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Abstract 

 

Three Essays in Mutual Funds 

By Chandra Sekhar Mangipudi 

 

My dissertation is focused on understanding the investment decisions of retail investors in the 

mutual funds market. In the first essay, I find that levels of purchases and redemptions are higher 

at the turn of the year, i.e. December and January, compared to other months. In tests studying the 

role of distribution channel on these patterns, I find that broker-sold funds experience a pull in 

purchases from January to December of previous year compared to direct-sold funds. This is 

consistent with the incentives selling brokers in the distribution channel to meet their annual sales 

quotas. In tests studying the role of tax-loss selling, I find that higher redemptions in December 

are concentrated in funds with poor performance but are not systematically different in years with 

negative and positive aggregate market returns. In the second essay co-authored with Narasimhan 

Jegadeesh, we investigate the validity of the claim in the recent literature that fund flows reveal 

the true asset pricing model. Based on the finding that market model alphas are stronger predictors 

of mutual fund flows than alphas with other models, Berk and van Binsbergen (2016) claim that 

CAPM is the best asset pricing model but Barber, Huang and Odean (2016) (BHO) claim it is 

evidence against investor sophistication. We evaluate the merits of these mutually exclusive 

interpretations. We show, theoretically and through simulations, that inference about the true asset 

pricing model is not tenable. The rejection of investor sophistication is tenable, but the appropriate 

benchmark to judge sophistication is different from the one that BHO use. In the third essay, I 

study the revealed preferences of equity mutual fund investors to examine the horizon of past 

performance that matters for buying and selling decisions separately. I find that current buying and 

selling decisions are sensitive to 52 and 37 months of past performance respectively. I compare 

the ability of long-horizon information in identifying superior funds next period with that of a 

simple metric such as prior one-month net return. The performance of portfolios formed using 

these two information sets indicates that investors’ dependence on long horizons of performance 

is not optimal. 
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at the turn of the year, i.e. December and January. My results indicate that levels of purchases and 

redemptions are higher at the turn of the year compared to other months. I study the role of 

distribution channel and tax-loss selling on these seasonal patterns. Intermediaries such as selling 

brokers in the distribution channel of a fund can influence the timing of purchases at the turn of 

the year due to their compensation incentives for meeting annual sales quotas. Compared to direct-

sold funds, broker-sold funds experience a shift in purchases from January of next year to the 

December of current year. Higher redemptions in December are concentrated in funds with poor 

performance but are not systematically different in years with negative and positive aggregate 

market returns. 
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1. Introduction 

Mutual funds are an important avenue for retail investors to access the equity markets. The ICI 

fact book for 2019 reports that 44% of the households in the United States hold mutual funds and 

that 88% of such households own equity mutual funds. Accordingly, the criteria investors use to 

select funds and the factors that influence these choices are studied widely in the literature on fund 

flows. In this paper, I study the timing aspect of investor flows in equity mutual funds. The central 

aim of this paper is to understand if investors in equity mutual funds are more likely to transact at 

certain times of the year and the role of distribution channel on these timing decisions. From a 

consumer finance perspective, this study complements the earlier literature which focuses on the 

fund selection decisions of households. 

Flows in mutual funds are a result of the cumulative preferences of investors, fund managers, 

and intermediaries such as financial brokers through which investors make their transactions. 

These factors can also play a role in impacting the timing of flows into funds within a year, both 

in systematic and idiosyncratic ways. In this paper, I focus on the turn of the year which yields 

specific testable hypotheses for the trading outcomes based on the behavior of investors and the 

incentives of intermediaries. For instance, if investors’ trades in equity mutual funds are impacted 

by tax-loss selling or holiday-liquidity motives at the year-end, fund flows at this time would be 

systematically different. The incentives of selling brokers of funds can also impact the timing of 

flows in funds that are sold through brokers. If the selling brokers service their own interests in the 

form of quota related bonuses at year-end, this can result in altering the timing of flows between 

the months of December and January and can lead to systematic differences between funds with 

and without selling brokers. I explore the implications of these factors on equity mutual fund flows 

in December and January. 



3 
 

Understanding the timing of flows is important from a practitioner standpoint to the fund 

management. It is well-established that abnormal fund flows impose externalities on portfolio 

performance through forced sales and liquidity costs (Chordia, 1996; Edelen, 1999; Coval and 

Stafford, 2007; Alexander, Cici, and Gibson, 2007 etc.) Therefore, identifying if investors have 

systematically higher propensity to trade at certain times can help funds manage their portfolios 

more efficiently. Studying flow decisions at the turn of the year are also important from a 

theoretical perspective for the literature on mutual fund tournaments (Brown, Harlow, and Starks,  

1996; Chevalier and Ellison, 1997; Basak, Pavlova, and Shapiro, 2007; Schwarz, 2012 etc.) In 

these studies, flows from investors towards the end of the year hold special significance for the 

compensation incentives of fund managers. Hence, investor behavior in funds at the turn of the 

year and the factors that impact it such as the role of intermediaries have direct implications for 

studies in the tournament literature. 

The first hypothesis I examine empirically is that the level of buying and selling by retail 

investors in equity mutual funds would be systematically different at the turn of the year. While 

mutual funds provide liquidity at the daily level, many retail investors remain inattentive to their 

portfolios for long periods of time distracted by other pursuits.1 Year-end marks an opportunity 

for such investors to take stock of the winning and losing positions in their portfolios and to 

reallocate their invested wealth across assets. To study the buying and selling behaviors separately 

in a clean way, I collect disaggregated data on purchases and redemptions of mutual funds at a 

monthly level from Morningstar Direct and N-SAR files. I match the CRSP Mutual Funds database 

with these two databases using a sequence of automated and manual approaches. In the end, almost 

 
1 Duffie (2010) models the asset pricing implications of investors rebalancing their portfolios infrequently, driven by 

attention to non-investment activities. He also discusses the literature showing evidence of infrequent rebalancing by 

both retail and institutional investors. 
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80% of the equity funds in CRSP MF database during 1994 to 2017 have a mapping with the 

purchases and redemptions data from the above two databases. I filter and use the funds catered to 

retail investors for the empirical analyses in this study. 

Using this data, I first report that inflows and outflows (i.e. purchases and redemptions as 

percentage of TNA) are markedly different in December and January compared to other months. 

Inflows and outflows in January are higher by 21%, 12% compared to other months. In December, 

inflows and outflows are higher by 13% and 20% compared to other months. Prior literature has 

shown that funds flows are driven by a host of fund characteristics such as past performance, 

expenses, family affiliation etc.2 To alleviate concerns that time-variation in some of these 

characteristics could be driving my results, I repeat the analysis with abnormal flows, computed 

as the residuals from regression of flows on these explanatory variables. I find qualitatively similar 

results affirming that seasonal variation in investor trading behavior is behind the turn-of-the-year 

patterns in flows.  

I next examine the role of marketing & distribution channel on the timing of flows at the turn 

of the year due to the compensation incentives of the selling brokers of funds. Distribution channel 

of a fund determines the mode through which investors can transact in that fund.3 At a very broad 

 
2 Survey evidence from Investment Company Institute (https://www.ici.org/pdf/per25-08.pdf) indicates that past 

performance is a very important factor in influencing the investment decisions of investors. Ippolito (1992), Patel, 

Zeckhauser, and Hendricks (1994) and many other studies establish that flows chase past performance in equity funds. 

Jain and Wu (2002), Gallaher, Kaniel, and Starks (2006), Kaniel and Parham (2017) show that advertising attracts 

flows. Sirri and Tufano (1998), Barber, Odean, and Zheng (2005), Roussanov, Ruan, and Wei (2018) show that flows 

are positively associated with marketing and distribution activities. Finally, Del Guercio and Tkac (2008), Ben-David 

et. al. (2019) show that fund flows are positively correlated with Morningstar’s proprietary star ratings. 
3 Distribution channel is the mode through which a product reaches the consumer from the manufacturer. This is an 

important ingredient in the marketing decision of any product and the main objective is to reduce the ‘search cost’ for 

the consumer. In direct-market channel, such as telemarketing for example, investors can transact directly with the 

manufacturer to buy or sell the product. Alternatively, the product can go through one or more intermediaries such as 

wholesalers, dealers, retailers etc. through which the end consumer can access it. Distribution channel of a product is 

a strategic choice of the manufacturer and it can have a huge influence on its revenues. 

https://www.ici.org/pdf/per25-08.pdf
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level, retail investors can access funds in one of two possible ways: the direct-market channel or 

the broker-sold channel. In the former, investors can transact either directly with the fund 

management company or through a discount brokerage. In both cases, there are no explicit 

advisory services offered to investors either by the fund or by the brokerage platform. Therefore, 

the timing of flows in these funds is solely a product of investors’ decisions.  In the broker-sold 

channel, investors use the services of brokers or financial advisors for transacting in funds. 

Because investors receive advice along with transaction facilitation, the monetary incentives of 

these intermediaries can play a role in the ultimate trading outcomes in this channel. 

The monetary incentives of the selling brokers who interact with the end-consumers are 

strongly tied to the volume of transactions they bring to the firm that employs them. Their 

compensation packages are very similar to those of sales agents in any industry with a small fixed 

component and a large bonus-based component. A common compensation structure for these 

agents involves a periodic bonus payout for meeting quarterly and annual sales quotas.4 Oyer 

(1998) and Jensen (2003) argue that such quota-based non-linear compensation structures can 

incentivize agents to game the system to their own advantage by altering the timing of sales. Since 

agents get paid at the end of the period for the effort expended during the period, they optimally 

push their efforts closer to the end of the period at which the reward is paid (effort gaming). And, 

at the end of the year, they face a choice between pushing new sales to the next year and pulling 

sales from next year to the current year (timing gaming).5  

 
4 For example, there is payment grid for brokers that encourages them to involve in asset gathering. Firms also use 

sales contests to motivate brokers to increase their asset base (see the SEC report on compensation practices: 

https://www.sec.gov/news/studies/bkrcomp.txt). The SEC has recently come up with ‘Regulation Best Interest’ or 

RegBI which explicitly bans such sales quotas etc. 
5 For example, if sales agents fall short of a yearly quota, they might influence clients to book a sale at the end of 

current year which would ordinarily have been made in January (this leads to “pulling”). If the sales reps hit their 

quota in the current year, they might influence customers to “push” December sales into January to get a head start on 

the next year’s sales targets. 

https://www.sec.gov/news/studies/bkrcomp.txt
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Since brokerage firms’ revenues are directly related to the amount of assets bought through 

them, they encourage their brokers to engage in asset gathering through sales contests, sales-quota 

based bonuses etc. If these quota-based incentives cause brokers to engage in timing gaming at the 

turn of the year, then the inflows in broker-sold funds would be systematically different compared 

to direct-sold funds at the turn of the year. To test this prediction empirically, I compare the month-

on-month changes in inflows at the turn of the year in broker-sold vs. direct-sold funds. Since 

timing gaming involves pulling-in or pushing-out sales from one month to the other, comparing 

the month-on-month changes across distribution channels and calendar months can reveal the 

presence or absence of timing gaming at the turn of the year. 

Using data on the shareclass type indicator, I split my sample of retail-oriented equity mutual 

funds into funds sold through broker and direct channels. My empirical results using month-on-

month changes in inflows indicates strong evidence of timing gaming at the turn of the year 

between December and January. Specifically, I find that there is a strong pulling-in of inflows 

from January to December in broker-sold funds compared to the direct-sold funds. That is, there 

is a bunching of new sales at the end of a calendar year and drop in new sales at the beginning of 

a calendar year in broker-sold funds compared to the direct-sold ones. While both pulling-in and 

pushing-out are both possible under gaming outcomes, Oyer (1998) shows that pulling-in sales 

from next year to current year is more probable under the conditions in which sales agents normally 

operate, and my results are consistent with this narrative.  These findings lend support to the 

hypothesis on the role of brokers’ incentives in influencing the timing of flows at the turn of the 

year. 

Year-end trading activities of retail investors are widely studied in the context of equities. To 

explain the high abnormal returns on small-cap stocks in January, Ritter (1988) proposed the 
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‘parking the proceeds’ hypothesis which states that retail investors are more likely to engage in 

selling in December and wait until January to reinvest their selling proceeds. Ritter (1988), Dyl 

and Maberly (1992) find empirical evidence consistent with this hypothesis in equity markets. The 

first set of results I document in this paper show that retail investors in equity mutual funds are 

also more active in trading in the months of December and January. However, my second set of 

results indicate that financial intermediaries can impact the timing and reallocation of flows at the 

turn of the year. In the direct-market channel with no financial intermediaries, the trading behavior 

of investors is consistent with the ‘parking the proceeds’ hypothesis. But, in the broker-sold 

channel, inflows are pulled from January to December due to the incentives of the intermediaries. 

To the best of my knowledge, this is the first study to highlight the role of financial intermediaries 

on the timing of trading outcomes in financial markets. 

My hypotheses relate investor behavior and broker behavior to turn of the year seasonal 

patterns in flows. I run additional tests to alleviate concerns that fund management might influence 

investor behavior or the behavior of brokers to exert higher efforts in a particular calendar month 

and confound the results. Fund management’s incentives to do so would be highest in months 

which coincide with fiscal year ends. Therefore, I repeat my analysis in a sub-sample by dropping 

funds which have their fiscal month-end coinciding with the calendar month. The inferences are 

qualitatively similar to the full sample which indicates that management’s efforts are not the major 

reason behind my results. 

The increased propensity to sell in December across different asset classes is consistent with 

multiple potential explanations such as tax-loss selling, seasonal liquidity needs, seasonally 

varying attention to personal portfolios etc. In the United States, December coincides with the end 

of tax-year for retail investors. And tax laws in the US are realization-based with different rates 
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for short-term and long-term capital gains. All these factors can lead to seasonal tax-motivated 

trading behavior as argued in Constantinides (1984). Motivated by these arguments, I next examine 

if higher outflows that I find at the turn of the year are consistent with a seasonal tax-loss selling 

motive by conducting both cross-sectional and time-series analyses. 

Seasonal tax-loss selling motivation for trading leads to a specific set of predictions for the 

relation between outflows and past performance of the funds at the turn of the year. Since 

December marks the end of a tax-year in the US, redemptions in both December and January could 

be impacted by past performance in a different way compared to the rest of the year. In case of 

equity markets, Badrinath and Lewellen (1991), Barber and Odean (2004), Ivkovic, Poterba, and 

Weisbenner (2005) show that the propensity to realize a capital loss is higher in December 

compared to other months and Chordia, Goyal, and Jegadeesh (2016) show that seasonal tax-loss 

trading can influence the relation between order flows and past performance at the turn of the year. 

If investors in equity mutual funds trade in a similar way and defer loss realization till the end of 

the year, then funds performing poorly have a higher likelihood of experiencing redemptions in 

December. Redemptions in January could also be impacted by past performance in a different way 

from other months and reasoning is as follows. Redemptions in January cannot be used to offset 

any capital gains from the prior calendar year. However, investors who plan to redeem their 

investments that are performing well are more likely to do so in January compared to other times 

in order to postpone potential tax consequences on these trades till the end of the new year. In this 

case, any increased redemptions in January would be concentrated in relatively good performing 

funds. 

I test the above predictions by comparing the flow-performance sensitivity in the cross-section 

of funds at the turn of the year vs. other months. While the gain or loss of an investment with 
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reference to the purchase price is the most relevant metric for tax purposes, identifying these using 

aggregate fund returns is not possible. Therefore, I focus on losing funds in the cross-section to 

identify the effect of tax-loss selling if it indeed exists. Funds that are performing very poorly by 

the turn of the year, even in terms of a simple metric like prior one-year return, are highly likely 

to be registering losses on many investor accounts and funds performing extremely well are likely 

to be at a gain in many investor accounts. My empirical analyses indicate that the sensitivity of 

outflows (i.e. redemptions/TNA) to market-model alpha in the low performance region is 112% 

higher in December than the average value in remaining months and is statistically significant. 

However, the sensitivity of outflows to market-model alpha in January in the high performance is 

not statistically different from the other months. 

In the time-series analysis, I use the variation in aggregate market return as an instrument to 

identify the role of tax-loss selling on year-end outflows. Tax-loss selling must be particularly 

predominant in down-market years when most of the assets in investors’ portfolios are registering 

losses. I use the compounded return on the CRSP value-weighted market index over a calendar 

year to define down-market years as those in which this return is negative. I conduct my time-

series analyses by comparing the relative level of outflows in December to other months in up-

market vs. down-market years. My empirical results show that the incremental outflows in 

December (over other months of the calendar year) in down-market years are 47% higher than 

those in up-market years. However, the difference is not statistically significant.  Repeating the 

analyses using only the years in the top and bottom most terciles in terms of market return yield 

similar results. This indicates that tax-loss selling might only be a partial explanation for the 

increased outflows at the turn of the year. 
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I conduct various robustness checks for sensitivity of my results to various empirical choices. 

I find that my results are very similar in the two half sub-samples based on the sample period, and 

in sub-samples based on style categories. My results are also robust to the choice of performance 

metric used to compute abnormal flows and in flow-performance regressions. Finally, I also show 

that all my inferences about the seasonal trading behavior and the role of brokers are similar when 

using net flows computed from CRSP and without dropping the funds that do not have a match 

with the purchases and redemptions data. 

The key contribution of my study is to show that the investment behavior of investors in equity 

mutual funds at the turn of the year is significantly different from other months. In addition, I show 

that the turn-of-the-year patterns are different across distribution channels where incentive gaming 

by sales agents can alter the timing of investments in broker-sold funds at the turn of the year. 

Recent studies by Barber, Odean, and Zheng (2005), Zhao (2008), and Christoffersen, Evans, and 

Musto (2013) show that brokers try to maximize their own revenue when suggesting funds to their 

investors. While these studies show that brokers influence fund selection decision of investors, my 

results indicate that broker can also game the timing of flows to cater to their own interests. These 

findings complement the results in studies that look at the advantages and disadvantages of brokers 

in the mutual fund industry. To my knowledge, my study is the first to explore the implications of 

seasonal selling efforts of intermediaries on retail trading activity in financial markets. 

2. Literature 

My study contributes to the findings in three branches of literature. First is the literature on 

seasonality in investor trading behavior, particularly the year-end behavior of retail investors. 

Studies in equity markets document many abnormal return patterns in calendar time associated 
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with weekends, beginning of the month, holidays, January etc.6 The huge abnormal returns on 

small stocks and illiquid stocks in January drew widespread attention to the January seasonality 

phenomenon in the literature.7 Ritter (1988), Dyl and Maberly (1992), Sias and Starks (1997) 

document abnormal trading activity at the turn of the year and use it to explain the January effect. 

Starks, Yong, and Zheng (2006) show similar pattern in trades of retail investors in municipal bond 

closed-end funds. 

While equity market data uses prices determined in equilibrium by supply and demand forces, 

mutual fund flows measure the quantities traded at a fixed price. Using aggregate mutual fund 

flows by asset categories such as equity, money market etc. Kamstra et. al. (2017) study calendar-

time seasonal patterns in the trading behavior of investors. They find that money flows out of 

equity mutual funds in aggregate and into money market funds during summer and fall seasons. 

The opposite happens in winter and spring seasons. They attribute these fluctuations to seasonal 

changes in trading behavior of individual investors due to changes in sentiment related to risk 

aversion. Although they control for turn-of-the-year seasonal effects in their analysis, they do not 

analyze these effects in detail which is the main objective of my study. Moreover, they study asset 

allocation across asset categories by focusing on aggregate flows by categories while I study the 

cross-sectional implications within equity mutual funds at the turn of the year. 

Another notable deviation from Kamstra et. al. (2017) is the use of disaggregated purchases 

and redemptions data in this study, while they use net flows [defined as (purchases-

redemptions)/TNA]. When I study the calendar seasonal patterns in net flows using my data, I find 

 
6 Jacobs and Levy (1988) discuss some of these empirical regularities. Bouman and Jacobsen (2002) document the 

Halloween effect, Hong and Yu (2009) document the summer vacation effect, and Kamstra, Kramer, and Levi (2003) 

discuss the role of Seasonal Affective Disorder in equity return variation over calendar year. 
7 In addition to size and illiquidity characteristics, anomalies associated with momentum, long-horizon reversals, book 

to market, asset growth also display different patterns in January compared to other months. 



12 
 

a monotonic drop from January to December in an approximately linear fashion. Without studying 

purchases and redemptions separately, one cannot infer if lower net flows in December are driven 

by a drop in purchases or an increase in redemptions or both. My results show that both purchases 

and redemptions increase at the turn of the year compared to other months. But redemptions are 

higher than purchases in December leading to lower net flows and purchases are higher than 

redemptions in January leading to higher net flows on average.  

Ivkovic and Weisbenner (2009) study the trading behavior of retail investors in mutual funds. 

However, their sample is a subset of retail investors at one discount brokerage firm. Although they 

note that tax related effects play a role at the year-end, they do not focus on the trading behavior 

at the turn of the year. My sample covers larger set of equity funds over a longer time span and 

uses all the transactions in these funds, although it doesn’t identify trades at the investor level. I 

study the buying and selling behavior of investors in funds aggregated across all investors. The 

relation between past performance and order flows of buyers and sellers in equity markets is 

studied by Chordia, Goyal, and Jegadeesh (2016). They report an increase in both seller- and 

buyer-initiated trades at the turn of the year. And, they also find evidence of heavy tax-motivated 

selling at this time. My findings on the level of inflows and outflows at the turn of the year and 

relation of inflows and outflows to past performance at the turn of the year echo their findings. 

However, my findings on the role of brokers in turn-of-the-year trading activity are novel and have 

not been studied either in equity markets or mutual fund literature before. 

The second branch of literature my study is connected to is the role of brokers and advisors in 

financial markets. Current literature on the role of brokers and financial advisors in the financial 
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marketplace indicates that conflicts of interests plague the market.8 Commission-based 

compensation arrangement in the broker-sold channel results in brokers aggressively selling 

products that maximize their own revenues. In case of mutual funds, Barber, Odean, and Zheng 

(2005), Zhao (2008), Bergstresser, Chalmers, and Tufano (2008), Christoffersen, Evans, and 

Musto (2013) report that flows are directed more towards funds with higher commissions. In my 

study, I focus on a different aspect of brokers’ compensation structure – sales quotas – that induce 

seasonal selling efforts as shown in Asch (1990) and Oyer (1998). While revenue from 

commissions goes to the brokerage firm that employs the brokers and creates a conflict of interest, 

I focus on a different conflict of interest – the one between the broker and the brokerage firm – 

that leads to an aggressive end-of-year selling. 

My study also relates to the literature on agency issues in fund management that appeal to the 

turn-of-the-year trading behavior of investors such as ‘mid-year risk shifting’. Turn of the year 

holds special significance for the motives behind these agency issues. Studies that appeal to cash 

flow based tournaments in funds use the calendar year as a decision window of investors and test 

if mid-year poor performers increase their portfolio risk during the second half. This setup is used 

in Brown, Harlow, and Starks (1996), Chevalier and Ellison (1997), Basak, Pavlova, and Shapiro 

(2007), Kempf, Ruenzi, and Thiele (2009), Schwarz (2012) etc. The extent to which investors’ 

behavior at the turn of the year lines up with the assumptions in these studies has significant 

implication for the interpretation of results in these studies.  

My findings on the increased level of flows at the turn of the year provides a rationale for the 

assumption in the tournaments literature that managers compete during a calendar year for 

 
8 Burke et. al. (2015) review a large literature on the conflicts of interest in the financial advisory industry. 
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investors’ flows at the turn of the year. However, I find that funds performing relatively poorly are 

likely to experience higher redemptions in December which casts doubt on the mid-year risk-

shifting incentives of managers. Since increased risks can also end up damaging the performance 

of the fund further and poor performing funds experience heavy redemptions in December, some 

managers may be wary of this consequence. That is, all losing funds by mid-year are not equally 

likely to engage in risk shifting. Despite the significance of year-end trading behavior for the 

narratives in this literature, there are no studies that examine this aspect. My study fills this gap. 

3. Hypotheses 

3.1. Level of retail trading activity in equity funds at the turn of the year 

The months of December and January constitute a special time for retail investors in the United 

States. First, December coincides with the end of tax-year for individuals in the US. Next, 

December and January also coincide with the largest holiday season in the US. These factors can 

impact the consumption and trading decisions of investors in a different way compared to other 

times. 

Retail investor trades at the turn of the year are studied widely in the context of equity markets. 

Ritter (1988), Dyl and Maberly (1992), Barber and Odean (2004) and others find that retail 

investors trade more actively at the turn of the year (i.e. December and January). Chordia, Goyal, 

and Jegadeesh (2016) document a similar finding using order flow data of all investors from the 

TAQ database. It is not readily apparent if this evidence from equities can be readily extrapolated 

to infer the turn-of-the-year trading behavior of retail investors in equity mutual funds. Bailey, 

Kumar, and Ng (2011) show that investors in mutual funds are more sophisticated compared to 

investors in equities. And, Chang, Solomon, and Westerfield (2016) argue that investors in equity 

mutual funds do not display the well-documented disposition effect in case of equity market trades. 
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Therefore, my first hypothesis on the level of retail trading in equity mutual funds at the turn of 

the year is: 

H1: Outflows are higher in December compared to other months and inflows are higher in January 

compared to other months. 

This prediction would be borne out in the data if retail investors display similar seasonal 

variations in trading preferences across asset classes. Alternatively, if retail investors in equity 

mutual funds are more likely to trade uniformly throughout the year, then the above prediction 

would be rejected. 

3.2. Role of distribution channel on turn-of-the-year trading activity in equity funds 

Mutual funds are not traded on an exchange and can only be bought and sold through a distribution 

channel chosen by the fund to make its product available to investors. At a broad level, there are 

Direct, Advice, Retirement Plan, Supermarket, and Institutional channels through which funds are 

sold to investors.9 In the direct-market channel investors can transact directly with the fund 

management to buy or sell units. In the supermarket channel investors buy or sell units through 

discount brokerage platforms which list funds from a variety of asset management companies. In 

the advisory channel, funds use the services of firms that have a distribution channel in place to 

sell their units. The distributor firm employs brokers or advisors who prospect for new clients and 

also advise the existing clients on various financial matters. Most investors transacting through 

direct-market and supermarket channels rely on their own personal judgement to make their buying 

and selling decisions. In the advisory channel, investors use services of the broker/advisor for 

 
9 The ICI report at https://www.ici.org/pdf/per09-03.pdf covers more details on mutual fund distribution channels. 

https://www.ici.org/pdf/per09-03.pdf
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choosing the right product as well as to get financial advice on other aspects of their wealth and 

portfolios. 

The individual brokers who work for the brokerage division of the distributing firm act in the 

capacity of salesmen. The typical compensation arrangement for these brokers involves a fixed 

salary and a large bonus component. Bonuses are tied to the new assets they gather for their 

employer by meeting sales quotas that are set typically on a quarterly basis and an annual quota. 

Meeting or exceeding the quota usually leads to a large sales bonus. Brokerage firms’ revenues 

depend on the asset size of assets they manage and hence they have an incentive to push their 

brokers to engage in asset gathering and compensate them through quotas.10 

Literature on sales and marketing discusses the business seasonality implications of such 

compensation arrangements. Oyer (1998) discusses two potential effects of quota-based sales 

compensation: effort gaming and timing gaming. When salesmen are compensated at the end of a 

fiscal period for meeting or exceeding the quota anytime during the period, they have an incentive 

to increase their selling effort gradually over the period and bunch most of the selling towards the 

end of the period (effort gaming). When brokers compute utility based on the reward less the effort 

and discount it to present time, their optimal action is to delay their effort closer to the end of 

period when the reward is paid. Similarly, at the end of the fiscal year, brokers can either push 

some sales to next fiscal year to maximize revenues next period or pull in sales from next fiscal 

year to maximize revenues in the current period. The trade-off in waiting for the next year is a 

potential loss due to moving away from the current market that the broker is operating in. Under 

standard conditions, Oyer (1998) shows that it is more likely for brokers to pull in sales from the 

 
10 The SEC has recently adopted Regulation Best Interest (Reg BI) that explicitly prohibits compensation practices 

based on sales quotas, sales contests etc. More details are available at: 

https://www.sec.gov/info/smallbus/secg/regulation-best-interest 

https://www.sec.gov/info/smallbus/secg/regulation-best-interest
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beginning of next fiscal to the end of current fiscal year resulting in increased sales at the end of 

current fiscal year and decreased sales at the beginning of the next period (timing gaming). Based 

on these arguments, the specific hypothesis to test is as follows: 

H2: Seasonal efforts of sales agents lead them to shift inflows from January to December in funds 

distributed through the broker-sold channel. 

If selling brokers of funds display incentives to game the timing of new money just like other 

sales agents, then the prediction in hypothesis 2 should reflect in the inflow patterns at the turn of 

the year.11 Alternatively, if selling brokers in financial markets are not prone to such incentives at 

the turn of the year, then there should be no significant difference in inflow patterns across 

distribution channels in the months of December and January. 

4. Data and Descriptive Statistics 

4.1. Sample Selection 

I construct the final sample used in this study by merging the survivorship bias free CRSP Mutual 

Fund database (CRSP MF hereafter) with Morningstar Direct (MS Direct hereafter) and N-SAR 

filings. The sample period is 1994 to 2017. I get the monthly data on funds’ net returns, TNA, 

expense related variables, styles etc. from CRSP MF which is at the share-class level. I use the 

comprehensive style code provided by CRSP MF to filter out actively managed US domestic 

equity funds. I use MS Direct to obtain monthly share-class level data on Morningstar rating, share-

class type and fund level data on gross purchases and gross redemptions.12 Mutual funds report 

 
11 Although Oyer (1998)’s argument applies to fiscal year cut-offs, I expect it to hold for a calendar year in the sample 

of mutual funds. Most firms in the financial services industry (SIC 6000 to 6799) use calendar year as their fiscal year 

as shown by Huberman and Kandel (1989). 
12 My sample does not suffer from survivorship bias since Morningstar Direct provides data on both surviving and 

dead funds unlike Morningstar data on disks and the Internet. 
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monthly purchases and redemptions at the fund level in their semi-annual N-SAR filings for the 

six months covered by the filing and MS direct provides this data beginning 1999. I merge CRSP 

MF and MS Direct following the approach in Pastor, Stambaugh, and Taylor (2015) along with 

some additional manual steps. To get data on monthly purchases and redemptions for the earlier 

period, I download and parse the N-SAR files from SEC EDGAR database. These files are 

available in electronic format starting 1993 but the coverage improves from 1994 as more funds 

started complying. I provide a detailed description of the steps involved in filtering, cleaning, and 

merging all these datasets in Appendix 1A. 

Since purchases and redemptions are the fund level, I conduct all my analyses at this level. I 

aggregate the share class level data from CRSP MF and Morningstar Direct to fund level using 

WFICN as the identifier which is provided by WRDS. I compute the fund-level returns and 

expense related metrics as weighted average values of the constituent share classes, with the 

beginning-of-month TNA as the weight. I compute fund-level TNA as the sum of TNA across 

share classes, fund-level dividend distributions and capital gains distributions as sum of these 

values across share classes and fund-level age using the minimum offer date across all share classes 

and time periods. I consider a fund to be ‘no-load’ if data on both front-end, back-end loads exists 

and takes values of zero for all its share classes. I construct fund-level qualitative metrics such as 

style, management code, fiscal year etc. using the corresponding values from the share class with 

the largest TNA. Using the comprehensive style code from CRSP MF, I group funds into four 

different styles: growth, growth & income, mid-cap and small-cap.13 

 
13 Since micro-cap funds (EDCI) are small in number, I group them with small caps (EDCS). Similarly, I group income 

funds (EDYI) which are small in number with growth & income funds (EDYB). Mid-cap and growth funds are 

identified by the CRSP style codes EDCM and EDYG respectively. 
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I assign a distribution channel at the fund level by first computing the percentage of TNA held 

in broker-sold, direct-sold, institutional, retirement, other categories across all share classes each 

month. Following Del Guercio and Reuter (2014), if a fund holds 75% or more of its assets in one 

of the above categories, I assign that category in that month. Funds which do not have 75% in any 

particular category get assigned to ‘other’. I drop fund-month observations that are categorized as 

Institutional or Retirement class from my analyses for two reasons. First, I expect the trading 

behavior of institutions to be different from that of retail investors, especially at the year-end, 

because gains and losses in these accounts are not tied to their immediate consumption 

requirements. Second, as James and Karceski (2006) document using information from fund 

prospectuses, institutional funds serve a wide-variety of clients ranging from 401(k) plan 

participants, foundations and endowments, customers of a bank trust or custodial account, or 

investors with more than $100,000 to invest in the fund. Therefore, a portion of Institutional funds 

and all of Retirement funds are essentially tax-deferred accounts. Ivkovic, Poterba, and 

Weisbenner (2005) show that the behavior of investors in these accounts is significantly different 

from taxable accounts. Therefore, I exclude these funds from this study. I drop records before the 

fund’s first offer date to avoid incubation bias documented in Evans (2010). And to avoid 

survivorship bias associated with reporting conventions in smaller funds documented in Elton, 

Gruber, and Blake (1996a), I drop the fund-month observations with TNA less than $15 million. 

Table 2 shows the mapping statistics between the CRSP MF database and the purchases and 

redemptions data from Morningstar Direct, N-SAR files. Panel A reports the percentage of funds 

from CRSP that have a mapping by each year in the sample. These statistics indicate that mapping 

coverage increases over time and is not widely available in the beginning years. Post 2002, almost 

80% of the equity funds in CRSP MF get mapped to the purchases and redemptions data. Panel B 
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of Table 2 compares the characteristics of equity funds which get a mapping with those of all 

equity funds from CRSP. This panel reveals some systematic differences between the two sets of 

funds. The funds that do not get a mapping are smaller, younger, and have poor performance 

compared to those that get a mapping. However, these funds constitute only 20% of the sample in 

CRSP MF database. 

4.2. Variable Construction 

For each fund 𝑖 in month 𝑡, I construct inflows, outflows, and net flows as percentage of TNA as: 

Inflowi,t=
Purchasesi,t ∗ 100

TNAi,t-1

, 

Outflowi,t=
Redemptionsi,t ∗ 100

TNAi,t-1

, 

Net Flowi,t=
(Purchasesi,t-Redemptionsi,t) ∗ 100

TNAi,t-1

. 

(1.1) 

Since the dollar values of purchases and redemptions would vary to a great extent depending on 

the size of the fund, scaling by fund size allows easy comparison of the flow metrics across funds. 

And, to reduce the effect of extreme outliers in the above metrics (due to data coding errors in 

purchases and redemptions), I winsorize them at the 1% level. Computing net flows using 

purchases and redemptions data as in equation (1.1) avoids the influence of dividend payout policy 

of the fund on the definition of flows. Because most equity funds distribute a large portion of 

capital gains and dividends accrued during the year in December, defining net flows following 

prior literature might pose a problem for studying seasonal flow patterns at the turn of the year.14 

 
14 Most studies in the prior literature on flows construct net flows using only the data from CRSP as: 𝑁𝑒𝑡 𝑓𝑙𝑜𝑤𝑖,𝑡 =

(𝑇𝑁𝐴𝑖,𝑡 − 𝑇𝑁𝐴𝑖,𝑡−1(1 + 𝑅𝑖,𝑡)) 𝑇𝑁𝐴𝑖,𝑡⁄ , where 𝑅𝑖,𝑡 is the net returns for month 𝑡 reported in CRSP. The inherent assumptions 

underlying this metric are that all the new money enters or leaves the fund at the end of the month and that all 

distributions during the month are reinvested into the fund. The second assumption is required because CRSP 

computes and reports net returns under the assumption that all distributions are reinvested into the fund. To the extent 
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I construct monthly family size as the sum of TNA of all funds within a family in that month 

after dropping the institutional and retirement funds. Similarly, the number of retail funds in a 

family each month gives the monthly number of funds in the family. And, I sum the purchases and 

redemptions across all funds in a family each month and subtract the contribution of the fund itself 

to get the numerator of family level flow metrics. Dividing these by lagged family TNA gives the 

family level inflow, outflow, and net flow. To construct style category level flow metrics, I use the 

sum of purchases, redemptions, and lagged TNA across all funds in a style category each month. 

I construct various factor-based performance metrics each month using rolling window time 

series regressions. For each fund-month with at least 24 observations on past returns in the prior 

36 months, I run time-series OLS regressions of funds’ excess net returns on common factor 

returns in equities.15 I use the OLS intercepts from the market model, Fama French 3-factor model, 

Fama French Carhart 4-factor model as different proxies of performance. Finally, I begin my 

sample in 1994 based on the availability of purchases and redemptions data from N-SAR filings. 

4.3. Descriptive Statistics 

The final sample of actively managed US domestic equity funds used in this study spans the time 

period Jan-1994 to Dec-2017. After dropping fund-month observations in institutional and 

retirement categories and the observations with missing purchases and redemptions data, the 

sample contains 2,026 funds. There are 1011, 414, 299 and 458 funds in the style groups growth, 

growth & income, mid-cap, and small-cap respectively. 

 
that some investors retain a portion of their distributions at the year-end for other purposes, the CRSP based net flow 

metric understates the actual net flow. Specifically, if the actual reported TNA at the end of December does not contain 

all the distributions that are disbursed during the month, then by assuming that all the distributions are reinvested into 

the fund and using the reported TNA at the month end to compute net flows will lead to a downward bias in this 

estimate in December. Therefore, the dividend policy of the fund and the reinvestment behavior of investors can 

contaminate inferences on flow seasonality at the turn of the year using this proxy for flows. 
15 Data on common factor returns is from Prof. Kenneth French’s website. I thank him for sharing this data. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
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Table 4 shows the sample averages of the main variables in my final sample. The first three 

columns show the statistics within the distribution channels and the last column shows the full 

sample averages. The average fund has $1.5 billion in assets and is 13 years old. The average 

number of share classes per fund is 3 which is consistent with the fact that a lot of funds shifted to 

a multi-class structure during the 1990s as discussed in Nanda, Wang, and Zheng (2009). The 

average fund in my sample trades 83% of its portfolio over a year as seen from the turnover ratio 

statistic. In terms of performance after expenses, the average fund in this sample returns the same 

as the CRSP VW market index with a market excess return of -0.01% per month. After adjusting 

for exposures to the common factors using the Fama-French-Carhart 4-factor model, the average 

4-factor net alpha is -0.07% per month. This is consistent with the evidence of underperformance 

from a large body of literature on mutual fund performance evaluation. All the statistics in my 

sample correspond well with the statistics in samples of actively managed US domestic equity 

funds from other studies (see for e.g. Amihud and Goyenko, 2013). 

A comparison of sample means across broker-sold and direct-sold funds reveals some 

interesting patterns. Direct-sold funds are larger on average and have smaller expense ratios 

compared to broker-sold funds. More importantly, broker-sold funds underperform their 

counterparts even before fees and expenses. Broker-sold funds return 0.68% on average per month 

before expenses while direct-sold funds return 0.79%. The puzzling underperformance of broker-

sold funds on a gross-returns basis is also documented and studied in Bergstresser, Chalmers, and 

Tufano (2009), Christoffersen, Evans, and Musto (2013), and Del Guercio and Reuter (2014). 

These studies use the distribution channel classification provided by Financial Research 

Corporation. However, the statistics for broker-sold and direct-sold funds in my sample are 
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comparable to the values tabulated in Del Guercio and Reuter (2014) which ensures the validity 

of my distribution channel classification.16 

The last three rows of Table 4 report the sample averages of the flow proxies. There is a 

positive net flow per month on average across all funds. Purchases and redemptions as percentages 

of TNA (i.e. inflows and outflows) average to 3.30% and 2.96% respectively, while net flow as 

percentage of TNA averages to 0.30%. The contrast in the magnitudes of net flow vis-à-vis 

disaggregated inflows, outflows indicates that buying and selling activities are substantially 

correlated within and across funds in this sample each month. O’Neal (2004) studies inflows, 

outflows separately and reports similar patterns. 

5. Empirical Analysis of Turn-of-the-year Seasonality in Flows 

5.1. Level of retail trading activity in equity funds at the turn of the year 

To test hypothesis 1 (H1), I examine the level of trading activity of retail investors in equity mutual 

funds at the turn of the year using different flow proxies defined in equation (1.1). Kamstra et. al. 

(2017) study calendar seasonality in fund flows and document that aggregate net flows across all 

equity funds in December are lower than average while those in January are high and above 

average. Figure 1 shows the variation of average net flows by calendar month in my sample. The 

pattern in this figure resembles the result in Kamstra et. al. (2017) (Figure 2 in their paper). Net 

flows are lower starting from June and continue to be so till December. And the opposite occurs 

from January to May. These patterns on net flows would indicate a subdued trading activity in 

December in equity funds. 

 
16 They report the summary statistics for actively managed funds in panel B of table 1. Their sample period is 1992 

to 2004 which is different from mine.  
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While net flows are informative and are used commonly in the literature on fund flows, they 

do not give a complete picture of the buying and selling behavior. A net flow value close to zero 

could indicate a lack of trading activity or an equal magnitude of buying and selling in the same 

month within a fund. And if outflows from one fund are allocated to another fund, averaging net 

flows across funds would mask this rebalancing activity because net flows are signed metrics. To 

understand buying and selling behaviors separately and verify if these are different on average at 

the turn of the year compared to other months, I look at disaggregated inflows and outflows by 

calendar month. Figures 2 and 3 show the variation in selling and buying activities in equity mutual 

funds by calendar month. While average net flows in December indicates a low trading activity, 

studying inflows and outflows separately reveals different results. 

Figure 2 indicates higher selling activity in December. Increased redemptions in December 

could be driven by higher demand for liquidity at the year-end due to holidays as well as with tax-

loss harvesting. Apart from December, redemptions are also high in January which could also be 

due to liquidity needs or due to reallocation of invested wealth across assets. This would result if 

at least some investors who are making profits on their portfolios want to lock-in capital gains 

early in the year and defer paying taxes on these gains for longer time. Figure 3 indicates that 

January has the highest amount of purchases across all months in my sample. Inflows are also high 

in December with magnitude that is third highest among all months. Higher inflows at the turn of 

the year could be due to investing year-end cash bonuses or reinvesting proceeds from tax-loss 

harvesting. The patterns in Figures 2 and 3 indicate that both buying and selling activities are 

higher at the turn of the year17 just as in the case of equity markets. 

 
17 I recently became aware that this result was documented earlier by Choi (2015). 
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5.2. Is the turn-of-the-year seasonality statistically significant? 

To test if the turn of the year patterns in Figures 1 to 3 represents systematic effects, I run a 

regression of the flow metrics on dummy variables for January and December months. Statistically 

significant coefficients on the dummy variables indicate that the pattern is not driven by a few 

outlier years. The constant in these tests represents the average trading activity in the months 

February to November across years while the coefficients on the dummy variables for December 

and January indicate the average additional trading activity in the respective months. I use net 

flows, inflows, and outflows as measures of trading activity in these regressions, where each metric 

represents a different aspect of the trading activity. Studying inflows and outflows informs about 

the aggregate buying and selling behavior separately and across all funds in a month while net 

flows inform about the net buying activity for each fund in a month.  I also run separate tests for 

positive net flow sub-samples and negative net flow sub-samples on the dummy to test if there is 

predominance of funds experiencing net flows in a particular direction at the turn of the year.  

Table 5 reports the results from these regressions. To account for both cross-sectional 

correlations in flows across funds within a month and for autocorrelation in flows at fund level, I 

estimate standard errors that are double-clustered by fund and by month. The results in panel A of 

Table 5 with all funds in the sample show statistically significant coefficients on both the dummies 

in most of the specifications. The coefficients on the dummies in columns (2) and (3) indicate that 

buying and selling activities in January are higher by 20.5%, 12.5% compared to other months and 

by 13.1%, 20.2% in December. Results in columns (4) and (5) indicate similar magnitudes among 

funds that experience positive and negative net flows in a month. For a fund with an average size 

of $1,468 million, the above values indicate that buying and selling are higher in January by $9.65 

million, $5.28 million and in December by $6.15 million, $8.53 million respectively. Therefore, 
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turn of the year marks higher trading activity in equity funds which is statistically and 

economically significant. 

Apart from investors’ and sales agents’ incentives, fund management might also play a role in 

affecting the turn of the year trading patterns from the supply side. Funds can involve in practices 

such as ‘portfolio pumping’ that artificially enhance the performance as of fiscal quarter ends and 

fiscal year ends. Since fund managers’ compensation and bonus are tied to performance as of the 

end of a fiscal year, they are incentivized to shift performance from next period to the current 

period as argued in Carhart et. al. (2002). Fund management can also push their brokers to engage 

in excessive selling at strategic times such as quarter ends and fiscal year ends. I assume that any 

such practices of fund management would be concentrated more at the ends of fiscal years. Bonus 

payouts, annual shareholder letters etc. are related to fiscal year end of a fund and hence this time 

is more important from the fund’s perspective.18 To alleviate the concern that fund’s supply side 

effect is causing the seasonal patterns, I repeat my analysis in a sub-sample obtained by dropping 

funds with fiscal month ending in December or January or is missing. By only considering funds 

that have fiscal years ending in other calendar months, I can reduce the effect of fund 

management’s role in the flow outcomes.19  

In panel B of Table 5, I report the results in a sub-sample obtained by dropping funds with 

fiscal years ending in December, January or if the fiscal year is missing. Results in panel B are 

qualitatively very similar to those in panel A implying little role of fund management in investor 

behavior at this time. Overall, the evidence from Table 5 indicates that trading preferences of 

 
18 Note that fiscal year end of a fund need not be the same as the fiscal year end of the firm that distributes its shares. 

Funds within a fund family choose different fiscal year ends so as to spread out the paper work related to filing 

requirements over the course of a calendar year. 
19 The distribution of fiscal months is skewed. Table 3 presents the frequency tabulation by fiscal months. Most 

observations fall in October which is followed by December and September. 
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investors are different at the turn of the year in equity mutual funds which reflects in a higher level 

of trading activity. 

5.3. Is the turn-of-the-year seasonality driven by fund characteristics? 

Flows into mutual funds are affected by a variety of fund-specific, investor-specific, and 

macroeconomic factors.20 If some of these factors exhibit systematic variation within a calendar 

year, then they could be potentially driving the turn of the year patterns in flows. Therefore, I next 

try to isolate the role of investor preferences in turn-of-the-year patterns over and above the fund-

level characteristics that determine flows. 

5.3.1. Estimating abnormal flows 

By projecting flows on the standard determinants that are documented in the literature, I estimate 

the unexplained portion each month and study if these abnormal flows exhibit systematic variation 

over calendar months in a manner similar to the evidence in Table 5. Specifically, I estimate the 

following linear regression specification. 

Flow𝑖,𝑡 = 𝛼 + 𝜷.𝑿 + 𝜇𝑡 + 𝜖𝑖,𝑡 (1.2) 

I use three proxies of flows which are defined in equation (1.1): net flows, inflows, and 

outflows when estimating the specification in equation (1.2). In this specification 𝜇𝑡 denotes month 

fixed effects which account for time specific demand shocks to flows and  𝑿 denotes the set of 

explanatory variables that affect flows. I measure of abnormal flows in each month as the sum of 

the estimated values of the fixed effect and the residual in that month.21 

 
20 Christoffersen, Musto, and Wermers (2014) provide a comprehensive review of the literature discussing these 

determinants. 
21 Estimates of month fixed effects obtained from equation (1.2) are only relative values with respect to an omitted 

month which forms the base category and whose month fixed effect estimate is captured in the intercept. Since I use 

the estimated abnormal flows to compare trading activity at the turn of the year with other months, the value of the 

unknown constant for the base month cancels out, leaving my inferences unaffected when using such relative 

estimates. 



28 
 

Abnormal Flow𝑖,𝑡 = �̂�𝑡 + 𝜖�̂�,𝑡 (1.3) 

To choose the relevant explanatory variables that go into 𝑿, I rely on the evidence from an 

extensive literature on fund flows. Ippolito (1992), Patel, Zeckhauser, and Hendricks (1994) and 

many other studies establish that flows chase past performance in equity funds. Sirri and Tufano 

(1998), Barber, Odean, and Zheng (2005) and others show flows are positively associated with 

marketing and distribution activities and negatively related to expense ratios. 

When choosing the appropriate performance metric to include in estimating (1.2), it is desirable 

to use a metric that is representative of investors’ choice so that the residual portion of (1.2) 

captures the part orthogonal to fund characteristics in the best way. Although the literature on fund 

performance evaluation proposed a host of metrics (viz. alphas from various factor models, Sharpe 

ratio, appraisal ratio etc.), a recent study by Barber, Huang, and Odean (2016) documents that 

market model alpha has highest correlation with net flows. Based on this finding, I report all my 

main analyses using the 1-factor alpha. Since most multi-factor performance metrics and fund 

returns are highly correlated in the cross-section, my results are robust to using other performance 

metrics as well. 

To allow for non-linearity in the flow-performance relation, I estimate a piece-wise linear 

specification following the approach in Sirri and Tufano (1998). I first assign percentile ranks to 

each fund within a style group each month based on ranks of the performance metric. Next, I 

generate the following three variables to allow for kinks at the 20th and 80th percentiles. 

LOWi,t= min(Ranki,t, 20) , 

MIDi,t= min(60,Ranki,t-LOWi,t) , 

HIGHi,t=Ranki,t-LOWi,t-MIDi,t. 

(1.4) 
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This procedure normalizes performance variables and facilitates comparison across different 

segments of the performance groups as well as across months. 

The 12b-1 Fees (which is quoted as a % of TNA) captures the marketing and distribution costs 

of a fund. The fees are named after Rule 12b-1 of the Investment Advisers Act of 1940 which 

allows funds to use a portion of assets to compensate the broker-dealers for their distribution 

service or for shareholder account maintenance services along with any front-end or back-end 

loads. To avoid conflicts related to using existing assets for advertising, the rule limits 12b-1 fee 

to a maximum of 1% of TNA per annum. Prior to this act, loads are the only ways to compensate 

the broker-dealers for recommending a fund to their clients. Loads are deducted directly from the 

client’s investment and do not impact the entire fund portfolio as opposed to 12b-1 fee which is 

deducted from the fund’s assets and considered an operating expense. Fund units sold through 

direct-market channel typically do not incur 12b-1 fees since there is no intermediary in this case. 

But funds that charge a 12b-1 fee of less than 0.25% of TNA can advertise themselves as No-Load 

funds. These funds are not sold through broker-dealers but use the 12b-1 fees for advertising, 

paying a discount brokerage platform etc. In general, higher 12b-1 fee represents higher marketing 

and distribution efforts for a fund, particularly through broker-dealers. And, expense ratio from 

CRSP includes management fees, administration expenses, and 12b-1 fees in it. 

Apart from performance and expense related variables, I include a host of other fund 

characteristics that influence flows. I add the log of fund size to control for non-linear effects of 

size on flows since bigger funds might grow (in terms of new money) at a different rate than 

smaller ones. I also control for fund’s age and total risk measured by the standard deviation of 

returns over past 12 months which impact flows as shown in prior literature. To allow for the 
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possibility that fund flows can depend on much longer horizons of performance than captured by 

the alpha, I use lagged flows from previous month as a control. This variable also captures the 

persistence of flows for reasons orthogonal to performance such as systematic investment plans. I 

also include contemporaneous flows into funds of the same objective code to account for style-

specific demand shocks. Nanda, Wang, and Zheng (2004) document positive spillover of flows to 

funds belonging to a family which has a star fund. To control for such spillovers, I use 

contemporary flows to the family (after excluding the contribution of the fund itself) as an 

explanatory variable. I include lagged turnover to control for the effect of capital gains 

distributions on flow. I also include the contemporary capital gains payout and dividend payout 

variables to allow for the possibility that purchases and redemptions in a month could be influenced 

by such payouts during that month. When analyzing purchases and redemptions separately, I use 

a slightly different set of control variables. In tests involving purchases (redemptions), I use 

contemporary redemptions (purchases) as a control variable since purchases and redemptions are 

contemporarily correlated as shown in O’Neil (2004). I also include category level purchases and 

redemptions, family level purchases and redemptions as controls in this specification. 

5.3.2. Seasonality in abnormal flows 

I repeat the analysis in Section 5.2, but I now estimate a regression of the abnormal flow metrics 

on the dummy variables for January and December months. The constant from these regressions 

represents the average abnormal trading activity in the months February to November across years 

while the coefficients on the dummy variables for December and January indicate the average 

additional abnormal trading activity in the respective months. To account for both cross-sectional 

correlations in flows across funds within a month and for autocorrelation in flows at fund level, I 

estimate standard errors that are double-clustered by fund and by month. Table 6 reports the results 
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from this estimation. The results in panel A of Table 6 with all funds in the sample show results 

that are qualitatively very similar to those of Table 5. Inflows are abnormally high in both the 

months of December and January and outflows are abnormally high in the month of December. 

The results in panel B of Table 6 after dropping funds with fiscal years ending in December, 

January or if the fiscal year is missing are also in accordance with the prior evidence. These results 

indicate that turn of the year patterns in inflows and outflows are not driven by seasonal patterns 

in fund characteristics and that trading preferences of retail investors in equity mutual funds are 

indeed systematically different at the turn of the year. 

6. Empirical Analysis on the Role of Distribution Channel on Turn-of-the-year Flows 

I now present my empirical analysis related to hypothesis 2 (H2) which predicts that timing gaming 

by financial brokers at the turn of the year leads to a shift of inflows from January to December of 

previous year. To identify the role of brokers on the turn-of-the-year patterns, I split my sample of 

retail-oriented equity mutual funds based on their distribution channel into funds sold through 

brokers and those sold through the direct-market channel. Trading outcomes in the latter group are 

a result of just the investors’ decisions. Therefore, funds in direct-market channel can serve as a 

control group to compare the trading outcomes in the broker-sold channel where intermediaries 

such as the selling brokers can potentially affect the outcomes.  

The analyses in Section 5 related to hypothesis 1 use levels of various flow proxies each month 

as the dependent variable. Figure 4 presents a comparison of calendar seasonal patterns in inflows 

and outflows by distribution channel. Looking at the patterns within each distribution channel 

reveals a strong turn-of-the-year seasonality in both channels. Although investors in broker-sold 

channel are considered to be relatively less sophisticated, the pattern of increased redemptions in 

December in broker-sold funds indicates that investors in these funds could be receiving valuable 
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tax-related advice from their financial advisors as shown in Cici, Kempf, and Sorhage (2017). 

Comparing the patterns across the two channels indicates slight differences in the months of 

December and January as against the remaining months. For example, inflows in broker-sold funds 

are greater in magnitude compared to that in direct-sold funds in all the months expect January 

where the pattern reverses. Even in the months of June and December, the difference between 

inflows in broker-sold and direct-sold funds is slightly higher than in the remaining months. 

Outflow patterns across the two channels also exhibit a slight difference in December and January 

months compared to other months.  

While the evidence from Figure 4 indicates difference in turn-of-the-year patterns across 

distribution channels, it is not a clean and direct test of hypothesis 2. The prediction in hypothesis 

2 is for a shift of inflows between the months of December and January. Therefore, I construct 

month-on-month changes for each of the flow proxy in equation (1.1). To understand the reasoning 

behind this, consider the following example. Suppose that the inflows in two consecutive months 

are 𝑥 and 𝑦 when there is no timing gaming. Consider an alternate scenario where, under 

hypothesis 2, inflows in these two months are 𝑥 + 𝑑 and 𝑦 − 𝑑. In this scenario, inflows worth 𝑑 

are shifted between the two months. A month-on-month difference computed backwards would 

yield values 𝑦 − 𝑥 and 𝑦 − 𝑥 − 2𝑑 under the two scenarios. Therefore, this difference would be 

systematically different when inflows are indeed affected as predicted by hypothesis 2. 

6.1. Analysis using month-on-month changes in flow proxies 

To test the implications of hypothesis for shift in inflows due to incentives of brokers, I compare 

the month-on-month changes in various flow proxies across the two distribution channels at the 

turn of the year vs. other months. If timing gaming is particularly predominant at the turn of the 

year, then month-on-month changes in inflows at this time must be systematically different 
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compared to the differences in other periods. Figure 5 plots the month-on-month changes in 

inflows and outflows for each pair of sequential calendar months and across distribution channels. 

Within each distribution channel, there is a spike for the difference in inflows from November to 

December and from February to March. And there is a similar pattern for outflows as well. 

However, comparing across the two channels indicates a difference in pattern for inflows in the 

months of January and June. The pattern for changes in outflows is very similar across the two 

channels. To compare if the month-on-month changes at the turn of the year are significantly 

different compared to the changes in other sequential month pairs, I run the following regression. 

ΔFlow𝑖,𝑡 = 𝛼 + 𝛽 ∗ 𝐼𝐽𝑎𝑛𝑢𝑎𝑟𝑦 + 𝜖𝑖,𝑡, (1.5) 

where 𝐼𝐽𝑎𝑛𝑢𝑎𝑟𝑦 is a dummy for the month of January. Table 7 shows results from this estimation 

within each distribution channel. The constant in this regression represents the average value for 

month-on-month changes across all sequential month pairs other than December and January. By 

way of construction, the month-on-month change in a flow proxy in the month of January equals 

the change at the turn of the year, i.e. difference in the flow proxy between January and December 

of previous year. Therefore, the coefficient on the January dummy in Table 7 indicates how the 

month-on-month change in a flow proxy varies at the turn of the year compared to other sequential 

month pairs. 

Panel A of Table 7 shows the results for direct-sold funds. The coefficient on January dummy 

in column (2) for inflows indicates a positive significant value while the constant in this 

specification is negative. Month-on-month changes in inflows in the direct-sold channel are 

negative in general as shown by the constant while the change from December to January at the 

turn of the year is hugely positive. That is, investors in direct-sold funds are more likely to invest 

in the markets in January compared to December. This indicates that the behavior of investors in 
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direct-sold funds at the turn of the year is consistent with the prediction of ‘parking the proceeds’ 

hypothesis of Ritter (1988). In contrast, the negative coefficient on January dummy in column (2) 

of panel B for broker-sold funds indicates a difference in trading behavior. Coefficients in column 

(3) for outflows do not indicate any systematic difference at the turn of the year in either channels. 

In Table 8, I repeat the analysis with month-on-month change in abnormal flows. After 

estimating abnormal flows as described in Section 5.3.1, I compute a backward difference each 

month (i.e. month ‘t’ value minus month ‘t-1’ value) to get the month-on-month changes in 

abnormal flows. The results in column (2) for inflows in both panels of Table 8 reinforce the 

findings from Table 7. Particularly, the direction of shift in abnormal inflows at the turn of the year 

is completely opposite across the two distribution channels. 

6.2. Difference in difference estimation using month-on-month changes in flow proxies 

I compare the coefficient on January dummy in Table 7 across the distribution channels to test if 

the difference is statistically significant. This is equivalent to a difference-in-difference estimation 

that compares the dependent variable (which is the month-on-month changes in flow proxies in 

this case) at the turn of the year with other months in broker-sold funds vs. direct-sold funds. 

Specifically, I estimate the following regression. 

ΔFlow𝑖,𝑡 = 𝛼 + 𝛽1 ∗ 𝐼𝐽𝑎𝑛𝑢𝑎𝑟𝑦 + 𝛽2 ∗ 𝐼𝑏𝑟𝑜𝑘𝑒𝑟 𝑠𝑜𝑙𝑑 + 𝛽3 ∗ 𝐼𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∗ 𝐼𝑏𝑟𝑜𝑘𝑒𝑟 𝑠𝑜𝑙𝑑 + 𝜖𝑖,𝑡, (1.6) 

where 𝐼𝑏𝑟𝑜𝑘𝑒𝑟 𝑠𝑜𝑙𝑑 is a dummy variable that take a value of one for broker-sold funds and zero 

otherwise. In equation (1.6), the estimate of 𝛽3 is the coefficient of interest. Comparing the 

dependent variable across the two distribution channels and between the turn of the year and other 

month pairs helps in controlling for heterogeneity in investor behavior and therefore in teasing out 

the role of brokers’ incentives at the turn of the year.  Table 9 reports the results from estimating 
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(1.6) with standard errors double clustered by fund and month to account for both cross-sectional 

correlations in the dependent variable across funds within a month and for autocorrelation at fund 

level. Panel A shows the results with month-on-month changes in various flow proxies and panel 

B reports the results with month-on-month changes in various abnormal flow proxies. 

The results in Table 9 indicate that the difference-in-difference coefficient 𝛽3 in equation (1.6) 

is statistically significant using both normal flows and abnormal flow proxies. Month-on-month 

changes in inflows from December to January are significantly lower in broker sold funds 

compared to direct-sold funds and other sequential month pairs. This result is consistent with the 

prediction of hypothesis 2 that financial intermediaries can impact the timing of flows at the turn 

of the year in line with their incentives. The coefficient on the interaction term 𝛽3 in column (3) 

with Δinflows as the dependent variable in panel A is -0.641 which is significantly different from 

zero with a p-value less than 1%. This estimate provides a measure of the extent of shift of inflows 

between January and December due to brokers’ incentives at the turn of the year after controlling 

for heterogeneity in investor behavior across channels and across time. A broker-sold fund with 

an average size of $1029 million receives dollar inflows of $36 million per month on average. For 

this fund, the difference-in-difference estimate translates to a shift of inflows of $6.6 million 

between the months of January and December. This represents 18% (=6.6/36) of the average 

inflows in this fund in a month which is a reasonably big magnitude. 

Table 9 also reports the results from estimating equation (1.6) by including fund and month 

fixed effects. This alleviates concerns that the results discussed above could be driven by 

unobserved fund-specific factors other than broker-affiliation and month-specific factors beyond 

marking of the year-end. Columns (2), (4), and (6) report the results using the two sets of fixed 

effects. In this estimation, coefficient 𝛽1 is not identified anymore since it is collinear with the 
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month dummies. But 𝛽2 is identified because some funds switch their distribution channel over 

time based on the proportion of assets held in each channel across all share classes. As before, 𝛽3 

is the coefficient of interest. The results with fixed effects still indicate a negative and statistically 

significant coefficient for the interaction term. More importantly, there is only a slight change in 

the coefficient magnitudes from the specification without fixed effects implying little role for other 

unobserved factors on these results. 

7. Tax-loss Selling and Outflows at the Turn of the year  

The first result documented in this paper shows that both outflows and inflows are high in both the 

months of December and January in retail-oriented equity mutual funds. Increased selling in 

December could be driven either by tax-loss selling motive of retail investors or by seasonally 

varying liquidity needs.  In this section, I try to pin down the reason behind higher selling activity 

at the turn of the year.  

Calendar year coincides with the end of tax-year for retail investors in the US. And, the tax-

code allows investors to offset taxes on realized capital gains with capital losses realized during 

the calendar year. While losses realized any time during the year can be used to offset taxes on 

gains, investors might postpone the loss realization till the end of the year due to uncertainty in the 

amount of capital gains they accrue by the end of the year. Moreover, features in the tax-code such 

as different tax rates for long-term vs. short-term gains and the transaction costs in the markets can 

all push investors to concentrate their selling behavior in the months of December and January as 

argued in Constantinides (1984). I study if the seasonal selling behavior I document in this paper 

is driven by seasonal tax-loss selling motives of investors as documented in equity markets. I 

conduct both cross-sectional and time-series analyses to identify the role of tax-loss selling as I 

discuss next. 
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7.1. Cross-sectional tests for tax-loss selling at the turn of the year 

In December, selling for tax-loss purpose implies that investments that are making loss on investor 

accounts would register higher outflows. The data I compile for this study is at the aggregate fund 

level which does not identify individual investor holding details. Therefore, multiple investors in 

the same fund can have different rates of return on their personal accounts in the same month 

depending on when they begin their position with the fund. Moreover, data on fund flows is also 

aggregated across all the investors and, therefore, it does not allow identifying trades made by 

investors who are facing losses from the fund versus those who trade for other reasons. Therefore, 

I resort to cross-sectional variation in the fund performance in a given month to identify flows that 

are driven by tax-loss motivation. 

Funds that are performing very poorly by the end of the year, even in terms of a simple metric 

like prior one-year return, are highly likely to be registering losses on the personal accounts of 

most investors in those funds and are, therefore, likely to face more redemptions. Hence, I expect 

seasonal tax-loss selling in December to be concentrated in relatively poor performing funds in the 

cross-section. In other words, seasonal tax-loss selling predicts increased sensitivity of outflows 

to poor performance in December. 

In January, investors whose portfolios are at a gain relative to their purchase price could be 

encouraged to sell and capture the gains in order to postpone paying taxes on these realized gains 

for an entire year. Such trades are also motivated by the fact that calendar year serves the base for 

retail investors’ tax computation. Since funds performing extremely well in the cross-section are 

likely to be at a gain in many investor accounts, I expect that seasonal tax-loss selling leads to 

higher outflows in January to be predominantly concentrated in funds with good performance. This 

predicts a higher sensitivity of outflows to good performance in January. 
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To test the above implications of tax-loss selling on the flow performance sensitivity at the 

turn of the year, I estimate a linear regression of flow proxies on the three performance rank 

variables shown in equation (1.4) and allowing for the coefficients on the performance variables 

to vary in the months of December and January. By interacting the performance rank variables 

with dummy variables for the months of December, January I can test if there are statistically 

significant differences in the flow-performance sensitivity in these two months from remaining 

months. Table 10 reports the results from these regressions. Columns (5) and (6) show the results 

with outflows as the dependent variable. The coefficients of interest are on ‘LOW Perf*December 

dummy’ and ‘HIGH Perf*January dummy’ in column (6). 

The results in column (6) of Table 10 support the role of tax-loss selling in December outflows 

but not much for January outflows. The coefficients on interaction terms of LOW, MID, and HIGH 

performance rank variables with December dummy indicate statistically and economically 

significant effect only for the LOW performance group on outflows. In other words, abnormal 

outflows in December are mostly concentrated in the low performance group. In Table 11, I report 

additional tests by including other variables that affect flows and allowing for these to change in 

the months of December and January. The results in column (6) of Table 11 indicate similar 

evidence on the role of tax-loss selling on December outflows. 

7.2. Time-series tests for tax-loss selling at the turn of the year 

Apart from the cross-sectional tests, I run additional analyses to pin down the role of tax-loss 

selling on the turn-of-the-year outflows based on time-series variation in the market-wide returns. 

In years when the aggregate market portfolio performs poorly by the end of the year, a lot of 

investor accounts register losses resulting in more tax-loss selling motivated outflows in such 

years. Moreover, in states of the world with lower market returns, the tax-saving benefit arising 
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from selling the losers would be more valuable to investors, thus propelling such behavior. Similar 

tests were used by Dyl and Maberly (1992) to identify the role of tax-loss selling on year-end 

selling behavior of investors in equity markets. 

Using the return on the CRSP value-weighted aggregate market portfolio as a proxy for market 

returns, I test if outflows in December are higher in down-market years compared to other times. 

I classify the years in which the compounded return on the above market proxy from January to 

December of a year is negative as down-market year. In my sample of 24 years, the 10 calendar 

years with negative market returns are 1994, 2000, 2001, 2002, 2005, 2007, 2008, 2011, 2014, 

2015. If a calendar year has negative return on the market as discussed, I consider the months 

February to December of that year and the January of the next year to be a part of down market. I 

repeat my main analyses in Tables 5 and 6 with normal flow proxies and abnormal flow proxies 

by including additional interaction terms with a dummy for down market years. Table 12 presents 

the results from these estimations. Panels A and B show the results with normal flow metrics and 

abnormal flow metrics respectively. 

Column (3) of Table 12 show results with outflows as the dependent variable. The coefficient 

on ‘December Dummy*Down market dummy’ is positive in both the panels but is not statistically 

significant. Although the sign of this coefficient is consistent with the prediction for tax-loss 

selling, lack of statistical significance casts a doubt on this explanation. Particularly, the coefficient 

on the interaction term in panel B indicates a very small magnitude for the increase in abnormal 

December selling in down-market years. The lack of results in this specification could also be due 

to lower power for this test due to a noisy proxy for the down-market years. To address this 

concern, I use an alternative proxy for down-market years by splitting the 24 years in my sample 

into terciles. I re-run my analyses by retaining only the top-most and bottom-most eight years with 
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the bottom-most classified as down-market years. Table 16 reports these results which are very 

similar to the results in Table 12. These results indicate that tax-loss selling might not be the sole 

reason behind the increased outflows in December. 

8. Robustness Tests 

I now explore the sensitivity of my results to assumptions about various empirical choices. First, I 

study if the patterns I document in this paper are robust to sample period chosen. If behavioral 

biases are driving the documented patterns and investors learn and correct their biases, then the 

patterns should weaken over time. I run my analyses on sub-samples by splitting my sample into 

two halves. The results presented in the Tables 13 and 14 show that the patterns are qualitatively 

similar in both halves. In unreported results, I explore the sensitivity of my results to choice of 

performance metric such as market adjusted return, four factor alpha and find that the results are 

similar. I also repeat my analyses in sub-samples by style category. In unreported results, I find 

that my results are qualitatively similar. 

Finally, I check the sensitivity of my results to the definition of flows. Most studies in the 

literature on fund flows use the net flow metric computed using the data on TNA and net returns 

available from CRSP MF database. Although this way of computing flows does not allow studying 

the buying and selling trades separately, it increases the size of the sample with data on net flows 

compared to using purchases and redemptions data as evident from the mapping statistics in Table 

1. Therefore, I replicate my main results using CRSP based net flows as the dependent variable to 

mitigate concerns related to the systematic differences between the two sets of samples and also 

to relate my findings to previous literature on net flows. Figure 6 and Table 15 in the Appendix 

report these results. All the results are qualitatively very similar to the net flow computed using 
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purchases and redemptions. Therefore, my findings are relatable to the prior literature on fund 

flows and contribute to them by exploring the dimension of seasonality at the turn of the year. 

9. Discussion and Conclusion 

In this paper I study equity mutual fund flows at the turn-of-the-year and address two main research 

questions. First is whether the trading behavior of investors in equity mutual funds is uniform 

across all calendar months. Retail investors, who comprise a large chunk of the investor base of 

equity mutual funds, rebalance their portfolios on an infrequent basis distracted by other pursuits. 

Year-end is associated with holidays and cash flow infusions in the form of bonuses to many 

investors and also coincides with the end of tax-year in the United States. Therefore, the attention 

to personal portfolios might be higher at this time resulting in higher rebalancing activities. 

Consistent with this narrative I find that the levels of buying and selling are significantly higher at 

the turn of the year, i.e. in December and January. 

The second question I ask is if marketing & distribution efforts of selling brokers in financial 

markets differ at the turn of the year and influence the seasonal patterns flows. This question is 

motivated the incentives of selling agents to influence timing of flows due to their sales quotas. 

Sales agents are usually compensated through bonus payments that are tied to periodic sales 

quotas. Meeting or exceeding an annual sales quota results in an annual bonus payment which is a 

predominant part of their income. Literature on compensation design argues that such plans can 

lead to incentive gaming and hurt the firm that employs these agents. During the year, agents have 

an incentive to push their efforts towards the end of the period where the bonus payouts happen. 

And, at the turn of the year where the quotas are reset, they have an incentive to pull new sales 

from the beginning of next year to the end of current year by influencing their clients if they fall 
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short of their quotas in the current period. Such incentives can distort the timing of flows in funds 

sold through brokers who essentially act as sales agents of the distributing firm. 

Based on this theory, I study if higher distribution effort leads to increased inflows at the end 

of the year and lower inflows at the beginning of a year (i.e. pulling-in of sales from next year to 

end of current year). I split my sample into broker-sold and direct-sold funds and compare the 

month-on-month change in inflows in these two channels at the turn of the year with other months. 

I find that in broker-sold funds, there is a shift of inflows from January to December lending 

support to the argument on the role of selling brokers in influencing the timing of flows. 

The patterns I document in this paper indicate that trading behavior of investors differs 

significantly at the turn of the year and that intermediaries such as selling brokers can influence 

investor behavior due to their compensation structures. While both types engage in higher selling 

in December, direct-sold investors defer their buying to the beginning of next year consistent with 

‘parking the proceeds’ hypothesis of Ritter (1988). Investors in broker-sold funds actively invest 

at the year-end itself along with higher selling at this time. These findings complement the 

literature studying the timing ability of mutual fund investors. These studies document that mutual 

fund investors display poor timing ability in picking winners and that broker-sold funds are 

especially worse. My findings suggest that brokers might have a role to play in the poor timing 

ability of these investors. Therefore, studies that make economic inferences based on investors’ 

flow behavior in equity funds must consider the impact of change in trading motives, behavioral 

biases, and incentives of various intermediaries in influencing the flows. 
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Appendix 

Appendix 1A: Cleaning and Merging CRSP with Morningstar Direct and N-SAR files 

In this appendix, I discuss my approach to clean and merge the CRSP mutual fund data with MS 

Direct data and N-SAR data. I also discuss my approach to identify distribution channel and fund 

family affiliation. I get the data from MS Direct by setting the Domicile to ‘United States of 

America’ and Global Broad Category Group to ‘Equity’. I collect data on both surviving and dead 

funds starting from 1990. CRSP data is from WRDS and I filter actively managed domestic equity 

funds using the comprehensive style code provided by CRSP. Specifically, I consider records with 

crsp_obj_cd values in (‘EDC’, ‘EDY’) and then exclude records with crsp_obj_cd values ‘EDYH’ 

and ‘EDYS’. To drop index funds, ETFs and target date funds, I use the CRSP index fund flag 

combined with a fund name search for the strings ‘index’, ‘s&p’, ‘idx’, ‘dfa’, ‘program’, ‘etf’, 

‘exchange traded’, ‘exchange-traded’, ‘target’, ‘2005’, ‘2010’, ‘2015’, ‘2020’, ‘2025’, ‘2030’, 

’2035’, ‘2040’, ‘2045’, ‘2050, ‘2055’. I begin this sample in 1990 as well. Both CRSP and MS 

Direct are at the share class level and I merge them at this level. I scrape the EDGAR database to 

collect N-SAR files of all mutual funds and parse them to get data on monthly purchases and 

redemptions. 

I parse the share class names in CRSP to identify the fund name and share class codes 

separately following the procedure discussed in the Appendix to Berk, van Binsbergen (2015).22 I 

clean up the expense related variables following the Data Appendix in Pastor, Stambaugh, Taylor 

(2015).23 I set expense ratio to missing if the reported value is less than 10 bps per year or if the 

difference between expense ratio and 12b-1 fee is less than 5 bps per year. Within each share class, 

 
22 This is accessible from http://jfe.rochester.edu/Berk_vanBinsbergen_skill_data_app.pdf 
23 This is accessible from https://faculty.chicagobooth.edu/lubos.pastor/research/Data_Appendix_Aug_2013_V3.pdf 

http://jfe.rochester.edu/Berk_vanBinsbergen_skill_data_app.pdf
https://faculty.chicagobooth.edu/lubos.pastor/research/Data_Appendix_Aug_2013_V3.pdf
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I fill any gaps in expense ratio, 12b-1 fee, loads, styles and management code with the most 

recently available values. And, I forward-fill and backward-fill fund names to deal with records 

having blank names. I set 12b-1 fee to 1% if the reported value is greater than 1% per year. I 

compute monthly gross returns by adding back monthly expense ratio (obtained by dividing the 

reported annual expense ratio by 12) to the reported values of monthly net returns. I separately 

sum all the capital gains distributions and dividend distributions by each share class within a month 

to construct the values at share class-month level. 

Share class names in MS Direct are not standardized as in CRSP. Therefore, cleaning these 

share class names to identify the fund name and share class code involves some manual work. As 

a first step, I parse the share class names to separate the last word and verify if it represents a valid 

share class identifier. After correcting any mistaken assignments, I manually check the full names 

of the remaining records. In some cases, multiple words at the end of the name are used to identify 

a share class and in some other cases the share class type is combined with some other words 

without any separators. I identify and assign the share class types and fund names to these records 

after manual verification. For the remaining unassigned records, I leave the share class blank and 

consider them to represent funds with single share class. 

I merge the cleaned MS Direct data with CRSP MF data using both ticker and CUSIP codes 

following the Data Appendix of Pastor, Stambaugh, Taylor (2015). For unmatched records, I 

match the fund names (that are cleaned and parsed for share class types) in CRSP with those in 

MS Direct. I use both automated and manual approaches for the text match. To validate the match 

quality, I use the same criteria as with CUSIP matches. Overall, I could match 88% of equity share 

classes in MS Direct with those in CRSP and 77% of the equity share classes in CRSP with those 

in MS Direct. 
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After the merge, I assign each share-class to one of the following distribution channels: broker-

sold, direct-sold, institutional, retirement, other. Del Guercio and Reuter (2014) use the 

classification provided by Financial Research Corporation which is proprietary. In lieu of this, Sun 

(2014) uses data on 12b-1 fees and loads from CRSP for the classification. Since this data is 

missing for a lot of records in CRSP, I use the share class type from Morningstar to assign the 

channel.24 I classify the types 'A', 'B', 'C', 'M', 'T', ‘Adv’ as broker-sold; 'D', 'Inv', 'N', 'No Load', 'S' 

as direct-sold. ‘Retirement’, ‘Inst’, ‘Other’ are classified accordingly. When this field is missing, 

I use the share class code parsed from the CRSP fund names. I classify codes A, B, C, Advisor and 

variants of these into broker-sold channel; classes N, D, M, S, T, Retail, No-Load, Investor into 

direct-sold channel; classes I, Y, X, K, Institutional share, Inst, Trust Class, Premier Class, 

Fiduciary Class, Consultant Class and their variants into institutional channel; classes R, Investor 

R, Retirement, R-1, R-2, R-3, R-4, R-5 and their variants into retirement channel; and all other 

non-blank share class codes into “other” channel. If the share class code parsed from the CRSP 

fund names is blank, I categorize that share class into direct-sold channel. Next, I use the 

information on loads and 12b-1 to classify some more share classes that are assigned to “other”. If 

there is a non-zero front load or non-zero rear load or the actual 12b-1 is greater than 25 bps, I 

reclassify the share class from “other” to broker-sold. And, if there is zero front load and zero rear 

load and either actual 12b-1 or maximum 12b-1 is less than 25 bps, I reclassify the share class 

from “other” to direct-sold. 

Data on purchases and redemptions is available in Morningstar beginning in 1999. To extend 

my sample, I update purchases and redemptions data for pre-1999 records with the data from the 

 
24 A description of MS share class types is available at 

https://morningstardirect.morningstar.com/clientcomm/Share_Class_Types.pdf 

https://morningstardirect.morningstar.com/clientcomm/Share_Class_Types.pdf
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parsed N-SAR files. I use name-based matching to merge N-SAR records to CRSP records. I use 

both automatic and manual approaches for matching the family name in N-SAR with family name 

in CRSP and then matching fund name in N-SAR with fund name from CRSP (which is parsed to 

remove share class identifier) within the matched families. I ensure match quality in two ways: 1) 

through manual verification, 2) by tallying the purchases redemptions data in the year 1999 

between the CRSP-MS Direct matched data and the N-SAR data. The number of equity funds 

from CRSP that have a matching N-SAR record changes from each year from 1994 to 1998. 

Although N-SAR files are available electronically starting from 1993, the number of firms that 

started complying increased starting 1994 and hence I do not use the records from 1993. These 

details are discussed in the Internet Appendix of Christoffersen, Evans, and Musto (2013).25 

To identify a fund’s family affiliation, I use the management code variable provided by CRSP 

(mgmt_cd). CRSP reports management names starting from 1993 and management codes starting 

from 1999. I clean up the management codes before using them in my sample. In the post-1999 

period, if a share class contains the same management name across time but has missing 

management codes for some periods, I fill the management code with the most recent non-missing 

value. If two share classes of a fund identified by WFICN have different values for management 

code, I retain these values as is. But if some share classes have a missing value in a given month, 

I fill these using the management code entry from the non-missing share classes in that month. For 

the records that still have blank values for management code, I try to identify the fund family by 

manually checking the names in CRSP and assign a code based on the value for these families in 

 
25 This is accessible from https://www.afajof.org/wp-content/uploads/files/supplements/IA-7929-Feb_2013.pdf 

https://www.afajof.org/wp-content/uploads/files/supplements/IA-7929-Feb_2013.pdf
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other records. For records which do not match any family name, I assign a temporary code in my 

sample. 
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1. Introduction 

An extensive literature documents that net fund flows into mutual funds are driven by funds’ past 

performance. For example, Patel, Zeckhauser, and Hendricks (1994) document that equity mutual 

funds with bigger returns attract more cash inflows and they offer various explanations for this 

phenomenon. Other papers that document a positive relation between fund flows and past 

performance include Ippolito (1992), Chevalier and Ellison (1997), and Sirri and Tufano (1998). 

Some papers in the early literature also examine whether abnormal performance (or alphas) 

measured with some benchmarks better predict fund flows than others. For example, Gruber 

(1996) compares the mutual fund flow-performance relation for alphas measured with one- and 

four-factor models, while Del Guercio and Tkac (2002) compares sensitivity of flows to raw 

returns with that to market model alphas for mutual funds and pension funds. Fung et. al. (2008) 

makes similar comparisons with a different set of factor models for hedge funds. 

While comparison of flow-alpha relations across models was not the primary focus of earlier 

papers, recent papers in this area have shown a renewed interest in such comparisons using a 

broader range of asset pricing and factor models. The primary driving force for this resurgence is 

the idea that these comparisons can potentially help us answer important economic questions that 

extend beyond a descriptive analysis of mutual fund flows. For example, Barber, Huang and Odean 

(2016) (hereafter “BHO”) compare the relation between fund flows and alphas measured with 

various models to evaluate whether mutual fund investors are sophisticated, or equivalently 

whether they rationally use all available information. They hypothesize that sophisticated investors 

should use alphas computed with a model with all common factors to evaluate fund performance 

regardless of the underlying true asset pricing model, but they find that market model alphas are 
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the strongest predictors of mutual fund flows.   BHO conclude that therefore investors in aggregate 

are not sophisticated in how they use past returns to assess fund performance.  

Berk and van Binsbergen (2016) (hereafter “BvB”), however, claim that such flow-alpha 

comparisons serve as a new and fundamentally different test of asset pricing models and the results 

can reveal the true asset pricing model. Because of potential asset pricing model implications, 

BvB’s comparisons include multifactor models and several versions of consumption-CAPM. 

Agarwal, Green and Ren (2017) and Blocher and Molyboga (2017) carry out similar tests with 

hedge funds.  

BvB also find that fund flows are most highly correlated with alphas computed with the market 

model in their tests. They conclude that therefore the CAPM is “the best method to use to compute 

the cost of capital of an investment opportunity” (Berk and van Binsbergen 2016, p. 17). The true 

asset pricing model has been a holy grail of the finance literature and hence BvB’s findings 

potentially have broad implications that go well beyond the mutual fund literature. For instance, 

Berk and van Binsbergen (2017) prescribe that practitioners should use the CAPM to make capital 

budgeting decisions based on BvB’s evidence. 

Although BHO’s and BvB’s flow-alpha horse races yield similar results, their inferences are 

mutually exclusive. Specifically, BvB’s asset pricing model interpretation assumes rational 

expectations but BHO’s interpretation implies that investors’ actions violate the rational 

expectations hypothesis. Because the inferences in BHO, BvB and related papers have far-reaching 

implications, we examine whether such inferences are conceptually and empirically tenable.  

We address the conceptual issues using a rational expectations model where investors extract 

information about mutual fund manager skills from funds’ past performance and optimally decide 
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on investments into and withdrawals from mutual funds. Our model augments Berk and Green’s 

(2004) model with a multifactor return generating process and allows investors the flexibility to 

compute alphas with respect to any factor model to update their priors about fund skills. Investors 

in the model know the true asset pricing model, and therefore which factors are priced. Although 

investors can compute alphas with only the priced factors, we show that investors optimally use 

alphas computed with the model with all common factors, both priced and unpriced, to decide on 

fund flows.  

We then consider the flow-alpha horse race that empiricists run when they do not have all the 

information that agents in the model economy possess. Specifically, unlike the agents in the model, 

empiricists do not know the true asset pricing model. Also, empiricists do not know true factor 

betas and they can only estimate them with error. We show that empiricists’ alphas that most 

precisely estimate funds’ skills will win the empiricists’ horse race under the rational expectations 

hypothesis.  

We use the results from our model to assess empirically whether we can identify the true asset 

pricing model based on the flow-alpha horse race with a sample of actively managed mutual funds. 

We use a seven-factor model as in BHO in our empirical analysis where the seven factors are 

Fama-French factors (market, SMB, HML), momentum factor (UMD) proposed by Carhart (1997) 

based on Jegadeesh (1990) and Jegadeesh and Titman (1993) and three industry factors. We 

compute the precision of alphas with models that include all seven factors and with subsets of 

these factors under the hypothesis that each of the following asset pricing models is true: (i) None 

of the risk factors are priced (or true expected returns are unrelated to factors betas), (ii) CAPM, 

(iii) Fama-French three factor model and (iv) Fama-French-Carhart four-factor model. 
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We find that four-factor alphas are the most precise when true betas are unknown. Therefore, 

if fund flows are determined under the rational expectations hypothesis, four-factor alpha should 

win the empiricists’ horse race regardless of which asset pricing model is true. For instance, four-

factor alphas should win the horse race whether the CAPM or the Fama-French three-factor model 

is the true asset pricing model.  

We also conduct simulation experiments with parameters that match the data. We generate 

simulated fund flows according to our model and we examine the small sample performance of 

model predictions. We also conduct a number of robustness tests. The simulation results are similar 

to our empirical results. Specifically, the four-factor model alphas are the most precise estimates 

when we estimate betas using traditional time-series regressions.26 When flows are generated 

according to the rational expectations model, the most precise estimator always wins that horse 

race. In addition, the precision of the alpha estimator and the winner of the horse race does not 

depend on the true asset pricing model.  

The results of our model and our empirical results indicate that the horse race cannot uniquely 

identify the true underlying asset pricing model. Therefore, flow-alpha horse is not a tenable test 

of asset pricing models. Because our conclusions are contrary to BvB’s, we take a closer look at 

their model to resolve the contradiction.  We show that a faulty foundational assumption in BvB’s 

model is the source of their mistaken inference.  

 

 
26 Our empirical tests and the main tests in the simulation estimate betas using OLS regressions as in BHO. However, 

when we use the more precise Vasicek (1973) shrinkage estimator to estimate betas in the simulation, we find that the 

alphas computed with all factors are the most precise estimates. We also find similar results when we replace BHO’s 

three industry factors with the first three principal components that we compute from the four-factor model residuals 

for the mutual fund sample.  
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Our empirical findings also contradict BHO’s hypothesis that alphas with a model that includes 

all common factors will win the horse race under the investor sophistication hypothesis. The main 

reason why four-factor alpha is more precise than seven factor alpha, and therefore wins the horse 

race, is that estimation errors in the three industry factor betas are relatively large. However, even 

if we use the four-factor model as the benchmark BHO’s finding that the single factor alpha wins 

their horse race rejects the investor sophistication hypothesis.  

2. Fund flows and alphas: Foundation for empirical tests and inferences 

This section presents a model that forms the basis for our analysis of the implications of flow-

alpha relations as tests of asset pricing models and investor sophistication. Broadly, we use the 

model to answer the following questions: 

(a) How do investors optimally update their priors about unobservable skills of fund managers 

when they observe fund returns? 

(b) How are equilibrium fund flows related to the information investors use to update their 

priors? 

(c) What are the implications of the answers to the above questions for interpreting the results 

of a flow-alpha horse race with alphas computed using different multifactor models?  

 We answer these questions using a rational expectations model as in Berk and Green (2004) 

augmented with a multifactor return generating process and an equilibrium asset pricing model.  

2.1.Asset pricing model and return generating process 

The following K-factor model is the true asset pricing model: 

𝐸[𝑟𝑖] = ∑𝛽𝑘,𝑖𝛾𝑘

𝐾

𝑘=1

, (2.1) 
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where 𝑟𝑖 is the return in excess of the risk-free rate or excess returns, 𝐸[𝑟𝑖] is the expected excess 

return on asset i, 𝛽𝑘,𝑖 is the beta of asset i with respect to factor k, and  𝛾𝑘 is the premium for a unit 

of factor risk. For the CAPM, 𝐾 = 1 and for Fama-French three-factor model, which we refer to 

as FF3, 𝐾 = 3. We also define a model with 𝐾 = 0 where the expected returns are equal for all 

assets regardless of any differences in their factor betas, i.e. 𝛾𝑘 = 0 ∀𝑘 in Eq. (2.1). Because there 

is no beta risk premium under this model we abbreviate it as “NBRP.” 

Asset returns follow the J-factor model below:27 

𝑟𝑖,𝑡 = Ε[𝑟𝑖] +∑𝛽𝑘,𝑖 𝑓𝑘,𝑡

𝐽

𝑘=1

+ 𝜉𝑖,𝑡, (2.2) 

where 𝑓𝑘,𝑡 is the realization of the common factor k, and 𝜉𝑖,𝑡 is asset specific return at time t. Factor 

realization 𝑓𝑘,𝑡 is the innovation or the unexpected component of factor k. For instance, let 𝐹𝑘,𝑡  be 

the total factor realization of the kth factor, then 𝑓𝑘,𝑡 = 𝐹𝑘,𝑡 − Ε[𝐹𝑘,𝑡 ] and Ε[𝑓𝑘,𝑡 ] = 0. Because 

we consider only traded factors, Ε[𝐹𝑘,𝑡 ] = 𝛾𝑘 ∀ 𝑘 ≤ 𝐾 and for the unpriced factors Ε[𝐹𝑘,𝑡 ] =

0 ∀ 𝑘 > 𝐾.  

In general, the 𝐽 factors in the multifactor model (2.2) include the 𝐾 priced factors from the 

asset pricing model as well as additional unpriced factors that describe realized returns. For 

example, the 𝐽 factors could include industry factors that are unpriced because they are not 

correlated with future investment opportunity set or with consumption. Therefore, in general 𝐽 ≥

𝐾. Factor returns and asset specific returns are all normally distributed. 

 

 
27 Eq. (2.2) imposes the condition that the intercept of the return generating process for each asset equals its expected 

return from the asset pricing model. 
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2.2.The Model  

This subsection presents a rational expectations model that identifies alphas that investors use to 

make their mutual fund investment decisions. The following are our assumptions:  

(a) Rational Economy: All agents in the rational expectations economy are symmetrically 

informed. 

(b) Mutual funds and skill: There are N mutual funds in the economy and 𝑁 ⟶ ∞. Fund p 

is endowed with stock selection skills that allow it to generate a gross return of Φ𝑝 in excess 

of the K-factor asset pricing benchmark. Investors know the true asset pricing model. Fund 

manager skill Φ𝑝~𝑁(𝜙0, 1/𝜈), where 𝜙0 is average skill and 𝜈 is the precision of the 

distribution of skill at the time of a fund’s inception. 𝜙0 and 𝜈 are common knowledge, 

and Φ𝑝 is constant over time.  

(c) Costs of active management: Funds incur certain costs for active management which is a 

function of total assets under management (AUM), denoted as 𝑞,  and 𝑐𝑡(𝑞) is the total 

cost per unit of AUM at time t. The cost 𝑐𝑡(𝑞) includes fund fees and administrative costs, 

brokerage costs and price impact of trades. Funds experience decreasing returns to scale 

and hence 𝑐𝑡(𝑞) is an increasing function of q.   

(d) Gross and net returns: Let 𝑅𝑝,𝑡 and 𝑟𝑝,𝑡 be fund p’s gross and net excess returns at time 

t, respectively. 𝑅𝑝,𝑡 = 𝑟𝑝,𝑡+ 𝑐𝑡−1(𝑞𝑝,𝑡−1). Funds’ net returns are observable by both 

investors in the model economy and econometricians. Investors can also compute 𝑅𝑝,𝑡 

since they know 𝑞𝑝,𝑡−1 and 𝑐𝑡−1(𝑞𝑝,𝑡−1) but econometricians observe only 𝑞𝑝,𝑡−1.  

(e) Competitive Market: The mutual fund market is perfectly competitive. Therefore, 

expected alpha net of fees and costs for an investment in any mutual fund equals zero in 

equilibrium: 
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𝜙𝑝,𝑡 − 𝑐𝑡(𝑞𝑝,𝑡) = 0. (2.3) 

where 𝜙𝑝,𝑡 is the mean of investors’ posterior about fund manager skill at time t.  

(f) Expected return and return generating process: Eqs. (2.1) and (2.2) specify expected 

returns and the return generating process in this economy, which are both common 

knowledge. Fund betas are constant and common knowledge as well. The net return at time 

t is:28 

𝑟𝑝,𝑡 = Φ𝑝 + ∑𝛽𝑘,𝑝Ε[𝐹𝑘,𝑡 ]

𝐾

𝑘=1⏟        
Expected return, Eq. (2.1)

+ ∑𝛽𝑘,𝑝 𝑓𝑘,𝑡

𝐽

𝑘=1

+ 𝜉𝑝,𝑡
⏟            

Unexpected return, Eq. (2.2)

− 𝑐𝑡−1(𝑞𝑝,𝑡−1). (2.4) 

Assumptions (a) through (e) are the same as in Berk and Green (2004). We add assumption (f) 

about expected asset returns and the return generating factor model.29  

Investors make their mutual fund investment decisions based on their assessment of fund 

manager skills. Investors assign a skill of 𝜙0 to all funds at their origin.  Subsequently, investors 

observe net fund returns and factor realizations each period and optimally update their priors. To 

update their priors, investors could compute alphas relative to any 𝜂-factor model, which we denote 

as �̂�𝑝,𝜂,𝑡, as follows: 

�̂�𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 − 𝑟𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 if 𝜂 = 0 and (2.5) 

�̂�𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 −∑𝛽𝑘,𝑝𝐹𝑘,𝑡 

𝜂

𝑘=1

, if 𝜂 > 0, (2.6) 

 

 
28 Funds’ gross returns follow the return generating process (2.2) plus Φp. Investors earn net returns in (2.4) after all 

costs.  
29 Φ𝑝in Eq. (2.4) denotes managerial skill in our model which is denoted as 𝛼 in Berk and Green. We use 𝛼 to denote 

ex-post abnormal returns following a common practice in the empirical mutual fund literature.  
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where  𝐹𝑘,𝑡 is realized factor returns.   

The proposition below describes the Bayesian rule that investors use to update their priors 

recursively, conditional on using a particular 𝜂-factor model to compute alphas.  

Proposition 2.1: Let 𝜙𝑝,𝜂,𝑡−1 be investors’ assessment of fund p’s skill prior to the realization of 

𝑟𝑝,𝑡 and let 𝜙𝑝,𝜂,𝑡 be the mean of investors’ posterior after observing 𝑟𝑝,𝑡. Suppose the competitive 

market condition in Eq. (2.3) holds and suppose investors compute  �̂�𝑝,𝜂,𝑡 with an 𝜂-factor model 

in Eq. (2.5) or Eq. (2.6) to recursively update their priors about fund manager skills. Then:  

𝜙𝑝,𝜂,𝑡 = 𝜙𝑝,𝜂,𝑡−1 +
𝜗�̂�,𝜂

𝜈 +  𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝜂
× �̂�𝑝,𝜂,𝑡, (2.7) 

where 𝐴𝑔𝑒𝑝,𝑡 is the fund’s age at time t.  The precision of investors’ posterior is 𝜈 +

𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝜂 , where 𝜗�̂�,𝜂 =
1

𝜎�̂�,𝜂
2  . 

Proof: See Appendix 2A. 

Which particular 𝜂-factor model would investors use to compute alphas? We examine the 

properties of the posteriors with different alphas next to determine the answer to this question.   

Proposition 2.2: (a) Investors obtain an unbiased estimate of true skill conditional on factor 

realizations if and only if they use �̂�𝑝,𝐽,𝑡 to update their priors;  (b) Var(�̂�𝑝,𝐽,𝑡) < Var(�̂�𝑝,𝜂,𝑡) ∀ 𝜂 <

𝐽.  

Proof: See Appendix 2A.  

Proposition 2.3:  Investors optimally use �̂�𝑝,𝐽,𝑡 to minimize mean squared error risk.  
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Proof: From Proposition 2.1, investors' posterior of fund p’s skill is distributed 𝑁(𝜙𝑝,𝜂,𝑡, 1/𝜈𝑝,𝜂,𝑡). 

From Proposition 2.2,  𝜙𝑝,𝐽,𝑡 is unbiased and has the smallest variance and hence the smallest 

MSE. 

Proposition 2.4: In a competitive equilibrium, investors update their priors using �̂�𝑝,𝐽,𝑡.  

Proof: Suppose the contrapositive that a competitive equilibrium obtains when investors use �̂�𝑝,𝜂,𝑡  

with 𝜂 < 𝐽 to update their priors and determine fund flows. The competitive market condition 

under the contrapositive implies 𝜙𝑝,𝜂,𝑡 −  𝑐(𝑞𝑝,𝑡) = 0. But, suppose 𝑓𝑘∗,𝑡 ≠ 0 for some 𝑘∗ > 𝜂.  

For any fund with 𝛽𝑝,𝑘∗ ≠ 0, Et(Φ𝑝|𝑓𝑘∗) =  𝜙𝑝,𝜂,𝑡 − 𝛽𝑝,𝑘∗𝑓𝑘∗,𝑡 and Et(Φ𝑝|𝑓𝑘∗) −  𝑐(𝑞𝑝,𝑡) ≠ 0. 

Hence under the contrapositive, non-zero NPV investments exist which violate the competitive 

market condition. Therefore, the contrapositive is not consistent with a competitive market 

equilibrium. 

Both Propositions 2.3 and 2.4 indicate that in equilibrium investors use �̂�𝑝,𝐽,𝑡 , the J-factor 

alpha, to update their priors about fund manager skills. Intuitively, investors know the true asset 

pricing model, betas and factor realizations and what they do not know is what portion of a fund’s 

benchmark-adjusted return is due to the difference between its true skill and investors’ priors 

(Φ𝑝 − 𝜙𝑝,𝜂,𝑡−1) and what portion is due to 𝜉𝑝,𝑡. Investors optimally use �̂�𝑝,𝐽,𝑡 because it is 

orthogonal to the information that they already know. Because �̂�𝑝,𝐽,𝑡 is orthogonalized to both 

priced and unpriced factors it does not contain any information to differentiate between them. 

2.3.Alphas and fund flows  

Investors update their priors each period using �̂�𝑝,𝐽,𝑡 and make their investment decisions each 

period. In a competitive equilibrium 𝜙𝑝,𝐽,𝑡 = 𝑐𝑡(𝑞𝑝,𝑡)  where 𝑞𝑝,𝑡 is fund p’s AUM after time t net 
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fund flows. Therefore, 𝑐𝑡(𝑞𝑡) also follows a recursive equation analogous to Eq. (2.7). 

Specifically, 

𝑐𝑡(𝑞𝑝,𝑡) = 𝑐𝑡−1(𝑞𝑝,𝑡−1) +
𝜗�̂�,𝐽

𝜈 +  𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝐽
× �̂�𝑝,𝐽,𝑡. (2.8) 

The net flow Γ𝑝,𝑡 into mutual fund 𝑝 in each period is given by:  

Γ𝑝,𝑡 =
𝑞𝑝,𝑡 − 𝑞𝑝,𝑡−1(1 + 𝑟𝑝,𝑡)

𝑞𝑝,𝑡−1
= 
𝑞𝑝,𝑡 − 𝑞𝑝,𝑡−1

𝑞𝑝,𝑡−1
− 𝑟𝑝,𝑡. (2.9) 

To determine a functional relation between �̂�𝑝,𝐽,𝑡 and fund flows, we assume that the cost 

function is given by: 

𝑐𝑝,𝑡(𝑞𝑝,𝑡) = 𝛿𝑝,𝑡 × 𝑞𝑝,𝑡, (2.10) 

where 𝛿𝑡 is a time-varying cost per unit of AUM.   

 We specify the time-varying cost function as: 

𝛿𝑝,𝑡 =
𝛿𝑝,𝑡−1

(1 + 𝑟𝑝,𝑡)
. (2.11) 

This cost function assumes that the total cost of active management does not change with changes 

in fund size due to funds’ own returns and any change in total cost is only due to net fund flows.30  

With this cost function and Eqs. (2.8) and (2.9), equilibrium fund flows are: 

Γ𝑝,𝑡 =
𝑞𝑝,𝑡 − 𝑞𝑝,𝑡−1(1 + 𝑟𝑝,𝑡)

𝑞𝑝,𝑡−1
=

𝜗�̂�,𝐽

𝜈 +  𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝐽
×
(1 + 𝑟𝑝,𝑡)

𝛿𝑡−1𝑞𝑝,𝑡−1
× �̂�𝑝,𝐽,𝑡. (2.12) 

 
30 Since 𝑞𝑡 = 𝑞𝑡−1(1 + 𝑟𝑡) + 𝑞𝑡−1Γ𝑡, total cost of active management at 𝑡 under this specification is 𝑐𝑡(𝑞𝑡) =
𝛿𝑡−1𝑞𝑡−1 + 𝛿𝑡𝑞𝑡−1Γ𝑡 = 𝑐𝑡−1(𝑞𝑡−1) + 𝛿𝑡𝑞𝑡−1Γ𝑡. Therefore, change in total cost from 𝑡 − 1 to 𝑡 is only due to new 

money. In contrast, a time-invariant cost function (e.g. 𝛿𝑡 ≡ constant) would imply that aggregate fund flows would 

be negatively correlated with market returns because average alpha is zero and costs vary with aggregate AUM 

regardless of whether the change in AUM is due to fund returns or due to flow of new funds. Also, because expected 

fund returns are positive, a time-invariant cost function would result in an average net outflow of funds to offset funds’ 

capital gains. 
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Eq. (2.12) indicates that in addition to �̂�𝑝,𝐽,𝑡, fund flow is a function of fund’s marginal cost 

and the precision of investors’ posterior distribution. As we noted earlier, �̂�𝑝,𝐽,𝑡 does not 

differentiate between priced and unpriced factors. Therefore, Γ𝑝,𝑡 also does not differentiate 

between priced and unpriced factors and it contains no information to identify which factors are 

priced or unpriced in the true asset pricing model. 

2.4.Econometricians’ information set and Alpha-fund flows horse race  

The literature runs a horse race based on the relation between fund flows and alphas computed 

under various 𝜂-factor models. Because the horse race is run by empiricists, alphas should only 

use information available to them. Empiricists have the same information as investors in the model 

except that empiricists do not know (i) the true asset pricing model and (ii) true betas. Therefore, 

the 𝜂-factor model alpha computed by empiricists is:  

�̂�𝑝,𝜂,𝑡
𝐸 = 𝑟𝑝,𝑡 −∑�̂�𝑘,𝑝𝐹𝑘,𝑡

𝜂

𝑘=1

, (2.13) 

where �̂�𝑘,𝑝’s are empiricists’ unbiased beta estimates. The superscript E on alpha denotes that it is 

computed with the econometrician’s information set.  

The literature typically runs the following horse race regression between flow and �̂�𝑝,𝜂,𝑡
𝐸  to 

draw inferences about the true asset pricing model and investor sophistication: 

 

Γ𝑝 = 𝑎𝜂 + 𝑏𝜂 × �̂�𝑝,𝜂,𝑡
𝐸 + 𝜔𝑝,𝜂,𝑡. (2.14) 

 The probability limit of the OLS estimate of the slope coefficient is: 

𝑝𝑙𝑖𝑚 𝑏𝜂 =
𝐶𝑜𝑣(Γ𝑝,𝑡, �̂�𝑝,𝜂,𝑡

𝐸 )

𝜎
�̂�𝑝,𝜂,𝑡
𝐸
2 , (2.15) 
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where 𝜎
�̂�𝑝,𝜂,𝑡
𝐸
2  is cross-sectional variance of  �̂�𝑝,𝜂,𝑡

𝐸 . Our empirical tests follow the Fama-MacBeth 

approach and fit Regression (2.14) for each t and the time-series average of monthly slope 

coefficients is the sample estimate of 𝑏𝜂. The winner of the horse race regression (2.14) is the 𝜂-

factor model with the biggest 𝑏𝜂.  

 Which 𝜂-factor model would have the biggest 𝑏𝜂? Since flow in the model is determined by 

�̂�𝑝,𝐽,𝑡, heuristically the winner of the horse race would depend on how accurately �̂�𝑝,𝜂,𝑡
𝐸  measures 

�̂�𝑝,𝐽,𝑡. From Eqs. (2.4) and (2.13) �̂�𝑝,𝜂,𝑡
𝐸  is:   

�̂�𝑝,𝜂,𝑡
𝐸

= 

{
  
 

  
 
 �̂�𝑝,𝐽,𝑡 + ∑ 𝛽𝑘,𝑝𝑓𝑘,𝑡

𝐽

𝑘=𝜂+1

− ( ∑ 𝛽𝑘,𝑝�̅�𝑘

𝜂

𝑘=𝐾+1

+∑(�̂�𝑘,𝑝,𝑡 − 𝛽𝑘,𝑝)𝐹𝑘,𝑡

𝜂

𝑘=1

)  for  𝜂 ≥ 𝐾,

 �̂�𝑝,𝐽,𝑡 + ( ∑ 𝛽𝑘,𝑝�̅�𝑘

𝐾

𝑘=𝜂+1

+ ∑ 𝛽𝑘,𝑝𝑓𝑘,𝑡

𝐽

𝑘=𝜂+1

 ) − ∑(�̂�𝑘,𝑝,𝑡 − 𝛽𝑘,𝑝)𝐹𝑘,𝑡

𝜂

𝑘=1

 for  𝜂 < 𝐾,

 

(2.16) 

where �̅�𝑘 is the sample mean of factor k. The unconditional factor mean equals the corresponding 

factor risk premium for all priced factors.  

 In a frictionless economy, unconditional mean for unpriced factors (i.e. for 𝑘 > 𝐾) should 

equal zero to preclude arbitrage. Empirically, however, the sample mean of unpriced factors could 

differ from zero because arbitrage is costly. For example, if CAPM were the true asset pricing 

model then the fact that the mean of HML is positive is an anomaly and 𝛽𝐻𝑀𝐿,𝑝�̅�𝐻𝑀𝐿 is not a 

component of expected returns. Because empiricists do not know the true asset pricing model and 

whether the 𝑘𝑡ℎ factor is priced, the measurement error in �̂�𝑝,𝜂,𝑡
𝐸  due to model misspecification is  

𝛽𝑘,𝑝�̅�𝑘 if 𝜂 < 𝐾 and −𝛽
𝑘,𝑝
�̅�𝑘 if 𝜂 > 𝐾.  

   From Eq. (2.16) 𝜎
�̂�𝑝,𝜂,𝑡
𝐸
2 , the denominator of Eq. (2.15), is:   
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𝜎
�̂�𝜂
𝐸
2 = 𝜎 �̂�𝐽

2 + ∑ 𝜎𝛽𝑘
2 �̅�𝑘

2

𝜂

𝑘=𝐾+1

+∑𝜎
�̂�𝑘−𝛽𝑘

2

𝜂

𝑘=1

𝐸(𝐹𝑘,𝑡
2 )  

+ ∑ 𝜎𝛽𝑘
2  𝜎𝑓𝑘

2 + ∑ 𝜎𝑓𝑘
2 [𝐸(𝛽𝑘)]

2

𝐽

𝑘=𝜂+1

,

𝐽

𝑘=𝜂+1

 

(2.17) 

where 𝜎𝛽𝑘
2  is the cross-sectional variance of factor beta, 𝜎𝑓𝑘

2  is factor variance, 𝜎
�̂�𝑘−𝛽𝑘

2 is the variance  

of beta measurement error,  �̅�𝑘 is the expected value of factor k and �̅�𝑘 is the cross-sectional 

average of corresponding factor beta.31 Eq. (2.17) assumes that betas on various factors are 

uncorrelated in the cross-section for expositional convenience. For example, this assumption 

implies that the market beta of a fund relative to other funds has no information for the relative 

HML beta of that fund. However, when we later empirically estimate the components of 𝜎
�̂�𝜂
𝐸
2  we 

estimate all cross-sectional covariances of betas from the data.  

 The first term on the right-hand side is the variance of alphas across the cross-section of funds 

if one could estimate alphas with investors’ information set. The remaining terms are sources of 

incremental error because empiricists do not have all of investors’ information.  Consider each of 

these three terms:  

• Asset Pricing Model (APM) Misspecification error: Because factors 𝑘 > 𝐾 are unpriced 

according to the true asset pricing model, realized fund returns are driven only by the 

unexpected component of these factors and not by �̅�𝑘. Suppose K factors are priced under 

the true asset pricing model but we use 𝜂-factor model to compute alphas, variance due to 

 
31 When 𝜂 = 0, Eq. (2.5) subtracts market return from fund returns and hence the last term in Eq. (2.17) should be 

modified as 𝜎𝑚𝑎𝑟𝑘𝑒𝑡
2 [𝐸(𝛽1 − 1)]

2 + ∑ 𝜎𝑓𝑘
2 [𝐸(𝛽𝑘)]

2𝐽
𝑘=2  .  
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APM misspecification equals ∑ 𝜎𝛽𝑘
2 �̅�𝑘

2𝜂
𝑘=𝐾+1 .32 Empiricists compute alphas with all priced 

factors but without any unpriced factor when 𝜂 = 𝐾 and in this case this term equals zero.  

• Beta measurement error: Because empiricists estimate betas from the data, the factors 

used to compute alphas in Eq. (2.13) contribute an incremental error that equals 

∑ 𝜎
�̂�𝑘−𝛽𝑘

2𝜂
𝑘=1 𝐸(𝐹𝑘,𝑡

2 ). 

•  Omitted factors: Common factors that investors use but are omitted from Eq. (2.13) add 

∑ 𝜎𝛽𝑘
2  𝜎𝑓𝑘

2 +𝐽
𝑘=𝜂+1 ∑ 𝜎𝑓𝑘

2 [𝐸(𝛽
𝑘
)]
2𝐽

𝑘=𝜂+1 to alpha estimation errors. The first part of this sum 

is due to the cross-sectional variance of betas. This part would be zero if the factor betas of 

all funds are the same because in this case adjusting for betas would not affect the cross-

sectional rank of a fund’s performance. The second part is a function of the cross-sectional 

mean of factor betas. For 𝜂 = 𝐽, all factors are used to compute alphas and hence this 

component is zero. 

Because  𝜎
�̂�𝑝,𝜂,𝑡
𝐸
2  is the denominator of Eq. (2.15), the 𝜂-factor model that yields the most precise 

alpha estimator would win the horse race, ceteris paribus.33 From Eq. (2.17), estimation error in 

�̂�𝑝,𝜂,𝑡
𝐸  due to omitted factors increases with the exclusion of any factor. However, inclusion of 

unpriced factors to compute alphas makes the estimate less precise because each unpriced factor 

adds to APM misspecification error and to beta-measurement error. The trade-offs between these 

two opposite effects will determine whether inclusion of a particular factor leads to a less or more 

precise alpha estimator. 

 
32 When 𝜂 < 𝐾, the limits of the summation for the second term in Eq. (2.17) is from 𝜂 + 1 to 𝐾. For brevity, we 

present formulas for 𝜂 ≥ 𝐾 and analogous changes yield the corresponding formulas for 𝜂 < 𝐾. 
33 One component of 𝜎

�̂�𝑝,𝜂,𝑡
𝐸
2  is the cross-sectional variance of true skill of fund managers. Because this component is 

common across all 𝜂’s, the most precise alpha estimator also has the smallest 𝜎
�̂�𝑝,𝜂,𝑡
𝐸
2 . 
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 BHO hypothesize that sophisticated investors would optimally use all 𝐽 factors to compute 

alphas. Investors in our model do use all 𝐽 factors because they know the true asset pricing model 

and true betas. However, because empiricists do not have the same information their most precise 

estimator would exclude some of the 𝐽 factors if their beta measurement errors and APM 

misspecification errors are sufficiently large.  

 The winner of the horse race also depends on the numerator in Eq. (2.15). However, as we 

prove in Appendix 2B, the numerator does not vary with 𝜂. Specifically,  

𝐶𝑜𝑣(Γ𝑝,𝑡, �̂�𝑝,𝜂,𝑡
𝐸 ) = 𝐶𝑜𝑣(Γ𝑝,𝑡,  �̂�𝑝,𝐽,𝑡)  ∀ 𝜂. (2.18) 

This result may seem somewhat counterintuitive because Eq. (2.12) shows that Γ𝑝,𝑡 is a function 

of 𝑟𝑝,𝑡, and therefore it shares some of the common factors with �̂�𝑝,𝜂,𝑡
𝐸  for 𝜂 < 𝐽, but  �̂�𝑝,𝐽,𝑡 is 

orthogonal to all common factors. Therefore, how is 𝐶𝑜𝑣(Γ𝑝,𝑡, �̂�𝑝,𝜂,𝑡
𝐸 ) the same for all 𝜂 when the 

common factors included in �̂�𝑝,𝜂,𝑡
𝐸  vary with 𝜂?  Eq. (2.18) obtains because of some key features 

of our results. One important feature is that 𝑟𝑝,𝑡 enters Γ𝑝,𝑡 only in the product form 

(1 + 𝑟𝑝,𝑡) × �̂�𝑝,𝐽,𝑡 in Eq. (2.12), and another is that �̂�𝑝,𝐽,𝑡 is uncorrelated with any of the other 

components of �̂�𝑝,𝜂,𝑡
𝐸  in Eq. (2.16). These features and the fact that 𝐸[�̂�𝑝,𝐽,𝑡] = 0 yield Eq. (2.18) 

and Appendix 2B contains the technical details. Therefore, 𝐶𝑜𝑣(Γ𝑝,𝑡, �̂�𝑝,𝜂,𝑡
𝐸 ) is the same for all 𝜂-

factor models. Because the numerator of Eq. (2.15) does not depend on 𝜂, the winner of the horse 

race is determined by the denominator 𝜎
�̂�𝜂
𝐸
2 . Therefore, the most precise alpha estimator based on 

empiricists’ information set will win the flow-alpha horse race under the hypothesis that a rational 

expectations equilibrium determines fund flows. 
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3. Empirical Tests  

Our first set of tests examine the precision of alphas estimated using Eq. (2.13) with various 𝜂-

factor models with a sample of mutual funds. The results in the last section indicate that the most 

precise alpha estimator will win the flow-alpha horse race under the hypothesis that a rational 

expectations equilibrium determines fund flows. The horse race could be used as a test of asset 

pricing models if alphas with only the K priced factors are the most precise. Because we do not 

know the true asset pricing model, we compute the precision under each of the following candidate 

asset pricing models: NBRP, CAPM, FF3 and FFC4, i.e. K=0, 1, 3 and 4. 

We use the seven factor model from BHO as the J-factor model that generates returns. The 

seven factors are the three Fama-French factors (market (𝑚𝑘𝑡 − 𝑟𝑓),   𝑆𝑀𝐵 and 𝐻𝑀𝐿), Carhart 

(1997) momentum factor (UMD), and three industry factors (𝐼𝑁𝐷1, 𝐼𝑁𝐷2 and 𝐼𝑁𝐷3). We 

construct the three industry factors as the first three principal components of residuals from 

regressing Fama-French 17 equal weighted industry portfolios on FFC4 factors, as in BHO.   

We obtain our sample of mutual funds from the CRSP survivor-bias free mutual fund database. 

Our sample is comprised of all actively managed domestic equity funds excluding sector funds. 

Specifically, we consider funds that CRSP refers to as style-based or cap-based and assigns 

objective codes ‘EDC’, ‘EDYG’, ‘EDYB’ or ‘EDYI’. When a fund has multiple share classes, we 

add assets in all share classes to compute its TNA and we compute fund level return as the weighted 

average of returns of individual share classes with lagged TNA as weights.  

Our sample period is from January 1990 to June 2017. Our sample includes all funds with at 

least $10 million assets under management as of the end of the previous month. Also, the sample 
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for month t includes only funds that have returns data for all months from t-60 to t-1.34  We follow 

BHO and exclude funds that had flows smaller than -90% or greater than 1000% in any month 

from the sample to avoid the effect of outliers. 

Table 17 presents sample summary statistics. The sample is comprised of 2,969 funds with 

1,224 funds per month on average.  The average monthly fund flow into a fund is 0.25% of its 

TNA the previous month. 

3.1.Precision of alphas 

The decomposition in Eq. (2.17) indicates that one important determinant of precision of alpha is 

𝜎𝛽𝑘
2 𝜎𝑓𝑘

2 , which when normalized by the variance of fund returns equals the incremental 𝑅𝑎𝑑𝑗
2  

attributable to common factor 𝑘. The other determinant is beta measurement error. To evaluate the 

individual contribution of each factor to the precision of alpha estimates we first examine these 

two components separately. We then empirically estimate the variance of alphas from each 𝜂-

factor model and the contribution of various components.  

3.1.1. 𝑹𝒂𝒅𝒋
𝟐  and Beta estimation error 

We fit the following time series regression with 𝜂 factors for month t using data for each fund 

from months 𝑡 − 60 to 𝑡 − 1 and compute average 𝑅𝑎𝑑𝑗
2  for each model:  

𝑟𝑝,𝜏 = 𝑎𝑝,𝜂,𝑡 +∑𝛽𝑘,𝑝,𝑡 𝐹𝑘,𝜏 + 𝑒𝑝,𝜂,𝜏,         𝜏 =

𝜂

𝑘=1

𝑡 − 60 to 𝑡 − 1. (2.19) 

 

Table 18 reports average OLS 𝑅𝑎𝑑𝑗
2  of Eq. (2.19). We compute average 𝑅𝑎𝑑𝑗

2  across all funds 

each month and the table reports the time-series average. 𝑅𝑎𝑑𝑗
2  for the single factor market model 

 
34 This criterion excludes funds from the sample during the first 60 months of their existence. Therefore, our sample 

is not exposed to potential incubation bias that Evans (2010) and Elton, Gruber and Blake (2001) document. 
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is 0.820 and it increases to 0.892 for the three-factor model, but the increase is fairly gradual as 

we go from the three-factor model to the seven factor model. Table 18 also reports 𝑅𝑎𝑑𝑗
2  that we 

compute based on the explanatory power of  �̂�𝑝,𝜂
𝐸 , which we define as 𝑅𝑎𝑑𝑗

2 = 1 −
Var(�̂�𝑝,𝜂

𝐸 )×(𝑇𝑝−1)

Var(𝑟𝑝)×(𝑇𝑝−𝜂−1)
 

where 𝑇𝑝 is number of months the fund is in the sample. Market-adjusted returns have the smallest 

𝑅𝑎𝑑𝑗
2  of 0.761 and 𝑅𝑎𝑑𝑗

2  for the single factor market model is bigger at 0.829. 𝑅𝑎𝑑𝑗
2  increases to 

0.883 for the three-factor model and then marginally to 0.884 for the seven factor model.  

Another important component of alpha measurement error is the variance of measurement 

error in betas across funds (𝜎
�̂�−𝛽
2 ). The term 𝜎

�̂�−𝛽
2  includes OLS estimation error. Additionally, it 

also includes any difference between average betas during the estimation period and month t+1 

beta because of any time-variation in betas due to turnover of funds’ holdings. 

To estimate the magnitude of this error we first estimate the following regressions for each 

fund for each month: 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + ∑𝛽𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡 𝐹𝑘,𝜏

7

𝑘=1

+ 𝑒𝑝,𝑘,𝜏                           𝜏 = 𝑡 − 60 to 𝑡 − 1, 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

+ ∑𝛽𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 𝐹𝑘,𝜏 

7

𝑘=1

+ 𝑒𝑝,𝑘,𝜏                   𝜏 = 𝑡 to 𝑡 + 11 

(2.20) 

 

where 𝐹𝑘,𝜏 is the factor with respect to which betas are estimated. Suppose betas for a particular 

fund are constant over time.  

�̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 = 𝛽𝑝,𝑘 + 𝑢𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡, and 

�̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝛽𝑝,𝑘 + 𝑢𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

, 

(2.21) 
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where 𝛽𝑝,𝑘is fund p’s true beta with respect to factor k. 

Consider the following cross-sectional regression for month t: 

�̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝑎𝑡 + 𝑏𝑡 × �̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝑒𝑝,𝑡. (2.22) 

Because we use non-overlapping sample periods to estimate 𝛽𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 and 𝛽𝑝,𝑘,𝑡

𝑓𝑢𝑡𝑢𝑟𝑒
,  𝑢𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡  and 𝑢𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 

are uncorrelated.  The probability limit of the slope coefficient is:  

plim 𝑏𝑡 =
𝑣𝑎𝑟(𝛽𝑝,𝑘)

𝑣𝑎𝑟(𝛽𝑝,𝑘) + 𝑣𝑎𝑟 (𝑢𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡)

. (2.23) 

Therefore, the slope coefficient of regression (2.22) is the ratio of the cross-sectional variance of 

the factor betas divided by the sum of this variance plus the variance of the measurement error.  

We fit regression (2.22) each month for each of the betas estimated using multiple regressions 

of fund returns on the seven factors. Table 19 reports the time-series averages of the slope 

coefficients for each beta. The slope coefficients are bigger with respect to the three Fama-French 

factors and UMD compared with industry factor betas. This result combined with the evidence 

that the incremental 𝑅𝑎𝑑𝑗
2  from adding the three industry factors is small suggests that the 

incremental benefit of adding industry factors is likely small as well.  

3.1.2. Precision of alpha estimates and implications 

This subsection compares the precision of various 𝜂-factor model alphas (𝜎
�̂�𝜂
𝐸
2 ). We use OLS 

estimates of Regression (2.19) and compute �̂�𝑝,𝜂,𝑡
𝐸  using Eq. (2.13). We compute the cross-

sectional variance of �̂�𝑝,𝜂,𝑡
𝐸  each month and the time-series average of monthly variance is our 

estimate of 𝜎
�̂�𝜂
𝐸
2 .  
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Table 20 presents 𝜎
�̂�𝜂
𝐸
2  for each 𝜂-factor model. The variance monotonically declines from 

650.5 to 357.7 as we go from the single factor model to the four factor model but increases to 

363.2 for the seven factor model.35 Therefore, the four factor alpha is the most precise estimate. 

What does this result imply for interpretations about the true asset pricing model? For instance, 

can we conclude that the four-factor model is the true asset pricing model based on this result? 

Also, why is the seven factor model alpha not the most precise estimator as hypothesized by BHO?  

To answer these questions, we need to know the components of 𝜎
�̂�𝜂
𝐸
2  that we discussed earlier. 

For example, one component of 𝜎
�̂�𝜂
𝐸
2  is APM misspecification error and the alpha-fund flow horse 

race can be used as a test of asset pricing models as proposed by BvB only if this component is 

sufficiently large to make the other models less precise. A sufficiently large misspecification 

component could also explain why the seven factor model alpha is not the most precise.  

We empirically estimate each component of 𝜎
�̂�𝜂
𝐸
2  to examine these issues. Eq. (2.17) presents 

the components of 𝜎
�̂�𝜂
𝐸
2 , but for expositional convenience that equation assumes funds’ factor betas 

are not cross-sectionally correlated. Empirically, however, funds’ factor betas are cross-sectionally 

correlated. For example, funds with bigger market betas on average have smaller HML betas in 

the data. Allowing for beta correlations, 𝜎
�̂�𝜂,𝑡
𝐸
2  conditional on a K-factor model being the true asset 

pricing model is:   

 
35 The table reports variances multiplied by 106.  
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𝜎
�̂�𝜂,𝑡
𝐸
2 |𝐾

= 𝜎 �̂�𝐽,𝑡
2 + �̅�

(𝐾+1,𝜂)
′  (𝐶𝑜𝑣(𝜷(𝐾+1,𝜂)

′ , 𝜷(𝐾+1,𝜂))) �̅�(𝐾+1,𝜂)⏟                          
𝐴𝑃𝑀 𝑀𝑖𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

 

+ 𝒇(𝜂+1,𝐽),𝑡
′  (𝐶𝑜𝑣(𝜷(𝜂+1,𝐽)

′ , 𝜷(𝜂+1,𝐽))) 𝒇(𝜂+1,𝐽),𝑡 + 𝑬[𝜷(𝜂+1,𝐽)]
′
 (𝒇(𝜂+1,𝐽),𝑡𝒇(𝜂+1,𝐽),𝑡

′ )𝐸[𝜷(𝜂+1,𝐽)]⏟                                                        
𝑂𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

−  𝒇(𝜂+1,𝐽),𝑡
′  (𝐶𝑜𝑣(𝜷(𝜂+1,𝐽)

′ , 𝜷(𝐾+1,𝜂))) �̅�(𝐾+1,𝜂),𝑡⏟                            
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒   

+ 𝑭(1,𝜂),𝑡
′ (𝐶𝑜𝑣 ([�̂�(1,𝜂),𝑡 − 𝜷(1,𝜂)]

′
, [�̂�(1,𝜂),𝑡 − 𝜷(1,𝜂)])) 𝑭(1,𝜂),𝑡⏟                                      

�̂� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟

 

(2.24) 

 

Eq. (2.24) expresses factors and factor betas as vectors. We use the same notations for vectors as 

the corresponding scalars but boldface denotes vectors. Also, the subscripts for vectors within 

parentheses indicate their first and last items. For example, 𝜷(𝜂+1,𝐽)
′ ≡ [𝛽𝜂+1, 𝛽𝜂+2, … , 𝛽𝐽]. Eq. 

(2.24) obtains for 𝜂 ≥ 𝐾 and an analogous expression with dimensions of vectors with subscripts 

(𝐾 + 1, 𝜂) replaced by  (𝜂 + 1, 𝐾) obtains for  𝜂 < 𝐾.   

Eq. (2.24) is a straightforward generalization of Eq. (2.17) with the addition of terms that 

include cross-sectional covariance of factor betas. The term labelled “covariance” captures the 

potential effect of any cross-sectional covariance between betas of unpriced factors included in  𝜂  

and omitted factors that are part of fund returns.  This term is non-zero when betas on factors are 

correlated in the cross-section. 

We compute the components of 𝜎
𝛼 ̂𝜂,𝑡
𝐸

2  in Eq. (2.24) as follows: because we use OLS estimates,  

𝐶𝑜𝑣 ([�̂�(1,𝜂)𝑝,𝑡 − 𝜷(1,𝜂),𝑝,𝑡]
′
, [�̂�(1,𝜂),𝑝,𝑡 − 𝜷(1,𝜂),𝑝,𝑡])  is 𝜎𝑒𝑝,𝑡

2 (𝑋(1,𝜂),𝑡
′ 𝑋(1,𝜂),𝑡)

−1
 where 𝑋(1,𝜂),𝑡 is the 

matrix of factors used in regression (2.19). The quadratic product of this estimate with 𝑭(1,𝜂),𝑡 is 
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the �̂�  measurement error component for that month. We need the covariance matrix of true betas 

to compute the APM misspecification error, which is: 

𝐶𝑜𝑣(𝜷(1,𝜂)
′ , 𝜷(1,𝜂))

=
1

𝑇
∑(𝐶𝑜𝑣(�̂�(1,𝜂),𝑡

′ , �̂�(1,𝜂),𝑡) − {
1

𝑃𝑡
∑𝜎𝑒𝑝,𝑡

2 (𝑋(1,𝜂),𝑡
′ 𝑋(1,𝜂),𝑡)

−1

𝑷

})

𝒕

, 

(2.25) 

where 𝑃𝑡 is the number of funds in the sample in month t, and T is the number of months in the 

sample period. We compute 𝐶𝑜𝑣(�̂�(1,𝜂)
′ , �̂�(1,𝜂)) by taking the average of the cross-sectional 

covariance of �̂�(1,𝜂),𝑝,𝑡 each month. The APM misspecification component of variance is the 

quadratic product of �̅�(𝐾+1,𝜂) with the corresponding submatrix of  𝐶𝑜𝑣(𝜷(1,𝜂)
′ , 𝜷(1,𝜂)) . Appendix 

2C describes how we compute the other components.  

Table 21 presents sample means and standard deviations of market, SMB, HML and UMD, 

which are all significantly positive.36 Therefore, if CAPM were the true model the non-zero means 

of the other factors contribute to APM misspecification error in alphas computed using a four-

factor model. Table 21 also presents the covariance matrix of true betas estimated using the 

procedure described above for the case 𝜂 = 7.  

Table 22 presents the estimates of various components in Eq. (2.24). To evaluate the net effect 

of using unpriced factors to compute alphas on 𝜎
�̂�𝜂
𝐸
2 , consider the NBRP model where all J-factors 

are unpriced. When 𝜂=0, the benefit of excluding all unpriced factors is that APM misspecification 

error is zero, but the cost is added variance due to omitted factors, which equals 340.9.37 When 

 
36 Industry factors are arbitrarily scaled and hence their means and variances have no particular economic meaning. 

Therefore, we do not report them in the table.  
37 As 𝜂 increases above K, unpriced factors are added to the model and the contribution of omitted factors to 𝜎

�̂�𝜂
𝐸
2  

declines monotonically. But the contribution of APM misspecification declines when we go from  𝜂 = 1 to 𝜂 = 3 
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𝜂=J, variance due to omitted factors is zero but now the APM misspecification error variance is 

1.94. While the contributions from omitted factors and APM misspecification typically go in 

opposite directions, the contribution of the former is orders of magnitude bigger than that from the 

latter.  

Column (1) of the Table 6 presents 𝜎 �̂�𝐽
2  for each asset pricing model. 𝜎 �̂�𝐽

2  varies across K 

because 𝜎
�̂�𝜂
𝐸
2  is the empirical cross-sectional variance (therefore independent of hypothesized K) 

but its components vary across K. Column (7) presents  the sum of the four components excluding 

𝜎 �̂�𝐽
2 , which ranges from 48.0 to 340.9 as we vary 𝜂 from 0 to 7 for K=0. For any given 𝜂, this sum 

varies little with changes in the hypothesized “true” asset pricing model.  

The results in Table 20 indicate that the four factor alpha estimator is empirically the most 

precise when we estimate beta from the data using the time-series regression (2.19) regardless of 

the true asset pricing model. What would be the most precise alpha estimator if we know true betas 

but not the true asset pricing model? To answer this question we can compare the sum of the 

components of variance excluding the beta measurement error component and 𝜎 �̂�𝐽
2  under each of 

the hypothesized asset pricing models.  

Column (6) reports this sum, which ranges from 1.9 to 340.9 as we vary  𝜂 from 0 to 7 for K=0. 

We get the most precise estimator with 𝜂=7 regardless of the true asset pricing model. Therefore, 

if fund flows are determined under the rational expectations hypothesis the four factor alpha will 

win the horserace when betas are estimated from the data using the conventional approach, but the 

 
because of the negative cross-sectional covariance between market and HML betas.  APM misspecification error 

increases as 𝜂 becomes bigger than 3.  
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seven factor model will win if true betas are known or if factor betas can be estimated with 

sufficient precision.  

The results in Table 22 quantify the tradeoffs among the components of measurement error as 

we add more factors to compute alphas. For example, when NBRP is the true asset pricing model, 

each common factor used to compute alphas increases the APM misspecification error but 

decreases the omitted factor component. The biggest contribution of the APM misspecification 

component is 1.94 when 𝜂=7, but the omitted factor component decreases from 340.9 to 0 as 𝜂 

varies from 0 to 7. The APM misspecification component is at least an order of magnitude smaller 

than the omitted factor component if any factor is excluded from the alpha estimator. Therefore, 

APM misspecification makes a trivial contribution to the overall precision of alpha estimators.  

The beta measurement error component also increases with 𝜂 because the number of factor 

betas that are estimated increase with 𝜂. The marginal change in this component is bigger than that 

for the omitted factor component only when 𝜂 increases from four to seven. Therefore, alpha 

estimation error is smaller with the four-factor model. 

4. Simulation Experiment  

We simulate the rational expectations economy we model with parameters that match the data. We 

generate fund flows in the simulation according to our model and test the predictions of the model 

under each of the candidate asset pricing models. Specifically, we compute the precision of alphas 

with various 𝜂-factor models and test the model prediction that the most precise alpha will win the 

flow-alpha horse race. We also test BvB’s and BHO’s hypotheses that imply either the K- or J-

factor model would win the horse race. Additionally, we conduct a number of robustness checks 

by changing various parameters of the model economy and estimation methodology. 
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4.1.Simulation: Experimental design 

The simulation generates fund returns with a seven factor model with parameters determined from 

the data. The number of funds in the simulated sample exactly matches the data each month. 

Mutual fund skill is unobservable and investors start with priors about the unconditional 

distribution of fund manager skills and recursive update their priors after observing fund returns 

and make their investment decisions as the model describes.  

The following are the simulation details: 

a. Fund origin: We start the simulation with the number of funds equal to that in the sample 

on January 1985.  

b. Skill (Φ𝑝): When a fund enters the sample, we randomly draw its skill from a normal 

distribution with mean (𝜙0) equal to 0.15% and standard deviation of 0.2% per month. 

The average four factor alpha in our sample of domestic equity funds, gross of fund fees 

and expenses is around 5 bps per month and we add 10 bps per month to this estimate to 

account for average trading costs incurred by actively managed funds.38 The standard 

deviation of fund skill matches the estimate we obtain from the data.39 Our results are not 

sensitive to the choice of these parameters. 

 
38 Edelen et. al. (2013) report that the transaction costs are of the same order of magnitude as expense ratios which 

average to around 10 bps per month. 
39 The monthly cross-sectional variance of �̂�s in the real data is the variance of true alphas plus the measurement error 

of alphas. The measurement error variance in �̂�s is the average squared OLS standard errors from the time-series 

regressions used to estimate alphas. The average difference of cross-sectional variance and measurement error 

variance in �̂�s across models results in the standard deviation of true alphas to be around 0.2% per month.  
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c. Betas:  We generate the seven factor betas [𝛽𝑚𝑘𝑡, 𝛽𝑆𝑀𝐵, 𝛽𝐻𝑀𝐿 , 𝛽𝑈𝑀𝐷 , 𝛽𝐼𝑁𝐷1, 𝛽𝐼𝑁𝐷2, 𝛽𝐼𝑁𝐷3]
′ 

jointly for each fund from a multivariate normal distribution with the mean vector 

[1,0,0,0,0,0,0]′ and covariance matrix of true betas reported in Table 21.40 

d. Fund specific return: We draw 𝜖𝑝,𝑡 for each fund from a normal distribution with mean 

zero and standard deviation equal to 1.75%, which matches our estimates from the data.  

e. Asset pricing model and expected returns: We conduct simulations under four asset 

pricing models and expected excess returns under each model are computed as follows: 

▪ NBRP risk model: 𝐸𝑁𝑅(𝑟𝑝 − 𝑟𝑓) = 0.699%, 

▪ CAPM: 𝐸𝐶𝐴𝑃𝑀(𝑟𝑝 − 𝑟𝑓) = 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), 

▪ Fama-French three factor model (FF3): 𝐸𝐹𝐹3(𝑟𝑝 − 𝑟𝑓) = 𝛽𝑝,𝑚 ×

(𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,𝑠𝑚𝑏 × (𝑆𝑀𝐵̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,ℎ𝑚𝑙 × (𝐻𝑀𝐿̅̅ ̅̅ ̅̅ ̅),  

▪ Fama-French-Carhart four factor model (FFC4): 𝐸𝐹𝐹𝐶4(𝑟𝑝 − 𝑟𝑓) =

𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,𝑠𝑚𝑏 × (𝑆𝑀𝐵̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,ℎ𝑚𝑙 × (𝐻𝑀𝐿̅̅ ̅̅ ̅̅ ̅) +

𝛽𝑝,𝑢𝑚𝑑 × (𝑈𝑀𝐷̅̅ ̅̅ ̅̅ ̅). 

(2.26) 

The overbars above common factor returns indicate sample means. The average fund 

excess returns under all asset pricing models equal average of market excess returns.  

f. Net fund returns: Fund net returns each period is given by the following seven-factor 

model:  

 
40 The average fund betas in the sample are [1, 0.245, 0.012, 0.015, -0.003, 0.016, -0.001] which we approximate with 

the factor betas for the market portfolio. None of our results are sensitive to changes in average betas.  



76 
 

𝑟𝑝,𝑡 = Φ𝑝 − 𝑐𝑡−1(𝑞𝑡−1) +𝐸
𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) + 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓)𝑡

̃ +𝛽𝑝,𝑠𝑚𝑏 × 𝑆𝑀𝐵�̃�

+ 𝛽𝑝,ℎ𝑚𝑙 × 𝐻𝑀𝐿𝑡̃ +𝛽𝑝,𝑢𝑚𝑑 × 𝑈𝑀𝐷𝑡̃ +𝛽𝑝,𝑖𝑛𝑑1 × 𝐼𝑁𝐷1𝑡̃

+𝛽𝑝,𝑖𝑛𝑑2 × 𝐼𝑁𝐷2𝑡̃ +𝛽𝑝,𝑖𝑛𝑑3 × 𝐼𝑁𝐷3𝑡̃ +𝜖𝑝,𝑡, 

(2.27) 

where Φ𝑝 is the fund manager skill, 𝑐𝑡−1(𝑞𝑡−1) is the cost per unit size, the variables under 

𝑡𝑖𝑙𝑑𝑒 are demeaned realizations of the seven common factors. We do not observe 

𝑐𝑡−1(𝑞𝑡−1) but the competitive equilibrium condition implies 𝑐𝑡−1(𝑞𝑡−1) = 𝜙𝑝,𝐽,𝑡−1.   

The simulations start with 𝜙𝑝,𝐽,0 = 𝜙0 at t=0 for all funds.  Total unexpected return for 

t=1 is the sum of beta times unexpected factor realizations for that month and 𝜖𝑝,1. We add 

Φ𝑝 − 𝜙0 +𝐸
𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) to compute 𝑟𝑝,1. We then compute alpha �̂�𝑝,𝐽,1 using Eq. (2.5) and 

𝜙𝑝,𝐽,1 using Eq. (2.7). We follow these steps recursively for each month.  

g. Fund flow: Investors observe 𝑟𝑝,𝑡 and update their priors using Eq. (2.7). Fund flow is 

given by Eq. (2.12). 

h. Fund exit and entry: If 𝜙𝑝,𝑡, the posterior of fund skill, drops below a critical value the 

fees fund earns will not be sufficient to cover its fixed costs and therefore the fund shuts 

down. We set this critical value to 𝜙0/100.41 

To match the number of funds in the simulation to the number of funds in the actual 

sample, we add new funds when the number of funds in simulated sample in any month is 

smaller than that in the actual sample. If it is greater, the appropriate number of funds with 

the smallest values of 𝜙𝑝,𝑡 exit the simulated sample for month 𝑡. 

 

 
41 The critical value is non-zero for any positive fixed costs. We choose a small positive value here and we examine 

robustness with respect to changes in critical value later. 
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4.2.Simulation: Tests and results 

We first examine the relation between fund flows and alphas under various asset pricing models. 

Table 8 presents 𝜎
�̂�𝜂
𝐸
2  in the simulations and its components from Eq. (2.24). Because we know the 

true asset pricing model, fund skill and factor betas in the simulation, we use them when necessary 

to compute the components in the simulation experiment.  

Variance due to omitted factors decreases monotonically from 324.1 to 0 as 𝜂 increases from 

0 to 7. In comparison, APM misspecification variance ranges from .93 to 1.95 when we set K=0. 

These results are similar to that in Table 22 and they confirm that the contribution of APM 

misspecification component is orders of magnitude smaller than that due to omitted factors. Total 

variance in addition to 𝜎 �̂�𝐽
2  excluding the beta measurement error component ranges from 2 to 

324.1 when K=0.  

We find similar results for simulations under the other asset pricing models.42 When we ignore 

the beta measurement error component, the most precise alpha estimator is with 𝜂 = 7 for all asset 

pricing models. When we estimate factor betas from simulated returns, the variance of beta 

measurement error increases monotonically from 0 to 56.7 as we increase 𝜂 and now four-factor 

alpha is the most precise estimator. These results indicate that 𝜎
�̂�𝜂
𝐸
2  and its components in the 

simulation are similar in magnitude and pattern to what we find in Tables 20 and 22. Therefore, 

our decomposition of alpha measurement errors based on asymptotic analytics holds in finite 

samples.43 

 
42 The total variance for a given 𝜂 varies slightly as we change K because 𝐸𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) in Eq. (2.27) varies with K.  
43 Overall, the distribution of fund returns in the simulation also matches the data. For example, average 𝑅𝑎𝑑𝑗

2  in the 

simulation varies from 76.9 to 86.3 as 𝜂 varies from 0 to 7 which is close the corresponding statistics in Table 18. 
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We next generate fund flows using Eq. (2.12) each period, and we fit the horse race regression 

using Fama-MacBeth approach. Table 25 reports the slope coefficients. When we compute alphas 

using true betas, the slope coefficient increases monotonically as we add factors. For example, 

under the CAPM, the slope increases from 2.19 for 𝜂 = 0 to 3.50 for 𝜂 = 7. The seven factor alpha 

is the winner under all asset pricing models. 

Panel B reports the slope coefficients when we use betas estimated from simulated returns to 

compute alphas. Now we get the biggest slope coefficient for 𝜂 = 4 and not for 𝜂 = 7. For 

example, for the CAPM, the slope coefficients are 3.05 and 3.02 for 𝜂 = 4 and 𝜂 = 7, respectively.  

The four-factor alpha wins the horse race under all asset pricing models.  

Overall, the simulation results indicate that four- and seven-factor alphas are the most precise 

estimators depending on whether factors betas are estimated with error or whether true betas are 

known. The horse race results indicate that when flows are generated under the rational 

expectations hypothesis the most precise alpha wins the horse race. The simulation results also 

indicate that the outcome of the horse race does not depend on the true asset pricing model. For 

example, FFC4 wins the horse race in Table 25 when the true asset pricing model is FFC4 and 

when the true asset pricing model is NBRP, CAPM or FF3. Therefore, the winner of empiricists’ 

horse race does not contain any information about the true asset pricing model. All these results 

confirm our model predictions. 

4.3.Robustness Tests 

4.3.1. Simulation Parameters  

We conduct a number of robustness tests to evaluate the sensitivity of the simulation results 

including the following: a) vary the mean and variance of Φ𝑝, b) set the critical value of posterior 
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about fund skill for exit to 
𝜙0

50
 or 

𝜙0

10
 and c) vary the variance of true factor betas from 1/4th of the 

variance in the main simulation to twice the variance. Our conclusion that the true asset pricing 

model has no effect on the precisions of alpha estimates or on the winner of the horse race is robust 

to all these changes.  

Our result that the seven-factor model wins the horse race if betas are measured without error 

is also robust. However, when we set the variance of true factor betas to 150% of the variance in 

Table 21 or larger, the seven factor model is always the winner even when betas are measured with 

error. Intuitively, at this level the benefit of including an unpriced factor because of the omitted 

factor effect, i.e. the effect of 𝜎𝛽𝑘
2  𝜎𝑓𝑘

2  in Eq. (2.17), outweighs the cost due to beta measurement 

error. These findings are consistent with our analytic results that the benchmark for investor 

sophistication depends on the properties of betas of the assets in the sample and therefore must be 

determined from the sample under consideration. 

4.3.2. Time-varying betas  

Factor betas of funds could vary over time as they turnover their holdings. To capture such time 

variation, we assume that true factor betas follow an AR(1) process as specified below: 

𝜷(1,𝐽),𝑝,𝑡 = (1 − 𝜌)�̅�(1,𝐽),𝑝 +  𝜌𝜷(1,𝐽),𝑝,𝑡−1 + 𝝇(1,𝐽),𝑝,𝑡, (2.28) 

where 𝐶𝑜𝑣(𝝇(1,𝐽)) = (1 − 𝜌
2)𝐶𝑜𝑣(𝜷(1,𝐽)) and �̅�(1,𝐽),𝑝 is unconditional mean of factor betas. We 

consider values of 𝜌 ranging from 0.2 to 0.9 and set the covariance of 𝝇 to match the average 

covariance of fund level betas. We draw the first value of �̅�(1,𝐽),𝑝 for a fund 60 months before its 

entry date from a normal distribution with the mean vector [1,0,0,0,0,0,0]′ and covariance equal 

to the covariance reported in Panel B of Table 21 minus covariance of 𝝇.  
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In untabulated results, we find that the relative precision of alphas and the winner of the horse 

race were identical to what we found with constant betas. Specifically, the winner is always the 

seven factor model when we use true betas to run the horse race and the four factor model when 

we estimate betas from the data with time-series regression. The true asset pricing model has a 

trivial effect on the precision of alphas or on the slope coefficients of the horse race regression.  

4.3.3. Precision of alpha estimators: Beta shrinkage and alternative factors 

We find that the four factor model wins the horse race over the seven factor model when betas are 

measured with error. Would this result change if we estimate betas more precisely? Vasicek (1973) 

shows that market betas shrunk towards one are more precise estimates of future betas than OLS 

betas. To examine whether such shrinkage increases precision, we shrink the betas towards their 

population means with weights equal to the corresponding slope coefficients in Table 19 and 

compute alphas in the data for various factor models.44 With the shrunk beta, 𝜎
�̂�𝜂
𝐸
2  for the four- and 

seven factor models are 350.2 and 345.6 compared with 357.7 and 363.2 in Table 20.  Therefore, 

alphas are more precisely estimated in the data with shrunk betas and also seven factor alphas are 

more precise than four-factor alphas.  

We could also potentially improve the precision of alpha estimates by suitably modifying the 

return generating process that we assume. The first four factors, i.e. market, SMB, HML and UMD 

are specified by theoretical or empirical asset pricing models. However, the industry factors are 

statistically defined. It is possible that statistical factors identified from the sample would better 

identify the common factors in the sample.  

 
44 For instance, for market beta the shrinkage estimator equals (1 − .656) × 1 + .656 × 𝛽𝑚𝑎𝑟𝑘𝑒𝑡

𝑝𝑎𝑠𝑡
, where 𝛽𝑚𝑎𝑟𝑘𝑒𝑡

𝑝𝑎𝑠𝑡
 is 

the estimate from the time-series regression with past returns.  
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To identify these common factors from the sample, we first fit a time-series regression 

analogous to regression (2.19) with 𝜂=4 for each fund over its entire life. We extract the principal 

components of covariance matrix of the residuals using the approach in Connor, Korajczyk (1987). 

We use the first three principal components in place of the industry factors in the return generating 

process. 

With this model, 𝜎
�̂�𝜂
𝐸
2  for the seven factor model is 321.4 which is smaller than 363.2 for the 

corresponding model with industry factors in Table 20. Alphas estimated with this model are also 

more precise than that with the four factor model in Table 20. Therefore, sample specific common 

factors could potentially increase the precision of alpha estimates.45 

We also run our simulation experiments using these modifications. First, we use shrunk betas 

to compute alpha in the simulation and fit horse race regression (2.14). In untabulated results we 

find that the seven factor model wins the horse race with shrunk betas. Similarly, we simulate 

returns with factors from fund principal components in place of industry factors and fit the horse 

race regression. Here again the seven factor alpha wins the horse race.46  

Overall, the robustness test results are consistent with our analytic results that the winner of 

the horse race under the rational expectations hypothesis depends on the characteristics of the 

sample such as dispersion of factor betas and measurement error in betas. Specifically, when betas 

are estimated more precisely with Vasicek (1973) shrunk betas and when cross-sectional 

dispersion of betas is bigger than in our sample, the optimal alpha estimator includes more factors 

and the seven factor model wins. But large beta measurement errors, for instance due to time 

 
45 However, an advantage with industry factors is that they are not specific to particular samples.  
46 One could also improve the precision of beta estimates using daily returns data that are available on CRSP starting 

September 1998.  
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varying betas, and smaller dispersion in factor betas favor a model with fewer factors and the four 

factor model wins. The true asset pricing model has no effect on the outcome of the horse race.  

4.3.4. Fund Flows 

When we generate fund flows according to our model in the simulation, the slope coefficient on 

the seven factor alpha in horse race regression in Panel B of Table 25 is about 3.02. We fit the 

following regression with actual data to compare the empirical and model flow alpha relations:  

Γ𝑝,𝑡 = 𝑎 + 𝑏 × �̂�𝑝,7,𝑡
𝐸 + 𝜓𝑝,𝑡. (2.29) 

The slope coefficient of this regression is 0.198. The smaller empirical correlation indicates 

that investors’ decisions are based on factors other than funds’ past performance. Ibert et. al. (2017) 

document that past performance does not fully explain fund flows and suggest that factors such as 

managerial fundraising skill, advertising and broker-intermediated flows could also affect fund 

flows. Additional factors such as investors’ personal liquidity demands and recommendations by 

advisory services such as Morningstar also potentially drive a wedge between empirical and model 

flows.47  

We assume that investors who optimally extract information about fund skills are aware of 

flows due to other factors and their effect on funds’ costs and they adjust their flows so that we get 

to a competitive equilibrium. Propositions 2.1 through 2.3 apply in a competitive equilibrium 

regardless of the underlying factors that drive flows. To examine the effect of how empirical flows 

affect the horse race, we match simulated flows with empirical flows. Regression (2.29) uses �̂�𝑝,7,𝑡
𝐸  

 
47 For example, Jain and Wu (2000), Gallaher, Kaniel, and Starks (2006), Kaniel and Parham (2017) find that fund 

flows are positively related to advertising activities, Del Guercio and Tkac (2008), Ben-David et al. (2019) find that 

fund flows are correlated with Morningstar ratings, Christoffersen, Evans, and Musto (2013) find that flows in broker-

sold funds are impacted by the incentives of the brokers.  
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as the explanatory variable but for the simulation we need the relation between �̂�𝑝,7,𝑡 that investors 

in the model use and fund flows. Because �̂�𝑝,7,𝑡
𝐸  is �̂�𝑝,7,𝑡 with additional  error, we can get the slope 

coefficient with respect to the latter by scaling up the slope coefficient estimate from regression 

(2.29) by a factor equal to 𝜎
�̂�𝑝,7,𝑡
𝐸
2 /𝜎�̂�𝑝,7,𝑡

2  from Tables 20 and 22. With this scaling, we generate 

fund flows in the simulation using the following equation:  

Γ𝑝,𝑡 = −.00225 + .232 × �̂�𝑝,7,𝑡 + 𝜓𝑝,𝑡. (2.30) 

We randomly draw 𝜓𝑝,𝑡 from a mean zero normal distribution with variance equal to 9.33%, to 

match the empirical variance.  

Because fund returns are generated using the same parameters as before, the precision of alpha 

estimates is same as that in Table 24.  For the horse race regression, the untabulated results are 

similar to that in Table 25. Specifically, the true asset pricing model has a negligible effect on the 

slope coefficient estimates, the seven factor alpha wins without beta estimation error and the four 

factor model wins when betas are measured with error.  

5. Binary variable regression 

Our analyses so far use a linear regression for the alpha-fund flow horse race but the true relation 

need not be linear. For example, the coefficient on alpha in Eq. (2.12) varies cross-sectionally with 

fund returns and fund age. Also, in Berk and Green (2004) the equilibrium relation between alpha 

and fund flow is nonlinear. Because of potential non-linearity, BvB transform flows and alpha 

estimates to binary variables and run the horse race with these transformed variables. Specifically, 

the transformed binary variables are defined as follows: 
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𝑄𝑥 = {
1 if 𝑥 ≥ 0
−1 if 𝑥 < 0

 , (2.31) 

where 𝑥 is any random variable. BvB run the following OLS regression: 

𝑄Γ𝑝 = 𝐴𝜂 + 𝐵𝜂 × 𝑄�̂�𝑝,𝜂𝐸 + 𝜊𝑝,𝜂 , (2.32) 

and compare �̂�𝜂 . To relate the analyses based on Regressions (2.14) and  (2.32), we first establish 

the following proposition: 

Proposition 2.5: Let  �̂�𝑝,𝜂1
𝐸  and �̂�𝑝,𝜂2

𝐸 be the alphas computed by the empiricist with respect to 𝜂1- 

and 𝜂2-factor models using Equation (2.13) and suppose the model misspecification term is 

sufficiently small.48 �̂�𝜂1and �̂�𝜂2are the corresponding Regression (2.14) slope coefficients and 

�̂�𝜂1and �̂�𝜂2 are the corresponding Regression (2.32) slope coefficients. Under the assumptions of 

our model, if  �̂�𝜂1 > �̂�𝜂2then �̂�𝜂1 > �̂�𝜂2, when the number of funds in the sample is sufficiently 

large.  

Proof: See Appendix 2D. 

Corollary: The ordering of the slope coefficients of Regressions (2.14) and (2.32) are identical.  

Proposition 2.5 and its corollary show that our analysis of the horse race based on Regression 

(2.14) applies exactly to that of the horse race based on Regression (2.32) if we ignore the model 

misspecification term, and we find that this term is indeed empirically small. Nevertheless, we 

 
48 We can show that this proposition also obtains when we replace the supposition that “the model misspecification 

term is sufficiently small” with an assumption that average factor betas of funds equal corresponding betas for the 

market portfolio.  
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directly run a horse race with Eq. (2.32) to examine whether Proposition 2.3 holds if we do not 

ignore the model misspecification term. 

Table 26 reports the slope coefficients of Regression (2.32). As Proposition 2.5 predicts, the 

ordering of the slope coefficients in Table 26 is identical to that for Regression (2.14) in Table 25. 

Therefore, our results are not sensitive to regression specifications.49 

6. Model Robustness 

Our analytic results have two broad parts. The first part shows that rational investors use the most 

precise alpha to update their priors and inform their investment decisions. We derive this result 

under the assumptions that fund skills are unobservable but constant and investors know fund 

betas. This section considers generalizations of these assumptions along dimensions proposed in 

the literature. 

Roussanov et al. (2019) assume that fund manager skill follows an AR(1) process while skill 

is constant in BG. Investors’ posterior in Roussanov et al. is also a linear function of their priors 

and alphas as in Proposition 2.1, but their weights are different. Proposition 2.3 does not depend 

on the weights assigned to alphas and therefore the result that investors use �̂�𝑝,𝐽,𝑡 to update priors 

in a competitive equilibrium applies in this case as well. 

Franzoni and Schmalz (2017) consider a model where investors do not know true factor betas 

but learn about them through funds’ past performance. Investors’ posterior in this model is also a 

linear function of their priors and alphas as in Eq. (2.7) but the coefficient of alpha includes a term 

related to the uncertainty about betas. We need to specify investors’ uncertainty about factor betas 

 
49 Asymptotically, regression slope coefficients do not vary with the horizon over which alphas and model flows are 

computed because model flows are uncorrelated with lagged alphas. Therefore, we present the results only for monthly 

regressions. 
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to determine the exact factor model that investors would use to update their priors. However, 

whether or not investors use a particular factor to compute alphas depends on the uncertainty about 

its betas and not the true asset pricing model.  

To examine the effect of investors’ uncertainty about true betas, we run a modified simulation 

experiment. We let betas follow the AR(1) process as in Eq. (2.28) but we assume that   at time t 

investors observe 𝜷(1,𝐽),𝑝,𝑡−1 but not 𝜷(1,𝐽),𝑝,𝑡. Investors’ optimal estimate of time t factor betas is 

(1 − 𝜌)�̅�(1,𝐽),𝑝 +  𝜌𝜷(1,𝐽),𝑝,𝑡−1, which they use to compute alphas.  We find in untabulated results 

that none of our conclusions from earlier simulations change. 

Koijen (2014) presents a structural model where funds actively manage a time-varying fraction 

of their AUM and passively index the rest. Fund betas in this model could vary through time if 

factor betas of the actively managed portion of the fund are different from the passively indexed 

portion. In our robustness tests we find virtually the same results with time-varying betas and 

constant betas. Although our robustness tests model beta time-variation as an AR(1) process, our 

results with a wide range of AR(1) coefficients suggest that beta time-variation per se is unlikely 

to qualitatively change our main results.  

Fund managers in BG also actively manage a time-varying fraction of their AUM and passively 

index the rest and funds also set their fees to maximize their revenues. Propositions 2.1, 2.2 and 

2.3 depend only on competitive market equilibrium and they do not depend on how exactly funds 

manage their AUM. Therefore, our result that investors use �̂�𝑝,𝐽,𝑡 to inform their investment 

decisions is not sensitive to BG’s model of funds’ investment decisions. 
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7. Results in Perspective 

BvB, BHO, Agarwal, Green and Ren (2017) and Blocher and Molyboga (2017) report that single 

factor alpha wins their horse race with samples of mutual funds and hedge funds. BvB and some 

other papers conclude that these results indicate that the CAPM is the true asset pricing model. 

However, BHO conclude that these results indicate that investors lack sophistication because they 

do not use a model with all common factors to estimate alphas to inform their investment decisions. 

Are such inferences tenable? 

A fundamental concept in finance is that investors make investment decisions based on their 

assessment of future risk-adjusted returns. Therefore, it may appear on the surface that one could 

identify the particular asset pricing model that investors use for risk-adjustment from their 

investments into and out of mutual funds. While rational investors indeed make decisions based 

on expected future risk-adjusted performance, we show that they optimally extract information 

from past returns with alphas orthogonalized to both priced and unpriced factors. Therefore, alphas 

that investors use do not contain any information to differentiate between priced and unpriced 

factors.  

BvB justify their inferences about asset pricing model based on a proposition built on their 

assumption that “if a true risk model exists, any false risk model cannot have additional 

explanatory power” (p. 6) for fund flows. BvB’s Eq. (7) presents a mathematical representation of 

this assumption, which in our notations is:50 

Probability[Γ𝑝,𝑡 > 0| �̂�𝑝,𝐾,𝑡 > 0,  �̂�𝑝,𝑘∗,𝑡 > 0] = Probability[Γ𝑝,𝑡 > 0| �̂�𝑝,𝐾,𝑡 > 0], (2.33) 

 
50 BvB’s Equation (7) defines the conditioning variables in Eq. (2.33) as fund net return minus benchmark returns and 

BvB’s Eq. (9) defines benchmark returns for various single- and multifactor models. Monthly fund return minus 

benchmark return in their Eq. (9) is the same as alphas in our Eq. (2.13). 
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where  �̂�𝑝,𝐾,𝑡 is alpha computed with only the K priced factors in the true asset pricing model and 

 �̂�𝑝,𝑘∗,𝑡 is alpha computed with respect to any other model. Is this assumption tenable? We show 

that investors optimally use  �̂�𝑝,𝐽,𝑡 to update their priors about manager skills and hence flows are 

determined by  �̂�𝑝,𝐽,𝑡 and not by alpha with respect to the true asset pricing model. Therefore,  �̂�𝑝,𝐽,𝑡 

and  Γ𝑝,𝑡 have the same sign and Probability[Γ𝑝,𝑡 > 0| �̂�𝑝,𝐽,𝑡 > 0] = 1. If 𝐾 ≠ 𝐽, i.e. if there is at 

least one unpriced factor, then BvB’s assumption represented by Eq. (2.33) is false. BvB’s 

assumption holds in a rational expectations economy if and only if all common factors are priced. 

But such an assumption would predetermine the true asset pricing model and render any asset 

pricing model test moot.  

Our empirical results also indicate that the true asset pricing model has a negligible effect on 

the outcome of the horse race. For example, the four factor model alpha is empirically the most 

precise estimate when betas are estimated from the data and our empirical decomposition of the 

components of alpha measurement error indicates that this model would win the horse race under 

the rational expectations hypothesis even if the true asset pricing model were CAPM or FF3. Our 

results in a simulated rational expectations economy confirm this result. So, the winner does not 

reveal the true asset pricing model and there is neither a theoretical nor an empirical justification 

to use the horse race as a test of asset pricing models. 

BHO, citing Grinblatt and Titman (1989) and Pastor and Stambaugh (2002), hypothesize that 

if investors are sophisticated then the J-factor model alpha should win the horse race and use this 

model alpha as the benchmark for investor sophistication. However, we show that the J-factor 

model alpha need not win empiricists’ horse race under the rational expectations hypothesis 

because empiricists do not know the true asset pricing model and true factor betas. Our empirical 

results indicate that when empiricists follow the common practice of estimating betas using time-
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series regressions with 60 months of data four-factor model alphas win the horse race under the 

rational expectations hypothesis and not seven factor model alphas. Even with the four-factor 

model as the benchmark, however, BHO’s result that the single factor model alpha wins the horse 

race suggests rejection of the investor sophistication hypothesis.51, 52 

8. Conclusion 

Investors reveal their preferences for mutual funds through investments in or withdrawals from 

them. In a rational expectations economy, investors update their priors about fund manager skills 

based on funds’ past performance and make their investment decisions. Because flows reveal the 

model that investors use to update their priors, recent literature proposes that a comparison of 

relations between fund flows and alphas computed with different models can be used to test asset 

pricing models and also to assess investor sophistication. We examine whether these proposals are 

conceptually and empirically tenable.  

To examine the conceptual issues, we build a rational expectations model where investors 

extract information about mutual fund manager skills from funds’ past performance and optimally 

decide on fund flows. We show that investors use alphas computed with a multifactor model that 

includes all priced and unpriced factors to update their priors. Because alphas that determine fund 

flows are orthogonal to both priced and unpriced factors, flows do not contain any information to 

 
51 Mathematically, BHO’s findings indicate that 𝐶𝑜𝑣(Γ𝑝,𝑡 , �̂�𝑝,1,𝑡

𝐸 ), the numerator in Eq. (2.15) is bigger than the 

covariance between flow and alphas computed with more than one factor because empirically 𝜎
�̂�𝑝,𝜂,𝑡
𝐸
2 < 𝜎

�̂�𝑝,1,𝑡
𝐸
2  for 𝜂 >

1. If investors use �̂�𝑝,1,𝑡 to inform their investment decisions they conflate abnormal performance due to skill with 

that due to omitted factor realization. Therefore,   𝐶𝑜𝑣(Γ𝑝,𝑡 , �̂�𝑝,1,𝑡
𝐸 ) =  𝐶𝑜𝑣(Γ𝑝,𝑡 , [�̂�𝑝,𝜂,𝑡

𝐸 + ∑ 𝛽𝑝,𝑘
𝜂
𝑘=2 𝑓𝑘]) >

𝐶𝑜𝑣(Γ𝑝,𝑡 , �̂�𝑝,𝜂,𝑡
𝐸 ). 

52 Ben-David et al. (2019) report that investors rely on Morningstar ratings and recent fund returns and not on market 

model alphas as suggested by BHO and BvB and suggest that investors outsource risk assessment to Morningstar.  
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differentiate between factors that are priced under the true asset pricing model and unpriced 

factors.  

We then analyze the flow-alpha horse race that the literature runs under the hypothesis that 

flows are generated in a rational expectations economy. Unlike the investors in the economy, 

empiricists who run the horse race do not know the true asset pricing model and true betas. We 

show that the most precise alphas based on empiricists’ information set will win the flow-alpha 

horse race under the rational expectations hypothesis. 

 We empirically examine the precision of alphas computed with various models with a sample 

of actively managed mutual funds. Our empirical tests use BHO’s seven-factor model with Fama-

French factors (market, SMB, HML), momentum factor (UMD) and three industry factors. We 

compute the precision of alphas under the hypothesis that each of the following asset pricing 

models is true: (i) None of the risk factors are priced (or true expected returns are unrelated to 

factors betas), (ii) CAPM (iii) Fama-French three factor model or (iv) Fama-French-Carhart four 

factor model. 

We find that alphas with a four-factor model that excludes the three industry factors are the 

most precise regardless of the true asset pricing model. Therefore, our model implies that a four-

factor alpha will always win the horse race if flows are determined in a rational expectations 

economy. We also conduct a simulation experiment with parameters that match the data. We 

generate fund flows in the simulation according to our model under each candidate asset pricing 

model, and test our predictions. We find that four-factor alphas are the most precise in our 

simulations as well, and they always win the flow-alpha horse race regardless of the true asset 

pricing model.  



91 
 

Our findings show that the winner of the flow-alpha horse race cannot be used to identify the 

true asset pricing model. In contrast, BvB present a model to justify their inference that CAPM is 

the best asset pricing model based on their evidence that the market model alpha wins the horse 

race. We show that a faulty foundational assumption in BvB’s model is the source of their mistaken 

inference.  

Our finding is also contrary to BHO’s hypothesis that alphas computed with all seven factors 

will win the horse race under the investor sophistication hypothesis, or equivalently, the rational 

expectations hypothesis. We show that four-factor alphas are more precise than seven factor alphas 

because of estimation errors in industry betas. Even with the four-factor model as the benchmark, 

however, BHO’s finding that the single factor model alpha wins the horse race suggests rejection 

of the investor sophistication hypothesis. 
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Appendix 

Appendix 2A: Proofs of Propositions 2.1 and 2.2 

This appendix presents the proofs of Propositions 2.1 and 2.2. 

A. Proof of Proposition 2.1. 

At time 𝑡 investors observe the history of net returns and fund size {𝑟𝑠, 𝑞𝑠}𝑠=0
𝑡  over the life of each 

fund. Let 𝐴𝑔𝑒𝑝,𝑡 denote the age of a fund as of time 𝑡 and 𝑐𝑡(𝑞) denote the cost per unit size of the 

fund. Since 𝑐𝑡(𝑞) is in the investors’ information set, they back out the history of gross returns on 

each fund {𝑅𝑠}𝑠=0
𝑡 . Investors’ prior on managerial skill at 𝑡 = 0 is given by 𝑁(𝜙0, 1/𝜈). They use 

the gross returns history up to the end of period 𝑡 and update their prior on managerial skill using 

an 𝜂-factor model benchmark to compute abnormal returns. Let 𝑋𝑝,𝜂,𝑡 denote the benchmark 

adjusted gross returns for fund 𝑝 at time 𝑡, i.e. 𝑋𝑝,𝜂,𝑡 = �̂�𝑝,𝜂,𝑡 + 𝑐𝑡−1(𝑞𝑝,𝑡−1), and �̅�𝑝,𝜂,𝑡 denote its 

sample mean over 𝑡 periods. Note that for each fund, the sample size of return history as of time 𝑡 

is equal to the age of the fund as of 𝑡 (𝐴𝑔𝑒𝑝,𝑡).  

Under the assumption that all returns are all normally distributed, using Theorem 1 of DeGroot 

(1970, p. 167), the posterior distribution is normal with mean 𝜙𝑝,𝜂,𝑡 given by: 

𝜙𝑝,𝜂,𝑡 =
𝜈 𝜙0 + 𝑡𝜗�̂�,𝜂 �̅�𝑝,𝜂,𝑡 

𝜈 +  𝑡𝜗�̂�,𝜂
, (2𝐴. 1) 

and precision given by (𝜈 + 𝑡𝜗�̂�,𝜂), where 𝜗�̂�,𝜂 =
1

𝜎�̂�,𝜂
2 . 

Equation (2A.1) follows DeGroot and specifies investors’ cumulative update from time 0 to t. 

This result, in conjunction with the competitive equilibrium condition yields the recursive update 

described by Eq. (2.7) in Proposition 2.1. Under the competitive equilibrium condition in Eq. (2.3): 
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𝑐𝑡(𝑞𝑝,𝑡) = Et(Φ𝑝) = 𝜙𝑝,𝜂,𝑡 (2𝐴. 2) 

 

Rewriting 𝑡�̅�𝑝,𝜂,𝑡 as (𝑡 − 1)�̅�𝑝,𝜂,𝑡−1 + 𝑋𝑝,𝜂,𝑡 which can further be written as (𝑡 − 1)�̅�𝑝,𝜂,𝑡−1 +

�̂�𝑝,𝜂,𝑡 + 𝑐𝑡−1(𝑞𝑝,𝑡−1), Eq. (2A.1) becomes: 

𝜙𝑝,𝜂,𝑡 =
𝜈 𝜙0 + (𝑡 − 1)𝜗�̂�,𝜂 �̅�𝑝,𝜂,𝑡−1 + 𝜗�̂�,𝜂𝑐𝑡−1(𝑞𝑝,𝑡−1) 

𝜈 +  𝑡𝜗�̂�,𝜂
+

𝜗�̂�,𝜂

𝜈 +  𝑡𝜗�̂�,𝜂
�̂�𝑝,𝜂,𝑡 . (2𝐴. 3) 

From (2A.2), the competitive equilibrium condition for period 𝑡 − 1 will be 𝑐𝑡−1(𝑞𝑝,𝑡−1) =

𝜙𝑝,𝜂,𝑡−1 and from (2A.1), 𝜙𝑝,𝜂,𝑡−1 =
𝜈 𝜙0+(𝑡−1)𝜗�̂�,𝜂 �̅�𝑝,𝜂,𝑡−1 

𝜈+(𝑡−1)𝜗�̂�,𝜂
. Substituting these two results in 

(2A.3) gives: 

𝜙𝑝,𝜂,𝑡 =
[𝜈 + (𝑡 − 1)𝜗�̂�,𝜂]𝜙𝑝,𝜂,𝑡−1 + 𝜗�̂�,𝜂𝜙𝑝,𝜂,𝑡−1

𝜈 +  𝑡𝜗�̂�,𝜂
+

𝜗�̂�,𝜂

𝜈 +  𝑡𝜗�̂�,𝜂
�̂�𝑝,𝜂,𝑡  

Further simplification yields: 

𝜙𝑝,𝜂,𝑡 = 𝜙𝑝,𝜂,𝑡−1 +
𝜗�̂�,𝜂

𝜈 +  𝑡𝜗�̂�,𝜂
�̂�𝑝,𝜂,𝑡. (2𝐴. 4) 

Finally, substituting the age of the fund as of time 𝑡 (𝐴𝑔𝑒𝑝,𝑡) for the sample size at 𝑡, Eq. (2A.4) 

becomes: 

𝜙𝑝,𝜂,𝑡 = 𝜙𝑝,𝜂,𝑡−1 +
𝜗�̂�,𝜂

𝜈 + 𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝜂
�̂�𝑝,𝜂,𝑡, (2𝐴. 5) 

which is the result in Proposition 2.1. 

Note that Proposition 2.1 implies that the precision of the posterior after each t (which 

represents the prior for t+1) is 𝜈 + 𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝜂 which differs across 𝜂. Therefore, although 1/𝜈 

is the precision at t=0, precision of priors differs across 𝜂 for t>0.  
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Using the competitive equilibrium condition in (2A.2), we can also write a recursive relation for 

the cost function as: 

𝑐𝑡(𝑞𝑝,𝑡) = 𝑐𝑡−1(𝑞𝑝,𝑡−1) +
𝜗�̂�,𝜂

𝜈 + 𝐴𝑔𝑒𝑝,𝑡 × 𝜗�̂�,𝜂
�̂�𝑝,𝜂,𝑡.  (2𝐴. 6) 

 

B. Proof of Proposition 2.2  

For part (a) of the proposition, to prove the “if” condition, substitute Eqs. (2.4) and (2.5) in Eq. 

(2.7) to get: 

Ε𝑡[𝜙𝑝,𝐽,𝑡 − 𝜙𝑝,𝐽,𝑡−1|𝑓𝑘,𝜏, ∀𝑘, 𝜏 ≤ 𝑡] =
𝜗�̂�,𝐽

𝜈+ 𝑡𝜗�̂�,𝐽
× Ε𝑡[𝜉𝑝,𝑡|𝑓𝑘,𝜏, ∀𝑘, 𝜏 ≤ 𝑡] = 0.  

So, if investors start with an unbiased prior that skill equals 𝜙0 ∀𝑝 at time 0, then their posterior is 

unbiased in every subsequent period. To prove the “only if” condition, suppose the contrapositive 

Ε𝑡[𝜙𝑝,𝜂,𝑡|𝑓𝑘,𝜏, ∀𝑘, 𝜏 ≤ 𝑡 ] = Φ𝑝 ∀𝑡 is true for some 𝜂 < 𝐽. Consider a fund p with 𝛽𝑝,𝑘∗ ≠

0 for some 𝑘∗ > 𝜂.  Substituting Eqs. (2.4) and (2.5) in Eq. (2.7) we get: 

Ε𝑡[𝜙𝑝,𝜂,𝑡 − 𝜙𝑝,𝜂,𝑡−1|𝑓𝑘,𝜏, ∀𝑘, 𝜏 ≤ 𝑡]

=
𝜗�̂�,𝜂

𝜈 +   𝐴𝑔𝑒𝑡 × 𝜗�̂�,𝜂
× Ε𝑡 [ ∑ 𝛽𝑝,𝑘𝑓𝑘,𝑡

𝐽

𝑘=𝜂+1

+ 𝜉𝑝,𝑡|𝑓𝑘,𝜏, ∀𝑘, 𝜏 ≤ 𝑡] ≠ 0. 

(2𝐴. 7) 

Therefore, if 𝜙𝑝,𝜂,𝑡−1 is an unbiased estimate of Φ𝑝 then 𝜙𝑝,𝜂,𝑡 is not an unbiased estimate because 

𝛽𝑝,𝑘∗𝑓𝑘∗,𝑡 ≠ 0, which leads to a contradiction of the contrapositive. 

For part (b): From Eqs. (2.4) and (2.5), we get: �̂�𝑝,𝜂,𝑡 = �̂�𝑝,𝐽,𝑡 + ∑ 𝛽𝑝,𝑘𝑓𝑘,𝑡
𝐽
𝑘=𝜂+1 . Therefore, 

𝑉𝑎𝑟(�̂�𝑝,𝜂,𝑡) = 𝑉𝑎𝑟(�̂�𝑝,𝐽,𝑡) + 𝜷(𝜂+1,𝐽)
′ 𝑬[𝒇(𝜂+1,𝐽)

′ 𝒇(𝜂+1,𝐽)]𝜷(𝜂+1,𝐽) where 𝜷(𝜂+1,𝐽) and 𝒇(𝜂+1,𝐽) are 
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vectors of betas and factors from 𝜂 + 1 to 𝐽. Because no factor is redundant, 𝐸[𝒇(𝜼+𝟏,𝑱)
′ 𝒇(𝜼+𝟏,𝑱)] is 

positive definite and therefore  𝜷(𝜂+1,𝐽)
′ 𝑬[𝒇(𝜂+1,𝐽)

′ 𝒇(𝜂+1,𝐽)]𝜷(𝜂+1,𝐽) > 0 for any non-zero vector 

𝜷(𝜂+1,𝐽). Therefore, 𝑉𝑎𝑟(�̂�𝑝,𝜂,𝑡) > 𝑉𝑎𝑟(�̂�𝑝,𝐽,𝑡). 
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Appendix 2B: Covariance of Flows with Empiricist’s Alpha 

This appendix derives the result presented in Eq. (2.18) for the covariance of flows with the 

empiricist’s alpha estimate. The relation between the empiricist’s estimate of alpha from an 𝜂-

factor model and investors’ estimate of alpha from 𝐽-factor model is given by Eq. (2.16). We 

rewrite this equation as �̂�𝑝,𝜂,𝑡
𝐸 = �̂�𝐽,𝑡 + 𝜈𝑝,𝜂,𝑡 where 𝜈𝑝,𝜂,𝑡 denotes the remaining terms on the right 

hand side of Eq. (2.16). Because �̂�𝐽,𝑡 is uncorrelated with each individual term in 𝜈𝑝,𝜂,𝑡, 

𝐶𝑜𝑣(�̂�𝐽,𝑡, 𝜈𝑝,𝜂,𝑡) = 0.  Rewrite Eq. (2.12) as: 

Γ𝑝,𝑡 = 𝒦𝑝,𝑡 × (1 + 𝑟𝑝,𝑡) × �̂�𝑝,𝐽,𝑡, 

where 𝒦𝑝,𝑡 =
𝜗�̂�,𝐽

𝜈+ 𝐴𝑔𝑒𝑝,𝑡×𝜗�̂�,𝐽
×

1

𝛿𝑡−1𝑞𝑝,𝑡−1
. 

With these notations: 

𝐶𝑜𝑣(Γ𝑝,𝑡, �̂�𝑝,𝜂,𝑡
𝐸 ) =  𝐶𝑜𝑣(Γ𝑝,𝑡,  �̂�𝑝,𝐽,𝑡) + 𝐶𝑜𝑣(𝒦𝑝,𝑡�̂�𝑝,𝐽,𝑡(1 + 𝑟𝑝,𝑡), 𝜈𝑝,𝜂,𝑡). (2𝐵. 1) 

Since 𝒦𝑝,𝑡 is a deterministic function of time, the second term on the RHS becomes 

�̅�𝑡𝐶𝑜𝑣(�̂�𝑝,𝐽,𝑡(1 + 𝑟𝑝,𝑡), 𝜈𝑝,𝜂,𝑡) where the overbar represents cross-sectional average. The 

covariance term can be equivalently written as 𝐶𝑜𝑣(�̂�𝑝,𝐽,𝑡(1 + 𝑟𝑝,𝑡), 𝜈𝑝,𝜂,𝑡) where 𝜈𝑝,𝜂,𝑡 = 𝜈𝑝,𝜂,𝑡 −

�̅�𝜂,𝑡 and �̅�𝜂,𝑡 is the mean.  

We can evaluate the covariance using the following identity: 

𝐶𝑜𝑣(𝑎𝑏, 𝑐) = 𝐶𝑜𝑣(𝑎, 𝑏𝑐) − 𝐶𝑜𝑣(𝑎, 𝑏)𝐸(𝑐) + 𝐸(𝑎)𝐶𝑜𝑣(𝑏, 𝑐). (2𝐵. 2) 

With 𝑎 = �̂�𝑝,𝐽,𝑡, 𝑏 = (1 + 𝑟𝑝,𝑡), 𝑐 = 𝜈𝑝,𝜂,𝑡 and using (�̂�𝑝,𝐽,𝑡) = 0, 𝐶𝑜𝑣(�̂�𝑝,𝐽,𝑡, 𝜈𝑝,𝜂,𝑡) = 0, 

𝐸(𝜈𝑝,𝜂,𝑡) = 0,  we get: 

𝐶𝑜𝑣(�̂�𝑝,𝐽,𝑡(1 + 𝑟𝑝,𝑡), 𝜈𝑝,𝜂,𝑡) = 𝐶𝑜𝑣(�̂�𝐽,𝑡, 𝑟𝑝,𝑡𝜈𝑝,𝜂,𝑡). (2𝐵. 3) 

From Eqs. (2.4) and (2.5) we get: 
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𝑟𝑝,𝑡 = �̂�𝐽,𝑡 +∑𝛽𝑘,𝑝Ε[𝐹𝑘,𝑡 ]

𝐾

𝑘=1

+∑𝛽𝑘,𝑝 𝑓𝑘,𝑡

𝐽

𝑘=1

≡ �̂�𝐽,𝑡 + 𝜃𝑝,𝑡, (2𝐵. 4) 

where �̂�𝐽,𝑡 and 𝜃𝑝,𝑡 are independent.  

From Eqs. (2B.3) and (2B.4) we get  

𝐶𝑜𝑣(�̂�𝑝,𝐽,𝑡(1 + 𝑟𝑝,𝑡), 𝜈𝑝,𝜂,𝑡) = 𝐶𝑜𝑣(�̂�𝐽,𝑡, �̂�𝐽,𝑡𝜈𝑝,𝜂,𝑡) + 𝐶𝑜𝑣(�̂�𝐽,𝑡, 𝜃𝑝,𝑡𝜈𝑝,𝜂,𝑡). (2𝐵. 5) 

Since �̂�𝐽,𝑡 is independent of all factors and factor betas, the second term on the RHS Eq. (2B.5) 

equals zero and the first term equals 𝑉𝑎𝑟(�̂�𝐽,𝑡)𝐸(𝜈𝑝,𝜂,𝑡) using the identity in (2B.2). Since 

𝐸(𝜈𝑝,𝜂,𝑡) = 0 in every time period, (2B.5) equals zero. 

Substituting this result in Eq. (2B.1), we get: 

𝐶𝑜𝑣(Γ𝑝,𝑡, �̂�𝑝,𝜂,𝑡
𝐸 ) =  𝐶𝑜𝑣(Γ𝑝,𝑡,  �̂�𝑝,𝐽,𝑡). 
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Appendix 2C: Estimating Measurement Error Components 

This appendix presents the steps to empirically estimate various components of 𝜎
�̂�𝜂
𝐸
2  conditional 

on the true asset pricing model.  For brevity, the table below presents the components of 𝜎
�̂�𝜂
𝐸
2  from 

Eq. (2.24) with J=2 and for 𝜂 = 0, 1, 2 and 𝐾 = 0, 1. 

     Variance due to:   

 

 

 

 

𝜎 �̂�𝐽
2  

APM 

Misspecification 

Omitted 

factors 

Covariance of 

omitted factors 

with APM 

misspecification 

Beta 

measurement 

error 

 Total 

𝐾  𝜂  (1) (2) (3) (4) (5)  (6) 

0 

 0  IV 0 V 0 0  I 

 1  IV III V VI II  I 

 2  IV III 0 0 II  I 

1 

 0  IV III V VI 0  I 

 1  IV 0 V 0 II  I 

 2  IV III 0 0 II  I 

 

We first fill cells that are zero by definition. These cells are: 

a. APM Misspecification, when 𝜂 = 𝐾. 

b. Omitted Factors, when 𝜂 = 𝐽. 

c. Covariance of omitted factors with APM misspecification, when 𝜂 = 𝐽 or 𝐾. 

d. Beta measurement error, when 𝜂 = 0. 

Next, we fill the remaining columns of the above table using the sequence of steps discussed below. 

Numbers I to VI in the table correspond to the respective step numbers below and denote the order 

in which we estimate each component of the variance decomposition labeled in the column 

heading. 
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I. Using estimates from the time-series OLS regression (2.19), we compute �̂�𝑝,𝜂,𝑡
𝐸  for each fund-

month under each 𝜂-factor model and then compute the cross-sectional variance 𝜎
�̂�𝜂,𝑡
𝐸
2 . We 

average this across months to get 𝜎
�̂�𝜂
𝐸
2 =

1

𝑇
∑ 𝜎

�̂�𝜂,𝑡
𝐸
2

𝑡 . 

II. From the time-series OLS regression (2.19) for each fund-month and 𝜂-factor model, we get 

the covariance matrix of �̂� estimates: 𝐶𝑜𝑣 ([�̂�(1,𝜂),𝑝,𝑡 − 𝜷(1,𝜂),𝑝,𝑡]
′
, [�̂�(1,𝜂),𝑝,𝑡 −𝜷(1,𝜂),𝑝,𝑡]) =

𝜎𝑒𝑝,𝑡
2 (𝑋(1,𝜂),𝑡

′ 𝑋(1,𝜂),𝑡)
−1

, where 𝜷(1,𝜂),𝑝,𝑡 is the vector of true factor betas for fund 𝑝 for month 

𝑡, 𝑋(1,𝜂),𝑡 is the data matrix of corresponding factors and 𝜎𝑒𝑝
2  is the variance of residuals. We 

compute the variance due to beta measurement error component as: 

1

𝑇
∑

1

𝑃𝑡
∑𝑭(1,𝜂),𝑡

′ 𝐶𝑜𝑣 ([�̂�(1,𝜂),𝑝,𝑡 − 𝜷(1,𝜂),𝑝,𝑡]
′
, [�̂�(1,𝜂),𝑝,𝑡 −𝜷(1,𝜂),𝑝,𝑡]) 𝑭(1,𝜂),𝑡

𝑷𝑡

, (2𝐶. 1) 

where 𝑃𝑡 is the number of funds in the cross-section at time 𝑡. 

III. For 𝜂 > 𝐾, misspecification error variance =   �̅�
(𝐾+1,𝜂)
′ 𝐶𝑜𝑣(𝜷(𝐾+1,𝜂)

′ , 𝜷(𝐾+1,𝜂))�̅�(𝐾+1,𝜂), where 

�̅�(𝐾+1,𝜂) is the sample mean of unpriced factors, 𝐶𝑜𝑣(𝜷(𝐾+1,𝜂)
′ , 𝜷(𝐾+1,𝜂)) is the covariance 

matrix of true betas of corresponding factors. We estimate the covariance of true betas of an 

𝜂-factor model  as: 

𝐶𝑜𝑣(𝜷(1,𝜂)
′ , 𝜷(1,𝜂))

=
1

𝑇
∑(𝐶𝑜𝑣(�̂�(1,𝜂),𝑡

′ , �̂�(1,𝜂),𝑡) − {
1

𝑃𝑡
∑𝜎𝑒𝑝,𝑡

2 (𝑋(1,𝜂),𝑡
′ 𝑋(1,𝜂),𝑡)

−1

𝑷

})

𝒕

. 

(2𝐶. 2) 

 

We use the sub-matrix of the above matrix starting at row 𝐾 + 1 to compute 

�̅�
(𝐾+1,𝜂)
′ 𝐶𝑜𝑣(𝜷(𝐾+1,𝜂)

′ , 𝜷(𝐾+1,𝜂))�̅�(𝐾+1,𝜂). For 𝜂 < 𝐾, we use the covariance matrix of true betas 

from the case 𝜂 ≥ 𝐾 for the corresponding factors since these betas are not estimated in this 



100 
 

case. For example, with 𝜂 = 1, 𝐾 = 3 we use the covariance matrix of true betas for SMB, 

HML estimated for the case 𝜂 = 3, 𝐾 = 1. 

IV. For 𝜂 = 𝐽, from Eq (2.24), 

𝜎 �̂�𝐽,𝑡
2 = 𝜎

�̂�𝜂,𝑡
𝐸
2 − (�̅�

(𝐾+1,𝜂)
′ (𝐶𝑜𝑣(𝜷(𝐾+1,𝜂)

′ , 𝜷(𝐾+1,𝜂))) �̅�(𝐾+1,𝜂))

− (𝑭(1,𝜂),𝑡
′ 𝐶𝑜𝑣 ([�̂�(1,𝜂),𝑝,𝑡 − 𝜷(1,𝜂),𝑝,𝑡]

′
, [�̂�(1,𝜂),𝑝,𝑡 − 𝜷(1,𝜂),𝑝,𝑡]) 𝑭(1,𝜂),𝑡). 

(2𝐶. 3) 

We computed each term on the RHS of the equation using steps I, II and III53 and hence we 

can determine 𝜎 �̂�𝐽,𝑡
2  which is the variance of alphas computed by investors in the economy 

using their information set. Empiricists do not know true asset pricing model, but under the 

hypothesis that the 𝐾-factor model is the true asset pricing model, 𝜎 �̂�𝐽,𝑡
2 does not depend on the 

𝜂-factor model used to estimate alpha.  Therefore, 𝜎 �̂�𝐽,𝑡
2  is constant across all rows with the 

same 𝐾.  𝜎 �̂�𝐽
2  is the time-series average of 𝜎 �̂�𝐽,𝑡

2 . 

V. To compute the variance due to omitted factors, let 𝜂 = 𝐾. From Eq. (2.24), we get  

𝒇(𝜂+1,𝐽),𝑡
′  (𝐶𝑜𝑣(𝜷(𝜂+1,𝐽)

′ , 𝜷(𝜂+1,𝐽))) 𝒇(𝜂+1,𝐽),𝑡 + 𝑬[𝜷(𝜂+1,𝐽)]
′
 (𝒇(𝜂+1,𝐽),𝑡𝒇(𝜂+1,𝐽),𝑡

′ )𝐸[𝜷(𝜂+1,𝐽)]

= 𝜎
𝛼 ̂𝜂,𝑡
𝐸
2 − 𝜎 �̂�𝐽,𝑡

2 − (�̅�
(𝐾+1,𝜂)
′ (𝐶𝑜𝑣(𝜷(𝐾+1,𝜂)

′ , 𝜷(𝐾+1,𝜂))) �̅�(𝐾+1,𝜂))

− (𝑭(1,𝜂),𝑡
′ (𝐶𝑜𝑣 ([�̂�(1,𝜂),𝑡 − 𝜷(1,𝜂)]

′
, [�̂�(1,𝜂),𝑡 − 𝜷(1,𝜂)]) 𝑭(1,𝜂),𝑡)). 

(2𝐶. 4) 

 

We know all the variables on the RHS using steps I through IV and hence we can compute the 

LHS.54 The terms on the LHS are a function of 𝜂, true betas and unexpected factor realizations 

and it is not dependent on true 𝐾. Therefore, the value we compute for 𝜂 = 𝐾 applies to all 

 
53 We consider  𝜂 = 𝐽 to compute  𝜎 �̂�𝐽,𝑡

2  because the other remaining cells after steps I, II and III are zero for this 

case.  
54 We consider 𝜂 = 𝐾 to estimate this term because the remaining cell after steps I through IV is zero for this case. 
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rows with the same 𝜂.  The variance due to omitted factors is the time-series average of the 

LHS in Eq. (2C.4). 

VI. We have now computed all terms of Eq. (2.24) except the covariance term, and hence we can 

now compute this term as well. 
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Appendix 2D: Proof of Proposition 2.5 

This appendix proves the result in Proposition 2.5 for the ordering of coefficients in the horse 

race regression with binary transformation. From Regression (2.32), we have: 

𝐵𝜂 = Ε [𝑄Γ𝑝|𝑄�̂�𝑝,𝜂𝐸 ] = Pr (Γ𝑝 ≥ 0|𝑄�̂�𝑝,𝜂𝐸 ) − Pr (Γ𝑝 < 0|𝑄�̂�𝑝,𝜂𝐸 ) 

When  𝑄�̂�𝑝,𝜂𝐸 = 1, this term can be expanded as: 

Ε [𝑄Γ𝑝|𝑄�̂�𝑝,𝜂𝐸 = 1]

= {Pr(Γ𝑝 ≥ 0|�̂�𝑝,𝜂
𝐸 ≥ 0, �̂�𝑝,𝐽 ≥ 0) − Pr(Γ𝑝 < 0|�̂�𝑝,𝜂

𝐸 ≥ 0, �̂�𝑝,𝐽 ≥ 0)}

× Pr(�̂�𝑝,𝐽 ≥ 0|�̂�𝑝,𝜂
𝐸 ≥ 0)

+ {Pr(Γ𝑝 ≥ 0|�̂�𝑝,𝜂
𝐸 ≥ 0, �̂�𝑝,𝐽 < 0) − Pr(Γ𝑝 < 0|�̂�𝑝,𝜂

𝐸 ≥ 0, �̂�𝑝,𝐽 < 0)}

× Pr(�̂�𝑝,𝐽 < 0|�̂�𝑝,𝜂
𝐸 ≥ 0). 

(2𝐷. 1) 

From Eq. (2.12), the sign of flow is determined only by sign of �̂�𝑝,𝐽 since all other terms are 

positive. Therefore,  �̂�𝑝,𝜂
𝐸 ≥ 0 has no additional information about sign of flows being positive 

conditioning on sign of �̂�𝑝,𝐽. The model also implies that flow is always positive (negative) when 

�̂�𝑝,𝐽 is positive (negative). Substituting these conditions, we can simplify (2D.1) as: 

Ε [𝑄Γ𝑝|𝑄�̂�𝑝,𝜂𝐸 = 1]

= Pr(Γ𝑝 ≥ 0|�̂�𝑝,𝐽 ≥ 0)Pr(�̂�𝑝,𝐽 ≥ 0|�̂�𝑝,𝜂
𝐸 ≥ 0)

− Pr(Γ𝑝 < 0|�̂�𝑝,𝐽 < 0) Pr(�̂�𝑝,𝐽 < 0|�̂�𝑝,𝜂
𝐸 ≥ 0). 

(2𝐷. 2) 

From Eq. (2.16), �̂�𝑝,𝜂
𝐸 = �̂�𝑝,𝐽 + 𝜈𝑝,𝜂 and 𝑉𝑎𝑟(�̂�𝑝,𝜂

𝐸 ) = 𝑉𝑎𝑟(�̂�𝑝,𝐽) + 𝑉𝑎𝑟(𝜈𝑝,𝜂). Since the 

average betas of funds on various factors are equal to betas of market portfolio by assumption, the 

unconditional average of the bias term in 𝜈𝜂,𝑡 is zero for all 𝜂-factor models considered in our 
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study. Therefore, �̂�𝑝,𝜂 is Normally distributed with mean zero for all 𝜂, and Pr(�̂�𝑝,𝜂
𝐸 ≥ 0) =

Pr(�̂�𝑝,𝐽 ≥ 0) = 0.5. Using this along with Bayes rule gives: 

Pr(�̂�𝑝,𝐽 ≥ 0|�̂�𝑝,𝜂
𝐸 ≥ 0) = Pr(�̂�𝑝,𝜂

𝐸 ≥ 0|�̂�𝑝,𝐽 ≥ 0), 

Pr(�̂�𝑝,𝐽 < 0|�̂�𝑝,𝜂
𝐸 ≥ 0) = Pr(�̂�𝑝,𝜂

𝐸 ≥ 0|�̂�𝑝,𝐽 < 0). 

(2𝐷. 3) 

It can be easily verified that Pr(�̂�𝑝,𝜂
𝐸 ≥ 0|�̂�𝑝,𝐽 ≥ 0) is decreasing in the variance of 𝜈𝑝,𝜂 while 

Pr(�̂�𝑝,𝜂
𝐸 ≥ 0|�̂�𝑝,𝐽 < 0) is increasing in the variance of 𝜈𝑝,𝜂. Therefore, from (2D.2) and (2D.3) we 

can infer that Ε [𝑄Γ𝑝|𝑄�̂�𝑝,𝜂𝐸 = 1] is decreasing with the variance of �̂�𝑝,𝜂
𝐸 . We obtain similar 

inference with Ε [𝑄Γ𝑝|𝑄�̂�𝑝,𝜂𝐸 = −1]. 

Therefore, we can conclude that 𝜎
�̂�𝑝,𝜂1
𝐸
2 < 𝜎

�̂�𝑝,𝜂2
𝐸
2 ⇒ 𝐵𝜂1 > 𝐵𝜂2. We established earlier for the 

horse race Regression (2.14) that �̂�𝜂1 > �̂�𝜂2 ⇒ 𝜎
�̂�𝑝,𝜂1
𝐸
2 < 𝜎

�̂�𝑝,𝜂2
𝐸
2 . Therefore, �̂�𝜂1 > �̂�𝜂2 ⇒ 𝐵𝜂1 >

𝐵𝜂2. 
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redemptions data, I find that current buying and selling decisions are sensitive to 52 and 37 months 
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monthly alphas on past performance reveal higher explanatory power for specifications with more 

lags. However, the performance of portfolios formed using long-horizons of past performance 
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1. Introduction 

Many households in the United States access the equity market through equity mutual funds. The 

market for managed investment products is proliferated with numerous funds scattered among 

different investment objectives. From the perspective of investors, identifying skilled managers 

who can consistently outperform the benchmark is a complicated task. Among the many criteria 

that investors use to identify outperforming funds, past performance of a fund plays a prominent 

role. Survey evidence from Investment Company Institute indicates that past performance is a very 

important factor in influencing the investment decisions of investors.55 Numerous empirical 

studies starting from Ippolito (1992), Patel, Zeckhauser, and Hendricks (1994) have also 

established the performance chasing behavior of investors in equity mutual funds. Recent studies 

by Barber, Huang, and Odean (2016) and Berk and van Binsbergen (2016) use the flow-

performance sensitivities to understand the revealed preferences of investors. 

In this paper, I study the revealed preference on a different dimension of performance chasing: 

the length of historical performance information that matters for investors’ current investment 

decisions. Although past performance serves as a noisy proxy for skill, it is not clear ex-ante if 

investors consider long histories in their current decisions. If all the investors of a fund are 

continuously attentive to its performance and use this information in their decisions every period 

in a timely way, then any investment in the current period must be sensitive only to the most recent 

revisions of the fund’s performance. This is specifically true when the unobserved true skill of the 

manager is constant over time. Therefore, only the most recent performance signal conveys 

 
55 https://www.ici.org/pdf/per25-08.pdf 

https://www.ici.org/pdf/per25-08.pdf
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additional information about the skill to investors who are continuously invested in the fund and, 

hence, are already cognizant of all the past information. 

The performance information from longer horizons in the past can matter under different 

plausible alternative scenarios. If investors are inattentive or slow to incorporate information from 

the recent past, then current investment would be sensitive to past information over long horizons. 

Additionally, flows from new investors who are influenced by a fund’s marketing efforts can be 

sensitive to information from long past. Funds highlight their past performance in their 

prospectuses, financial statements, and in their advertisements in the media. Typically, they use 

performance computed over different horizons such as 1 year, 3 years, 5 years etc. Although funds 

add a cautionary note that past performance is not indicative of future results, relatively 

unsophisticated investors who are attention constrained could be swayed by the salience of 

performance information displayed to them. The usage of performance information from long past 

can also be consistent with rational expectations. When a fund manager’s unobserved skill is time 

varying and investors act rationally with this belief, then current period flows can be sensitive to 

performance information from long periods of the past.56 

I first examine empirically the number of periods of past performance that investors use in 

their monthly flow decisions as revealed by flow-performance sensitivities over long horizons. 

Then I address if their choice of horizon is optimal by studying the future investment performance 

of portfolios formed using long-horizon performance signals. Evidence in recent studies by Barber, 

 
56 Roussanov, Ruan, and Wei (2018) show this using the following analytical setup. Suppose the unobserved true skill 

follows an AR(1) process as 𝛼𝑡 = 𝐴 + 𝜌𝛼𝑡−1 + 𝜖𝑡. Recursive substitution yields 𝛼𝑡 = 𝐴(∑ 𝜌𝑗∞
𝑗=0 ) + 𝜖𝑡 + 𝜌𝜖𝑡−1 +

𝜌2𝜖𝑡−2 +⋯∞. Hence, shocks from many periods in the past can matter for current period’s abnormal return on the 

fund. These shocks are unobserved but are part of the fund returns which are observed. Therefore, flows that are 

rationally directed towards funds with high abnormal returns in the current period (𝛼𝑡) would also be sensitive to past 

performance information over longer time periods under this setup. 
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Huang, and Odean (2016), Phillips, Pukthuanthong, and Rau (2016) indicates that net flows in a 

month are indeed sensitive to past performance over long horizons. In this paper, I first revisit their 

evidence on long horizon performance sensitivity in my sample. Importantly, I add to the findings 

in the above studies by using disaggregated data on purchases and redemptions in addition to net 

flows used in those studies. 

Buying and selling decisions of investors could be driven by different trading motives and can 

react to performance at different horizons. For example, buying transactions are forward-looking 

in nature and use past performance to extract skill while selling transactions could be backward-

looking and be based on the purchase price of the investor.57 Keswani and Stolin (2008) use 

disaggregated purchases and redemptions data for a sample of British funds and show that funds 

that receive high purchases outperform in future but those with high redemptions do not. In other 

words, they show that only buying decisions of investors constitute ‘smart money’ but not the 

selling decisions. Based on these arguments, I first test the conjecture that length of history that 

matters for buying and selling decisions would be different. 

In my empirical analyses, I use a sample of equity mutual funds that are catered to retail 

investors. The primary source for most of the variables at the monthly level is the CRSP Mutual 

Funds database. I use the daily version of this database to compute betas and alphas from different 

factor models to reduce correlation between the metrics at different lags. This limits the beginning 

date of the sample I use to 1999. I collect disaggregated data on purchases and redemptions at a 

 
57 Selling trades could also be forward-looking in the sense that investors who are unhappy with a fund’s performance 

leave the fund to invest elsewhere. But there is an inherent asymmetry between buys and sells because selling can be 

motivated by additional reasons such as tax-loss harvesting, personal liquidity reasons etc. Ivkovic and Weisbenner 

(2009) study individual investor trades in mutual funds at a large discount brokerage and document a different kind 

of asymmetry in buying and selling trades. They report that buying trades are sensitive to relative performance across 

funds in the cross-section while selling trades are sensitive to absolute performance of a fund based on the purchase 

price. 
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monthly level from Morningstar Direct. I match the CRSP Mutual Funds database to Morningstar 

Direct using a sequence of automated and manual approaches. My sample spans the period 1999 

to 2017 with data on purchases and redemptions for 1,955 equity funds. 

My first set of results using flow-performance regressions indicate that performance in the 

distant past does matter for current flow decisions. Buying in the current period is sensitive to over 

52 monthly lags of past performance using various proxies of performance. And selling decisions 

in the current period are sensitive up to 37 monthly lags of performance. In both cases, the 

magnitudes of the coefficients decrease in an exponential fashion with the highest weight on the 

most recent performance information. Therefore, investors consider long-horizon information 

useful when making their buying and selling decisions, with slightly longer look-back for buying. 

This confirms the asymmetry in the length of performance information that matters for buying and 

selling trades. 

To understand if the horizon choice of investors is optimal, I examine the predictive power of 

long-horizon past returns and past risk-adjusted returns for one-month returns. This is similar in 

spirit to Jegadeesh (1990) and Heston and Sadka (2008). Hendricks, Patel, and Zeckhauser (1993) 

follow the approach used in Jegadeesh (1990) in the context of mutual funds, but they examine 

past performance only up to eight quarters (i.e. two years). Later studies that examine persistence 

in past performance use horizons of up to three years. This could be driven by shorter sample 

periods in the early studies. Using a large time series from 1999 to 2017, I use cross-sectional 

prediction regressions to forecast the 1-month relative performance of funds using past returns up 

to 60 months. My results indicate that adding more lags increases in-sample adjusted R2 with the 

60-lag model having the highest value. In addition, I also find an interesting seasonal pattern from 
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these long-horizon predictability regressions. Lags at quarter-ends (such as t-3, t-6, so on) are 

particularly large and significant in predicting one month ahead net returns. 

To assess the economic significance of the increased fit obtained from adding higher lags, I 

study the performance of portfolios constructed using the predicted values from models with 

different lags. In this exercise, using one-month lagged return does not involve any estimation 

issues and is the most easily available option for the investors. I examine if such a simple metric 

has better ability to detect outperforming funds compared to using a model that incorporates 

information from all past lags as indicated by the flow-performance results with higher order lags. 

The results indicate that using the model with higher lags does not lead to identifying 

outperforming funds when performance is measured using four-factor alpha. In fact, using a simple 

metric such as prior one-month net-return does a better job comparatively. This indicates that 

investors’ use of long-horizon information in their buying decisions is sub-optimal. 

2. Literature 

My study is related to three strands of literature. First is the literature on flow-performance relation 

in equity mutual funds. Early studies by Ippolito (1992), Patel, Zeckhauser, and Hendricks (1994) 

documented that flows in equity mutual funds chase past performance. Chevalier and Ellison 

(1997), Sirri and Tufano (1998) show that the flow-performance relation is convex where funds 

performing well in the cross-section receive proportionately higher net flows compared to funds 

performing poorly. Cashman et. al. (2012) study the performance sensitivities of inflows and 

outflows separately and show that they respond strongly to past good performance and bad 

performance respectively. In contrast to these studies, I study the horizon of past performance that 

is relevant for inflows and outflows separately. 
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Phillips, Pukthuanthong, and Rau (2016) also study the long-horizon dependence of net flows 

on past performance. They show that investors are influenced by performance advertised by funds 

over a specific horizon which leads to flows reacting positively to most recent performance and 

negatively to performance that drops out when the horizon moves forward in time. While they 

study specific horizons that are commonly reported by funds, I ask how long in the past do 

investors look when investing. Moreover, I study the buying and selling behavior separately and 

document an asymmetry in how long investors look back in their buying and selling decisions in 

funds. 

The second line of literature my study contributes to is performance persistence. Prior studies 

on the persistence of past performance in mutual funds use a variety of horizons. Hendricks, Patel, 

and Zeckhauser (1993) found that past returns up to four quarters are useful in predicting quarter 

ahead returns. Elton, Gruber, and Blake (1996b) show that risk-adjusted past performance over 1-

year and 3-years are useful in predicting alphas in the future up to 3 years. However, Carhart 

(1997) shows that most of the persistence in previous studies can be explained by expenses and 

the one-year momentum effect of Jegadeesh and Titman (1993). He shows that using past returns 

and risk-adjusted returns over longer horizons are not useful in identifying outperforming funds 

on a risk-adjusted basis. Bollen and Busse (2005) use daily returns data for a sample of 230 funds 

and find that past performance beyond a quarter is not useful in predicting outperforming funds. I 

look at the persistence of funds based on their performance over very long horizons such as past 

60 months. This is motivated by the use of such long horizon information in the inflow decisions 

of investors. 

Finally, my study is also related to the literature on return seasonalities. Using stock returns, 

Jegadeesh (1990) and Heston and Sadka (2008) document return continuations over long horizons 
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such as past 3 years to  20 years. In mutual funds, Brown et. al. (2017) study calendar seasonality 

in aggregate mutual fund returns. They document that mutual funds as a whole underperform the 

market only in the first month of a calendar quarter. In contrast, I study long horizon persistence 

in the cross-section of fund returns using the methodology of Jegadeesh (1990) and Heston and 

Sadka (2008). The seasonality in the cross-section of fund returns at quarterly lags that I document 

in this paper is not specific to the calendar month and has not been noticed in the literature before. 

3. Data and Descriptive Statistics 

3.1.Sample Selection 

I use monthly returns data from survivorship bias free CRSP Mutual Fund database. The monthly 

version of this database starts in 1960 and provides net returns, total net assets, expense ratios, 

style categories, and other share class level characteristics. I use the CRSP comprehensive style 

code to filter out actively managed US domestic equity funds.58 I use the CRSP Mutual Funds 

daily returns database which starts on 2-Sep-1998 to compute alphas and betas from various factor 

models. I use Morningstar Direct (MS Direct hereafter) to obtain monthly share-class level data 

on Morningstar rating, share-class type and fund level data on gross purchases and gross 

redemptions.59 Mutual funds report monthly purchases and redemptions at the fund level in their 

semi-annual N-SAR filings for the six months covered by the filing and MS direct provides this 

data beginning 1999. I merge CRSP and MS Direct following the approach in Pastor, Stambaugh, 

Taylor (2015) along with some additional manual steps.  

 
58 Specifically, I consider records with crsp_obj_cd values in (‘EDC’, ‘EDY’) and then exclude records with 

crsp_obj_cd values ‘EDYH’ and ‘EDYS’. To drop index funds, ETFs and target date funds, I use the CRSP index 

fund flag combined with a fund name search for the strings ‘index’, ‘s&p’, ‘idx’, ‘dfa’, ‘program’, ‘etf’, ‘exchange 

traded’, ‘exchange-traded’, ‘target’, ‘2005’, ‘2010’, ‘2015’, ‘2020’, ‘2025’, ‘2030’, ’2035’, ‘2040’, ‘2045’, ‘2050, 

‘2055’. 
59 Morningstar Direct allows collecting data on both surviving and dead funds unlike Morningstar data on disks and 

the Internet. Therefore, my sample does not suffer from survivorship bias. 
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Since purchases and redemptions are the fund level, I conduct all my analyses at this level. I 

aggregate the share class level data from CRSP and Morningstar Direct to fund level using WFICN 

as the identifier which is obtained from the MFLINKS table. I compute the fund-level returns and 

expense related metrics as weighted average values of the constituent share classes, with the 

beginning-of-month TNA as the weight. I compute fund-level TNA as the sum of TNA across 

share classes, fund-level dividend distributions and capital gains distributions as sum of these 

values across share classes and fund-level age using the minimum offer date across all share classes 

and time periods. I consider a fund to be ‘no-load’ if data on both front-end, back-end loads exists 

and takes values of zero for all its share classes. I construct fund-level qualitative metrics such as 

style, management code, fiscal year etc. using the corresponding values from the share class with 

the largest TNA. Using the comprehensive style code from CRSP, I group funds into four different 

styles: growth, growth & income, mid-cap and small-cap.60 I identify funds with 75% or more of 

their TNA held in share classes that are catered to Institutional investors and Retirement accounts 

and drop these from my study.61 I drop records before the fund’s first offer date to avoid incubation 

bias documented in Evans (2010). To avoid survivorship bias documented in Elton, Gruber, Blake 

(1996a), which is due to reporting conventions in smaller funds, I drop the fund-month 

observations with TNA less than $15 million. 

3.2.Variable Construction 

For each fund 𝑖 in month 𝑡, I construct inflows, outflows, and net flows as percentage of TNA as: 

 
60 Since micro-cap funds (EDCI) are small in number, I group them with small caps (EDCS). Similarly, I group income 

funds (EDYI) which are small in number with growth & income funds (EDYB). Mid-cap and growth funds are 

identified by the CRSP style codes EDCM and EDYG respectively. 
61 I classify share classes I, Y, X, K, Institutional share, Inst, Trust Class, Premier Class, Fiduciary Class, Consultant 

Class and their variants into institutional channel; share classes R, Investor R, Retirement, R-1, R-2, R-3, R-4, R-5 

and their variants into retirement channel. 
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Inflowi,t=
Purchasesi,t ∗ 100

TNAi,t-1

, 

Outflowi,t=
Redemptionsi,t ∗ 100

TNAi,t-1

, 

Net Flowi,t=
(Purchasesi,t-Redemptionsi,t) ∗ 100

TNAi,t-1

. 

(3.1) 

Since the dollar values of purchases and redemptions would vary to a great extent depending 

on the size of the fund, scaling by fund size allows easy comparison of the flow metrics across 

funds. And, to reduce the effect of extreme outliers in the above metrics (due to data coding errors 

in purchases and redemptions), I winsorize them at the 1% level. 

I construct monthly family size as the sum of TNA of all funds within a family in that month 

after dropping the institutional and retirement funds. Similarly, the number of retail funds in a 

family each month gives the monthly number of funds in the family. And, I sum the purchases and 

redemptions across all funds in a family each month and subtract the contribution of the fund itself 

to get the numerator of family level flow metrics. Dividing these by lagged family TNA gives the 

family level inflow, outflow, and net flow. To construct style category level flow metrics, I use the 

sum of purchases, redemptions, and lagged TNA across all funds in a style category each month. 

I construct various factor-based performance metrics each month using rolling window time 

series regressions using data on daily returns. For each fund-month with at least 24 daily return 

observations on past returns in the prior 3 months, I run time-series OLS regressions of funds’ 

excess net returns on daily common factor returns in equities.62 I use the betas from each factor 

model to construct monthly abnormal performance metrics for each fund as the difference between 

 
62 Data on common factor returns is from Prof. Kenneth French’s website. I thank him for making this data easily 

accessible. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
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the realized net returns and the predicted return using the factor benchmarks. Finally, I begin my 

sample in 1999 because purchases and redemptions data in MS Direct and the family identifier in 

CRSP start in this year. 

3.3.Descriptive Statistics 

The final sample of actively managed US domestic equity funds used in this study spans the period 

between Jan-1999 to Dec-2017. After dropping fund-month observations in institutional and 

retirement categories and the observations with missing purchases and redemptions data, the 

sample contains 1,955 funds. There are 920, 379, 288 and 438 funds in the style groups growth, 

growth & income, mid-cap, and small-cap respectively.63 

Table 27 shows the summary statistics for my final sample with data on purchases and 

redemptions. The average fund has $1.4 billion in assets and is 13 years old. Fund size is extremely 

skewed to the right as seen from the difference in mean and median values. Data on loads is 

missing for many records. Among the funds with available data on loads, a high proportion are 

classified as load funds, i.e. they have at least one share class with either a front-end load or a 

back-end load. In unreported analysis, I find that there are 1,147 funds with load and 554 without 

load in this sample. The average number of share classes per fund is 3 which is consistent with the 

fact that a lot of funds shifted to a multi-class structure during the 1990s. The average fund in my 

sample trades 82% of its portfolio over a year as seen from the turnover ratio statistic. In terms of 

performance after expenses, the average fund in this sample returns the same as the CRSP VW 

market index with a market excess return of 0.02% per month. After adjusting for exposures to the 

common factors in the 4-factor model using daily returns, the average 4-factor net alpha per month 

 
63 The number of funds across style categories do not sum up to the total of 1,955 because some funds switch styles 

over their life and are counted in all categories they belong to over their life. 
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is close to zero. All the statistics in my sample correspond well with the statistics in samples of 

actively managed US domestic equity funds from other studies. 

The last three rows of Table 27 report the sample averages of the flow proxies. There is a 

positive net flow per month on average across all funds. Purchases and redemptions as percentages 

of TNA (i.e. inflows and outflows) average to 3.13% and 2.90% respectively, while net flow as 

percentage of TNA averages to 0.20%. The contrast in the magnitudes of net flow vis-à-vis 

disaggregated inflows, outflows indicates that buying and selling activities are substantially 

correlated within and across funds in this sample each month. O’Neal (2004) studies inflows, 

outflows separately and reports similar patterns. 

4. Empirical Results 

4.1.Flow-performance at long horizons 

I first study the revealed preferences of investors in terms of their usage of performance 

information over long horizons for current investment decisions. I use monthly inflows, outflows, 

and net flows as the proxies for flow and estimate the following specification with 72 lags of 

performance. 

𝐹𝑙𝑜𝑤𝑖,𝑡 = 𝑎 +∑𝑏𝑘�̂�𝑖,𝑡−𝑘

72

𝑘=1

+ 𝒃.𝑿 + 𝜓𝑖,𝑡. (3.2) 

I consider three different metrics of performance �̂�𝑖,𝑡: market-adjusted return, 1-factor alpha, and 

4-factor alpha. I estimate equation (3.2) using Fama-MacBeth approach to adjust for cross-

sectional correlation in flows due to correlated demand or supply shocks across funds.64 In 

 
64 Using Fama-MacBeth approach yields unbiased coefficient estimates when the unobserved true skill of each 

manager is constant over time. But if the skill is time-varying, then my estimation still yields unbiased estimates if the 

unconditional average skill across time of each manager is same in the cross-section. In other words, if skill follows 
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addition, I use Newey-West correction in standard errors to adjust for autocorrelation in the error 

term up to 12 lags. 

In the set of control variables 𝑿, I include expense ratio, 12b-1 fees along with a host of other 

fund characteristics that influence flows. I add the log of fund size to control for non-linear effects 

of size on flows since bigger funds might grow (in terms of new money) at a different rate than 

smaller ones. I also control for fund’s age and total risk measured by the standard deviation of 

returns over past 12 months which impact flows as shown in prior literature. To allow for the 

possibility that fund flows can depend on much longer horizons of performance than captured by 

the alpha, I use lagged flows from previous month as a control. This variable also captures the 

persistence of flows for reasons orthogonal to performance such as systematic investment plans. I 

also include contemporaneous flows into funds of the same objective code to account for style-

specific demand shocks. Nanda, Wang, and Zheng (2004) document positive spillover of flows to 

funds belonging to a family which has a star fund. To control for such spillovers, I use 

contemporary flows to the family (after excluding the contribution of the fund itself) as an 

explanatory variable. I include lagged turnover to control for the effect of capital gains 

distributions on flow. When analyzing purchases and redemptions separately, I use a slightly 

different set of control variables. In tests involving purchases (redemptions), I use contemporary 

redemptions (purchases) as a control variable since purchases and redemptions are contemporarily 

correlated as shown in O’Neil (2004). I also include category level purchases and redemptions, 

family level purchases and redemptions as controls in this specification. 

 
an AR(1) process as 𝛼𝑡 = 𝐴 + 𝜌𝛼𝑡−1 + 𝜖𝑡, I assume that 𝐴 is same across all funds. In this case, the cross-sectional 

variation in skill is purely due to the shocks 𝜖𝑡. 
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Table 28 presents the results from estimating (3.2) using market adjusted returns and four-

factor alpha. Figures 7A, 7B, 7C and 8A, 8B, 8C depict these results visually by plotting the 

coefficients on all lags for all three metrics of performance: market-adjusted return, 1-factor alpha, 

and 4-factor alpha. Across specifications, the results for all flow proxies reveal a long-horizon 

dependence on past performance. Inflows are significantly positively correlated with past returns 

for up to 60 months with the magnitude diminishing gradually with lags. The result for outflows 

shows that past performance up to lags 37 are consistently negative and significant. Thereafter, 

some additional lags are sporadically significant. These results highlight that investors consider 

performance over long horizons when making their investment decisions. The weights on past 

performance decrease with lags with the most recent performance receiving the highest weight. In 

addition, the extent of look-back is different for buys vs. sells. 

4.2.Lag length selection for inflows and outflows 

I now statistically examine the asymmetry in the horizon-dependence of performance between 

buys and sells. Table 29 reports results from an F-test that some lags towards the tail in the 

estimation of equation (3.2) are jointly zero. Specifically, the results for outflows indicate that lags 

beyond 38 till 72 are individually indistinguishable from zero. Therefore, I conduct an F-test for 

whether these lags have significance jointly for the model in equation (3.2). Results in columns 

(1) and (3) of Table 29 indicate that one cannot reject the null that lags 38-72 are jointly zero. 

However, the same does not hold for lags 37 to 72. I repeat this analysis for inflows to understand 

if 37 lags are sufficient to explain the buying behavior. Results in columns (2) and (4) indicate that 

lags 38 to 72 are jointly significant and are important in explaining inflows. Depending on the 

performance metric used, lags above 53 or 59 seem to not matter much statistically. Therefore, 

inflows into a fund have longer lookback on past performance compared to outflows. These results 
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establish that horizon of performance information matters to different extents for buying and 

selling behavior. 

4.3.Performance persistence at long horizons 

Based on the results above, I next ask if the long look-back by investors in their flow decisions is 

optimal. Particularly, if there is valuable information in such long horizon metrics, then this should 

help in predicting the out of sample relative performance of funds. For example, using such long 

horizons can increase the precision of the skill estimates. To test this hypothesis, I estimate cross-

sectional regressions of monthly four-factor alpha on past performance metrics with different 

number of lags. I consider net returns and four-factor alphas to measure the past performance. I 

use a maximum of 60 lags based on the lag length selection in flow-performance tests in the 

previous section. The specification I estimate using the Fama-MacBeth approach is the following. 

�̂�𝑖,𝑡
𝐹𝐹𝐶4 = 𝑐 +∑𝑑𝑘�̂�𝑖,𝑡−𝑘

60

𝑘=1

+ 𝛿𝑖,𝑡. (3.3) 

If there is information in higher lags to predict current outperforming funds, then the 

coefficients 𝑑𝑘 should load positively on all the lags in a consistent manner. This is similar to the 

evidence of return continuations at longer horizons documented by Jegadeesh (1990). I conduct 

these analyses using both multivariate models as in Jegadeesh (1990) as well as univariate 

specification considered in Heston and Sadka (2008). I constrain the sample size to be similar for 

specifications with different lags in order to not induce a systematic bias related to fund age and 

persistence. For instance, Huij and Verbeek (2007) show that younger funds have stronger 

persistence patterns compared to older funds. By considering a sample of funds that has 

information on all 60 lags on monthly net returns, I can compare the performance of different 

specifications on equal grounds. 
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I compute monthly four-factor alpha used as the dependent variable in equation (3.3) using 

beta estimates from a non-overlapping window compared to the beta estimates used in computing 

monthly alphas that are used as explanatory variables. This is to mitigate the concern that 

correlation in measurement error in beta estimates impacts the coefficients 𝑑𝑘 in equation (3.3). 

Specifically, I compute forward-looking betas each month using rolling window time series 

regressions of fund’s daily excess net returns on the returns of Fama-French-Carhart four factors. 

I retain the estimates for fund-months with at least 24 observations on future daily net returns in a 

3-month window beginning from the current month. If a fund dies in this window, I replace its 

return with CRSP VW market return for the remaining period. Using these beta estimates, I 

compute the monthly four-factor alpha used as the dependent variable as the fund’s net return 

minus expected return from Fama-French-Carhart four factor model. 

Table 30 reports the results of these tests and Figures 9A, 9B, 10A, 10B depict the coefficients 

on different lags of performance from these regressions graphically. The adjusted R2 values in the 

last row of Table 30 range from 9.2% to 27.3% depending on the number of lags used. As a 

comparison, adjusted R2 from similar regressions for stocks reported in Jegadeesh (1990) range 

from 8.7% to 17.8%. While the high R2 values in these cross-sectional regressions in stocks could 

be due to the momentum effect, the high R2 values in funds could be due to loading on the 

momentum factor in the funds’ portfolios. Going from columns (1) to (5) in Table 30, adding more 

lags leads to an increase in the adjusted R2 as seen in the last row of the table. Although some of 

the coefficients on higher lags are negative, only a few of these negative coefficients are 

statistically different from zero. Moreover, the coefficients on the quarterly lags show an 

interesting pattern. Beyond the first three months, most of the additional lags are significant only 

at the quarterly intervals. The magnitudes of the coefficients also spike up at the quarterly lags. 



120 
 

This pattern is clearly apparent from Figures 9A and 9B with both performance metrics. The 

pattern with seasonal spikes in equation (3.3) is different from the pattern of flow-performance in 

equation (3.2) with declining weights. Therefore, the relation in equation (3.2) is not driven by 

horizon dependence in alphas with declining weights. 

Column (8) of Table 30 also shows the results with each past lag added individually in 

univariate regressions. The coefficients are plotted in Figures 10A and 10B.  In comparison to the 

multivariate results, most of the coefficients on past return metrics in the univariate specification 

are not significant predictors of one-month ahead alpha. However, the seasonal patterns in the 

loadings on quarterly lags are still evident from the univariate specification, albeit with a lesser 

magnitude. The difference in coefficient patterns across multivariate and univariate specifications 

highlights the conditional nature of the seasonal patterns. For example, performance 36 months 

ago matters conditional on the performance in the surrounding months. Phillips, Pukthuanthong, 

and Rau (2016) argue that advertising fund performance over long horizon windows leads 

investors to chase funds that get rid of a bad month as the window moves ahead. The pattern I 

document indicates that similar argument could also be behind the link between higher 

performance in current month and past quarterly lags at long horizons. Specifically, this could be 

driven by incentives of managers related to advertising the performance over long horizons. 

Most studies on seasonality in stock returns show that the patterns in January are different 

compared to other calendar months. And studies on mutual funds highlight the importance of 

calendar-quarter-ends due to funds’ quarterly mandatory filing requirements.65 To understand if 

 
65 Two such practices widely documented in the literature are portfolio pumping (a.k.a. NAV inflation) and window 

dressing. Portfolio pumping is the practice of inflating the prices of stocks present in a manager’s current portfolio to 

boost the fund’s performance at quarter-end. Window dressing involves buying winner stocks and dumping loser 

stocks near the end of a quarter to improve the appearance of the portfolio to be disclosed to investors. See Agarwal, 
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the quarterly seasonal patterns from Table 30 are concentrated only in some calendar months, I 

estimate equation (3.3) in sub-samples based on calendar months and Table 31 shows these results. 

Column (1) shows that thee results for only January months are distinct from the patterns for rest 

of the months. Specifically, the quarterly seasonality is not evident in January months. The results 

in other columns of Table 31 indicate that quarterly patterns are present but are not that strong in 

months which form the ends of calendar quarters. It is the other months where the results are 

heavily concentrated. 

4.4.Economic Significance of Long-horizon Predictability 

The results from previous section indicate that the model with 60 lags of past performance has the 

highest adjusted R2 in sample when predicting four-factor alpha next month. To assess whether 

the increased fit leads to economically large improvements from an investment perspective, I next 

study the performance of portfolios formed based on different predictive signals. Using the 

estimated coefficients from the 60-lag model of equation (3.3), I compute the predicted value of 

monthly four-factor alpha and use this to form ten portfolios. By repeating this procedure every 

month, I construct a time-series of value-weighted net returns across funds for each portfolio. By 

regressing the return series of each portfolio on the Fama-French-Carhart four factors over the 

entire sample period, I estimate the abnormal return from holding a particularly monthly-

rebalanced portfolio. I compare the abnormal performance from using 60-lag model with that of 

using one-month net return from the previous month. Comparing performance across the two 

models informs if the use of long-horizon information is optimal as compared to an easier-to-use 

information set. 

 
Gay, and Ling (2015) and Brown et. al. (2017) for a discussion of literature that studies these issues and their 

consequences. 
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Tables 32 and 33 show the results from this exercise. Column (1) of these tables shows the 

time-series average of monthly value-weighted net returns of each portfolio. Using the predicted 

value from 60-lag model, the best performing funds which are part of Decile 10 have an average 

net return of 0.898%. The same number from Table 33 for Decile 10 portfolio based on one-month 

net return as the signal is 0.885%. On a net-return basis, the long horizon model outperforms the 

one-month net return signal. However, higher net returns could be driven by passive exposures to 

factors rather than active skill. Columns (2) to (6) of each table report the four-factor alpha of each 

decile portfolio and the factor exposures. 

The factor loadings for each of the decile portfolio returns in Table 32 indicate that higher net 

returns in column (1) are driven to a large extent by passive exposure to factors. The four-factor 

alphas in column (2) are all negative except for Decile 10. Comparing this with columns (2) to (6) 

of Table 33 leads to a different inference on the relative performance of the two signals. Even with 

net returns as the signal for portfolio formation, most of the portfolios have negative four-factor 

alphas. However, the Decile 10 portfolio has a bigger magnitude of four-factor alpha compared to 

Table 32. Performance comparison using four-factor alphas, therefore, leads to the inference that 

net returns as the signal is better compared to the 60-lag model. The bottom three rows of Tables 

32 and 33 show the performance of spread portfolios from taking a long position in the best 

performing funds and short position in the bottom most set of funds.66 The performance of spread 

portfolios also indicates that one-month net return has better performance both in terms of average 

net returns and the four-factor alpha. 

 
66 Mutual funds cannot be shorted like stocks. Therefore, returns on the spread portfolios cannot be directly realized 

by the investors. However, short position in the worst performing funds can be interpreted as the gains from avoiding 

investing in such funds which could have led to the non-existence of such funds in the market. It could be interpreted 

as reversing the opportunity cost for investors in these funds of forgoing investment in the best performing funds. 
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5. Conclusion 

In this paper, I study the revealed preferences of investors in equity mutual funds to identify the 

performance horizon that matters for investors’ current buying and selling decisions separately. 

Models of investor flows in funds do not have an explicit prediction for the how long do investors 

look back to extract skill from the performance information. If investors are continuously attentive 

to their portfolios and use the performance information each period in their flows, then only the 

most recent performance information should matter when the unobserved skill of the managers is 

constant over time. Alternatively, fund flows can depend on past performance over longer horizons 

under a variety of conditions such as: 1) skill is time-varying and investors act with this belief, 2) 

majority of fund investors add the  fund to their attention set only recently, 3) current investors are 

slow to update or are inattentive to performance, 4) attention-constrained investors are swayed by 

the long-horizon information salient in fund advertisements. If any of these explanations is true, 

then flows would be sensitive to past performance over longer horizons. 

My empirical analysis confirms the findings of some recent studies that net flows in a fund are 

sensitive to long horizons of past performance. However, I study buying and selling decisions 

separately and find that there is an asymmetry in horizon-dependence. Current buying decisions 

of investors are sensitive to over 52 months of past performance while current selling decisions 

are sensitive to around 37 months of past performance. I conduct additional analysis to test if this 

longer horizon performance leads to better predictability in identifying funds with higher out of 

sample performance. Cross-sectional predictability regressions indicate that model with 60 lags of 

past performance has the highest adjusted R2 in predicting one-month ahead four-factor alpha. 

However, analysis using the performance of portfolios formed using predicted values from the 60-

lag model indicates that a simple metric such as prior one-month net returns has better ability to 
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identify outperforming funds. This indicates that investors’ dependence on long-horizon 

performance is sub-optimal. 
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Figures 

Figure 1: Average net flows by calendar month 

This figure plots the average value of net flows across funds and years for each calendar month. Net flows 

at time t are computed as (purchasest - redemptionst)*100/TNAt-1 for each fund and then winsorized at the 

1% level to remove the effect of outliers. The sample period is Jan-1994 to Dec-2017. 
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Figure 2: Average outflows by calendar month 

This figure plots the average value of outflows across funds and years for each calendar month. Outflows 

at time t are computed as redemptionst*100/TNAt-1 for each fund and then winsorized at the 1% level to 

remove the effect of outliers. The sample period is Jan-1994 to Dec-2017. 
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Figure 3: Average inflows by calendar month 

This figure plots the average value of inflows across funds and years for each calendar month. Inflows at 

time t are computed as purchasest*100/TNAt-1 for each fund and then winsorized at the 1% level to remove 

the effect of outliers. The sample period is Jan-1994 to Dec-2017. 
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Figure 4: Average inflows & outflows by calendar month and distribution channel 

This figure plots the average value of inflows and outflows across funds and years for each calendar month 

and distribution channel. Panels A and B plot the pattern for inflows and outflows which are computed as 

purchasest*100/TNAt-1 and redemptionst*100/TNAt-1 respectively for each fund at time t and then 

winsorized at the 1% level to remove the effect of outliers. In each plot, the blue line with square dots 

represents the pattern for broker-sold funds and red-line with diamond dots represents the pattern for direct-

sold funds. There are 936 and 796 funds in the broker-sold and direct-sold channels respectively. The 

sample period is Jan-1994 to Dec-2017. 
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Figure 5: Month-on-month changes in flows by calendar month and distribution channel 

This figure plots the average value of month-on-month changes in inflows and outflows across funds and 

years for each calendar month and distribution channel. Panels A and B show the plots for inflows and 

outflows separately. For each fund at time t, inflows and outflows are computed as purchasest*100/TNAt-1 

and redemptionst*100/TNAt-1 respectively and then winsorized at the 1% level to remove the effect of 

outliers. The changes for each month are computed as the difference of a flow proxy for that month from 

the previous month, i.e. ∆Inflowst=(Inflowst – Inflowst-1) and are plotted on the Y-axis. The X-axis shows 

the two months for which the difference is calculated. In each plot, the blue line with square dots represents 

the pattern for broker-sold funds and red-line with diamond dots represents the pattern for direct-sold funds. 

There are 936 and 796 funds in the broker-sold and direct-sold channels respectively. The sample period is 

Jan-1994 to Dec-2017. 

 

  

-1.00

-0.50

0.00

0.50

1.00

Ja
n
-D

ec

F
eb

-J
an

M
ar

-F
eb

A
p
r-

M
ar

M
ay

-A
p
r

Ju
n
-M

ay

Ju
l-

Ju
n

A
u
g
-J

u
l

S
ep

-A
u
g

O
ct

-S
ep

N
o
v
-O

ct

D
ec

-N
o
v

M
o
n
th

-o
n
-m

o
n
th

 c
h
an

g
e 

in
 %

 

In
fl

o
w

s

Month(t) - Month(t-1)

ΔInflows = Inflows(t) - Inflows(t-1)

Broker Sold Direct Sold

-0.50

0.00

0.50

1.00

Ja
n
-D

ec

F
eb

-J
an

M
ar

-F
eb

A
p
r-

M
ar

M
ay

-A
p
r

Ju
n
-M

ay

Ju
l-

Ju
n

A
u
g
-J

u
l

S
ep

-A
u
g

O
ct

-S
ep

N
o
v
-O

ct

D
ec

-N
o
v

M
o
n
th

-o
n
-m

o
n
th

 c
h
an

g
e 

in
 %

 

O
u
tf

lo
w

s

Month(t) - Month(t-1)

ΔOutflows = Outflows(t) - Outflows(t-1)

Broker Sold Direct Sold



130 
 

Figure 6: Turn of the year seasonality using Net flows from CRSP MF database 

This figure replicates the results in Figures 1 to 5 above using net flows computed from monthly fund size 

and returns from the CRSP mutual funds database. Net flows at time t are computed as (TNAt - TNAt-

1(1+rt))*100/TNAt-1 for each fund and then winsorized at the 1% level to remove the effect of outliers. The 

sample contains 2541 funds including those from CRSP MF database that do not have a mapping with 

Morningstar and N-SAR files. Of these, 1174 funds are in the broker-sold channel and 1053 funds are in 

the direct-sold channel. The left panel in the top row presents average net flows by calendar month and the 

right panel of the top row presents the calendar seasonal patterns by distribution channel. The bottom panel 

shows month-on-month changes in net flows which are computed as ∆Net flowst=(Net flowst – Net flowst-

1). The X-axis in this panel indicates the two months over which the difference is calculated. The sample 

period is Jan-1994 to Dec-2017. 
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Figure 7A: Long horizon regression coefficients of inflow-performance relation 

The figure plots the coefficients from Fama-MacBeth regressions of inflows on 72 lags of monthly market 

adjusted net returns along with a set of controls. Inflows are defined as  purchases*100/TNAt-1 and market 

adjusted return is the fund’s net return minus CRSP VW market index. The sample comprises actively 

managed US domestic equity funds during the period Jan-1999 to Dec-2017 excluding Institutional and 

Retirement funds. Standard errors are adjusted for autocorrelation up to 12 lags using Newey-West 

procedure. Coefficients denoted using green squares on the plot are statistically significant at the 10% level 

or better and coefficients denoted using red triangles are statistically indistinguishable from zero. 
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Figure 7B: Long horizon regression coefficients of inflow-performance relation 

The figure plots the coefficients from Fama-MacBeth regressions of inflows on 72 lags of monthly one-

factor alpha along with a set of controls. Inflows are defined as  purchases*100/TNAt-1. Monthly one-

factor alpha is computed as the fund’s net return minus expected return from CAPM with betas computed 

using rolling window time series regressions of fund’s daily excess net returns on market excess return. 

These are computed for fund-months with at least 24 observations on past daily net returns in a 3-month 

window ending prior month. The sample comprises actively managed US domestic equity funds during the 

period Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. Standard errors are adjusted for 

autocorrelation up to 12 lags using Newey-West procedure. Coefficients denoted using green squares on 

the plot are statistically significant at the 10% level or better and coefficients denoted using red triangles 

are statistically indistinguishable from zero.  
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Figure 7C: Long horizon regression coefficients of inflow-performance relation 

The figure plots the coefficients from Fama-MacBeth regressions of inflows on 72 lags of monthly four-

factor alpha along with a set of controls. Inflows are defined as  purchases*100/TNAt-1. Monthly four-

factor alpha is computed as the fund’s net return minus expected return from Fama-French-Carhart four 

factor model with betas computed using rolling window time series regressions of fund’s daily excess net 

returns on factor returns. These are computed for fund-months with at least 24 observations on past daily 

net returns in a 3-month window ending prior month. The sample comprises actively managed US domestic 

equity funds during the period Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. 

Standard errors are adjusted for autocorrelation up to 12 lags using Newey-West procedure. Coefficients 

denoted using green squares on the plot are statistically significant at the 10% level or better and coefficients 

denoted using red triangles are statistically indistinguishable from zero. 
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Figure 8A: Long horizon regression coefficients of outflow-performance relation 

The figure plots the coefficients from Fama-MacBeth regressions of outflows on 72 lags of monthly 

market adjusted net returns along with a set of controls. Outflows are defined as  redemptions*100/TNAt-

1 and market adjusted return is the fund’s net return minus CRSP VW market index. The sample comprises 

actively managed US domestic equity funds during the period Jan-1999 to Dec-2017 excluding Institutional 

and Retirement funds. Standard errors are adjusted for autocorrelation up to 12 lags using Newey-West 

procedure. Coefficients denoted using green squares on the plot are statistically significant at the 10% level 

or better and coefficients denoted using red triangles are statistically indistinguishable from zero. 
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Figure 8B: Long horizon regression coefficients of outflow-performance relation 

The figure plots the coefficients from Fama-MacBeth regressions of outflows on 72 lags of monthly one-

factor alpha along with a set of controls. Outflows are defined as  redemptions*100/TNAt-1. Monthly one-

factor alpha is computed as the fund’s net return minus expected return from CAPM with betas computed 

using rolling window time series regressions of fund’s daily excess net returns on market excess return. 

These are computed for fund-months with at least 24 observations on past daily net returns in a 3-month 

window ending prior month. The sample comprises actively managed US domestic equity funds during the 

period Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. Standard errors are adjusted for 

autocorrelation up to 12 lags using Newey-West procedure. Coefficients denoted using green squares on 

the plot are statistically significant at the 10% level or better and coefficients denoted using red triangles 

are statistically indistinguishable from zero. 
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Figure 8C: Long horizon regression coefficients of outflow-performance relation 

The figure plots the coefficients from Fama-MacBeth regressions of outflows on 72 lags of monthly four-

factor alpha along with a set of controls. Outflows are defined as  redemptions*100/TNAt-1. Monthly four-

factor alpha is computed as the fund’s net return minus expected return from Fama-French-Carhart four 

factor model with betas computed using rolling window time series regressions of fund’s daily excess net 

returns on factor returns. These are computed for fund-months with at least 24 observations on past daily 

net returns in a 3-month window ending prior month. The sample comprises actively managed US domestic 

equity funds during the period Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. 

Standard errors are adjusted for autocorrelation up to 12 lags using Newey-West procedure. Coefficients 

denoted using green squares on the plot are statistically significant at the 10% level or better and coefficients 

denoted using red triangles are statistically indistinguishable from zero. 
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Figure 9A: Multivariate performance predictability regression coefficients 

The figure plots the coefficients from Fama-MacBeth regressions of monthly four-factor alpha on 60 lags 

of monthly net returns. Monthly four-factor alpha used as the dependent variable is computed as the fund’s 

net return minus expected return from Fama-French-Carhart four factor model with betas computed in a 

forward-looking window using rolling window time series regressions of fund’s daily excess net returns on 

factor returns. These are computed for fund-months with at least 24 observations on future daily net returns 

in a 3-month window beginning from the current month. If a fund dies in this window, I replace its return 

with CRSP VW market return for the remaining period. The sample comprises actively managed US 

domestic equity funds during the period Jan-1999 to Dec-2017 excluding Institutional and Retirement 

funds. Coefficients denoted using green squares on the plot are statistically significant at the 10% level or 

better and coefficients denoted using red triangles are statistically indistinguishable from zero. 
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Figure 9B: Multivariate performance predictability regression coefficients 

The figure plots the coefficients from Fama-MacBeth regressions of monthly four-factor alpha on 60 lags 

of monthly four-factor alpha. Monthly four-factor alpha used as the dependent variable is computed as the 

fund’s net return minus expected return from Fama-French-Carhart four factor model with betas computed 

in a forward-looking window using rolling window time series regressions of fund’s daily excess net returns 

on factor returns. These are computed for fund-months with at least 24 observations on future daily net 

returns in a 3-month window beginning from the current month. If a fund dies in this window, I replace its 

return with CRSP VW market return for the remaining period. Monthly four-factor alpha used as the 

explanatory variable is computed as the fund’s net return minus expected return from Fama-French-Carhart 

four factor model with betas computed in backward-looking window using rolling window time series 

regressions of fund’s daily excess net returns on factor returns. These are computed for fund-months with 

at least 24 observations on past daily net returns in a 3-month window ending prior month. The sample 

comprises actively managed US domestic equity funds during the period Jan-1999 to Dec-2017 excluding 

Institutional and Retirement funds. Coefficients denoted using green squares on the plot are statistically 

significant at the 10% level or better and coefficients denoted using red triangles are statistically 

indistinguishable from zero. 
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Figure 10A: Univariate performance predictability regression coefficients 

The figure plots the coefficients from separate Fama-MacBeth regressions of monthly four-factor alpha on 

each of the 60 lags of monthly net returns. The sample used in all regressions is uniform with data available 

on all the 60 lags. Monthly four-factor alpha used as the explanatory variable is computed as the fund’s net 

return minus expected return from Fama-French-Carhart four factor model with betas computed in 

backward-looking window using rolling window time series regressions of fund’s daily excess net returns 

on factor returns. These are computed for fund-months with at least 24 observations on past daily net returns 

in a 3-month window ending prior month. The sample comprises actively managed US domestic equity 

funds during the period Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. Coefficients 

denoted using green squares on the plot are statistically significant at the 10% level or better and coefficients 

denoted using red triangles are statistically indistinguishable from zero. 
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Figure 10B: Univariate performance predictability regression coefficients 

The figure plots the coefficients from separate Fama-MacBeth regressions of monthly four-factor alpha on 

each of the 60 lags of monthly four-factor alpha. The sample used in all regressions is uniform with data 

available on all the 60 lags. Monthly four-factor alpha used as the dependent variable is computed as the 

fund’s net return minus expected return from Fama-French-Carhart four factor model with betas computed 

in a forward-looking window using rolling window time series regressions of fund’s daily excess net returns 

on factor returns. These are computed for fund-months with at least 24 observations on future daily net 

returns in a 3-month window beginning from the current month. If a fund dies in this window, I replace its 

return with CRSP VW market return for the remaining period. Monthly four-factor alpha used as the 

explanatory variable is computed as the fund’s net return minus expected return from Fama-French-Carhart 

four factor model with betas computed in backward-looking window using rolling window time series 

regressions of fund’s daily excess net returns on factor returns. These are computed for fund-months with 

at least 24 observations on past daily net returns in a 3-month window ending prior month. The sample 

comprises actively managed US domestic equity funds during the period Jan-1999 to Dec-2017 excluding 

Institutional and Retirement funds. Coefficients denoted using green squares on the plot are statistically 

significant at the 10% level or better and coefficients denoted using red triangles are statistically 

indistinguishable from zero. 
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Tables 

Table 1: Explanatory variables used to estimate abnormal flows 

This table presents the list of explanatory variables used in the estimation of abnormal flows with each of the flow proxies: net flows, inflows, and 

outflows which are defined as (purchases-redemptions)*100/TNAt-1, purchases*100/TNAt-1 and redemptions*100/TNAt-1 respectively. The 

following panel regression is first estimated for each flow proxy on a set of explanatory variables 𝑿, which depend on the flow proxy used, and 

month fixed effects 𝜇𝑡: Flow𝑖,𝑡 = 𝛼 + 𝜷. 𝑿 + 𝜇𝑡 + 𝜖𝑖,𝑡. Abnormal flow proxies for each month are then computed as the sum of the month fixed 

effect estimate and the residual from the above regression. Columns I, II, III in the table below list the set of explanatory variables used in the 

regression for net flows, inflows, and outflows respectively. The explanatory variable related to a performance metric (such as net returns, 1-factor 

alpha etc.) is first converted to percentiles within style groups each month and then decomposed into three variables LOW, MID, and HIGH. These 

are defined as: LOW=min(Rank, 20), MID=min(60, Rank-LOW), HIGH=Rank-LOW-MID, where Rank is the percentile rank ranging from 1 to 

100. These variables are then used in the above regression to estimate a piece-wise linear specification. 

I. Flow proxy is Net flowst II. Flow proxy is Inflowst III. Flow proxy is Outflowst 

 

Explanatory Variables (𝑿) are: 

• LOWt, MIDt, HIGHt 

• Expense ratiot-1 

• 12B-1 ratiot-1 

• Net flowst-1  

• Aggregate net flows in style 

categoryt  

• Aggregate net flows in the fund 

familyt  

• log(TNAt-1)  

• log(Aget-1)  

• Return Std. Devn. (t-12 t-1)  

• Turnover Ratiot-1  

• Capital gains distributiont  

• Dividend distributiont 

 

Explanatory Variables (𝑿) are: 

• LOWt, MIDt, HIGHt 

• Expense ratiot-1 

• 12B-1 ratiot-1 

• Outflowst 

• Inflowst-1  

• Outflowst-1  

• Aggregate Inflows in style categoryt  

• Aggregate Outflows in style categoryt  

• Aggregate Inflows in the fund familyt  

• Aggregate Outflows in the fund familyt  

• log(TNAt-1)  

• log(Aget-1)  

• Return Std. Devn. (t-12 t-1)  

• Turnover Ratiot-1  

• Capital gains distributiont  

• Dividend distributiont 

 

Explanatory Variables (𝑿) are: 

• LOWt, MIDt, HIGHt 

• Expense ratiot-1 

• 12B-1 ratiot-1 

• Inflowst 

• Inflowst-1  

• Outflowst-1  

• Aggregate Inflows in style categoryt  

• Aggregate Outflows in style categoryt  

• Aggregate Inflows in the fund familyt  

• Aggregate Outflows in the fund familyt  

• log(TNAt-1)  

• log(Aget-1)  

• Return Std. Devn. (t-12 t-1)  

• Turnover Ratiot-1  

• Capital gains distributiont  

• Dividend distributiont 
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Table 2: Mapping statistics between CRSP and monthly purchases & redemptions 

This table shows the mapping statistics between the CRSP Mutual Funds sample and the monthly purchases 

and redemptions data from N-SAR filings (from 1994 to 1998), Morningstar Direct (from 1999 to 2017). 

Panel A shows the number of funds with data available on purchases and redemptions by year and panel B 

compares the characteristics of funds with and without a mapping. Column (1) of panel A shows the number 

of equity funds in the CRSP MF database that remain after applying the standard selection filters and 

column (2) shows the number of these funds that have a mapping with the purchases and redemptions data. 

Panel A: Number of funds with available mapping to purchases and redemptions data by year 

Year No. of funds 

No. of 

funds 

with 

mapping 

% 

 

Year 
No. of 

funds 

No. of 

funds 

with 

mapping 

% 

 (1) (2) (3)   (1) (2) (3) 

1994 538 208 38.7  2006 1555 1331 85.6 

1995 619 292 47.2  2007 1578 1352 85.7 

1996 720 352 48.9  2008 1658 1318 79.5 

1997 863 451 52.3  2009 1568 1227 78.3 

1998 994 581 58.5  2010 1466 1149 78.4 

1999 1138 827 72.7  2011 1427 1103 77.3 

2000 1298 987 76  2012 1342 1041 77.6 

2001 1362 1119 82.2  2013 1286 1008 78.4 

2002 1404 1228 87.5  2014 1227 971 79.1 

2003 1443 1251 86.7  2015 1191 821 68.9 

2004 1468 1278 87.1  2016 1167 901 77.2 

2005 1546 1323 85.6  2017 1108 867 78.2 

Panel B: Characteristics comparison between full sample and sample with available mapping 

 Full sample from CRSP 
 

Sample with available mapping to 

monthly purchases and redemptions 

Number of actively managed 

domestic equity funds 
2541 

 
2026 (79.7%) 

TNA ($ mn) 1295.7  1467.6 

Age (months) 153.7  160.5 

Number of share-classes 3.1  3.2 

Monthly Net Returns 0.70%  0.66% 

1-factor alpha -0.04%  -0.01% 

4-factor alpha -0.08%  -0.07% 

Morningstar Rating 3.12  3.11 

Expense Ratio (per annum) 1.27%  1.28% 

12b-1 Fees (per annum) 0.23%  0.23% 

Annual Turnover 85.4%  82.6% 
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Table 3: Distribution of fiscal months 

This table shows the frequency distribution of different fiscal months in my sample of actively managed 

domestic equity funds during Jan-1994 to Dec-2017 with data available on monthly purchases and 

redemptions. Column (1) shows the tabulation for number of observations and column (3) shows the 

tabulation of number of funds. Funds can change fiscal year end and can appear in multiple groups for 

counting. 

Fiscal Month Obs. Count % of Obs. Fund Count 

 (1) (2) (3) 

Jan 2,011 0.93 23 

Feb 4,002 1.86 48 

Mar 18,204 8.45 197 

Apr 5,393 2.5 76 

May 7,016 3.26 99 

Jun 17,821 8.27 207 

Jul 13,529 6.28 144 

Aug 14,999 6.96 151 

Sep 28,878 13.41 294 

Oct 47,295 21.96 539 

Nov 12,843 5.96 116 

Dec 43,403 20.15 467 

Missing 2,011 0.93 1200 

    

Total 215,394 100  
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Table 4: Descriptive statistics 
 

This table shows the means of the variables for a sample of actively managed US domestic equity funds 

with data on purchases and redemptions during 1994 to 2017. The sample excludes Institutional and 

Retirement funds. There are 2,026 funds in this sample which are classified into four broad style groups: 

growth (1011 funds), growth & income (414 funds), mid-cap (299 funds) and small-cap (458 funds). Funds 

are categorized into a distribution channel at the monthly level and the number of funds in observations 

categorized as broker-sold, direct-market, and other categories are 936, 796, and 988 respectively. Funds 

with 75% of TNA in one distribution channel across all its share-classes are assigned to that channel for the 

month. Funds with less than 75% assets in any particular channel or with 75% TNA in share-classes that 

could not be classified into any channel are categorized as ‘Other’. Fund level returns, expenses, 12B-1 

fees, turnover are computed from share class level variables using lagged TNA as weights. Fund age is 

computed as the age of the oldest share class. No-Load dummy takes a value of one if all share classes in a 

fund have zero front-end and back-end loads. Fund level Morningstar rating is the maximum rating across 

all share classes in a month. Market excess return is the fund’s return in excess of CRSP VW market index. 

One-, three- and four-factor alphas are intercepts from monthly rolling window time series regressions of 

fund’s excess net returns on market excess return, Fama French three factors, Fama French Carhart four 

factors respectively. These are computed for fund-months with at least 24 observations on past net returns 

in a 36-month window ending prior month. Net flow is computed as (purchases-redemptions)/TNAt-1. 
 

Sample comprises: Broker-Sold funds Direct-Sold funds Other funds All Funds 
 (1) (2) (3) (4) 

TNA ($ mn) 1028.9 1509.1 2017.9 1467.6 

Age (months) 156.1 161.9 164.7 160.5 

Number of share-classes 4.0 1.6 4.4 3.2 

Number of funds in family 11.0 9.7 12.0 10.8 

Family TNA ($ bn) 20.1 34.6 22.7 26.2 

Monthly Net Returns 0.56% 0.70% 0.73% 0.66% 

Net Ret – Market Ret -0.01% 0.01% -0.05% -0.01% 

Monthly Gross Returns 0.68% 0.79% 0.82% 0.76% 

Gross Ret – Market Ret 0.11% 0.10% 0.04% 0.09% 

1-factor alpha -0.01% 0.01% -0.03% -0.01% 

3-factor alpha -0.08% -0.03% -0.06% -0.06% 

4-factor alpha -0.09% -0.04% -0.07% -0.07% 

Morningstar Rating 3.1 3.0 3.3 3.1 

Expense Ratio (per annum) 1.52% 1.14% 1.13% 1.28% 

12b-1 Fees (per annum) 0.42% 0.06% 0.16% 0.23% 

Annual Turnover 88.6% 81.0% 76.8% 82.6% 

No-Load Dummy 0.30 0.03 0.28 0.21 

Return SD (t-12, t-1) 4.89% 4.76% 4.50% 4.74% 

Adj. R2 from 4-factor model 0.90 0.89 0.92 0.90 
     

Net Flow (% of TNA) 0.43 0.33 0.09 0.30 

Inflow (% of TNA) 3.48 3.23 3.14 3.30 

Outflow (% of TNA) 2.98 2.88 3.04 2.96 
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Table 5: Fund flows at the turn of the year vis-à-vis other months 

This table reports results from regressions of various flow proxies on dummy variables for January and 

December months. Net flows, inflows, and outflows are defined as (purchases-redemptions)*100/TNAt-1, 

purchases*100/TNAt-1 and redemptions*100/TNAt-1 respectively. Columns (4) and (5) report the results in 

sub-samples where net flows are positive and negative respectively. The sample comprises actively 

managed US domestic equity funds with data available on monthly purchases and redemptions during the 

period Jan-1994 to Dec-2017 excluding Institutional and Retirement funds. Panel A shows the results using 

all funds in this sample while panel B shows results within the sample that omits funds with fiscal years 

ending in December, January or missing. Standard errors double-clustered by fund and month are reported 

in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

Panel A: Full Sample 

Dependent variable is: Net Flows Inflows Outflows Net Flows+ Net Flows−  
 (1) (2) (3) (4) (5) 
           

January Dummy 0.306 0.658** 0.360** 0.522*** -0.221** 
 

(0.215) (0.292) (0.156) (0.201) (0.092) 

December Dummy -0.160 0.419 0.581*** 0.433** -0.456*** 
 

(0.193) (0.274) (0.150) (0.187) (0.066) 

Constant 0.291*** 3.209*** 2.882*** 3.291*** -1.816*** 
 

(0.060) (0.087) (0.055) (0.068) (0.031) 
      

Observations 239,478 239,478 239,478 99,311 140,167 

Adj. R2 0.000 0.002 0.003 0.001 0.003 
      

Panel B: Sample excluding funds with fiscal months in January, December or missing 

Dependent variable is: Net Flows Inflows Outflows Net Flows+ Net Flows− 
 (1) (2) (3) (4) (5) 
           

January Dummy 0.266 0.609** 0.349** 0.503** -0.222** 
 

(0.206) (0.279) (0.167) (0.209) (0.100) 

December Dummy -0.138 0.471* 0.613*** 0.498*** -0.478*** 
 

(0.183) (0.263) (0.157) (0.182) (0.074) 

Constant 0.062 2.938*** 2.854*** 3.128*** -1.836*** 
 

(0.058) (0.083) (0.056) (0.070) (0.032) 
      

Observations 169,980 169,980 169,980 65,429 104,551 

Adj. R2 0.000 0.002 0.003 0.002 0.003 
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Table 6: Abnormal flows at the turn of the year vis-à-vis other months 

This table reports results from regressions of various abnormal flow proxies on dummy variables for 

January and December months. The explanatory variables used to estimate expected flows and the 

construction of abnormal flow proxies are discussed in Table 1. The performance metric used is the 1-factor 

alpha which is the intercept from time series regression of net excess returns on market excess returns over 

past 36 months ending in (t-1) with at least 24 observations. Columns (1), (2), and (3) show the results with 

abnormal flows computed from net flows, inflows, and outflows as which are defined as (purchases-

redemptions)*100/TNAt-1, purchases*100/TNAt-1 and redemptions*100/TNAt-1 respectively. The sample 

comprises actively managed US domestic equity funds with data available on monthly purchases and 

redemptions during the period Jan-1994 to Dec-2017 excluding Institutional and Retirement funds. Panel 

A shows the results using all funds in this sample while panel B shows results within the sample that omits 

funds with fiscal years ending in December, January or missing. Standard errors double-clustered by fund 

and month are reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% 

levels respectively. 

Panel A: Full Sample 

Dependent variable is: Abnormal Net Flows Abnormal Inflows Abnormal Outflows 
 (1) (2) (3) 

January Dummy 0.225*** 0.134* -0.023 
 

(0.076) (0.079) (0.101) 

December Dummy -0.089 0.208*** 0.381*** 
 

(0.060) (0.062) (0.057) 

Constant -0.011 -0.028 -0.030 
 

(0.023) (0.021) (0.026) 
    

Observations 184,778 184,778 184,778 

Adj. R2 0.000 0.000 0.002 
    

Panel B: Sample excluding funds with fiscal months in January, December or missing 

Dependent variable is: Abnormal Net Flows Abnormal Inflows Abnormal Outflows 
 (1) (2) (3) 

January Dummy 0.179** 0.080 -0.016 
 

(0.075) (0.079) (0.107) 

December Dummy -0.076 0.216*** 0.379*** 
 

(0.066) (0.063) (0.062) 

Constant -0.022 -0.046** -0.038 
 

(0.024) (0.021) (0.027) 
    

Observations 136,579 136,579 136,579 

Adj. R2 0.000 0.000 0.002 
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Table 7: Month-on-month changes in flows by distribution channel 

 
This table shows a regression of month-on-month changes in various flow proxies on a dummy for the 

month of January. Columns (1), (2), and (3) show results with net flows, inflows, and outflows as the 

relevant flow proxies which are defined as (purchases-redemptions)*100/TNAt-1, purchases*100/TNAt-1 

and redemptions*100/TNAt-1 respectively. The changes for each month are computed as the difference of 

a flow proxy for that month from the previous month, i.e. ∆Net Flowst=(Net Flowst – Net Flowst-1). Panel 

A shows the results for funds with direct-market distribution channel and panel B shows results for funds 

with broker-sold distribution channel. The sample comprises actively managed US domestic equity funds 

with data available on monthly purchases and redemptions during the period Jan-1994 to Dec-2017 

excluding Institutional and Retirement funds. Standard errors double-clustered by fund and month are 

reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels 

respectively. 

 

Panel A: Direct-sold funds 

Dependent variable is: ∆Net Flows ∆Inflows ∆Outflows 
 (1) (2) (3) 

January Dummy 0.755*** 0.576*** -0.155 
 

(0.130) (0.146) (0.156) 

Constant -0.120*** -0.088** 0.038 
 

(0.037) (0.040) (0.032) 
    

Observations 87,055 87,055 87,055 

Adj. R2 0.003 0.002 0.000 

    

Panel B: Broker-sold funds 

Dependent variable is: ∆Net Flows ∆Inflows ∆Outflows 
 (1) (2) (3) 

January Dummy 0.108 -0.065 -0.163 
 

(0.128) (0.143) (0.132) 

Constant -0.070* -0.050 0.024 
 

(0.039) (0.041) (0.037) 
    

Observations 85,397 85,397 85,397 

Adj. R2 0.000 0.000 0.000 
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Table 8: Month-on-month changes in abnormal flows by distribution channel 

 
This table shows a regression of month-on-month changes in various abnormal flow proxies on a dummy 

for the month of January. The explanatory variables used to estimate expected flows and the construction 

of abnormal flow proxies are discussed in Table 1. The performance metric used is the 1-factor alpha which 

is the intercept from time series regression of net excess returns on market excess returns over past 36 

months ending in (t-1) with at least 24 observations. Columns (1), (2), and (3) show results with abnormal 

flows computed from net flows, inflows, and outflows which are defined as (purchases-

redemptions)*100/TNAt-1, purchases*100/TNAt-1 and redemptions*100/TNAt-1 respectively. The changes 

for each month are computed as the difference of an abnormal flow proxy for that month from the previous 

month, i.e. ∆Abnormal Net Flowst=(Abnormal Net Flowst – Abnormal Net Flowst-1). Panel A shows the 

results for funds with direct-market distribution channel and panel B shows results for funds with broker-

sold distribution channel. The sample comprises actively managed US domestic equity funds with data 

available on monthly purchases and redemptions during the period Jan-1994 to Dec-2017 excluding 

Institutional and Retirement funds. Standard errors double-clustered by fund and month are reported in the 

parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

 

Panel A: Direct-sold funds 

Dependent variable is: ∆Abnormal Net Flows ∆Abnormal Inflows ∆Abnormal Outflows 
 (1) (2) (3) 

January Dummy 0.615*** 0.280*** -0.429*** 
 (0.118) (0.102) (0.114) 

Constant -0.056* -0.022 0.050* 
 (0.034) (0.033) (0.029) 
    

Observations 60,690 60,690 60,690 

Adj. R2 0.001 0.000 0.001 

    

Panel B: Broker-sold funds 

Dependent variable is: ∆Abnormal Net Flows ∆Abnormal Inflows ∆Abnormal Outflows 
 (1) (2) (3) 

January Dummy 0.015 -0.316*** -0.223** 
 (0.102) (0.109) (0.112) 

Constant 0.005 0.045* 0.022 
 (0.029) (0.025) (0.031) 
    

Observations 69,904 69,904 69,904 

Adj. R2 0.000 0.000 0.000 
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Table 9: Difference-in-difference estimation for changes in flow proxies 

 
This table shows results from a difference-in-difference estimation which compares the dependent variables 

at the turn of the year with other months in broker-sold funds vs. direct-sold funds. The dependent variables 

in Panel A are month-on-month changes in various flow proxies while in panel B they are month-on-month 

changes in various abnormal flow proxies. The explanatory variables used to estimate expected flows and 

the construction of abnormal flow proxies are discussed in Table 1. The performance metric used is the 1-

factor alpha which is the intercept from time series regression of net excess returns on market excess returns 

over past 36 months ending in (t-1) with at least 24 observations. Columns (1)-(2), (3)-(4), and (5)-(6) of 

the table below report results with dependent variables computed from the flow proxies net flows, inflows, 

and outflows which are defined as (purchases-redemptions)*100/TNAt-1, purchases*100/TNAt-1 and 

redemptions*100/TNAt-1 respectively. The changes for each month are computed as the difference of a flow 

proxy for that month from the previous month, i.e. ∆Net Flowst=(Net Flowst – Net Flowst-1), ∆Abnormal 

Net Flowst=(Abnormal Net Flowst – Abnormal Net Flowst-1). Columns  (1), (3), (5) report results without 

using any fixed effects in the estimation while columns (2), (4), (6) report results by including fund and 

month fixed effects. The sample comprises actively managed US domestic equity funds with data available 

on monthly purchases and redemptions during the period Jan-1994 to Dec-2017 excluding Institutional and 

Retirement funds. Standard errors double-clustered by fund and month are reported in the parentheses. ***, 

**, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

 

Panel A: Month-on-month changes in flow proxies 

Dependent variable is: ∆Net Flows ∆Inflows ∆Outflows 

 (1) (2) (3) (4) (5) (6) 

Broker_sold dummy 0.051*** 0.024 0.038** -0.023 -0.014 -0.059 

 (0.015) (0.066) (0.018) (0.093) (0.018) (0.075) 

January dummy 0.755***  0.576***  -0.155  
 (0.130)  (0.146)  (0.156)  

Broker_sold*January dummy -0.647*** -0.625*** -0.641*** -0.638*** -0.008 -0.027 

 (0.119) (0.122) (0.126) (0.125) (0.068) (0.073) 

Constant -0.120*** -0.047 -0.088** -0.012 0.038 0.049 
 (0.037) (0.031) (0.040) (0.046) (0.032) (0.036) 

       

Fund and Month FE No Yes No Yes No Yes 

       

Observations 172,452 172,435 172,452 172,435 172,452 172,435 

Adj. R2 0.001 0.025 0.001 0.030 0.000 0.035 
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Panel B: Month-on-month changes in abnormal flow proxies 

Dependent variable is: ∆Abnormal Net Flows ∆Abnormal Inflows ∆Abnormal Outflows 

 (1) (2) (3) (4) (5) (6) 

Broker_sold dummy 0.062*** -0.002 0.067*** -0.020 -0.029** -0.016 

 (0.013) (0.069) (0.016) (0.090) (0.013) (0.049) 

January dummy 0.615***  0.280***  -0.429***  

 (0.118)  (0.102)  (0.114)  

Broker_sold*January dummy -0.600*** -0.577*** -0.595*** -0.575*** 0.206*** 0.191** 
 (0.129) (0.125) (0.116) (0.111) (0.077) (0.078) 

Constant -0.056* 0.027 -0.022 0.046 0.050* 0.009 
 (0.034) (0.035) (0.033) (0.047) (0.029) (0.024) 

       

Fund and Month FE No Yes No Yes No Yes 

       

Observations 130,594 130,585 130,594 130,585 130,594 130,585 

Adj. R2 0.001 0.015 0.000 0.014 0.001 0.022 
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Table 10: Flow-performance sensitivity at the turn of the year vis-à-vis other months 

This table reports results from a comparison of flow-performance sensitivity in January, December with other months. Panel A, B, and C report 

results using net flows, inflows, and outflows as the dependent variables respectively which are defined as (purchases-redemptions)*100/TNAt-1, 

purchases*100/TNAt-1, redemptions*100/TNAt-1. The performance metric used is the 1-factor alpha which is the intercept from time series regression 

of net excess returns on market excess returns over past 36 months ending in (t-1) with at least 24 observations. This is converted to percentiles 

within style groups each month and then decomposed into three variables LOW, MID and HIGH to estimate a piece-wise linear specification. These 

are defined as: LOW=min(Rank, 20), MID=min(60, Rank-LOW), HIGH=Rank-LOW-MID, where Rank is the percentile rank ranging from 1 to 

100. The sample comprises actively managed US domestic equity funds with data available on monthly purchases and redemptions during the period 

Jan-1994 to Dec-2017 excluding Institutional and Retirement funds. The sample comprises actively managed US domestic equity funds with data 

available on monthly purchases and redemptions during the period Jan-1994 to Dec-2017 excluding Institutional and Retirement funds. Standard 

errors clustered by fund are reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

Performance metric is: 1-factor alpha 

Dependent variable is: Panel A: Net Flow  Panel B: Inflow  Panel C: Outflow 
 All Months Interactions  All Months Interactions  All Months Interactions 
 (1) (2)  (3) (4)  (5) (6) 

LOW Perf 0.062*** 0.059***  0.000 0.001  -0.060*** -0.057*** 
 (0.005) (0.005)  (0.008) (0.008)  (0.008) (0.008) 

MID Perf 0.023*** 0.023***  0.015*** 0.015***  -0.009*** -0.009*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

HIGH Perf 0.113*** 0.109***  0.134*** 0.130***  0.018*** 0.018*** 
 (0.007) (0.007)  (0.009) (0.009)  (0.005) (0.005) 

LOW Perf*December dummy  0.036***   0.001   -0.034*** 
  (0.005)   (0.008)   (0.005) 

MID Perf*December dummy  0.004   0.002   -0.002 
  (0.002)   (0.002)   (0.002) 

HIGH Perf*December dummy  0.011   0.005   -0.007 
  (0.013)   (0.014)   (0.008) 

LOW Perf*January dummy  0.004   -0.007   -0.005 
  (0.008)   (0.010)   (0.009) 

MID Perf*January dummy  0.007***   0.007***   -0.001 
  (0.002)   (0.002)   (0.002) 
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HIGH Perf*January dummy  0.039**   0.043**   0.006 
  (0.018)   (0.018)   (0.009) 

December dummy  -1.010***   0.280   1.284*** 

  (0.161)   (0.294)   (0.228) 

January dummy  -0.138   0.397   0.472* 
  (0.217)   (0.337)   (0.271) 

         

Controls No No  No No  No No 

Observations 211,170 211,170  211,170 211,170  211,170 211,170 

Adj. R2 0.090 0.092  0.047 0.050  0.014 0.018 
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Table 11: Flow sensitivity to fund characteristics at the turn of the year 

This table reports results from a comparison of flow sensitivity to various fund characteristics such as performance, expenses, 12b-1 fees etc. in 

January, December with other months through interaction terms. Panel A, B, and C report results using net flows, inflows, and outflows as the 

dependent variables respectively which are defined as (purchases-redemptions)*100/TNAt-1, purchases*100/TNAt-1, redemptions*100/TNAt-1. The 

performance metric used is the 1-factor alpha which is the intercept from time series regression of net excess returns on market excess returns over 

past 36 months ending in (t-1) with at least 24 observations. This is converted to percentiles within style groups each month and then decomposed 

into three variables LOW, MID and HIGH to estimate a piece-wise linear specification. These are defined as: LOW=min(Rank, 20), MID=min(60, 

Rank-LOW), HIGH=Rank-LOW-MID, where Rank is the percentile rank ranging from 1 to 100. The sample comprises actively managed US 

domestic equity funds with data available on monthly purchases and redemptions during the period Jan-1994 to Dec-2017 excluding Institutional 

and Retirement funds. The control variables used on panels A, B, and C depend on the flow proxy used as the dependent variable and are listed in 

Table 1. Standard errors clustered by fund are reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels 

respectively. 

Performance metric is: 1-factor alpha 

Dependent variable is: Panel A: Net Flow  Panel B: Inflow  Panel C: Outflow 
 All Months Interactions  All Months Interactions  All Months Interactions 
 (1) (2)  (3) (4)  (5) (6) 

LOW Perf 0.029*** 0.026***  0.016*** 0.004  -0.028*** -0.025*** 
 (0.003) (0.003)  (0.002) (0.003)  (0.003) (0.003) 

MID Perf 0.013*** 0.013***  0.011*** 0.008***  -0.008*** -0.006*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

HIGH Perf 0.058*** 0.056***  0.057*** 0.051***  -0.021*** -0.006*** 
 (0.004) (0.004)  (0.004) (0.004)  (0.002) (0.002) 

Expense Ratio (t-1) -13.531** -15.122***  -11.907** -9.216  9.503* 8.697 

 (5.510) (5.431)  (5.802) (6.455)  (4.942) (5.569) 

12b-1 Fees (t-1) 14.264* 16.974**  5.644 2.140  -23.630*** -21.419** 

 (8.110) (7.830)  (8.954) (10.629)  (8.280) (10.078) 

LOW Perf*December dummy  0.037***  
 0.012  

 -0.028*** 
  (0.004)  

 (0.008)  
 (0.007) 

MID Perf*December dummy  0.003  
 0.001  

 -0.002* 
  (0.002)  

 (0.002)  
 (0.001) 

HIGH Perf*December dummy  0.006  
 0.003  

 -0.006 
  (0.009)  

 (0.009)  
 (0.004) 
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Expense Ratio (t-1)*December dummy  7.092   -20.201   -26.238** 

  (15.351)   (15.496)   (11.877) 

12b-1 Fees (t-1)*December dummy  49.953***   24.904   -27.482* 

  (13.691)   (20.246)   (15.856) 

LOW Perf*January dummy  -0.004  
 -0.006  

 -0.001 
  (0.008)  

 (0.007)  
 (0.007) 

MID Perf*January dummy  0.004***  
 0.004**  

 -0.001 
  (0.001)  

 (0.002)  
 (0.001) 

HIGH Perf*January dummy  0.029***  
 0.029***  

 0.003 
  (0.011)  

 (0.010)  
 (0.006) 

Expense Ratio (t-1)*January dummy  10.849   24.756   7.440 

  (15.746)   (19.452)   (12.737) 

12b-1 Fees (t-1)*January dummy  -81.920***   -106.694***   -17.364 

  (21.018)   (23.561)   (19.107) 

December dummy  -1.280**   0.365   1.804*** 

  (0.589)   (0.529)   (0.397) 

January dummy  0.330   0.726   0.371 
  (0.412)  

 (0.579)  
 (0.557) 

         

Controls Yes Yes  Yes Yes  Yes Yes 

Controls*December dummy No Yes  No Yes  No Yes 

Controls*January dummy No Yes  No Yes  No Yes 

         

Observations 211,170 211,170  211,170 211,170  211,170 211,170 

Adj. R2 0.090 0.092  0.047 0.050  0.014 0.018 
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Table 12: Flow performance sensitivity at the turn of the year by market state 

This table reports results from a comparison of flows at the turn of the year in up-market vs. down-market 

years through interaction terms. If the compounded return on CRSP value-weighted market portfolio from 

January to December of a calendar year is negative, then the months Feb-Dec of that calendar year and the 

month of January in the following calendar year are coded with a value one for the ‘down-market dummy’ 

and zero otherwise. The 10 calendar years with negative market returns in my sample are 1994, 2000, 2001, 

2002, 2005, 2007, 2008, 2011, 2014, 2015. Panel A shows the results with normal flow proxies while panel 

B reports results with various abnormal flow proxies. The explanatory variables used to estimate expected 

flows and the construction of abnormal flow proxies are discussed in Table 1. The performance metric used 

is the 1-factor alpha which is the intercept from time series regression of net excess returns on market excess 

returns over past 36 months ending in (t-1) with at least 24 observations. Columns (1), (2), and (3) of the 

table below report results with dependent variables computed from the flow proxies net flows, inflows, and 

outflows which are defined as (purchases-redemptions)*100/TNAt-1, purchases*100/TNAt-1 and 

redemptions*100/TNAt-1 respectively. The sample comprises actively managed US domestic equity funds 

with data available on monthly purchases and redemptions during the period Jan-1994 to Dec-2017 

excluding Institutional and Retirement funds. Standard errors double-clustered by fund and month are 

reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels 

respectively. 

 

Panel A: Normal Flow metrics 

  Net Flows Inflows Outflows 
 (1) (2) (3) 

January dummy 0.531** 0.800** 0.270 

 (0.240) (0.394) (0.215) 

December dummy -0.113 0.352 0.479** 
 

(0.241) (0.360) (0.196) 

Down market dummy -0.006 0.122 0.106 

 (0.116) (0.160) (0.090) 

January Dummy*Down market dummy -0.490 -0.309 0.194 

 (0.436) (0.590) (0.294) 

December Dummy*Down market dummy -0.105 0.151 0.226 

 (0.394) (0.545) (0.284) 

Constant 0.294*** 3.154*** 2.834*** 
 

(0.078) (0.103) (0.058) 
    

Observations 239,478 239,478 239,478 

Adj. R2 0.001 0.002 0.003 
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Panel B: Abnormal flow metrics 

  
Abnormal  

Net Flows 

Abnormal 

Inflows 

Abnormal  

Outflows 
 (1) (2) (3) 

January dummy 0.254*** 0.227*** 0.011 

 (0.096) (0.079) (0.116) 

December dummy -0.082 0.187*** 0.374*** 

 (0.068) (0.062) (0.075) 

Down market dummy 0.019 0.025 0.009 
 

(0.044) (0.037) (0.048) 

January Dummy*Down market dummy -0.064 -0.203 -0.073 

 (0.152) (0.158) (0.206) 

December Dummy*Down market dummy -0.017 0.044 0.017 

 (0.123) (0.127) (0.114) 

Constant -0.019 -0.040* -0.034 
 

(0.026) (0.024) (0.034) 
    

Observations 184,778 184,778 184,778 

Adj. R2 0.001 0.001 0.002 
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Table 13: Turn-of-the-year seasonality in first half of the sample 

This table replicates the main results of my paper in the first half sub-sample, i.e. 1994 to 2005. Columns (1), (2), and (3) of panel A replicate the 

result in Table 5 on turn-of-the-year seasonality using net flows, inflows, and outflows  as dependent variables which are defined as (purchases-

redemptions)*100/TNAt-1, purchases*100/TNAt-1 and redemptions*100/TNAt-1 respectively. Columns (4)-(6) of panel A replicate the result in Table 

6 using various abnormal flow proxies as the dependent variables. The explanatory variables used to estimate expected flows and the construction 

of abnormal flow proxies are discussed in Table 1. The performance metric used is the 1-factor alpha which is the intercept from time series regression 

of net excess returns on market excess returns over past 36 months ending in (t-1) with at least 24 observations. 

Panel B replicates the results in Table 9 for test of timing gaming with month-on-month changes in various flow proxies as the dependent variables. 

Columns (1)-(3) of panel B use changes in flow proxies and columns (4)-(6) use changes in abnormal flow proxies as the dependent variables. The 

changes for each month are computed as the difference of a flow proxy for that month from the previous month, i.e. ∆Net Flowst=(Net Flowst – Net 

Flowst-1), ∆Abnormal Net Flowst=(Abnormal Net Flowst – Abnormal Net Flowst-1). The sample comprises actively managed US domestic equity 

funds with data available on monthly purchases and redemptions during the period Jan-1994 to Dec-2005 excluding Institutional and Retirement 

funds. Standard errors double-clustered by fund and month are reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 

10% levels respectively. 

Panel A: Test of turn of the year seasonality 

 Flow proxies Abnormal flow proxies 

Dependent variable is: Net Flows Inflows Outflows Abn. Net Flows Abn. Inflows Abn. Outflows 

  (1) (2) (3) (4) (5) (6) 

January Dummy 0.442 0.953** 0.527** 0.274** 0.258** 0.043 
 (0.271) (0.412) (0.256) (0.120) (0.120) (0.080) 

December Dummy -0.064 0.412 0.479* -0.160 0.159 0.391*** 
 (0.209) (0.384) (0.257) (0.105) (0.113) (0.075) 

Constant 1.011*** 4.310*** 3.212*** 0.058 0.024 -0.051 
 (0.090) (0.142) (0.102) (0.043) (0.041) (0.040) 
       

Observations 100,488 100,488 100,488 74,884 74,884 74,884 

Adj. R2 0.001 0.002 0.002 0.001 0.001 0.002 
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Panel B: Test of timing gaming using month-on-month changes 
 Flow proxies Abnormal flow proxies 

Dependent variable is: ∆Net Flows ∆Inflows ∆Outflows ∆Abn. Net Flows ∆Abn. Inflows ∆Abn. Outflows 

  (1) (2) (3) (4) (5) (6) 

Broker_sold dummy 0.047* 0.047 0.002 0.070*** 0.081*** -0.026 
 (0.028) (0.029) (0.026) (0.023) (0.030) (0.022) 

January dummy 0.966*** 0.866*** -0.074 0.862*** 0.524*** -0.476*** 
 (0.210) (0.201) (0.103) (0.163) (0.161) (0.092) 

Broker_sold*January dummy -0.922*** -0.987*** -0.063 -0.799*** -0.820*** 0.239** 
 (0.188) (0.212) (0.086) (0.176) (0.176) (0.114) 

Constant -0.157** -0.143* 0.022 -0.080 -0.049 0.055 
 (0.071) (0.076) (0.050) (0.064) (0.064) (0.043) 
       

Observations 85,066 85,066 85,066 63,944 63,944 63,944 

Adj. R2 0.002 0.002 0.000 0.001 0.001 0.001 
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Table 14: Turn-of-the-year seasonality in second half of the sample 

This table replicates the main results of my paper in the second half sub-sample, i.e. 2006 to 2017. Columns (1), (2), and (3) of panel A replicate 

the result in Table 5 on turn-of-the-year seasonality using net flows, inflows, and outflows  as dependent variables which are defined as (purchases-

redemptions)*100/TNAt-1, purchases*100/TNAt-1 and redemptions*100/TNAt-1 respectively. Columns (4)-(6) of panel A replicate the result in Table 

6 using various abnormal flow proxies as the dependent variables. The explanatory variables used to estimate expected flows and the construction 

of abnormal flow proxies are discussed in Table 1. The performance metric used is the 1-factor alpha which is the intercept from time series regression 

of net excess returns on market excess returns over past 36 months ending in (t-1) with at least 24 observations.  

Panel B replicates the results in Table 9 for test of timing gaming with month-on-month changes in various flow proxies as the dependent variables. 

Columns (1)-(3) of panel B use changes in flow proxies and columns (4)-(6) use changes in abnormal flow proxies as the dependent variables. The 

changes for each month are computed as the difference of a flow proxy for that month from the previous month, i.e. ∆Net Flowst=(Net Flowst – Net 

Flowst-1), ∆Abnormal Net Flowst=(Abnormal Net Flowst – Abnormal Net Flowst-1). The sample comprises actively managed US domestic equity 

funds with data available on monthly purchases and redemptions during the period Jan-2006 to Dec-2017 excluding Institutional and Retirement 

funds. Standard errors double-clustered by fund and month are reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 

10% levels respectively. 

Panel A: Test of turn of the year seasonality 

 Flow proxies Abnormal flow proxies 

Dependent variable is: Net Flows Inflows Outflows Abn. Net Flows Abn. Inflows Abn. Outflows 

  (1) (2) (3) (4) (5) (6) 

January Dummy 0.262 0.535*** 0.271* 0.199** 0.060 -0.065 
 (0.207) (0.167) (0.152) (0.096) (0.100) (0.156) 

December Dummy -0.308** 0.320* 0.634*** -0.041 0.240*** 0.376*** 
 (0.137) (0.163) (0.165) (0.070) (0.066) (0.083) 

Constant -0.228*** 2.416*** 2.645*** -0.057** -0.064*** -0.016 
 (0.057) (0.059) (0.049) (0.025) (0.020) (0.034) 
 

      
Observations 138,990 138,990 138,990 109,894 109,894 109,894 

Adj. R2 0.001 0.002 0.003 0.000 0.001 0.002 
       

  



160 
 

Panel B: Test of timing gaming using month-on-month changes 
 Flow proxies Abnormal flow proxies 

Dependent variable is: ∆Net Flows ∆Inflows ∆Outflows ∆Abn. Net Flows ∆Abn. Inflows 
∆Abn. 

Outflows 

  (1) (2) (3) (4) (5) (6) 

Broker_sold dummy 0.067*** 0.045** -0.027 0.056*** 0.054*** -0.031** 
 (0.014) (0.020) (0.020) (0.015) (0.015) (0.015) 

January dummy 0.595*** 0.355* -0.217 0.409*** 0.074 -0.389** 
 (0.155) (0.197) (0.262) (0.146) (0.105) (0.193) 

Broker_sold*January dummy -0.428*** -0.371*** 0.029 -0.437** -0.409*** 0.179* 
 (0.132) (0.088) (0.093) (0.172) (0.133) (0.102) 

Constant -0.090*** -0.042 0.051 -0.034 0.003 0.047 
 (0.032) (0.036) (0.042) (0.029) (0.023) (0.038) 
 

      
Observations 87,386 87,386 87,386 66,650 66,650 66,650 

Adj. R2 0.001 0.000 0.000 0.000 0.000 0.001 
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Table 15: Turn-of-the-year seasonality using net flows from CRSP MF database 

This table replicates the main results of my paper using net flows computed from monthly fund size and returns from the CRSP mutual funds 

database. Net flows at time t are computed as (TNAt - TNAt-1(1+rt))*100/TNAt-1 for each fund and then winsorized at the 1% level to remove the 

effect of outliers. Panel A replicates results in Tables 5 and 6 on turn-of-the-year seasonality using net flows and abnormal net flows. The explanatory 

variables used to estimate expected flows and the construction of abnormal flow proxies are discussed in Table 1. The performance metric used is 

the 1-factor alpha which is the intercept from time series regression of net excess returns on market excess returns over past 36 months ending in (t-

1) with at least 24 observations.  

Panel B replicates the results in Table 9 for test of timing gaming with month-on-month changes in net flows and changes in abnormal net flows as 

the dependent variables. The changes for each month are computed as the difference of a flow proxy for that month from the previous month, i.e. 

∆Net Flowst=(Net Flowst – Net Flowst-1), ∆Abnormal Net Flowst=(Abnormal Net Flowst – Abnormal Net Flowst-1). The sample contains 2541 funds 

including those from CRSP MF database that do not have a mapping with Morningstar and N-SAR files excluding Institutional and Retirement 

funds. Of these, 1174 funds are in the broker-sold channel and 1053 funds are in the direct-sold channel. In both panels A and B, the sample period 

is 1994-2017 for results in columns (1), (2), 1994-2005 for columns (3), (4), and 2006-2017 for columns (5), (6). Standard errors double-clustered 

by fund and month are reported in the parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

 

Panel A: Test of turn of the year seasonality 

 Full Sample First-half sub-sample Second-half sub-sample 

Dependent variable is: Net Flows Abn. Net Flows Net Flow Abn. Net Flows Net Flow Abn. Net Flows 

  (1) (2) (3) (4) (5) (6) 

January Dummy 0.302 0.082 0.475* 0.080 0.203 0.082 
 (0.218) (0.068) (0.244) (0.099) (0.201) (0.092) 

December Dummy -0.489*** -0.176** -0.486*** -0.220 -0.519*** -0.139** 
 (0.180) (0.070) (0.145) (0.133) (0.159) (0.065) 

Constant 0.317*** 0.008 1.066*** -0.029 -0.265*** 0.036 
 (0.059) (0.023) (0.076) (0.037) (0.054) (0.030) 
       

Observations 328,036 242,264 143,406 104,670 184,630 137,594 

Adj. R2 0.001 0.000 0.001 0.000 0.002 0.000 
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Panel B: Test of timing gaming using month-on-month changes 

 Full sample First-half sub-sample Second-half sub-sample 

Dependent variable is: ∆Net Flows ∆Abn. Net Flows ∆Net Flows ∆Abn. Net Flows ∆Net Flows ∆Abn. Net Flows 

  (1) (2) (3) (4) (5) (6) 

Broker_sold dummy 0.058*** 0.071*** 0.059* 0.074*** 0.076*** 0.068*** 
 (0.020) (0.017) (0.033) (0.028) (0.023) (0.018) 

January dummy 1.104*** 0.585*** 1.500*** 0.779*** 0.758*** 0.392*** 
 (0.152) (0.091) (0.249) (0.135) (0.148) (0.102) 

Broker_sold*January dummy -0.662*** -0.597*** -0.986*** -0.811*** -0.404*** -0.386*** 
 (0.128) (0.107) (0.182) (0.164) (0.136) (0.106) 

Constant -0.163*** -0.052*** -0.224*** -0.072*** -0.104*** -0.031 
 (0.034) (0.017) (0.061) (0.026) (0.033) (0.020) 
       

Observations 239,297 175,253 124,696 91,771 114,601 83,482 

Adj. R2 0.003 0.001 0.004 0.001 0.002 0.000 
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Table 16: Flow sensitivity at the turn of the year by market state with alternative 

classification of down-market periods 

This table replicates results from Table 12 which compares flows at the turn of the year in up-market vs. 

down-market years using an alternative classification scheme for down-market periods. The sample of 24 

years from 1994 to 2017 are divided into terciles based on the compounded return on CRSP value-weighted 

market portfolio from January to December.  The bottom-most 8 and the top-most 8 years are classified as 

down-market and up-market years respectively and only these sixteen years are included in the regressions. 

When assigning these dummies, the months Feb-Dec of a calendar year and the January of the following 

calendar year are assigned a value based on the market return from Jan to Dec of the current calendar year. 

In my sample, the bottom 8 years are 1994, 2000, 2001, 2002, 2007, 2008, 2011, 2015 while the top 8 are 

1995, 1996, 1997, 1998, 1999, 2003, 2009, 2013. Panel A shows the results with normal flow proxies while 

panel B reports results with various abnormal flow proxies. The explanatory variables used to estimate 

expected flows and the construction of abnormal flow proxies are discussed in Table 1. The performance 

metric used is the 1-factor alpha which is the intercept from time series regression of net excess returns on 

market excess returns over past 36 months ending in (t-1) with at least 24 observations. Columns (1), (2), 

and (3) of the table below report results with dependent variables computed from the flow proxies net flows, 

inflows, and outflows which are defined as (purchases-redemptions)*100/TNAt-1, purchases*100/TNAt-1 

and redemptions*100/TNAt-1 respectively. The sample comprises actively managed US domestic equity 

funds with data available on monthly purchases and redemptions and the sample period includes sixteen 

years during Jan-1994 to Dec-2017 with extreme market returns. The sample excludes Institutional and 

Retirement funds. Standard errors double-clustered by fund and month are reported in the parentheses. ***, 

**, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

 

Panel A: Normal Flow metrics 

  Net Flows Inflows Outflows 
 (1) (2) (3) 

January dummy 0.260 0.563 0.336 

 (0.274) (0.569) (0.322) 

December dummy -0.172 0.257 0.472 
 

(0.333) (0.636) (0.356) 

Down market dummy -0.487*** -0.473** 0.021 

 (0.157) (0.223) (0.125) 

January Dummy*Down market dummy -0.079 0.174 0.237 

 (0.588) (0.842) (0.410) 

December Dummy*Down market dummy -0.090 0.245 0.272 

 (0.498) (0.803) (0.403) 

Constant 0.803*** 3.938*** 3.074*** 
 

(0.117) (0.170) (0.101) 
    

Observations 146,690 146,690 146,690 

Adj. R2 0.003 0.003 0.003 
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Panel B: Abnormal flow metrics 

  
Abnormal  

Net Flows 

Abnormal 

Inflows 

Abnormal  

Outflows 
 (1) (2) (3) 

January dummy 0.217 0.296*** 0.185 

 (0.153) (0.112) (0.170) 

December dummy -0.221*** 0.122 0.476*** 

 (0.057) (0.094) (0.118) 

Down market dummy -0.105* -0.081 0.087 
 

(0.059) (0.053) (0.068) 

January Dummy*Down market dummy 0.025 -0.304 -0.309 

 (0.238) (0.235) (0.314) 

December Dummy*Down market dummy 0.143 0.146 -0.089 

 (0.139) (0.162) (0.155) 

Constant 0.112*** 0.046 -0.128** 
 

(0.039) (0.040) (0.053) 
    

Observations 111,740 111,740 111,740 

Adj. R2 0.001 0.001 0.003 
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Table 17: Summary statistics 

This table presents the summary statistics for the sample of actively managed domestic equity funds used 

in this study. The number of fund-month observations is 404,042. We compute the respective statistics 

across funds each month and report the averages over the entire sample period. The sample period is from 

January, 1990 to June, 2017. 

 Mean Std. Dev. Median 

Number of funds each month 1224   

Flow (%) 0.25 10.8 -0.42 

TNA ($ mn) 1120.4 4507.4 223.6 

Age (months) 376.8 306.6 299.2 

Expense Ratio (%) 1.22 0.45 1.19 

Load Dummy 0.49 0.50 0 

Return Volatility (t-1,t-12) 4.7 2.3 4.2 
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Table 18: Factor model R2 

This table fits the following regression: 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝜂,𝜏 +∑𝛽𝑘,𝑝 𝐹𝑘,𝜏

𝜂

𝑘=1

+ 𝑒𝑝,𝜂,𝜏,          

where 𝑟𝑝,𝜏, 𝑟𝑓,𝜏 and 𝐹𝑘,𝜏  are fund return, risk-free rate and realization of factor 𝑘 in month 𝜏, respectively. 

For each fund 𝑝 and month 𝑡, the regression is fitted for various 𝜂-factor models from 𝜏 = 𝑡 − 60 to 𝑡 − 1 

using OLS. With these estimates, we compute the abnormal return for fund 𝑝 in month 𝑡 under each 𝜂-

factor model as �̂�𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 − ∑ �̂�𝑘,𝑝 𝐹𝑘,𝑡
𝜂
𝑘=1 .  Column (1) reports the cross-sectional averages of time-

series means of adjusted R2 from the OLS regressions. Column (2) reports the cross-sectional averages of 

time-series means of monthly adjusted R2 computed using the formula 1 −

[𝑉𝑎𝑟(�̂�𝑝,𝜂) × (𝑇𝑝 − 1) 𝑉𝑎𝑟(𝑟𝑝) × (𝑇𝑝 − 𝜂 − 1)⁄ ] where 𝑇𝑝 is the number of months the fund is in the 

sample. The sample period is January, 1990 to June, 2017. 

 Adj. R2 

 From OLS 
 
1 − (

𝑉𝑎𝑟(�̂�𝑝,𝜂) × (𝑇 − 1)

𝑉𝑎𝑟(𝑟𝑝) × (𝑇 − 𝜂 − 1)
⁄ ) 

 (1)  (2) 

Estimated factor model (𝜂):    

Market Adj. Return   0.761 

Market Model  0.820  0.829 

FF3  0.892  0.883 

FFC4  0.901  0.883 

FFC4 + 3 IND  0.910  0.884 
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Table 19: Measurement Errors in betas 

This table reports the slope coefficients from the following cross-sectional regressions: 

�̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝑎𝑡 + 𝑏𝑡 × �̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡

+ 𝑒𝑝,𝑡 , 

where for each fund 𝑝, �̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 and �̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡

 are estimated using time-series regressions with data from 𝑡 to 

𝑡 + 11 and 𝑡 − 1 to 𝑡 − 60, respectively. Backward-looking and forward-looking betas are estimated 

monthly using multiple regressions of fund returns on the seven factors. The above regression is then fitted 

each month for betas with respect to each factor and the table reports time-series averages of the slope 

coefficients. Standard errors from the second stage of Fama-MacBeth regressions are adjusted for serial 

correlation using Newey-West correction with lag length of 11 months. Sample period for these regressions 

is Jan-1990 to Jul-2016. ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels 

respectively. 

Betas Average 𝑏𝑡 Std. Err. 

Market 0.656*** 0.06 

SMB 0.894*** 0.02 

HML 0.720*** 0.05 

UMD 0.523*** 0.06 

IND1 0.403*** 0.07 

IND2 0.315*** 0.05 

IND3 0.270*** 0.04 
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Table 20: Variance of empiricist alpha estimates 

This table reports variance of empiricist’s alpha estimates from different 𝜂-factor models. We use �̂� 

estimates from the time series regression (2.19) to compute �̂�𝜂
𝐸 each month and its cross-sectional variance. 

We average the monthly estimates over time and report the value multiplied by 106. The sample period is 

January, 1990 to June, 2017. 

 
𝜎
�̂�𝜂
𝐸
2  

Alpha Estimated Using (𝜂):  

Mkt adj. ret. 650.5 

Market model 544.4 

FF3 370.9 

FFC4 357.7 

FFC4+3 IND 363.2 
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Table 21: Summary Statistics on Factors and Factor Betas 

Panel A of this table reports the sample mean and standard deviations of Market, SMB, HML and UMD 

factors. Panel B presents the covariance matrix of “true” factor betas. We estimate the true beta covariance 

matrix from OLS beta covariance matrix using Eq. (2.25). IND1, IND2 and IND3 are industry factors that 

are the first three principal components of regression residuals of Fama-French 17 equal weighted industry 

portfolios regressed on FFC4 factors. The table reports the average of monthly estimates. The sample period 

is January, 1990 to June, 2017. 

Panel A: Factor Statistics 

Factor Mean (%) Std Dev (%) 

𝑚𝑘𝑡𝑟𝑓 0.64 4.26 

𝑆𝑀𝐵 0.15 3.22 

𝐻𝑀𝐿 0.21 3.01 

𝑈𝑀𝐷 0.51 4.82 

 

Panel B: Covariance matrix of true betas 

 𝛽𝑚𝑘𝑡𝑟𝑓 𝛽𝑠𝑚𝑏 𝛽ℎ𝑚𝑙 𝛽𝑢𝑚𝑑 𝛽𝑖𝑛𝑑1 𝛽𝑖𝑛𝑑2 𝛽𝑖𝑛𝑑3 

𝛽𝑚𝑘𝑡𝑟𝑓 0.023       

𝛽𝑠𝑚𝑏 0.016 0.114      

𝛽ℎ𝑚𝑙 -0.018 -0.003 0.080     

𝛽𝑢𝑚𝑑 0.006 0.008 -0.020 0.017    

𝛽𝑖𝑛𝑑1 0.001 0.001 -0.002 0.001 0.002   

𝛽𝑖𝑛𝑑2 0.000 0.001 0.003 0.000 0.000 0.002  

𝛽𝑖𝑛𝑑3 -0.001 0.000 0.000 0.000 0.000 0.000 0.003 
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Table 22: Components of alpha estimation error in the mutual fund sample  

This table presents the components of cross-sectional variance of multifactor model alpha estimates, decomposed as in Eq. (2.24) for various 

combinations of hypothesized true asset pricing models (K=0, 1, 3, 4) and multifactor models. Alphas are estimated as: Mkt adj. return is fund return 

minus market returns and the other alphas are estimated using the indicated models. The hypothesized true asset pricing models are No-beta risk 

premium model (NBRP) where none of the common factors are priced factors, CAPM, FF3 and FFC4. The column 𝜎 �̂�𝐽
2 presents the cross-sectional 

variance of alphas estimated under the assumption that the true asset pricing model and true betas are known. The other columns present the variance 

due to the following: (i) APM misspecification: unpriced factors used to compute alphas; (ii) “Omitted factors”: common factors excluded from the 

computation of alphas, (iii) “Covariance”: Covariance of betas on excluded unpriced factors and betas of included priced factors and (iv) “Beta 

measurement error”: factor beta estimation errors. The sample includes actively managed equity funds in the Jan-1990 to Jun-2017 sample period.  

  𝜎 �̂�𝐽
2  

APM Misspecification  

Error Variance 

Omitted Factors  

Variance 
Covariance 

Beta measurement  

error Variance 

Variance in addition  

to 𝜎 �̂�𝐽
2  

  (1) (2) (3) (4) (5) (6)  (7) 

True asset pricing  

Model (𝐾): 
Alpha Estimated  

Using (𝜂): 
     (2)+(3)+(4)  (5)+(6) 

NBRP 

Mkt adj. ret. 309.7 0 340.9 0 0 340.9  340.9 

Market model 309.7 1.94 222.5 -0.76 11.0 223.7  234.7 

FF3 309.7 1.44 38.4 0.00 21.4 39.9  61.2 

FFC4 309.7 1.85 15.7 0.07 30.4 17.6  48.0 

FFC4+3 IND 309.7 1.94 0 0 51.6 1.9  53.6 

          

CAPM 

Mkt adj. ret. 310.8 1.94 340.9 -3.12 0 339.7  339.7 

Market model 310.8 0 222.5 0 11.0 222.5  233.6 

FF3 310.8 0.64 38.4 -0.38 21.4 38.7  60.1 

FFC4 310.8 0.77 15.7 -0.03 30.4 16.4  46.8 

FFC4+3 IND 310.8 0.76 0 0 51.6 0.8  52.4 

          

FF3 

Mkt adj. ret. 311.1 1.44 340.9 -2.87 0 339.4  339.4 

Market model 311.1 0.64 222.5 -0.90 11.0 222.3  233.3 

FF3 311.1 0 38.4 0 21.4 38.4  59.8 

FFC4 311.1 0.44 15.7 0.04 30.4 16.2  46.6 
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FFC4+3 IND 311.1 0.50 0 0 51.6 0.5  52.1 

          

FFC4 

Mkt adj. ret. 311.6 1.85 340.9 -3.77 0 338.9  338.9 

Market model 311.6 0.77 222.5 -1.50 11.0 221.8  232.8 

FF3 311.6 0.44 38.4 -0.92 21.4 38.0  59.3 

FFC4 311.6 0 15.7 0 30.4 15.7  46.1 

FFC4+3 IND 311.6 0.02 0 0 51.6 0.0  51.7 
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Table 23: Simulation Parameters 

We generate net returns each month using the following seven-factor model: 

𝑟𝑝,𝑡 = Φ𝑝 − 𝑐𝑡−1(𝑞𝑡−1) + 𝐸
𝑚𝑜𝑑𝑒𝑙(𝑟𝑝,𝑡) + 𝛽𝑝,𝑚(𝑚𝑘𝑡 − 𝑟𝑓)𝑡̃ +𝛽𝑝,𝑠𝑚𝑏𝑆𝑀𝐵�̃� + 𝛽𝑝,ℎ𝑚𝑙𝐻𝑀𝐿𝑡̃

+𝛽𝑝,𝑢𝑚𝑑𝑈𝑀𝐷𝑡̃ +𝛽𝑝,𝑖𝑛𝑑1𝐼𝑁𝐷1𝑡̃ +𝛽𝑝,𝑖𝑛𝑑2𝐼𝑁𝐷2𝑡̃ +𝛽𝑝,𝑖𝑛𝑑3𝐼𝑁𝐷3𝑡̃ +𝜖𝑝,𝑡 

where Φ𝑝 is the fund manager skill and 𝑐𝑡−1(𝑞𝑡−1) is the cost per unit size. The variables under 𝑡𝑖𝑙𝑑𝑒 are 

demeaned realizations of the seven common factors and 𝛽s are the corresponding factor sensitivities. We 

use the factor realizations in the data over January 1990 to June 2017 sample period in our simulations. We 

draw seven factor betas for each fund from a multivariate Normal distribution as 

𝛽7×1~𝑀𝑉𝑁([1,0,0,0,0,0,0]
′, Ω) with covariance matrix Ω reported in panel B of Table 21. We generate 

monthly flow according to Eq. (2.12). We draw all random variables from normal distributions with means 

and variances shown below. 

Random Variable Mean Variance 

Φ𝑝 𝜙0 =0.15% 1/𝜈 = (0.2%)2 

𝜖 0 1/𝜗�̂�,𝐽 = (1.75%)2 
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Table 24: Components of alpha estimation error in the simulated sample 

This table presents the components of cross-sectional variance of multifactor model alpha estimates, decomposed as in Eq. (2.24) for various 

combinations of hypothesized true asset pricing models (K=0, 1, 3, 4) and multifactor models in the simulated sample. Alphas are estimated as: Mkt 

adj. return is fund return minus market returns and the other alphas are estimated using the indicated models. The hypothesized true asset pricing 

models are a model with no beta risk premium for any factors (NBRP), CAPM, FF3 and FFC4. The column 𝜎 �̂�𝐽
2 presents the cross-sectional variance 

of alphas estimated under the assumption that the true asset pricing model and true betas are known. The other columns present the variance due to 

the following: (i) APM misspecification: unpriced factors used to compute alphas; (ii) “Omitted factors”: common factors excluded from the 

computation of alphas, (iii) “Covariance”: Covariance of betas on excluded unpriced factors and betas of included priced factors and (iv) “Beta 

measurement error”: factor beta estimation errors. The results are based on 500 simulations. 

  𝜎 �̂�𝐽
2  

APM Misspecification  

Error Variance 

Omitted Factors  

Variance 
Covariance 

Beta measurement  

error Variance 

Variance in addition  

to 𝜎 �̂�𝐽
2  

  (1) (2) (3) (4) (5) (6) (7) 

True asset pricing  

Model (𝐾): 
Alpha Estimated  

Using (𝜂): 
     (2)+(3)+(4) (5)+(6) 

NBRP 

Mkt adj. ret. 307.8 0 0 324.1 0 324.1 324.1 

Market model 307.8 0.931 -0.032 234.3 32.4 235.2 267.7 

FF3 307.8 1.334 -0.018 50.4 33.5 51.7 85.2 

FFC4 307.8 1.842 -0.010 18.2 36.8 20.0 56.8 

FFC4+3 IND 307.8 1.945 0 0 56.7 1.94 58.6 
  

       

CAPM 

Mkt adj. ret. 307.8 0.931 0.008 324.1 0 325.1 325.1 

Market model 307.8 0 0 234.3 32.4 234.3 266.8 

FF3 307.8 0.579 0.193 50.4 33.5 51.2 84.7 

FFC4 307.8 0.715 -0.001 18.2 36.8 18.9 55.7 

FFC4+3 IND 307.8 0.761 0 0 56.7 0.76 57.4 
  

       

FF3 

Mkt adj. ret. 307.8 1.334 0.014 324.1 0 325.5 325.5 

Market model 307.8 0.579 -0.383 234.3 32.4 234.5 267.0 

FF3 307.8 0 0 50.4 33.5 50.4 83.9 

FFC4 307.8 0.435 0.009 18.2 36.8 18.6 55.4 
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FFC4+3 IND 307.8 0.504 0 0 56.7 0.50 57.2 

         

FFC4 

Mkt adj. ret. 307.8 1.842 0.008 324.1 0 326.0 326.0 

Market model 307.8 0.715 -0.033 234.3 32.4 235.0 267.5 

FF3 307.8 0.435 0.449 50.4 33.5 51.3 84.8 

FFC4 307.8 0 0 18.2 36.8 18.2 55.0 

FFC4+3 IND 307.8 0.024 0 0 56.7 0.02 56.7 
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Table 25: Flow-Performance relation in simulated sample  

This table presents the estimates of the slope coefficients of flow-alpha regression (2.14) in simulations with returns generated under the following 

models for expected returns: a model with no beta risk premium for any factors (NBRP), CAPM, FF3 and FFC4 models. The column headings 

identify the expected returns model. Alphas are computed with respect to the models indicated in the first column. Monthly flow is determined by 

the model as specified by Eq. (2.12). Panel A presents the results using true betas to compute alphas and panel B presents the results with factor betas 

estimated from the data. The table reports average coefficients across 500 repetitions of the simulations.  

 Panel A: True betas used to estimate alphas  Panel B: 60 month rolling window  �̂�s used to estimate alphas 

True asset pricing model (K): NBRP  CAPM  FF3  FFC4  NBRP  CAPM  FF3  FFC4 

                

Alpha Estimated Using (𝜂):                

Market Adjusted Ret 2.21  2.19  2.19  2.19  2.21  2.19  2.19  2.19 

Market model 2.36  2.36  2.36  2.36  2.34  2.35  2.35  2.34 

FF3 3.07  3.07  3.08  3.07  2.92  2.92  2.93  2.92 

FFC4 3.27  3.28  3.29  3.29  3.04  3.05  3.05  3.05 

FFC4+3 IND 3.48  3.50  3.50  3.51  3.01  3.02  3.02  3.02 
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Table 26: Flow-Performance relation with sign-regressions in simulated sample  

This table presents the estimates of the slope coefficients of flow-alpha regression (2.32) in simulations with returns generated under the following 

models for expected returns: a model with no beta risk premium for any factors (NBRP), CAPM, FF3 and FFC4 models. The column headings 

identify the expected returns model. Alphas are computed with respect to the models indicated in the first column. Monthly flow is determined by 

the model as specified by Eq. (2.12). Flow and alpha are assigned values of +1 when positive and -1 when negative. Panel A presents the results using 

true betas to compute alphas and panel B presents the results with factor betas estimated from the data. The table reports average coefficients across 

500 repetitions of the simulations.  

 Panel A: True betas used to estimate alphas  Panel B: 60 month rolling window  �̂�s used to estimate alphas 

True asset pricing model (K): NBRP  CAPM  FF3  FFC4  NBRP  CAPM  FF3  FFC4 

                

Alpha Estimated Using (𝜂):                

Market Adjusted Ret 0.594  0.591  0.592  0.591  0.594  0.591  0.592  0.591 

Market model 0.626  0.626  0.627  0.626  0.620  0.621  0.621  0.620 

FF3 0.789  0.792  0.794  0.792  0.744  0.745  0.747  0.745 

FFC4 0.846  0.851  0.853  0.855  0.774  0.777  0.778  0.779 

FFC4+3 IND 0.950  0.968  0.974  0.994  0.768  0.772  0.773  0.774 
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Table 27: Descriptive Statistics 
 

This table shows the descriptive statistics of the variables in the sample of actively managed US domestic 

equity funds with data on purchases and redemptions. The sample excludes Institutional and Retirement 

funds. There are 1,955 funds in this sample which are classified into four broad style groups: growth (920 

funds), growth & income (379 funds), mid-cap (288 funds) and small-cap (438 funds). Fund level returns, 

expenses, 12B-1, turnover are aggregated from share class level using lagged TNA as weights. Fund age is 

computed as the age of the oldest share class. No-Load dummy takes a value of one if all share classes in a 

fund have zero front-end and back-end loads. Fund level Morningstar rating is the maximum rating across 

all share classes in a month. Market excess return is the fund’s return in excess of CRSP VW market index. 

One-, three- and four-factor alphas are intercepts from rolling window time series regressions of fund’s 

daily excess net returns on market excess return, Fama French three factors, Fama French Carhart four 

factors respectively. These are computed for fund-months with at least 24 observations on past daily net 

returns in a 3-month window ending prior month. Inflow, Outflow, Net flow are computed as 

purchases*100/TNAt-1, redemptions*100/TNAt-1, and (purchases-redemptions)*100/TNAt-1 respectively. 

The sample period is Jan-1994 to Dec-2017. 

 

  Obs Median Mean Std. Dev. 

TNA ($ mn) 222177 289 1488.0 5641.7 

Age (months) 222180 133 162.5 127.5 

Number of share-classes 222180 3 3.3 2.2 

Number of funds in family 222180 8 11.1 11.6 

Family TNA ($ bn) 222177 4.6 27.2 69.3 

Monthly Net Returns 222093 1.02% 0.59% 5.29% 

Monthly Gross Returns 222093 1.12% 0.69% 5.29% 

Net Ret. – Market Ret. 222093 -0.05% 0.02% 2.62% 

Monthly 1-factor alpha 221601 0.00% 0.00% 0.10% 

Monthly 3-factor alpha 221601 0.00% 0.00% 0.08% 

Monthly 4-factor alpha 221601 0.00% 0.00% 0.08% 

Morningstar Rating 143130 3 3.1 1.0 

Expense Ratio (per annum) 215869 1.24% 1.27% 0.40% 

12B-1 Fees (per annum) 190800 0.21% 0.23% 0.23% 

Annual Turnover 216300 62.8% 82.3% 81.8% 

No-Load Dummy 172732 0 0.22 0.42 

Return SD (t-12, t-1) 210219 4.30% 4.78% 2.30% 
     

Net Flow (% of TNA) 222180 -0.36 0.20 4.35 

Inflow (% of TNA) 222180 1.58 3.13 4.83 

Outflow (% of TNA) 222180 2.03 2.90 3.37 
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Table 28: Flow Reaction to Performance over Long Horizons 
 

This table shows results from Fama-MacBeth regressions of different flow proxies on monthly performance 

metrics from lags 1 to 72 along with a set of controls. The performance metric in columns (1)-(3) is market 

adjusted return and in columns (4)-(6) is the 4-factor alpha. Market adjusted return is the fund’s net return 

minus CRSP VW market index. Monthly four-factor alpha is computed as the fund’s net return minus 

expected return from Fama-French-Carhart four factor model with betas computed in backward-looking 

window using rolling window time series regressions of fund’s daily excess net returns on factor returns. 

These are computed for fund-months with at least 24 observations on past daily net returns in a 3-month 

window ending prior month. Net flows, inflows, and outflows are defined as (purchases-

redemptions)*100/TNAt-1, purchases*100/TNAt-1, and redemptions*100/TNAt-1 respectively. The sample 

comprises actively managed US domestic equity funds during the period Jan-1999 to Dec-2017 excluding 

Institutional and Retirement funds. Standard errors are adjusted for autocorrelation up to 12 lags using 

Newey-West procedure and are reported in the parentheses. ***, **, * indicate statistical significance at 

the 1%, 5%, 10% levels respectively. 
 

Performance metric is: Market adj. ret.  4-factor alpha 

Dependent variable is: Net Flow(%) Inflow(%) Outflow(%)  Net Flow(%) Inflow(%) Outflow(%) 

  (1) (2) (3)   (4) (5) (6) 

Perf (t-1) 19.055*** 15.140*** -11.031***  17.318*** 13.776*** -9.913*** 

 (1.563) (1.485) (0.922)  (1.434) (1.375) (0.912) 

Perf (t-2) 20.313*** 16.864*** -10.476***  17.875*** 14.653*** -9.007*** 

 (1.834) (1.549) (1.163)  (1.675) (1.425) (1.038) 

Perf (t-3) 18.861*** 15.533*** -9.747***  17.495*** 14.213*** -9.024*** 

 (1.762) (1.384) (1.157)  (1.529) (1.322) (1.022) 

Perf (t-4) 17.857*** 14.979*** -9.328***  15.842*** 13.736*** -8.337*** 

 (1.837) (1.719) (1.298)  (1.816) (1.541) (1.158) 

Perf (t-5) 17.998*** 15.264*** -9.583***  16.087*** 13.687*** -8.571*** 

 (1.639) (1.450) (0.996)  (1.661) (1.407) (0.977) 

Perf (t-6) 16.833*** 14.473*** -7.929***  15.767*** 13.357*** -7.516*** 

 (1.761) (1.505) (0.984)  (1.868) (1.650) (1.059) 

Perf (t-7) 17.019*** 14.027*** -8.239***  15.699*** 13.064*** -6.902*** 

 (1.828) (1.621) (1.017)  (1.687) (1.713) (0.769) 

Perf (t-8) 17.408*** 14.917*** -9.923***  16.274*** 13.662*** -8.819*** 

 (1.866) (1.504) (1.284)  (1.885) (1.698) (1.083) 

Perf (t-9) 16.348*** 13.614*** -8.936***  14.506*** 12.460*** -6.727*** 

 (1.758) (1.609) (0.974)  (1.629) (1.537) (0.876) 

Perf (t-10) 16.866*** 14.407*** -9.330***  15.958*** 13.745*** -8.242*** 

 (1.838) (1.437) (0.961)  (1.553) (1.367) (0.964) 

Perf (t-11) 17.198*** 13.962*** -9.634***  14.846*** 12.802*** -7.227*** 

 (1.348) (1.292) (0.920)  (1.062) (1.197) (0.679) 

Perf (t-12) 14.177*** 12.776*** -6.775***  12.790*** 11.612*** -5.625*** 

 (1.512) (1.407) (0.899)  (1.251) (1.381) (0.762) 

Perf (t-13) 10.926*** 9.161*** -4.994***  10.357*** 9.212*** -4.392*** 

 (1.127) (0.947) (0.600)  (1.118) (1.023) (0.626) 

Perf (t-14) 10.530*** 8.615*** -5.155***  9.331*** 8.058*** -4.432*** 

 (1.411) (1.211) (0.990)  (1.164) (1.040) (0.920) 

Perf (t-15) 9.850*** 7.669*** -4.988***  8.649*** 6.695*** -4.199*** 

 (1.208) (0.948) (0.968)  (1.105) (0.999) (0.911) 
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Perf (t-16) 7.526*** 6.686*** -3.858***  6.642*** 5.991*** -3.268*** 

 (0.960) (1.004) (0.721)  (1.071) (1.172) (0.841) 

Perf (t-17) 6.965*** 6.573*** -2.705***  5.883*** 6.294*** -2.310*** 

 (0.826) (0.854) (0.545)  (0.679) (0.807) (0.770) 

Perf (t-18) 8.890*** 6.814*** -5.373***  7.718*** 6.170*** -5.144*** 

 (0.977) (0.826) (0.916)  (0.928) (0.761) (0.755) 

Perf (t-19) 8.610*** 7.009*** -3.665***  7.064*** 6.313*** -3.172*** 

 (1.046) (0.932) (0.717)  (1.128) (1.083) (0.845) 

Perf (t-20) 8.526*** 7.468*** -4.382***  8.197*** 7.509*** -3.898*** 

 (1.084) (1.112) (0.775)  (1.145) (1.169) (0.782) 

Perf (t-21) 7.781*** 6.000*** -4.338***  6.390*** 4.970*** -4.090*** 

 (1.124) (1.063) (0.720)  (0.945) (1.083) (1.014) 

Perf (t-22) 7.968*** 6.588*** -4.676***  6.212*** 5.075*** -3.609*** 

 (0.945) (0.695) (0.876)  (0.904) (0.789) (0.862) 

Perf (t-23) 7.347*** 6.740*** -2.705***  6.371*** 6.135*** -2.161*** 

 (0.917) (0.721) (0.679)  (0.858) (0.781) (0.816) 

Perf (t-24) 6.711*** 5.568*** -2.338***  5.705*** 4.794*** -2.550*** 

 (0.845) (1.011) (0.665)  (0.839) (0.823) (0.694) 

Perf (t-25) 6.521*** 5.672*** -3.427***  5.609*** 4.731*** -2.933*** 

 (0.817) (0.640) (0.806)  (0.910) (0.858) (0.896) 

Perf (t-26) 5.990*** 5.514*** -1.829***  4.496*** 4.127*** -1.092 

 (0.999) (0.755) (0.655)  (1.147) (0.904) (0.717) 

Perf (t-27) 5.445*** 5.163*** -1.718***  4.370*** 4.103*** -1.469** 

 (0.784) (0.742) (0.599)  (0.971) (0.900) (0.670) 

Perf (t-28) 5.499*** 4.295*** -2.741***  5.282*** 4.624*** -3.227*** 

 (0.738) (0.817) (0.569)  (0.915) (0.995) (0.740) 

Perf (t-29) 6.524*** 5.901*** -3.191***  5.802*** 5.786*** -2.557** 

 (0.900) (0.766) (0.805)  (1.208) (0.913) (1.062) 

Perf (t-30) 5.987*** 5.512*** -2.360***  4.657*** 4.081*** -1.206* 

 (0.982) (0.858) (0.640)  (1.061) (0.929) (0.645) 

Perf (t-31) 5.203*** 4.528*** -2.276***  5.370*** 4.992*** -1.541*** 

 (0.981) (0.916) (0.602)  (0.843) (0.867) (0.561) 

Perf (t-32) 4.928*** 4.510*** -1.592*  4.298*** 4.332*** -0.688 

 (1.155) (0.919) (0.913)  (1.066) (0.865) (0.792) 

Perf (t-33) 4.208*** 3.815*** -2.159***  4.571*** 4.127*** -1.826** 

 (1.045) (0.788) (0.695)  (0.905) (0.870) (0.754) 

Perf (t-34) 5.586*** 5.259*** -3.047***  6.104*** 5.139*** -2.621*** 

 (1.165) (0.907) (0.891)  (0.967) (0.943) (0.756) 

Perf (t-35) 3.914*** 4.311*** -1.682**  3.559*** 3.407*** -0.962 

 (1.041) (0.968) (0.663)  (1.259) (1.165) (0.982) 

Perf (t-36) 6.190*** 5.875*** -2.636***  5.914*** 5.430*** -2.350*** 

 (1.024) (0.938) (0.719)  (1.058) (1.028) (0.878) 

Perf (t-37) 4.795*** 4.789*** -2.476***  4.108*** 3.693*** -2.180*** 

 (0.751) (0.738) (0.621)  (1.025) (1.034) (0.807) 

Perf (t-38) 3.517*** 4.433*** -0.980  2.759*** 3.166*** -1.164* 

 (0.707) (0.746) (0.614)  (0.913) (1.016) (0.608) 

Perf (t-39) 3.307*** 3.643*** -0.745  3.258*** 3.478*** -0.602 

 (0.803) (0.769) (0.714)  (1.007) (0.864) (0.968) 

Perf (t-40) 3.694*** 4.622*** -1.587**  2.352** 2.922*** -0.282 

 (0.645) (0.727) (0.671)  (1.114) (1.086) (0.777) 
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Perf (t-41) 2.974*** 3.312*** -0.240  2.350*** 3.010*** -0.202 

 (0.685) (0.802) (0.607)  (0.850) (0.894) (0.769) 

Perf (t-42) 2.137*** 3.426*** -0.546  1.329 2.308** -0.283 

 (0.740) (0.844) (0.784)  (1.079) (1.072) (0.726) 

Perf (t-43) 1.992** 2.664*** -0.316  2.643** 3.308*** -1.706*** 

 (0.950) (1.024) (0.706)  (1.034) (0.982) (0.655) 

Perf (t-44) 2.736*** 3.129*** -0.469  2.892*** 3.036*** -1.499* 

 (0.900) (0.926) (0.794)  (1.064) (1.044) (0.818) 

Perf (t-45) 1.509 1.200 0.167  1.506 1.793* -0.272 

 (0.962) (0.831) (0.768)  (1.161) (0.958) (0.858) 

Perf (t-46) 1.490* 1.175 -0.494  0.837 0.696 -1.010 

 (0.811) (0.833) (0.682)  (0.952) (0.951) (0.840) 

Perf (t-47) 1.249 1.391 -0.206  -0.279 0.029 0.459 

 (0.851) (0.851) (0.600)  (1.095) (0.989) (1.010) 

Perf (t-48) 1.416* 2.394*** -0.161  1.455 2.580** -1.154 

 (0.735) (0.873) (0.563)  (0.993) (1.022) (0.749) 

Perf (t-49) 1.606** 2.392*** 0.059  1.034 1.700** -0.118 

 (0.808) (0.786) (0.745)  (0.962) (0.847) (0.873) 

Perf (t-50) 0.835 1.653** 0.471  0.743 1.347 0.427 

 (0.679) (0.766) (0.545)  (0.954) (0.918) (0.598) 

Perf (t-51) 1.645** 1.557** -0.121  0.911 1.034 0.356 

 (0.634) (0.627) (0.517)  (0.936) (0.658) (0.867) 

Perf (t-52) 1.785** 1.885** -0.075  1.147 1.410** 0.548 

 (0.689) (0.735) (0.624)  (0.852) (0.701) (0.919) 

Perf (t-53) 0.634 1.596* 0.794  1.418** 2.044*** 0.299 

 (0.735) (0.821) (0.618)  (0.587) (0.553) (0.643) 

Perf (t-54) 0.037 0.567 0.879  0.121 0.407 0.716 

 (0.685) (0.658) (0.714)  (0.957) (0.956) (0.745) 

Perf (t-55) 0.115 0.462 0.162  0.711 1.991** 0.405 

 (0.635) (0.602) (0.699)  (0.862) (0.790) (0.795) 

Perf (t-56) 1.120* 1.692** -0.239  1.857** 3.272*** 0.181 

 (0.615) (0.833) (0.629)  (0.806) (0.977) (0.419) 

Perf (t-57) -0.034 0.097 0.375  0.652 0.951 0.344 

 (0.713) (0.827) (0.534)  (0.710) (0.796) (0.647) 

Perf (t-58) 1.330 1.326** 0.225  1.057 1.550** 0.546 

 (0.842) (0.627) (0.671)  (0.693) (0.666) (0.736) 

Perf (t-59) 0.661 1.164** 0.035  0.625 1.259 0.191 

 (0.638) (0.582) (0.556)  (0.759) (0.803) (0.661) 

Perf (t-60) 0.169 0.876 1.003  0.181 1.240* 1.048 

 (0.917) (0.700) (0.717)  (0.779) (0.714) (0.674) 

Perf (t-61) 0.133 0.689 0.353  -0.171 0.773 0.727 

 (0.654) (0.540) (0.497)  (0.796) (0.830) (0.895) 

Perf (t-62) 1.747*** 2.449*** -0.512  1.326 1.871* 0.642 

 (0.672) (0.709) (0.614)  (0.858) (1.015) (0.612) 

Perf (t-63) 0.303 0.691 0.405  0.126 0.666 0.984* 

 (0.758) (0.654) (0.733)  (0.687) (0.894) (0.595) 

Perf (t-64) 0.477 0.819 0.326  1.059 1.087 0.078 

 (0.759) (0.707) (0.593)  (0.775) (0.888) (0.613) 

Perf (t-65) -0.426 -0.163 0.713  -0.239 0.273 0.323 

 (0.722) (0.837) (0.578)  (0.932) (0.909) (0.661) 
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Perf (t-66) -0.431 0.003 0.379  -1.647** -0.835 1.369** 

 (0.581) (0.701) (0.497)  (0.698) (0.803) (0.569) 

Perf (t-67) -0.497 -0.198 0.201  -1.247 -0.454 0.522 

 (0.778) (0.822) (0.638)  (0.771) (0.827) (0.632) 

Perf (t-68) -0.185 0.650 0.613  -0.101 0.759 -0.348 

 (0.867) (0.838) (0.541)  (1.117) (0.924) (1.084) 

Perf (t-69) -0.915* 0.038 1.250**  -1.633** -0.974 1.290** 

 (0.530) (0.692) (0.510)  (0.692) (0.856) (0.565) 

Perf (t-70) -1.337* -0.569 1.350**  -2.012** -1.259 1.780** 

 (0.742) (0.753) (0.672)  (0.913) (0.874) (0.748) 

Perf (t-71) -1.713*** -0.962 1.529***  -2.183*** -1.862** 0.979 

 (0.534) (0.684) (0.483)  (0.778) (0.764) (0.664) 

Perf (t-72) -0.854 0.182 1.538***  -0.387 0.194 0.052 

 (0.724) (0.713) (0.512)  (0.900) (0.886) (1.230) 

Expense Ratio (t-1) -0.749 14.018** 8.704*  -5.065 11.685* 16.921*** 

 (7.213) (7.114) (4.570)  (5.594) (6.067) (3.442) 

Cat. Flow/TNA (t) 0.562    0.262**   

 (0.353)    (0.122)   
Fam. Flow/TNA (t) 0.294***    0.198***   

 (0.081)    (0.026)   
Purchases/TNA (t)   0.343***    0.337*** 

 
  (0.044)    (0.048) 

Redemptions/TNA (t)  0.465***    0.461***  

  (0.060)    (0.062)  
Cat. Purchases/TNA (t)  0.012 0.176   0.228 -0.110 

  (0.152) (0.260)   (0.162) (0.090) 

Cat. Redemptions/TNA (t)  -0.533** -0.069   -0.696*** 0.282** 

  (0.206) (0.300)   (0.177) (0.132) 

Fam. Purchases/TNA (t)  0.224*** -0.074   0.202*** 0.029 
 

 (0.024) (0.082)   (0.038) (0.027) 

Fam. Redemptions/TNA (t)  0.005 0.313***   0.027 0.268*** 

  (0.024) (0.027)   (0.043) (0.047) 

Log(TNA) (t-1) -0.036 -0.013 0.053***  -0.014 0.044** 0.070*** 
 (0.024) (0.040) (0.013)  (0.021) (0.020) (0.013) 

Log(Fam. TNA) (t-1) 0.040 0.024 -0.078***  0.001 -0.016 -0.085*** 
 (0.026) (0.041) (0.020)  (0.021) (0.013) (0.016) 

Log(Age) (t-1) -0.319** -0.363*** -0.161***  -0.113*** -0.328*** -0.235*** 
 (0.127) (0.045) (0.042)  (0.032) (0.061) (0.040) 

Return SD (t-12,t-1) 21.020 62.318*** 44.489***  6.632 22.875*** 19.573*** 

 (17.462) (22.672) (9.250)  (6.745) (8.411) (2.973) 

Constant 0.264 0.511 0.019  0.471 2.184*** 1.389*** 

 (0.955) (1.055) (0.500)  (0.347) (0.625) (0.316) 

        
Observations 132,386 132,386 132,386  112,234 112,234 112,234 

R-squared 0.330 0.453 0.419  0.350 0.469 0.446 

Number of groups 228 228 228   228 228 228 
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Table 29: Lag Length Selection for Buys vs. Sells 
 

This table reports the p-Values from an F-test that some lags are jointly zero in the regressions in Table 28 

of inflows and outflows on 72 lags of different performance metrics. Market-adjusted return is the 

performance metric used in the results of columns (1) and (2) below and 1-factor alpha is the metric used 

in columns (3) and (4). The main regression model is estimated with standard errors adjusted for cross-

sectional and time-series correlation in error term for 12 months and these are used in the F-test as well. 

The sample used is equivalent to the estimation sample from Table 28. 

Model: 
Regression on lags of 

market-adjusted return 

Regression on lags of  

1-factor alpha 

Dependent Variable: Outflows Inflows Outflows Inflows 
 (1) (2) (3) (4) 

Statistical Test:     

F-test that lags t-38 to t-72 are jointly zero 0.524 0.000 0.125 0.000 

F-test that lags t-37 to t-72 are jointly zero 0.069  0.018  

F-test that lags t-53 to t-72 are jointly zero  0.115   

F-test that lags t-52 to t-72 are jointly zero  0.006   

F-test that lags t-59 to t-72 are jointly zero    0.177 

F-test that lags t-58 to t-72 are jointly zero    0.093 
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Table 30: Performance Predictability using Long Horizon Past Returns 
 

This table reports results from Fama-MacBeth regressions of one-month four-factor alpha on past monthly four-factor alphas at different lags. 

Columns (1) to (7) show the results using multivariate models with all lags included simultaneously and column (8) shows the coefficients on the 

lags in univariate regression models. The number of lags included increases from columns (1) to (5). Column (6) reports results using lagged one 

month four-factor alpha and just the quarterly lags and column (7) shows the results with just quarterly lags. Monthly four-factor alpha used as the 

dependent variable is computed as the fund’s net return minus expected return from Fama-French-Carhart four factor model with betas computed in 

a forward-looking window using rolling window time series regressions of fund’s daily excess net returns on factor returns. These are computed for 

fund-months with at least 24 observations on future daily net returns in a 3-month window beginning from the current month. If a fund dies in this 

window, I replace its return with CRSP VW market return for the remaining period. Monthly four-factor alpha used as the explanatory variable is 

computed as the fund’s net return minus expected return from Fama-French-Carhart four factor model with betas computed in backward-looking 

window using rolling window time series regressions of fund’s daily excess net returns on factor returns. These are computed for fund-months with 

at least 24 observations on past daily net returns in a 3-month window ending prior month. The sample comprises actively managed US domestic 

equity funds during the period Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. Standard errors are reported in the parentheses. 

***, **, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

 

Dependent variable is: one-month four-factor alpha 

  Multivariate Models   Univariate 
 (1) (2) (3) (4) (5) (6) (7)  (8) 

Four-factor alpha [t-1] 0.017* 0.018** 0.014** 0.014** 0.014** 0.014*  
 0.021** 

 
(0.010) (0.009) (0.007) (0.007) (0.007) (0.008)  

 (0.011) 

Four-factor alpha [t-2] 0.010 0.012 0.011 0.013** 0.014**   
 0.007 

 
(0.009) (0.008) (0.007) (0.006) (0.006)   

 (0.010) 

Four-factor alpha [t-3] 0.018* 0.019** 0.016** 0.015** 0.014** 0.017** 0.017** 
 0.020* 

 
(0.009) (0.009) (0.007) (0.007) (0.006) (0.008) (0.008) 

 (0.011) 

Four-factor alpha [t-4] 0.000 0.004 0.009 0.009* 0.010*   
 0.004 

 
(0.008) (0.007) (0.006) (0.005) (0.005)   

 (0.010) 

Four-factor alpha [t-5] 0.022*** 0.019** 0.018*** 0.018*** 0.018***   
 0.026*** 

 
(0.008) (0.007) (0.006) (0.006) (0.006)   

 (0.010) 

Four-factor alpha [t-6] 0.026*** 0.027*** 0.024*** 0.023*** 0.023*** 0.025*** 0.026*** 
 0.031*** 

 
(0.008) (0.007) (0.006) (0.006) (0.006) (0.007) (0.007) 

 (0.009) 

Four-factor alpha [t-7]  0.005 0.004 0.003 0.002   
 0.011 

 
 (0.008) (0.006) (0.006) (0.006)   

 (0.010) 
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Four-factor alpha [t-8]  0.015** 0.016*** 0.014** 0.013**   
 0.019* 

 
 (0.007) (0.006) (0.005) (0.005)   

 (0.010) 

Four-factor alpha [t-9]  0.025*** 0.019*** 0.018*** 0.017*** 0.023*** 0.023*** 
 0.033*** 

 
 (0.007) (0.005) (0.005) (0.005) (0.006) (0.007) 

 (0.009) 

Four-factor alpha [t-10]  -0.003 0.004 0.005 0.006   
 -0.004 

 
 (0.007) (0.006) (0.006) (0.005)   

 (0.009) 

Four-factor alpha [t-11]  0.020*** 0.016*** 0.015*** 0.015***   
 0.021** 

 
 (0.007) (0.005) (0.005) (0.005)   

 (0.009) 

Four-factor alpha [t-12]  0.016** 0.013** 0.011** 0.010** 0.014** 0.015** 
 0.017* 

 
 (0.007) (0.006) (0.005) (0.005) (0.007) (0.007) 

 (0.010) 

Four-factor alpha [t-13]   -0.007 -0.006 -0.005   
 -0.011 

 
  (0.005) (0.005) (0.005)   

 (0.009) 

Four-factor alpha [t-14]   0.010 0.010* 0.011**   
 0.004 

 
  (0.006) (0.006) (0.006)   

 (0.012) 

Four-factor alpha [t-15]   0.011* 0.010* 0.009* 0.014** 0.015** 
 0.019* 

 
  (0.006) (0.006) (0.005) (0.007) (0.007) 

 (0.010) 

Four-factor alpha [t-16]   0.000 0.001 0.001   
 -0.006 

 
  (0.005) (0.005) (0.005)   

 (0.010) 

Four-factor alpha [t-17]   0.008 0.009 0.009*   
 0.019* 

 
  (0.006) (0.005) (0.005)   

 (0.010) 

Four-factor alpha [t-18]   0.007 0.004 0.003 0.004 0.004 
 0.002 

 
  (0.006) (0.005) (0.005) (0.007) (0.007) 

 (0.010) 

Four-factor alpha [t-19]   -0.006 -0.006 -0.004   
 -0.010 

 
  (0.005) (0.005) (0.004)   

 (0.009) 

Four-factor alpha [t-20]   0.002 0.003 0.003   
 0.003 

 
  (0.006) (0.005) (0.005)   

 (0.010) 

Four-factor alpha [t-21]   0.010** 0.009** 0.009** 0.007 0.007 
 0.011 

 
  (0.005) (0.005) (0.004) (0.005) (0.005) 

 (0.008) 

Four-factor alpha [t-22]   0.003 0.002 0.001   
 0.003 

 
  (0.005) (0.004) (0.004)   

 (0.009) 
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Four-factor alpha [t-23]   0.000 0.003 0.004   
 -0.006 

 
  (0.005) (0.005) (0.005)   

 (0.009) 

Four-factor alpha [t-24]   0.015*** 0.014*** 0.013*** 0.012** 0.013** 
 0.017** 

 
  (0.005) (0.004) (0.004) (0.006) (0.006) 

 (0.008) 

Four-factor alpha [t-25]   -0.005 -0.004 -0.003   
 0.001 

 
  (0.005) (0.005) (0.005)   

 (0.009) 

Four-factor alpha [t-26]   0.001 0.001 0.001   
 0.002 

 
  (0.005) (0.004) (0.004)   

 (0.009) 

Four-factor alpha [t-27]   0.001 -0.001 -0.001 -0.002 -0.001 
 -0.003 

 
  (0.005) (0.004) (0.004) (0.006) (0.006) 

 (0.009) 

Four-factor alpha [t-28]   0.014*** 0.012*** 0.010**   
 0.021** 

 
  (0.004) (0.004) (0.004)   

 (0.009) 

Four-factor alpha [t-29]   0.005 0.005 0.006   
 0.012 

 
  (0.005) (0.005) (0.004)   

 (0.009) 

Four-factor alpha [t-30]   0.004 0.004 0.005 0.004 0.005 
 -0.000 

 
  (0.004) (0.004) (0.004) (0.005) (0.006) 

 (0.008) 

Four-factor alpha [t-31]   0.005 0.003 0.002   
 0.001 

 
  (0.004) (0.004) (0.004)   

 (0.008) 

Four-factor alpha [t-32]   0.004 0.002 0.003   
 0.007 

 
  (0.004) (0.004) (0.004)   

 (0.008) 

Four-factor alpha [t-33]   0.009** 0.007 0.006 0.011** 0.010*  0.018** 

   (0.005) (0.004) (0.004) (0.006) (0.006)  (0.009) 

Four-factor alpha [t-34]   -0.001 0.001 0.001    0.007 

   (0.004) (0.004) (0.004)    (0.008) 

Four-factor alpha [t-35]   0.000 0.000 -0.001    0.005 

   (0.004) (0.004) (0.004)    (0.008) 

Four-factor alpha [t-36]   0.022*** 0.021*** 0.020*** 0.019*** 0.020***  0.026*** 

   (0.005) (0.004) (0.004) (0.005) (0.005)  (0.008) 

Four-factor alpha [t-37]    -0.003 -0.003    0.003 

    (0.004) (0.004)    (0.008) 
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Four-factor alpha [t-38]    0.002 0.001    0.001 

    (0.004) (0.004)    (0.008) 

Four-factor alpha [t-39]    0.003 0.001 0.003 0.002  0.006 

    (0.004) (0.004) (0.005) (0.005)  (0.007) 

Four-factor alpha [t-40]    0.004 0.003    0.000 

    (0.004) (0.004)    (0.008) 

Four-factor alpha [t-41]    0.000 0.001    -0.006 

    (0.004) (0.004)    (0.009) 

Four-factor alpha [t-42]    0.007* 0.006* 0.004 0.004  0.004 

    (0.004) (0.004) (0.004) (0.005)  (0.007) 

Four-factor alpha [t-43]    0.005 0.004    0.008 

    (0.004) (0.004)    (0.007) 

Four-factor alpha [t-44]    0.000 -0.000    0.009 

    (0.004) (0.003)    (0.007) 

Four-factor alpha [t-45]    0.005 0.005 0.006 0.005  0.004 

    (0.003) (0.003) (0.005) (0.005)  (0.008) 

Four-factor alpha [t-46]    -0.002 -0.000    0.000 

    (0.004) (0.004)    (0.008) 

Four-factor alpha [t-47]    0.003 0.004    0.000 

    (0.004) (0.004)    (0.008) 

Four-factor alpha [t-48]    0.007* 0.007* 0.007 0.007  0.008 

    (0.004) (0.004) (0.005) (0.005)  (0.008) 

Four-factor alpha [t-49]     -0.005    -0.005 

     (0.004)    (0.008) 

Four-factor alpha [t-50]     0.004    -0.004 

     (0.004)    (0.007) 

Four-factor alpha [t-51]     0.003 0.001 0.001  0.000 

     (0.004) (0.005) (0.005)  (0.007) 

Four-factor alpha [t-52]     0.003    0.005 

     (0.004)    (0.008) 

          



187 
 

Four-factor alpha [t-53]     -0.000    0.001 

     (0.004)    (0.008) 

Four-factor alpha [t-54]     -0.000 0.005 0.004  0.009 

     (0.004) (0.005) (0.005)  (0.008) 

Four-factor alpha [t-55]     -0.001    -0.003 

     (0.004)    (0.007) 

Four-factor alpha [t-56]     -0.001    0.007 

     (0.003)    (0.007) 

Four-factor alpha [t-57]     -0.001 0.000 0.000  0.011 

     (0.003) (0.005) (0.005)  (0.007) 

Four-factor alpha [t-58]     -0.000    -0.005 

     (0.003)    (0.008) 

Four-factor alpha [t-59]     -0.003    -0.005 

     (0.004)    (0.008) 

Four-factor alpha [t-60]     0.000 0.000 0.001  0.000 

     (0.003) (0.004) (0.004)  (0.007) 

Intercept -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001***   

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)   

          

Adj. R2 0.092 0.146 0.237 0.257 0.273 0.164 0.155   

Obs 207479 207479 207479 207479 207479 207479 207479  207479 
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Table 31: Performance Predictability using Long Horizon Past Returns by Calendar 

Month Sub-Samples 
 

This table reports results from Fama-MacBeth regressions of one-month four-factor alpha on 60 lags of 

past monthly four-factor alphas. Columns (1) to (4) show the results in different sub-samples formed based 

on the calendar month. Column (1) uses sample with only January months; (2) uses sample with all non-

January months; (3) uses sample with only the quarter-beginning months Jan, Apr, Jul, Oct; (4) uses sample 

with only the quarter-end months Mar, Jun, Sep, Dec; and (5) uses sample with only non-quarter-end 

months. In the regressions, monthly four-factor alpha used as the dependent variable is computed as the 

fund’s net return minus expected return from Fama-French-Carhart four factor model with betas computed 

in a forward-looking window using rolling window time series regressions of fund’s daily excess net returns 

on factor returns. These are computed for fund-months with at least 24 observations on future daily net 

returns in a 3-month window beginning from the current month. If a fund dies in this window, I replace its 

return with CRSP VW market return for the remaining period. Monthly four-factor alpha used as the 

explanatory variable is computed as the fund’s net return minus expected return from Fama-French-Carhart 

four factor model with betas computed in backward-looking window using rolling window time series 

regressions of fund’s daily excess net returns on factor returns. These are computed for fund-months with 

at least 24 observations on past daily net returns in a 3-month window ending prior month. The sample 

comprises actively managed US domestic equity funds during the period Jan-1999 to Dec-2017 excluding 

Institutional and Retirement funds. Standard errors are reported in the parentheses. ***, **, * indicate 

statistical significance at the 1%, 5%, 10% levels respectively. 

 

Dependent variable is: one-month four-factor alpha 

Sample contains: 

Only 

January 

months 

Only 

Non-Jan 

months 

Only 

Quarter-beginning 

months 

Only 

Quarter-end 

months 

Only 

Non-quarter-end  

months 
 (1) (2) (3) (4) (5) 

Four-factor alpha [t-1] -0.014 0.016** 0.010 0.018 0.012 
 (0.018) (0.007) (0.014) (0.012) (0.008) 

Four-factor alpha [t-2] -0.017 0.017*** 0.002 0.016 0.013* 
 (0.020) (0.006) (0.010) (0.010) (0.008) 

Four-factor alpha [t-3] 0.022 0.013* 0.002 0.017 0.012 
 (0.023) (0.007) (0.011) (0.012) (0.008) 

Four-factor alpha [t-4] 0.022 0.009 0.011 0.020** 0.004 
 (0.019) (0.005) (0.010) (0.008) (0.006) 

Four-factor alpha [t-5] 0.012 0.019*** 0.018 0.011* 0.022*** 
 (0.021) (0.006) (0.011) (0.006) (0.008) 

Four-factor alpha [t-6] 0.050** 0.020*** 0.021** 0.013 0.027*** 
 (0.017) (0.006) (0.009) (0.009) (0.007) 

Four-factor alpha [t-7] 0.031* -0.000 0.004 0.008 -0.001 
 (0.016) (0.006) (0.010) (0.011) (0.006) 

Four-factor alpha [t-8] 0.011 0.014** 0.023** 0.005 0.017** 
 (0.023) (0.006) (0.011) (0.008) (0.007) 

Four-factor alpha [t-9] -0.005 0.019*** 0.021** 0.021*** 0.015** 
 (0.022) (0.005) (0.010) (0.008) (0.007) 
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Four-factor alpha [t-10] -0.012 0.008 0.003 0.012 0.003 
 (0.014) (0.006) (0.010) (0.009) (0.007) 

Four-factor alpha [t-11] 0.006 0.016*** 0.011 0.014* 0.015** 
 (0.014) (0.005) (0.009) (0.008) (0.006) 

Four-factor alpha [t-12] 0.016 0.010* 0.002 0.010 0.010* 
 (0.022) (0.005) (0.009) (0.010) (0.006) 

Four-factor alpha [t-13] 0.006 -0.007 0.002 -0.006 -0.005 
 (0.021) (0.005) (0.009) (0.008) (0.006) 

Four-factor alpha [t-14] 0.002 0.012** 0.011 0.010 0.012 
 (0.014) (0.006) (0.011) (0.009) (0.007) 

Four-factor alpha [t-15] 0.012 0.009* 0.026** -0.004 0.016** 
 (0.017) (0.006) (0.010) (0.009) (0.007) 

Four-factor alpha [t-16] 0.041* -0.002 0.006 -0.008 0.006 
 (0.021) (0.005) (0.010) (0.009) (0.006) 

Four-factor alpha [t-17] -0.004 0.011** 0.010 0.015** 0.007 
 (0.013) (0.005) (0.011) (0.006) (0.007) 

Four-factor alpha [t-18] 0.019 0.002 0.002 -0.004 0.007 
 (0.021) (0.005) (0.009) (0.009) (0.006) 

Four-factor alpha [t-19] -0.014 -0.003 -0.000 0.006 -0.009 
 (0.014) (0.005) (0.009) (0.007) (0.006) 

Four-factor alpha [t-20] 0.006 0.003 -0.004 -0.003 0.007 
 (0.021) (0.005) (0.010) (0.007) (0.007) 

Four-factor alpha [t-21] -0.014 0.011** -0.007 0.015* 0.006 
 (0.014) (0.005) (0.006) (0.008) (0.005) 

Four-factor alpha [t-22] 0.026 -0.001 0.007 -0.007 0.006 
 (0.020) (0.004) (0.008) (0.008) (0.005) 

Four-factor alpha [t-23] 0.008 0.004 0.005 -0.001 0.007 
 (0.024) (0.005) (0.009) (0.007) (0.006) 

Four-factor alpha [t-24] 0.008 0.013*** 0.018** 0.008 0.015*** 
 (0.014) (0.004) (0.008) (0.008) (0.005) 

Four-factor alpha [t-25] 0.022 -0.005 0.002 -0.006 -0.001 
 (0.015) (0.005) (0.008) (0.009) (0.006) 

Four-factor alpha [t-26] 0.016 -0.001 -0.004 -0.004 0.003 
 (0.013) (0.004) (0.007) (0.006) (0.006) 

Four-factor alpha [t-27] 0.001 -0.001 -0.001 0.003 -0.003 
 (0.009) (0.004) (0.007) (0.007) (0.005) 

Four-factor alpha [t-28] -0.011 0.012*** 0.013* 0.014* 0.008* 
 (0.017) (0.004) (0.007) (0.008) (0.005) 

Four-factor alpha [t-29] 0.014 0.005 0.003 0.013** 0.003 
 (0.012) (0.004) (0.008) (0.005) (0.006) 

Four-factor alpha [t-30] -0.010 0.006 0.002 0.005 0.004 
 (0.014) (0.004) (0.006) (0.007) (0.005) 
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Four-factor alpha [t-31] -0.009 0.003 0.003 -0.000 0.004 
 (0.011) (0.004) (0.007) (0.005) (0.005) 

Four-factor alpha [t-32] 0.007 0.003 -0.002 0.010 -0.000 
 (0.012) (0.004) (0.006) (0.006) (0.005) 

Four-factor alpha [t-33] -0.004 0.007 0.000 0.001 0.008 
 (0.012) (0.005) (0.007) (0.008) (0.005) 

Four-factor alpha [t-34] -0.020* 0.003 -0.002 -0.002 0.003 
 (0.010) (0.004) (0.008) (0.006) (0.005) 

Four-factor alpha [t-35] -0.001 -0.001 0.007 -0.002 -0.000 
 (0.013) (0.004) (0.007) (0.006) (0.005) 

Four-factor alpha [t-36] 0.015 0.021*** 0.024*** 0.020** 0.021*** 
 (0.011) (0.004) (0.006) (0.009) (0.004) 

Four-factor alpha [t-37] -0.014 -0.002 -0.010 0.002 -0.006 
 (0.014) (0.004) (0.007) (0.006) (0.005) 

Four-factor alpha [t-38] -0.024 0.003 -0.004 -0.001 0.002 
 (0.018) (0.004) (0.007) (0.007) (0.005) 

Four-factor alpha [t-39] 0.023 -0.001 -0.002 0.012 -0.004 
 (0.016) (0.004) (0.008) (0.008) (0.005) 

Four-factor alpha [t-40] -0.001 0.003 0.009 0.001 0.004 
 (0.010) (0.005) (0.008) (0.008) (0.005) 

Four-factor alpha [t-41] 0.014** -0.000 0.001 0.002 0.001 
 (0.006) (0.005) (0.009) (0.006) (0.006) 

Four-factor alpha [t-42] 0.026 0.004 0.013** 0.001 0.009* 
 (0.015) (0.004) (0.007) (0.005) (0.005) 

Four-factor alpha [t-43] 0.015 0.003 0.011 0.006 0.004 
 (0.008) (0.004) (0.007) (0.008) (0.005) 

Four-factor alpha [t-44] 0.005 -0.000 0.006 -0.007 0.003 
 (0.011) (0.004) (0.007) (0.005) (0.004) 

Four-factor alpha [t-45] 0.008 0.005 0.005 0.007 0.004 
 (0.013) (0.003) (0.006) (0.005) (0.004) 

Four-factor alpha [t-46] 0.008 -0.001 0.010 -0.007 0.003 
 (0.010) (0.004) (0.006) (0.006) (0.005) 

Four-factor alpha [t-47] 0.000 0.004 0.007 0.005 0.004 
 (0.019) (0.004) (0.007) (0.006) (0.005) 

Four-factor alpha [t-48] 0.011 0.006 0.010* 0.016*** 0.002 
 (0.010) (0.004) (0.006) (0.006) (0.005) 

Four-factor alpha [t-49] -0.007 -0.005 -0.007 -0.007 -0.004 
 (0.016) (0.004) (0.007) (0.007) (0.005) 

Four-factor alpha [t-50] 0.020* 0.002 0.005 0.003 0.004 
 (0.011) (0.004) (0.006) (0.005) (0.005) 

Four-factor alpha [t-51] -0.013 0.004 -0.003 0.004 0.002 
 (0.014) (0.004) (0.006) (0.007) (0.004) 
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Four-factor alpha [t-52] 0.005 0.003 0.008 0.000 0.004 
 (0.017) (0.004) (0.007) (0.006) (0.005) 

Four-factor alpha [t-53] 0.003 -0.001 0.001 0.001 -0.001 
 (0.017) (0.004) (0.008) (0.005) (0.005) 

Four-factor alpha [t-54] -0.012 0.001 -0.006 -0.009 0.005 
 (0.009) (0.004) (0.006) (0.006) (0.005) 

Four-factor alpha [t-55] -0.018* 0.001 -0.007 0.001 -0.002 
 (0.010) (0.004) (0.007) (0.007) (0.004) 

Four-factor alpha [t-56] 0.013 -0.002 0.009 -0.009 0.004 
 (0.010) (0.004) (0.006) (0.006) (0.004) 

Four-factor alpha [t-57] 0.005 -0.001 -0.003 0.001 -0.002 
 (0.008) (0.003) (0.005) (0.006) (0.004) 

Four-factor alpha [t-58] 0.006 -0.001 -0.005 0.006 -0.003 
 (0.012) (0.004) (0.005) (0.007) (0.004) 

Four-factor alpha [t-59] -0.009 -0.002 -0.005 0.005 -0.006 
 (0.014) (0.004) (0.007) (0.005) (0.005) 

Four-factor alpha [t-60] -0.004 0.001 0.001 0.000 0.000 
 (0.009) (0.003) (0.004) (0.006) (0.003) 

Intercept -0.001 -0.001*** -0.001*** -0.000 -0.001*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
      

Adj. R2 0.266 0.274 0.265 0.277 0.271 

Obs 17389 190090 68448 69554 137925 
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Table 32: Economic Significance of Predictability with the 60-lag model 
 

This table shows the monthly value-weighted net returns and four-factor alphas on portfolios formed using 

the predicted value from regression model of four-factor alpha on 60 lags of monthly four-factor alphas. 

Each month, funds are assigned to ten portfolios based on this predicted value and the performance of each 

portfolio is tracked for one month, with the process repeating every month. Column (1) reports the net 

returns of each portfolio averaged across all funds in the portfolio using prior month TNA as weights. 

Columns (2) to (6) report the four-factor alpha and betas from regressing the VW-weighted net returns time 

series of each portfolio in the full sample on the Fama-French-Carhart four factors. Decile 1A is the bottom 

third sub-division of decile 1 which has funds performing poorly on the metric used to form portfolios. 

Decile 10C is the upper third sub-division of decile 10 which has the best-performing funds on the metric 

used to form portfolios. Last three rows of the table report performance of spread portfolios formed from 

the other portfolios. The sample comprises actively managed US domestic equity funds during the period 

Jan-1999 to Dec-2017 excluding Institutional and Retirement funds. Statistical significance is assessed 

using standard errors that are robust to heteroscedasticity. ***, **, * indicate statistical significance at the 

1%, 5%, 10% levels respectively. 

 

Performance at (t) of portfolios sorted on predicted value from the model with 60 lags of FFC4 alphas 
 Net Return  𝛼𝐹𝐹𝐶4 𝛽𝑚𝑘𝑡 𝛽𝑆𝑀𝐵 𝛽𝐻𝑀𝐿 𝛽𝑈𝑀𝐷 

Portfolio  (1)  (2) (3) (4) (5) (6) 

Bottom 10 funds 0.404  -0.629*** 1.173*** 0.485*** -0.147** -0.068 

Decile 1A 0.633*  -0.328*** 1.099*** 0.403*** -0.109** -0.124*** 
        

Decile 1 (Bottom) 0.655*  -0.285*** 1.072*** 0.368*** -0.124*** -0.095*** 

Decile 2 0.690**  -0.194*** 1.009*** 0.240*** -0.111*** -0.039*** 

Decile 3 0.737**  -0.162*** 1.032*** 0.209*** -0.099*** -0.028** 

Decile 4 0.728**  -0.170*** 1.039*** 0.150*** -0.159*** -0.032** 

Decile 5 0.780**  -0.094** 1.012*** 0.116*** -0.091*** -0.011 

Decile 6 0.759**  -0.108** 1.006*** 0.100*** -0.100*** -0.023 

Decile 7 0.816***  -0.055 1.008*** 0.094*** -0.092*** 0.007 

Decile 8 0.856***  -0.019 1.012*** 0.093*** -0.072*** 0.013 

Decile 9 0.815***  -0.066 1.018*** 0.100*** -0.085*** 0.029** 

Decile 10 (Top) 0.898***  0.021 1.004*** 0.140*** -0.127*** 0.038* 
        

Decile 10C 0.894***  0.011 1.007*** 0.186*** -0.150** 0.017 

Top 10 funds 0.912***  0.041 0.966*** 0.322*** -0.178*** 0.043 
        

10-1 Spread 0.243**  0.306*** -0.068** -0.228*** -0.003 0.133*** 

10C-1A Spread 0.261*  0.339** -0.092* -0.218*** -0.041 0.141*** 

Top 10-Bottom 10 

Spread 
0.508**  0.670*** -0.207*** -0.163* -0.031 0.111 
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Table 33: Economic Significance of Predictability with One-month Net Returns 

 

This table shows the monthly value-weighted net returns and four-factor alphas on portfolios formed using 

one-month net returns in the prior period. Each month, funds are assigned to ten portfolios based on their 

net returns in the prior month and the performance of each portfolio is tracked for one month, with the 

process repeating every month. Column (1) reports the net returns of each portfolio averaged across all 

funds in the portfolio using prior month TNA as weights. Columns (2) to (6) report the four-factor alpha 

and betas from regressing the VW-weighted net returns time series of each portfolio in the full sample on 

the Fama-French-Carhart four factors. Decile 1A is the bottom third sub-division of decile 1 which has 

funds performing poorly on prior 1-month net return. Decile 10C is the upper third sub-division of decile 

10 which has the best-performing funds on prior 1-month net return. Last three rows of the table report 

performance of spread portfolios formed from the other portfolios. The sample comprises actively managed 

US domestic equity funds during the period Jan-1999 to Dec-2017 excluding Institutional and Retirement 

funds. Statistical significance is assessed using standard errors that are robust to heteroscedasticity. ***, 

**, * indicate statistical significance at the 1%, 5%, 10% levels respectively. 

 

Performance at (t) of portfolios sorted on 1-month net return at (t-1) 
 Net Return  𝛼𝐹𝐹𝐶4 𝛽𝑚𝑘𝑡 𝛽𝑆𝑀𝐵 𝛽𝐻𝑀𝐿 𝛽𝑈𝑀𝐷 

Portfolio  (1)  (2) (3) (4) (5) (6) 

Bottom 10 funds 0.026  -0.823*** 1.224*** 0.237* -0.192 0.057 

Decile 1A 0.302  -0.528*** 1.216*** 0.194* -0.122 0.026 
        

Decile 1 (Bottom) 0.407  -0.374*** 1.169*** 0.126 -0.062 -0.003 

Decile 2 0.494  -0.252*** 1.114*** 0.076 -0.031 0.015 

Decile 3 0.558*  -0.147** 1.064*** 0.044 -0.043 0.006 

Decile 4 0.591**  -0.096* 1.045*** 0.018 -0.035 0.006 

Decile 5 0.629**  -0.052 1.012*** 0.058 -0.022 -0.008 

Decile 6 0.624**  -0.052 0.995*** 0.031* 0.011 0.021 

Decile 7 0.651**  -0.027 0.972*** 0.096*** -0.018 0.008 

Decile 8 0.717**  0.008 0.968*** 0.181** -0.032 0.027 

Decile 9 0.777***  0.079 0.931*** 0.208*** -0.021 0.017 

Decile 10 (Top) 0.885***  0.166 0.899*** 0.342*** -0.076 0.020 
        

Decile 10C 0.891**  0.186 0.853*** 0.420*** -0.127 -0.013 

Top 10 funds 0.828**  0.193 0.719*** 0.476*** -0.194 -0.045 
        

10-1 Spread 0.478*  0.539** -0.270** 0.215 -0.014 0.024 

10C-1A Spread 0.589  0.714** -0.363*** 0.226 -0.005 -0.039 

Top 10-Bottom 10 Spread 0.802*  1.016** -0.505*** 0.239 -0.002 -0.102 
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