve the eigenvalues and eigenfunction of Watson Hamiltonian, we start from the

vibrational self-consistent field (VSCF) calculation.32,33 The initial trial function is the

simple product of the single wavefunction for each mode.

ΨV SCF
n1,··· ,nN

(Q) =
N∏
i=1

φ(i)
ni

(Qi) (3.15)

where φ
(i)
ni is the eigenstate of ith normal mode. By solving the set of coupled VSCF

equations for J = 0, we obtain the optimal wavefunctions φ
(i)
ni .

[
Tl +

〈
N∏
i 6=l

φ(i)
ni
|V + Tc|

N∏
i 6=l

φ(i)
ni

〉
− ε(l)nl

]
φ(l)
nl

(Ql) = 0, l = 1, · · · , N (3.16)

where

Tl = −1

2

∂2

∂Q2
l

, Tc =
1

2

∑
αβ

π̂αµαβπ̂β −
1

8

∑
α

µαα

As seen, the integration is over N − 1 normal mode coordinates. The high-dimensional

integration could be quite expensive for large system. Because of n-mode representation

of full potential, we can transform the multidimensional integration to the sum of all one-

mode, two-mode, ..., n-mode integrations. The cost is greatly reduced in this case. The

coupled VSCF equations are solved iteratively for each mode. The modal wavefunctions

φ
(i)
ni are expressed as the linear expansion of finite harmonic oscillator basis, and the goal
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is to solve the unknown coefficients. Once convergence is achieved, the eigenfunctions

of the VSCF Hamiltonian form an orthonormal space. The calculated eigenfunctions

ΨV SCF
n1,··· ,nN

(Q) are the VSCF states.

Several approaches exist to go beyond the VSCF description to obtain more accurate

energies. One of the popular approaches is to use second-order perturbation theory to

correct VSCF.34,35 In MM, we use vibrational configuration interaction (CI) approach to

go beyond the VSCF calculations by explicitly including correlation among modes.36 In

the VCI calculation, the total wave-function is expanded in terms of the virtual states of

VSCF Hamiltonian. The VSCF states form the orthonormal basis function, which results

in a standard eigenvalue problem.

Ψ(Q) =
∑
m

CmΨ(V SCF )
m =

∑
m

Cm

N∏
i=1

φ(i)(Qi) (3.17)

where φ(i)(Qi) comes from the previous VSCF iteration of each mode.

Due to the high-dimensionality of problems, the VCI scheme can usually result in

large Hamiltonian matrices, and a very flexible basis set selection method is developed

for the VCI scheme in MM. The VCI excitation is divided into one-mode, two-mode, until

six-mode excitations at most, and the total sum of excitations in each n-mode excitation

space is restricted. In addition, the maximum number of excitations for each mode is

further restricted. The symmetry of molecules is usually applied when appropriate. By

incorporating the symmetry, the Hamiltonian matrix can be partitioned into several

diagonal blocks since the coupling between states in different symmetry is always zero.

Many modifications have been implemented into the MM program to solve various

problems. One of the commonly used functionalities is to pre-specify the arbitrary normal

modes of the molecule. This is particularly useful when we need to deal with large systems
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and only a few specific vibration modes are of interest. Even with all the techniques to

reduce the computational cost, we will usually end up with huge Hamiltonian matrix. A

new technique has been implemented in the MM code and tested thoroughly, which will

be discussed in detail later.15,37

3.2.3 Infrared Intensity

We need the dipole moment surface (DMS) for the computation of infrared intensities.

Here we only consider the pure vibration transition with J = 0. After solving the the

vibrational states from VSCF or VCI calculation, the transition dipole matrix element

can be calculated using38

Rα
νν′ = 〈Ψν(Q)|µα(Q)|Ψν′(Q)〉 (3.18)

where Ψν(Q) and Ψν′(Q) are the wavefunctions for the vibration state ν and ν ′ re-

spectively. µα(Q) is the dipole moment component of the molecule, where α = x, y, z.

The integration is based on the normal coordinate Q. Thus the dipole moment is first

represented using the similar n-mode representation as for the potential energy.

After calculating the transition elements Rα
νν′ , the infrared intensities of the ν → ν ′

are evaluated using the expression

A(Ea) =
8π3NAV

3hc× 4πε0
Ea

∑
α=x,y,z

|Rα
νν′ |2(Nν −Nν′) (3.19)

where Ea is the transition wavefunction between two states, and Nν is the number of

molecules in the state ν. Considering the transitions from the ground vibrational state

at equilibrium distribution, the term Nν −Nν′ tends to 1.



Part II

Application: Reaction Dynamics

Simulation

28



Chapter 4

Dynamic Simulations of H+HCN

Reaction

4.1 Introduction

The H2CN system has attracted wide interest and has been the focus of many the-

oretical studies from both classical and quantum calculations, especially the reaction

H2+CN→H+HCN.36,39–53 The construction of an accurate potential energy surface (PES)

is essential to study the reaction dynamics of the system. Several PESs for H2CN system

have been constructed before. Sun and Bowman reported a semi-empirical PES based on

ab initio calculations of the saddle points (SP).41 Reduced dimensionality quantum reac-

tive scattering calculation for H2+CN→H+HCN was done with this PES, which does not

describe the formation of the CNH2 complex and then H+HNC product. In a later study,

Horst et al.43 carried out multireference configuration interaction calculations, and con-

structed a global PES using many-body expansion. The H2+CN reaction was studied in

detail using QCT calculations based on the PES. Later, Sumathi and Nguyen44 reported

29
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the doublet and quartet PESs which covered more stationary points using CCSD(T)

method with 6-311++G(d,p) basis. The rate constants of various addition reactions were

determined using a quantum Rice-Ramsperger-Kassel (QRRK) theory, where they noted

some quantitative differences with the earlier Horst et al. results.

Previous dynamic studies were mainly focused on the reaction H2+CN→H+HCN,

which has a reaction barrier of about 3-4 kcal/mol. Several studies also considered the

reverse reaction.49,50,53 To the best of our knowledge, there are quite few dynamical stud-

ies of the title association reactions of H+HCN. There have been a number of studies of

the energetics of these reactions. In 1980s, Bair et al.39,40 performed the ab initio calcu-

lations of various reactions starting from H+HCN using GVB-CI and POL-CI methods.

Starting with the reaction of HCN with hydrogen atom, there are several interesting

reactions we need to consider as follows44:

H+HCN → H2CN* (R1)

H+HCN → cis-HCNH* (R2)

The isomerization reaction of HCNH can easily occur because of the small barrier:

cis-HCNH* → trans-HCNH* (R3)

As we will show below, there is also a direct pathway from H+HCN to trans-HCNH*.

In addition, at higher energies the reaction H+HCN→H2+CN can happen, however, this

channel is not open at the energies of interest here.

In this chapter, we present a high-quality, ab initio global PES of H2CN system for
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the ground doublet electronic state. Using the PES, we studied two sets of dynamic cal-

culations of the association reactions. One is the quasiclassical trajectory (QCT) method,

in which the reactant HCN has zero-point energy. This method is the standard one used

in gas-phase reaction dynamics. The second one is the strictly classical trajectory (CT)

method, without zero-point energy (ZPE) of the reactant. This method is widely used in

condensed phase and/or large molecule molecular dynamics simulations. One focus here

is the comparison of the threshold energies for various association reactions using these

two methods.

In Section 4.2, we describe the computational details of the PES, including the ab

initio calculations, PES fitting, and accuracy test of the PES. In Section 4.3, QCT and

CT calculations are reported for the H+HCN association reactions. The summary and

conclusions are presented in Section 4.4. Then in the last section, we present the PESs we

have build for the similar systems with X2YZ pattern. These PESs have been successfully

applied for the accuracy quantum scattering calculation, which will not be discussed here.

4.2 Potential Energy Surface Construction

4.2.1 Ab Initio Calculation

The electronic structure calculations are performed using the F12 version of the sin-

gles and doubles coupled-cluster method that includes a triple perturbation (CCSD(T)-

F12b),54,55 with aug-cc-pvDz basis.56,57 All the ab initio calculations are performed using

MOLPRO58 package.

H2CN is an open shell system, and we are interested in the low lying doublet state. The

potential energy surface for the doublet H2CN has been studied using various ab initio
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methods. The present CCSD(T)-F12b calculations give the H2+CN↔H+HCN reaction

barrier of about 3.6 kcal/mol, which is in agreement with the experimental estimate of

3-4 kcal/mol.45,46. For the generation of fitting dataset, the majority of configurations

were obtained by running classical direct-dynamics calculations, using density functional

theory (DFT) with the aVDZ basis, starting from various stationary points and with

a variety of total energies. Preliminary fits were done and then refined by running ad-

ditional direct-dynamics calculations. Finally, CCSD(T)-F12b/aVDZ electronic energies

were calculated at roughly 60,000 configurations for the PES fitting.

4.2.2 Potential Energy Surface Fitting

The potential energy surface of H2CN system is six dimensional. In addition, the PES

should be invariant with respect to permutation of the two H atoms. Thus, we utilize

the monomial symmetrization to generate the fitting basis, and expand the expression of

PES as follows:3

V (y1, · · · , y6) =
M∑

n1,··· ,n6

Cn1,··· ,n6y
n1
1 yn6

6 (yn2
2 yn3

3 yn4
4 yn5

5 + yn5
2 yn4

3 yn3
4 yn2

5 ) (4.1)

where yi is the Morse variable given by yi = exp(−ri/α) with α fixed at 2.0 bohr, and ri

is the bond length. The internuclear distances are specified as: r1 = rHH , r2 = rNH , r3 =

rCH , r4 = rCH′ , r5 = rNH′ , r6 = rCN . The threshold energy of configurations is set to

80 kcal/mol relative to the H2CN global minimum, and 59,868 points are included for

the PES fitting after the energy cutoff. The total power of polynomial is restricted to 7,

and coefficients were obtained using standard weighted least-squares fitting. In order to

ensure the accuracy at relatively low-energy range, weight of configurations is employed

in the fitting. Weight of points with energies less than 60 kcal/mol relative to the global
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minimum is equal to 1, from 60 to 70 kcal/mol the weight is 0.7, and above 70 kcal/mol

is 0.5. Figure 4.1 shows the number of configurations in different energy ranges and the

corresponding root mean square (RMS) fitting error. Most sampled points are in the

energy range from 0 to 60 kcal/mol, and as indicated the RMS fitting error up to this

energy is 0.45 kcal/mol.

Figure 4.1: Root-mean-square (RMS) of the PES fitting error as a function of relative
energy with respect to the global minimum. The numbers in parenthesis are the number
of configurations in the energy range.
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4.2.3 Properties of PES

Fifteen stationary points have been reported previously and confirmed in the present

work. The comparison of energies of the stationary points from direct CCSD(T)-F12b ab

initio optimization and from the fitted PES is shown in Figure 4.2. As seen, the PES is

in very good agreement with the direct ab initio calculation. The PES reaction barrier of

H2+CN→H+HCN is 3.54 kcal/mol, and is in good agreement with the ab initio result as

well as the deduced experimental value of 3-4 kcal/mol. The barriers for the association

reactions R1 and R2 are 6.3 kcal/mol and 9.8 kcal/mol, respectively.
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Figure 4.2: Potential profile of all the stationary points on the PES. The energy outside
the parentheses is the energy at the optimized geometry using the PES, and the value in
the parentheses corresponds to the results of direct CCSD(T)-F12b calculation.

The harmonic frequencies and ZPE are calculated at the stationary points using the

PES, and are compared with ab initio results, shown in Table 4.1. We observe very good

agreement of the harmonic frequencies between the PES and ab initio calculation.
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Table 4.1: Harmonic vibrational frequencies ωi (cm−1) and harmonic ZPE (kcal/mol) of
the indicated stationary points using the fitted PES and ab initio calculations.

Species ω1 ω2 ω3 ω4 ω5 ω6 ZPE

H2C+CN PES 4383 2046 9.19

ab initio 4385 2070 9.23

H2C+CN→H+HCN PES 3268 2141 568(e) 133(e) 661i 9.74

SP ab initio 3214 2107 547(e) 106(e) 676i 9.47

HCN PES 3459 2145 707(e) 10.0

ab initio 3437 2131 732(e) 10.1

H2C+CN→H2CN PES 3447 2063 930 740 587 1020i 11.1

SP ab initio 3371 2021 910 721 520 1071i 10.8

H2CN PES 3071 3002 1684 1378 971 930 15.8

ab initio 3061 2990 1680 1378 975 932 15.9

H+HCN→cis-HCNH PES 3407 1997 882 763 502 1266i 10.8

SP ab initio 3389 1983 768 699 526 1473i 10.5

cis-HCNH PES 3585 2909 1737 1165 1141 961 16.4

ab initio 3346 3004 1803 1034 901 862 15.7

trans-HCNH PES 3844 3130 1798 1361 1097 954 17.4

ab initio 3461 3052 1756 1198 977 913 16.2

As seen, the PES is especially accurate for stationary points relevant to the H2+CN↔H+HCN

reaction, which will be studied in detail in the future. Several studies have observed that

CN is essentially a spectator mode,53,59,60 demonstrating that CN distance and its vibra-

tion state change little during the reaction. A smooth plot of colinear H+HCN↔ H2+CN
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reaction is shown in Figure 4.3 by varying HH and CH distances and fixing CN distance

at equilibrium.

Figure 4.3: Contour plot of the H+HCN↔H2+CN reaction using the PES (the energy
of H2+CN is set to zero). The C-H and H-H distances are changed in the plot, the C-N
distance is fixed at equilibrium, and the symmetry is restricted to be colinear

4.3 Dynamic Simulations

QCT and CT calculations of the H+HCN association reactions were performed using

the current PES. As usual, we determine whether or not a certain complex is initially

formed based on the criterion of three turning points of the distance between the incoming
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H atom and HCN. The calculations indicate that while it is easy to identify the deep

complex H2CN, it is not meaningful to distinguish the trans- and cis-HCNH isomers,

because the interconversion is so rapid. Of course the initial isomer can be identified.

Standard normal-mode sampling16 of the ground ro-vibrational state phase-space of

HCN was used in the QCT calculations. For both CT and QCT calculations, the time step

is 0.1 fs. The initial distance between H and HCN is 7 Å, and the number of steps is 1500.

Reaction probabilities are calculated from 2000 trajectories for each impact parameter

and collision energy.
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Figure 4.4: Energies and geometries of the stationary points along the reaction paths of
H+HCN→H2CN and cis/trans-HCNH (the energy of H+HCN was set to zero). The red
lines indicate the zero-point energies (ZPE)

To better understand the results of the QCT and CT calculations, we indicate the en-

ergies and barriers of the association reactions from H+HCN to H2CN, R1, and trans/cis-

HCNH, R2, complexes in Figure 4.4. The figure also shows the structure of saddle points,

where the HCN is slightly bent for both R1 and R2. The standard harmonic vibrationally

adiabatic ground state (VAGS) barriers are also given. Recall that these are the ener-
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gies of SP plus the associated harmonic ZPEs minus the HCN ZPE. These ZPEs were

obtained, as usual, in the harmonic approximation. From many previous dynamics cal-

culations, we know that the VAGS barriers are useful estimates of the quantum and

QCT threshold energies. (They are also central to a standard transition state theory

treatment of the association rate constant.) There is no rigorous definition of the thresh-

old energy for reaction with barriers. However, we adopt a frequently used one, namely

the lowest collision energy where the reaction probability reaches 0.01. Based on many

QCT calculations of reactions in the gas phase with barriers, the expectation is that the

QCT threshold energy is close to the VAGS barrier. However, often because of a small

amount of zero-point energy leak, the threshold energies are somewhat lower than this

barrier. (Quantum threshold energies are almost always below the VAGS barrier, due

to tunneling.) For the CT calculations (with no ZPE), our initial expectation was that

the threshold energy for reaction R1 and R2 would be sharp and at the energy of the

corresponding SP.

The collision energy dependence of the association probabilities of R1 and R2 for QCT

and CT calculations for zero impact parameter is shown in Figure 4.5. First, we focus

on the QCT results. As seen, the threshold energy of R1 is about 7 kcal/mol, in good

agreement with the VAGS barrier of 7.4 kcal/mol. This also indicates a small amount

of ZPE leak, which is a generally known issue in QCT calculation. The observed QCT

threshold energy for R2 is roughly 10 kcal/mol, which agrees well with the VAGS barrier

of 10.8 kcal/mol.
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Figure 4.5: Reaction probabilities of R1 and R2 as a function of collision energy, with
impact parameter equal to zero.

Next, we investigate the CT results. Recall that in this case, HCN is initially fixed

at equilibrium geometry, without any vibration. Since ZPE is not included in the CT

calculation, we expected the threshold energy to be exactly the SP energy. However, for

both R1 and R2 reaction, the observed threshold energies are significantly higher. For R1,
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the observed threshold is 12 kcal/mol, which is almost twice as large as the saddle point

barrier of 6.3 kcal/mol. The same result appears for R2. For R2, threshold energy of CT

is about 13 kcal/mol, much larger than the saddle point barrier of about 9.8 kcal/mol.

To investigate the large differences of threshold energies in the CT and QCT calcula-

tions, we consider the reaction R1 in more detail. Specifically, we calculated two relaxed

one-dimensional potentials that are of relevance to the QCT and CT reactions. For the

QCT calculation the relevant path is a fully relaxed one where the potential is minimized

as a function of R, the distance of H to the center of mass of HCN. The second path is

one where the HCN geometry is fixed at the equilibrium structure. These two paths are

shown in Figure 4.6. As seen, the fully relaxed path connects the reactants to the R1

SP and then finally to the H2CN global minimum. The barrier on this path is just the

saddle point energy, as expected. The QCT threshold energy is totally consistent with

this barrier on this path. As already noted, the HCN reactant is slightly bent at the

barrier and this bending is easily achieved using QCT sampling of initial conditions. By

contrast, the constrained path displays a ridge at about 12 kcal/mol, which is in good

accord with the observed CT threshold energy. Note that this ridge develops at a smaller

value of R than that of SP.
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Figure 4.6: Relaxed potential energy cut for H-HCN (the energy of H+HCN was set
to be zero). R is the distance between H and the center of mass of HCN. For the red
curve, the energy is achieved by relaxing all the other internal degrees of freedom. For
the black curve, HCN is fixed at the equilibrium, and the orientation between H and
HCN is relaxed.

Clearly in an actual CT trajectory the H2CN well is accessed at collision energy above

12 kcal/mol, but we believe this occurs after first visiting this ridge region at roughly 12

kcal/mol. To verify this we examined a CT trajectory at collision energy of 13 kcal/mol,

where the reaction probability of R1 is not zero but small. We monitored R(t), the HCN

bond angle, θ(t), and the potential, V (t) of the CT trajectory, as shown in Figure 4.7. As

seen, as R decreases to roughly 3.5 Å, θ remains at the equilibrium value of 180°. As the
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H atom approaching, the potential energy keeps increasing until reaching barrier height

of about 10 kcal/mol, which is smaller than the 12 kcal/mol threshold energy. θ decreased

even as the potential remains flat and R also remains flat. This is the “ridge. Notice that

the value of R at the beginning of the ridge is 1.6 Å, which is in good agreement with

this value at the start of the plateau region of the CT potential cut in Figure 4.6. After

entering the ridge region, there are, not surprisingly, some distortion of HCN and in fact

a slight increase in R, as the H2CN potential well is accessed at roughly 7.5 fs. Based on

this result as well as the potential cuts in Figure 4.6, we assign a critical value of R for

reaction to occur for the CT calculations of roughly 1.6 Å. This is less than the value R

at the SP, which is roughly 2 Å.
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Figure 4.7: The tracking of classical trajectory (CT) as a function of reaction time at
collision energy of 13 kcal/mol. R is the distance between the incoming H atom and the
center of mass (COM) of HCN; V is the potential energy and θ is the bent angle of HCN.

We then further tested the assignments of the critical values of R for the QCT and CT

calculations by investigating the reaction probabilities as a function of impact parameter

at a collision energy well above the threshold energies. Here, we use a simple, spherically

symmetric textbook model to predict the maximum impact parameter for a reaction with

well-defined critical distance for reaction to occur, which we denote generically as Rb. If

we make the reasonable assumption that the effective barrier at Rb is the sum of the

potential Vb plus the centrifugal potential, then using Ecol = Vb+b2Ecol/R
2
b , where Ecol is
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the collision energy, it is trivial to get the following equation for the maximum reaction

impact parameter bmax, i.e, to surmount the effective barrier.

bmax = Rb

√
(1− Vb/Ecol) (4.2)

bmax ≈ Rb if Ecol � Vb. Aside from this limit we need to know Rb and Vb to predict

bmax. Considering that Rb is larger and Vb is smaller for QCT than for CT, we can get

an immediate qualitative conclusion that bmax-QCT is larger than the bmax-CT, where

the meaning of the new notations should be obvious. A quantitative examination of this

conclusion is shown in Figure 8 for Ecol of 20 kcal/mol. As predited, bmax-CT is smaller

than bmax-QCT. The latter is roughly 1.8 Å, and agrees well with the calculated value of

1.75 Å from the above equation with the QCT parameters inserted into it. The prediction

is 1.0 Å using CT parameters of 1.6 Å for Rb and 12 kcal/mol for Vb, which is not in

agreement with observed bmax-CT of 1.6 Å. This is not surprising given that instead

of a well-defined barrier and critical distance for the CT calculations there is a broad

ridge. Thus, while the above equation works quite well for the QCT case, it only works

qualitatively for the CT case. Nevertheless, even a correct qualitative prediction does add

further evidence to the conclusion that the CT dynamics is not governed by the SP.
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Figure 4.8: Reaction probabilities of R1 from the CT and QCT calculations as a function
of the impact parameter at Ecol =20 kcal/mol

Similar analysis is performed for the R2 reaction forming the trans- and cis-HCNH,

and we find analogous results. The geometry and energy of R2 SP have been shown in

Figure 4.4. The barrier does indeed govern the QCT threshold, as noted already. Interest-

ingly, instead of the usual mechanistic picture where the cis-SP is crossed first followed

by isomerization to trans-HCNH, we noticed some trajectories initially directly formed

the trans isomer when examining QCT trajectories. To investigate this, we determined

two relaxed paths from the trans- and cis-HCNH to H+HCN respectively, as shown in

Figure 4.9. As seen, the two curves are virtually superimposable from the pre-barrier

region to the asymptotic region. Thus, the labeled cis-SP is evidently the saddle point
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for both isomers. However, we do note that the isomerization from H2CN to trans-HCNH

is difficult because of the high barrier, as seen in Figure 4.2.

Figure 4.9: Relaxed potential energy curves from trans/cis-HCNH as a function of NH
distance (the energy of H+HCN was set to zero). The red curve starts from cis-HCNH;
the black curve starts from trans-HCNH. The NH distance is increased and the energy
is relaxed with respect to all the other degrees of freedom

Finally, we note that at relatively high collision energies of about 15 kcal/mol, we

observed trajectories where the two H atoms can exchange. This undoubtedly happens

at lower collision energies too. However, because we did not propagate the trajectories

long enough for subsequent dissociation of the energetically excited complexes we did not
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observe this.

4.4 Summary and Conclusion

We presented a new global full-dimensional potential energy surface for the H2CN system.

The PES was constructed by fitting roughly 60,000 CCSD(T)-F12b/aVDZ electronic

energies. The permutation invariance of the two H atoms is included using the monomial

symmetrization method. The PES totally covers 15 stationary points, and is especially

accurate along the H2+CN→H+HCN reaction path. Excellent agreement is achieved for

the energies and normal-mode analysis frequencies comparison between the PES and the

direct CCSD(T)-F12b calculations

QCT and CT calculations of the association reactions of H+HCN were performed

using the PES. We calculated the reaction probabilities of association reactions as a

function of collision energy, and the impact parameter. QCT and CT results show large

differences in the threshold energy, with CT giving larger threshold energy. In addition, at

a given collision energy the CT calculations give a smaller maximum impact parameter

for reaction than the QCT ones. These differences were analyzed in detail and it was

concluded that these differences are due to different barriers of relevance to the QCT

and CT calculations. In the case of the QCT calculations the saddle point barrier is the

relevant barrier. This is the usual QCT result, consistent with many QCT calculations

of reaction dynamics. The new result of the significantly higher threshold energy is seen

in the CT calculations.

For this polyatomic reaction the origin of this difference is evidently the distorted

geometry of the reactant HCN at the saddle point. In the CT calculations, with no

initial zero-point energy, HCN evidently remains colinear as H atom approaching, and
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does not distort to “in time” to achieve the saddle point geometry. By contrast, the QCT

calculations, with initial ZPE in the HCN, do sample bent configuration of the HCN and

thus accessing the SP geometry does occur easily. The fact indicates the importance of

including the ZPE in reaction dynamics studies. In addition, the reaction channel from

H+HCN directly to trans-HCNH is discussed in detail for the first time, which shows the

same saddle point with the reaction to cis-HCNH.

4.5 PES Construction of Similar Systems

As known, H2 is the most abundant molecule in the interstellar medium, and the inter-

action and reactions between H2 and other species play important roles in modeling the

chemistry of diffuse clouds. The CN radical and CO molecule are two abundant molecular

species in the interstellar environment. The interactions of H2-CN and H2-CO have been

studied many times in the literature. Different from the H2CN reaction studies mentioned

above, here we are mainly interested in the long range interaction between two species

instead of the total potential energy. Besides, because the systems are usually in very

cold interstellar environment, we require quite high accuracy of the constructed PES. The

process for constructing the interaction PES will be briefly discussed using the H2-CO

case.

To construct the PES, the computations were performed on a six-dimensional (6D)

grid using Jacobi coordinates. R is the distance between the center of mass of CO and

H2. r1 and r2 are the bond lengths of CO and H2, respectively. θ1 is the angle between

r1 and R, θ2 is the angle between r2 and R, and φ is the out-of-plane dihedral or twist

angle. In the potential energy computations, the bond lengths are taken over the ranges

1.7359 ≤ r1 ≤ 2.5359 bohr and 1.01 ≤ r2 ≤ 1.81 bohr, both with a step-size of 0.1 bohr.
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For R, the grid extends from 4.0 to 18.0 bohr with step-size of 0.5 for R < 11.0 bohr and

1.0 for R > 11.0 bohr. All angular coordinates were computed with a step-size of 15°with

0° ≤ θ1 ≤ 360° and 0° ≤ θ2, φ ≤ 180°. Additional points were added in the region of the

van der Waals minimum.

The H2-CO has the same symmetry group with H2CN, therefore the same monomial

symmetrized basis function can be used for the PES fitting of H2-CO. In total, 398,218

configurations are used for the fitting, and the RMS error of the PES is 14.22 cm−1, which

is by far the most accurate PES for the H2-CO system. The PES is used in the exact,

full-dimensional dynamics computations for the rovibrational quenching of CO due to H2

impact. The further details of PES construction and quantum dynamics calculations can

be found in Ref 10. Using the similar approach, we built the surfaces for the interaction

energy of H2-CN and H2-SiO systems as well, and details are skipped here.



Chapter 5

Unimolecular Dissociation of

syn-CH3CHOO

Ozonolysis of alkenes is an important class of atmospheric reactions.61 The ozonoly-

sis is believed to proceed through a 1,3-cycloaddition of O3 to the double bond of

alkenes to produce a primary ozonide, which decomposes to a carbonyl compound and

carbonyl oxide, known as Criegee intermediates.62 The energized Criegee intermedi-

ates undergo unimolecular decay forming OH and vinoxy radicals, collisional stabiliza-

tion, and/or bimolecular reactions with water, NO2, SO2, organic acids, or other atmo-

spheric species.63–66 Ozonolysis of internal alkenes, such as trans-2-butene producing the

CH3CHOO Criegee intermediate, contribute significantly to the atmospheric OH budget

as a result of their high OH yield.67,68

Recent experiments have focused on these important intermediates. The simplest

Criegee intermediate, CH2OO, has been directly detected in the gas phase.69–71 The

simplest alkyl-substituted Criegee intermediate, which has two conformers syn- and anti-

CH3CHOO, were directly observed in the gas phase very recently.72 The CH3CHOO

52
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intermediate is thoroughly studied in our researches, including the dynamic simulations

of the unimolecular dissociation of syn-CH3CHOO and the vibrational analysis of both

syn- and anti- CH3CHOO isomers.

In this chapter, the unimolecular dissociation of a prototypical Criegee intermediate,

a key step in the non-photolytic generation of atmospheric OH radicals, is character-

ized through the translational and internal energy distributions of the OH and vinoxy

products. We have collaborated with experimental studies to understand the dynamic

details. Experimentally, CH overtone excitation of CH3CHOO is utilized to drive 1,4-H

atom transfer and isomerization to vinyl hydroperoxide prior to dissociation. The kinetic

energy release to OH products is ascertained through velocity map imaging based on

a novel OH ionization scheme. Theoretically, quasi-classical trajectories are performed

on a new full-dimensional, ab initio potential energy surface, and initiated from several

critical configurations along the reaction pathway.

5.1 Introduction

Alkene ozonolysis is the principal non-photolytic source of atmospheric OH radicals,

which initiate the oxidative breakdown of most trace species in the troposphere.73 This

is the dominant source of OH radicals in the nighttime and accounts for about 1/3 of

the OH radicals in the daytime.73–76 The present study examines the unimolecular disso-

ciation pathway of a prototypical alkyl-substituted Criegee intermediate, specifically the

more stable syn-conformer of CH3CHOO, leading to OH radical products.72,77,78 This is

achieved using a combination of experimental and theoretical methods to characterize the

kinetic energy release and internal energy distributions of the OH and vinoxy (CH2CHO)

products. The experiments are conducted using a novel, state-selective ionization scheme
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for OH radicals79 coupled with its initial application in velocity map imaging (VMI) to

ascertain the angular and velocity distributions of the OH products. The theoretical ap-

proach is based on running ensembles of quasi-classical trajectories (QCT) from different

initial configurations, all using a new, full dimensional ab initio potential energy sur-

face (PES). Combining these challenging experimental and theoretical studies provides

a detailed investigation of the dissociation dynamics of syn-CH3CHOO, the key step for

non-photolytic generation of OH radicals in the atmosphere.

5.2 Potential Energy Surface

The calculations are performed on a newly constructed PES. The PES for the dissociation

dynamics of syn-CH3CHOO system is quite challenging due to the high dimensionality

and the multi-reference character in the region of dissociation to OH + vinoxy. The bound

region of syn-CH3CHOO is well described using a single-reference method,13 and the same

method is utilized for the isomerization TS and VHP regions. The energies are calculated

using the CCSD(T)-F12b method with the aug-cc-pVDZ basis for the C and O atoms

and the cc-pVDZ basis for H atoms (HaDZ),54,55 using the MOLPRO 2010 package.58 As

noted previously,80 a multi-reference method is needed for the dissociation from VHP to

OH and vinoxy radicals. Thus, energies were obtained using CASPT2/cc-pVDZ theory

with an active space of up to 12 electrons in 10 orbitals employed, as implemented in

MOLCAS package.81 Finally, the CASPT2 energies were shifted with respect to the

CCSD(T)-F12b results using the energy of fragments (which were obtained separately

using CCSD(T)-F12b/HaDZ) for the fitted PES. As a result, the exit channel region is

almost certainly less accurate than other regions of the PES.

The ab initio points are efficiently sampled along the dissociation channel to provide
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accurate description of the PES. Most geometries are determined by running classical

direct dynamic starting from different stationary points with B3LYP/pVDZ methods,

which excludes the dissociation region. Then CCSD(T)-F12b/HaDZ calculations were

carried out for the single-reference points and fitted to generate a preliminary PES. Since

the preliminary PES does not have enough sampling in the dissociation region, it gave

unreasonable energies whenever entering the multi-reference area. The geometries in this

region can be easily determined by running classical trajectories using the preliminary

PES. Additional geometries in the multi-reference region were chosen and energies calcu-

lated using the CASPT2 method. The calculated CASPT2 results were shifted according

to CCSD(T)-F12b energies and added to the dataset for PES fitting. After repeating this

procedure several times, the PES can achieve an accurate description of all the regions

in the decomposition channel.

In total, 157,278 points were calculated with energies up to 70 kcal/mol relative to

then syn-CH3CHOO minimum, including 22,797 CASPT2 energies and 134,481 CCSD(T)-

F12b energies. The PES is 18 dimensional, and is invariant with permutation of like

atoms. The invariant polynomial fitting method is employed,3 in which the polynomials

are functions of Morse variables, given by yi = exp(−ri/α), with α fixed at 2.0 bohr. The

maximum total power of the fitting polynomials is 5, and the fitting root mean square

(RMS) error is 61.5 cm−1. The fitting RMS error in different energy ranges is given in

Figure 5.1.
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Figure 5.1: Root mean square error of the fitted potential energy surface vs. relative
energy with respect to vinyl hydroperoxide. The values in the figure are the number of
configurations in the corresponding energy range.

The optimized geometries, electronic energies, and harmonic frequencies of stationary

points are computed using the PES. The electronic energies of stationary points as well

as their zero-point energies (ZPE) are given in Table 5.1. A comparison of harmonic

frequencies between the PES and direct CCSD(T)-F12b results are given in Table 5.2.

As seen, there is excellent agreement between the PES and direct ab initio calculations.
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Table 5.1: Potentials and harmonic zero-point energies (ZPE) of stationary points com-
puted using the potential energy surface (PES), and the comparison with ab initio cal-
culations. Energies are given with respect to syn-CH3CHOO in kcal/mol

Energy ZPE

PES ab initio PES ab initio

syn-CH3CHOO 0.00 0.00 37.15 37.22

TS 18.66 18.68 34.87 35.03

CH2=CHOOH -19.25 -19.25 37.27 37.37

OH+CH2CHO 6.82 6.86 31.70 32.00

An overview of stationary points and pathways describing the dissociation of syn-

CH3CHOO to OH + CH2CHO products is shown in Figure 5.2. There is a transition

state (TS) separating syn-CH3CHOO from vinyl hydroperoxide (CH2=CHOOH, VHP).77

This TS has a 5-membered ring-like structure associated with intramolecular 1,4-H atom

transfer and isomerization to VHP. VHP then undergoes O-O bond cleavage to form OH

+ vinoxy products, although not via a simple, barrierless O-O bond breaking process, i.e.,

a monotonic increase in potential starting from VHP to the products along a path where

the O-O bond length increases. There is a submerged, first-order saddle point (submerged

SP), as reported previously, and an associated shallow, constrained (O-O bond length

fixed) minimum in the exit channel.80 A second pathway is also indicated; this is a

“least-motion path” starting from VHP to a positive-energy barrier (second-order SP)

and a stable product complex in the exit channel. QCT calculations of the dissociation

dynamics are initiated from each of these configurations, specifically isomerization TS,

VHP, and also from the submerged SP and positive barrier in the exit channel. The latter
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Table 5.2: Harmonic frequencies (cm−1) of stationary points computed using the poten-
tial energy surface (PES), and the comparison with ab initio calculations.

syn-CH3CHOO TS CH2=CHOOH OH+CH2CHO

mode PES ab initio PES ab initio PES ab initio PES ab initio

ν1 206 202 1671i 1702i 164 150 425 413
ν2 301 308 458 494 230 237 501 500
ν3 441 448 492 534 337 335 710 728
ν4 680 678 674 722 597 617 946 969
ν5 731 721 796 750 703 702 959 970
ν6 930 922 817 860 825 841 1136 1160
ν7 980 978 925 895 887 880 1374 1404
ν8 1044 1031 951 968 965 961 1470 1477
ν9 1107 1115 1042 1034 993 974 1606 1608
ν10 1283 1317 1187 1211 1181 1162 2914 2977
ν11 1405 1397 1311 1278 1289 1317 3083 3155
ν12 1457 1449 1375 1350 1369 1393 3232 3277
ν13 1461 1467 1536 1493 1465 1430 3757 3745
ν14 1546 1527 1622 1555 1673 1695
ν15 2953 3029 1676 1859 3137 3182
ν16 3101 3085 3141 3095 3189 3204
ν17 3143 3161 3152 3194 3281 3288
ν18 3216 3204 3240 3210 3783 3777

calculations are done to determine the relevance of these possible exit channel pathways

in the dynamics run from the TS and VHP configurations.
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Figure 5.2: Energy profile of stationary points along the reaction coordinate from syn-
CH3CHOO to OH + vinoxy (CH2CHO) radical products. The reaction proceeds over
a transition state (TS) associated with 1,4-H atom transfer and isomerization to vinyl
hydroperoxide (CH2=CHOOH, VHP), followed by passage through an exit channel region
with submerged saddle point (SP) or positive barrier and associated product complex
prior to dissociation. The energies (kcal/mol) obtained at optimized geometries on the
PES are in very good agreement with values in parenthesis taken directly from ab initio
calculations (CCSD(T)-F12b or CASPT2).

A submerged first-order saddle point (submerged SP) was located on the PES that is

very similar to one reported in the literature.80 A 1-D potential energy curve is obtained

by starting from the submerged SP and increasing the O-O distance towards fragments

and decreasing it towards the VHP minimum, and then minimizing the energy with

respect to other degrees of freedom. The potential along this constrained path is shown in

Figure 5.3, which includes a shallow minimum also indicated in Figure 5.2. An additional
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1-D potential curve along a constrained pathway is shown in Figure 5.3. This is obtained

by starting at the VHP minimum and increasing the O-O distance along the bond axis

vector, and again minimizing the potential with respect to the other degrees of freedom.

This leads to a potential curve with a positive energy barrier (a second order saddle

point) followed by a stable, i.e., true minimum, product complex.

The pathway through/near the submerged SP is more relevant based on running full

dimensional dynamics. As a result, direct CASPT2 calculations are performed using the

geometries in the submerged SP pathway to test the PES. The comparison is shown in

Figure 5.3 where good agreement is seen.
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Figure 5.3: 1-D potential energy curves that pass through the positive barrier (red)
and submerged SP (blue) from the VHP well to the OH + vinoxy products. The positive
barrier curve is optimized by restricting the O-O vector and relaxing all other degrees of
freedom starting from the VHP minimum. The submerged SP is a first-order saddle point
optimized using the PES. The minimum energy path is optimized from the submerged SP
to products and also to the VHP well. The points (black squares) are the direct CASPT2
energies using the optimized geometries in the submerged SP cut.
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Clearly then, the actual, multi-dimensional dynamical pathway(s) to OH + vinoxy

products following excitation of syn-CH3CHOO to the transition state region is not ob-

vious a priori based on the schematic reaction pathways shown in Figure 5.2. On one

hand, the products could be formed directly via simple unimolecular dissociation after

surmounting the TS barrier. In this case, one would anticipate that most of the avail-

able energy would be released as translational energy of the recoiling fragments.82 On

the other hand, the deep VHP well separating the TS from products could cause energy

randomization and possibly result in a long-lived VHP intermediate prior to decay to

products.83,84 An intriguing additional factor to consider is the presence of exit channel

barriers and associated product minima. The present study focuses on the outcomes,

specifically the release of excess energy to internal and translational degrees of freedom,

following unimolecular decay of syn-CH3CHOO from an experimental and theoretical

perspective as a means of elucidating the dynamical pathway(s) to OH products.

5.3 Dynamic Studies in Experiment and Theory

Experimentally, IR excitation of syn-CH3CHOO in the CH overtone region is utilized to

initiate unimolecular dissociation to OH + vinoxy radical products.77 The present ex-

perimental study focuses on IR excitation at 6081 cm−1, which provides sufficient energy

to surmount or tunnel through the barrier for 1,4-H atom transfer and isomerization to

VHP, and the resultant dissociation to OH products that are detected. The 6081 cm−1

feature was previously assigned as a zeroth-order bright state of syn-CH3CHOO with

in-plane carbonyl oxide CH stretch (ν1) character. This feature involves CH stretch of

the H atom in the anti-position relative to the carbonyl oxide group.

The QCT method is employed to study the unimolecular decay dynamics of syn-
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CH3CHOO from a complementary theoretical perspective. The initial energy for the

QCT simulation is chosen to be 6000 cm−1 above the zero-point energy (ZPE) of syn-

CH3CHOO to model the experimental study. As shown in Figure 5.2, the TS for iso-

merization from syn-CH3CHOO to VHP is 18.6 kcal/mol and ZPE correction lowers the

barrier to 16.2 kcal/mol (5663 cm−1). This agrees well with an effective barrier of ≤

16.0 kcal/mol (5603 cm−1) established experimentally based on the lowest-energy feature

observed that leads to OH products.77 As a result, the energy available to the fragments

is about 5500 cm−1 in both the theoretical and experimental studies. In order to reduce

the computational expense, QCT calculations are not initiated from syn-CH3CHOO. In-

stead, trajectories are initiated from the TS configuration, the VHP minimum energy

structure, and the two exit channel geometries indicated in Figure 5.2. The total angular

momentum is zero for all trajectories.

Standard normal-mode sampling17,18 was used to prepare the initial states of TS.

To perform the normal-mode sampling at TS, the harmonic ZPE was given for each

normal mode, except the imaginary frequency mode, and extra energy (the total energy

minus the TS barrier height plus the local ZPE) of 337 cm−1 was given as translation

along the imaginary frequency mode in the direction forming VHP. In addition, large

ensembles of the trajectories were initiated from the VHP minimum energy configuration.

For trajectories starting from VHP, micro-canonical sampling19 was used to distribute

total energy between the vibration modes of the VHP. The trajectories were propagated

for a maximum of 60,000 steps with 0.1 fs time step (6 ps). More than 80% trajectories

starting at TS dissociated in 6 ps.

About 40,000 trajectories were obtained that dissociate to OH and vinoxy products

from each set of initial configurations. The relative translational energy, and the rotational

and vibrational energies of OH and vinoxy radicals were calculated using these trajec-
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tories. The classical vibrational energies of the fragments were examined to see if they

were below the respective anharmonic ZPEs. The anharmonic ZPE of OH was evaluated

as 1865 cm−1 using the discrete variable representation (DVR) method. The anharmonic

ZPE of vinoxy was evaluated as 9279 cm−1 using the MULTIMODE program.30 At total

energy of the simulations, which is in the threshold region, most trajectories yield OH

products with less than their ZPE. This violation of ZPE can have significant conse-

quences on the translational energy distribution and thus such trajectories, roughly 90%

of the large ensembles of trajectories, were discarded. Figure 5.4 shows the total kinetic

energy release (TKER) distributions arising from all trajectories originating at the TS

with normal mode sampling and the subset of trajectories where the OH and vinoxy

products have at least their respective zero-point energies. The TKER distribution re-

sulting from all trajectories extends to unphysically large values (beyond the 5500 cm−1

of available energy) and is broader than that with the hard-ZPE constraint. Qualitatively,

the TKER distributions with and without the hard-ZPE constraint are in good accord

at low energies (below 2000 cm−1) through the peak of the distribution. As expected,

imposing the hard-ZPE constraint yields much better agreement with the experimental

results. After applying this hard-ZPE constraint, 4399 trajectories starting from TS using

normal-mode sampling and 4624 trajectories starting from VHP using micro-canonical

sampling were included in the following analysis.
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Figure 5.4: Relative translational energy distribution between the OH and vinoxy frag-
ments resulting from QCT calculations starting from the isomerization TS configuration
using normal mode sampling. Shown are the total kinetic energy release (TKER) distri-
butions arising from all trajectories (black) and the subset of trajectories where the OH
and vinoxy products have at least their respective zero-point energies (red).

The role of the two barriers in the exit channel is explored by initiating ensembles

of trajectories from these configurations. Micro-canonical sampling is applied at the two

barriers with the total energy (6000 cm−1 relative to the ZPE of syn-CH3CHOO) ran-

domly distributed in the vibration modes. More than 80,000 dissociation trajectories are

obtained for QCT starting at each barrier. After applying the hard-ZPE constraint, 3188
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and 6360 trajectories starting at the positive barrier and submerged SP, respectively, are

used for the analysis.
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Figure 5.5: Lifetime for OH radical production from velocity map imaging and tra-
jectory calculations. a, Raw VMI of OH products following CH overtone excitation of
syn-CH3CHOO using vertical polarization (arrow) for the IR laser. The isotropic angular
distribution indicates that unimolecular dissociation of syn-CH3CHOO is slower than
its rotational period (≥ 2 ps). b, Distribution of dissociation lifetimes from trajectories
started at the isomerization transition state. The most probable lifetime is set to unity.

Following IR activation of syn-CH3CHOO, the OH products arising from unimolecular
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dissociation are state-selectively detected with the UV probe laser in the experiment. A

two-dimensional ion image of the OH product velocity distribution is obtained, using a

VMI apparatus described previously,85,86 as shown in Figure 5.5. The angular distribution

is isotropic, indicating that dissociation occurs more slowly than the rotational period

of syn-CH3CHOO of ≥ 2 ps, based on experimental rotational constants.87 The TKER

distribution resulting from IR excitation at 6081 cm−1, shown in Figure 5.6, is a broad and

unstructured distribution with a most probable (peak) TKER of 600 cm−1 and breadth

of 1340 cm−1 (FWHM). On average, the translational energy release is 1110 cm−1 or

20% of the available energy. Note that the VMI experiments probe OH (ν = 0, N = 3)

fragments accounting for 202 cm−1 of internal energy.

Theoretically, the translational energy distributions, obtained starting from the iso-

merization TS configuration using normal mode sampling and from the submerged SP

configuration using micro-canonical sampling, are shown in Figure 5.6. Essentially the

same results are obtained using micro-canonical sampling for trajectories starting at the

VHP configuration as shown in Figure 5.7. The peak in the translational energy distribu-

tion from the isomerization TS is roughly 700 cm−1 higher than that from the submerged

SP (ca. 870 cm−1), the latter of which is in good agreement with experiment. On average,

the translational energy release is about 30% of the available energy, specifically 1830

cm−1 from the isomerization TS and 1660 cm−1 from the submerged SP trajectories. In

both cases, most of the available energy appears in internal excitation of the products, as

elaborated below. This finding is in very good agreement with the experimental results,

although the submerged SP trajectories are in better quantitative agreement. After sur-

mounting the TS for H atom transfer, the QCT results demonstrate that unimolecular

dissociation of syn-CH3CHOO proceeds through the VHP intermediate to OH + vinoxy

products, and likely samples configurations that are close to the submerged SP.
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Figure 5.6: Comparison between experimental and theoretical determinations of the
total kinetic energy release (TKER). a, TKER distribution deduced from VMI of the OH
products following CH overtone excitation of the syn-CH3CHOO feature at 6081 cm−1.
b, Corresponding relative translational energy distribution of the products obtained from
trajectories starting from the isomerization transition state (red). Trajectories starting
from a submerged exit channel saddle point (blue) is shown for comparison. The peak
intensity and most probable translational energies are set to unity.
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Figure 5.7: Relative translational energy distribution between the OH and vinoxy frag-
ments resulting from QCT calculations using micro-canonical sampling starting from the
VHP (purple) configuration. QCT calculations using micro-canonical sampling starting
from the positive barrier (blue) configuration in the exit channel is shown for comparison.
The peak probability is set to unity.

The resultant translational energy distribution from the positive exit channel barrier

configuration, shown in Figure 5.7, peaks at 2600 cm−1 and is much hotter than the

calculated and experimental results shown in Figure 5.6. This higher translational energy

release is anticipated, given that the exit channel barrier lies about 1100 cm−1 above the

product asymptote.

Furthermore, trajectories starting at the TS and propagated with a 0.1 fs time step

to OH + vinoxy products are found to have a distribution of lifetimes ranging over a few
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ps timescale as shown in Figure 5.5. In particular, more than 80% of the trajectories dis-

sociate within 6 ps. As will be discussed later, the picosecond timescale is associated with

IVR within the highly energized VHP species prior to O-O bond scission and dissociation

to OH + vinoxy products.

The rovibrational energy distribution of the OH products was measured directly. No

OH products could be detected in ν = 1. A comprehensive OH X2Π3/2(ν = 0, N) rovi-

brational product state distribution was obtained previously upon IR overtone excitation

of the 5984 cm−1 feature,77 and is reproduced in Figure 5.8. A similar distribution was

obtained for a subset of OH (ν = 0) product rotational states upon excitation of the

6081 cm−1 feature, the focus of the present study. The OH rotational distribution peaks

at N = 3, and this quantum state was probed in the VMI experiments. The average

OH rotational energy was determined to be 560 cm−1 and accounts for about 10% of the

available energy.

The rovibrational energy distribution of the OH fragments is also calculated from

trajectories starting from the TS with normal-mode sampling as shown in Figure 5.8

(analogous results are obtained starting from VHP with micro-canonical sampling). The

OH products are formed primarily in their ground vibrational state (ν = 0). Less than

1% are produced with vibrational energy greater than or equal to the ν = 1 fundamental.

This result agrees well with experiment, where only ν = 0 OH is detected. The computed

OH product rotational distribution is peaked at N=3 and “cold”, and in excellent accord

with the experimental results. A similar OH rotational distribution is obtained for the

submerged SP (Figure 5.8) and also from the positive barrier configuration.
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Figure 5.8: OH radical rotational state distributions. a, Rotational energy and cor-
responding state distribution of OH X2Π (ν = 0, N) products following IR overtone
excitation of syn-CH3CHOO at 5987.5 cm−1. [Adapted with permission from Figure S1
of Ref. 77] The Π(A’) and Π(A”) Λ-doublet states are indicated by filled and open circles.
b, OH population distribution resulting from QCT calculations starting from the isomer-
ization transition state (red). QCT calculations starting from a submerged exit channel
saddle point (blue) is shown for comparison. The peak population and most probable
OH product state are set to unity.

The rotational and vibrational distributions of the vinoxy radical products are also

evaluated from trajectories starting at the TS with normal-mode sampling as shown
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in Figure 5.9 (analogous results are obtained starting from VHP with micro-canonical

sampling). In both cases, the vinoxy radicals are produced with significant rotational

and vibrational excitation with average energies of 800 and 1700 cm−1, respectively. A

detailed analysis of the vibrational distribution has not been undertaken because of the

high dimensionality and also coupling between vibrational modes, but will be examined

in the future. Nevertheless, the QCT calculations clearly show that approximately half

(ca. 45%) of the available energy is accommodated as internal excitation of the vinoxy

radical products.
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Figure 5.9: Calculated internal energy distributions of the vinoxy (CH2CHO) products.
a, Rotational and b, vibrational distributions derived from QCT simulations starting
from the isomerization transition state. The most probable rotational and vibrational
energies are set to unity.
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Significant insight on the dissociation dynamics is gained by looking at representative

trajectories, even though individual trajectories show a large variation in the relative

translational and rovibrational energies of the OH and vinoxy products. Snapshots of one

typical trajectory are illustrated in Figure 5.10. From inspection of the sample trajectory

starting at the TS, one can see that the bridging H atom is quickly transferred to the

terminal O atom at 14 fs, resulting in isomerization and producing highly energized VHP.

The large internal excitation of VHP is randomly distributed in different vibrational

modes, and VHP also undergoes internal rotation to some extent as indicated at 1.4

ps. The time scales are different in each trajectory, but most notably the system spends

significant time (ps) undergoing IVR within the VHP intermediate well region of the

PES. Once the energy along the reaction coordinate is sufficient to surmount an exit

channel barrier or saddle point, in this trajectory at 2 ps, VHP rapidly decomposes to

OH and vinoxy products. The presence of a shallow minimum in the exit channel, shown

in Figure 5.2, causes the H atom of OH to preferentially point toward the O atom of

vinoxy prior to dissociation in many trajectories as seen at 2.1 ps. The picture emerging

from the trajectory calculations agrees well with the experimental observation of an

isotropic spatial distribution for the OH products and a ≥ 2 ps timescale for dissociation

(Figure 5.5).
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Figure 5.10: Snapshots of a representative trajectory starting from the transition state
for 1,4-H atom transfer from syn-CH3CHOO to vinyl hydroperoxide (VHP). The highly
energized VHP intermediate undergoes extensive intramolecular vibrational redistribu-
tion (IVR) on a picosecond timescale before dissociation to OH + vinoxy (CH2CHO)
products.

5.4 Summary

Overall, the agreement between experiment and theory is quite good, demonstrating that

dissociation of syn-CH3CHOO occurs on a ≥ 2 ps timescale with most of the available en-

ergy resulting in internal excitation of the vinoxy products, and much less in translational

excitation and minimal OH rotational excitation. The slightly different translational en-

ergy release obtained from experiment and QCT calculations suggests that the dissocia-

tion dynamics may be quite sensitive to the saddle point region in the exit channel. This
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is illustrated by starting trajectories from the submerged SP and positive exit channel

barrier configurations. The exit channel region of the PES is challenging to compute

because of its intrinsic multi-reference electronic character, and is likely to be the origin

of the small differences in the TKER distributions obtained from the experiment and

theory. Nevertheless, the QCT calculations show that the unimolecular dissociation of

syn-CH3CHOO is quite complicated following H atom transfer and isomerization to VHP:

intramolecular vibrational energy redistribution occurs within VHP on a few picosecond

timescale and an exit channel saddle point impacts the translational energy release to

OH + vinoxy products. The final step in OH production from the syn-CH3CHOO is not

a simple, barrierless O-O bond breaking process.

5.5 Prompt Decay with High Internal Energy

Ozonolysis of alkenes, such as trans-2-butene, release ca. 50 kcal/mol of excess energy to

form internally excited syn-CH3CHOO Criegee intermediates (along with carbonyl prod-

ucts),61 which may undergo prompt unimolecular decay to OH products. A significant

portion of the Criegee intermediates will be collisionally stabilized under atmospheric con-

ditions, and the resultant thermalized distribution of syn-CH3CHOO will more slowly

isomerize to VHP and dissociate to OH products.88 Unimolecular dissociation to OH

products is a main loss process for thermalized syn-CH3CHOO and, more generally, sta-

bilized Criegee intermediates that decompose via the VHP channel;89 overall, this is an

important source of OH radicals in the atmosphere. The dynamical pathway(s) explored

in the work discussed above upon activation of syn-CH3CHOO near the isomerization TS

correspond to critical energetic regions of the multi-dimensional PES that are sampled

in alkene ozonolysis reactions.



Chapter 5. Unimolecular Dissociation of syn-CH3CHOO 77

Even though it is difficult to further increase the excitation energy experimentally,

we can simulate the prompt decay process of syn-CH3CHOO in theory at higher energy.

Previously, the initial energy is 6000 cm−1 in order to directly compare with experimental

measurement. In this section, we further increase the initial energy by 25 kcal/mol, which

increases the initial energy to 42 kcal/mol. Note that because the energy limitation of

the PES, it is not feasible to use higher energy for the dynamic simulations. Similarly,

we performed the QCT calculations from the isomerization TS and VHP minimum using

micro-canonical sampling at given energy. Then we performed the product analysis using

the dissociation trajectories after applying the hard-ZPE constrain. Totally, 7284 and

7448 trajectories starting from VHP and isomerization TS respectively are included in

the following analysis.

Dissociation trajectories starting from the TS are studied in detail. Similar to the

reaction path at low energy, most trajectories quickly isomerize to VHP, then the O-O

bond breaks forming the OH and vinoxy radical. Besides, we observe a different prompt

pathway starting from TS, which forms OH radical in a very quick process. In the new

reaction path, the bright H atom first quickly transfer to the corresponding O atom,

instead of isomerizing to VHP, the OO bond directly breaks without passing the VHP

minimum. Since the dissociation occurs right after H atom transfer, the OH radical is

expected to form with higher vibrational energy. Besides, the dissociation occurs right

after surmounting TS, it is anticipated that more available energy will release to the

translation energy of the fragments for the new pathway.

The rotational and vibrational energies of OH and vinoxy radicals are calculated,

and shown in Table 5.3. Note that in the previous simulations at lower energy, the

rotational and vibrational energies of products are almost identical for the trajectories

starting from the TS and from the VHP, which indicate all trajectories dissociate through
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the VHP minimum. As seen in Table 5.3, obvious differences of the analysis results

are observed between the trajectories starting from the TS and from VHP. Because of

the existence of new reaction path, as expected, we observe higher relative translation

energy release of the fragments, and higher percentage of OH radical is excited to the

first vibrational excited state. The relative translation energy distributions calculated

using trajectories starting from isomerization TS and from the VHP are shown in Figure

5.11. The obvious broadening of translation energy distributions from isomerization TS

indicates the existence and effect of the prompt decay reaction path.

Table 5.3: The analysis results of dissociation trajectories starting from the isomerization
TS and from the vinylhydroperoxide (VHP), including the percentage of excited OH
radical, the average relative translation energy of fragments and the internal energy of
vinoxy.

OH at ν = 1 Ave. Trans. Eng. Vinoxy Eng.

TS 8.1% 4771 cm−1 6744 cm−1

VHP 5.3% 4165 cm−1 7820 cm−1
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Figure 5.11: Relative translational energy distribution between the OH and vinoxy
fragments resulting from QCT calculations starting from the isomerization TS (black)
and from VHP (red) configurations.



Chapter 6

Mode-specific tunneling of

cis-HOCO Dissociation to H+CO2

So far, the reaction dynamic simulations are all based on the classical trajectory cal-

culations. One of the drawbacks of classical simulations is the absence of the tunneling

effect, which usually results in smaller reaction rates and longer lifetimes in the calcula-

tion. Quantum dynamic simulation is required to include the tunneling effect. However,

rigorous quantum calculations is highly computationally expensive, thus they are usually

restricted to fairly small systems with no more than four atoms.

In this chapter, we present a one-dimensional (1D) model to describe the tunneling

effect of the unimolecular dissociation of cis-HOCO to H+CO2, using a recent projection

theory that makes use of a tunneling path along the imaginary-frequency normal mode,

Qim, of a relevant saddle point. The tunneling probabilities and lifetimes are calculated

for the ground vibrational state of cis-HOCO and highly excited overtones and combina-

tion bands of the modes that have large projections onto the Qim path. To go beyond the

harmonic approximation, which is important for the OH stretch, energies and classical

80
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turning points are calculated using the anharmonic 1D potential. The tunneling lifetimes

are calculated for a number of combination states of the OCO bend and CO stretch, which

are in good accord with those estimated in a previous five-degree-of-freedom quantum

wavepacket simulation of the dissociative photodetachment of HOCO−. The present re-

sults are also consistent with the interpretation of the tunneling of cis-HOCO to H+CO2

seen in recent experiments.

6.1 Introduction

The OH+CO → H+CO2 reaction is one of the most important reactions in combustion

and has attracted extensive experimental studies and theoretical research. The bimolec-

ular reaction involves both trans- and cis-HOCO as reaction intermediates,90–92 and as

a result there has also been considerable interest in the vibrational dynamics of these

species.93–96 One of the most interesting issues concerning the reaction is the tunneling

of cis-HOCO to H+CO2. There are several indirect indications of tunneling, including

the acceleration of the reaction by OH excitation97 and the large H/D isotope effect98,99.

More recently, Continetti and co-workers have provided direct evidence of this tunneling

in experimental studies of the dissociative photodetachment of HOCO−.100–103 In their

coincidence experiments, most dissociation to H+CO2 occurs above the maximum elec-

tron kinetic energy limit predicted according to the energy of the dissociation barrier. The

observations indicate that nearly all dissociation of cis-HOCO to the H+CO2 channel is

by deep tunneling through the barrier at the energy of the experiment.

Tunneling in the unimolecular dissociation of cis-HOCO to H+CO2 has been studied

theoretically by various methods. In 2006, Zhang et. al 104 performed full-dimensional

wave packet calculations of the photodetachment of HOCO− quantum mechanically, us-
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ing an early (2003) potential energy surface (PES).92 However, since that PES is not

sufficiently accurate to describe the H+CO2 dissociation channel, this work did not find

any evidence for the tunneling process of this reaction. More recently, Ma et al.105 re-

ported a five-degree-of-freedom wave packet quantum calculation of the tunneling reso-

nances of relevance in the photodetachment of HOCO− with a more accurate ab initio

permutationally invariant PES91,106. These calculations were highly computationally in-

tensive, owing to the very long lifetimes of these resonances. Thus, they were not con-

verged quantitatively; however, bounds were established for the resonances of relevance

to the experiments. The lifetimes of these were in the range of microseconds or less in

accord with the estimated lifetimes reported experimentally. In addition, these calcula-

tions showed that the OCO bend and the interior CO stretch of cis-HOCO were highly

excited105 in the photodetachment experiment. This result was qualitatively expected by

simply comparing the equilibrium structures of the HOCO− and cis-HOCO, as noted

earlier in the experiments.

Rigorous quantum approaches, i.e., numerical solutions of the full-dimensional Schrödinger

equation, becomes less feasible as the lifetimes increase and so deep tunneling is a still a

major challenge for these approaches. Several 1D reaction-path models do exist that can

describe the deep tunneling behavior. Johnson et al.107 considered one based on the OH

distance and calculated the relaxed potential from cis-HOCO to the formation of H+CO2

as a function of this distance. This potential was used to interpret the experimental results

and tunneling lifetimes were reported using this potential. Using the model, the internal

energy of CO2 product was predicted in fairly good agreement with the experimental

data. As noted, in this model the OH distance was taken as the reaction coordinate.

The assumption was based on the fact that the imaginary-frequency normal mode of

the saddle-point barrier was dominated by the OH stretch. However, as these authors
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noted the model did not consider the effects of other modes and so over-emphasized the

contribution of OH stretch. The calculated lifetimes of tunneling states associated with

overtones of the OH stretch were thus almost certainly too short. More comment will be

given below.

Here we apply a recent normal-mode “reaction-path” approach to mode-specific tun-

neling based on the what we have termed the Qim-path.108 This approach has been ap-

plied and tested for vibrational ground-state tunneling with surprisingly good accuracy,

considering the simplicity of the method.108–111 In this approach, the imaginary-frequency

normal mode of a relevant saddle point (SP), Qim, is chosen as the path variable, and

the relaxed potential, V (Qim), i.e., the potential fully relaxed with respect to other SP

normal modes, is taken as the potential along this path. The Qim approach was shown

to accurately describe tunneling in the D+H2 reaction109 and the tunneling splitting in

malonaldehyde and vinyl110,111. Recently, Wang and Bowman108 extended the approach

to describe mode-specific tunneling in malonaldehyde and achieved semi-quantitative

agreement with experiment. The central component of this extension is the projection

of the normal modes of a minimum onto the Qim path. The effect of mode excitation is

mapped onto the change of the turning points on V (Qim), relative to those for the ground

vibrational state, and the resulting change in tunneling probability is then easily calcu-

lated, semi-classically. Here we apply this approach for the first time to a unimolecular

dissociation to investigate the tunneling process of cis-HOCO → H+CO2. Three modes

of cis-HOCO, the OCO bend, interior CO stretch and OH stretch, are found to have

large projections on the Qim path, and so the tunneling probabilities and lifetimes are

calculated for the fundamentals, overtones and combination states of these three modes.

As noted above, the OCO bend and interior CO stretch modes are excited in the pho-

todetachment experiment and so the present work is highly relevant to this experiment.
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For the modes with zero or very small projection, vibrationally adiabatic (VA) theory

could be applied, as was done in Ref. 108, to predict whether the mode excitation will

enhance the tunneling process or not. We do use this theory, qualitatively, below.

Several full-dimensional PESs have been reported for HOCO recently. Wang and

Bowman94 reported a semi-global PES, which can accurately describe the isomerization

between the cis- and trans- isomers and the vibrational states of both. But this PES does

not include the cis-HOCO dissociation channel. In another study, Li et. al 91 developed a

global permutation invariant PES which included all the reaction channels and stationary

points. However, the frequencies of cis-HOCO were not very accurate, e.g., the frequency

of OH stretch is about 250 cm−1 in error compared to the direct ab initio result. Since

the Qim turning points are determined based on the frequencies of cis-HOCO, the dif-

ferences of frequencies can affect the calculated tunneling results. Most recently, Chen

et. al 112 published an accurate full-dimensional PES of HOCO by fitting roughly 80,000

electronic energies obtained with the high-level UCCSD(T)-F12a/aug-cc-pVTZ method.

This PES describes the properties of cis-HOCO and the dissociation channel quite accu-

rately. Therefore, we use this PES to obtain the Qim path, V (Qim) potential, and normal

mode vectors of cis-HOCO and the SP. A plot of V (Qim) is given in Figure 6.1 along

with a comparison of directly ab initio UCCSD(T)-F12a/aug-cc-pVTZ energies. As seen,

the PES is in excellent agreement with these high-level energies. Note that the Qim value

at the global minimum is -56.0 bohr. We explain the meaning of the labeled horizontal

lines shown in this figure below.
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Figure 6.1: Potential along the Qim path along with directly calculated UCCSD(T)-
F12a/aug-cc-pVTZ energies (+). The horizontal lines indicate the turning points related
to the zero-point state and the fundamental excitation of mode ν6, the OH stretch of
cis-HOCO. See text for more details.

6.2 Method

Given a 1D potential of the form shown in Figure 6.1, the deep tunneling rate is given

semiclassically by the well-known expression

k =
ω

2π
e−2θ, θ =

1

h̄

∫ a2

a1

dQim

√
2(V (Qim)− E), (6.1)

where ω is the vibration frequency of V (Qim), typically the harmonic frequency at the

minimum (what we use here), a1, a2 are the classical turning points, and e−2θ is the

tunneling probability. To complete the model, one needs a criterion to determine these

turning points, specifically for the ground vibrational state of cis-HOCO. A reasonable
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criterion is based on the energetics of the dissociation dynamics, which in this case is that

the harmonic zero-point energy (ZPE) of cis-HOCO exceeds the energy of the products

H+CO2 (with harmonic ZPE) by roughly 130 cm−1. Thus, the ground-state turning

points were determined using the harmonic ZPE of cis-HOCO, as indicated in Figure

6.1. (We note that effects of anharmonicity on the cis-HOCO and CO2 ZPEs could in

principle be accounted for; however, as the theory we use is not fully anharmonic we

do not consider those effects here.) Finally, as indicated, the effect of exciting mode

6, the OH-stretch of cis-HOCO, is predicted from the projection model to change the

turning points so as to clearly decrease the tunneling integral and thereby increase the

tunneling rate. The theory that gives this result has been given previously108 and so we

just summarize it next.

The goal of the projection model is to determine how excitation of normal mode

Qi of the cis-HOCO changes the ground vibrational-state turning points. This is done

straightforwardly by relating the normal modes of the minimum to those of the saddle

point and more relevantly to the imaginary-frequency normal mode Qim since that is the

path variable in the theory. The relationship is given by:108

Qim = −56.0 +
3N−6∑
i=1

qTimqiQi(ni), (6.2)

where the constant -56.0 (in mass-scaled atomic units) is specific to cis-HOCO, i.e., it is

just the value of Qim at the minimum of cis-HOCO (see Figure 6.1)

As seen, the magnitude of the projection qTimqi is a key element in relating Qim to

Qi, where qim is the mass-scaled unit vector of the imaginary-frequency normal mode

of the saddle point and qi are the corresponding vectors of the minimum. It should be

noted that independently this projection element was reported previously by two groups
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in very different contexts to give a qualitative correlation between mode excitation and

increased reactivity (not tunneling) in atom-diatom113 and atom-triatom reactions114

and increased tunneling splittings in a symmetric double well.115

Using this equation, it is trivial to obtain an expression for the change in turning

point corresponding to the excitations of mode i relative to the ground state. This is

given by:108

∆Qtp
im(ni) = |qTimqi|(|Q

tp
i (ni)| − |Qtp

i (ni = 0)|), (6.3)

where, in the harmonic approximation, the turning points are given byQtp
i = ±

√
(2ni + 1)/ωi.

Here we choose the positive sign to be consistent with the left potential well. (The change

in the Qim-turning point with excitation of the fundamental of OH-stretch mode is shown

in Figure 6.1) Thus, excitation of modes with substantial projections cause a positive

change of Qim, which results in a decrease of θ, and thus a faster tunneling rate and

shorter lifetime. In contrast, the excitation of modes with zero or very small projection

on qim are predicted to have no enhancement of the tunneling. As noted above, and

numerically demonstrated for malonaldehyde, such modes may be accurately described

by separable vibrational adiabatic (VA) theory.108 Finally, we note that for combination

bands the change in the turning point ∆Qtp
im is simply the sum of the changes for the

relevant modes and their excitations.

Clearly, this is a simple theory to implement in full-dimensionality and one cannot

expect ”exact” results from this theory. However, with an accurate potential, which we do

use, we can anticipate semi-quantitative accuracy, especially when considering the many

orders-of-magnitude range of the effects of mode excitations on the tunneling rate.

The normal-mode vectors and frequencies of the cis-HOCO and SP are given in Table

6.1. From our calculation, mode 1 (torsion), mode 4 (HOC bend), and mode 5 (terminal
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CO stretch) of cis-HOCO have almost zero projections onto Qim. In contrast, modes

2 (OCO bend), 3 (interior CO stretch) and 6 (OH stretch) have large projections; the

values are 0.264, -0.462 and 0.844 respectively. Thus, we focus on these three modes and

only briefly comment on the other modes, using qualitative VA theory. Note that the

projection of the OH stretch is the largest of all modes and thus the OH distance is

reasonable zeroth-order choice for the reaction path, as was done in Ref. 108. However,

that is not done here.
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Table 6.1: Normal mode vectors and frequencies (cm−1) of the cis-HOCO minimum and
the saddle point (SP) of dissociation.

cis-HOCO SP

mode freq vector mode freq vector

ν1 578.3 ν1 1956.6i

ν2 601.7 ν2 534.9

ν3 1083.3 ν3 654.3

ν4 1308.0 ν4 940.7

ν5 1858.1 ν5 1300.5

ν6 3644.1 ν6 2174.2
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6.3 Results and Discussion

As mentioned above, we focus on modes 2, 3 and 6, the OCO bend, the interior CO

stretch and the OH stretch, respectively, as these modes have large projections onto the

Qim path. We consider fundamental, overtone and combination excitations and calculate

the tunneling probabilities and lifetimes. For combination states the change in turning

points is obtained as the sum of the changes for each mode excitation. For modes 2

and 3 the harmonic model described above is adequate, as these modes are described

reasonably well by this approximation. However, as expected, mode 6, the OH stretch,

is highly anharmonic and so a simple anharmonic treatment of that mode was made.

Specifically, to calculate the excited overtone (up to ν = 4), we solve the 1D Schrödinger

equation with a grid-based discrete variable representation (DVR) using the 1D potential

along the OH stretch normal mode. The 1D potential, vibrational energies and turning

points are shown in Figure 6.2. The tunneling probabilities and lifetimes of the OH stretch

are calculated using the anharmonic outer turning points.



Chapter 6. Mode-specific tunneling of cis-HOCO Dissociation to H+CO2 91

 0

 5000

 10000

 15000

 20000

 25000

-20 -10  0  10  20  30  40

E
n
er

g
y
 (

cm
-1

)

Q6 (a.u.)

Anharm.
ν

6
=0

ν
6
=1

ν
6
=2

ν
6
=3

ν
6
=4

Figure 6.2: One dimensional potential along the OH stretch of cis-HOCO. The hori-
zontal lines indicate the anharmonic vibrational energies and turning points of the OH
ground and excited states.

The results for the fundamental and overtone excitations are given in Table 6.2 and

shown graphically in Figure 6.3 as a function of the energy. In Table 6.2 and Figure

6.3, we do see a large enhancement of tunneling with excitation of these three modes.

(Note the tunneling lifetime is just 1/k.) As seen in Figure 6.3, the energy distributed in

different modes has different effects on the tunneling process, and the OCO bend mode

shows the largest enhancement to the tunneling as a function of the vibrational energy.

This is a direct consequence of equation 6.3.



Chapter 6. Mode-specific tunneling of cis-HOCO Dissociation to H+CO2 92

Table 6.2: The change of turning point (a.u.), tunneling probability and lifetime (s) for
mode excitations of cis-HOCO, relative to the ground state. Note the vibrations of mode
2 and 3 are treated using the harmonic approximation, while the OH stretch vibration is
described anharmonicly.

ν Mode 2: OCO-bend Mode 3: Interior CO-stretch Mode 6: OH-stretch

∆Qtp
im Prob. Lifetime ∆Qtp

im Prob. Lifetime ∆Qtp
im Prob. Lifetime

1 3.68 8.04E-17 1.71E+03 4.81 8.22E-16 1.67E+02 6.68 3.13E-14 4.39E+00

2 6.22 1.30E-14 1.05E+01 8.13 4.58E-13 3.00E-01 12.32 6.05E-10 2.27E-04

3 8.28 6.06E-13 2.26E-01 10.82 5.19E-11 2.64E-03 17.61 1.46E-06 9.41E-08

4 10.07 1.44E-11 9.52E-03 13.15 2.27E-09 6.06E-05 23.03 8.64E-04 1.62E-10

5 11.66 2.08E-10 6.59E-04 15.23 5.28E-08 2.60E-06

6 13.11 2.14E-09 6.41E-05 17.13 7.66E-07 1.79E-07

7 14.46 1.68E-08 8.15E-06 18.89 7.63E-06 1.80E-08

8 15.72 1.07E-07 1.29E-06 20.53 5.67E-05 2.42E-09

9 16.90 5.62E-07 2.44E-07 22.08 3.19E-04 4.30E-10

10 18.03 2.52E-06 5.46E-08 23.55 1.42E-03 9.67E-11
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Figure 6.3: Tunneling lifetimes (s) as a function of energy (kcal/mol) in excitations of
the OCO bend, the interior CO stretch and the OH stretch. Each ”data” point represents
an excitation level in the indicated mode. The horizontal line indicates the time of flight
(TOF) of the photodetachment experiment, and the vertical line indicates the dissociation
barrier height. Anharmonicity is considered for the OH stretch as described in the text.

Next we consider the connections to the Continetti and co-workers photodetachment

experiment.102,103,107 As noted by that group, the modes of cis-HOCO excited by the

photodetachment of cis-HOCO anion are mode 2, the OCO bend, and mode 3, the in-

terior CO stretch, and negligible excitation of mode 6. In the experiment, cis-HOCO

dissociation can be observed if the tunneling lifetime is shorter than the time of flight

(TOF), about 7.8 µs. As shown in Figure 6.3, which considers just the pure overtones,

if just mode 2 and mode 3 are excited, with energies of roughly 12 and 15 kcal/mol,

respectively, (much smaller than the reaction barrier of about 30.2 kcal/mol) the tun-

neling lifetime is smaller than the TOF and so the prediction is that dissociation from

these states would be observed in these experiments. Further quantitative predictions for
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combination states are made below.

Additional calculations were done for the states likely excited experimentally; for this

we are guided by the Ma et al. quantum simulation of cis-HOCO− photodetachment.105

They presented a calculated stick Franck-Condon spectrum for the photodetachment to

cis-HOCO and also estimated lifetimes of the resonances in their spectrum. Qualitatively,

the lifetimes of the prominent peaks assigned to combination bands of modes 2 and 3,

are in accord with a microsecond lifetime estimated from the experiment based on the

flight time. Based on the assignments of the prominent peaks in this spectrum,105 the

tunneling probabilities and lifetimes of those combination states are calculated using our

model and are given in Table 6.3. Here the notation of states is changed to be consistent

with the simulation and experiment as well, where mode 4 is the interior CO stretch and

mode 5 is the OCO bend. Generally speaking, we get good agreement with the quantum

estimates, especially for the shorter lifetimes. Also, it should be re-stated that the the 5D

wave packet calculations used a slightly different PES from the one we use. Considering

the simplicity of the 1D model, the level of agreement with quantum calculations is quite

encouraging and gives us some confidence in the new predictions made here.
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Table 6.3: The tunneling probabilities and lifetimes (s) of cis-HOCO combination states,
and comparison with previous quantum wavepacket calculation using a similar PES. Note
experimental notation is used for the interior CO stretch (denoted mode 4 here) and the
OCO bend (denoted mode 5 here).

States Prob. Lifetime Wavepacketa

54 1.44E-11 9.52E-03 τ < µs

55 2.08E-10 6.59E-04 ∼µs

56 2.14E-09 6.41E-05 µs > τ >ns

4153 2.08E-09 6.59E-04 ∼µs

4154 3.14E-08 4.37E-06 µs > τ >ns

4155 3.10E-07 4.43E-07 µs > τ >ns

4156 2.21E-06 6.22E-08 µs > τ >ns

4252 1.43E-08 9.63E-06 µs > τ >ns

4253 2.84E-07 4.83E-07 µs > τ >ns

4254 3.09E-06 4.44E-07 µs > τ >ns

4255 2.33E-05 5.90E-09 ∼ns

a Ref. 105

For the three modes with zero projection, the VA theory could be valid to predict

the excitation effect. In VA theory, instead of the 1D potential shown in Figure 6.1, the

effective potential is used. This potential is given by V (Qim) plus the local vibrational

energy of a given mode. If the effective potential barrier is increased, qualitatively, the

tunneling probability will decrease. In the harmonic approximation, the change of the

effective potential barrier is determined by the difference between the harmonic frequency
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of the minimum normal mode and the correlated normal mode of SP. According to our

calculation, the three zero projection modes of cis-HOCO, mode 1, 4 and 5, have large

overlap with one of the SP modes, mode 3, 4 and 6 respectively. Differences of the

harmonic frequencies of these modes are +76, -367 and 316 cm−1. Mode 5, the terminal

CO stretch, shows a large positive value, and VA theory predicts that its excitation

will inhibit the tunneling process. In contrast, the excitation of mode 4, HOC bend, is

predicted to mildly enhance the tunneling. It was found that for the OH+CO→ H+CO2

reaction, the CO vibrational excitation reduced the reaction rate.116 If we assume that

the CO excitation will mostly project onto the terminal CO stretch of cis-HOCO, then

our VA prediction of terminal CO stretch inhibiting the tunneling process is consistent

with the observation in the experiment.

As far as we know, no experimental results are available for the tunneling effect of cis-

HOCO with OH stretch excitation. Previously, Johnson and Continetti107 presented a 1D

effective potential (and barrier) from direct ab initio calculations and also one modified

based on their experiment. The estimated lifetimes for the OH fundamental and first

overtone are on the order of 10−8 and 10−12 s, respectively for the former potential.

For the latter, modified potential the corresponding lifetimes are longer than 10−5 s and

about 10−10 s for the overtone. As seen, our calculated tunneling lifetimes are longer

than these results. The difference in the case of using the ab initio 1D potential can be

traced to the assumption of the OH stretch as the reaction coordinate. In the projection

model this would imply a unit projection of that normal mode eigenvector onto qim.

The projection is large, i.e., 0.84, but assuming a projection of unity would lead to a

significant overestimate of the effect of excitation of that mode on the tunneling rate.
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6.4 Summary and Concluding Remarks

In summary, we applied a new projection theory to calculate mode-specific tunneling

lifetimes of the dissociation of cis-HOCO to H+CO2. For modes with large projections

on the Qim reaction path, we calculated the tunneling probabilities and lifetimes from

fundamental excitations to highly excited overtones as well as combination excitations of

the OCO bend and interior CO stretch. The combination states were previously shown

in five-dimensional quantum simulations to be the dominant ones in the photodetach-

ment experiment leading to vibrationally excited cis-HOCO and subsequent tunneling

to form H+CO2. The present calculations of lifetimes agree well with the estimates from

these quantum calculations using a recent PES, which is somewhat less accurate for this

dissociation channel than the one used here. Predictions of the lifetimes of overtone ex-

citation of the (anharmonic) OH stretch indicate that the second overtone (and possibly

the first overtone) may have a lifetime sufficiently short to show the effect of tunneling

in spectroscopic measurements where the OH stretch can be pre-excited. For the modes

with zero projections and which have dominant overlap with one saddle point normal

mode, vibrationally adiabatic theory was applied qualitatively. For the CO stretch, in

the OH+CO reaction this theory qualitatively explains the inhibition of the reaction

upon excitation of this stretch.

It is worth emphasizing that the projection theory assumes a separable model for the

vibrational eigenstates of cis-HOCO and so mode-mixing is clearly absent in the current

model. Strong mixing can clearly affect the assignments and lifetimes of actual molecular

eigenstates/resonances. However, if an eigenstate analysis uses uncoupled normal-mode

functions as a zero-order basis the present analysis could still be quite useful since each

basis function has a lifetime associated with it and could be used in a more general theory.
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Such an analysis is feasible, albeit computationally much more intensive than the current

model.

Finally, with the availability of full-dimensional ab initio potential energy surfaces,

such as the one used here, the calculation of lifetimes of cis-HOCO vibrational states by

other methods will hopefully be done. As mentioned in the Introduction, exact approaches

are very computationally demanding. However, having benchmark results would be ex-

tremely worthwhile to test approximate methods. These include reduced dimensionality

quantum approaches, e.g, the 5 degree-of-freedom one already applied to cis-HOCO (al-

beit with a different PES105), and a 3 degree-of-freedom one applied earlier to HOCO res-

onances117. Several transition-state-based approaches could also be used to obtain mode-

specific lifetimes. These include reaction-path vibrationally adiabatic theory,118,119 and

semi-classical transition-state-theory.120 The latter theory has been applied recently with

good success to a calculation of the rate constant of the OH+CO reaction to H+CO2.121

That semi-classical theory is ideally suited for tunneling near the top of the barrier but

”is qualitatively incorrect for deep tunneling” as recently pointed out.122 Suggestions for

extending the theory to that region, which is of relevance to the present study, were

made122 and it would be interesting to apply those to cis-HOCO dissociation. It should

be noted that in these transition state theories the modes are those of the transition

state and not of the quasi bound molecule, in contrast to the present projection model.

Thus, a mapping of the transition state modes to the molecular modes (more precisely

the molecular vibrational eigenstates) is needed to make direct comparison with the ex-

periment. Reaction-path vibrationally adiabatic theory is one reasonable way to do this

in principle. However, there can be non-adiabatic effects associated with that theory for

excited states. These have been described in detail in several applications of that theory

to bimolecular reactions, specifically examining reactant mode-specific effects.123,124 Nev-
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ertheless an application of the transition-state based theories to cis-HOCO mode-specific

dissociation would be very interesting and a comparison with the present calculations

would be very valuable.



Part III

Application: Vibrational Calculation

100



Chapter 7

Anharmonic rovibrational

calculations of singlet cyclic C4

7.1 Introduction

Small carbon clusters Cn are important intermediates in the interstellar space, and

tetracarbon is one of the most important species. Larger clusters, notably C60, have

unusual and technologically important electrical and physical properties. They are chal-

lenging theoretically, owing to substantial multi-reference character and low-lying elec-

tronic states. There are large amounts of literature on the electronic spectroscopy of small

carbon clusters but less on the vibrational spectroscopy. This is important for possible

detection of the clusters in the interstellar medium. Previous work dealing with small

carbon clusters is summarized in the reviews of Weltner and Vanzee125 and Orden and

Saykally.126 For the C2n clusters, such as C4, C6 and C8, ab initio calculations predict two

low-energy structures, linear (3
∑−

g ) and monocyclic (1Ag ). For C4, it has been known

that the linear and cyclic isomers are almost isoenergetic, with the highest level calcula-

101
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tions of previous studies finding the cyclic isomer to be the lower energy structure.127,128

Experimentally, coulomb explosion imaging129,130 and electron photodetachment131

provided evidence of the existence of cyclic C4 isomer. In the latter experiments, three

distinct photo detachment wavelengths indicated three different structures for the C4

anions and the neutrals. However, these experiments did not report any determination

of vibrational excitations, and as far as we know, no experimental spectroscopic data of

the cyclic C4 are available in the literature.

Theoretical methods have been utilized to study the C4 vibrations. Based on an

MP2/6-311G* study, Martin et al.132,133 suggested that a 1284 cm−1 matrix IR feature134

belongs to cyclic C4. In a later study, Martin et al.135 constructed a CCSD(T)/cc-pVTZ

quartic force field (QFF) for cyclic C4, and re-evaluated the assignment of the 1284 cm−1

feature. The estimate for the ν6 mode of cyclic C4, 1320±10 cm−1, raised doubts about the

earlier assignment. More recently, Senent et al.136 reported MRCI+Q/cc-pVTZ QFFs for

both the linear and cyclic C4. Their computed vibrational perturbation theory (VPT2)137

fundamentals of cyclic C4 showed differences as large as 50 cm−1 when compared to

Martin’s results. In addition, Martin et al. reported a strong Fermi resonance between

ν6 and ν3 + ν5 for cyclic C4, which contributes to a significant anharmonicity for the ν6

mode.

We report a new ab initio QFF constructed at the CCSD(T)/cc-pCV5Z level, and

a semi-global potential energy surface (PES) fitted from CCSD(T)-F12b/aug-cc-pVTZ

(aVTZ) energies for the singlet cyclic C4. The vibrational configuration-interaction (VCI)

calculations are performed using the MULTIMODE (MM)29,30,36 program, and VPT2

analyses are performed with the SPECTRO140 program. Consistent, reliable and highly

accurate vibrational (and ro-vibrational) energy levels and spectroscopic constants are

generated for the singlet cyclic 12C4 and 13C isotopologues. Such QFF+VPT2/VCI and
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PES+VCI calculations have been widely used to determine the ro-vibrational spec-

troscopic constants and vibrational fundamentals of many astronomically interesting

molecules in recent years.38,135,142,143

7.2 Computational Methods

All the ab initio calculations for the electronic ground state energies are performed using

the coupled-cluster single and double excitations with a perturbation treatment of triple

excitations, CCSD(T), with MOLPRO.58 The linear C4 system shows a strong multicon-

figurational character, however, the non-dynamical correlation effects are not significant

for the configurations around cyclic C4, with the T1 diagnostic144 smaller than 0.02.

7.2.1 Quartic Force Field

Initially, the QFF construction is calculated using energies which are extrapolated to the

complete basis set (CBS) limit. However an unstable vibrational fundamental of the out-

of-plane mode, ν4 is found on those QFFs fitted from CBS-limit energy extrapolations.

This mainly results from the carbon-carbon multiple bond sensitivity with respect to

the basis set superposition error.145 In order to avoid any extrapolations that would

magnify the errors, only the CCSD(T)/cc-pCV5Z calculation is applied and reported. Six

symmetry-adapted internal coordinates have been defined with step size 0.005Å/rad. The

CCSD(T) single point calculations are carried out on 114 symmetry-unique geometries

with cc-pCV5Z basis. The cc-pCV5Z energies are further refined by adding the CCSD(T)

core-correlation effects using the Martin-Taylor basis146 or cc-pCVXZ (X=T,Q) basis.

Next, for each set of ab initio calculations, 225 symmetry-redundant geometries are

fitted to 52 non-zero force constants (up to quartic level) in the six symmetry-adapted
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internal coordinates. The average root mean square (RMS) fitting errors range from

0.82E-6 cm−1 to 1.67E-5 cm−1. Spectroscopic constants, vibrational energy levels, and

vibrationally averaged geometries are computed using VPT2 with the SPECTRO pro-

gram. Coriolis coupling between ν2 and ν3 is included in vibration-rotation interaction

analysis. A Fermi resonance polyad ν1=2ν5 and ν2=2ν5 is included in the perturbation

treatment. Significance of the Fermi resonance ν6=ν3+ν5 is also checked. See more details

in the Results Section.

The fitted force constants can be directly used for SPECTRO calculations, but are

not appropriate for VCI calculations. In order to ensure correct limiting behavior of the

potential, Morse-cosine coordinates are required for a VCI calculation using the QFF

potential. The fitted force constants are converted to Cartesian derivatives at the ex-

act QFF minimum by the INTDER 2005 program.147 Then it is transformed back to

a new set of force constants defined with 5 C-C bond stretches and 1 torsion coordi-

nate. In this way, the diagonal quadratic and cubic force constants for the 4 single C-C

bond stretches are determined which are necessary to derive the appropriate alpha value

for the Morse function.148 With this alpha value, a new coordinate space includes the

symmetry-adapted Morse functions (for stretches), cosine (for bending angles) and sine

(for torsion angles) coordinates, while the symmetry-adaption formula and the order and

the symmetry type of 6 coordinates are the same as defined before.135 The same set of

225 energies are re-fitted with these symmetry-adapted Morse/cosine/sine basis to get a

new set of 52 non-zero coefficients which now can be used in the VCI calculations.
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7.2.2 Semi-global PES and MULTIMODE Calculations

As already noted, we also developed a limited potential energy surface for the singlet

cyclic C4, on which we compute ro-vibrational energies variationally. The electronic struc-

ture energies are computed using the CCSD(T)-F12b54,55 method, with aVTZ basis. For

the generation of PES points, the majority of the configurations are obtained by running

classical direct-dynamics calculations, using density functional theory (DFT) with the

aug-cc-pVDZ basis. Additional points are generated by randomly sampling around the

cyclic C4 minimum. Finally, 2,914 CCSD(T)-F12b/aVTZ electronic energies are used for

the PES fitting. The PES of C4 is six dimensional, and is invariant with respect to all

permutations of the four C atoms. We use the invariant polynomial fitting method,3,149

in which the polynomials are functions of Morse variables with alpha value fixed at 2.0

bohr. The coefficients in the potential expression are obtained using standard weighted

least-squares fitting subroutines. The total power of fitting polynomial is restricted to 7,

the number of coefficients is 123, and the overall root mean square (rms) fitting error is

about 30 cm−1. Figure 7.1 shows the number of configurations in different energy ranges

and the corresponding rms fitting error. Most of the configurations are sampled around

the cyclic C4 minimum, plus 52 additional points at energies 30 - 75 kcal/mol relative to

the minimum. These high energy points are necessary to ensure the PES behave prop-

erly at high energy region. Since the number of high energy points is small, overall PES

accuracy around minimum is not affected. Even though the T1 diagnostic is relatively

large for the 52 high energy points, i.e. 0.022 - 0.028, their impacts on the lower energy

part of PES are not significant. As we focus on the vibrational states below 3000 cm−1,

the contaminations from other (higher) electronic states are estimated less than 1 cm−1.

The fitting RMS below 5000 cm−1 and 10,000 cm−1 are about 14 cm−1 and 25 cm−1,
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respectively.
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Figure 7.1: Root-mean-square (RMS) of the PES fitting error vs. relative energy with
respect to cyclic C4 minimum. The numbers in parenthesis are the number of configura-
tions in the energy range.

Ro-vibrational calculations are performed using the MULTIMODE (MM) program.30,36

For C4, the exact potential is six dimensional, however, our tests of 4MR and 5MR cal-

culations demonstrate that the 4MR convergence for most energy levels discussed here is

better than 1 cm−1. See more details in the Results Section, where 4MR and 5MR results

are presented.

In MM calculation, each (CI) basis function is restricted by the maximum excitation

quanta on each mode, and the maximum sum of excitation quanta on all modes. In our

calculation, 26 primitive harmonic-oscillator basis are included with 18 Gauss Hermite

integration points for each mode. The maximum quanta for single mode are tested from
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8 to 12, and we obtained the convergence within in 0.1 cm−1. For J >0, the procedure

is more complicated since there are 2J + 1 rotational functions. Detailed description can

be found in previous studies.30,36

7.3 Results

The equilibrium structure, rotational constants, and the harmonic frequencies of the

cyclic C4 are listed in Table 7.1. The definition of structural parameters is consistent

with that in Ref 135. As shown in Table 7.1, our CCSD(T)-F12b/aVTZ structure is very

similar to the CCSD(T)/pVQZ structure in Ref. 135. However, the R12 and R13 from

the previous MRCI+Q study136 are longer than the CCSD(T)/CV5Z values by 0.007

Åand 0.015 Å, respectively. It is not unusual to see MRCI overestimate the bond lengths

and its deviations are mainly caused by the ab initio method limitations (compare to

the error compensation in CCSD(T) method), basis set incompleteness and the core

correlation effects. Such structure deviations consequently lead to the large deviations

in the MRCI vibrational frequencies. The harmonic frequency differences between the

CCSD(T)-F12b/aVTZ PES and the CV5Z QFF are 2-10 cm−1; these relatively smaller

differences are reasonable considering the ab initio method and basis differences. The QFF

harmonic frequencies are typically a little higher than the PES values, and this is a result

of including core-correlation in the QFF calculation but not in the PES computations.

The CV5Z QFF force constants are tabulated in Table 7.2.
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Table 7.1: Computed equilibrium geometries (Å), rotational constants (cm−1), and har-
monic frequencies (cm−1) of cyclic C4 from the PES and ab initio calculations.

PES CCSD(T)-F12b QFF Ref.

/aVTZ CV5Z CCSD(T)a MRCIb

Equilibrium geometires

R12 1.4481 1.4494 1.4439 1.4492 1.4510

R13 1.5121 1.5110 1.5057 1.5125 1.5204

Ae 1.2277 1.2295 1.2383 1.2149

Be 0.4599 0.4586 0.4623 0.4599

Ce 0.3346 0.3345 0.3366 0.3336

Harmonic frequencies

ZPE 2736.8 2730.5 2751.3 2731.4 2815.9

ω1(ag) 1267.9 1264.3 1272.2 1262.7 1306.6

ω2(ag) 947.4 942.5 949.6 944.2 989.5

ω3(b1g) 1029.4 1030.8 1038.9 1030.8 1079.1

ω4(b1u) 299.4 301.4 306.1 304.7 284.3

ω5(b2u) 537.1 534.3 539.9 534.5 523.1

ω6(b3u) 1392.3 1386.6 1396.0 1385.9 1449.2

a Ref. 135 CCSD(T)/pVQZ calculation

b Ref. 136 MRCI+Q/pVTZ calculation
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Table 7.2: CCSD(T)/CV5Z QFF force constants in symmetry coordinates of cyclic C4.
All force constants are given in aJ/Ån ·radm where n and m are the orders of bond length
coordinates and angle-related coordinates.

ij Fij ij Fij ij Fij

11 5.513082 21 -0.503134 22 1.770448

33 0.737645 44 0.068348 55 3.815147

66 4.730368

ijk Fijk ijk Fijk ijk Fijk

111 -15.6237 211 1.1212 221 -3.3525

222 3.5236 331 -3.9763 332 -1.7894

441 -0.1205 442 0.3723 551 -14.2755

552 0.6873 653 7.9852 661 -14.6209

662 0.2381

ijkl Fijkl ijkl Fijkl ijkl Fijkl

1111 36.18 2111 -2.42 2211 6.02

2221 -10.21 2222 15.92 3311 5.94

3321 4.70 3322 1.04 3333 10.55

4411 0.20 4421 -0.89 4422 0.19

4433 -0.37 4444 0.43 5511 37.77

5521 0.16 5522 -5.64 5533 10.68

5544 -0.47 5555 41.66 6531 -20.20

6532 -4.32 6611 35.92 6621 -0.29

6622 0.82 6633 9.45 6644 -0.20

6655 40.01 6666 29.57
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The computed fundamental frequencies of 12C4 using the PES and QFF with both

VPT2 and VCI are presented in Table 7.3. In addition, the fundamental IR intensities are

computed using MP2/aVTZ methods under double-harmonic approximation. In the order

of ν1 to ν6, the IR intensities are 0.00, 0.00, 0.02, 50.22, 33.28 and 210.08 respectively.

The MM-PES calculations are performed using both 4-mode representation (4MR) and

5-mode representation (5MR). The 4MR VCI results agree with 5MR to within 0.3 cm−1.

In addition, we test the convergence with respect to the number of the contracted basis

functions and the allowed mode excitations. Less than 0.2 cm−1 differences are found for

fundamentals, which clearly indicates the VCI basis convergence. In Table 7.3, both VCI

(MM-4MR) and VPT2 results are given for the CV5Z QFF. Agreement on six vibrational

fundamentals is 0 - 3 cm−1, except ν2 where the VPT2 energy is about 7 cm−1 higher than

VCI energy. The ν2 is in-plane breathing mode altering the bond angles within the original

symmetry. The anharmonicity of ν2 fundamental increases by -4.4 cm−1 from -9.8 cm−1

(CVTZ) to -12.9 cm−1 (CVQZ) and -14.2 cm−1 (CV5Z), but the ν2 harmonic frequency

rises faster by 9.3 cm−1 from 940.3 cm−1 (CVTZ), 944.1 cm−1(CVQZ) to 949.6 cm−1

(CV5Z). This partially indicates the deficiency of current CV5Z QFF work, although it is

already the most self-consistent and reliable QFF. Carbon-Carbon multibond sensitivities

may contribute to this VCI vs. VPT2 discrepancy.
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Table 7.3: Computed zero-point energy (ZPE) and fundamentals (cm−1) of cyclic 12C4

using different methods

Harm. MM-PES Harm. MM-4MR VPT2 Refs.

PES 4MR 5MR QFF QFF QFF CCSD(T)a CCSD(T)b MRCIc

ZPE 2736.84 2716.37 2716.36 2751.34 2729.76 2726.35 2713.6 2698.1

ν1(ag) 1267.88 1250.26 1250.26 1272.25 1256.66 1256.36 1248.6 1241.4 1285.9

ν2(ag) 947.39 928.32 928.24 949.60 928.62 935.44 926.9 920.7 949.4

ν3(b1g) 1029.39 994.34 994.27 1038.85 1002.40 1002.93 998.7 989.3 981.5

ν4(b1u) 299.44 301.02 300.96 306.10 300.62 302.87 302.3 300.3 279.2

ν5(b2u) 537.15 520.86 520.81 539.91 520.59 522.60 520.2 511.6 522.5

ν6(b3u) 1392.33 1308.91 1308.64 1395.97 1316.57 1314.54 1313.5 1294.2 1378.0

a Ref. 135 CCSD(T)/pVTZ variational calculation

b Ref. 135 CCSD(T)/pVTZ perturbation calculation

c Ref. 136 MRCI+Q/pVTZ perturbation calculation

The VCI fundamental frequencies using the PES differ by less than 9 cm−1 compared

to the VCI and VPT2 results using the QFF. The differences may partially result from

the ab initio method, while they could also partially come from the fitting of PES and

QFF. Comparing the results in detail, we find that the harmonic frequency of the torsion

mode ω4 on the PES is about 7 cm−1 lower than that on the QFF, but the VCI ν4 fun-

damentals are almost the same, 301.02 cm−1 (PES) vs. 300.62 cm−1 (QFF). Conversely,

we see enlarged differences of mode 6 for which the harmonic frequency difference is 3.6

cm−1 while the MM fundamentals differ by 7.6 cm−1. The PES vs. QFF harmonic fre-

quency differences of the other 4 fundamentals are similar to their corresponding PES

vs. QFF variational fundamentals. Comparing to previous studies, overall consistency

with Martin’s CCSD(T) fundamentals is very good. By contrast, the results of the pre-

vious MRCI+Q QFF calculation have about 60 cm−1 deviations for some modes. They

are mostly the results of the large differences in the MRCI+Q structure and harmonic
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frequencies (see Table 7.1), which is mainly attributed to the ab initio method and basis

limitations.

Martin et al. reported the Fermi resonance ν6 = ν3+ν5 raises ν6 by 9 cm−1.135 To

investigate this, we examined the force constants in Table 7.2. The off-diagonal cubic

constant F653 is unusually large, 7.9852 aJ/Å2rad. It leads to an exceptionally large k356

= -295.9 cm−1. In off-diagonal quartic constants, F6531 is also unusually large, i.e. -20.2

aJ/Å3rad, which leads to k1356 = -55.0 cm−1. They are highly consistent with the two

corresponding normal coordinate QFF constants reported in Ref. 135: -295.0 cm−1 and

-54.8 cm−1, respectively. This agreement confirms the consistency of both studies. Note

that the k356 value quoted in Ref. 135 was actually for k166. Combined together, they

render significant anharmonicities for ν6, i.e.∼ 80 cm−1. From the eigenvector analysis of

final VCI (MM) states, ν6 is found strongly coupled with ν3 + ν5. The ν3 + ν5 CI basis

contributes about 23% of the ν6 fundamental wavefunction.

However, on the CV5Z QFF, the regular VPT2 ν6 fundamental estimated without

the explicit Fermi resonance ν6 = ν3 + ν5 treatment is 1313.15 cm−1, i.e. just 1.4 cm−1

lower than the value we report in Table 7.3, which is estimated with explicit Fermi

resonance treatment. The other component, ν3 + ν5, is 1.5 cm−1 higher, 1561.53 cm−1

(regular VPT2) vs. 1560.14 cm−1 (explicit Fermi resonance treatment), vs. 1555.15 cm−1

(MM-QFF 4MR). In addition, two more Fermi resonances (Type I) have been explicitly

treated together as a polyad: ν1=2ν5 and ν2=2ν5. Compare to VPT2 without including

these resonances, ν1 is reduced by 0.5 cm−1 and ν2 is raised by 1.0 cm−1. Therefore, all

the Fermi resonance effects we observed on CV5Z QFF fundamentals are smaller than

those reported in Martin et al.. It is well known that the resonance effects can vary from

one QFF to another. Although the ν1, ν2 and ν6 given in Table 7.3 are computed with the

Fermi resonances explicitly included, the regular VPT2 results are considered similarly
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reliable.

Combination and overtone excitations of C4 given in Table 7.4 are computed with

regular VPT2, i.e. no explicit Fermi resonance treatment is included. We obtain good

overall consistency between the VCI (MM) and VPT2 levels computed on the CV5Z QFF.

For most energy levels, the agreement is within 10 cm−1, and usually the VPT2 energies

are higher. For the lowest state energies given in Table 7.4, the 3-5 cm−1 differences

between MM and VPT2 are totally consistent with the fact that our VPT2 treatment

does not go beyond second-order vibrational perturbation theory. There are only two

exceptions: ν3 + ν6 and ν5 + ν6. For ν3 + ν6 and ν5 + ν6, the MM-QFF energies are higher

than the VPT2-QFF energies by 13-20 cm−1, while the VPT2-QFF energies agree well

with the corresponding MM-PES energies. This could be accidental. For the MM-PES

results, we obtain good agreement between the 4MR and 5MR results as well. Comparing

the MM-QFF to MM-PES, most differences are within 5 - 15 cm−1. In addition, we note

the strong coupling of 2ν6 with 2ν3+2ν5 and ν6+ν3+ν5. The MM calculations give two 2ν6

states separated by about 200 cm−1, as shown in Table 7.4. The leading CI coefficients in

both 2ν6 states are about 0.67. In this situation, assignment of 2ν6 becomes problematic

due to the severe mixing, and the labels are considered somewhat arbitrary.
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Table 7.4: Low-lying combinations and overtones of cyclic 12C4 (cm−1)

Assignment MM-PES MM-QFF VPT2-QFF

4MR 5MR 4MR

2ν4 606.69 606.58 603.21 608.67

ν4 + ν5 822.06 821.93 818.93 824.44

2ν5 1036.72 1036.61 1035.27 1037.84

ν2 + ν4 1232.92 1229.41 1225.84 1232.20

ν3 + ν4 1290.72 1290.48 1296.18 1299.06

ν2 + ν5 1439.13 1438.76 1435.14 1444.90

ν3 + ν5 1549.74 1549.66 1555.15 1561.52

ν1 + ν4 1556.93 1553.26 1559.61 1561.33

ν6 + ν4 1605.78 1604.97 1611.58 1611.72

ν1 + ν5 1773.20 1773.09 1779.88 1785.04

ν6 + ν5 1787.13 1786.16 1797.19 1784.11

2ν2 1853.43 1853.11 1855.11 1861.14

ν3 + ν2 1918.21 1918.01 1925.05 1923.23

2ν3 1984.99 1984.69 2000.95 2003.75

ν1 + ν2 2176.93 2173.39 2183.01 2184.35

ν2 + ν6 2218.54 2216.13 2225.79 2234.58

ν1 + ν3 2232.38 2232.20 2245.38 2245.56

ν3 + ν6 2247.65 2246.83 2264.19 2244.26

2ν1 2495.22 2495.17 2508.59 2508.82

ν1 + ν6 2547.08 2546.36 2561.28 2560.05

2ν6
1 2589.08 2587.19 2607.76 2617.20

2ν6
2 2794.38 2793.19 2810.37

1 Lower energy component of ν6 overtone

2 Higher energy component of ν6 overtone
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We can obtain the rovibration energies of cyclic C4 from the MM and the SPECTRO

calculations. The rovibration energies of J = 1 and J = 2 levels computed with MM-

PES and VPT2-QFF approaches are given in Tables 7.5, where we give Eν(J = 1, 2) −

Eν(J = 0). In addition to spectroscopic constants, SPECTRO also computes the ro-

vibrational energy levels through diagonalizing the rotational energy matrices for both S

and A reduced Hamiltonians. The vibrationally-dependent spectroscopic constants can

be found in the SM. Note the differences between S-reduced and A-reduced Hamiltonian

energy matrices are much smaller than 1E-6 cm−1, so we do not need to label them.

MM calculation employs a different method, in which the ro-vibrational energies are

obtained by diagonalizing the full ro-vibrational Watson Hamiltonian matrices with nMR

potential representation. We can derive the effective rotational constants from the MM

ro-vibrational energies. Cyclic C4 is not a rigid symmetric top, so there is no exact

expression that relates the ro-vibrational energies of MM with the effective rotational

constants. An approximate expression to represent the energy levels of the asymmetric

rigid rotor is given by:150

E =
1

2
(A+ C)J(J + 1) +

1

2
(A− C)Eτ (7.1)

where Eτ is tabulated according to the asymmetry parameter κ, which is defined as

(2B −A− C)/(A− C). κ is equal to about -0.72 for the cyclic C4, and the values of Eτ

can be found in Ref. 150.
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Table 7.5: Ro-vibrational energies of J = 1 and J = 2 from 4MR MM calculation with
the PES and VPT2 calculation with the QFF, and the energies are shown as νi(J=1,2) −
νi(J=0). (cm−1)

11,0 11,1 10,1 22,0 22,1 21,1 21,2 20,2

MM ZPE 1.6701 1.5449 0.7898 5.6533 5.6400 3.3748 2.9994 2.3561

ν1 1.6668 1.5412 0.7872 5.6462 5.6318 3.3686 2.9909 2.3479

ν2 1.6670 1.5405 0.7884 5.6421 5.6285 3.3707 2.9914 2.3515

ν3 1.6661 1.5395 0.7857 5.6422 5.6280 3.3652 2.9853 2.3435

ν4 1.6674 1.5426 0.7920 5.6366 5.6278 3.3760 3.0017 2.3670

ν5 1.5919 1.4675 0.7866 5.3521 5.3376 3.2907 2.9176 2.3454

ν6 1.6578 1.5327 0.7861 5.6165 5.5995 3.3588 2.9817 2.3432

VPT2 ZPE 1.6912 1.5653 0.7950 5.7321 5.7179 3.4071 3.0295 2.3708

ν1 1.6850 1.5593 0.7933 5.7095 5.6953 3.3974 3.0203 2.3658

ν2 1.6889 1.5620 0.7947 5.7213 5.7068 3.4052 3.0245 2.3697

ν3 1.6870 1.5608 0.7917 5.7181 5.7038 3.3965 3.0180 2.3608

ν4 1.6626 1.5371 0.7974 5.6164 5.6018 3.3829 3.0064 2.3776

ν5 1.7177 1.5920 0.7915 5.8413 5.8276 3.4263 3.0493 2.3609

ν6 1.6845 1.5591 0.7924 5.7088 5.6947 3.3949 3.0184 2.3630

According to this expression, effective A and C can be calculated through linear

least square fitting from the MM-PES ro-vibrational energies. Here if the effective ro-

tational constants from SPECTRO are substituted into this expression to calculate the

ro-vibrational energies, good consistency can be obtained by comparing with the MM-

PES energies, with differences less than 0.4 cm−1. The differences are partly due to the

simple approximation in the formula, they are also traced to differences in the equilibrium
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structures between the QFF and PES.

Finally, we consider the cyclic C4 isotopologues. The MM and SPECTRO results

for the two single 13C-substituted isotopologues are shown in Table 7.6, including the

zero-point structure, 6 vibrational fundamentals, and vibrationally averaged rotational

constants. As seen, good consistency is found between the three approaches for both

isotopologues. We expect similar consistency for the fundamentals. The VPT2/QFF iso-

topic shifts are explicitly included as it is usually more accurate than the absolute values

of fundamental frequencies. Compare to 12C4, the shifts are relatively small for the bend

and torsion modes, decreasing by less than 5 cm−1. For the stretching modes, for example

mode ν1 and ν6, the differences can be as large as about 13 cm−1 for single 13C isotopo-

logues. Note the same Fermi resonance treatments are included in the VPT2 analysis on

both isotopologues, although their effects are small, i.e. about 1 cm−1.
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Table 7.6: The VPT2 zero-point vibrationally averaged structures (Å, deg), rotational
constants (cm−1), zero-point energy (ZPE) (cm−1), fundamentals (cm−1) of single 13C
isotope substituted cyclic C4, and shifts of vibration energies compared to 12C4 based on
VPT2 results.

Zero-point Vibrational Energies Shift

Harm-QFF MM-PES MM-QFF VPT2-QFF

13CCCC R12=R14 1.4492 ZPE 2721.98 2687.64 2699.84 2697.62 -28.73

R23=R34 1.4494 ν1 1258.93 1237.12 1243.34 1243.59 -12.77

6 123 62.960 ν2 941.08 920.77 920.37 922.18 -13.26

A0 1.1825 ν3 1023.51 980.25 987.80 988.67 -14.26

B0 0.4605 ν4 303.13 298.09 297.66 299.96 -2.91

C0 0.3309 ν5 534.39 515.66 515.22 517.38 -5.22

ν6 1382.92 1296.76 1303.83 1302.39 -12.15

C13CCC R12=R23 1.4493 ZPE 2726.96 2692.60 2704.75 2702.47 -23.88

R34=R14 1.4493 ν1 1260.34 1238.56 1243.90 1244.33 -12.07

6 143 62.965 ν2 938.59 917.23 917.54 919.34 -10.77

A0 1.2308 ν3 1033.43 989.33 996.97 997.88 -5.05

B0 0.4424 ν4 303.13 298.10 297.67 299.98 -2.89

C0 0.3249 ν5 534.60 515.96 515.50 517.67 -4.93

ν6 1383.82 1299.15 1306.24 1304.52 -10.02

7.4 Summary and Conclusions

We reported a CCSD(T)-F12b/aug-cc-pVTZ potential energy surface and a CCSD(T)/cc-

pCV5Z quartic force field of the singlet cyclic C4. Three different methods were adopted

to calculate the vibrational states of cyclic C4: variational calculations (VCI) using MUL-

TIMODE with the PES and the QFF, and second-order perturbation calculation using
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SPECTRO with the QFF. Even though the PES and QFF were constructed using dif-

ferent ab initio methods and basis sets, the VCI calculations of PES and QFF are in

very good agreement with each other for fundamentals, overtones, and combinations. On

the CV5Z QFF, the VPT2 fundamentals agree excellently with the variationally calcu-

lated energies. From the VCI calculations, the coupling between the mode ν6 and ν3 + ν5

combination is quite strong, but VPT2 calculations with the Fermi resonance treatment

explicitly included only change the ν6 fundamental by 1.4 cm−1. The other two Fermi res-

onance effects are less than 1 cm−1. So we use regular VPT2 analysis for the combinations

and overtones. In addition, ro-vibrational energies for J = 1 and J = 2 were computed

using 4MR MM calculations on the PES and VPT2 calculations with the QFF. Spectro-

scopic constants including vibrationally averaged structures were determined by VPT2

method and reported for the main isotopologue as well as two 13C singly-substituted

isotopologues. The accuracy of vibrational fundamentals is estimated to be better than 5

cm−1. Rotational constant deviations should be within 0.1-0.5%. Other quartic centrifu-

gal distortion constants may carry 5-10% deviations. The results reported in this study

may help in identification of cyclic C4 in future experimental analyses or astronomical

observations.



Chapter 8

Infrared Spectra of CH3CHOO

8.1 Introduction

In Chapter 5, we presented the importance of Criegee intermediates in the atmosphere,

and the reaction dynamics studies of unimolecular decay of syn-CH3CHOO. The Criegee

intermediates have also been studied many times from the spectroscopic perspective. The

simplest Criegee intermediate, CH2OO, has now been detected with ultraviolet deple-

tion70, ultraviolet absorption151, infrared absorption152 and microwave spectroscopy153,154.

The kinetics of reactions of CH2OO with various atmospheric species have been directly

investigated with some of these detection methods.71,155–158.

The methyl substituted Criegee intermediate, CH3CHOO, is an intermediate of ozonol-

ysis with 2-alkenes (such as trans-2-butene) and serves as a prototype to understand

various fundamental issues in larger Criegee intermediates. CH3CHOO exists in two con-

formers, syn-CH3CHOO and anti-CH3CHOO, with the former more stable than the latter

by ∼ 15 kJ/mol.88 Because of a large barrier ∼ 160 kJ/mol, the interconversion between

syn-CH3CHOO and anti-CH3CHOO is unlikely. Taatjes et al.72 produced CH3CHOO and

120
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detected both CH3CHOO conformers with photoionization. The conformer-dependent

reactivity of syn- and anti- conformers were detected with specific atmospheric com-

pounds. The ultraviolet depletion78 and ultraviolet absorption spectra151 of CH3CHOO

were studied in experiments, which yielded a broad feature without structure and pro-

vided no information about the conformation of the CH3CHOO carrier. The microwave

spectroscopy was successful in providing structural information87, but without any vibra-

tional insights. Liu et al.77 employed infrared activation of cold CH3CHOO to produce

OH and assigned several absorption features in the region 5,600-6,100 cm−1 to be the

CH-overtone and combination bands of syn-CH3CHOO; no bands of anti-CH3CHOO

were identified.

So far most theoretical studies have focused on CH2OO.152,159,160 For CH3CHOO,

several ab initio calculations were reported focusing on the stationary points.78,87,88 The

only available vibrational calculation is the perturbation theory analysis and reaction

path relevant to the action spectrum of syn-CH3CHOO mentioned above.77 It is thus

desirable to thoroughly study the vibrations of the two conformers of CH3CHOO in both

experiment and theory.

As far as we know, no full-dimensional potential energy surface (PES) exists for

CH3CHOO. These are challenging systems owing to their high dimensionality. Because of

high interversion barrier, syn- and anti-CH3CHOO can be viewed as separate species. In

this chapter, we report full-dimensional PESs and DMSs for the syn- and anti-conformers

of CH3CHOO in spectroscopic accuracy. Wavefunctions and energies of the zero-point

state for these conformers are determined using Diffusion Monte Carlo (DMC) calcula-

tions. Vibrational self-consistent field and configuration-interaction (VSCF/VCI) calcu-

lations of the IR spectra are performed using MULTIMODE (MM) for each conformer.

Here we first present the survey spectrum of energy up to 6200 cm−1. In addition, we
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collaborate with experimental measurement, and more accuracy and detailed calculations

are performed focusing on the fundamental states of CH3CHOO in the energy range of

830 - 1550 cm−1.

8.2 Potential Energy Surface of CH3CHOO Isomers

Following the procedure of constructing new PES, around 20,000 configurations are sam-

pled by running classical direct-dynamics calculations starting from the minimum and

methyl torsion saddle point (SP) and by randomly sampling around the stationary points.

The electronic energies are calculated using the explicitly correlated coupled-cluster single

and double excitation method that includes a perturbation treatment of triple excitations

(CCSD(T)-F12b),54,55 with the aug-cc-pVDZ basis for the C and O atoms and cc-pVDZ

basis for H atoms, as implemented in the MOLPRO package.58

The PES of CH3CHOO is 18 dimensional, and is invariant with permutation of the

four H atoms, two C atoms, and two O atoms. The maximum polynomial order for

each PES fit is 5, and the number of linear coefficients is 5801. The cut-off energy for

the database for the PES fits is roughly 35 kcal/mol (12,215 cm−1). We used 18,000

and 17,901 points for syn- and anti-CH3CHOO PES fitting, and the fitting RMS are

0.119 cm−1 and 0.123 cm−1 respectively. Figure 8.1 shows the number of configurations

in different energy ranges and the corresponding RMS error. Energies of the minimum

and torsional SP, and harmonic frequencies for syn- and anti-CH3CHOO are precisely

described by the fitted PESs, as shown in Table 8.1 and 8.2 respectively, along with

results from direct CCSD(T)-F12b calculations. The deviations with ab initio results of

5 cm−1 or less indicate the high precision of the fitted PESs.
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Figure 8.1: Root-mean-square (RMS) of the syn- and anti-CH3CHOO PES fitting error
vs. relative energy with respect to minimum. The values in parentheses are the number
of configurations in the energy range.
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Table 8.1: The comparison of energies (cm−1) and harmonic frequencies (cm−1) of syn-
CH3CHOO between PES and ab initio calculation.

Minimum SP

ab initio PES ab initio PES

Eng. 0.0 0.0 730.3 730.4

mode sym. description

ν1 A′ carbonyl oxide C-H str. 3204.2 3206.0 3194.8 3196.8

ν2 A′ methyl in-plane C-H str. 3161.2 3161.2 3177.2 3176.7

ν3 A′ methyl out-plane sym. C-H str. 3029.5 3030.5 3040.7 3036.7

ν4 A′ C-O str. 1527.4 1528.3 1539.7 1538.4

ν5 A′ methyl sym. scissor 1466.5 1468.0 1487.7 1484.6

ν6 A′ methyl umbrella 1397.7 1396.0 1388.8 1389.2

ν7 A′ carbonyl oxide in-plane C-H wag 1316.6 1317.9 1328.9 1329.2

ν8 A′ C-C-O bend 1115.4 1115.8 1157.8 1156.4

ν9 A′ C-C str. 977.6 977.5 929.8 933.2

ν10 A′ O-O str. 922.1 922.7 883.0 875.4

ν11 A′ C-O-O bend 677.6 677.8 653.3 648.0

ν12 A′ C-C-O-O ring closure 308.0 307.5 335.9 332.7

ν13 A” methyl out-plane asym. C-H str. 3084.7 3085.3 3103.7 3105.8

ν14 A” methyl asym. scissor 1449.2 1449.9 1449.8 1446.0

ν15 A” C-C-O out-plane bend 1031.3 1034.0 1037.7 1046.2

ν16 A” carbonyl oxide out-plane C-H wag 720.6 721.0 757.7 752.4

ν17 A” C-C-O-O out-plane ring dist. 447.7 448.3 430.8 435.1

ν18 A” methyl torsion 201.8 206.0 175.9i 177.1i
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Table 8.2: The comparison of energies (relative to syn-CH3CHOO) and harmonic fre-
quencies (cm−1) of anti-CH3CHOO between PES and ab initio calculation.

Minimum SP

ab initio PES ab initio PES

Eng. 1274.2 1274.2 1700.9 1700.9

mode sym. description

ν1 A′ carbonyl oxide C-H str. 3168.3 3168.6 3171.2 3167.6

ν2 A′ methyl in-plane C-H str. 3154.0 3153.6 3152.4 3156.1

ν3 A′ methyl out-plane sym. C-H str. 3039.2 3039.3 3047.0 3056.1

ν4 A′ C-O str. 1533.8 1534.6 1507.2 1515.8

ν5 A′ methyl sym. scissor 1466.0 1466.5 1483.8 1485.5

ν6 A′ methyl umbrella 1419.8 1419.8 1414.7 1408.7

ν7 A′ carbonyl oxide in-plane C-H wag 1321.3 1321.5 1318.1 1312.4

ν8 A′ C-C-O bend 1159.2 1159.4 1147.9 1142.3

ν9 A′ 956.0 957.0 1002.1 1003.0

ν10 A′ 904.6 904.9 890.6 890.9

ν11 A′ C-O-O bend 560.4 560.4 558.9 556.8

ν12 A′ C-C-O-O in-plane wag 324.5 324.3 325.1 326.1

ν13 A” methyl out-plane asym. C-H str. 3103.6 3103.4 3115.6 3111.6

ν14 A” methyl asym. scissor 1476.8 1477.1 1470.2 1469.0

ν15 A” C-C-O out-plane bend 1053.7 1054.2 1053.2 1064.7

ν16 A” carbonyl oxide out-plane C-H wag 850.2 848.3 822.7 819.8

ν17 A” C-C-O-O out-plane ring dist. 251.0 251.3 242.1 242.6

ν18 A” methyl torsion 156.2 155.7 171.1i 171.3i
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The dipole moment components for syn- and anti-CH3CHOO were calculated us-

ing the MP2 method at the same geometries used to generate the PESs for syn- and

anti-CH3CHOO. The DMSs were also fitted using the invariant polynomial method, as

discussed in Chapter 2. The RMS fitting errors for DMSs are 0.0007 a.u. and 0.0009 a.u

for syn- and anti-CH3CHOO respectively.

The internal methyl rotor is a potentially complex motion. Specifically, the torsional

angle associated with this is motion, τ , is defined as the average of three dihedral angles

H1-C1-C2-H2/3/4. The relaxed potential as a function of τ was obtained by a constrained

minimization at a given τ with respect to the other 17 degrees of freedom on the PESs.

The resulting relaxed potentials for syn and anti-CH3CHOO are given in Figure 8.2 .

The geometries at minimum and torsion SP are given as well; these are of Cs symmetry.

As seen, the torsion barrier height of the syn-conformer is larger than that of anti, which

indicates that the interaction between protons in the methyl group and the terminal

oxygen atom in syn-CH3CHOO hinders the methyl torsion motion. These barrier heights

agree well with a previous ab initio calculation, which gives the torsion barrier height of

748 cm−1 and 402 cm−1 for syn and anti respectively.87
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Figure 8.2: Fully relaxed path of syn- and anti-CH3CHOO along the methyl torsion
angle.
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8.3 Diffusion Monte Carlo

The ground vibrational-state wavefunctions and energies of the syn- and anti-conformer

were determined using DMC calculations.26,27 For each calculation, 15,000 walkers were

propagated for 15,000 steps with an imaginary time step equal to 5 a.u. The reference

configuration was set to the equilibrium geometry. For each DMC trajectory the first 5,000

steps were used to equilibrate the system, and the remaining 10,000 steps were used to

obtain the ZPE. The final ZPE and uncertainty were then determined by calculating an

average of five trajectories run for each conformer.

From the DMC calculations, the calculated ZPEs of syn- and anti-CH3CHOO are

12851.7±4.3 and 12773.9±4.5 cm−1, respectively, relative to their respective minima.

The syn conformer is more stable than anti by 1274.2 cm−1 and considering the ZPEs,

the energy difference between syn and anti is 1196.4 cm−1. This indicates that at room

temperature the syn-conformer is substantially more populated than the anti one. In ad-

dition to determining the ZPEs, the DMC calculations allow the visualization of ground

state wavefunction. The wavefunction amplitude can be calculated using the walkers

from DMC trajectory, and visualized as an isosurface. The isosurfaces of the ground

state wavefunctions for the two conformers are shown in Figure 8.3. From the plots, we

observe that the amplitude of the methyl torsion motion is localized at the minimum

for both conformers, although more so for syn than anti. This is reasonable given the

smaller torsion barrier height of anti. However, both results indicate that at least for the

ground torsional state the conformers do not exhibit large amplitude torsional motion.

From the perspective of spectroscopy this means that the well-known CH3-torsional tun-

neling splittings can be neglected in the survey and fundamental IR spectrum describing

transitions from the ground vibrational state. In fact, the tunneling splitting for the syn
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conformer has been estimated experimentally to be in the kilohertz range87, confirming

that tunneling can be neglected in calculations of survey spectra we present here.

Figure 8.3: Isosurfaces of ground state wavefunction for both syn- and anti- conformers,
shown in two different views respectively.



Chapter 8. Infrared Spectra of CH3CHOO 130

8.4 Survey Spectrum of CH3CHOO

The calculations of the IR spectra were done using the MULTIMODE program. The

calculations are based on the Watson Hamiltonian in mass-scaled normal coordinates.

This version is appropriate for semi-rigid molecules and so not obviously applicable to

syn- and anti-CH3CHOO, which have an internal methyl rotor. However, from an analysis

of the DMC wavefunctions and comparisons of the MM ZPEs with the rigorous DMC, the

wave function of ground torsional state is localized, and justifies the semi-rigid approach.

For CH3CHOO, the exact potential is 18-dimensional, and we used 4MR in the MM

calculation in this study. Eleven primitive harmonic-oscillator basis were included for

each mode in the initial VSCF step. Then the VCI calculation uses the virtual states

as basis functions, and the number of basis functions in the computationally intensive

VCI step is restricted by the maximum quanta in each mode and maximum sum of

excitation of all modes. In the survey spectrum calculation, we included all the 18 modes

of CH3CHOO. Therefore, the size of basis set and maximum excitation were limited to

relatively small values considering the expense of calculation. In the VCI, we allowed the

4-mode excitation simultaneously, and the sum of quanta in all modes was restricted to

5. Cs symmetry was applied in the MM calculation. The sizes of each VCI matrix for the

two Cs blocks are 12,759 and 11,719.

The IR spectrum intensity was calculated using standard expression in terms of dipole

transition matrix elements. These were determined by numerically integrating the matrix

elements involving the calculated ground and vibrationally excited state eigenfunctions

and the dipole moment components. No approximations were made to these components,

and so the spectrum consists of fundamental, overtone, and combinations states.

The spectra were obtained in 18-mode VSCF/VCI calculations using the MM pro-
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gram, with the so-called 4-mode representation of the potential. Note that while these are

not ”exact” calculations, they are expected to be within 5-10 cm cm−1 of exact results

for this high dimensional system. One meaningful comparison that can be made is for

the ZPEs from MM. These are 12859.0 cm−1 and 12784.5 cm−1 for the syn- and anti -

conformers, respectively, in good agreement with DMC results. (Note the differences of

roughly 8 cm−1 almost certainly imply differences of this magnitude or less for transition

energies of relevance to the IR spectra.)

The spectra for the syn- and anti-conformers from 0 to 6200 cm−1 are shown in

Figure 8.4. Peaks corresponding to fundamental excitations are labeled as such. Peaks

in the 3000 cm−1 region correspond to the four CH-stretches and clearly peaks above

these correspond to combination and overtone bands. These spectra show similarities

and also important differences, and should be of value to experimental investigations of

these spectra. In addition, expanded views of these spectra in the range 5500-6100 cm−1

are also given. The region of the spectrum is quite dense, and the one for syn-CH3CHOO

is of special interest as the action spectrum has been recently reported in this range.77

That spectrum (which detects the OH product as the wavelength varies) is related to

but of course not the same as the IR spectrum shown here. Nevertheless, there are some

striking similarities. The intense peak around 6030 cm−1, which is the overtone state of ν1

mode, agrees well with a peak in the action spectrum. In addition, the strong absorption

around 5910 cm−1 shows similarity with the action spectrum. A thorough analysis of the

action spectrum needs to consider unimolecular dissociation dynamics of syn-CH3CHOO,

and such studies, which are highly challenging, will hopefully be conducted in the future.

For completeness, the corresponding expanded view for anti-CH3CHOO is also given.

However, the barrier for dissociation to produce OH is higher than syn-CH3CHOO and

so much less OH is expected for anti-CH3CHOO in this spectral range. Finally, it is
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worth noting some similarities to the calculated spectral features in CH2OO reported

recently160. However, that calculated (and measured) spectrum did not extend beyond

roughly 3100 cm−1.
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Figure 8.4: Infrared survey vibration spectra of syn- and anti-CH3CHOO in the energy
from 0 to 6200 cm−1. Expanded views of the spectra in 5500 - 6100 cm−1 range are given
as well.

Rotation constants of the ground vibrational state of syn-CH3CHOO and anti-CH3CHOO

were determined exactly from differences of rigorous J=1 and 0 energies. The rotation
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constants of the ground vibrational state for syn-CH3CHOO have been determined exper-

imentally,87 and these are compared with the calculated ones in Table 8.3. As seen, abso-

lute differences between calculated ground state and experimental constants are 0.0015,

0.0033 and 0.0006 cm−1 for A0, B0, and C 0, respectively for syn-CH3CHOO. The rotation

constants for the syn-conformer show significant differences compared to those for the

anti-conformer, as expected based on the large differences in the equilibrium structures.

Table 8.3: The equilibrium and zero-point rotation constants of syn- and anti-
CH3CHOO and comparison with previous results.

Equ. Zero-point

Ref.1 Exp.2

syn Ae 0.5884 0.5875 A0 0.5881 0.5866

Be 0.2401 0.2399 B0 0.2412 0.2379

Ce 0.1760 0.1758 C0 0.1774 0.1768

anti Ae 1.6299 1.6296 A0 1.6249

Be 0.1486 0.1485 B0 0.1541

Ce 0.1398 0.1396 C0 0.1452

1 Ref. 87, CCSD(T)-F12a/aVTZ calculation results.

2 Ref. 87, rotation constants determined from pure rotation

spectroscopy of syn.
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8.5 Spectral Analysis of CH3CHOO in Fundamental

Range

In experimental measurement, even though only one H atom of CH2OO was replaced with

a methyl group to form CH3CHOO, the infrared spectrum of the latter is expected to be

much more complicated, because both syn- and anti-conformers contribute to the infrared

absorption. In addition, the methyl group introduces low-energy vibrational modes such

as the CH3 torsion (internal rotation) which are populated with several vibrational quanta

even at ambient temperatures; hot bands might consequently play important roles in

the observed spectrum. Furthermore, the internal rotation of the methyl moiety may

introduce torsional splitting in vibrational bands. Consequently, spectral identification

and simulation of observed bands of CH3CHOO are expected to be difficult. In this

respect, sophisticated quantum-chemical calculations are essential to assist the spectral

simulation and assignments.

In the experimental study, the transient infrared spectra of syn- and anti-CH3CHOO

were measured using a step-scan Fourier-transform spectrometer in the energy range

of 830-1550 cm−1. Guided and supported by high-level full-dimensional quantum calcu-

lations, rotational contours of the four observed bands are simulated successfully and

provide definitive identification of both conformers.

In the experiment, a step-scan FTIR spectrometer was used to record time-resolved

infrared spectra. A flowing mixture of CH3CHI2 produced CH3CHI using laser photodis-

sociation at 308 nm, which subsequently reacted with O2 to form CH3CHOO. The partial

infrared absorption spectrum (830-1550 cm−1) of a flowing mixture of CH3CHI2/N2/O2

at 328 K exhibits an intense absorption line of CH3CHI2 (Figure 8.5a). On irradiation

with light at 308 nm, the absorption of CH3CHI2 decreased because of photolysis, whereas
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new bands marked A1−A5 appeared in the difference spectrum recorded 0-2 µs after laser

irradiation (Figure 8.5b). The A5 band was partially interfered with by the absorption

of the precursor and the product acetaldehyde, but its sharp Q-branch is quite charac-

teristic and can be readily recognized. These new lines decreased in intensity, as shown

in Figure 8.5c where 68 µs was recorded after ultraviolet irradiation and disappeared

after ∼ 25 µs. To minimize interference from other products, we subtracted the spectrum

recorded during 16.0-19.8 µs from these two spectra and stripped the contributions from

the precursor and acetaldehyde, as shown in Figure 8.5d,e.
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Figure 8.5: Comparison of observed spectra with predicted stick spectra. (a) Absorp-
tion spectrum of a flowing mixture of CH3CHI2/N2/O2 before photolysis. (b) Difference
spectra recorded 0-2 µs and (c) 6-8 µs after irradiation of the sample at 308 nm. (d) Cor-
rected spectra recorded 0-2 µs and (e) 68 µs after subtraction of the spectrum recorded
at 16.0-19.8 µs and removal of the contributions of the precursor CH3CHI2 and stable
product acetaldehyde. Resolution of all spectra is 0.5 cm−1. New features are marked with
arrows and labeled as A1-A5. (f) Possible ranges of anharmonic vibrational wavenumbers
and infrared intensities of syn-CH3CHOO and (g) anti-CH3CHOO predicted with vari-
ous methods shown as filled boxes; those predicted with the MULTIMODE method are
shown with thick lines.
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Similar with survey spectrum calculation, the internal torsion motion of CH3CHOO

is treated with semi-rigid approach since the ground state wave functions are localized.

Since the energies of highly excited states of torsion mode exceed the torsion barrier

height, 730 and 427 cm−1 for syn- and anti-CH3CHOO, respectively, the excitation of

torsion mode is restricted to 2 in order to avoid any unreasonable couplings with torsion

mode. The semi-rigid treatment for anti-CH3CHOO is more problematic, especially for

“hot bands”, than for syn-CH3CHOO because the barrier to internal rotation for the

anti-conformer is roughly 300 cm−1 lower than for the syn-conformer.

Thirteen harmonic oscillator basis are used for each mode in the first VSCF calcu-

lation. In the current study, all 18 vibration modes of CH3CHOO are included, and up

to 4 modes can be excited simultaneously. As mentioned above, the maximum excitation

of torsion mode is 2. To reduce the expense of calculation, the total excitation of four

CH-stretching modes of CH3CHOO is limited to 3. Since the frequencies of CH-stretching

modes are far beyond the spectral range investigated, 830-1,550 cm−1, such restrictions

on CH stretch modes affect little accuracy of the calculation. The maximum excitations

of all other modes are 7. Cs symmetry is applied in the MULTIMODE calculation. The

sizes of VCI matrix for the two Cs blocks are 22,157 and 17,924. The values predicted

with the MULTIMODE method including all 18 modes are depicted with thick lines

in Figure 8.5f,g. The vibrational energies are also calculated using various lower-level

methods, and the predicted energy range is shown in Figure 8.5f,g as well.

The MM program has been adapted to calculate the coupling for an arbitrary number

of pre-specified normal modes between 1 and 3N − 6 to be considered. In addition, we

performed another smaller set of calculations which only includes 13 modes of syn- and

14 modes of anti-conformer to compare with the calculations that includes all 18 modes.

For syn-conformer, the frequencies of nine vibration modes are in the measured spectral
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range from 830 to 1550 cm−1, and ten such modes for anti-conformer. The smaller set

calculation of 13 modes for syn-CH3CHOO includes such nine modes and four CH stretch

modes, and similarly for calculation of the 14 modes for anti-CH3CHOO.

As shown in Figure 8.5f, the more stable syn-CH3CHOO conformer is predicted from

the MULTIMODE calculations to have more intense absorptions near 908 (100), 969

(5), 1,097 (6), 1,285 (19) and 1,494 (8) cm−1; the numbers in parentheses give relative

infrared intensity of each vibration. The observed new features near 871 (100), 956, 1,091

(10), 1,281 (40) and 1,477 (30) cm−1 agree satisfactorily with these predicted values. The

predicted pattern of intense lines of anti-CH3CHOO near 894 (49), 944 (100), 1,295 (3)

and 1,488 (10) cm−1 agrees less satisfactorily with the observed spectrum. We show below

that the contribution from the anti-CH3CHOO conformer, although less significant, is

important for explaining the overall shape of the spectrum and is of primary importance

for explaining some of the fine-structure spectral features of the spectrum.

Rotation constants of the ground vibrational state and fundamental vibrational states

are determined rigorously from calculated energy difference of J = 1 and 0. The rotation

constants of syn-CH3CHOO ground vibrational state agree with those determined exper-

imentally87. The computed rotation constants for syn- and anti-CH3CHOO are shown

in Tables 8.4, respectively. These small energy differences are sensitive to the treatment

of the torsion degree of freedom, and so several sets of calculations, including ones that

eliminated that degree of freedom, were performed. The rotation constants that appear

to be most consistent with the simulation of experimental bands are from the smaller set

of calculation with 13 modes coupling for syn-CH3CHOO (14 modes for anti) and these

are given in the table.
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Table 8.4: Comparison of rotational parameters of CH3CHOO in their ground and vi-
brationally excited states predicted with MULTIMODE calculation coupling 13 modes
of syn and 14 modes of anti

syn anti

A’/A” B’/B” C’/C” A’/A” B’/B” C’/C”

ν4 0.9973 0.9981 0.9980 0.9966 1.0000 0.9993

ν7 0.9982 0.9981 0.9980 0.9978 1.0000 1.0000

ν8 1.0011 1.0006 0.9980 1.0051 0.9997 0.9982

ν9 0.9966 0.9992 0.9989 0.9950 0.9990 0.9982

ν10 0.9904 0.9990 0.9946 1.0049 0.9997 0.9982

A” B” C” A” B” C”

ν = 0 0.5810 0.2388 0.1748 1.5998 0.1482 0.1392

Expa 0.5866 0.2379 0.1744 1.6176 0.1479 0.1390

a Ref. 87

The hot-band transition can be calculated from the MULTIMODE calculation as

well. We present two sets of calculation results in Table 8.5. One is from the calculation

with all 18 modes coupling; another is from the smaller set of calculation with selected

13 modes for syn-conformer (14 modes for anti) as well as another two lowest frequency

modes. As seen, relatively large deviation of the hot-band transition shift is observed

between the experimental measurement and MULTIMODE prediction. One main reason

is the treatment of the torsional mode of CH3CHOO. As mentioned above, the maximum

excitation of torsion mode is restricted to 2. Such restriction affects the calculated energies

of torsion states and other modes with small energies. In addition, including the low-

frequency modes enhances the coupling among states. For the ground state, the torsion
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splitting is small and such restriction has negligible effect to calculation. However, as

the torsion mode is excited to the fundamental or overtone states, our “single-reference”

treatment of torsion motion may be problematic. Nevertheless, the blue-shifted hot-band

transition of these bands agrees with experimental simulation.
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Table 8.5: Comparison of fitted wavenumbers (cm1) and relative intensities of various
vibrational modes of syn-CH3CHOO and anti-CH3CHOO predicted with MULTIMODE
prediction.

Transition Inten. Eng. Exp Caln 1a Caln2b Transition Inten. Eng. Exp Caln 1ac

Band A1 Band A3

syn syn

101 1.00 871.2 911.9 908.1 71 1.00 1280.8 1287.0

101181 0.42 198 +2.4 +5.0 +13.6 71181 0.42 198 +3.7 +7.8

101182 0.18 391 +6.3 +12.0 +29.4 71182 0.18 391 +8.2 +17.2

101183 0.07 597 +11.8 71183 0.07 597 +12.7

101121 0.29 282 +10.1 +12.0 +28.3 71121 0.29 282 +2.2

101122 0.15 433 +15.8 +11.1 +80.8 71122 0.15 433 +5.7

anti anti

91 1.00 883.7 954.6 944.2 71 1.00 1279.4 1299.8

91181 0.50 158 +1.8 +18.1 +21.7 71181 0.50 158 +2.6 +17.2

91182 0.25 316 +5.3 +27.7 +45.1 71182 0.25 316 +5.6 +22.0

91171 0.35 239 +2.3 +8.6 +20.4 Band A4

91172 0.15 433 +6.3 syn

anti 41 1.00 1476.8 1495.9

101 1.00 851.8 902.7 894.2 41181 0.42 198 +2.2 +6.8

101181 0.50 158 +9.2 +16.9 +22.8 41182 0.18 391 +4.2 +12.6

101182 0.25 316 +15.2 +27.6 +47.1 41183 0.07 597 +6.2

101171 0.35 239 +11.2 +8.7 +25.3 41121 0.29 282 +0.2

101172 0.15 433 +20.2 +61.7 41122 0.15 433 +2.7

anti

41 1.00 1479.0 1498.2

41181 0.50 158 +1.0 +14.1

41182 0.25 316 +2.0

a MULTIMODE calculations coupling 15 modes of syn and 16 modes of anti-CH3CHOO, which includes

13 modes of syn (14 modes of anti) as discussed in the text and another two lowest frequency modes. The

maximal excitations of two lowest frequency modes are limited to 2.

b MULTIMODE calculations coupling all 18 modes.

b Hot band results are problematic. See text for discussion.

The rotational contour of the A1 band near 871 cm−1 recorded in the interval of
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0-2 µs has several characteristic peaks; it cannot be simulated with a single band and

was deconvoluted with guidance from calculations. The experimental data are presented

with open circles and the resultant spectrum, simulated according to ratios of rotational

constants of the excited and ground states predicted with the MULTIMODE method

and the experimental rotational constants of the ground state, is shown as a thick solid

line in Figure 8.6a; the agreement is satisfactory. Figure 8.6b presents a comparison of

experimental data with the spectrum simulated according to slightly modified ratios of

rotational constants for an improved fit. This simulated feature consists of three bands:

a dominant OO-stretching (ν10) band of syn-CH3CHOO at 871.2 cm−1 and two smaller

bands of OO-stretching (ν9) and OO-stretching mixed with CH2 wagging (ν10) modes

of anti-CH3CHOO at 883.7 and 851.8 cm−1, respectively, shown as thin lines in Figure

8.6a,b. It is found that several hot bands associated with the ν18 (208 cm−1) and ν12 (314

cm−1) low-energy vibrational modes of syn-CH3CHOO and with the ν18 (156 cm−1) and

ν17 (255 cm−1) low-energy vibrational modes of anti-CH3CHOO contribute significantly

to the observed spectral features. The individual contributions of fundamental and hot

bands for these three vibrational modes are shown in Figure 8.6c-e; the transitions of hot

bands are expressed as νfi in which ν is the vibrational mode number, and i and f are

vibrational quantum numbers of the lower and upper states, respectively.
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Figure 8.6: Spectral simulation of band A1. (a) Comparison of experimental data (open
circles, recorded 0−2 µs) with spectrum simulated according to theoretical predictions
(thick red solid line) and (b) the best simulated spectrum (thick red solid line) with
slightly modified parameters; contributions of ν10 of syn-CH3CHOO, and ν9 and ν10 of
anti-CH3CHOO are shown with thin lines. Resolution is 0.5 cm−1. (c) Contributions of
fundamental and hot bands of ν10 of syn-CH3CHOO, (d) ν9 of anti-CH3CHOO and (e)
ν10 of anti-CH3CHOO.
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Detailed positions and relative intensities are listed in Table 8.5. This simulation im-

plies that (1) the hot bands are all blue shifted from the fundamental; the unusual but

necessary blue shifts of about 2 and 10 cm−1 for the hot bands involving ν18 and ν12 of

syn-CH3CHOO, respectively, agree qualitatively with the theoretical predictions (Table

8.5). The calculations also indicate that torsional splitting is small for all vibrational

modes so that it has no consequence on our spectral simulation. (2) At 328 K, assuming

a Boltzmann distribution and that the infrared intensities of hot bands are the same as

that of the fundamental band (in qualitative accord with calculations), observed relative

intensities of these hot bands imply energies of the first excited states of ν18 and ν12

modes of syn-CH3CHOO and those of ν18 and ν17 of anti-CH3CHOO to be ∼ 193, 282,

149 and 239 cm−1, respectively, which is consistent with theoretical predictions (Table

8.6). (3) The population fraction of anti-CH3CHOO is 0.30 and 0.38 at 328 K, respec-

tively, if infrared intensities predicted with the B3LYP and MULTIMODE methods are

used. This fraction is consistent with a value of ∼ 0.30 derived from ultraviolet experi-

ments161, but greater than values ∼ 0.20 from microwave experiments87 and ∼ 0.10 from

photoionization experiments.

The weaker bands A3 and A4 can be simulated likewise with contributions of syn- and

anti-CH3CHOO, as presented in Figure 8.7. Band A3 has a prominent Q-branch at 1280.8

cm−1, which is assigned to the HCO bending coupled with the CO-stretching (ν7) mode of

syn-CH3CHOO. A second feature with a weaker Q-branch at 1279.4 cm−1 is assigned to

the corresponding ν7 mode of anti-CH3CHOO (Figure 8.7a). Band A4 has prominent P-

and R-branches; this band is assigned to the CO-stretching mode coupled with the HCO

bending (ν4) mode of syn-CH3CHOO. The observed weak Q-branch arises from a small

contribution of the ν4 mode of anti-CH3CHOO. As band A2 is rather weak and subject

to interference from absorption of C2H4, we could only estimate its position to be ∼ 956
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cm−1 from the Q-branch and assign it to the ν9 mode of syn-CH3CHOO. Band A5 suffers

from partial interference due to the precursor, but the prominent Q-branch indicates that

this band is due to syn-CH3CHOO and not anti-CH3CHOO. The observed position at

1090.6 cm−1 is much closer to the predicted anharmonic vibrational wavenumber of 1097

cm−1 for syn-CH3CHOO than the value 1136 cm−1 for anti-CH3CHOO.
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Figure 8.7: Spectral simulation of band A3 to A5. (a) Comparison of experimental data
(open circles, recorded 0-4 µs) with simulated spectrum (thick red solid line) for band A3;
contributions of ν7 bands of syn-CH3CHOO and anti-CH3CHOO are shown with thin
lines. (b) Comparison for band A4; contributions of ν4 bands of syn-CH3CHOO and anti-
CH3CHOO are shown with thin lines. (c) Comparison of band A5 (recorded 0-2 µs); only
the ν8 band of syn-CH3CHOO contributes. Spectral width of simulation is 0.64 cm−1.
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As shown in Table 8.6, the agreement between observed vibrational wavenumbers of

syn- and anti -CH3CHOO, and those calculated with the MULTIMODE method is quite

satisfactory with differences < 17 cm−1, except for the OO-stretching mode, which has

differences of 37 cm−1 for syn-CH3CHOO and 60 cm−1 for anti-CH3CHOO. A similar

shift between the experiment and MULTIMODE calculations was reported previously

for CH2OO for an analogous band160. Conceivably, the origin of the deviation is, as

in CH2OO, a slight deficiency in the level of electronic structure theory which is more

sensitive to the OO-stretching mode.

Table 8.6: Comparison of experimentally observed wavenumbers (cm−1) and intensities
with the vibrational wavenumbers and infrared intensities of representative vibrational
modes of CH3CHOO predicted with the MULTIMODE method

syn-CH3CHOO anti-CH3CHOO Descriptiona

Sym. Mode Exp. MM Mode Exp. MM

A’ ν4 1476.8 (30) 1494 (8)b ν4 1479.0 (14) 1488 (10) CO str./HCO bend

A’ ν7 1280.8 (40) 1285 (19) ν7 1279.4 (17) 1295 (3) HCO bend/CO str.

A’ ν8 1096.6 (10) 1097 (6) ν8 1136 (1) CH2 wag/CCH bend

A’ ν9 956.0 (-) 969 (5) ν10 851.8 (73) 894 (49) CCH bend/CH2 wag

A’ ν10 871.2 (100) 908 (100) ν9 883.7 (100) 944 (100) OO str.

A’ ν12 314 (3)c ν12 330 (7) CCO/COO iph bend

A” ν17 449 (0) ν17 255 (0)c op deformation

A” ν18 208 (1)c ν18 156 (0)c CH3 torsion

a Approximate mode description. For anti-CH3CHOO, the HCO bending mode is replaced

with CH ip bending mode for ν7, ν8 is mainly CCH bend, the CCH bend is replaced with

OO stretch for ν10, and the iph bend is replaced with oph bend for ν12.

b Relative infrared intensities normalized to the most intense line.

c Harmonic vibrational wavenumbers, as the anharmonic treatment of this mode is problematic

using the methods employed here.
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Our observations also conform to an expectation that similar to CH2OO, CH3CHOO

has a significant zwitterionic character with a strengthened C-O bond and a weakened

O-O bond. The observed wavenumber of the OO-stretching mode of syn-CH3CHOO near

871 cm−1 is smaller than the corresponding value 908 cm−1 of CH2OO, consistent with

theoretical predictions showing that the length of the O-O bond increases.

8.6 Summary

In summary, we first presented survey IR spectra of the syn- and anti-conformers of the

alkylsubstituted Criegee intermediate (CH3CHOO) up to 6200 cm−1. These are based

on accurate full-dimensional potential energy surfaces and dipole moment surfaces and

anharmonic coupled vibrational calculations. In addition, the ground state wavefunctions

and zero-point energies for the two conformers were determined with Diffusion Monte

Carlo calculations.

Collaborating with experimental study, we reported spectrum of syn- and anti-CH3CHOO

in the middle infrared range of 830 - 1550 cm−1. The fundamental energies, hot band

transitions, and the rotation constants for the vibrational ground and excited state for

both conformers were calculated using the MULTIMODE program. The calculation re-

sults successfully support and guide the simulation of observed bands in the experiment.



Chapter 9

Pruning the Hamiltonian Matrix in

MULTIMODE

9.1 Introduction

Nitromethane (CH3NO2) consists of a heavy nitro (NO2) group and a relatively light

methyl (CH3) group. The molecule has a very low 6-fold internal rotation barrier, and

the CH3 group is almost a free rotor in the ground vibrational state, which makes it an

interesting system. The microwave and infrared (IR) spectra of nitromethane have been

thoughly studied experimentally.162–173 The vibrational spectrum of nitromethane has

been investigated in the theoretical studies as well. In the early study, the geometries

and vibration frequencies of nitromethane and its isotopomers were investigated using

low-level ab initio calculation.174,175 Later, the effect of internal dynamics on the CH

stretch overtone states was analyzed using a theoretical model, which considered the

coupling between the CH overtone and the methyl internal motion and the isoenergetic

states.169.

150
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The calculation of rigorous quantum vibration is a challenging task for polyatomic

molecules, and especially for molecules as large as nitromethane. The present article re-

ports an accurate approach to address the vibration energies and large-amplitude vibra-

tional dynamics using the MULTIMODE (MM) code and diffusion Monte Carlo method,

using a full-dimensional potential energy surface (PES).12 In the usual methyl-rotor sys-

tem, the torsion motion usually has 3-fold barrier with a barrier height of several hundred

wavenumber. The methyl torsion has been treated both as a localized mode12 and as large

amplitude motion30 in the previous MM calculation, depending on the system. However,

the situation of nitromethane with 6-fold extremely low barrier is quite different from

many cases where the torsional barrier is several hundred to roughly 1000 wavenumbers.

Previous experimental measurement of CH stretch overtones investigated the change

in the torsional barrier height upon the vibrational excitation higher than the third

overtone.169 However, for the energies of fundamental states we are interested in, the

effect of torsion motion is negligible. Therefore, we excluded the torsion mode and do not

consider its coupling with other modes in the vibration analysis. Note that the rigorous

treatment of torsion as large amplitude motion is also available in the reaction path

version of MULTIMODE, as has been applied in methanol and H5O+
2 .176,177

Nevertheless, 14-mode calculations are still challenging and can lead to very large

Hamiltonian matrices. To address this issue, we apply a pruning scheme, suggested pre-

viously by Handy and Carter, that reduces size of the matrix without sacrificing accuracy

in the eigenvalues. The method is briefly described here in the context of partitioning

theory. A new and more efficient implementation of it, coded in the latest version of the

MULTIMODE program, is described. The accuracy and efficiency are demonstrated for

12-mode C2H4 and then applied to CH3NO2. Agreement of the fourteen fundamental

energies of CH3NO2 with available experimental values is very good.
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9.2 Potential Energy Surface

The potential energy surface is a linear least-squares fit to ab initio calculations using the

MOLPRO 2010 package.58 The electronic energies were calculated using the explicitly

correlated coupled-cluster single and double excitation method that includes a pertur-

bation treatment of triple excitations (CCSD(T)-F12b),54,55 with the cc-pVDZ basis for

the light H atoms and aug-cc-pVDZ basis for other heavy atoms (HaDZ).

Following the procedure of constructing the PES, 17 079 points were sampled totally.

Then the energies were calculated using the CCSD(T)-F12b method, and were used

in the PES fitting. The maximum fitting polynomial order is 5, which generates 7946

coefficients. The total fitting root mean square (RMS) error is only 0.37 cm−1, which is

very small, indicating a precise fit. The number of configurations and the fitting RMS in

different energy ranges are shown in Figure 9.1. As seen, most of the energies sampled

are below 20 kcal/mol, but with more geometries efficiently sampled at energies up to

around 40 kcal/mol.
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Figure 9.1: Root-mean-square (RMS) error and number of points of the PES fitting in
different energy ranges with respect to CH3NO2 minimum.

The geometries of minimum and torsion saddle point (SP) were optimized using the

PES and normal mode frequencies were obtained at these stationary points. These are

given and compared with results from direct CCSD(T)-F12b calculations in Table 9.1.

The barrier height of torsion motion from the PES is 3.5 cm−1, which is slightly larger

than the earlier report of 2.1 cm−1.164 Due to such a small barrier height, it is difficult to

accurately describe the harmonic normal mode torsion mode and so we are not surprised

to find a relatively large discrepancy of the harmonic torsion frequency. For this mode,

the harmonic approximation is not a good zero-order one.
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Table 9.1: The comparison of electronic energies (cm−1) and harmonic frequencies
(cm−1) of CH3NO2 between PES and CCSD(T)-F12b calculations.

Minimum SP

PES ab initio PES ab initio

Eng. 0.0 0.0 3.52 3.77

mode sym. description

ω1 A′ C-H str. 3184.5 3184.5 3184.2 3183.8

ω2 A′ sym. C-H str. 3084.5 3084.8 3084.8 3085.5

ω3 A′ CH3 deform. 1487.1 1488.7 1487.9 1487.0

ω4 A′ NO2 sym. str. 1437.5 1437.0 1437.7 1437.6

ω5 A′ CH3 sym. deform. 1417.1 1417.2 1417.2 1417.3

ω6 A′ CH3 rock 1143.7 1142.4 1144.5 1142.9

ω7 A′ C-N str. 942.7 942.2 942.4 942.0

ω8 A′ NO2 sci. 673.3 672.8 670.5 669.6

ω9 A′ NO2 wag 608.0 607.6 612.0 611.4

ω10 A” C-H asym. str. 3212.5 3212.8 3211.7 3211.7

ω11 A” NO2 asym. str. 1630.9 1630.3 1631.1 1630.4

ω12 A” CH3 deform. 1476.5 1477.3 1475.9 1475.4

ω13 A” CH3 rock 1119.0 1119.0 1118.4 1118.1

ω14 A” NO2 rock 481.4 481.9 478.8 477.5

ω15 A” methyl torsion 26.3 66.2 20.9i 57.3i

In order to examine the torsion of methyl group, we use the equilibrium structure

and select an H1 in the CH3 group and defined the internal rotation coordinate τ as
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the dihedral angle between the CNH1 plane and the CNO2 plane (these four atoms are

co-planar in the equilibrium structure), as indicated in Figure 9.2a. Using this definition,

the fully relaxed torsion path was located using the fitting PES. At each step, the torsion

angle was fixed, and the energy was optimized with respect to the other 14 degrees of

freedom. The relaxed path is depicted in Figure 9.2b, where the six-fold barrier is clearly

seen.

τ

(a)

(b)

Figure 9.2: The definition of torsion angle τ is given in panel (a). The fully relaxed
path of CH3NO2 along the methyl torsion angel is shown in panel (b).
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9.3 Diffusion Monte Carlo

The zero-point energy (ZPE) and the wavefunction of the ground vibrational state of

nitromethane were determined using the standard Diffusion Monte Carlo (DMC) ap-

proach.26,27 Each DMC trajectory was propagated for 15 000 steps using 15 000 walkers

and the time step was equal to 5.0 a.u. In each simulation, the first 5000 steps were

used for the system equilibration, and the following 10 000 steps were accumulated to

calculate the ZPE. Eight trajectories were performed and the final ZPE of nitromethane

was determined to be 10 814 ± 3.63 cm−1. The distribution of walkers can be used to vi-

sualize the wavefunction. The minimum reference geometry and all walkers were mapped

to the principle axis frame, then the amplitude of wavefunction can be expressed by the

density of walkers and plotted as an isosurface. This is shown in Figure 9.3 from two

perspectives. The visualization clearly shows that the methyl group is nearly free rotor

in the ground state.
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Figure 9.3: Isosurfaces of ground vibrational state wavefunction for nitromethane from
Diffusion Monte Carlo calculations.

9.4 MULTIMODE calculations

The focus of the current study is the vibrational analysis of nitromethane and the compar-

ison with available experimental energies, where the MULTMIMODE program is applied.

Details of MULTIMODE have been described in Chapter 2, and so here we focus on a

method to prune the Hamiltonian matrix and a new efficient implementation of it. In the
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current study, we used both 4MR and 5MR for the potential representation, which give

convergence to a few wavenumbers or less.

One of the biggest bottlenecks in variational calculations using basis functions is the

construction and diagonalization of the Hamiltonian matrix. As the size of the molecule

and thus the number of vibrational modes increases, it is unavoidable that the large VCI

matrices will be encountered. There are a variety of schemes for selecting the excitation

space using a direct-product basis, such as we use here. The one used in MM has been

described in detail29 and will be explained briefly using more conventional terminology

from electronic structure theory. In MULTIMODE an n-mode basis29 refers to an excita-

tion space. So for example, a 1-and 2-mode basis refers to an excitation space of “singles”

and “doubles”, respectively, using more conventional terminology.

9.4.1 H-matrix pruning

For moderate-sized Hamiltonian matrices, i.e., those of the order of 104, standard full

diagonalization routines can be applied efficiently. However, for matrices that approach

order 105 and for which, as usual, only a small fraction of eigenstates are desired, iterative

methods become attractive. MULTIMODE uses an efficient Davidson diagonalization

procedure, described previously29. However, even this procedure can become prohibitive

for very large matrices, where only a percent or so of the eigenvalues and eigenvectors

are needed. Handy and Carter proposed a procedure to significantly reduce the matrix

size, using a perturbation theory test to evaluate the coupling between the diagonalized

singles and doubles Hamiltonian and higher exctations in order to eliminate rows and

columns.37 This procedure was demonstrated for CH3OH using a realistic PES. In this

demonstration, a matrix of order 128 000 is “pruned” to a matrix of order 27 000 with
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virtually no loss in accuracy for the first 300 eigenvalues. The procedure can be viewed

as a powerful approach to manage the exponential growth of the H-matrix.

We briefly re-capitulate the Handy-Carter proposal using standard matrix partition-

ing theory and also using the nomenclature of singles, doubles, etc. excitations, noted

above. To begin, we note that partitioning a matrix into diagonal and off-diagonal blocks

of sub-matrices is well established in the field. The procedure for organizing a matrix in

this fashion is of course not unique. Typically, it is done based on a particular strategy

that aims in general to put as much of the relevant physics into the first diagonal block

of the partitioned matrix. In vibrational analysis, one can trace this idea back to the late

1980s and 90s,178,179 where the applications were restricted to triatomic molecules.

The Handy-Carter pruning procedure can be cast into a partitioning scheme for a full

H-matrix, partitioned into a- and b-spaces, as shown in the following equations:

 Haa Hab

Hba Hbb

 =

 Haa 0

0 Hbb

+

 0 Hab

Hba 0



H(0) =

 Haa 0

0 Hbb

→
 Ct

aHaaCa 0

0 Ct
bHbbCb

 =

 E(a)(easy) 0

0 E(b)(hard)



H(0)′ =

 Haa 0

0 Hdiag
bb

→
 Ct

aHaaCa 0

0 Hdiag
bb

 =

 E(a)(easy) 0

0 Hdiag
bb

 (9.1)

where for example a is the space of single and doubles excitations and b is the space of

all higher excitations.

As indicated, the full H-matrix is partitioned into blocks. The Haa block is the one

obtained from a subset of the excitation space, for example single and double excitations
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or even single, double and triple excitations and the Hbb block is from all higher exci-

tations. (As noted above, a maximum of sextuple excitations is allowed in the current

version of MM). Of course off-diagonal blocks couple these two spaces. One standard

procedure would be to diagonalize these two blocks separately and then re-couple the

resulting zero-order eigenfunctions either with a final diagonalization or perturbation

theory. Clearly, based on the discussion above Haa is generally much smaller than Hbb

and so diagonalization of the latter is not practical. So, the suggestion is to diagonalize

Haa and approximate the Hbb eigenvalues and eigenvectors by the diagonal elements of

Hbb and the identity matrix, respectively. While this may seem like a drastic approxima-

tion, it nevertheless serves to yield a zero-order set of eigenvalues and eigenfunctions that

can be used to prune the original, full H-matrix. This is done, now following Handy and

Carter, by considering the expression for one term in the usual second-order correction

to the energy (which would be summed over j.)

εi(a),j(b) =
| < Ψ

(a)
i |H|φ

(b)
j > |2

|E(a)
i − E

(b)
j (= H

(b)
j,j )|

, (9.2)

where ψ
(a)
i is an eigenstate of Haa. Specifically,

ψ
(a)
i =

∑
j

ci,jφ
(a)
j , (9.3)

where φ
(a)
j is a virtual-state basis function in the space of single and double excitations

and ci,j is the eigenvector. As noted, diagonalizing Haa is “easy” as the order of this

matrix is modest. The zero-order eigenvalues for the b-block, E
(b)
j , are just the diagonal

elements of Hbb and φ
(b)
j are just the virtual-state basis functions for triple and higher

excitations in the present example.
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To continue, it is important to note that the ψ
(a)
i are assumed to be good approxima-

tions to the exact eigenstates they represent. Then εi(a),j(b), instead of being one term in

the standard expression for the second-order correction to the energy of state ψ
(a)
i , is used

to determine the importance of higher-excitation states. Thus, Handy and Carter defined

εi(a),j(b) as a tolerance, TOL, which was used to determine which rows and columns of

the Hbb block in H-matrix can be eliminated. The criterion for elimination is that TOL

must be less than some threshold for every element in the b block. Thus, for a subset of

rows i(a) (see below for details) TOL is calculated for each column j(b).

The practical implementation of this procedure begins with the user deciding in ad-

vance how many eigenstates of the full H-matrix are desired. This of course depends on

the molecule and states of interest. For example, if one is interested in calculating well

converged fundamentals, this may require many eigenstates, including those describing

combinations and overtones of low frequency modes, as these may couple to fundamen-

tals, especially high-energy ones. Clearly, the space of single and double excitations spans

the fundamental states, as well as pure overtones and combination bands involving two

modes. Then the diagonalization of Haa should give well-converged eigenstates. Thus,

the order of Haa is typically ten times as large as the number of eigenvalues E
(a)
i and

eigenfunctions Ψ
(a)
i using for the TOL-test.

The pruning process is shown schematically in Figure 9.4. The full matrix of order

N is depicted as the upper triangle. As shown, it is composed of three parts, labeled

here as A, B, C for simplicity. A corresponds to Haa, B to Hbb and C to the off-diagonal

block Hab. In the original Handy-Carter paper, this complete matrix was evaluated and

written to disc. In the new approach, we commence by evaluating the half-matrix A,

of order NA, and write it to disc in columns for future use. We diagonalize A with a

standard method, e.g., GIVENS is used in MM, and save a specified number of energy
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eigenfunctions and eigenvalues ψ
(a)
i and E

(a)
i , respectively. Typically, this would be several

hundred functions that span the energy of the eigenstate space of interest, e.g., all of the

fundamentals. Next, the rectangular matrix C, of dimension NA× (N−NA), is evaluated

and held in core. The diagonal elements H
(b)
j,j are evaluated and stored. Then the rows of

the A-matrix corresponding the set of saved ψ
(a)
i and E

(a)
i are scanned and the TOL-test

is applied to each of N -NA columns in C. If any element of these columns delivers a value

of εi(a),j(b) greater than TOL, this column j is retained. Conversely, if all elements of a

column deliver a value of εi(a),j(b) less than TOL that column is deleted. This procedure

is repeated for all N − NA columns of C. Upon completion, the matrix C is condensed

to a new matrix C
′

of dimension NA × N ′C , where N ′C is the number of columns of C

to be retained. The final step involves evaluating the corresponding elements in B with

that block denoted B
′

(corresponding to C
′
), Columns of this half-matrix are added to

those of C
′
, and the entire column is appended to those of the half-matrix A, previously

written to disc. Hence we arrive at the final matrix of order NA+N ′C , indicated by the

green shading in Figure 9.4, to be diagonalized without having to evaluate the major part

of the half-matrix B. This is noted by the hatched diagonal lines in Figure 9.4. Note, even

with this pruning the final matrix may still be quite large and so the iterative Davidson

method will often be the method of choice and this is the default in MM.
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Figure 9.4: Schematic of the upper triangle of the original H-matrix of order N . Hashed
region labeled ”B” is not calculated. Pruned matrix is indicated in green shading

Before presenting some tests of this pruning approach, we remark on some expecta-

tions of its performance. As already noted, the space of single and double excitations

does span the fundamentals, pure overtones and some combinations bands. However, the

accuracy of the corresponding eigenstates (of A) is not assured even if A is made suffi-

ciently large to converge them. This is because there exist triple and higher excitation

virtual states with energies that are interleaved in the energy spectrum of the singles and

doubles space, notably for high-energy fundamentals. Thus, the ultimate accuracy of the
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pruning method can be expected to be uneven as the energy increases. Of course, a way

to mitigate this is to expand the a-space to include triple excitations. This will lead to a

larger A matrix; however, a more accurate final pruning will certainly result. This option

is contained in the new version of MULTIMODE and will be illustrated below in the

tests of the pruning method for C2H4.

9.4.2 Tests for C2H4

In order to test the procedure, we have carried out calculations for C2H4 which has 12

vibrational normal modes using a PES developed by Avila and Carrington for use in large

benchmark calculations by them, which includes full (12) dimensional quadratures of the

potential.180 Subsequently, MULTIMODE calculations, without pruning, were reported

for J=0 in order to compare directly with the benchmark results181. The majority of

those calculations were done with a 4-mode representation of the potential and various

level of excitations. The full symmetry was used and so the H-matrix was 8-fold block

diagonal.

The first test was to generate very large H-matrices by adding 3-mode, 4-mode, 5-

mode and 6-mode excitations to the 1- and 2-mode matrix A, and with large values of

excitation limits. In this way, we were able to generate matrices of order N equal to 31

958, 222 761, 1 193 789, and 2 932 449. In this test, 3MR was used for the potential for

efficiency. Setting the number of saved ψ
(a)
i and E

(a)
i at 200 and TOL = 10−2 cm−1, these

matrices were reduced in dimension to 6172, 13 372, 15 798, and 15 798, respectively.

The zero-point energy of the final 6-mode matrix was only 1.64 cm−1 lower than that

of the 3-mode matrix. The fundamentals for the 4-mode, 5-mode and 6-mode matrices

differ at most by 3 cm−1. No attempt was made to apply the Davidson method without
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the perturbation treatment. The time taken for the diagonalization of the 6-mode matrix

of original order 2 932 449 was a mere 1.91 hours on a single core of a workstation.

The second test was to examine the accuracy of low-lying states of C2H4 of one

symmetry block, using a 4MR of the potential. Based on previous calculations without

pruning181, the expectation is that this representation will give results for several hun-

dred eigenvalues with differences smaller than a wavenumber or so compared with the

benchmark ones. The tests with pruning are given in Table 9.2. For the results shown

in the fourth and fifth columns, we used a 2-mode basis for A matrix, which in both

cases is of order 1942. The final matrix used a 4-mode basis and 6-mode basis respec-

tively. Both calculations gave reasonable vibration energies, however, the 6-mode basis

gives better results especially for the overtone and combination states. As seen in Table

9.2, we got quite good agreement with the benchmark for the fundamental and overtone

states. However, for combination states involving one overtone and especially the state

involving three modes, i.e. ν4 + ν8 + ν10, we observed large difference of 45 cm−1. The

reason is that eigenstates including three modes are not included in the 2-mode A matrix.

Therefore, when we did the pruning using A matrix, the final matrix can not accurately

describe such states. To further investigate this, we used 3-mode basis for A matrix, and

the results are shown in the last column. Even using the 3-mode basis, the A matrix is

only of order 6686. A 6-mode basis was used again for the final pruned H-matrix of order

24 051. Comparing the results with the benchmark and previous full MM calculation,

we obtained almost identical energies with differences smaller than 2 cm−1. The test also

shows that we can choose the n-mode basis for A matrix depending on the states we are

interested in, and obtain accurate results with much less computational expense. This

illustrates the flexibility of the pruning method.
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Table 9.2: C2H4 zero-point energy (ZPE) and indicated excitation energies (cm−1) ob-
tained with MULTIMODE (MM). The calculations are tested using 4- and 6-mode basis
for TOL=0.01 cm−1 and 200 eigenfunctions of Haa with pruning Hamiltonian matrix.
The calculated energies are compared with previous benchmark results and previous
MM calculations using a much smaller Hamiltonian matrix than used in the benchmark
calculations.

State Ref.a Fullb 4-modec 6-moded 6-modee

ZPE 11 004.8 11 004.0 11 004.6 11 004.1 11 003.9

ν3 1341.4 1341.4 1341.6 1341.5 1341.5

ν2 1623.5 1623.2 1629.9 1623.3 1623.2

ν1 3019.7 3020.2 3020.9 3020.7 3020.0

2ν10 1655.5 1654.2 1659.3 1654.4 1654.0

2ν8 1855.7 1854.0 1859.5 1854.6 1853.7

2ν7 1895.2 1893.6 1899.0 1894.0 1893.2

2ν4 2049.1 2047.5 2052.7 2048.3 2047.3

2ν6 2447.7 2446.6 2451.2 2447.4 2446.7

2ν3 2680.9 2680.5 2685.0 2681.2 2680.7

2ν12 2872.1 2870.5 2876.5 2872.4 2870.6

2ν2 3238.4 3236.8 3249.9 3238.8 3238.4

ν3 + ν2 2958.0 2957.8 2988.0 2961.5 2957.6

ν4 + ν8 + ν10 2776.2 2775.8 2844.0 2819.7 2774.8

2ν10 + ν3 3000.3 2998.8 3033.5 3003.3 2997.8

2ν7 + ν3 3231.0 3230.6 3222.4 3194.5 3229.8

a Ref. 180. Matrix order of 697 896 using 2-symmetry blocks

b Ref. 181. MM calculation using full Hamiltonian matrix of order 24 058, using 8

symmetry blocks.

c 1-2 mode basis for Haa and final 4-mode basis. Final matrix size 14 371

d 1-2 mode basis for Haa and final 6-mode basis. Final matrix size 20 756.

e 1-2-3 mode basis for Haa and final 6-mode basis. Final matrix size 24 051.
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9.4.3 Calculations for CH3NO2

The new version of MM which implements the perturbation method described above was

applied in the study of nitromethane. Nitromethane has 15 vibration modes, including

the methyl torsion mode. As mentioned already, we are interested in the fundamentals,

and the coupling of CH3 torsion mode with other modes is very small. Therefore, the

torsion mode was excluded, and all other 14 vibration modes were fully coupled in the

MM calculation. A 4MR of the potential was employed for most calculations. In the initial

VSCF step, 17 primitive harmonic oscillator basis functions were used for each mode. In

the following VCI step, we allowed maximum 4-mode excitations. The maximum sum of

quanta in all modes for the 1- and 2-mode excitations was equal to 10, and that for the

3- and 4-mode excitations was equal to 8. The resulting VCI matrix size was equal to

94 690. Note that the convergence of MM calculation results was tested within several

wavenumbers with respect to the level of mode coupling, the number of basis functions,

and the allowed quanta of mode excitations.

The standard Davidson method was used to diagonalize the large Hamiltonian matrix,

and we only calculated the first 1000 eigenstates which covered the fundamental energies

of CH3NO2. In addition, we also applied the perturbation method to reduce the matrix

size, and then the Davidson method was used to diagonalize the pruned matrix. In the

perturbation method, the VCI matrix size using a 2-mode basis was order 4236. We

obtained and saved the first 300 eigenstates to calculate the perturbation parameters

with the states from 3- and 4-mode excitations. The TOL value was tested using 10−2

cm−1 and 10−3 cm−1. The calculations from perturbation method were compared with

that using the original matrix, which are treated as benchmark results. An overview of

the accuracy of the 300 energies from just the 2-mode basis is shown in the left-hand
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panel of Figure 9.5. As seen, the energy differences for these states (∆E) are fairly large,

ranging from roughly 20-120 cm−1, with a few exceptions with smaller differences. This

is not surprising for this 14-mode Hamiltonian and indeed similar differences are also

seen for C2H4. The results from two pruned 4-mode Hamiltonian matrices, of orders

31 989 and 48 606, are also shown in Figure 9.5. As expected, the differences decrease

dramatically relative to the 2-mode ones, and the zoomed-in plot in the right-hand panel

shows that the differences are less than 3.0 cm−1. Clearly, the calculated energies from the

VCI calculation with 2-mode excitation is not accurate enough. However, the calculated

states using 2-mode basis can provide a reasonable description of vibration states, with

energy differences smaller than 100 cm−1, which allow us to calculate the perturbation

parameter with states using higher mode basis. As seen in the right panel of Figure 9.5,

after applying the perturbation method, we obtained almost identical results with the

benchmark calculation and the differences are smaller than 3 cm−1 for TOL = 10−2 and

less than 1cm−1 for TOL = 10−3.
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Figure 9.5: The calculated energy differences ∆E using just the 2-mode basis two final
pruned H-matrices obtained using the indicated tolerance values relative to the bench-
mark results. The benchmarks are obtained from the regular Davidson method without
any pruning of matrix. A blow-up of the scale of ∆E is shown in the right-hand figure
for the two pruned H-matrices.

The ZPE and fundamentals of nitromethane from the 14-mode MM calculations are

given in Table 9.3. The difference of ZPE calculated from DMC and MM is only around 3

cm−1, which indicates that the treatment of excluding the torsion mode in the calculation

is reasonable, at least for the ground vibrational state. In addition, the convergence with

respect to the n-mode representation was tested by performing 5MR calculation, and we

obtained almost identical results with the 4MR calculation except for the strong coupling

states. Note that the 5MR calculation was feasible with the pruned matrix and the total
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cpu time, indicated in the table, is only 31% greater than the 4MR calculation using the

full matrix. As seen, the calculation results using perturbation method are very similar

with the regular Davidson method, with differences smaller than 1 cm−1 for the states

shown. However, because of the much smaller Hamiltonian matrix, the VCI calculation

using the perturbation method is about 3-4 times faster than the standard Davidson

method, and the memory cost was greatly reduced as well. Due to this advantage, the

perturbation method makes it feasible to couple more vibration modes and higher vibra-

tion excitations in the VCI calculation, which is very difficult using the regular approach.

Comparing the two sets of perturbation calculation using different tolerance values, we

can see that as tolerance value decreases, the calculation results show better agreement

with the benchmark energies.
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Table 9.3: CH3NO2 zero-point energy (ZPE) and fundamental energies (cm−1) from
MULTIMODE (MM) calculations using the Davidson method for the full matrix and
pruned H-matrices for indicated TOL (cm−1) and 200 eigenfunctions of Haa and com-
parison with experimental result. The VCI computing time using the regular Davidson
and perturbation method are also given in the table. The MM calculation using 5MR
and pruned matrix (TOL=10−2) is also performed to test the convergence with respect
to the n-mode representation of the potential. These calculations are not feasible using
the full H-matrix.

State Full TOL=10−2 TOL=10−3 5MRf Exp.a

ZPE 10 811.5 10 811.6 10 811.5 10 811.9 10 814±3.6b

ν1 3032.7 3033.9 3033.0 3041.2 3044

ν2 2969.6 2970.4 2969.8 2970.2 2973.9

ν3 1439.6 1440.0 1439.8 1439.9 1438.3

ν4 1405.5 1405.9 1405.7 1405.6 1397.4

ν5 1381.2 1381.6 1381.4 1381.8 1378.4

ν6 1117.5 1117.9 1117.7 1117.9 1119.0

ν7 923.0 923.2 923.2 922.9 917.6c

ν8 663.8 664.0 663.8 663.6 657.4

ν9 600.8 601.0 600.8 600.8 602.5

ν10 3064.2 3065.2 3064.7 3066.9 3080

ν11 1604.3 1604.8 1604.6 1596.2 1583.8d

ν12 1428.9 1429.4 1429.2 1429.3 1428.2

ν13 1095.9 1096.3 1096.1 1096.3 1099

ν14 477.1 477.3 477.2 477.2 475.4e

Time(s) 49 294 13 411 18 858 64 946

a Ref. 167; b ZPE from diffusion Monte Carlo calculation; c Ref. 171; d Ref. 172; e Ref.

173; f MM calculation using 5-mode representation (5MR) of the potential. All other

calculations were performed using 4MR.



Chapter 9. Pruning the Hamiltonian Matrix in MULTIMODE 172

Comparison with experimental data is also shown in Table 9.3. As seen, there is

very good agreement. States ν1 and ν11 (energies shown in italics font in Table 9.3)

are found to show strong coupling with other states in the VCI calculation, and their

occupation probabilities in total vibrational wavefunction are less than 50%, which are

calculated from the VCI coefficients. Therefore, the assignments of ν1 and ν11 fundamental

states are problematic, and the calculated energies show relatively large differences with

experimental results. However, agreement improves substantially in the 5MR calculation,

indicating the importance of that level of potential representation for those states. For

all other fundamental states, very good agreement is observed comparing our calculation

with the experimental results with differences less than 10 cm−1.

To summarize this section, a new, full-dimensional PES has been used in 14-mode

MM calculations with a focus on the zero-point energy and the fundamental excitations.

Comparison with vibrational energies measured in the experiments shows very good

agreement. The Handy-Carter pruning method, as implemented in the latest version of

MM, does result in a substantial reduction in the order of the H-matrix, and permits an

application of the computationally intensive 5-mode representation of the potential.

9.5 Summary and Conclusions

In this study, we reported a new semi-global potential energy surface (PES) for ni-

tromethane in full dimensionality. The fitting PES is quite accurate given that the root-

mean-square error is only 0.37 cm−1 and the harmonic frequencies agree very well with

direct ab initio calculations. The PES can also accurately describe the internal torsion

motion of methyl group, and the torsion barrier was determined around 3.5 cm−1. Based

on the PES, a diffusion Monte Carlo calculation was performed to obtain the zero-point
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energy and wavefunction of ground vibrational state. The visualization of wavefunction

directly shows that the CH3 group acts like a free rotor in the ground vibrational state.

The zero-point and fundamental energies of CH3NO2 were calculated using MUL-

TIMODE, for which the effect of internal rotation can be neglected for the states of

interest here. Thus, we coupled all the 14 vibration modes except the torsion mode of

nitromethane in the MM calculation. For this large number of vibrational modes a prun-

ing method introduced by Handy and Carter was applied to obtain these energies. The

method was described in the context of matrix partitioning theory and tested for the

first time on 12-mode ethylene.

4-mode excitations were allowed in the VSCF/VCI calculations for CH3NO2, and

the maximum sum of 3- and 4-mode excitation quanta was equal to 8, which results

in a large VCI matrix of size of order 94 690. The Handy-Carter pruning method was

applied for the the VSCF/VCI calculations, and this greatly reduces the dimension of

the H-matrix without a loss of accuracy. In the vibration calculation of nitromethane, the

perturbation method achieved nearly identical results with regular calculations using full

Hamiltonian matrix, but using much less memory and computation time. The calculated

energies agree well with previous experimental results. This validates the accuracy of the

PES, the neglect of the near free-rotor torsional mode and the good convergence of the

VSCF/VCI calculations.
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