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Abstract 

Representing Behavior with Recurrent Neural Networks 
By Ishan Saran 

Behavior is a complex process that operates across many time and length 
scales, in many different contexts, and differentially to a variety of external 
and internal stimuli. The necessity to quantify behavior in a precise and 
meaningful manner, however, is growing as the advent of new technologies - 
optogenetics, connectomics, optical imaging techniques - in the world of 
neuroscience has led to an explosion of assembling and analyzing large swaths 
of neural data. Here we investigate recurrent neural networks (RNNs) as a 
model of the underlying dynamics of Drosophila melanogaster and find the 
behavioral representation it constructs similar to representations built from the 
previously published results of postural time series. This is a markedly different 
result from that of RNNs applied to rat models and we investigate the 
implications.  
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1 Introduction

1.1 Defining the problem

With the advent of novel technologies, there has been a lot of work in the
field of neuroscience to assemble and analyze large swaths of neural data [1–
5]. The connectome of Caenorhabditis elegans has been fully realized [6] and
that of Drosophila melanogaster is soon on its way [7], with models being built
for other organisms as well [8, 9]. However, a rich description of the anatomy
and physiology of the brain does not immediately translate to an understanding
of the output of the brain. Namely, if we consider the input to be the set of
neuronal firing patterns and environment an organism is placed in, the output
would be something along the lines of behavior.

That a well-defined, precise, mathematically rich description of behavior
is a necessary precursor to understanding a mapping from neural circuitry to
behavior has been articulated by previous authors [10–12]. The problem lies
in the fact that there is no single precise, meaningful description of behavior.
Behavior operates on a variety of both time and length scales, it is context-
dependent and the set external and internal stimuli which modulate behavior
are not given equal weighting. They are hierarchically ordered and changing
over time. What numbers can capture the essence of behavior across these
scales while still being comprehensible to us? This is an open question, one
which will require a bit of work on the theoretical level. As a result of this, the
field as a whole has seen a continuum of approaches.

1.2 Traditional approaches to quantifying behavior

Traditionally, neuroscientists have studied animals in the lab setting. The
classic picture that comes to mind is the rat-in-a-maze experiment, where an
animal is put in an environment outside of its natural habitat and observed un-
der a set of contrived conditions. While this approach promises reproducibility
and interpretable results, the quantification of the behavior is defined into the
experiment, it didn’t fall out of observation of the animal. Moreover, the scope
of the behavior is limited and there is no guarantee at all that the behavior an
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animal is displaying is a part of its natural repertoire of actions. What if an
animal develops a set of actions just to accomplish the task?

Even if an animal is studied in its natural habitat, what numbers of the
animal would provide a meaningful representation of its behavior? If the goal is
to study a specific behavior of an animal, such as bird singing, then sometimes
a specialized set of numbers can describe the narrow repertoire of behavior,
such as song pitch, and this has certainly been done [13, 14]. However, with
other behaviors, such as aggression, the definition any researcher chooses, or
the set of actions which they count as aggressive, will have naturally imposed
researcher biases. This is true even if they wish to describe the entire repertoire
of behavior. If a researcher wants to minimize bias, they must take themselves
out of the analysis process. In other words, rather than themselves defining the
behavior, it should fall out naturally from the behavioral analysis.

1.3 Stereotyped behaviors and modern approaches

Similar to how a phase space describes the set of all possible states of a
system, we can define the notion of posture space as the set of all postures
an animal is capable of being in. While this set of states is quite large, the-
oretically limited only by the biomechanical limits of its morphology, animals
tend to occupy only a fraction of the total postural space. The movements
that it spends a lot of time performing are known as “stereotyped behaviors”
and are well-documented in the scientific literature. For example, head-bobbing
in pigeons [15], cribbing in horses [16], and wing grooming in bees [17] are all
well studied phenomena. Stereotyped behaviors offer a decomposable set of ac-
tions reproducible in a lab setting. It is imperative that whatever behavioral
analysis one undertakes should not predefine the notion of stereotypy into the
experiment, however. Rather, in understanding full repertoires of behavior, one
would want the stereotyped behaviors to fall out naturally from the analysis.
This ensures that stereotyped behaviors are a manner in which behaviors fun-
damentally decompose as opposed to merely being a convenient way in which
they are represented.

Greg Stephens and colleagues were the first to conceptualize behavior as a
trajectory through posture space with incredible success in C. elegans, deriving
equations of motions for the worms’ dynamics [18]. Thinking of behavior in this
way is beneficial because behavior is intrinsically a dynamical variable and has
led to significant discoveries into the nuances of animal behavior [19, 20]. Others
have identified the internal states which drive social behavior, for example, with
a mix of hidden Markov Models (HMMs) and generalized linear models (GLMs)
[21].

If one wishes to extract stereotyped behaviors from data, they generally have
to follow this pipeline [11]:
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Raw image data
Videos of animal

⇓
Image processing

Alignment, Segmentation
⇓

Postural time series
Animal tracking

⇓
Dynamical representation
Building a dynamical model

⇓
Behavioral representation

Clustering, low-dimensional embedding
⇓

Sequences & Patterns
Descriptive/generative model of animal behavior

Traditionally, quite a bit of effort has been needed to take the raw image data
to a postural time series, primarily because the tracking of individual animal
body parts has been a difficult computer vision problem. Recently developed
deep learning methods [22–24], however, have allowed high-throughput image
analysis. My research takes the output from one of these tracking software algo-
rithms applied to videos of freely moving fruit flies and works on the dynamical
representation step of the pipeline. In my thesis, I utilize yet another way to
quantify behavior: using recurrent neural networks to build a representation of
the underlying neural dynamics.

1.4 Recurrent Neural Networks

In a traditional feed-forward neural network, the information is solely prop-
agated forward; i.e. the input layer has unidirectional connections to the first
layer which has unidirectional connections to the second layer and so on and so
forth until the output layer. Each layer corresponds to a vector, and the con-
nections between the layers are contained within a weight matrix. This weight
matrix contains the weights which multiply the incoming vectors as the infor-
mation moves from layer to layer. Since information solely propagates forward,
the input vectors are independent of one another. RNNs, on the other hand,
have the ability to remember previous inputs. By introducing loops into the
architecture, the network can learn temporal dynamics. This makes the RNN
architecture particularly adept at handling time series and finding correlations
across various time scales in the data. In terms of network architecture, I used
a Long Short-Term Memory (LSTM) network, a popular RNN used to capture
dynamics of the input vector both on the long- and short-term scale. LSTM
networks have an architecture similar to traditional feed-forward networks with
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two important specifications: (1) they contain feedback connections, such that
the output of one cell is fed into the input of the next cell and (2) they have
the ability to ”remember” or ”forget” the previous state depending on a set of
rules. Below is a diagram of an individual LSTM cell (courtesy of Wikipedia,
Creative Commons License).

There are three gates which control the flow of information in an LSTM cell
and two avenues through which the information can go through. The two se-
quential sets of weights are c(t), the running cell state and h(t), the hidden cell
state, which are collectively referred to as the hidden states of the RNN. The
running cell state can be thought of as a weighting factor which stays relatively
unchanged and is modulated by the hidden state. Both the hidden state and the
running cell state are of the same length as the input time series and there is a
c(t), h(t) pair for every node in the network. The three gates are the forget gate,
the input gate, and the output gate, which are all sigmoid functions [Note: the
following figures of the individual gates are taken from Christopher Olah’s blog
post on LSTM networks titled “Understanding LSTM networks” [25]]. The sig-
moid function is given by σ(x) = 1

1+e−x and it maps x ∈ IR onto the interval [0,
1]. The forget gate modifies the previous cell state based on the following equa-
tion:

ft = σ(Ufht−1 +Wfxt + bf )

where Wf and Uf are the weight
matrices associated with the forget
gate, ht−1 is the previous hidden
state, xt] is the current input time se-
ries, and bf is the constant term (vec-
tor). If the output of the forget gate is
1, the previous cell state is completely
remembered (the values are retained)
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and if the output is 0, the previous
cell state is completely forgotten (reset to 0).

The input gate selectively adds a value to the running cell state based on the
following equation:

it = σ(Uiht−1 +Wixt + bi)

where Wi and Ui are the weight ma-
trices associated with the input gate.
If the output of the input gate is 1,
then the new value proposed to the
running cell state is added and if the
output is 0, then the running cell
state remains unchanged.

The output gate is one of the factors which is put into updating the hidden
state for the time point, ht, and is given by the equation:

ot = σ(Uoht−1 +Woxt + bo)

where Wo and Uo are the weight
matrix associated with the output
gate. If the output of the output
gate is 1, then the current cell state
is passed onto the hidden state (ct
and ht are equal) and if the output
is 0, then the hidden state will be 0,
in other words no information will be
carried over to the next cell.

The hidden states, then, are func-
tions of the input, output, and forget gates, as follows:

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

where c̃t = σ(WcxtUcht−1 + bc) and the � operator represents an element-wise
product such that the two vectors being multiplied retain the same shape. For
completeness, the dimensions of the vectors are as follows [26]:
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• xt ∈ IRl ; input vector of size l × 1

• ft ∈ IRh ; forget gate activation vector of size h× 1

• it ∈ IRh ; input gate activation vector of size h× 1

• ot ∈ IRh ; output gate activation vector of size h× 1

• ct ∈ IRh ; cell state vector of size h× 1

• ht ∈ IRh ; hidden state vector of size h× 1

where l is the lookback parameter described later and h is the number of
cells/neurons in the network. The dimensions of the weight matrices are:

• W ∈ IRh×l ; weight matrix of the input connections of size h× l

• U ∈ IRh×h ; weight matrix of the recurrent connections of size h× h

• b ∈ IRh ; bias vector of size h× 1

1.5 RNNs to represent behavior

We develop a recurrent neural network (RNN) model to build a dynami-
cal representation of the underlying forces driving the movement of Drosophila
melanogaster. The idea is that by building an RNN with many more parame-
ters than necessary to capture the fly’s movements, what will result is a chiefly
low dimensional representation embedded in a high dimensional space. Then,
the structure of the resulting manifold can be visualized with dimensionality
reduction techniques to analyze the clusters in the high dimensional space. Our
hypothesis is that the representation that the RNN builds will be cleaner than
the representation the raw postural data itself yields.

There are many reasons to believe an RNN will be able to capture the
underlying dynamical system governing the fly’s actions. For one, the underlying
hidden states of the RNN are inherently dynamical - they vary as a function of
time. Secondly, the “memory” associated with RNNs lends naturally to the fact
that behaviors operate across scales - the RNN can learn connections on both
short and long timescales as its architecture naturally lends to that. RNNs
also act as denoising filters, reducing the jaggedness of the input time series
when fed forward. Finally, and this is much more down the line, RNNs can
be linked to each other sequentially to form an “encoder-decoder architecture”
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where a much lower dimensional representation must be learned to translate
the input to the output. A similar “encoder-decoder architecture” exists in
the brain - there must be data compression of some sort from the brain to
the set of movements, since the number of motor neurons and neurons in the
neck are orders of magnitude fewer than those in the brain. Thus, one could
hope an RNN could learn the method in which the brain encodes information
as it is being sent down the bottleneck that is the neck. There is a sense in
which behavior operates on many scales - the kinematics, the behaviors, and
the “mood” of the animal. Another one of the benefits of linking RNNs together
is each RNN could represent a different modality in which behavior operates.

2 Data

The data was taken from a data repository which contains the outputs of
LEAP, LEAP Estimates Animal Pose, a tracking software to track selected
points on an animal [22]. The tracking algorithm was applied to videos of freely
moving fruit flies on a 2-d surface. There are 32 tracked points in total, described
in Figure 1. There are a total of 30 prediction files, each with N ∼ 3.6 × 105

frames. For each of the 32 joints both x and y positions were tracked, leading
to 30 (N x 2 x 32) time series arrays, on the order of 108 frames in total.

Figure 1: User-defined skeleton of fly with tracked points. The points
of the fly were manually encoded for ∼ 1500 frames and LEAP (referred to
above) generated predictions based on data. Figure courtesy of Pereira (2019)
[22]
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2.1 Fly recording experiments

The original videos of the freely moving fruit fly consisted of 59 male and
51 female D. melanogaster (Oregon-R strain) in a circular arena. The flies were
restricted to a 2-D plane of movement and the arena was coated in a repellant
silane compound to minimize long bouts of upside-down walking. The camera
recorded at 100 Hz and the size of the frames were a 200 x 200 pixel square
containing the fly. Each fly was recorded for periods of 1 hour, yielding 3.6×105

frames for each individual and 4× 107 frames total. The flies were all of similar
age (time after eclosion was controlled for) and the time (to control for circadian
rhythm specific behaviors) and temperature (to control for temperature specific
behaviors) at which the recording was conducted was held constant. For more
information on the original fruit fly videos, including the arena and camera
specification, see the imaging apparatus in [20].

2.2 Pose estimation with LEAP [22]

LEAP takes videos of animals as input, videos of the aforementioned freely
moving fruit flies in my case, along with user annotated frames and predicts the
animal pose for every frame given. LEAP uses a convolutional neural network
(CNN) to generate an estimate and a confidence map for each of the joint posi-
tion time series. The network architecture is simple, generalizable, and requires
only a few labeled frames before the network generates reasonable estimations
which can then be corrected by the user. LEAP consists of a 15-layer CNN,
with a set of convolution-max pooling layers whose weights are updated during
training. The strength of LEAP lies in the fact that only a relatively few num-
ber of iterations are required to obtain a set of initial values which are fairly
good. Then, one can iteratively correct the generated labels with a far reduced
labeling time per frame. The authors note the network is able to achieve <2.5
pixel error (2-3% of the flys body length) in 74% of the data with only ten
labeled images, in some cases. The data set I used had 1,500 labeled images
to train the network and <3 pixel error in 87% of the test set (N = 168 test
frames, from 7 held-out flies).

For more information on the network architecture and training/benchmark
methods, see [22].

3 Methods to fit data

3.1 Data pre-processing

3.1.1 Converting to joint angle time series

First, the position time series was converted to a joint angle time series.
For each body point tracked except for points 4 and 5, the angle between two
vectors: the mesothoracic phragma-neck vector (points 4 & 5 in Figure 1-2)
and the mesothoracic-point in question vector was calculated. Converting from
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positions to joint angles was beneficial because it reduced the dimensionality of
the problem from tracking 64 coordinates (x & y positions of 32 points tracked)
to 30 coordinates (the angles except for the mesothoracic phragma and neck,
which redefined the x-axis), which led to quicker computations. Joint angles are
also useful because they are independent of body orientation and body size and
although the dataset generated from LEAP came with aligned data, in principle
this is not required for angle calculation.

Figure 2: Example of defined angles for angle conversion calculation
θ1 corresponds to the angle of the meso-thoracic phragma neck vector to the
x-axis of the image and θ2 corresponds to the angle angle of the joint of interest
to the x-axis. Then, the angle α can be determined from subtracting the two
angles and applying a set of rules.

The angle calculation was done for each point (take, point 7, the right foreleg,
for example) by defining two vectors: ~v4, the vector from the mesothoracic
phragma (point 5) to the neck (point 4) and ~vi, the vector from the mesothoracic
phragma to the point of interest (~v7 for the right foreleg). Each of the angles
with respect to the original coordinate plane’s x-axis was calculated by taking
the arctangent of the y

x values for each of the vectors to get θ1 and θ2, as shown
in Figure 2. Then, the angle α between the two vectors is

α =


θ2 − θ1, if θ2 − θ1 ≥ 0

θ2 − θ1 + 2π, if θ2 − θ1 < 0 and i ∈ {8, 9, 10, 17, 18, 31}
θ2 − θ1, if θ2 − θ1 ≤ 0

θ2 − θ1 − 2π, if θ2 − θ1 > 0 and i ∈ {6, 20, 21, 22, 29, 30, 32}
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where i corresponds to the i-th index of the vector ~vi, for each of the points
tracked, going from 1 to 32, excluding 4 and 5 (since it wouldn’t make sense to
draw the vector over itself, the angle would just be 0). Arctangent has a range
of [−π, π] and for any vector above the x-axis would return a positive value from
[0, π) and any vector below x-axis would return a negative value from (−π, 0].
The indices in the second conditional correspond to the points on the right side
of the fly and the indices in the fourth conditional correspond to the points on
the left side of the fly. As seen in figure 2, though, sometimes the fly’s wings
would cross the x-axis defined in the original coordinate system, which would
shift the value from π to −π or vice versa rapidly, causing a discontinuity in
the time series plots. This occurred for the wings, femur-tibia and tarsus tip
connections (the points more lateral/further away from the body) and during
grooming behaviors especially. In order to make the joint angle time series
continuous, the angles which belonged to the right side of the fly were redefined
to be 2π plus (or minus, if the points were on the left side of the fly) their initial
value if they crossed the axis, which is what the second and fourth conditionals
check for.

3.1.2 Median-filtering the data

Figure 3: Median-filtering gets rid of some peaks, which corresponds
to tracking errors. The x-axis is in units of number of frames. The video is
taken at 100 Hz so each frame corresponds to 1/100ths of a second

Next, the joint angle time series was passed through a median filter of window
length 3 time points. A median filter is a common data pre-processing technique
whereby a moving window is run through a time series and at each point, the
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median of the set of points in the window is calculated. The median filter is
a great way to reduce noise, or tracking errors from LEAP. This is especially
important because even if the network makes substantial tracking errors 0.5% of
the time, this still corresponds to ∼ 5×105 problematic frames. Median-filtering
allows us to greatly reduce the frequency of these erroneous frames. Figure 3
demonstrates some of the peaks (in blue) which get glossed over with a median
filter.

With median-filtering, there is a trade-off between denoising the data, and
getting a representative chunk of the data. The larger the kernel window, the
more data is getting glossed over, which means there are less points to work with,
but a smaller kernel size means more errors. Given that the RNN is hypothesized
to build an internal representation of the underlying neural dynamics, it should
also denoise the input time series. Since this is the case, a smaller kernel window
can be used in hopes of finding a denoised output time series (which is confirmed
later) but still helping alleviate tracking errors.

The median filter was performed with SciPy’s signal Median Filter function.

3.1.3 Splitting the data into train-validation set

The data were concatenated into a training set and validation set. Because
the network architecture is stateful - which just means the internal states are
kept across batches as opposed to reset to 0 after every batch (stateless) - the
angle time series was shaped in such a way that the batch-size b and lookback
l parameters were taken into account. The batch-size parameter is the number
of input vectors which are fed into an RNN at the same time and the lookback
parameter is the number of time points the RNN has access to, in other words
the size of the input vector. For the purposes of the RNNs built, b = 32
and l = 100. The data were concatenated as diagrammed in Figure 4, where
{α, β, ..., ω} are the set of angles measured; α corresponding to the first point,
the tip of the head, β corresponding to second point, the left eye, and so forth.

The 32 individual time series of size Nl × na - where na = 30 is the number
of joint angles and Nl = N( lb ); lookback and batch-size are RNN parameters
and N = 105 - were shaped into a multidimensional array of size N × l × na
which was split into a final training and validation set, of sizes 0.8N × l × na
and 0.2N × l× na, respectively. The data was shaped in a way such that every
32nd value corresponded to the same angle, or {0, 32, 64, ..., 99968} correspond
to the α angles, {1, 33, 65, ...99969} correspond to the β angles, and so on.
More concisely, the indices which correspond to α can be defined as iα = {n | n
mod 32 = 0} and so on.

3.1.4 Standardizing the data

In order to train the network more efficiently, the joint angle time series
was standardized. This was done by subtracting the mean and dividing by the
standard deviation of every point for each individual time series, or z-scoring
the joint angle series. In order to ensure no information from the validation set
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Figure 4: Concatenation of time series into training data set. Nl = Nl, where
l = 100 is the lookback parameter for our RNN, a measure of how many points
previous in the time series it looks to generate its future prediction

seeped into the model (and more for good practice), the mean and the standard
deviation of the training set was applied to both the training and validation set.
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3.2 Building a dynamical model: feeding the data into an
RNN

3.2.1 RNN Hyperparameters

The hyperparameters listed here are not exhaustive, but they are represen-
tative of the tuning factors and if there were hyperparameters not mentioned
here, they were kept the same across all models. The first parameter in the
RNN is the batch-size. The batch-size is the number of input vectors which get
fed into the RNN. A batch-size of 32 was used for all of the RNNs.

I used the Adam learning rate optimizer, which is the default optimizer
for the learning rate. The Adam optimizer is an adaptive learning parameter,
which means it has a running learning rate for each of the parameters. The
Adam optimizer also modifies the learning rate according to the first and second
moments of the gradient, where the moments are the same as in probability and
statistics:

n-th moment: mn = E[Xn]

In terms of network architecture, I used a Long Short-Term Memory (LSTM)
network, a popular RNN used to capture dynamics of the input vector both on
the long- and short-term scale. LSTM networks have an architecture similar to
traditional feed-forward networks with two important specifications: (1) they
contain feedback connections, such that the output of one cell is fed into the
input of the next cell (there is nt necessarily a sequential order of cells, the
output can be fed into many cells) and (2) they have the ability to ”remember”
and ”forget” the previous state depending on a set of rules.

The input vectors are of size l×na, where l is the lookback parameter and na
is the number of angles, 30. The lookback parameter is a measure of how large
the input time series is and it tells the network how far to “look back,” or the
amount of temporal information provided to the network. Since the data taken
was at 100 Hz, the lookback corresponds to a time of 1 second. This means that
the network takes information from up to one second ago and predicts the next
instance of the fly’s movement.

We tested both stateful and stateless LSTM networks. Stateless networks
are those where the initial internal states between every batch, h0andc0 are
set to 0. Stateful neteworks are those where the initial internal states of one
batch are the internal states of the previous batch, in other words the hidden
and cell states carry forward. Stateful networks turned out to build a better
representation, because of the fact that the sequences were made in such a way
that each batch held consequtive time points. This meant that the sequences
were highly correlated with one another, and stateful LSTMs work best when
the sequences are correlated with one another (time series, especially). An
epoch is when the entire dataset has been passed through the RNN forwards
and backwards once.
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3.2.2 1-layer RNN hyperparameters

Batch-size: 32
Number of LSTM cells/neurons in network: 128
Number of training epochs: 126
Number of principle components which explained 95% variance: 55

3.2.3 2-layer RNN hyperparameters

Batch-size: 32
Number of LSTM cells/neuron per layer: 64
Number of training epochs: 255
Number of principle components which explained 95% variance:

Layer 1: 35, Layer 2: 32

3.2.4 3-layer RNN hyperparameters

Batch-size: 32
Number of LSTM cells/neuron per layer: 64
Number of training epochs: 497
Number of principle components which explained 95% variance:

Layer 1: 37, Layer 2: 32, Layer 3: 24

3.3 Building a behavioral representation

3.3.1 Extracting hidden states from RNN

Once the RNN was trained, the hidden states of the RNN were extracted.
The hidden states ~h(t),~c(t) ∈ IRh are also vector time series of the size Ntot× 1
and there are nc total hidden state vectors - one corresponding to each neuron.
Thus, the total number of hidden state vectors can be concatenated into a
matrix of size Ntot× 2nc, where nc is the number of neurons, 2nc because there
are both ~h(t) and ~c(t) weights. Note that for training, N = 105 samples were
used but the hidden states were extracted by externally driving the RNN on
all 30 input time series of N ∼ 3.6 × 105 for a total of Ntot ∼ 1.08 × 108. The
“external driving” consists of having the RNN predict the next time series value
as diagrammed in figure 5 and updating the hidden states based on the error.

The δ′is were based on the difference between the prediction and the actual
value, α′i − αi. The actual values predicted were less important than driving
the hidden states to values for analysis and the result were vectors concatenated
into a matrix of all the hidden states. Because analysis of the layers were done
separately - meaning behavior maps were created for each layer - the size of the
hidden weights matrix was different for the 1-layer RNN to the 2- and 3- layer
RNN, but the analysis remained the same.

In theory, the hidden states have created a representation of the dynamics
governing the fly’s output (behavior) in some high-dimensional space, IR2nc ;
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Figure 5: Hidden states were driven by feeding in time series, where
weight updates are proportional to prediction differences

the dimension being IR256 for the 1-layer RNN and IR128 per layer for the 2-
layer RNN. However, as stated earlier, animals tend to occupy ony a small
fraction of this space - meaning that the actual dimensionality of the behavioral
representation is one of much lower dimension. In other words, the actual
posture space is a low dimensional manifold living in this high dimensional
state space. The goal now is to reduce the dimensionality via the following
steps.

One more thing to note: the ~c(t) hidden cell state is generally tanh’d to
keep the values between -1 and 1. Otherwise, these values are not comparable
to the hidden state values, which are naturally kept on the interval [0, 1]. So,

the matrix actually consists of ~h(t) and tanh(~c(t)).

3.3.2 PCA on hidden states of RNN

Principle component analysis (PCA) is a technique used to find the axes
along which the most variance is explained. After finding the axes along which
the most variance is explained, PCA redefines the input data based on the new
components, the “principle components.” PCA ensures that the new compo-
nents it finds are linearly uncorrelated, however they can and usually are a
linear combination of the original components. So, if the original components
are {h1(t), h2(t), ..., h128(t), c1(t), c2(t), ..., c128(t)}, then a new first component
could be pc1(t) = a1h1(t) + a2h2(t) + ...+ b1c1(t) + b2c2(t) + ... where a1, a2, b1
and b2 are all constants. Performing PCA on the weight matrix will return
a matrix of the same size, but in principle, only a small fraction of the total
components are necessary. Rather than holding a constant number of principle
components however, we just see how many principle components are necessary
to cross the 95% variance explained threshold, this will be different for each of
the layers.

Importantly, PCA captures linear correlations and does not capture corre-
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lations that are non-linear. The way in which PCA maximizes the variance for
each new component added is not discussed here, but has been elaborated on
elsewhere (it essentially solves the eigenvalue-eigenvector decomposition prob-
lem for the covariance matrix). For our purposes, it is suffice it to say that
the principle components are linear combinations of the original hidden states
and the top principle components explain most of the variance and one can
get arbitrarily close to explaining all the variance (all the principle components
would explain all the variance, but then the dimensionality remains the same),

where variance is the same variance as in statistics: σx =
〈
x2
〉
− 〈x〉2. A new

matrix, ←→pc of size Ntot × j is created, where again j is the number of principles
components required to explain 95% of the variance.

3.3.3 Wavelet transform of principle components

Morlet Wavelet (figure courtesy of
Wikipedia, Creative Commons License)

A Fourier transformation on a
function decomposes the function into
its constituent frequencies. Simi-
larly, a wavelet transform decomposes
a function into its constituent fre-
quencies, but it also captures fre-
quency dynamics at multiple time
scales. Whereas a Fourier transform
sweeps different sine and cosine waves
to reconstruct the original time se-
ries, the wavelet transform sweeps
wavelets. The notable features of a
wavelet are that it integrates to 0, and
it can get arbitrarily close to 0 at ±∞.
Since sine and cosine waves have the same structure across time, what wavelets
add is the ability to resolve in time, which is why the wavelet transform is a
function of both time and frequency whereas the Fourier transform is just a
function fo frequency.

The wavelet we used is the real-valued Morlet wavelet, which is a sinusoidal
wave - generally a sine or cosine wave - multiplied by a Gaussian function. The
Gaussian function serves to localize the wave into a Gaussian wave packet and
the wavelet can be defined as:

ψ(η) = π−
1
4 eiωηe−

η2

2

Then, a wavelet transform is the following:

W (s, τ)[pci(t)] = 1√
s

∫∞
−∞ pci(t)ψ

∗( t−τs )dt

We perform the wavelet transform on 25 frequencies over a range of 0.5 to 50
Hz, dyadically spaced (dyadically spaced just means that the frequencies aren’t
equally spaced but rather more are concentrated near 0.5). This leads to a new
vector of the same size as the previous vector for each frequency, the resulting
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matrix is a spectrogram of size Ntot × 25j. This is a pretty large matrix, if
there are 30 principle components which explain 95% of the variance, then the
spectrogram is a subset of IR750. Again, we rely on the fact that although this
spectrogram lives in a high-dimensional space, it only occupies a small region -
it is chiefly low-dimensional.

3.3.4 Creating a behavior map with t-SNE

Finally, we apply a dimensionality reduction technique known as t-distributed
Stochastic Neighbor Embedding (t-SNE)[27]. Considering data in high-dimensional
space, one way we can categorize structure is global versus local. Global struc-
ture would be structure in data which is describes far away from each other.
The opposite of global structure would be local structure, which describes points
which are close to one another. Most dimensionality reduction techniques -
PCA, Isomap, multi-dimensional scaling, etc. - preserve the global structure
of the data at the cost of local structure. This translates to points which are
close together in high-dimensional space being potentially separated in the low-
dimensional representation. However, t-SNE preserves local structure at the
cost of global structure (and one other thing) - which is precisely what we want,
since postures which are “close” together in high-dimensional space should be
clumped together and we are not too concerned with postures which are very
much different being kept in the same global orientation - as long as they are far
apart in the low-dimensional representation, it does not matter where. t-SNE is
a great candidate for visualizing the spectrogram behavior space, then. What
t-SNE preserves is the transition probability defined as

pj|i =
exp(−

d(ti,tj)
2

2σ2
)∑∼25

k 6=i exp(−
d(ti,tk)2

2σ2
)

where d(ti, tj) is the distance between the two points which is defined as the
Kullback-Leibler (KL) divergence between two feature vectors. The transition
probability of going from point ti to tj is a function of the distance and it is the
probability that you would go from one point to another if you were to take a
random walk from that point, assuming that the probability of transitioning to
the point you are currently at is 0.

The other cost of performing the t-SNE algorithm is that it is computa-
tionally intensive - it scales as O(N2) with respect to memory. However, a
clever sampling method developed previously reduces the scaling to O(NlogN)
by sampling representative points from each of the 30 datasets to create a full
embedding from all the data. The resultant 2-d map is a representation of the
high-dimensional spectrogram.

3.4 Identifying stereotyped behaviors

3.4.1 Peak-finding with Gaussian smoothing

Although the 2-d map generated from t-SNE is a representation of the be-
havior space, it is largely uninterpretable unless the clusters from the map can be
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Figure 6: Behavior map of raw postural time series. (a) are the coarse-
grained watershed regions and (b) is the t-SNE density map [σ = 1.5]. Figure
courtesy of Berman (2014) [20]

distinguished from one another. Since the map contains millions of data points,
however, where points are concentrated isn’t immediately obvious. Turning the
map into a probability density function allows us to visualize the peaks. A prob-
ability density function can be obtained by convolving every point in the dataset
with a Gaussian function; depending on the width of the Gaussian, maps with
different granularities will arise. A smaller σ value corresponds to a narrower
Gaussian peak and therefore finds more peaks while a larger σ alue corresponds
to a broader Gaussian with fewer overall peaks. The peaks can also be clipped
by a value, clim to ensure that they do not dominate other peaks. This clim
generally is somewhere on the interval [0.3, 0.7].

Figures 6b and 7a are the behavior maps generated from performing the
aforementioned analysis on 50 fly PCA modes and raw postural time series.
The first behavior map is a 1250-dimensional space (25 frequencies times 50
postural modes) so it gives a sense of the dimensionality of the behavior space.
These maps offers a good comparison for the maps generated from the RNNs,
as they also represent projections from a high-dimensional behavior space onto
a 2-d plane.

3.4.2 Watershed transformation

The watershed transformation is a common image segmentation technique
used to divide an image into different regions [28]. The number of watershed
regions identified by the algorithm depends on the number of peaks present, so
it is also a function of the Gaussian σ value, where a lower σ will find a larger
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Figure 7: Behavior map of raw postural time series. (a) is the t-SNE
density map [σ = 0.65]and (b) are the coarse-grained unlabeled watershed re-
gions. Figure courtesy of Pereira (2019) [22]

number of watershed regions and a larger σ will find less watershed regions.
If there are a larger number of watershed regions, each behavior region would
be a coarser description of the animals movements at that time whereas more
watershed regions would mean each the regions would have behaviors with finer
detail separated from other regions. For our purposes, we have the watershed
algorithm vary the σ value of the Gaussian until it finds somewhere between 125
and 150 regions, but in theory the number of watershed regions can be anything
as well. Since σ itself is a parameter, one can derive arbitrarily subtle behaviors.
This represents the transition from discrete behaviors to continuous behaviors.

Figures 6a and 7b are the watershed regions generated from [11] and [22]
corresponding to the behavior maps in the previous section. We can see that
more coarse behaviors can be studied by choosing a smaller number of watershed
regions as in [22] or finer behaviors can be studied by choosing a larger number
of watershed regions as in [11]. Moreover, the larger number of regions will
encapsulate the smaller regions within it, as one would expect with coarse and
finer behaviors.

3.4.3 Composite movies

Each point in the watershed (and t-SNE) map can be traced back to a
single frame in one of the fruit fly videos. Points in a watershed region can
be extracted;the frames ordered and a mini snippet in time can be constructed
of the fly which corresponds to that region in the behavior map (and more
generally, the behavior space). Based on those videos, then, the behavior space
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can be retroactively segmented into descriptive regions. If we pull multiple
videos of flies performing the same stereotyped behavior from one region and
play them next to one another, we can visually analyze the videos and see the
flies are doing similar things. Playing these videos side-by-side and in synchrony,
we can create composite movies to see what the flies are doing to generate
descriptive attributes in each of the watershed regions.

The composite movies for the joint angles, joint positions, and each of the
RNN layers can be located by clicking here∗. The folders are described by the
total number of layers first and then the layer which the folder corresponds to;
e.g. RNN-layer3.2 corresponds to the 2nd layer of the 3-layer RNN.

* https://www.dropbox.com/sh/r96cx3qz5v1mybd/AACQufWCJg93N1wo9XBi6mPma?dl=0

Figure 8: Screenshot of composite movie video. All flies are taken from
a single region and placed side-by-side in a grid performing the same action

https://www.dropbox.com/sh/r96cx3qz5v1mybd/AACQufWCJg93N1wo9XBi6mPma?dl=0
https://www.dropbox.com/sh/r96cx3qz5v1mybd/AACQufWCJg93N1wo9XBi6mPma?dl=0
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4 Results

We hypothesized that RNN representation would minimally produce a cleaner
version of the map generated directly from postural data; RNNs should hope-
fully capture the essential temporal correlations in the time series data fed in
and correspondingly the most important parts of the temporal dynamics would
be extracted. When forced into a lower-dimensional space, then, the peaks
would be more finely separated into distinct movements, and ideally more finer,
subtler, and detailed behaviors could be realized via watershed transformation.
The general behavior pipeline to get from outlined below.

Figure 9: The pipeline for getting coarse-grained watershed regions
from a t-SNE density map. Each frame in the t-SNE generated map corre-
sponds to a single frame. Frames which exist in a similar region in the behavior
map and are from the same video can be temporally ordered and played to
create a movie. From analysis of the movies, coarse-grained behavior maps can
be generated corresponding to the stereotyped behaviors the fly is performing
at each region.

4.1 Model errors

We trained the RNN network to predict the output at the next time step of
the fly; not the behavior, but the dynamics, in the hopes that we would glean
the behavior from analyzing the interal states. One thing we can do is check
exactly how good the model is at predicting the next time point. Say, in theory,
the model was perfect at predicting fly behavior. Then the simulated fly would
be as good as a real fly (a freely moving fruit fly, at least - nothing can be said
about how it might react to stimulii) and the simulated fly could be studied for
behavior dynamics, which would save hundreds of research hours in developing
the tools to study fly behavior - building elaborate chambers, setting up high-
speed cameras, tracking algorithms, etc. One way in which we can quantify the
error of the model is by looking at the predictions of the RNN compared to the
actual values of the fly’s movement, an error which is often quantified by mean
squared error. The mean squared error for the 1-layer, 2-layer, and 3-layer RNN
are 1.53× 10−3, 1.69× 10−3, and 1.50× 10−3 radians (0.088, 0.097, and 0.086



22

degrees) respectively. However, the mean squared errors tells nothing of the
distribution of points.

Figure 10: Error distribution for 2-layer RNN. Gaussian fit overlayed; µ
and σ for this plot are 5.2× 10−4 and 1.0× 10−2, respectively.

If the goal was to predict the future dynamics of the fly, then the mean
squared error would be a good metric since mean squared errors tend to place
more weighting on outliers - points which are far off represent a greater chunk of
the mean squared error; outliers would greatly impact fly movement predictions
if they were used as the input to drive predictions. Even small errors magnify
over time, but they matter less if the error magnification can be constrained
for the relevant time scale. However, the goal in general was not to maximize
the prediction success but to build the interal states of the RNN for analysis.
Therefore, we were more interested that most of the points were correctly cate-
gorized and less worried about outliers - which were bound to exist but did not
affect analysis. Thus, another way to quantify the error of the RNNs was to fit
a Gaussian to the distribution of errors and look at the width of the Gaussian.
Figure 10 is an example of the typical error distribution for all the angles; the
σ’s for the RNNs are all 1× 10−2 radians to four decimal places, corresponding
to around half a degree. For example, 98% of values lie in the FWHM range
(2
√

2ln2σ), within ±0.235 radians (1.346 degrees) of the true value.

4.2 Joint angle behavior map

First we look at the joint angle representation versus the joint position rep-
resentation (with x- and y- coordinates). Figure 11 compares the two behavior
maps generated for the joint angles and positions. Note the fact that the σ and
clim values are not the same is not a problem, since the values are based on the
map generated - in order to best visualize the peaks. Regardless, we can see
there are a couple of notable similarities and differences between the maps. For
one, the joint angle time series is slightly more spread out. The peaks are also
slightly more defined in the joint angle representation - presumably a combina-
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Figure 11: Behavior map generated from joint angles (left) versus
positions (right) - no RNN involved yet. (a) [probability density param-
eters: σ = 0.5; clim = 0.3;P (x) ∈ [0, 5 × 10−4]] and (c) are the density plots
which correspond to the joint angle representations and (b) [probability density
parameters: σ = 0.0.6; clim = 0.55;P (x) ∈ [0, 8 × 10−4] and (d) correspond to
the joint position representations. Key features to look out for are dual peaks
in the posterior region, the arc in the locomotion region, and the transition to
larger velocities in moving from the slow to locomotion regions.

tion of the fact that the noise associated with two variables x and y is more than
the noise associated with a single variable θ and the dimensionality of the joint
angles space is significantly lower than the dimensionality of the joint positions
space.

Additionally, there seems to be an arc-like region shared by the two maps.
Indeed, when the watershed regions are generated for the two maps, both of
the arcs correspond to locomotion. In fact, starting medially from center of the
map and following the arc outwards corresponds to faster and faster velocities
of fly locomotion. While these are represented as discrete states in the behavior
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map, it may be more apt to talk about this behavior in terms of a continuous
stretch from slow behaviors to fast locomotion.

Another thing to notice - the joint position behavior map is split into around
20 different coarse-grained groups whereas the joint angles behavior map into
around 120 groups - which caused the joint angle map to be much more jaggedy
around the corners, or more finely delineated. This is an artifact of choosing
a smaller σ value for the Gaussian smoothing, which led to more peaks being
captured; both end up leading to the same coarsely defined regions.

Indeed, the regions generated by both the joint angles and joint positions
contain characteristic dual peaks in the posterior region. What’s fascinating
about these peaks is that they presumably represent some symmetrical topol-
ogy in the high-dimensional behavior space. A look at the corresponding re-
gions with composite movies tells us that these regions correspond to right-wing
grooming and left-wing grooming [composite movies 30 and 84 in the raw joint
angle space correspond to the left and right wing grooming, respectively; com-
posite movies 46 and 115 in RNN-1.1layer; composite movies 12 and 40 in
RNN-2.2layer]. Grooming is a particularly abundant stereotyped behavior in
fruit flies; flies spend a lot of time grooming. The symmetry of the peaks tells
us something about the manner in which symmetric behaviors might show up
in the behavior map. However, this does not necessarily mean that symmet-
ric regions in the lower dimension space are a reflection of symmetries in higher
dimensions, this may just be an artifact of the dimensionality reduction method.

One final thing to note is that there is no issue with the anterior and idle
regions being swapped between the joint angle map and the joint positions map.
t-SNE sacrifices global structure in order to preserve the local structure as it
creates the lower-dimensional representation, so coarse regions such as posterior
and idle may be swapped with one another. t-SNE is invariant to rotational
and translational changes to data and with the right amout of rotating and
inverting across axes, we could get the watershed maps to match up with the
density maps by applying the appropriate transformations.

4.3 RNN-generated behavior maps

Armed now with landmarks in our fly behavior map to reference, we can
look into the maps generated by RNNs. I’ll start with comparing the 1-layer
RNN to the joint angle map and other previous maps generated, followed by
comparing the performance of the 1-layer RNN to the 2-layer RNN to the 3-
layer RNN, and finish up with feedforward flies - driving the network with its
own predictions and seeing the resulting dynamics.

4.3.1 1-layer RNN

Figure 12 is the behavior map and the coarse-grained map generated from the
1-layer RNN hidden states. This behavior map is exceedingly similar to the map
generated with fly PCA modes, figure 7. There are a number of aforementioned
notable features present: (1) the characteristic arc of locomotion, where as you
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Figure 12: Behavior map and coarse-grained watershed regions gen-
erated from 1-layer RNN hidden states. The five coarse-grained regions
are outlined in the density map and their positioning demonstrates rotational
invariance - inversions across axes do not affect watershed region determination.
[probability density parameters: σ = 0.6; clim = 0.55;P (x) ∈ [0, 5× 10−4]]

sweep across the arc you go through a gradient of locomotion speeds; (2) the twin
peaks in the posterior region corresponding to the left and right wing grooming;
(3) multiple similar idle peaks. One of the benefits of having individual joints
to work as opposed to raw images is the ability to describe behaviors in terms
of individual body segments.

4.3.2 “Glitch” regions

Figure 13: “Glitch Regions” are behavioral regions where the network
messes up in a particular way. That glitch regions are clustered together in
the behavior map indicates there is some similarity between the glitches aside
from the glitch itself. Can the regions develop inslight into network prediction
errors?
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The watershed algorithm picks out regions based on Gaussian density peaks.
Interestingly, some of the regions that the watershed algorithm picks out are
spasms in the network - video snippets where the network trained by LEAP
makes errors [see composite movie 11 in raw joint angles; composite movies 107,
110, 111, 114, 116 in RNN-layer1 for examples of this]. This ties back to a
fundamental problem mentioned earlier: predictive power is heavily penalized
by small network inaccuracies. Touting a network accuracy of even 99.99% still
isn’t enough; the network is prone to large swaths of mislabeled videos - for a
dataset with ∼ 108 data points there can be tens of thousands of mislabeled
points. It seems, though, that in certain cases, the network makes errors in
predictable and often enough manners that with a sufficiently narrow Gaussian
peak it will get picked up as a behavioral region. In fact, if I go so far as to
encode the “glitch” as a new coarse behavior (figure 13), the region corresponds
to a significant portion of the behavior map and it is localized to one area.
This suggests that the places where the network are messing up are localized in
behavior space. One could imagine utilizing this fact to correct network errors
- improving the accuracy of tracking software even more.

4.3.3 Comparing different RNN architectures - number of layers

Our visual system relies on hierarchical processing, the first set of neurons
which obtains information from eyes captures a low-level set of features - color,
edges and lines, those sorts of simpler features. The next set of neurons captures
slightly more complex features, presumably combinations of the simpler features
in the lower levels of neurons [29] .

Applying the same reasoning to neural network architecture, it was hypoth-
esized and proven with great success that “deep learning” could develop along
a similar set of rules, namely that by stacking layers, different sets of features
would be extracted from layer to layer. Along this line of thinking, a multi-
layer RNN should similarly, build representations where the earlier layers in the
RNN capture simpler features of behavior and that by adding more layers the
network could construct more complex behaviors. Thus, we hypothesized that
when adding more layers, relatively simpler behaviors would arise in the first
layer(s) and progress to more complicated behaviors. This is not so apparent in
the 2-layer RNN (figure 14), where the first and second layer look fairly similar
in terms of the behavioral repertoire, but in the 3-layer RNN the difference was
noticeable, even in coarse-grained visualizations. In the 3-layer RNN (figure 15),
sole wing movements became a separable simple behavior seen in the first layer
[see composite movies 17, 18, 19, 24, 33, 37, 49, 50, and 51 in RNN-layer3.1]
whereas they only showed up in combinations with other behaviors in the 1-layer
and 2-layer RNN.

Additionally, more complicated behaviors are differentiated in later layers.
For example, in the first layer of the 3-layer RNN, slow and quick grooming of
the wings are mixed together [see composite movie 8 in RNN-layer3.1] whereas
in the third layer the slow and quick grooming of the wings are separate regions
[see composite movies 127 and 128 in RNN-layer3.3]. Similarly, the fly having
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Figure 14: Behavior map and coarse-grained watershed regions gen-
erated from 2-layer RNN hidden states. (a) and (b) [probability density
parameters: σ = 0.5; clim = 0.35;P (x) ∈ [0, 4 × 10−4]] are the maps for the
first layer and (c) and (d) [probability density parameters: σ = 0.5; clim =
0.5;P (x) ∈ [0, 3.5× 10−4]] are the maps for the second layer.

its wings open or closed are mixed in the first layer [see composite movies 25, 98,
104 in RNN-layer3.1] but separated in the third layer [see composite movies 65,
76, 90 in RNN-layer3.3]. This is also true for quick versus fast hindleg grooming
[composite movies 13 and 36 in RNN-layer3.1 and 107 in RNN-layer3.3] It seems
like more separation is still possible, however, and future work might look at
additional layers to better decompose behavior.
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Figure 15: Behavior map and coarse-grained watershed regions gen-
erated from 3-layer RNN hidden states. (a) and (b) [probability density
parameters: σ = 0.4; clim = 0.45;P (x) ∈ [0, 3× 10−4]] are the maps for the first
layer, (c) and (d)[probability density parameters: σ = 0.3; clim = 0.25;P (x) ∈
[0, 2 × 10−4]] for the second layer, (e) and (f)[probability density parameters:
σ = 0.4; clim = 0.55;P (x) ∈ [0, 2.5× 10−4]] for the third layer.
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4.4 Closed-loop networks

As previously mentioned, we used the predicted outputs as the input for
the next time point - known as a closed-loop or internally-driving the network.
Then, we could analyze the resulting fly dynamics. Figure 16 are the steady
state flies - the configuration of the fly once the network reaches a steady state
value for each of the networks. For each of the RNNs, only one steady state fly
was reached for all the initial conditions analyzed, although one could imagine
having different steady state flies depending on the initial conditions. The steady
state generated by the 1-layer RNN does not look like a fly, but the steady state
generated by the 2-layer and 3-layer RNN look reasonable.

Figure 16: Steady state flies for each of the 3 RNNs. (a) is the 1-layer
RNN, (b) is the 2-layer RNN, and (c) is the 3-layer RNN.

Movies for the internally-driven network are available here∗. There are two
timescales of particular importance to us: the time it takes for the fly to reach
steady state τs and the time it takes for the fly to stop “looking like a fly”
τf which could be thought of as the operational timescale at which the RNN
can predict the fly’s behavior, or the point at which the RNN-predicted fly is
no longer a faithful representation of the fly. This is qualitatively defined for
now but one could imagine specifying a concrete mathematical definition by,
say, having a certain number of angles outside the regular distribution of those
angles.

* https://www.dropbox.com/sh/r96cx3qz5v1mybd/AACQufWCJg93N1wo9XBi6mPma?dl=0

Figure 17 is an example plots of the time series plot for the internally-
driven fly, with two sample angles - the left eye angle (joint 2) and the right
forelimb angle (joint 7) - plotted from the 1-layer RNN driven forward. It takes
approximately 8250 frames, or τs ∼ 8.25 seconds to reach a steady state value
for all of the angles for the 1-layer RNN. Figure 18 is a similar plot for the
interally-driven fly generated by the 2-layer RNN; steady state is reached much
more quickly, τs ∼ 1.9 seconds. Figure 19 is the plot for the internally-driven
fly generated by the 3-layer RNN. Now, steady state is not reached but rather,
the predictions spike every so often. This tells us something interesting about
the types of attractors for the networks; the 1-layer and 2-layer RNN generate

https://www.dropbox.com/sh/r96cx3qz5v1mybd/AACQufWCJg93N1wo9XBi6mPma?dl=0
https://www.dropbox.com/sh/r96cx3qz5v1mybd/AACQufWCJg93N1wo9XBi6mPma?dl=0
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Figure 17: Plot of externally and internally driven 1-layer RNN net-
work for two sample angles: left eye and right forelimb (thorax-coxa).
The time it takes to reach steady state corresponds to around 8.25 seconds,
markedly longer than the 2-layer RNN

Figure 18: Plot of externally and internally driven 2-layer RNN net-
work for two sample angles: left eye and right forelimb (thorax-coxa).
The time it takes to reach steady state corresponds to around 1.9, much shorter
than the 1-layer RNN

fixed attractors in behavior space whereas the 3-layer RNN generates limit cycle
attractors.

The times it takes for the feedforward fly to stop looking like a fly are imme-
diately for the 1-layer RNN, 0.4 seconds for the 2-layer RNN, and around 0.55
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Figure 19: Plot of externally and internally driven 3-layer RNN net-
work for two sample angles: left eye and right forelimb (thorax-coxa).
Note that now no steady-state is reached! Instead, the network continuously
spikes every so often, around 1.9 seconds

seconds for the 3-layer RNN. This depends, though, on the type of movement
the fly is in directly before the driving occurs - for locomotion τf ∼ 0.2 seconds
and the feedforward fly immediately quits locomoting.

5 Discussion

5.1 RNNs on flies versus rats

Although the behavior maps generated from the postural data and the RNN
hidden states were strikingly similar, it wasn’t necessarily the case that it had
to be so. For example, with rats the behavior map generated from RNN hidden
states is markedly different than the behavior map generated from postural data
(figure 20), with density peaks corresponding to different stereotyped behavior
for rats. One could ask the question a posteriori why that might have been the
case. One hypothesis is that fly dynamics are less correlated than rat dynamics.
A fly is able to move one set of limbs fairly independently from another set
of limbs. For example, the hindlimbs can be grooming the wings while the
forelimbs of the fly are stationary. A rat, on the other hand has more correlations
between the spatial dynamics of the data. The tracked points for a rat are on
the body as opposed to the appendage and when a rat twists and turns its body,
the points tend to move together. Thus, knowing the position of one or two of
the points gives a lot more information about where the other points might lie,
for example on the other end of an arc. The fundamental difference in the gaits
of rats and flies could account for the similarilty or lack thereof in the behavioral
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Figure 20: Behavior map generated for rat. (a) is the density map from
postural time series, (b) are the watershed regions for the postural time series,
(c) (d) and (e) are the density maps for the first, second, and third layer and
(f) (g) and (h) are the corresponding watershed regions.
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maps.
Another hypothesis is that the time correlations drawn by the RNN weren’t

as important as the spatial correlations. Upon performing a continuous wavelet
transformation, which captured the temporal dynamics across a large range of
frequencies, it is possible that whatever temporal dynamics the network had
captured were not important compared to the temporal dynamics captured by
the wavelet transform. In that case, what would be left is the spatial correlations
between points, which could be the joint angle representation built by the RNN.
Since the RNN is a highly overparameterized system, with many more variables
than probably needed to capture the essence of motion, it is possible it devoted a
small subset of parameters to representing the joint angles and another subset to
temporal correlations which were then overshadowed by the temporal dynamics
registered by the wavelet transform. There are ways in which we could test
this. Namely, one could investigate whether the RNN representation of a rat
reduces down to its joint angle representation. Or, staying with flies, one could
see whether reducing the number of neurons in the network and therefore the
number of parameters would lead to a different representation.

5.2 Future directions

One of the first things to do is to apply the idea of RNN representation in
other animals. There are many animals for which the postural dynamics could
be either similar or vastly different from it’s RNN representation, but it is not
known what exactly the rules are which govern similarity between representa-
tions. More examples between animals would help bring a deeper understanding
of the types of correlations in postural dynamics. Another question one could
ask is: when flies are no longer restricted to the 2-d plane, does the RNN rep-
resentation still closely mirror that of the postural representation?

Additionally, if the RNN can predict behavior accurately, then one could
feed-forward the RNN and create a virtual feedforward fly. Simulations now
a significant chunk of experimentation - one could simulate fly behavior and
analyze the resulting dynamics. This would save much experimental effort and
cost dedicated to studying fly behavior: building elaborate chambers, setting
up high-speed cameras, tracking algorithms, etc.

6 Conclusions

That RNN behavior maps recapitulate previous work is a great indication
that the idea to use RNNs to capture behavioral dynamics could be fruitful. The
real power of RNNs shines through when multiple RNNs are strung together.
One could imagine ways in which combining RNNs would lead to deeper behav-
ioral analysis. For one, the encoder-decoder architecture previously mentioned
could come to a closer approximation of how the brain compresses information.
By stringing together an ensemble of neural network models, the architecture
could be molded into creating a representation the dimensionality reduction is
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encoded into the architecture, rather than the researcher imposing the dimen-
sionality reduction technique on it. The lower dimensionality representation
would be analagous to how the brain must compress the high-dimensional in-
formation as it passes from the many orders of magnitude greater connections
in the brain to a markedly fewer number of connections in the neck to a still
fewer number of motor and behavioral outputs. There is a sense in which the
representation built, as it goes from network to network, would capture dy-
namics at longer and longer time scales, going from kinematics on the order of
micro- to milliseconds to behaviors on the order of seconds and even minutes,
and even then “moods” on the order of hours and days. Thus, RNNs present
an opportunities to study the non-Markovian timescale dynamics currently not
available to us - opening avenues to quantitatively describe circadian rhythm
effects and other such long timescale phenomena.
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