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Abstract 
 

Group-level comparisons in structural and functional brain connectivity between 

two groups of subjects 
By Junhan Fang  

 

   This thesis mainly focused on detecting the difference of brain connectivity 

between diseased vs. normal subjects in Philadelphia Neurodevelopmental 

Cohort (PNC) study. Multimodal neuroimaging including fMRI and diffusion MRI 

was used to investigate group differences in functional connectivity and structural 

connectivity with the brain. Probabilistic tractography was performed to estimate 

structural connectivity and partial correlations of fMRI time series data were used 

to estimate functional connectivity in subjects’ brains. Edge-wise linear regression 

was then performed to detect the difference of structural and functional 

connectivity between two groups of subjects. Significant between-group 

differences were found in 105 region pairs for structural connectivity and in 264 

regions pairs for functional connectivity. Two edge-wise linear regression were 

performed to detect the potential relationship between structural and functional 

connectivity for each group. More than 150 edges were detected having 

significant correlation between structural and functional connectivity. 

   In the second part of the thesis, five graph theoretical metrics in graph theory 

were evaluated to show the network properties of structural and functional 

connectivity in each group. The linear regressions, which aim to detect the 

difference network properties between two groups of subjects, were performed. 

According to the linear models, characteristic path length had a significantly 

different between the diseased and normal subjects. 

   Lastly, a recently developed clustering method, which is one of differentially 

expressed network methods, was performed to identify clusters of regions that 

showed significantly different structural and functional connectivity between two 

groups of subjects.  We provided four clustered edges’ networks for structural 

connectivity and functional connectivity to show the significant difference 

between two groups of subjects. 
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1. Introduction 
 

   Comparing group level difference of the brain network by combining structural 

connectivity and functional connectivity is a novel topic. Structural connectivity is the 

structural interrelationship among brain network regions, and functional connectivity 

is the functional interrelationships among brain network regions (Fingelkurts, 

Fingelkurts, & Kahkonen, 2005). Different ways to combining structural connectivity 

and functional connectivity will give diverse analysis angles for brain networks 

(Rykhlevskaia, 2008).  

   The existence of fibers which connecting directly between different regions reveal 

the structural connectivity. True pathways for fibers in people’s brain is impossible to 

observed when he is alive. As a result, diffusion tensor tractography can reconstruct 

the fiber bundles through diffusion imaging data. Deterministic fiber tracking 

techniques can be conducted using FACT (fiber assignment by continuous tracking) 

method (Mori. S, 1999) and the streamline tracking algorithm (Basser PJ, 2000) and 

other improved methods. However, deterministic fiber tracking methods could ignore 

that there are multiple orientations of finer bundles in human’s brain.  With the 

improvement of diffusion tensor imaging techniques, probabilistic fiber tractography 

was modelled to represent the complicated multiple orientations of fiber bundles 

situation (Behrens,2013a and 2013b).  

   For functional connectivity, functional magnetic resonance imaging (fMRI) data 

was investigated to reveal human brain’s functional connection in many studies 

(Biswal et al., 1995; Bullmore and Sporns, 2009; Deco et al., 2011; Satterthwaite et 

al., 2015). Specially, the analysis of resting-state fMRI data was quite important 

(Dosenbach et al, 2010). There are types of ways to represent the whole brain 
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networks, pairwise full correlation among regions and partial correlation among 

regions which excluding other regions’ effects (Smith et al, 2011 and Smith et al, 

2012). Full correlation, which is also as Pearson’s correlation, evaluate the marginal 

correlation between regions so it cannot reveal the direct functional correlation 

between the regions. Partial correlation evaluates the direct functional correlation 

between paired regions after removing third or regions effects. However, it is hard to 

estimate partial correlations. There are several ways to estimate them, like methods in 

Merrelec et al. (2006) and Peng et al. (2009). 

   The relationship between structural connectivity and functional connectivity has 

not been detected clearly. But we have the hypothesis that functional connectivity can 

reflect the structural connectivity in some degree (Michael D. et al., 2009). Within the 

context of clinic research, the relationship between structural and functional 

connectivity are usually showed as the association between brain structure damages 

and the fMRI aftereffects. Like the study detected brain connectivity difference 

between autism spectrum disorder and health children in Rudie et al. (2008). 

Group-level brain connectivity and comparing group difference in brain connectivity 

were usually preformed using two sample testing after making some change in 

groups’ brain connectivity. Graph theory analysis is a popular way to use for 

generating information from original brain connectivity (Rubinov, Sporns, 2010). 

Global network metric-based method (GMN) and differentially expressed network 

(DEN) are two main graph analysis methods. GNM use some metrics like, small-

worldness to capture the properties of brain network and then produce the statistical 

testing or regression analysis across the subjects in different groups (Sporns, 2011, 

2012; Van Den Heuvel et al., 2010). DEN usually perform edge-wise statistical 
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analysis at the group level first and then applying optimization algorithm (Zalesky et 

al., 2010, 2012b) to detect the group difference of brain connectivity.   

   In this paper, we aim to detect the difference of brain connectivity in disease and 

no disease group of subjects. Probabilistic tracktography based on the algorithm of 

Behrens (2013b) was performed for generating structural connectivity and Partial 

correlation was calculated using Wang et al. (2016) for obtaining the functional 

connectivity. Then edge-wise linear regression was conducted for structural 

connectivity and functional connectivity separately across the subjects in two groups 

independently. General group difference of brain connectivity can be detected using 

the results of the edge-wise linear regression models. The edge-wise linear regression 

was conducted again for structural connectivity and functional connectivity to obtain 

the correlations of SC and FC between each edges. Then for structural connectivity 

and functional connectivity, we conducted GMN (Rubinov, Sporns, 2010) and DEN 

methods (Chen et al., 2015) separately to show the difference of brain connectivity 

between two groups of subjects under a network angle. 
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2. Method 

2.1 Data Acquisition 

   Our goal is detecting the potential difference of brain connectivity between 

disease group and no disease group in the Philadelphia Neurodevelopmental Cohort. 

The Philadelphia Neurodevelopmental Cohort (PNC) is a collaborative project 

between the Brain Behavior Laboratory at the University of Pennsylvania and the 

Children's Hospital of Philadelphia (CHOP), funded by NIMH through the American 

Recovery and Reinvestment Act of 2009, (Satterthwaite et al., 2014; Satterthwaite et 

al., 2015). The PNC study includes a population-based sample of over 9500 

individuals aged 8-21 years selected among those who received medical care at the 

Children’s Hospital of Philadelphia network in the greater Philadelphia area; the 

sample is stratified by sex, age and ethnicity. 

2.1.1 Subjects 

   All the subjects were recruited through University of Pennsylvania’s PNC study. 

Based on their inclusion criteria, there are total 1,145 subjects completed the MRI 

scanning progress. After pre-processing steps for Diffusion Tensor Imaging data and 

fMRI data, there are total 125 subjects which can be used for our analysis.  

We define the subjects belong to no disease group if their medical rating is no medical 

problems or minor but no central nervous system impact. Then we define the subjects 

belong to disease group if their medical rating is moderate, significant or major 

problems. In the 125 subjects, 91 of them are belong to no disease group and 34 of 

them are belong to disease group. Table.1 shows the descriptive of two groups of 

subjects. 
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Table 1. Mean, standard deviation and range of sample descriptive 

Characteristics No Disease Group Disease Group P-value 

Sample Size(N) 91 34   

Number of Females(N) 51 15 0.2426 

Age 13.81±3.41 14.76±3.90 0.2228 

 

2.1.2 MRI data 

   All MRI scans were acquired on a single 3T Siemens TIM Trio whole-body 

scanner located in the Hospital of the University of Pennsylvania. (Satterthwaite et al, 

2014) 

   The DTI sequence consisted of 64 scans with different diffusion-weighted 

directions (b=1000 s/mm2), 7 scans with no diffusion sensitization, at b=0. Other 

parameters were TR=8100 ms, TE=82 ms, GRAPPA on, FOV=240x240 mm, 

matrix=128x128, with 70 slices, yielding an in-plane voxel dimension of 2×2mm with 

2-mmthick axial slices, and total scan time=10 min 56 s. 

The Resting State-fMRI (re-fMRI) scans were acquired with 124 volumes, 

TR=3000ms, TE=32 ms, flip angle=90°, FOV=192x192 mm, matrix 64x64 and 

effective voxel resolution=3.0x3.0x3.0 mm. The total scan time = 6 min 18 s. 

More details of experimental settings and image acquisition can be found in 

Satterthwaite et al. (2014).    

2.1.3 Data Pre-processing 

   The DTI data are preprocessed using FSL. Eddy current correction are performed 

using FDT toolbox in FSL for correcting distortions, simple head motions and using 

affine registration to reference volume. Skull striping is performed for brain 

extraction. Dtifit toolbox is used to fit diffusion tensor model on corrected data in 

order to obtaining diffusion tensors and fractional anisotropy (FA) for each subject. 
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Lastly, bedpostx toolbox is used to obtained the distributions of parameters in each 

voxel, which would be used in probabilistic tractography. 

   The rs-fMRI data are preprocessed using the preprocessing script released from 

the 1000 Functional Connectomes Project. Specifically, for remove extra-cranial 

material, skull stripping was performed on the T1 images. Then we remov the first 

four volumes of the functional time series to stabilize the signal. The anatomical 

image is registered to the 8th volume of the functional image and subsequently 

spatially assigned to the MNI standard brain space. These normalization parameters 

from MNI space are used for the functional images, which are smoothed using a 

Gaussian kernel of FWHM 6MM. Motion corrections were applied on the functional 

images. Nine standard confounding signals (6 motion parameters plus global / White 

Matter / cerebrospinal fluid) as well as the temporal derivative, quadratic term and 

temporal derivative of the quadratic of each were regressed out of data. Furthermore, 

motion-related spike regressors are included to bound the observed displacement. 

Lastly, the functional time series data are band-pass filtered to retain    

frequencies between 0.01 and 0.1 Hz which is the relevant frequency range for rs-

fMRI. The functional time series were assigned into 90 brain regions using AAL90 

Atlas. 

   Partial correlations were calculated between all the paired of AAL90 regions 

using the statistical method in Wang et al. (2016). Here, partial correlations are used 

to instead of full correlation because of its ability to reflect the correlation between 

two regions after removing other regions effects. It would help us to obtain the true 

relationship between any paired of regions. 
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2.2 Probabilistic Tracktography 

   Structural connectivity matrix can be obtained from the fibers in human’s brain. 

The true fibers cannot be detected directly so a partial volume model is build to 

calculate the distribution of the fiber orientations of each voxel in human brain in 

Behrens et al (2007). Based on this model, fibers can be simulated between regions. 

As a result, simulated fibers numbers between paired of regions can show us the level 

of strength of two regions connected in order to show structural connectivity 

indirectly. The more simulated fibers between two regions, the higher probability the 

two regions have strong connection. In this paper, the structural connectivity 

represents the strength of two regions connected, which is measured by simulated 

fiber counts.  

   Using the partial volume model, the posterior distribution of fiber orientations in 

each voxel can be used to simulate the fiber tracks in human brain.  

In this model, the diffusion-weighted MR signal is split into an infinitely anisotropic 

component for each fiber orientation, and a single isotropic component. 

The predicted signal for each diffusion-weighted measurement at each voxel is: 

𝑆𝑖 = 𝑆0((1 −∑𝑓𝑗

𝑁

𝑗=1

)exp(−𝑏𝑖𝑑) +∑𝑓𝑗exp(−𝑏𝑖𝑑𝑟𝑖
𝑇𝑅𝑗𝐴𝑅𝑗

𝑇𝑟𝑖)

𝑁

𝑗=1

) 

where 𝑆0 is the non-diffusion-weighted signal value, d is the diffusivity, 𝑏𝑖 is the b-

value, and  𝑟𝑖 is gradient direction associated with the ith acquisition, and 𝑓𝑗 and 

𝑅𝑗𝐴𝑅𝑗
𝑇 are the fraction of signal contributed by, and anisotropic diffusion tensor 

along, the jth fiber orientation (𝜃𝑗 , 𝜑𝑗), and N is the maximum number of fibers. A is 

fixed as: 
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𝐴 = (
1 0 0
0 0 0
0 0 0

) 

and 𝑅𝑗 rotates A to (𝜃𝑗 , 𝜑𝑗). The noise is modelled separately for each voxel as 

independently identically distributed Gaussian with a mean of zero and standard 

deviation across acquisitions of 𝜎. 

   Metropolis Hastings Markov Chain Monte Carlo sampling is applied to estimate 

the posterior distribution of fiber orientation in each voxel using FDT toolbox in FSL. 

The prior distributions we assigned to model parameters are: 

𝑃(𝑆0)~𝑈(0,+∞) 

𝑃(𝑓1)~𝑈(0,1) 

𝑃(𝑓2
𝑁)~𝐴𝑅𝐷 

𝑃(𝜃1
𝑁)~sin(𝜃) 

𝑃(𝜙1
𝑁)~𝑈(0,2𝜋) 

𝑃(𝜎) = 𝜎−1 

Where, ARD is automatic relevance determination, which is a model selection 

method used in the field of Neural Networks (MacKay,1995). 

   After estimated the posterior distribution of the fiber orientation of each voxel, we 

simulate the fiber direction in each voxel based on this posterior distribution and 

obtain a simulated fiber tracks in this voxel along this direction to next voxel in order 

to simulate a fiber streamline in human brain until the simulated fiber was stopped. 

Then totally N simulated fiber tracks are generated for each voxel. Here, for stopping 

fiber trajectories, we select a curvature threshold of 80° for the orientation change of 

fiber at each step (Behrens et al., 2013b). 
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   Since the fiber tracks are simulated, the number of fibers from region A to region 

B is not same as the number of fibers from region B to region A. As a result, we use 

the 90th percentile of the voxel-level fiber counts connecting voxels in the seed region 

to voxels in the target region to reflect the strongest structure connectivity between 

pairs of regions and using the maximum of the two directional fiber counts for each 

region pair as the number of fibers counts between two regions (Xue. et al, 2015). The 

structure connectivity between two regions can be evaluate by the number of fiber 

tracks between two regions divided by the maximum fibers counts could between the 

two regions which equals to the total N fiber tracks for each voxel. 

Here, the probability of two regions connected is used represent the connectivity 

between the regions instead of using simulated fiber counts. We measure the 

probability of two regions connected as following: 

𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑁
 

where, N is the total number of simulated fibers for each voxel, here is 5000, 𝑛𝑖𝑗 is 

number of simulated fibers connected region i and j. 

All the probability of two regions connected in total 90 AAL regions can construct the 

structural connectivity matrix for the 90 AAL regions. 

2.3 Edge-wise Linear Regression 

   After pre-processed DTI and resting-state fMRI data, we could generate two 

matrices to represent the structural connectivity (SC) and functional connectivity (FC) 

between our regions of interests (ROIs). Our goal is to detect is there any difference 

between disease group and no disease group on structural connectivity and functional 

connectivity. Edge-wised linear regression can help us to know the difference 

between two group of subjects in specific paired of regions. Based on the edge-wised 
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analysis of the SC and FC, we could learn where are the differences in two group 

subjects’ brain networks.  

2.3.1 Edge-wise Linear Regression for SC and FC 

   In our structural connectivity, we have total 90 regions in the brain network. As a 

result, there are totally 4005 undirected and unrepeated connections (edges) among 

there regions. For detecting the potential differences in the 4005 edges between two 

group subjects, we fit linear models for each edge j: 

𝑆𝐶𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 +𝛽2𝑗𝐴𝑔𝑒𝑖𝑗 +𝛽3𝑗𝑆𝑒𝑥𝑖𝑗 + 𝜀𝑖𝑗 

where, 𝑆𝐶𝑖𝑗 is the structural connectivity of patient 𝑖 for 𝑗𝑡ℎ edge and  

𝑋𝑖𝑗 = {
0, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑖𝑛𝑛𝑜𝑑𝑖𝑒𝑎𝑠𝑒𝑔𝑟𝑜𝑢𝑝
1,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑖𝑛𝑑𝑖𝑒𝑎𝑠𝑒𝑔𝑟𝑜𝑢𝑝

 

𝜀𝑖𝑗~𝑁(0, 𝜎
2) 

Then for each edge j, we can generate a regression p-value for 𝑋𝑖𝑗, which is adjusted 

by covariates: age and sex. Under specific significant level 𝛼, we can detect which 

edges have significant different between the two groups based on the regression p-

value of 𝑋𝑖𝑗.  

   Same as structural connectivity, we fit edge-wise linear regression models for 

functional connectivity to detect the difference between two groups. 

𝐹𝐶𝑖𝑗 = 𝛼0𝑗 + 𝛼1𝑗𝑋𝑖𝑗 + 𝛼2𝑗𝐴𝑔𝑒𝑖𝑗 +𝛼3𝑗𝑆𝑒𝑥𝑖𝑗 + 𝜀𝑖𝑗 

where, 𝐹𝐶𝑖𝑗 is the functional connectivity of patient 𝑖 for 𝑗𝑡ℎ edge and  

𝑋𝑖𝑗 = {
0, 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖𝑖𝑛𝑛𝑜𝑑𝑖𝑒𝑎𝑠𝑒𝑔𝑟𝑜𝑢𝑝
1,𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖𝑖𝑛𝑑𝑖𝑒𝑎𝑠𝑒𝑔𝑟𝑜𝑢𝑝

 

𝜀𝑖𝑗~𝑁(0, 𝜎
2) 
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Based on this model, we can generate the regression p-value for 𝑋𝑖𝑗. Under the 

specific significant level 𝛼, we can know which edges of ROIs are significant 

different between the two group subjects. 

   The heat map of the regression p-value would be plot to show the results. 

2.3.2 Edge-wise relationship between SC and FC 

   In previous section, the group difference of SC and FC are detected by edge-wised 

linear regression. However, these models only detect the SC and FC independently on 

group level. In this section, we use an edge-wised linear model to detect the 

relationship between SC and FC on the group level. 

   In Rudie’s (2013) paper, he calculated the correlation between fiber counts and 

functional connectivity strength across the edges. In my paper, the relationship 

between fiber counts and functional connectivity strength will be modeled across the 

subjects. Model would be fit for two group separately and modelling result will be 

compared between the two groups. 

For each edge j, we fitted model for no disease group: 

𝐹𝐶𝑖𝑗1 = 𝛾0𝑗1 + 𝛾1𝑗1𝑆𝐶𝑖𝑗1 + 𝜀𝑖𝑗1 

for disease group: 

𝐹𝐶𝑖𝑗2 = 𝛾0𝑗2 + 𝛾1𝑗2𝑆𝐶𝑖𝑗2 + 𝜀𝑖𝑗2 

where, 

𝜀𝑖𝑗1~𝑁(0, 𝜎
2)𝑎𝑛𝑑𝜀𝑖𝑗2~𝑁(0, 𝜎

2) 

   Here, we use structural connectivity as the explanatory variable because SC 

represent the real world fibers in people’s brain. How the fiber shaped in people’s 

brain would decide the potential functional connectivity on the brain. 
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   Using these two model, we could compare the correlation coefficient of between 

FC and SC between two groups under specific significant level 𝛼. The heat map of 

the correlation coefficient would be plot to show the result for all the 4005 edges. 

2.4 Global network metric-based method (GNM) 

   The probability of brain regions connecting with each other and the functional 

connectivity among different regions can be explained like a network. As a result, 

using global network metrics to represent the characteristics of the brain network can 

help us to know more about the brain. Moreover, this method provides a new angle 

for us to compare the brain’s characteristics between disease group and no disease 

group. In brain networks, the nodes usually represent the brain regions, the links 

between nodes represent the connections between brain regions. 

2.4.1 Graph theoretical metrics 

   In network analysis, there are many theoretical metrics can be used to explain the 

brain networks’ properties. These metrics can show us many information about the 

brain network, such as important nodes, the strength of network connections. Here, 

five graph theoretical metrics (Rubinov and Sporns, 2009) would be calculated for 

structural connectivity matrix to measure the network properties. These metrics are: 

Clustering Coefficient(CC), Characteristic Path Length (CPL), Normalized CC and 

CPL, and Small-worldness. The network of structural connectivity is weighted 

undirected networks, which is weighted by the probability of two regions connected 

with fibers. 

   Clustering Coefficient measures the clustered connectivity ability around 

individual nodes in the network. The higher CC of the network has, the higher local 

efficiency of the network has. 
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For one subject’s brain network, 

𝐶 =
1

𝑛
∑ 𝐶𝑖

𝑖∈𝑁
=
1

𝑛
∑

2𝑡𝑖
𝑤

𝑘𝑖(𝑘𝑖 − 1)𝑖∈𝑁
 

where, N is the set of all nodes in the network, w is the weight, n is the number of 

nodes in the network, 𝑘𝑖 is the number of links connected to node 𝑖, 𝑡𝑖 is the 

number of triangles around node 𝑖.  

   Characteristic Path Length measures the shortest path length between all pairs of 

nodes in the network. The smaller the CPL of node 𝑖 has, the the higher global 

efficiency of node 𝑖 has. 

For one subject’s brain network, 

𝐿 =
1

𝑛
∑ 𝐿𝑖

𝑖∈𝑁
=
1

𝑛
∑

∑ 𝑑𝑖𝑗
𝑤

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1𝑖∈𝑁
 

 

where, N is the set of all nodes in the network, w is the weight, n is the number of 

nodes in the network, 𝑑𝑖𝑗
𝑤 is the weighted shortest path between node 𝑖𝑎𝑛𝑑𝑗. 

   Normalized CC of subject’s network is the ratio of C to the average C from 

simulated randomized networks. Normalized CPL of subject’s network is the ratio of 

L to the average L from simulated randomized networks. The Brain Connectivity 

Toolbox in Matlab will be used to simulate one hundred random networks based on 

the true network for each subjects. The mean C and L of the random networks will be 

used to as the average C and average L. 

   Small-worldness of one subject’s network is the ratio of normalized CC to 

normalized CPL. Small-worldness of a network can measure how the network is 

significantly more clustered than random network.  

For subject 𝑖’s network, 
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𝑆𝑖 =
𝐶𝑖/𝐶𝑟𝑎𝑛𝑑
𝐿𝑖/𝐿𝑟𝑎𝑛𝑑

 

 

2.4.2 Linear Regression 

   The goal for calculating these graph theoretical is to detect is there any difference 

in brain networks properties between disease group and no disease group. Just like the 

edge-wised linear regression for SC and FC matrix, the graph theoretical metrics can 

be compared between the two groups by using linear regression. 

   For two groups subjects, we can fit five linear regression models for CC, CPL, 

normalized CC, normalized CPL and Small-worldness across the subjects. 

𝐶𝐶𝑘 = 𝜂0𝑐𝑐 + 𝜂1𝑐𝑐𝑋𝑘 +𝜂2𝑐𝑐𝐴𝑔𝑒𝑘 +𝜂3𝑐𝑐𝑆𝑒𝑥𝑘 + 𝜀𝑘𝑐𝑐 

𝐶𝑃𝐿𝑘 = 𝜂0𝑐𝑝𝑙 + 𝜂1𝑐𝑝𝑙𝑋𝑘 +𝜂2𝑐𝑝𝑙𝐴𝑔𝑒𝑘 +𝜂3𝑐𝑝𝑙𝑆𝑒𝑥𝑘 + 𝜀𝑘𝑐𝑝𝑙 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝐶𝑘 = 𝜂0𝑛𝑐𝑐 + 𝜂1𝑛𝑐𝑐𝑋𝑘 +𝜂2𝑛𝑐𝑐𝐴𝑔𝑒𝑘 +𝜂3𝑛𝑐𝑐𝑆𝑒𝑥𝑘 + 𝜀𝑘𝑛𝑐𝑐 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑃𝐿𝑘 = 𝜂0𝑛𝑐𝑝𝑙 + 𝜂1𝑛𝑐𝑝𝑙𝑋𝑘 +𝜂2𝑛𝑐𝑝𝑙𝐴𝑔𝑒𝑘 +𝜂3𝑛𝑐𝑝𝑙𝑆𝑒𝑥𝑘 + 𝜀𝑘𝑛𝑐𝑝𝑙 

𝑆𝑚𝑎𝑙𝑙 − 𝑤𝑜𝑟𝑙𝑑𝑛𝑒𝑠𝑠𝑘 = 𝜂0𝑠𝑚 + 𝜂1𝑠𝑚𝑋𝑘 +𝜂2𝑠𝑚𝐴𝑔𝑒𝑘 +𝜂3𝑠𝑚𝑆𝑒𝑥𝑘 + 𝜀𝑘𝑠𝑚 

where k is 𝑘𝑡ℎ subject and 

𝑋𝑘 = {
0, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑘𝑖𝑛𝑛𝑜𝑑𝑖𝑒𝑎𝑠𝑒𝑔𝑟𝑜𝑢𝑝
1,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑘𝑖𝑛𝑑𝑖𝑒𝑎𝑠𝑒𝑔𝑟𝑜𝑢𝑝

 

𝜀𝑘𝑐𝑐~𝑁(0, 𝜎
2), 𝜀𝑘𝑐𝑝𝑙~𝑁(0, 𝜎

2), 𝜀𝑘𝑛𝑐𝑐~𝑁(0, 𝜎
2), 𝜀𝑘𝑛𝑐𝑝𝑙~𝑁(0, 𝜎

2), 𝜀𝑘𝑛𝑠𝑚~𝑁(0, 𝜎
2) 

   According to the regression results of these five models, the potential group 

difference of network properties can be detected by using the regression p-value of 

the coefficients of 𝑋𝑘. 

2.5 Differentially expressed network(DEN) 

   In section 2.2, edge-wise linear regression was used to find the differences 

between two group subjects’ SC and FC. For further interests, we use one approach of 
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Differentially expressed network methods devised by Shuo Chen(2015) to detect 

which edges are more different in group comparison.  

2.5.1 Parsimonious differential brain connectivity network detection 

Algorithm(Pard) 

   This paper’s goal is to detect is there any difference in brain connectivity between 

two groups of subjects in PNC dataset. Pard Algorithm can help us to achieve the goal 

based on the hypothesis: 

H0: Twogroupshavenodifferenceinconnectivity 

H1: Therearedifferentiallyexpressedconnectivitynetworksbetweenthetwogroups 

   Pard Algorithm (Shuo Chen et al, 2015) could use two sample T-test p-value for 

each edges to investigate the significantly differential connectivity expressions 

(edges) between two groups of subjects with well-controlled false-positive discovery 

rates. The p-value for each edge will be transformed by using “-log” transformation to 

show how important the edge is for detecting the difference between two groups of 

subjects. They investigate the number of disconnected subgraph in the overall graph 

G with weight matrix W, which comes from the transformed p-value matrix after 

screening step. For each subgraph, the K-means clustering method would be used to 

detect the number of clusters in the subgraph. 

   After using Pard Algorithm, the edges have similar significant effects to detect the 

difference between two groups would be clustered into same cluster. This method 

would help us to find the important edges to differentiate two groups of subjects 

quickly and visually. 

   In this paper, the regression p-value will instead of T-test p-value as input into the 

Pard Algorithm. And we will not perform the permutation test and the automatic 𝑝0 

selection steps. Following is the details of Pard Algorithm: 
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1. Calculate the weight matrix W by screening: 

𝑤𝑖𝑗 = {
− log(𝑝𝑖𝑗) 𝑖𝑓𝑝𝑖𝑗 < 𝑝0

0𝑒𝑙𝑠𝑒
 

where 𝑝𝑖𝑗 is the regression p-value, 𝑝0 is the threshold value we will give 

2. Detect disconnected subgraphs in G by eigen decompose the Laplacian matrix. 

Using the zero eigenvalues and its eigenvectors to decide the number of 

disconnected subgraphs and their nodes elements in each subgraph. 

3. For each subgraph 𝐺𝑞, find the networks which include most significant edges 

with constrained numbers of nodes for each networks. 

4. Try all possible 𝐾𝑞 clusters for each subgraph 𝐺𝑞, and then select the 

optimum number of networks based on Shuo’s clustering criteria. 
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3. Results 

3.1 Edge-wise linear regression for SC and FC 

   After performing probabilistic tracktography, structural connectivity matrix can be 

constructed by the probabilities two regions connected with each other as the 

elements in the matrix. Since there are total 90 regions, the structural connectivity 

matrix is 90 by 90 dimensions. 

   Based on the mean structural connectivity matrixes (Figure.1), there was tiny 

different between the groups of subjects under the scale [0,1] when the matrixes were 

observed by eyes. Moreover, the two groups of subjects have very similar fiber tracks 

structure.  

   For detecting the accurate difference of structural connectivity between these two 

groups of subjects, edge-wise linear regression was performed for these two SC 

matrixes. There were 105 edges which are significantly different between disease 

group and no disease group under significant level at 0.05 (Figure.2). This revealed 

that the two groups of subjects have significantly different fiber structure in this 105 

connections between the ROIs after adjusting by age and sex. When under significant 

level at 0.1, there were 364 edges which are significantly different between these two 

groups of subjects when adjusting by age and sex.  

   Partial correlations were calculated using Wang’s method (2016) to represent the 

functional connectivity of two groups of subjects. The mean functional connectivity 

matrixes were generated from two groups of subjects (Figure.3). Being similar to 

Structural connectivity matrixes, the two mean functional connectivity matrixes were 

hard to recognize the difference. Edge-wise linear regression for contracting 

functional connectivity of two groups of subjects were applied to recognize the 
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difference. Same as edge-wise linear regression, age and sex were used as adjusting 

effect to detect the difference between groups.   

   Under the 5% significant level, 246 edges between paired of regions were 

significantly different between the two groups of subjects (Figure.4). This revealed 

that there are 246 different functional connections between paired regions when 

contracting disease group with no disease group. After increasing the significant level 

to 10%, 485 edges between paired of regions were significantly different between the 

disease group and no disease group. 

3.2 Relationship between SC and FC 

   Independent analysis for structural connectivity and functional connectivity 

revealed the difference magnitude between subjects in disease group and no disease 

group separately. Edge-wise linear regression between structural connectivity and 

functional connectivity across the subjects in two groups gave the information from 

different angle. 

   According to the regression results (Figure.5), no disease group has almost same 

positive and negative relationship between SC and FC with disease group. The were 

152 edges have significant correlations between SC and FC in no disease group and 

167 edges have significant correlations between SC and FC in disease group under 

5% significant level. In disease group, 76 of 167 significant correlations were positive 

and 91 of them were negative. In no disease group, 77 of 152 significant correlations 

were positive and 77 of them were negative relationships. Comparing all the 

relationship in details, there were two paired of regions which have negative 

relationship in disease group but have positive relationship in no disease group. At the 

same time, there were also two paired of regions which have positive relationship in 
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disease group but have negative relationship in no disease group. Moreover, there 

were 181 correlations in disease group are not significant but 77 of them were 

negative correlation and 74 of them were positive correlation in no disease group. 

Meanwhile, there were 160 correlations in no disease group are not significant but 73 

of them were positive correlation and 87 of them are negative correlation in disease 

group (Figure.6). 

3.3 Graph Theoretical metrics result 

   After performing linear regression for five graph theoretical metrics across the 

subjects in two group, the different network properties can be noticed from the results. 

The results were showed in Table.2. Although there was no significant different in 

Clustering Coefficient and Small-worldness, Characteristic Path Length was 

significantly different between two groups of subjects. Subjects in disease group had 

0.084 smaller than subjects in no disease group for Characteristic Path Length. This 

revealed brain region in disease group subjects have higher probability to connect 

with each other averagely than no disease group. 

Table 2. Regression results for Graph Theoretical Metrics 

Properties Coefficients for group indicator P-value 

Clustering Coefficient (CC) 0.0002 0.55 

Characteristic Path Length 

(CPL) -0.084 0.04 

Normalized CC 0.02 0.51 

Normalized CPL -0.02 0.04 

Small-worldness 0.039 0.15 

 

 

3.4 Differentially expressed network result 

   As we mentioned in section 2.5, this DEN method could help us to distinguish the 

most different edges in two groups of subjects’ brain connectivity. We used the 
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regression p-value we obtained from edge-wise regression step as the input for 

parsimonious age and sex. Based on the threshold 𝑝0 at 0.08, we got 27 clusters for 

structural connectivity regression p-value matrix after excluding 2 isolated regions. 23 

clusters were detected for functional connectivity regression p-value matrix. The 

results were summarized in Figure.7, and all significant edges tended to be along the 

diagonal because of shrinkage effect. 

   Figure 8 and Figure 9 showed the differentially expressed edges for the first four 

clusters for structural connectivity between two groups of subjects. Figure 10 and 

Figure 11 showed the differentially expressed edges for the first four clusters for 

functional connectivity between two groups of subjects. For structural connectivity, 

the differences were mainly showed on SAM.L, PHG.L, CAL.R, IOG.R, ACR.L, 

SOG.L, ORBmid.L and ITG.L. For functional connectivity, the differences were 

mainly showed on MFG.L, PCL.L, MTG.L, IFGtriang.R, IFGoperc.L, IFGoerc.R and 

SFCmed.R. 
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4. Discussion 

   For detecting the difference between disease and no disease group subjects in their 

brain, we compared the two groups of subjects’ brain connectivity. We used the 

probability of paired of regions connected as the structural connectivity, and partial 

correlation of fMRI between paired of regions as the functional connectivity. Edge-

wise linear regression of structural connectivity reveals that more than hundred edges 

between paired regions are significantly different between two groups. Edge wise 

linear regression of functional connectivity also shows that more than two hundred 

edges between paired regions are significantly different between the two groups. The 

edge-wise linear regression method can provide a regression p-value which were 

adjusted by other covariates like age and sex. These p-values can contain more 

information than the two-simple t-test. For further interest, edge-wise regressions 

between functional connectivity and structural connectivity were performed. We used 

structural connectivity to explain functional connectivity since the anatomical 

structure decide the functional connectivity to some degree. Unlike Rudi et al (2013), 

we performed linear regression between SC and FC for each edge across the subjects 

in each group. The results can show us the details about how SC and FC correlated 

and what edges are significant different between the two groups of subjects. 

Structural connectivity and functional connectivity can be treated as networks. Graph 

theoretical metrics helped us to explore the network properties for two groups of 

subjects’ brain connectivity. Clustering coefficient, characteristic path length and 

small-worldness were calculated and averaged across all the voxels in each subject’s 

structural connectivity and functional connectivity networks. Linear regressions of 

graph theoretical metrics were conducted following to detect the network properties 
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difference between the two groups of subjects. We detected that disease group has a 

significant difference with no disease group in characteristic path length property. In 

this paper, we only measured five Graph theoretical metrics. There are some other 

metrics can be used, such as participation coefficients and modularity Q value, to 

explain the network properties. 

   After performing edge-wise linear regressions of structural and functional 

connectivity, parsimonious differential brain connectivity network detection 

algorithm helped us to find out which edges in the brain network are most significant 

different between the two groups of people. We clustered the regions in the structural 

and functional connectivity networks and reordered them towards to diagonal of the 

matrix. This method can support us to view the difference between two groups of 

subjects directly. Obviously, there are some flaws in this paper. The automatically 

threshold p-value choosing was not applied in this paper. Also, we did not assign a 

permutation test to control the family-error rate. 

   The work performed linear regression and graph theory knowledge to detect the 

difference between disease group and no disease group’s brain connectivity. All the 

methods can effectively identify their difference. However, if we could have a strong 

explanation in medicine area, it would be better to understand the results. Moreover, 

we divided all the subjects into two groups based on the simple criteria that subjects 

have central nervous system problem or not. In fact, PNC study combined different 

type of subjects which have various mental health problems. Using precise mental 

health disease group contrasting would have more clearly and significantly different 

in specific brain regions. And it would be more meaningful to explain the results. 

Moreover, the edge-wise linear regression may not exactly represent the relationship 

between structural connectivity and functional connectivity. 
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5. Appendix 
 

A. Figure 
 

 

 
Figure 1. Heat Map of Mean Structural Connectivity 

A: Heat map of mean structural connectivity matrix across the subjects in disease 

group; B: Heat map of mean structural connectivity matrix across the subjects in no 

disease group. 
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Figure 2. Heat map of –log (edge-wise regression p values) for structural connectivity 

A: Heat map of –log (edge-wise regression p values) for structural connectivity at 

0.05 significant level; B: Heat map of –log (edge-wise regression p values) for 

structural connectivity at 0.1 significant level; 
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Figure 3. Heat Map of Mean Functional Connectivity 

A: Heat map of mean functional connectivity matrix across the subjects in disease 

group; B: Heat map of mean functional connectivity matrix across the subjects in no 

disease group. 
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Figure 4. Heat map of –log (edge-wise regression p values) for functional 

connectivity 

A: Heat map of –log (edge-wise regression p values) for functional connectivity at 

0.05 significant level; B: Heat map of –log (edge-wise regression p values) for 

functional connectivity at 0.1 significant level. 
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Figure 5. Heat map of edge-wise regression coefficients between SC and FC 

A: Heat map of edge-wise regression coefficients between SC and FC for disease 

group; B: Heat map of edge-wise regression coefficients between SC and FC for no 

disease group. 
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Figure 6. Histogram for comparing significant correlations of SC and FC between two 

groups of subjects. 

NG means negative correlations, PG means positive correlations, D means disease 

group, ND means no disease group.  
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Figure 7. Heat map of differentially expressed network result 

Upper Figure: Heat map of differentially expressed network result for structural 

connectivity matrix based on ‘-log’ transformation; Lower Figure: Heat map of 

differentially expressed network result for functional connectivity matrix based on ‘-

log’ transformation. 
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Cluster 1 

 
Cluster 2 

 
 

Figure 8. DEN result 1 for Structural Connectivity 

The cluster.1 and cluster.2 of the regions which have significant difference expression 

in structural connectivity matrix based on ‘-log’ transformation. 

 

Cluster 3 
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Cluster 4 

 
Figure 9. DEN result 2 for Structural Connectivity 

The cluster.3 and cluster.4 of the regions which have significant difference expression 

in structural connectivity matrix based on ‘-log’ transformation. 
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Cluster 1 

 
Cluster 2 

 
Figure 10. DEN result 1 for Functional Connectivity 

The cluster.1 and cluster.2 of the regions which have significant difference expression 

in functional connectivity matrix based on ‘-log’ transformation. 
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Cluster 3 

 
Cluster 4 

 
Figure 11. DEN result 2 for Functional Connectivity 

The cluster.3 and cluster.4 of the regions which have significant difference expression 

in functional connectivity matrix based on ‘-log’ transformation. 

 

 


