
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Signature:

Moshen Hu April 01, 2025



On the Choice of Subspace for the Quasi-minimal Residual Method for Linear
Inverse Problems

By

Moshen Hu

James G. Nagy, Ph.D.
Advisor

Department of Mathematics

James G. Nagy, Ph.D.
Advisor

Lucas Onisk, Ph.D.
Committee Member

Sandeep Soni, Ph.D.
Committee Member

Myra Woodworth-Hobbs, Ph.D.
Committee Member

2025



On the Choice of Subspace for the Quasi-minimal Residual Method for Linear
Inverse Problems

By

Moshen Hu

James G. Nagy, Ph.D.
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences of

Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2025



Abstract

On the Choice of Subspace for the Quasi-minimal Residual Method for Linear
Inverse Problems
By Moshen Hu

Inverse problems arise in various scientific and engineering applications, necessi-
tating robust numerical methods for their solution. In this work, we investigate the
effectiveness of Krylov subspace iterative methods, including GMRES, QMR, and
their range-shifted variants for solving linear inverse problems. We analyze the im-
pact of subspace selection on solution quality and stability, comparing conventional
and range-shifted versions of GMRES and QMR. Our findings indicate that range
shifted QMR outperforms standard QMR, and confirm the previously observed be-
havior that range shifted GMRES can be superior to conventional GMRES in terms of
approximation efficacy. Notably, range restricted QMR demonstrates a key advantage
over GMRES with respect to range restricted QMR’s singular spectrum which can
make the method less sensitive to errors that are naturally present making it particu-
larly effective when the noise level in the problem is uncertain. These results provide
valuable insights into selecting appropriate iterative solvers for ill-posed problems.
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Chapter 1

Introduction

Inverse problems arise in various scientific and engineering applications where one

seeks to determine unknown parameters from observed data. These problems are of-

ten ill-posed, meaning small perturbations in the available data can lead to significant

deviations in the computed solutions. In linear discrete ill-posed problems, the co-

efficient matrix is often ill-conditioned, with rapidly decaying singular values. Small

singular values amplify errors, making traditional solvers unreliable and sensitive to

data perturbations. To address this, regularization techniques such as truncated sin-

gular value decomposition (TSVD) and iterative methods like Krylov subspace solvers

are employed. These methods help aid the stabilization of the methods by mitigat-

ing noise amplification and improving solution accuracy. This chapter introduces the

fundamental concepts of inverse problems, discusses the challenges arising from their

inherent ill-posedness, and explores regularization approaches, with a focus on TSVD.

1.1 Inverse Problems

Inverse problems arise in various scientific and engineering applications where one

seeks to determine unknown inputs from observed outputs. Mathematically, these
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problems are often modeled as a linear system of equations

Ax = b,

where A ∈ Rn×n is a given matrix, x ∈ Rn is the unknown solution, and b ∈ Rn

represents the observed data. In practice, the observed data b are usually contam-

inated, often contains errors due to measurement noise, modeling inaccuracies, or

other uncertainties. This can be expressed as:

Ax = b = bexact + e

where bexact represents the unknown exact data, and e denotes the error term. As

a result, direct solving magnifies noise, disrupting the recovery process. This neces-

sitates the use of regularization or approximation techniques to obtain a stable and

meaningful reconstruction. Such problems appear in diverse fields such as medical

imaging, geophysics, and signal processing, where reconstructing accurate solutions

from noisy or incomplete data is crucial [9].

1.2 Linear Discrete Ill-posed Problems

An ill-posed problem lacks at least one of the following: existence, uniqueness, or

stability of the solution. In this work, we focus on problems that lack stability,

where small perturbations in data lead to large variations in the solution. A well-

posed problem is one that contains all three of the aforementioned properties and is

originally due to Jacques Hadamard in the early 20th century.

When the problem at hand is ill-posed, the coefficient matrix A is usually ill-
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conditioned. This means that its condition number, defined as

κ(A) = ∥A∥∥A−1∥ =
σ1

σn

,

is large, where σ1 and σn are the largest and smallest singular values of A, respectively.

Throughout, we will refer to ∥ · ∥ as the 2-norm for both vector and matrix norms.

When a system matrix is ill-conditioned, this implies that small perturbations in b can

cause large deviations in the solution x, making direct solutions highly sensitive to

noise. This instability makes traditional direct solvers, such as Gaussian elimination,

unreliable for inverse problems [8]. To mitigate these challenges, regularization is

employed to obtain stable and meaningful approximations of the true solution.

1.3 Regularization

Regularization replaces the original ill-posed problem with a ‘nearby’ problem that

is less sensitive to errors, ensuring a more stable solution. A common approach is

TSVD, which achieves this by discarding small singular values, thereby controlling

approximation errors and reducing the impact of noise [4]. In this section we illustrate

the effect error in the right-hand side b can have on the approximate solution using

the SVD. We then provide an overview of the TSVD method.

1.3.1 SVD of Ill-Posed Problem

In solving inverse problems,

Ax = b

we aim to minimize the residual in a linear system:

min
x∈Rn

∥Ax− b∥.
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A naive approach to approximate x directly is to multiply both sides by A−1, assuming

it exists:

A−1Ax = A−1b ⇒ xnaive = A−1b.

However, this approximation is practically meaningless when A is ill-conditioned or

nearly singular. If b contains noise:

A−1b = A−1(bexact + e) = A−1bexact + A−1e

the term A−1e (where e represents the noise in b) can dominate the recovered solution,

amplifying errors due to the instability of A−1 [10].

The singular value decomposition (SVD) provides insight into this instability. Any

matrix A ∈ Rn×n can be decomposed as:

A = UΣV T ,

where: U ∈ Rn×n and V ∈ Rn×n are orthogonal matrices, Σ ∈ Rn×n = diag(σi) is a

diagonal matrix containing singular values σi, sorted in descending order. This allows

us to express the inverse of A as:

A−1 = V Σ−1UT .

Applying this to b and expressing the solution as a sum of rank-one matrices, the

naive solution is given by:

xnaive = A−1b = V Σ−1UT b =
N∑
i=1

uT
i b

σi

vi.

If A comes from an ill-posed problem, the speed of decay of the singular values are

usually fast, later singular values σi approach numerical zero, causing their reciprocals
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1
σi

to become extremely large. This results in uncontrolled weight amplification in

the later contribution of x with large index values, leading to an unstable solution.

When we apply A−1 to b, it operates on both the exact data bexact and the noise

e. Since A−1 amplifies the contributions of small singular values, it also magnifies the

noise component of the computed solution, which is refered as inverted noise. This

excessive amplification distorts the recovered solution, overwhelming the meaningful

signal and severely degrading the reconstruction process.

xnaive = A−1bexact + A−1e = V Σ−1UT b+ V Σ−1UT e =
N∑
i=1

uT
i b

σi

vi +
N∑
i=1

uT
i e

σi

vi.

1.3.2 Truncated SVD Method

To mitigate this instability, we employ TSVD, where we selectively discard small

singular values and, therefore, their corresponding information. Instead of using all

singular components, we approximate A by retaining only the first m largest singular

values. We can define Am to be the rank m approximation of A:

Am =
m∑
i=1

σiuiv
T
i .

The corresponding solution using TSVD is:

xm =
m∑
i=1

uT
i b

σi

vi.

By truncating small singular values, we effectively prematurely terminate the recon-

struction process, preventing excessive noise amplification while still capturing the

dominant structure of the solution. This technique is a fundamental regularization

method for ill-posed problems.

A critical question in TSVD is choosing the appropriate truncation parameter m.

The discrepancy principle provides a systematic approach to determining m. Assume
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a known upper bound of the noise level ϵ where ∥e∥ ≤ ϵ, and a parameter η (usually

1.01) we select m such that:

∥Axm − b∥ ≤ ηϵ.

The parameter η controls the level of regularization, allowing flexibility in balancing

noise suppression and solution accuracy.

This ensures that we do not attempt to recover information that has been lost

to noise while still retaining meaningful signal components. If m is too large, we

amplify noise; if it is too small, we lose essential information about the true solution.

The TSVD method, combined with the discrepancy principle, provides a balance

between numerical stability and accurate reconstruction, making it a fundamental

regularization method for solving ill-posed problems [10].
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Chapter 2

Krylov Subspace Methods

In this chapter, we introduce Krylov subspace methods, which play a fundamental

role in solving large-scale linear systems and inverse problems. We begin by discussing

the construction of Krylov subspaces and their significance in iterative methods. We

then present the Arnoldi and Lanczos bi-orthogonalization procedures, which form

the basis of Generalized Minimal Residual (GMRES) and Quasi-minimal residual

(QMR) methods, respectively. These methods can be effectively utilized for solv-

ing ill-posed inverse problems, particularly in the context of non-symmetric systems

where standard approaches may lead to instability. The chapter provides a detailed

exploration of their theoretical foundations, laying the groundwork for the subsequent

experiments and comparisons.

2.1 Krylov Subspaces

Krylov subspace methods form a class of iterative techniques for approximating the

solution of large and sparse linear systems of the form

Ax = b,
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where A ∈ Rn×n, x ∈ Rn, and b ∈ Rn. Unlike direct solvers, such as Gaussian elimi-

nation or LU decomposition, which can be computationally expensive and memory-

intensive, Krylov subspace methods generate a sequence of iterates for the least-

squares problem by searching within subspaces formed by the span of vectors obtained

through repeated applications of A to the initial residual r.

For a given matrix A and an initial residual vector r0 = b − Ax0, the Krylov

subspace of dimension m is defined as:

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}.

These subspaces encode increasing amounts of information about the solution, allow-

ing iterative methods to update their approximations efficiently [2].

However, the original Krylov subspace lacks orthogonality among its spanning

basis vectors. Simply applying A repeatedly to r0 will converge toward the dominant

eigenvector of A, thus failing to capture an effective basis for the solution space. To

overcome this issue, orthogonalization techniques such as Gram-Schmidt are employed

within iterative methods like the Arnoldi and Lanczos iterations to construct an

orthonormal basis:

Km(A, r0) = span{v1, v2, . . . , vm},

where each vi is orthonormal to every other vector vj for i ̸= j in exact arithmetic.

Krylov subspace methods provide a powerful framework for solving large-scale

linear systems, eigenvalue problems, and other related applications. GMRES, QMR,

and other iterative solvers use the Krylov subspace framework but differ in the spaces

they construct and the spaces in which the solution is sought [13].
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2.2 Arnoldi

The Arnoldi process is a widely known method that uses the Gram-Schmidt proce-

dure to orthogonalize vectors for square non-symmetric matrices. There are several

variations of the Arnoldi process; here, we consider the classic and modified versions.

2.2.1 Classic Arnoldi Process

The classical Arnoldi process is based on the Gram-Schmidt procedure to generate

an orthonormal basis for the Krylov subspace Km(A, r0), where A ∈ Rn×n is the

non-symmetric matrix and r0 is the initial residual vector. The process begins by

normalizing the initial vector r0, producing v1 = r0/∥r0∥. At each iteration, the first

step is the matrix-vector product:

wj = Avj

where vj is the current orthonormal vector. To ensure orthogonality with the previ-

ously generated vectors v1, v2, . . . , vj, the classical Gram-Schmidt procedure involves

computing the projection coefficients

hi,j = vTi wj for i = 1, 2 . . . , j.

The key idea is to subtract the projections of a given vector from all previously

computed vectors, ensuring that the new vector is orthogonal to the others.

wj = wj −
j∑

i=0

hi,jvi.

The updated vector wj is then normalized to produce the next orthonormal vector

vj+1:

vj+1 =
wj

∥wj∥
, hj+1,j = ∥wj∥.
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This process is repeated for a chosen number of steps, generating the Arnoldi

decomposition:

AVm = Vm+1Hm,

where A ∈ Rn×n, Vm ∈ Rn×m is an orthonormal basis of Km(A, r0), and Vm+1 ∈

Rn×(m+1) extends this basis for the next iteration. The matrix Hm ∈ R(m+1)×m is an

upper Hessenberg matrix, meaning it is upper triangular with one additional nonzero

subdiagonal. If the Arnoldi process is carried out for m steps, it produces the full

Arnoldi decomposition of A, where Vm contains an orthonormal basis for the entire

space.

The full process is given in Algorithm 1. In inverse problems, the number of

Arnoldi steps is usually kept small because the solution is often sufficiently approx-

imated within a low-dimensional subspace. Moreover, the classical Arnoldi process

is known to suffer from numerical instability, as the orthogonality of the vectors can

degrade due to round-off errors, especially for large problems.

Algorithm 1 The classical Arnoldi Process

1: Input: A ∈ Rn×n and b ∈ Rn

2: Output: Vm+1 ∈ Rn×(m+1) and Hm ∈ R(m+1)×m

3: Set v1 = r0/∥r0∥
4: for j = 1, 2, . . . ,m do
5: Compute wj = Avj
6: for i = 1, 2, . . . , j do
7: hi,j = (wj, vi)
8: end for
9: wj = wj −

∑j
i=1 hi,jvi

10: hj+1,j = ∥wj∥
11: if hj+1,j = 0 then
12: Stop
13: end if
14: vj+1 = wj/hj+1,j

15: end for
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Modified Arnoldi Process

The modified Arnoldi process improves on the classical Arnoldi process by using the

Modified Gram-Schmidt (MGS) procedure to address the issue of potential numerical

instability. The initial setup is the same as the classical version, starting with v0 =

r0/∥r0∥. The difference arises in the way the orthogonalization is performed. Instead

of computing all projections first and then updating wj, the Modified Gram-Schmidt

procedure orthogonalizes sequentially. For each previously computed vector vi, the

projection coefficient is computed as:

hi,j = vTi wj,

and the vector wj is immediately updated:

wj = wj − hi,jvi.

This step is repeated for all previously computed vectors v1, v2, . . . , vj, ensuring that

the vector wj is orthogonalized sequentially. After applying all the projections, the

vector wj is normalized:

vj+1 =
wj

∥wj∥
, hj+1,j = ∥wj∥.

The full process is given in Algorithm 2. This approach reduces the accumulation

of round-off errors during orthogonalization, making the modified Arnoldi process

more numerically stable than the classical version. This advantage is particularly

significant for large problems, where the orthogonalization process involves more and

larger vector operations, may lead to greater accumulation of round-off errors [13].
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Algorithm 2 The Modified Arnoldi Process

1: Input: A ∈ Rn×n and b ∈ Rn

2: Output: Vm+1 ∈ Rn×(m+1) and Hm+1,m ∈ R(m+1)×m

3: Set v1 = r0/∥r0∥
4: for j = 1, 2, . . . ,m do
5: Compute wj = Avj
6: for i = 1, 2, . . . , j do
7: hi,j = (wj, vi)
8: wj = wj − hi,jvi
9: end for
10: hj+1,j = ∥wj∥
11: if hj+1,j = 0 then
12: Stop
13: end if
14: vj+1 = wj/hj+1,j

15: end for

2.2.2 Arnoldi Relation

In the Arnoldi process, we start with the following relationship between the matrix

A and the current orthonormal vector vj:

wj = Avj

where wj is the result of applying the matrix A to the vector vj. To maintain orthogo-

nality, we project wj onto the previously computed vectors v1, v2, . . . , vj and compute

the projection coefficients hi,j as follows:

hi,j = vTi wj = vTi Avj for i = 1, 2, . . . , j

This expression allows us to express Avj as a linear combination of the previously

computed vectors and vj+1:

Avj = h1,jv1 + h2,jv2 + · · ·+ hj,jvj + hj+1,jvj+1
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Avj =

j+1∑
i=1

hi,jvi, for i = 1, 2, . . . ,m

Thus, Avj is expressed as a combination of the current and previous vectors and vj+1,

where the coefficients hi,j form the entries of the upper Hessenberg matrix Hm.

By collecting these relationships for all iterations j = 1, 2, . . . ,m, we obtain the

matrix relation:

AVm = Vm+1Hm

where Vm = [v1, v2, . . . , vm] is the matrix of orthonormal vectors and Hm is an upper

Hessenberg matrix of size (m+ 1)×m.

The relation shows that the action of A on the Krylov subspace spanned by Vm

can be captured by the smaller Hessenberg matrix Hm, significantly reducing the

computational cost and allowing us to efficiently solve least-squares problems, which

will be further discussed in Section 2.4.

2.3 Lanczos

The Lanczos bi-orthogonalization process is a generalization of the standard Lanc-

zos process, which is designed for symmetric matrices. While the standard Lanczos

method constructs an orthonormal basis for a Krylov subspace using a three-term

recurrence, it is only applicable to symmetric systems. To extend this approach to

non-symmetric matrices, the Lanczos bi-orthogonalization simultaneously applies the

Lanczos process to both A and AT , generating two bi-orthogonal bases and forming

the foundation for iterative solvers such as Quasi Minimal Residual (QMR) method.

2.3.1 Lanczos for Symmetric Problems

For symmetric matrices, the Lanczos process improves efficiency by naturally utilizing

a three-term recurrence, avoiding the full reorthogonalization required in the Arnoldi
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iteration for non-symmetric matrices. In the Arnoldi process, an orthonormal basis

{v1, . . . , vm} for the Krylov subspace Km(A, v1) is constructed, producing an upper

Hessenberg matrix Hm such that

V T
mAVm = Hm

If A is symmetric, then A = AT , implying that Hm is also symmetric. Since

Hm is both symmetric and upper Hessenberg, it must be tridiagonal. This structure

allows the Lanczos algorithm to replace Arnoldi’s general recurrence with a simplified

three-term recurrence relation [7].

Since the basis vectors v1, . . . , vm are orthonormal, we have the following relation-

ship:

V T
mAVm = V T

mHm + hm,m−1q
T
mVme

T
m = Hm

Hm = V T
mAVm = V T

mATVm = (VmAVm)
T = (Hm)

T .

This implies that Hm is also symmetric. By construction, Hm is zero below the

first subdiagonal, and since HT
m is zero above the first super-diagonal, it follows that

Hm must be tridiagonal. Given this structure, we will adopt the notation Tm to

explicitly denote the tridiagonal nature of Hm in subsequent discussions.

The Lanczos iteration constructs an orthonormal basis {v1, . . . , vm} forKm(A, v1),

satisfying the recurrence:

wj = Avj − βjvj−1,

αj = (vj, wj),
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wj = wj − αjvj,

βj+1 = ∥wj∥.

This recurrence relies only on the two most recent basis vectors, significantly re-

ducing computational complexity. Unlike Arnoldi, which requires reorthogonalization

against all previous vectors, Lanczos inherently maintains orthogonality through its

three-term recurrence in exact arithmetic, making it computationally efficient while

preserving numerical stability. Since the Lanczos method only requires storage for

three vectors at a time, it drastically reduces memory requirements compared to

Arnoldi-based approaches like GMRES, which we will discuss in Section 2.4. Conse-

quently, for symmetric systems, Lanczos provides a fast, memory-efficient alternative.

The full process is Algorithm 3 below. The symmetric Lanczos process also forms

the foundation for the MINRES method, which solves symmetric indefinite systems by

minimizing the residual norm without explicitly computing the inverse of A. While

we do not derive MINRES here, it plays an important role as iterative solvers for

least-squares problems.

Algorithm 3 Lanczos Iteration

1: Input: Symmetric A ∈ Rn×n, b ∈ Rn

2: Output: Vm+1 ∈ Rn×(m+1), Tm+1,m ∈ R(m+1)×m

3: β0 = 0, v0 = r0/∥r0∥
4: for j = 1, 2, . . . ,m do
5: wj = Avj − βjvj−1

6: αj = vTj wj

7: wj = wj − αjvj
8: βj+1 = ∥wj∥
9: vj+1 := wj/βj+1

10: end for
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2.3.2 Lanczos Bi-orthogonalization for Non-symmetric Prob-

lems

The Lanczos bi-orthogonalization procedure extends the Lanczos process to handle

non-symmetric matrices, ensuring pairwise orthogonality between two distinct sets

of vectors. Unlike the Lanczos process, which relies on a single sequence of vectors

to construct a tridiagonal matrix, the bi-orthogonalization approach generates two

sequences of bi-orthogonal vectors—one for the matrix A and another for its transpose

AT . These vectors form the basis for the reduction of A to a tridiagonal form while

maintaining numerical stability and capturing the spectral properties of the original

matrix.

Bi-orthogonalization serves as the orthogonalization mechanism, but instead of

generating a single set of orthogonal vectors, it constructs two sets of vectors, v and

w, that are pairwise orthogonal. In exact arithmetic, their product forms an identity

matrix.

The algorithm for non-symmetric matrices builds a pair of bi-orthogonal bases for

the two subspaces:

Km (A, v1) = span
{
v1, Av1, . . . , A

m−1v1
}

and

Km

(
AT , w1

)
= span

{
w1, A

Tw1, . . . ,
(
AT

)m−1

w1

}
.

The algorithm begins with two initial vectors, v1 and w1, such that:

(v1, w1) = 1.

This condition ensures that the initial vectors are properly scaled to allow the con-
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struction of bi-orthogonal bases. The algorithm initializes the process with:

β1 = δ1 ≡ 0, w0 = v0 ≡ 0.

Here, β1 and δ1 are set to zero as they represent scaling factors for nonexistent previous

iterations. Additionally, w0 and v0 are dummy variables to facilitate the recurrence

relations. In the iterative process, for j = 1, 2, . . . ,m, the algorithm performs the

following steps. First, compute the scalar αj, which represents the projection of Avj

onto wj:

αj = (Avj, wj).

Update the residual vectors v̂j+1 and ŵj+1:

v̂j+1 = Avj − αjvj − βjvj−1,

ŵj+1 = ATwj − αjwj − δjwj−1.

These residuals represent the components of Avj and ATwj that are orthogonal to

the previously computed vectors. Compute the scalar δj+1, which normalizes the

residuals:

δj+1 =
√∣∣(v̂j+1, ŵj+1)

∣∣.
If δj+1 = 0, the algorithm terminates as no further orthogonal vectors can be gener-

ated. Compute the scalar βj+1, which is used to scale the residuals:

βj+1 =
(v̂j+1, ŵj+1)

δj+1

.

Normalize the residuals to obtain the next orthogonal vectors:

wj+1 =
ŵj+1

βj+1

, vj+1 =
v̂j+1

δj+1

.



18

During the process, the algorithm builds the tridiagonal matrix Tm, which contains

the coefficients αj, βj, and δj.

Tm =



α1 β2

δ2 α2 β3

. . . . . . . . .

δm−1 αm−1 βm

δm αm


After completingm steps, the algorithm yields: A set of biorthogonal vectors, {v1, v2, . . . , vm}

and {w1, w2, . . . , wm}, such that:

(vi, wj) = δij, 1 ≤ i, j ≤ m.

Although the tridiagonal matrix Tm does not directly approximate the matrix

A, it serves as a useful tool for approximating the leading singular values of A and

stores the coefficients of the linear combination of previously computed orthonormal

basis vectors. Additionally, {vi}mi=1 is a basis for Km(A, v1), and {wi}mi=1 is a basis for

Km(A
T , w1). The following relations hold:

AVm = VmTm + δm+1vm+1e
T
m,

ATWm = WmT
T
m + βm+1wm+1e

T
m,

W T
mAVm = Tm.

The full process is Algorithm 4 below. This iterative process ensures numerical stabil-

ity and provides an efficient way to handle non-symmetric matrices in Krylov subspace

methods [13].
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Algorithm 4 Lanczos Bi-orthogonalization Procedure

1: Input: A ∈ Rn×n and b ∈ Rn

2: Output: Vm+1 ∈ Rn×(m+1), Tm

3: pick (v1, w1)=1
4: for j = 1, 2, . . . ,m do
5: αj = (Avj, wj)
6: v̂j+1 = Avj − αjvj − βjvj−1, ŵj+1 = ATwj − αjwj − δjwj−1

7: δj+1 =
√
|(v̂j+1, ŵj+1)|; If δj+1 = 0, Stop

8: βj+1 =
(v̂j+1,ŵj+1)

δj+1

9: wj+1 = ŵj+1/βj+1, vj+1 = v̂j+1/δj+1

10: Tj,j = αj, Tj,j+1 = βj+1, Tj+1,j = δj+1 (if j < m)
11: end for

Having established the foundations of Lanczos bi-orthogonalization and Arnoldi

iteration, we now turn to their applications in Krylov subspace iterative methods for

solving linear systems.

2.4 Krylov Subspace Iterative Methods

In this section, we consider Krylov subspace iterative methods, focusing on GMRES

and QMR, which utilize the Arnoldi and Lanczos bi-orthogonalization processes, re-

spectively, to efficiently approximate the solution of linear least-squares problems.

2.4.1 Generalized Minimal Residual (GMRES) Method

Starting from the Arnoldi relation developed in the previous section, we derive an

iterative method known as the Generalized Minimal Residual (GMRES) method.

GMRES constructs an approximate solution xm within the Krylov subspace by min-

imizing the residual norm at each iteration. The Arnoldi process generates an or-

thonormal basis {v1, v2, . . . , vm}, ensuring that the search space is well-conditioned

and capable of capturing multiple components of the solution rather than being dom-

inated by a single direction. This process is represented by the relation:



20

AVm = Vm+1Hm, (2.1)

where Vm = [v1, v1, . . . , vm] is an n×m+1 matrix whose columns form the orthonormal

basis for the Krylov subspace, Vm+1 extends the basis with an additional vector, and

Hm is an (m + 1) × m upper Hessenberg matrix that captures the projection of A

onto the Krylov subspace. By utilizing this structure, GMRES is able to iteratively

update the approximation.

In GMRES, the mth approximate solution xm in x0 +Km can be expressed as:

x = x0 + Vmym

Instead of searching for the minimal solution over all of Rn:

min
x∈Rn

∥b− Ax∥

we approximate the solution within the mth Krylov subspace. That is, the mth

iterate of GMRES is obtained by solving:

= min
x∈Km(A,b)

∥b− Ax∥

= min
x∈Km(A,b)

∥b− A(x0 + Vmy)∥

= min
x∈Km(A,b)

∥b− Ax0 − AVmy∥

Since the initial residual is given by r0 = b− Ax0, we can rewrite the problem as

min
x∈Km(A,b)

∥b− Axm∥ = min
y

∥r0 − AVmy∥.
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Using equation (2.1), this further simplifies to

min
y

∥r0 − Vm+1Hmy∥.

Since the initial residual can be expressed as

r0 = βv1,

where β = ∥r0∥ is the norm of the initial residual and v1 is the first vector in Vm+1,

we substitute this into the expression, yielding

min
x∈Km(A,b)

∥b− Axm∥ = min
y∈Rm

∥Vm+1(βe1 −Hmy)∥.

Since the columns of Vm+1 are orthonormal and the Euclidean norm is invariant

under orthogonal transformations, minimizing the residual is equivalent to minimizing

the projection of the residual onto the subspace spanned by the columns of Vm+1.This

can be reduced to minimizing the norm of the coefficients of the residual in this basis:

min
x∈Km

∥b− Axm∥ = min
y∈Rm

∥βe1 −Hmy∥

where y ∈ Rm is a vector of coefficients that needs to be determined. The vector βv0

corresponds to βe1, where e1 is the first unit vector in Rm+1. The minimizer ym is

inexpensive to compute since it only requires the solution of an (m + 1) × m least

squares problem, where m is typically small relative to n for ill-posed problems.

The full GMRES is Algorithm 5 below. The Arnoldi process and the orthonormal

basis Vm thus allow GMRES to build a sequence of approximate solutions xm where

at each iteration, the residual norm is minimized over an expanding Krylov subspace

[14].
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Algorithm 5 GMRES Algorithm

1: Input: A ∈ Rn×n, b ∈ Rn

2: Output: Approximate solution xm ∈ Rn ,
3: r0 = b− Ax0 , β = ∥r0∥
4: v1 =

r0
β

5: for j = 1, 2, . . . ,m do
6: Compute wj = Avj
7: for i = 1, 2, . . . , j do
8: hi,j = vTi wj

9: wj = wj − hi,jvi
10: end for
11: hj+1,j = ∥wj∥
12: Solve min ∥βe1 −Hy∥ for y
13: xj = x0 + Vjy
14: end for

2.4.2 Quasi-Minimal Residual (QMR) Method

Having established the Lanczos bi-orthogonalization process in the previous section,

we now turn to its application in iterative solvers. One such method is the quasi-

minimal residual (QMR) algorithm, which use the bi-orthogonal basis generated by

Lanczos bi-orthogonalization to approximate solutions to non-symmetric linear least-

squares problems.

With the bi-orthogonal bases {v1, v2, . . . , vm} and {w1, w2, . . . , wm} constructed

using the Lanczos bi-orthogonalization process, the QMR method approximates the

solution xm using the first of these two subspaces. Historically, QMR has been used

to solve a pair of coupled systems [13]. Here, we focus on this basis for simplicity,

while a corresponding relation holds for the other basis Wm.

Km (A, v1) = span
{
v1, Av1, . . . , A

m−1v1
}

Km

(
AT , w1

)
= span

{
w1, A

Tw1, . . . ,
(
AT

)m−1

w1

}
.
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Unlike GMRES, which maintains an orthonormal basis through the Arnoldi iteration,

the Lanczos bi-orthogonalization process generates two sets of bi-orthogonal vectors.

While these vectors are only pairwise orthogonal, they provide a stable approximation

framework. This process is expressed through the relationship:

AVm = Vm+1Tm,

ATWm = Wm+1T
T
m,

where Vm = [v1, v2, . . . , vm] consists of one of the biorthogonal basis sets generated

by the Lanczos biorthogonalization process, and Vm+1 extends the subspace with an

additional vector. The matrix Tm is an (m+ 1)×m tridiagonal matrix representing

the projection of A onto the Krylov subspace. The matrix Tm is an (m + 1) × m

tridiagonal matrix representing the projection of A onto the Krylov subspace.

In QMR, the mth approximate solution xm in x0 +Km can be expressed as:

xm = x0 + Vmym.

Rewriting the residual minimization problem:

= min
x∈Km(A,v1)

∥b− Ax∥,

= min
x∈Km(A,v1)

∥b− A(x0 + Vmy)∥,

= min
x∈Km(A,v1)

∥b− Ax0 − Vm+1Tmy∥.

(2.2)

Since the initial residual is r0 = b− Ax0, we may rewrite the problem as:

min
x∈Km(A,v1)

∥b− Ax∥ = min
x∈Km(A,r0)

∥r0 − AVmy∥.
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Using the Lanczos relation AVm = Vm+1Tm, we obtain:

min
x∈Km(A,r0)

∥r0 − Vm+1Tmy∥.

Since

r0 = βv1,

where β = ∥r0∥ is the norm of the initial residual, and v1 is the first vector in Vm+1.

Substituting this into the expression we obtain:

min
y∈Rm

∥Vm+1(βe1 − Tmy)∥.

Unlike GMRES, where the basis vectors are orthonormal, in QMR, Vm+1 consists of

biorthogonal vectors, not orthonormal ones. Despite this, we assume that the norm

is approximately invariant under the transformation Vm+1, allowing us to minimize

the projected residual at mth iteration:

min
y∈Rm

∥βe1 − Tmy∥,

where y ∈ Rm is a vector of coefficients that needs to be determined. The vector

βv1 corresponds to βe1, where e1 is the first principle unit vector in Rm+1, and the

minimizer ym can be computed efficiently by solving an (m + 1) × m least-squares

problem.

The Lanczos bi-orthogonalization process and the bi-orthogonal basis Vm allow

QMR to build a sequence of approximate solutions xm that minimize the within the

expanding Krylov subspace. The full process is Algorithm 6 below. While it does

not maintain strict orthogonality, QMR still provide an efficient iterative method for

solving non-symmetric linear systems [5].
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Algorithm 6 QMR Algorithm

1: Input: A ∈ Rn×n, b ∈ Rn

2: Output: xm ∈ Rn

3: r0 = b− Ax0, β = ∥r0∥, v1 = r0/β
4: Choose w1 such that (w1, v1) = 1
5: V = v1, W = w1, T
6: for j = 1, 2, . . . ,m do
7: αj = (wj, Avj), r̂j = Avj − αjvj − βjvj−1

8: βj+1 = ∥r̂j∥, if βj+1 < ϵ, break
9: vj+1 = r̂j/βj+1

10: wj+1 = ŵj+1/βj+1, vj+1 = v̂j+1/δj+1

11: V = [V, vj+1], W = [W,wj+1], T
12: min ∥βe1 − Tmym∥
13: xm = x0 + Vmym
14: end for

Building on this foundation, the next chapter delves into range restricted Krylov

subspace methods and explores how range-restricted approaches improve accuracy.
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Chapter 3

Range Restricted Krylov Subspace

Methods

Traditional Krylov subspace methods, such as GMRES and QMR, approximate so-

lutions within a subspace generated by the noisy right-hand side of an ill-conditioned

system. While early iterations may provide reasonable approximations, prolonged

iterations inevitably amplify errors into the computed solution, especially in ill-posed

problems. To mitigate these issues, range restricted Krylov methods constrain the

iterates to a subspace that better aligns with the problem’s inherent structure. This

chapter investigates the theoretical foundations and practical implementation of range

restricted GMRES and range restricted QMR, which operate within a constrained

Krylov subspace. We investigate the mathematical properties of these approaches,

derive efficient algorithms, and examine their effectiveness in solving ill-posed prob-

lems.
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3.1 Krylov Subspace Range Restriction

In solving large and ill-posed linear systems of the form

min
x

∥b− Ax∥ (3.1)

To address the challenges posed by noise amplification in ill-conditioned systems, we

explore a range restricted approach where the search for an approximate solution is

constrained to a subspace that better captures the structure of the problem. Specifi-

cally, rather than generating iterates in the standard Krylov subspace

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b},

we propose to restrict the iterates to the subspace

Km(A,Ab) = span{Ab,A2b, . . . , Amb}.

Instead of directly looking for a solution in the space spanned by the repeated appli-

cation of A to b, which contains noise and measurement errors, we acknowledge that

a more precise solution can be distorted and degraded due to the ill-conditioning of

the problem. This motivates us to instead work in a space that is already distorted

in a structured manner, specifically the range of A.

Instead of directly looking for a solution in the space spanned by the repeated

application of A to b, which contains noise and measurement errors, we acknowledge

that the true solution might be inherently blurred or smooth. This motivates us to

instead work in a space that is naturally smoothed, specifically the range of A. When

the signal or image we wish to recover is smooth, and the forward operator A acts

as a smoothing operator, it can be more appropriate to search for a solution within

a space whose vectors exhibit similar smoothness, aligning naturally with how the
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data is processed. By using the Krylov subspace generated from Ab instead of b,

we maintain focus on a more physically meaningful space that represents a better

approximation to the true solution without amplifying unwanted noise [3].

This shift in the Krylov subspace can be formally expressed as

AKm(A, b) = Km(A,Ab),

which ensures that the iterates remain in Krylov subspace. Furthermore, A natu-

rally filters out high-frequency noise in b, making its range a more stable space for

reconstruction.

The key advantage of this range restricted approach becomes evident in applica-

tions such as image reconstruction, where the matrix A represents a blurring operator.

However, the effectiveness of this method depends on the nature of the image being

reconstructed. For images with smooth transitions, recovering the solution in the re-

stricted Krylov subspace is often more precise than in the standard Krylov subspace.

By shifting the solution space to Km(A,Ab), we help to ensure that iterates remain

within the smooth structure imposed by the blurring operation itself, leading to more

stable and visually coherent reconstructions. This property is particularly effective

when dealing with smoother images. However, for images with sharp transitions, such

as a night sky with bright stars against a dark background, this approach may not be

as suitable, as the imposed smoothness could lead to undesirable softening of sharp

edges.

Applying this range restricted technique to GMRES and QMR, we can analyze

how it affects convergence behavior and numerical stability. By modifying the search

subspace, we aim to improve the accuracy of computed solutions, particularly in

applications where A arises from ill-posed problems such as image reconstruction.
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3.2 The Range Restricted GMRES Method

In the range restricted GMRES method, we explore whether constraining the solution

search space to K(A,Aℓb) improves solution quality. The parameter ℓ defines how

many times the space shifted, effectively determining the depth of the transformation

applied to the right-hand side. For instance, with ℓ = 1, the method searches in the

space spanned by Ab and A, which aligns with the natural range of A, potentially

filtering out noise in the null space of A. With ℓ = 2, the space further shifts to

the subspace spanned by A and A2b, reinforcing a preference for smoother solutions

while still incorporating higher-order effects of the forward operator. Unlike stan-

dard GMRES, which minimizes the residual norm in the Krylov subspace K(A, b),

this modification ensures iterates remain within a shifted subspace, leveraging the

properties of A to improve stability and mitigate noise amplification [1].

We recall the Arnoldi decomposition:

AVm = Vm+1Hm, (3.2)

where Vm+1 has orthonormal columns and Hm is an upper Hessenberg matrix. Using

the QR factorization of Hm,

Hm = Q
(1)
m+1R

(1)
m , (3.3)

whereQ
(1)
m+1 ∈ Rm×m is an orthogonal matrix andR

(1)
m ∈ R(m+1)×m is upper triangular,

we define:

W (1)
m = Vm+1Q

(1)
m+1

From (3.2) and (3.3), it follows that

W (1)
m = Vm+1Q

(1)
m+1 = AVm(R

(1)
m )−1.
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Using the Arnoldi relation gives:

AVm(R
(1)
m )−1 = Vm+1Q

(1)
m+1,

implying that the columns of W
(1)
m span K(A,Ab). Since Vm already spans K(A, b),

we obtain:

AVm = AK(A, b) = K(A,Ab).

In the case of 2 shifts, we present a brief overview of the 2-shifted GMRES method.

The matrix W
(2)
p is defined as the first p columns of Vp+2Q

(2)
p+2. In the case of a 2-shift,

the relation

W (2)
m = AW (1)

m

(
R(2)

m

)−1

(3.4)

follows from (3.4) and ensures that the column space of W
(2)
p corresponds to the

shifted Krylov subspace K(A,A2b), effectively incorporating the second shift into the

iterative framework. To generalize this to ℓ-shifts, we recursively define:

W (ℓ)
m = AW (ℓ−1)

m (R(ℓ)
m )−1,

which ensures that the columns of W
(ℓ)
m span K(A,Aℓb). Here, ℓ can be any positive

integer.

In the case of more than one shift, successive QR factorizations play a crucial

role in the algorithm. They ensure that the columns remain orthonormal, forming a

well-conditioned basis for the subspace, while also guaranteeing that the span of the

vectors used in the computation accurately represents the restricted Krylov subspace

of interest. Additionally, QR factorizations provide a natural algorithmic framework

for implementing these numerical methods effectively. These factorizations are es-

sential for preserving numerical stability and enabling a structured and interpretable
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iterative process [11].

Each step involves computing a new factorization:

Hm+ℓ+1,m+ℓQ
(ℓ)
m+ℓ,m = Q

(ℓ+1)
m+ℓ+1R

(ℓ+1)
m+ℓ+1,m, (3.5)

whereQ
(ℓ+1)
m+ℓ+1 ∈ R(m+ℓ+1)×(m+ℓ+1) is an orthogonal matrix andR

(ℓ+1)
m+ℓ+1,m ∈ R(m+l+1)×m

is upper triangular. This stepwise factorization ensures that each transformation

aligns the new basis with the shifted Krylov subspace and prevents loss of orthog-

onality due to rounding errors. The recursive structure of these QR factorizations

allows efficient computation while preserving the structure of the projected system.

The minimization problem is then formulated as:

min
x∈Km(A,Aℓb)

∥Ax− b∥ = min
y∈Rm

∥AW (ℓ)
m y − b∥.

Expressing the solution in terms of y,

min
y

∥AVm+ℓQ
(ℓ)
m+ℓy − b∥,

and using equation (3.2) and further QR factorizations (3.5), we obtain:

min
y

∥Vm+ℓ+1Hm+ℓQ
(ℓ)
m+ℓy − b∥

min
y

∥Vm+ℓ+1Q
(ℓ+1)
m+ℓ+1R

(ℓ+1)
m y − b∥.

Since the 2-norm is preserved under orthogonal transformations, this reduces to

solving a smaller system:

min
y

∥R(ℓ+1)
m y − β(Q(ℓ+1)

m )T e1∥.

This reduced system is relative easy to solve, since R
(ℓ+1)
m is upper triangular,
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allowing efficient back-substitution. The final solution is given by

x(ℓ+1)
m = V (ℓ+1)

m ym.

The full process is Algorithm 7 below. The range restricted GMRES method

provides an approach to solving ill-conditioned linear systems while ensuring iterates

remain in K(A,Aℓb), improving numerical stability. This adjustment retains the

efficiency of GMRES, making it particularly useful for solving ill-posed problems [1].

Algorithm 7 Range Restricted GMRES

1: Input: A ∈ Rn×n, b ∈ Rn, and ℓ ∈ {1, 2, 3, . . .}
2: Outputx

(ℓ)
m ∈ Rn

3: v1 = b/∥b∥ and x
(ℓ)
0 = 0

4: for i = 1, 2, . . . , ℓ do
5: AVi = Vi+1Hi+1,i

6: end for
7: for m = 1, 2, . . . do
8: AVℓ+m = Vℓ+m+1Hℓ+m+1,ℓ+m

9:

[
Q

(1)
m+1, R

(1)
m+1,m

]
= Hm+1,m

10: for j = 1, 2, . . . , ℓ do

11:

[
Q

(j+1)
j+m+1, R

(j+1)
j+m+1,m

]
= Hj+m+1,j+mQ

(j)
j+m,m

12: end for

13: min y

∥∥∥∥R(ℓ+1)
ℓ+m+1,my − ∥bδ∥

(
Q

(ℓ+1)
ℓ+m+1

)T

e1

∥∥∥∥
14: x

(ℓ)
m = Vℓ+mQ

(ℓ)
ℓ+m,my

(ℓ)
m

15: end for

3.3 The Range Restricted QMR Method

In the range restricted QMR method, we explore whether restricting the solution

search to the modified subspace K(A,Aℓb) enhances solution accuracy. Unlike the

standard QMRmethod, which operates inK(A, b), this approach ensures that iterates

remain within shifted subspace.

While QMR is designed to solve non-symmetric systems using the Lanczos bi-
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orthogonalization process, the range restriction modifies the underlying subspace in a

manner analogous to range restricted GMRES. If the same shift parameter is applied,

the subspace remains consistent across both methods. However, as with standard

QMR, this approach requires access to both A and its transpose AT , which may not

always be explicitly available, limiting its applicability in certain contexts.

Recall the relationship derived from the Lanczos bi-orthogonalization:

AVm = Vm+1Tm. (3.6)

Then, we introduce the QR decomposition:

Tm = Q
(1)
m+1R

(1)
m , (3.7)

where Q
(1)
m+1 ∈ R(m+1)×(m+1) has orthonormal columns, R

(1)
m ∈ R(m+1)×m is upper

triangular, and T ∈ R(m+1)×m is a tridiagonal matrix. We define a matrix:

W (1)
m = Vm+1Q

(1)
m+1

Using the equation (3.6) and (3.7)

W (1)
m = AVm(R

(1)
m )−1,

we obtain the key relationship:

AVm = Vm+1Tm+1 = Vm+1Q
(1)
m+1R

(1)
m .

Multiplying both sides by (R
(1)
m )−1 gives:

AVm(R
(1)
m )−1 = Vm+1Q

(1)
m+1,
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which implies that W
(1)
m spans K(A,Ab). Since the columns of Vm span K(A, b), we

conclude:

AVm = AK(A, b) = K(A,Ab).

To generalize this to ℓ shifts, we recursively define:

W (ℓ)
m = AW (ℓ−1)

m (R(ℓ)
m )−1,

which ensures that the columns of W
(ℓ)
m span K(A,Aℓb).

We present a brief overview of the 2-shifted QMR method. Similar to GMRES,

the matrix W
(2)
m is defined as the first m columns of Vm+2Q

(2)
m+2. However, in QMR,

the Lanczos bi-orthogonalization process generates a tridiagonal matrix T instead of

the Hessenberg structure in GMRES. In the case of a 2-shift, the relation

W (2)
m = AW (1)

m

(
R(2)

m

)−1

follows from (3.10) and ensures that the column space of W
(2)
m corresponds to the

shifted Krylov subspace K(A,A2b).

Successive QR factorizations are required to maintain numerical stability, leading

to:

Tm+ℓQ
(ℓ)
m+ℓ = Q

(ℓ+1)
m+ℓ+1R

(ℓ+1)
m ,

where Q
(l+1)
m+l+1 is an orthogonal matrix and R

(l+1)
m is upper triangular. This ensures

that each transformation aligns the new basis with the shifted Krylov subspace, pre-

venting loss of orthogonality due to rounding errors.

For multiple shifts, additional QR factorizations are necessary at each shift level

to maintain numerical stability. Each shift increases the dimension of the Krylov
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subspace, necessitating repeated QR factorizations:

Tm+ℓ+1,m+ℓQ
(ℓ)
m+ℓ,m = Q

(ℓ+1)
m+ℓ+1R

(ℓ+1)
m+ℓ+1,m.

These additional QR steps ensure that each successive shift remains orthonormalized

while mitigating numerical instabilities that arise from higher shifts.

The minimization procedure follows:

min
x∈Km(A,Aℓb)

∥Ax− b∥ = min
y∈Rm

∥AW (ℓ)
m y − b∥.

Rewriting in terms of y:

min
y

∥AVm+ℓQ
(ℓ)
m+ℓy − b∥.

Using relationships from biorthogonalization and QR factorization:

min
y

∥Vm+ℓ+1Tm+ℓQ
(ℓ)
m+ℓy − b∥,

min
y

∥Vm+ℓ+1Q
(ℓ+1)
m+ℓ+1R

(ℓ+1)
m y − b∥.

Since the norm is invariant under orthogonal transformations:

min
y

∥R(ℓ+1)
m y − β(Q(ℓ+1)

m )T e1∥,

which reduces to solving a smaller system.

The full process is Algorithm 8 below. The range restricted QMR method provides

a structured framework for solving ill-conditioned linear systems while maintaining

iterates in the more meaningful subspace K(A,Aℓb). By ensuring that iterates re-

main within the range of A, we reduce the effect of noise amplification and improve

numerical stability. This modification retains the efficiency and accuracy of QMR for
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solving ill-posed problems [1].

Algorithm 8 Range Restricted QMR (ℓ ≥ 1)

1: Input: A ∈ Rn×n, b ∈ Rn, and ℓ ∈ {1, 2, 3, . . .}
2: Output: x

(ℓ)
m ∈ Rn

3: v1 = b/∥b∥ and x
(ℓ)
0 = 0

4: for i = 1, 2, . . . , ℓ do
5: AVi = Vi+1Ti+1,i

6: end for
7: for m = 1, 2, . . . do
8: AVℓ+m = Vℓ+m+1Tℓ+m+1,ℓ+m

9:

[
Q

(1)
m+1, R

(1)
m+1,m

]
= Tm+1,m

10: for j = 1, 2, . . . , ℓ do

11:

[
Q

(j+1)
j+m+1, R

(j+1)
j+m+1,m

]
= Tj+m+1,j+mQ

(j)
j+m,m

12: end for

13:

∥∥∥∥R(l+1)
ℓ+m+1,my − ∥b∥

(
Q

(ℓ+1)
ℓ+m+1

)T

e1

∥∥∥∥
14: x

(ℓ)
m = Vℓ+mQ

(ℓ)
ℓ+m,my

(ℓ)
m

15: end for
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Chapter 4

Numerical Experiments

This chapter presents numerical experiments that demonstrate the effectiveness of

range restricted QMR in solving ill-posed linear systems. We compare the perfor-

mance of traditional QMR, GMRES, range restricted GMRES and range restricted

QMR in terms of stability, convergence behavior, and accuracy. The experiments

cover a range of test problems, including one-dimensional and two-dimensional in-

verse problems to illustrate how restricting the solution space can enhance numerical

robustness. By analyzing relative error, residual norms, and singular value behavior,

we provide insights into the potential benefits of range restricted QMR in applications.

4.1 Preliminaries

In this section, we outline the key evaluation criteria and test problems used in our

numerical experiments. We describe the discrepancy principle, which will serve as

the algorithmic stopping criterion, metrics for solution evaluation, and the specific

test cases considered in both one-dimensional and two-dimensional settings. We add

Gaussian white noise to the blurred image with noise levels of 1%, 0.5%, and 0.1%.

These preliminaries establish the framework for the results presented in subsequent

sections.



38

4.1.1 Termination Criterion: Discrepancy Principle

The discrepancy principle is a widely used stopping criterion in iterative methods for

solving ill-posed linear systems, particularly when an estimate of the upper bound of

the noise level is available [10]. The principle is based on the assumption that the

user has some knowledge of the norm of the noise contaminating the right-hand side

of the linear system, given by

∥e∥ ≤ ϵ.

Since the goal is to minimize the residual in a least squares problem, it is natural to

avoid reducing the residual norm below this noise level. Instead, the iteration should

stop when the residual norm falls below ϵ η, where η > 1 is a safety factor to account

for uncertainties in the noise estimate. This prevents over-solving to the noise and

ensures a precise approximate solution.

Given that the true solution x satisfies the linear system of equations, in an ideal

scenario,

Ax = b,

but the right-hand side b is contaminated by an error e, leading to the perturbed

system:

Ax = b = bexact + e,

the goal is to approximate x using iterative methods that minimize the residual while

accounting for the noise in b. The discrepancy principle provides a way to stop the

iterative process when the residual reaches a level consistent with the noise bound.

The discrepancy principle prescribes that an iterative method should be termi-

nated once an iterate xm is found such that the residual satisfies the discrepancy

principle, ensuring that the solution xm is sufficiently accurate without overfitting

the noisy data b by enforcing the stopping criterion
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∥Axm − b∥ ≤ ϵ η,

where ϵ is a known bound on the error norm ∥e∥ ≤ ϵ, and η > 1 is a user-specified

parameter that controls how closely the residual matches the noise level. Typically,

η is chosen slightly larger than 1 (e.g. 1.01) to allow some flexibility.

4.1.2 Solution Evaluation: Relative Residual

The relative residual quantifies the discrepancy between the observed vector b and

the product Ax, normalized by dividing the norm of b. It is defined as:

∥b− Ax∥
∥bexact∥

A smaller relative residual indicates that Ax closely approximates b, suggesting a

better fit to the observed data. However, for ill-posed problems, a small residual in

ill-conditioned linear systems or least-squares problems does not necessarily imply

a good solution, especially in the presence of round-off errors and inverted noise.

Despite this limitation, the residual norm can still serve as a useful reference for

discrepancy principle.

4.1.3 Solution Evaluation: Relative Error

The relative error measures the difference between the approximate solution x and

the true solution xtrue, normalized by dividing the norm of xtrue. It is defined as:

∥xtrue − x∥
∥xtrue∥

where xtrue is the exact solution vector and x is the approximate solution vector. A

smaller relative error indicates that x is closer to xtrue, meaning the approximation
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is more accurate. In practice, the true solution xtrue is not known, so the relative

error cannot be computed directly. However, it serves as a measure of accuracy for

algorithm development and can also be used to evaluate convergence behavior.

4.2 1D and 2D Problems Considered

The problems discussed in this thesis are one-dimensional (1D) and two-dimensional

(2D) in nature, and come from both integral equations and image deblurring prob-

lems.

4.2.1 1D Problems

The 1D problems considered here arise from the discretization of Fredholm integral

equations of the first-kind using numerical techniques such as the Nyström method

with the trapezoidal rule. These include:

Phillips: This problem is based on the Fredholm integral equation of the first

kind, as discussed by D. L. Phillips [12]. The kernel function K(s, t), solution f(t),

and right-hand side g(s) are defined using a function ϕ(t) that incorporates cosine

components and piecewise conditions. This is an ill-posed problem.

Shaw: This problem models one-dimensional image restoration through a Fred-

holm integral equation due to Shaw [15]. The kernel is defined as a function of sine

and cosine terms, and the solution consists of a sum of Gaussian functions. This

setup simulates the blurring effects encountered in image processing applications and

serves as a test case for regularization techniques.

4.2.2 2D Problems

The 2D problems only focus on image deblurring, where the observed image is a

blurred version of an original image, and the goal is to reconstruct the original image.
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2D image blurring problems are modeled as a linear discrete inverse problem that can

become very large [6].

The problem of image deblurring involves solving a linear system where the blur-

ring operator, often modeled using a Gaussian point spread function (PSF), is rep-

resented as a matrix A. Other cases, such as motion blur, rotational blur, and at-

mospheric turbulence, requiring specialized restoration techniques. We use IRtools

[6] to generate and test these problems. Both 1D and 2D problems serve as essential

benchmarks in numerical analysis and inverse problems, allowing for the evaluation

of iterative regularization methods and numerical solvers.

4.3 Numerical Results

In this section, we apply the preliminaries and problem formulations discussed earlier

to evaluate the performance of the algorithms investigated in the previous chapters.

Through numerical experiments, we analyze their stability, accuracy, and convergence

behavior.

4.3.1 Shifted VS. Non-Shifted: GMRES and QMR

For this experiment, we set the size of the prbolem to be n = 2000 and used the

Phillips problem with 1% noise.

Figure 4.1: Visualization of the Phillips test problem. Left: True image xtrue. Middle:
Right-hand side b. Right: Noisy right-hand side b.
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Figure 4.2: Comparison of relative reconstruction error for different methods. Left:
Error comparison. Right: Residual comparison.

From Figure 4.2, we observe that applying range restriction significantly improves

the performance of both QMR and GMRES. While the residuals remain similar across

methods, the error is noticeably lower when restriction is applied, implying a better

recovery of the true solution. In the multi-shift case, 2-shift GMRES outperforms

1-shift GMRES, indicating that additional shifts can help further enhance solution

accuracy. However, for QMR, 2-shift does not show a notable improvement over 1-

shift, suggesting a difference in how the shifts impact the two methods. This warrants

further exploration. The full table is given blow.

Noise Level GMRES 1-shift QMR 2-shift QMR QMR 1-shift GMRES 2-shift GMRES
0.1% 1.68e-02 9.91e-03 8.22e-03 1.64e-02 9.91e-03 8.22e-03
0.5% 5.79e-02 2.39e-02 2.50e-02 5.79e-02 2.39e-02 2.50e-02
1.0% 1.03e-01 2.51e-02 2.49e-02 1.03e-01 2.52e-02 2.49e-02

Table 4.1: Relative reconstruction error for various solvers and noise levels.

4.3.2 QMR Shift Comparison

We analyze the effect of different shift values in QMR on the non-symmetric Philips

problem. The graphs below correspond to the case with 5% noise.
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Figure 4.3: Residual (left) and error (right) comparison of QMR with 0, 1, 2, and 3
shifts under 5% noise.

To further quantify the performance of different shifts, we compare the final error

values for various noise levels.

Noise Level standard QMR 1-shift QMR 2-shift QMR 3-shift QMR

0.5% 1.748e-01 6.88e-02 5.10e-02 5.76e-02

1.0% 1.748e-01 1.15e-01 5.86e-02 4.97e-02

5.0% 3.209e-01 1.68e-01 1.70e-01 1.69e-01

Table 4.2: Comparison of final errors for different QMR shifts.

We compare different shift values in QMR, ranging from 0 (standard QMR) to

1, 2, and 3 shifts. The final errors indicate that shifted QMR outperforms standard

(0-shift) QMR. However, beyond the first shift, there is no significant improvement

in error reduction.

We observe that the 0-shift case has the lowest relative residual but also the

highest relative error, demonstrating that a lower residual does not guarantee bet-

ter reconstruction quality. Additionally, the number of shifts does not significantly

impact QMR’s performance, but increasing shifts requires more computation and

storage. Without a specific reason to use multiple shifts, 1-shift QMR is likely the

most practical choice for most situations.
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4.3.3 Performance Under Uncertain Error Norm Bound

As discussed in the discrepancy principle section (4.1.1), a known noise level is re-

quired for it to function as optimally as possible. However, in practice, the true

noise level may not always be accurately estimated. If the noise level is underesti-

mated, the stopping criterion may not be triggered at the appropriate time, leading

to over-iteration and potential amplification of noise. To illustrate this, we consider

a scenario where the noise level is mistakenly assumed to be 0.01%, while the actual

noise level is 1%. Without an accurate estimate, the discrepancy principle fails to stop

the iteration properly, leading to excessive iterations and degraded solution quality.

Figure 4.4: Comparison of residual (left) and error (right) behavior for underestimate
noise.

In the left of Figure 4.4, the error decreased first, and went up again. It increases

as iterations progress, highlighting the semi-convergent nature of these solvers. The

graph reveals that QMR and 1-shift QMR exhibit better semi-convergence behav-

ior, achieving lower errors compared to GMRES and 1-shift GMRES, despite their

residuals remaining similar.

Recall that in our methods, GMRES constructs an upper Hessenberg matrix Hm

to approximate A, while QMR builds a tridiagonal matrix Tm after m steps. In

Chapter 1, we introduced the concept of inverted noise, where the rapid decay of
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singular values amplifies errors in the solution. If the singular values of Hm or Tm

decay more slowly, the impact of inverted noise may be less severe. To explore this

idea, we compare the singular value decay of Hm and Tm for different shift.

Figure 4.5: Comparison of Singular Value Decay in Tm from QMR and Hm from
GMRES for different shift values.

From the graph above, we observe the singular values of QMR and GMRES for

different shift values. Here, “1” represents no shift, “2” corresponds to one shift, and

“3” denotes two shifts. For all GMRES cases, we decompose the upper Hessenberg

matrix Hm, while for all QMR cases, we decompose the tridiagonal matrix Tm.

We note that in the QMR framework, we do not directly decompose Tm, but

rather use the upper triangular matrix R from the QR factorization of Tm, Tm = QR,

to approximate the spectral behavior of A. We observe that the singular values of Tm

decay significantly slower than those of Hm from GMRES. This aligns with our earlier

discussion, where we established that both Tm and Hm serve as approximations to

the original matrix A. The slower decay of singular values in the QMR case suggests

a reduced effect of inverted noise, which may explain the improved semi-convergence

behavior of QMR.

In the situation of underestimating noise level, the range restricted QMR method

performs better than both GMRES and the range restricted GMRES method. When

the noise level is underestimated, iterative algorithms tend to over-iterate in an at-
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tempt to solve the problem. Under such conditions, the ℓ-shifted QMR method may

guarantee a lower error.

4.3.4 2D problem: Image Deblurring

In this experiment, we perform image deblurring with 1% noise. The first image con-

sists of six sub-images: the original image, the noisy image, and four reconstructions

using different solvers.

Figure 4.6: Comparison of image deblurring results. The first two images show the
true and noisy images. The remaining four images represent reconstructions using
GMRES, QMR, range restricted GMRES(1 shift), range restricted QMR(1 shift) .

From this figure, we observe that the images recovered using 1-shift QMR and

1-shift GMRES are closer to the original image. These methods effectively balance

sharpness and smoothness better than standard GMRES and QMR. To further ana-

lyze solver performance, we examine the residual and error plots.
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Figure 4.7: Comparison of residual (left) and error (right) behavior for different solvers
in the image deblurring task.

The error plots confirm our visual observations. Range restricted QMR and GM-

RES consistently yield lower errors than their standard counterparts. However, when

comparing shifted QMR and shifted GMRES, no significant difference in error reduc-

tion is observed. To quantify these observations, we summarize the final error values

at different noise levels in the table below.

Noise Level GMRES 1-shift QMR QMR 1-shift GMRES

0.5% 2.42e-01 2.05e-01 2.42e-01 2.05e-01

1.0% 2.71e-01 2.13e-01 2.71e-01 2.13e-01

5.0% 3.09e-01 2.34e-01 3.09e-01 2.34e-01

Table 4.3: Comparison of final errors for different solvers in image deblurring.

The results indicate that 1-shift QMR and 1-shift GMRES produce better recon-

structed images than their non-shifted counterparts, effectively balancing sharpness

and smoothness. Shifted solvers consistently achieve lower errors compared to their

unshifted versions, demonstrating the advantage of incorporating range restrictions in

image deblurring. However, no significant difference is observed between shifted QMR

and shifted GMRES in terms of final error, suggesting that both approaches bene-

fit similarly from the shift technique. This analysis confirms that shifting improves

solver performance, leading to better image reconstructions and reduced errors.
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Chapter 5

Concluding Remarks

In this work, we investigated Krylov subspace iterative methods for solving ill-posed

inverse problems. Our primary focus was on the GMRES and QMR methods. We

then explored a range restricted variant of QMR and its comparison with range re-

stricted GMRES.

Our findings show that the range-restricted QMR method, which incorporates the

range-restriction technique, outperforms both standard QMR and GMRES in solving

ill-posed problems. Notably, it demonstrates improved semi-convergence behavior,

making it particularly effective in scenarios where the noise is uncertain.

A key advantage of range restricted QMR is its robustness in cases where noise

levels are uncertain or underestimated. In such situations, non-restricted methods

may continue iterating beyond the optimal stopping point, leading to overfitting to

noise. The range restricted QMR addresses this issue by the nature of its tridiagonal

matrix Tm, thereby offering a more stable and reliable solution approach for ill-posed

problems.
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