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Abstract

Computational Studies on the Anharmonic Dynamics of Molecular Clusters
by John S. Mancini

Molecular nanoclusters present ideal systems to probe the physical forces and dynam-
ics that drive the behavior of larger bulk systems. At the nanocluster limit the first
instances of several phenomena can be observed including the breaking of hydrogen
and molecular bonds. Advancements in experimental and theoretical techniques have
made it possible to explore these phenomena in great detail. The most fruitful of
these studies have involved the the use of both experimental and theoretical tech-
niques to leverage to strengths of the two approaches.

This dissertation seeks to explore several important phenomena of molecular clus-
ters using new and existing theoretical methodologies. Three specific systems are
considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters
and the first cluster where hydrogen chloride autoionization occurs. The focus of
these studies remain as close as possible to experimentally observable phenomena
with the intention of validating, simulating and expanding on experimental work.
Specifically, the properties of interested are those related to the vibrational ground
and excited state dynamics of these systems. Studies are performed using full and
reduced dimensional potential energy surface alongside advanced quantum mechan-
ical methods including diffusion Monte Carlo, vibrational configuration interaction
theory and quasi-classical molecular dynamics.

The insight gained from these studies are great and varied. A new on-they-fly ab
initio method for studying molecular clusters is validated for (HCl)1−6. A landmark
study of the dissociation energy and predissociation mechanism of (HCl)3 is reported.
The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across
multiple stationary point configurations. Furthermore, it is identified that the con-
sideration of this delocalization is required in vibrational excited state calculations to
achieve agreement with experimental measurements. Finally, the theoretical infrared
spectra for the first case of HCl ionization in (H2O)m is reported, H+(H2O)3Cl

–. The
calculation indicates that the ionized cluster’s spectra is much more complex than any
pervious harmonic predictions, with a large number of the system’s infrared active
peaks resulting from overtones of lower frequency molecular motions.
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1
Introduction

1.1 Molecular Insight

All systems in existence are commanded by the same molecular level interactions.

These forces impact everything from how water droplets form at the edge of a leaf,

to how Chloride reacts to forms holes in the ozone layer above Earth. Despite these

interactions dictating the behavior of everything, there remain countless mysteries

surrounding them. Many of these question center on small groups of homogenous

and heterogenous molecules. Difficult questions like, how do these systems grow and

how do they fall apart, remain inquires of fundamental interest. The answers to

these question and the steps taken to obtain them, have the potential to impact how
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future humans behave with the world. It is the later line of thinking that provides

the primary motivation for the work performed in this dissertation.

1.2 Enhanced Understanding with Theory

Experimental spectroscopy, in the field of physical chemistry, strives every year to

study more complex systems with greater levels of detail. However, even with the

development of new techniques it continues to be necessary that theoretical investiga-

tions be performed alongside experiment. The goal of theoretical studies in this case

are to validate observations and obtain answers to questions that experiment cannot

yet consider. This interplay between theory and experiment has been paramount in

understanding the behavior of small molecular systems which contain less than 100

atoms. Perhaps the most prominent examples of small molecular system with high

interest are nanoclusters. Nanoclusters are a collection of one or more interacting

molecular species. Their study provides a fundamentally important understanding

of the forces and dynamics that form and dictate the behavior of larger molecular

systems.

This dissertation is focused on recent theoretical studies of molecular nanoclusters

which I have performed with the twofold goal of complementing recent experimental

observations and presenting new questions for experimental consideration. The spirt

of this work can be summarized as the construction and application of new and ex-

isting mathematical models based on first principles to describe molecular clusters.

These studies delivered a wide array information about the dynamic properties of

molecular systems and succeeded in validating, contesting and expanding on various

experimental observations.
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1.3 Structure of Dissertation

This dissertation is organized into four separate chapters. Chapter 2, introduces the

theoretical background for the work that was performed. This focuses primarily on a

series of techniques developed by others, which were utilized and expanded upon over

the course of this work. The chapter includes several subsections which briefly review

potential energy surfaces, vibrational spectroscopy techniques and quasi-classical sim-

ulations. Chapters 3−5 present the application of Chapter 2’s theoretical approaches

to study pure hydrogen chloride clusters, mixed hydrogen chloride and water clus-

ters and the ionized form of mixed hydrogen chloride and water. In Chapter 3 the

following are presented: an on-the-fly anharmonic frequency study of hydrogen chlo-

ride clusters, the development of a many-body hydrogen chloride potential energy

surface, the vibrational relaxation behavior of the fundamental stretches in the hy-

drogen chloride timer, and the vibrational predissociation dynamics of the hydrogen

chloride trimer. Chapter 4 details the creation of a many-body potential surface for

hydrogen chloride and water clusters prior to hydrogen chloride auto-ionziation. The

potential is applied to study the vibrational ground and excited state properties of

these heterogenous systems. Finally, Chapter 5 discusses the calculation of the in-

frared spectrum for the reported smallest cluster of auto-ionziation hydrogen chloride

in water using a new embedded potential energy surface.
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2
Computational and Theoretical Methods

2.1 Overview

In the following I will discuss the theoretical and computation methods applied to

obtain the results discussed in Chapters 3 - 5. This chapter is divided into sections

named Potential Energy Surfaces, Vibrational Spectroscopy and Quasi-Classical Sim-

ulations. Each section is divided into subsections, which selectively explore the the-

oretical techniques applied in this dissertation work. The section Potential Energy

Surfaces, discusses the functional representations of solutions to the electronic motion

for a molecular system as function of its nuclear coordinates. The applications of these

representations to study the nuclear motions are described in the following sections.
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The section Vibrational Spectroscopy introduces the algorithms and programs used to

study molecules’ vibrational ground and excited states. The section Quasi-Classical

Simulations details the method used to perform time-dependent molecular dynamic

simulations with quantized initial conditions. The focus of this chapter is to provide

a general introduction and functional understanding of the topics. All approaches

detailed in this chapter have been reported in the literature previously and are cited

accordingly.

2.2 Potential Energy Surfaces

2.2.1 Introduction

In studies of molecular systems, electrons can be approximated as re-orientating im-

mediately with changes in the nuclear coordinates. This approximation, known as

the Born-Oppenheimer approximation, allows for the Schrödinger equation to be sep-

arated and solvable in terms of the molecule’s electronic and nuclear motions.1,2 The

solutions to the electronic motion (electronic Schrödinger equation) at every possi-

ble nuclear configuration for a molecular system is referred to as a potential energy

surface (PES). In practice, the PES operates as a map where a single set of molec-

ular coordinates defines a single electronic energy. Once the PES is solved, nuclear

properties of the system can be computed by solving the nuclear motions (nuclear

Schrödinger equation), which are dependent on the electronic solutions. The concept

of the PES is key for the study of the molecular systems presented in this dissertation

and is integral for the application of the methods described in the following sections.

The PES can be computed by directly solving the electronic Schrödinger equation

at every desired nuclear configuration. This approach is referred to as computing

the PES on-the-fly. These calculations are most commonly used to identify impor-

tant molecular configurations on the PES, such as minima or saddle points, and to
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compute harmonic frequencies. More complex nuclear properties, such as dynamics

and anharmonic spectroscopy can be studied using on-the-fly approaches as well, but

often at a high computational cost. The large cost results from the sizable number

of points on the PES that must be solved in order to calculate the dependent nuclear

properties. When these properties are studied on-the-fly, lower level solutions to the

electronic motion are traditionally used and/or approximations are made about the

behavior of the nuclei which reduce the number of required calculations.

An alternate approach to on-the-fly calculations is to fit the system’s PES to a

functional form. Information about the PES is first obtained by solving the elec-

tronic Schrödinger equation at several different configurations, measuring properties

with experiments or some combination of theoretical and experimental information.

A mathematical form can then be used to represent the collected data. When the

data are purely from theory, the resulting function is capable of evaluating the energy

for a given set of molecular coordinates that are related to the initial fitting data,

that is to say, a localized data set results in a localize potential. In a similar manner

when a experimental or mixed data sets are used, the fitted function will re-report

the energies required to compute the experimental values. The functional form of

a PES, when properly constructed, can be applied to study the nuclear properties

of the system just as though the solutions were obtained directly from solving the

electronic motions at each point.

No single function has been identified that can characterize the PES of an arbi-

trary polyatomic system. Therefore, several different functional forms exist which

can be used to fit a PES.3,4,5,6,7 In all cases, the functional form must have a suffi-

cient number of fitting variables to properly describe the curvature of the PES, while

not having too many so as to result in overfitting. Overfitting of PES can cause

unphysical behavior in the function’s output. Once fit to a proper functional form,

the PES is traditionally much simpler to evaluate than the electronic Schrödinger
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equation itself; this efficiency allows for a huge speed-up in the calculation time of

molecular energies. This speed-up does, however, come at the cost of generating er-

rors due to the differences between functional form and fitted data. The functional

form must be considered as an approximation of the true PES, albeit a rather good

one. Error in the fitting is propagated in the nuclear properties which are computed

by the PES. Beyond the fitting errors, it is important to also mention that the quality

of the PES function is only as good as the data, experimental or theoretical, with

which it was fit. Higher quality fitting data results in a high quality representation of

the potential surface. Similarly the conformational space with which the potential is

applicable is dependent on the range of space covered by the fitting data. I mention

before continuing forward that for the remainder of this dissertation, potential and

the abbreviation PES may be used to refer to both the true energy landscape of the

system as well as the fitted function, the respective meanings will be apparent from

the context of the text.

In addition to there begin a unique energy value at every molecular configuration

there is also a unique three-dimensional dipole moment vector associated with each

configuration.8,9 The dipole moment geometry relation forms a dipole-moment sur-

face (DMS) for the system. The use of the DMS is key for the calculation of infrared

intensities in vibrational calculations. Many of the tools applied to consider PES can

be applied to DMS.

The work presented in this dissertation was conducted using both on-the-fly and fit

PES. In the following subsections the techniques used to generate the fitted PES are

described, while the on-the-fly calculations are discussed in Chapter 3. The functional

form taken to generate the full dimensional PES are detailed in the subsection titled

Full-Dimensional Fitting. The representation of the potential as a sum of monomer

and higher-order interactions is described in the subsection called Many-Body Ap-

proximation. A series of guidelines followed to construct the PES are given in the
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subsection Procedure for Generating New Potential Energy Surfaces. The final sub-

section, Reduced-Dimensional Fitting, describes the approaches taken to fit reduced

dimensional PES. In addition to discussion of the PES, similar methodologies for fit-

ting DMS are also discussed when appropriate.

2.2.2 Full-Dimensional Fitting

In the following I selectively introduce the theory behind the fitting approach, which I

applied to generate new molecular potential energy surface. First, the fitting approach

known as the monomial symmetrization is introduced in order to provide a conceptual

understanding of the fitting.3 Next the essentials of a numerically equivalent yet more

computationally efficient approach based on invariant polynomial theory is given;3

This approach was used to generate the new PES functions discussed in the later

chapters of this dissertation.

The potential energy, V , of a molecular surface can be defined uniquely based on

the well defined internuclear distances rij of the system. Using these distances, the

potential can be represented as a polynomial expansion. Consider the potential of a

triatomic system as an example, the functional form can be written as:

V =
M∑

m=0

Cabc[y
a
12y

b
13y

c
23]; (m = a+ b+ c), (2.1)

where M is the order of the total polynomial, yij is a Morse variable, the subscripts

1, 2 and 3 the indices for each atom and Cabc representative of the fitting coefficient

for a set of a, b and c values. The Morse variable is given by exp(−rij/λ) where λ

is a range parameter of the function. Based off my and others experience this value

is fixed at 2.0 bohr. The use of the Morse basis functions help to ensure that at

large atomic separations the potential has the proper asymptotic behavior. The Cabc
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coefficients can be determined using linear least squares fitting approaches.

The above approach is sensible if all three atoms are unique, ABC. If however,

there are identical atoms in the system, A2B, then the permutational symmetry of

those atoms should be considered. One way to take into account the symmetry is

to duplicate and mirror the points of identical atomic displacements. Clearly this is

an impractical and unwieldy method when fitting the potentials of larger molecular

systems. A more elegant approach is to explicitly consider the system’s symmetry

in the fitting function itself. This can be done most simply by symmetrizing the

monomials so that the basis directly takes into account the identical atoms. In this

approach a symmetry operator, S, is applied to the polynomial function:

V =
M∑

m=0

DabcS[y
a
12y

b
13y

c
23]; (m = a+ b+ c). (2.2)

In the case of a triatomic system with two identical atoms the symmetry operator

yields:

V =
M∑

m=0

Dabc[y
a
12y

b
13y

c
23 + ya12y

b
23y

c
13]; (m = a+ b+ c), (2.3)

where the permutations of the two like atoms are now explicitly considered. This

technique can be applied for an effectively arbitrary system where there are multiple

different types of identical atoms. The number of equivalent monomials in the fit-

ting function is given by the number of possible atom permutations i!j!...k! for any

AiBi...Xk system. This approach is known as monomial symmetrization.

There exists a numerically equivalent approach to monomial symmetrization that is

based on invariant polynomial theory. This approach, which I used to generate new

potentials discussed in the later chapters, provides a more compact representation

of the PES and therefore, in most cases, presents a more computationally efficient
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function to evaluate. Essentially, the functional PES can be written as:

V =
M∑
α=0

hα(p(y))qα(y), (2.4)

where p(y) is the vector formed by the primary invariant polynomials, and qα(y)

(for 1 ≤ α ≤ M) are the secondary invariant polynomials. In the case of a triatomic

molecule with two identical atoms, the single primary invariant associated with the

AA are y12 and the two associated with the AB is (y13 + y23)/2) and (y213 + y223)/2).

The single secondary invariant is equal simply to 1. The total number of primary

invariant polynomials for a system with N atoms is given by the number of internu-

clear distances, N(N − 1)/2. The secondary invariant polynomials are determined

from the computational algebra software MAGMA. In practice, the permutational

invariant fitting approach can be applied to systems of arbitrary size and symmetry.

Efficient implementation of this approach was made possible for the PES functions

generated in the course of this dissertation work using a series of robust routines

described in reference [ 3].

Considering next the fitting of the DMS. The DMS differs from the PES because

the dipole monomer is a vector quantity. Three separate fits, using the approach

described above, for the three components could be performed to generate three sep-

arate dipole moment surfaces. Instead, however, a single functional form is used that

expresses the dipole as:

µ⃗ =
∑
i

wi(X)x⃗ (i), (2.5)

where X refers to the molecular configuration, x⃗ (i) the position vector of the ith

nucleus and wi(X) the effective charge on the ith nucleus that depends on X and can

be represented in terms of internuclear distances.
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2.2.3 Many-Body Approximation

The key to generating a high quality potential energy surface is the construction of

a fitting data set consisting of accurate potential energy values computed over the

range of configurations for which there are properties of interest. When considering

larger molecular systems containing more than 10 atoms these ideals are difficult to

satisfy. The computational time required to solve the electronic structure problem for

molecular systems scales exponentially with the number of atoms. Furthermore, every

additional atom adds three degrees of freedom to the problem, increasing the num-

ber of configurations required to properly study the system’s conformational space.

Fortuitously, in the study of molecular clusters these challenges can be overcome by

partitioning the system into a set of non-interacting monomers and a truncated series

of interacting subsystems. This approach approach relies on representing the poten-

tial in terms of a truncated many-body expansion.10

The many-body representation of the total energy Vtotal for an arbitrary sized molec-

ular cluster of N monomers is given by:

Vtotal =
∑
i

Vi +
∑
ij

∆2Vij +
∑
ijk

∆3Vijk + ...+∆NV , (2.6)

where Vi is the energy of the ith monomer, ∆2Vij is the two-body interaction energy

between two monomer i and j excluding the monomer energies, ∆3Vijk is the three-

body interaction energy between monomers i, j and k excluding the monomer and

two-body energies and ∆NV the highest-order interaction between all N monomers

excluding all lower level interactions. All interactions are summed over every unique

combination of monomers. Explicitly, the two-body and three-body interactions are

∆2Vij = Vij − (Vi + Vj), (2.7)



CHAPTER 2. COMPUTATIONAL AND THEORETICAL METHODS 12

and:

∆3Vijk = Vijk − (Vi + Vj + Vk)− (∆2Vij +∆2Vik +∆2Vij), (2.8)

where the terms Vij and Vijk in the equations are the total energies of the dimers

and trimers, respectively. Each of the respective interaction energies are intrinsic

interactions, meaning that the interaction energies are zero at infinite monomer sep-

aration. In the case of a N monomer cluster the potential is defined exactly in terms

of N separate orders of interaction. However, the contributions to the total energy of

the system are dominated by the two- and three-body interactions in most molecular

clusters, specifically the ones studied in this dissertation. The two-body interactions

are generally observed as the largest total percentage of interaction energy.

One benefit of truncating the many-body expansion is that individual potentials

can be fit for only the one-, two- and three-body interactions and still provide an

accurate representation of the true PES for an arbitrarily large molecular cluster.

Furthermore, this representation allows for a stepwise construction of cluster po-

tentials that can be grown to describe progressively more complex systems. New

interactions can be combined with existing potentials to allow for the study of larger

heterogenous systems. The many-body interactions can also be constructed with a

hybrid representation of the total energy, that is to say, each interaction can be built

from a different method. In this way the hybrid approach allows two-body potentials

to be built from more accurate energies than the three-body potentials. Considera-

tion of the same level of theory for both two- and three-body interactions may not

be possible due to the larger size of trimers. The effective errors in using lower level

methods for the three-body interaction are relatively low due to the traditionally

smaller contribution of three-body interaction to the total energy relative to the two-

body.

The dipole-moment surface can also represented using the many-body expansion.

In most cases the many-body problem converges faster for the dipole-moment and
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so only a one- and two-body dipole moment surface are necessary to describe larger

systems.11 This is the approach taken when constructing DMS in this dissertation.

2.2.4 Procedure for Generating New Potential Energy Surfaces

The procedure to construct a new functional potential energy surface using the invari-

ant polynomial fitting approach can vary depending on the system and the nuclear

properties which the PES is intended to study. Despite this variation, I have identi-

fied what I believe to be a series of best practices for the generation of new potentials,

specially those intended for use in the many-body representation of clusters. These

observations are based on my personal experience generating several many-body in-

teraction potentials. In the following I discuss the physical steps taken to generate

new potentials and observations about the construction process.

Consider a molecular cluster for which the desired nuclear properties for study

are the vibrational spectroscopy and dynamics. A new many-body potential for this

cluster can be constructed in a stepwise fashion starting from the monomer, then

the two-body and then the three-body potentials. Several monomer potentials are

available from previous high quality experimental studies and high level ab initio cal-

culations; they should first be considered for use before a new potential is built. If

no previous potentials are available or those that are available need to be improved

upon, then the construction of a new potential begins by identifying the minima and

harmonic frequencies of the system. These should be done at several different levels

of theory in order to determine the appropriate method to describe the system that

balances the need for speed and accuracy in the single point energy calculations. An

initial series of points for the system are generated from the displacements required

to numerically compute the harmonic frequencies, cuts along normal coordinates and

direct dynamics calculations. Direct dynamics calculations refer to ab initio molecu-
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lar dynamic simulations where Newton’s equations of motion are used to propagate

the molecular system in time with the potential and gradient computed on-the-fly

using computationally efficient methods such as Density Functional Theory. Once

an initial data set is obtained the points are evaluated using the appropriate elec-

tronic structure method and fit to the permuationally invariant function. Ideally the

smallest order of the polynomial is chosen to minimize the number of fitting coef-

ficients and therefore minimize the evaluation time of the function. The newly fit

potential is tested for its best case fitting error by computing the root-mean-square

deviation (RMSD) of the fitting data set. In addition, the RMSD is computed for

a separate set of points which have been excluded from the fitting data. Relative

energetic orderings of the minima are tested as well as nuclear properties such as

the harmonic frequencies. Nuclear calculations which are described in the following

subchapter are performed to identify areas of the potential which are not properly

described by the fitted function. Based on the results of these tests, additional points

are added to the data set and the PES re-fit. This process occurs iteratively until

satisfactory small RMSD values are computed, good agreement is observed relative

to ab initio measured nuclear quantities and sensible results given by more complex

nuclear calculations. When generating data sets for the two-body interactions, points

for the fitting data set should be taken from sub-clusters of larger cluster minima.

An example of sub-clusters could be the dimer configurations of the system’s trimer

or tetramers. This ensures the two-body potential is optimized for a many-body

representation of the cluster, not applications to the isolated dimer. The same con-

siderations should be made for the three-body interactions. In the later case, part of

the fitting datasets can be obtained from points associated with important configu-

rations identified using the one- and two-body PES.

Ideally all many-body interactions should be constructed from Coupled Cluster

with singles, doubles and perturbative triples where the basis set is a complete basis
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set extrapolation. A database of these calculations, while possible for some system,

are too expensive for most. Due to its relative cost and accuracy I instead consider

the “gold standard” ( based on the systems studied over the course of this disserta-

tion work) to be CCSD(T)-F12/aVTZ where F12 refers to the inclusion of explicit

correlation.12 Explicit correlation serves to effectively increase the quality of Dun-

ning correlation-consistent basis sets by one cardinal, that is to say -F12/aVDZ ≈

aVTZ and -F12/aVTZ ≈ aVQZ.13 This level of theory should be applied for the

formulation of one- and two-body potentials. A CCSD(T)-F12/aVTZ three-body

potential however would be too computationally expensive to construct, so instead

either CCSD(T)-F12/aVDZ or second order Moller�Plesset (MP2) with explicate cor-

relation and aVDZ basis can be used. In comparisons performed over the course of

this work the two approaches gave similar magnitudes of error relative to CCSD(T)-

F12/aVTZ calculations.

I mention again that these observations serve only as a guide for future work based

on the work performed in this dissertation. Each new potential will require testing

to determine the appropriate methodology. Furthermore as new electronic structure

methods are developed and more powerful computers become available the guidelines

are likely to become outdated.

2.2.5 Reduced-Dimensional Fitting

Over the course of this work there were circumstance where it was useful to consider

a full dimensional systems in terms of one or two import normal mode coordinates or

linear combinations of normal mode coordinates. In these instances it was not appro-

priate to fit the system in terms of the intermolecular distances. Three approaches

were applied to generate functional forms of these reduced dimensional systems. The
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first was a simple linear least squares fit to a high order polynomial:

V =
n∑

i=0

aix
i (2.9)

where ai were to coefficients and n the order of the polynomial. This worked well

for fitting the bottom region of simple Morse-like potentials in one dimension. The

second approach represents the potential using cubic spline interpolation14

Vl(Q) =
3∑

i=0

ai(Q)
i;Ql < Q < Ql+1, (2.10)

where Vj is one of n local representations of the potential and ai are fitting coefficients.

In total there are 4n coefficients required to define the full V (Q) potential. The

coefficients are determined using the requirement that the local function match the

polynomial at both end of the intervals, that the first and second derivatives are

continuous and that the first derivative at the end intervals are equal to specified

value. This interpolation was used to represent double well potentials, which were

too difficult to represent with the simple polynomial in x. The Numerical Recipes

implementation of this procedure was used.14 The third reduced fitting approach was

a bivariate local technique which used a segmented fifth-degree polynomial in Q1 and

Q2

Vlkm(Q1, Q2) =
5∑

j=0

5−j∑
i=0

aijQ
i
1Q

k
2, (2.11)

where the segmented regions, Vlkm, were defined by a series of triangular cells.15,16

Each cell’s function is described by 21 coefficients. These coefficients are are deter-

mined using the value of the function, the first and second-order partial derivatives

computed for the triangle vertices and the values of the partial derivative of the func-

tion computed perpendicular to each side of the triangle. This bivariate interpolation

was applied to study potentials reduced to two-dimensions that were characterized by
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one or more double wells. The National Center for Atmospheric Research Scientific

Computing Division implementation of this approach was used.

2.3 Vibrational Spectroscopy

2.3.1 Introduction

The vibrational energy states of a molecular system dictate how a system behaves.

The importance of these vibrational states in terms of their fundamental relationship

to molecular behavior and their extensive use in experimental identification of molec-

ular systems have lead to the development of several theoretical techniques. The

simplest of approach is the normal mode analysis. A normal mode analysis yields

the harmonic frequencies and corresponding normal mode coordinates of the molec-

ular system. These are obtained by first generating, at a minimum configuration, a

matrix of second-derivatives with respect to the displacement of each mass-weighted

coordinate. This matrix is known as a Hessian matrix. The Hessian is then diag-

onalized with the eigenvalues and eigenvectors corresponding the the normal mode

frequencies and coordinates. The dominate assumption taken in this calculation is

that the behavior of molecular systems at minima can be approximated as a series of

non-interacting harmonic oscillators. In reality, the vibrations of molecular systems

are not harmonic and interact anharmonically with one another other. Several meth-

ods have been developed to go beyond the harmonic approximation to include these

important anharmonic effects.17,18,19,20,21,22,23,24,25,26,27,28

In the following subsections three techniques are introduced which were applied

in the course of this dissertation work to consider anharmonic effects in molec-

ular systems. First, the discrete variable representation is discussed, which was

used to compute vibrational ground and excited state properties for reduced di-

mensional systems.23 Next, the methods implemented in the code Multimode are
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summarized, which were used to study vibrational properties of higher dimensional

systems.19,20,21,22 Finally, the technique diffusion Monte Carlo is introduced, which

was used to solve for the ground state vibrational properties of molecular systems in

a numerically exact manner.29,30

2.3.2 Discrete Variable Representation

The discrete variable representation (DVR) technique was applied to study the vi-

brations of molecular systems which were reduced to one- or two-dimensions.23 The

DVR approach reformulates the kinetic energy operator of the Schrödinger equation

T =
1

2

d2

dQ2
, (2.12)

into a grid-point representation. The grid is equally spaced along the coordinates

with corresponding Fourier functions as basis functions. This results in the DVR

formulation of the kinetic energy operator

Tii′ =
(−1)(i−i′)

2∆Q2


π2

3
, i = i′

2
(i−i′)2

, i ̸= i′

 . (2.13)

The resulting one dimensional DVR Hamiltonian matrix is then

Hii′ = Tii′ + V (Q)δii′ , (2.14)

and in two dimensions is

Hii′jj′ = Tii′δjj′ + Tjj′δii′ + δii′δjj′V (Q1, Q2), (2.15)

where the potential energy resides only along the diagonal of the grids. Diagonal-

ization of H yields the corresponding eigenvalues and eigenvectors of interest that
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correspond to the vibrational states and wavefunctions of the system.

The advantage of the the DVR approach is its high flexibility to describe arbitrar-

ily defined coordinate spaces. The computed solutions using the DVR approach are

numerically exact so long as the potential along the coordinate space is well defined

and the number of grid points is sufficiently high. The extension of this approach

to larger dimensional systems is computationally challenging, as the size of the H

matrix grows exponentially with the number of dimensions. In order to solve larger

dimensional problems, two separate approaches are considered is this dissertation.

2.3.3 Multimode

The Multimode program was utilized to compute spectral properties for molecular

systems of various sizes.19,20,21,22 The program is designed to compute vibrational

properties of molecular systems by solving the Watson Hamiltonian in terms of a

n-mode representation of the potential. The Watson Hamiltonian for systems with

J = 0 is given by

Ĥ =
1

2

∑
αβ

π̂απ̂βµαβ −
1

2

∑
k

∂2

∂2Q2
k

− 1

8

∑
α

µαα + V (Q), (2.16)

where α and β are the Cartesian x,y,z coordinates, π̂α is the vibrational angular

momentum operator, µ is the effective reciprocal inertia tensor, and V (Q) is the

normal coordinate, Q, dependent potential. In the Multimode calculations V (Q) is

evaluated in terms of an n-mode representation of the potential

V (Q1, Q2, ..., QN) =
∑
i

V
(1)
i (Qi) +

∑
ij

V
(2)
ij (Qi, Qj)...+

∑
i..N

V
(N)
i..N (Qi, ..., QN). (2.17)

Each of the terms in the n-mode representation correspond to the potential varied

along a limited set of normal coordinates such that the term V
(1)
i is the potential

energy where Qi is the only non-zero normal coordinate, V (2)
ij is the potential energy
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given by V (Qi, Qj) − (V
(1)
i + V

(1)
i ) where both Qi and Qj are non-zero, and V

(N)
i..N

is the potential energy when all coordinates are non-zero and the lower-order terms

have been subtracted. The n-mode representation allows for each of the terms to be

integrated independently, that is to say, single-mode, two-mode, n-mode integration.

Due to computational limitations, the n-mode representation in Multimode is limited

to n = 6. The truncation of the n-mode representation at 6 and in some cases lower

can be justified by considering the convergence of the representation starting from

n = 1 and systematically increasing.

The Watson Hamiltonian eigenvalues and eigenfunctions are solved for using vi-

brational configuration interaction theory (VCI). In this approach, an initial trial

wavefunction is first constructed from vibrational self-consistent field solution theory

(VSCF) as the product of the N single mode wavefunctions

ΨV SCF
n1,n2,..,nN

(Q1, Q2, ..., Qn) =

(N)∏
i=1

ϕ(i)
ni
(Qi), (2.18)

where each ϕ
(i)
ni is the eigenstate of ith single mode function. The variational best

forms of ϕ(i)
ni (Qi) are obtained by solving the set of coupled VSCF equations

(
−1

2

∂2

∂Q2
k

+⟨
N∏
i ̸=l

ϕ(i)
ni
|V+

1

2

∑
αβ

π̂απ̂βµαβ−
1

8

∑
α

µαα|
N∏
i̸=l

ϕ(i)
ni
⟩−ϵ(l)nl

)
ϕ(l)
nl
(Ql) = 0, (2.19)

where the integration is performed over N − 1 single mode functions. These equa-

tions are solved iteratively for each single mode using a finite basis representation

where the basis functions are harmonic oscillator wavefunction. The resulting VSCF

solutions describes each vibrational coordinate in the effective potential of the other

coordinates. In order to explicitly consider coupling of modes, the virtual states of

the VSCF ground state are used used to expanded the VCI many-mode wavefunction.

The ground state VSCF provides an orthonormal basis that results in a generalized
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eigenvalue problem. Diagonalization of the resulting VCI matrix using standard tech-

niques yields the desired vibrational states and wavefunctions given in terms of the

contributing VSCF states. I note that the later approach was the one taken in the

present dissertation work but there are other approaches that are available in the

Multimode program.

When considering problems in high dimensionality, the VCI Hamiltonian can be

quite large. In order to allow for efficient computations a highly flexible approach is

used to construct the VCI basis set. The number of quanta of excitation from the

ground state can be explicitly defined for each mode and for each collection of modes,

that is to say the number of quanta of excitations when one-mode, two-modes, etc.,

are excited is pre-defined.

In order to perform the calculations performed in this work a slight modification

was made to the standard Multimode packages, 4.9.0 and 5.1.3. Traditionally Multi-

mode requires all 3N −6 normal coordinates to be considered where N is the number

of atoms. The modification allowed for an arbitrary number of pre-specified normal

mode coordinates between 1 and 3N − 6 to be considered.

If a dipole moment surface is available, the Multimode program, after computing

the vibrational states and wavefunctions, can be used to compute pure vibrational

infrared intensities. This is done by solving the transition dipole matrix elements for

each excited state

Rα
νν′ = ⟨Ψν(Q)|µα(Q)|Ψν′(Q)⟩, (2.20)

where Ψν(Q) and Ψ′
ν(Q) are the vibrational wavefunctions of ν and ν ′, respectively,

µα the component of the molecular fixed dipole moment µ⃗ for one of the three cartesian

coordinates indexed by α. The integration is preformed in the normal coordinates,

which allows for the dipole to be considered in an n-mode representation similar to

the potential.
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2.3.4 Diffusion Monte Carlo

An implementation of the diffusion Monte Carlo (DMC) method was used to ob-

tain numerically exact solutions to the ground state energy and wavefunctions of

molecular systems in full dimensionality.29,30 The DMC approach begins with the

time-dependent Schrödinger equation

ih
∂Ψ

∂t
=

h2

2m

∂2Ψ

∂x2
+ V (x)Ψ, (2.21)

where

Ψ(x, t) =
∞∑
n=0

cnϕn(x)e
− i

h
Ent. (2.22)

In Ψ, the ϕn(x) and En are the eigenfunctions and eigenvalues of the time independent

Schrödinger equation. Two transformations are performed to the above equations to

prepare for the DMC calculation, a shift in energy scale by a constant energy Er and

transformation into imaginary time

h
∂Ψ

∂τ
=

h2

2m

∂2Ψ

∂x2
− [V (x)− Er]Ψ, (2.23)

and

Ψ(x, τ) =
∞∑
n=0

cnϕn(x)e
−En−Er

h
τ . (2.24)

Implicit in the imaginary time wavefunction, when n = 0, are the following asymptotic

behaviors: if Er > E0, limτ→∞Ψ = ∞, the wavefunction diverges exponentially fast;

if Er < E0, limτ→∞Ψ = 0, the wavefunction vanishes exponentially fast; if Er = En,

limτ→∞Ψ = c0ϕ0, the wavefunction converges to the ground state wavefunction. The

latter convergence provides the basis for computing the ground state energy, E0 and

wavefunction ϕ0 for molecular systems in the DMC approach.

Integration of the imaginary time Schrödinger equation can be performed by ap-
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plying path integral or diffusion-reaction formalisms. Both lead to an algorithmic

solution based on standard Monte Carlo stochastic integration. The later technique

is, however, limited to when the wavefunction can be considered as a positive def-

inite probability density, which is true in the case of a ground state wavefunction.

The algorithm begins by considering a numerical representation of Ψ(x, τ) where the

wavefunction is defined by points in configuration space known as “walkers.” These

“walkers” can be simulated forward in imaginary time according to a random walk

under a birth-death process, where “walkers” are generated or removed depending on

their energy and the mean energy of all “walkers.” The average energy of the all the

“walkers” will eventually converge to the true value of Er that is equivalent to the

value of E0 and ψ0.

More explicitly, the calculations start by defining an imaginary time-step ∆τ , an

inversely proportional “feedback” parameter α, the number of initial “walkers” N0, a

equilibration time, a total simulation time, and a initial guess of the average ground

state wavefunction structure. The value of ∆τ is selected to be small enough to avoid

substantial systematic error in discretizing the imaginary time but large enough not to

result in exhaustive computing time. Similar considerations are made in the selection

of N0 to ensure enough walkers are present to numerically represent the wavefunction

but not so many that the computational cost is too great. The equilibration time is

chosen to be long enough to allow the “walkers” to equilibrate to a converged state.

The propagation time after the equilibration time is performed to allow for better

statistical estimates of the ground state energy.

The simulations begins with a collection of N0 “walkers” initialized as a dirac δ-

function at the guess of the average ground state configuration,

Ψ(x0, 0) = δ(x− x0), (2.25)
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where x contains a list of the N walkers each characterized by M dimensions. The

“walkers” are propagated forward according to a gaussian random walk wherein the

“walkers” positions are changed according to

xij = xi−1
j + ρij · σ, (2.26)

where j indexes to the “walkers,” i indexes the time steps, ρ is a vector of random

numbers taken from a gaussian distribution with a 0 mean and variance of 1, σ =√
h∆τ/m and m is a vector of atom masses. A weight for each new xij configuration

is computed

W (xij) = e−∆τ
V (xij)−Er

h (2.27)

along with an integer m = min(int[W (xij) + u], 3), where the int function returns an

integer value and u is a random number between 0 and 1. The value of m determines

what occurs to a given “walker” such that, if m = 0 the “walker” is removed, if m = 0

the “walker” remains, and if m > 1 then m− 1 replicas of the walker are added. The

final number of “walkers” is updated as Ni. A new reference energy is then computed

according to

Er =< Vi > −αNi −N0

N0

, (2.28)

where α is the empirically identified value chosen a the start of the simulation in order

to remove smaller unwanted correlations between the i − 1 and i “walker” distribu-

tions. The process iterates for the specified number of steps, with the final ground

state energy computed from the converged portion of the simulation.

In a DMC simulation the convergence regularly occurs within the first 2000 imagi-

nary time steps. The remaining simulation time is then used to compute the ground

state energy. Specifically, in this dissertation work the ground state energy was calcu-

lated by dividing the converged simulation into separate blocks from which an average

E0 was computed. The average of the all blocks E0 was computed with the standard
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deviation taken to be the statistical uncertainty in the ground state.

A powerful results of the DMC simulations is the ability to generate three-dimensional

visualizations of ground state wavefunctions. This is achieved by transforming the

final collection of xyz coordinates generated by the DMC simulations into a read-

able Gaussian cube file. These files were generated by first transforming each of the

“walkers” into the Eckart frame relative to a minima or transition state configuration,

which is most similar to the average ground state configuration. In order to ensure

proper symmetry in the visualized wavefunctions, the coordinates were often dupli-

cated and reflected across appropriate axes. A quartic kernel density estimator was

then applied to the spatial coordinate to compute volumetric elements for each type

of atom. These volumetric elements were then written to a Gaussian cube file and

visualized using the VMD package. The code used to performed this transformation

was developed by Volodymr Babin who first applied it in Reference [ 31]. It is im-

portant to note that while the DMC results are numerically exact, the visualization

of the wavefunctions are interpreted qualitatively. This is because for each rendered

wavefunction an isovalue, which controls the size of the volume elements shown ren-

dered, must be selected. This value is selected empirically often with support from

observations of the same system’s wavefunction computed using reduced dimensional

calculations.

2.4 Quasi-Classical Simulation

Time-dependent quantum mechanical studies of molecular systems greater than four

atoms are extremely difficult to due to the large number of degree-of-freedom. There-

fore, in studies performed in this dissertation an approximation to the true dynamics

known as quasi-classical dynamics is considered instead.32,33 In these simulations the

quantum effects are considered solely in terms of the initial conditions of the system.

This simplification give a large speed advantage over other techniques. The quasi-
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classical approach treats the nuclear motion classical using Hamilton’s equations of

motion

H = T (p) + V (q), (2.29)

dp

dt
= −δH

δq
, (2.30)

dq

dt
= +

δH

δp
, (2.31)

where q are the atomic coordinates, p the conjugate momenta, t the time, m the

mass, T the kinetic energy and V the potential energy. Important effects of zero-

point motion are considered in the simulations by first computing the system’s har-

monic frequencies and then initializing the zero-point energy into the computed nor-

mal mode coordinates. Similarly, the effects of vibrational excitations are accounted

for by adding additional energy into specified normal mode coordinates. The total

simulation energy is considered as the sum of the ground state energy

Eground =
n∑

i=1

1

2
ωi, (2.32)

where n is the total number of normal modes and ω and the excited state energy

Eexcited =
e∑

j=1

ωj, (2.33)

where the sum is over the indices of the modes that are chosen to be excited. The total

energy is divided between the kinetic and potential energy of the system according

to

Etotal = Eground + Eexcited =
n∑

i=1

1

2
P 2
i +

1

2
ω2
iQ

2
i , (2.34)
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where the Qi and Pi are the normal mode coordinates and the momentum along those

coordinates, respectively. The Qi and Pi values are initialized by

Qi =

√
2Ei

ωi

cos(2πRi), (2.35)

and

Pi = −
√
2Eisin(2πRi), (2.36)

where Ei is the energy associated with normal mode i and Ri a random number be-

tween 1 and 0.

Once the system is initialized in this manner, the true PES anharmonic energy

is computed. Due to the harmonic assumption and random initialization, the total

anharmonic energy is rarely the same between simulations. This is corrected for by

scaling the velocities to match either the value given by Etotal. When anharmonic

excited state and zero-point energies are available the velocities can be further scaled

to match the anharmonic values. It is worth mentioning that regardless of this scaling

the resulting dynamics are fully anharmonic in nature.

The computational cost of performing QCT simulations is much lower than other

more complex approaches.34,35 This is particularly useful when several thousand of

simulations are required to study the distributions of molecular properties and to

identify rare events. The classical treatment does however lead to the “quantized”

energy leaking from the initialized modes. When the leaking energy is associated with

the zero-point energy of the system it results in classical systems with no quantum

mechanical analog. In the case of dissociation dynamics, products whose zero-point

energies are lower than their true quantum mechanical can have unphysically large

rotational or translational energy. The effects of this zero-point energy leak are ac-

counted for after the fact by excluding simulations whose products have vibrational

energy lower than the appropriate harmonic or anharmonic zero-point energy amount.
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The computational cost of performing simulations that do not have proper zero-point

energy and must be discarded is off-set by the low cost of performing each simula-

tion. The energy leakage effect can also be utilized to study vibrational relaxation

dynamics where the initialized energy is associated with excitation energy and the

relaxation rate and relaxed dynamics can be studied.
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3
(HCl)n Clusters

3.1 Overview

Hydrogen halides are the simplest forms of hydrogen bonded clusters. Their diatomic

nature allows for highly directional interactions with the hydrogen atom donating

a hydrogen bond and the halide atom accepting another. The simplicity of these

diatomics have garnered significant scientific interest due to the detailed level of

molecular insight that can be obtained from their study. In the following chapter

theoretical studies performed specifically on the hydrogen halide cluster, (HCl)n, are

reported.

This chapter is broken into three sections as follows. The first section details an on-
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the-fly approach to computing the anharmonic vibrational frequencies for molecular

systems. This technique is applied to HCl clusters ranging from the HCl dimer to the

hexamer with direct comparisons made with experimental peak positions. The sec-

ond section describes the construction of a new many-body potential energy surface

to describe arbitrary sized HCl clusters. The new surface is used to study vibrational

properties of HCl clusters including a unique example of vibrational energy transfer

in the HCl trimer. The final section presents an application of the new HCl poten-

tial energy surface to gain a detailed understanding of the vibrational predissociation

behavior of the HCl trimer. This work was performed with a parallel experimental

investigation of the system, conducted by Dr. Amit K. Samanta and Dr. Hanna

Reisler at the University of Southern California.

3.2 On-the-fly Ab Initio Calculations of Anharmonic Vibrational

Frequencies: Local-Monomer Theory and Application to HCl

Clusters

3.2.1 Context

In order to fully understand the behavior of molecules in the bulk phase, studies have

been performed on well-characterized molecular clusters.36,37,38,39,40,41,42 Examination

of these clusters provides detailed information about the interactions that influence

the bulk phase. In each cluster the monomers are connected to their neighbors by

weak intermolecular interactions. The cooperative effects of these forces can often

be observed in the changes of vibrational frequencies as molecular clusters grow in

size. These vibrational shifts are readably measured from IR spectroscopy.43,44 How-

ever, the assignment of the vibrational frequencies, purely from experimental results

can be extremely difficult. The measured spectra can become complicated by many

factors including, multiple low-lying cluster conformations, combination bands, over-

tones and multiple isotopes. These effects become more prominent as clusters grow
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in size; preventing a clear understanding of their growth . Theoretical calculations of

anharmonic vibrational frequencies are key to interpreting these spectra.

The theoretical computation of anharmonic frequencies is a challenging endeavor.

Exact solutions of molecular vibrations for up to four atoms are readily available.27

Additional techniques allow for near exact solutions for as many as nine atoms.24,25,26

In systems greater than nine atoms, calculations become difficult due to the large

number of degrees of freedom and the high cost of electronic structure calculations.

When the anharmonic frequencies of large systems are pursued, approximations are

applied in the form of quantum calculations with limited mode coupling17 or calcu-

lations based on classical mechanics.28 More commonly, anharmonic frequencies of

large systems are obtained by avoiding explicit calculations of anharmonicity, but in-

stead add anharmonic effects with empirical scaling factors. These factors have been

derived from comparisons between experimental frequencies and harmonic frequen-

cies calculated for specific combinations of electronic structure methods and basis

sets.45,46 This empirical approach, however, can fail “without warning,” and so is not

an ideal solution.

Recently the it was reported that the use of scaled harmonic frequencies and double-

harmonic intensities hampered the correct interpretation of the water hexamer spec-

trum.47 In contrast, a purely theoretical approach, known as the local-monomer model

(LMon), was able to compute frequencies and intensities, including the bend over-

tone, in very good agreement with the experimental values.48 The LMon approach

is a “divide and conquer” technique that solves for a cluster’s anharmonic frequen-

cies by first computing each isolated monomer’s normal-modes in the frozen field of

all other monomers. The local-monomer normal-modes are then used with an ap-

propriate Hamiltonian to obtain the anharmonic vibrational frequencies. The LMon

method has been applied with accurate full-dimensional potential energy surfaces to

water clusters ranging from the dimer48 to 192-monomers49 as well as to the micro-
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hydration of atomic ions.50,51,52 In studies of clusters with degenerate and near degen-

erate LMon mode vibrations, such as the water ring tetramer, degeneracy breaking

monomer-monomer coupling was considered with the Hückel-coupling approach, (de-

scribed in detail below).53

The LMon-Hückel approach is a highly versatile and efficient framework for study-

ing molecular clusters. To demonstrate this the model is applied here without a

full-dimensional potential energy surface. This type of on-the-fly, “first-principles”,

calculation is ubiquitous, but predominately in classical molecular dynamics. Typi-

cal quantum calculations for larger systems, even just a normal-mode analysis, can

require a prohibitively large number of electronic structure energies. Going beyond

the harmonic approximation using straightforward approaches is simply not feasi-

ble. This is perhaps best illustrated by the recent Communication reporting seven

degrees-of-freedom direct dynamic, coupled anharmonic, calculations as the current

limit of such calculations.54 The LMon method provides a promising framework for

direct, on-the-fly, quantum applications.

Even the application of the LMon-Hückel to a large cluster in this direct fashion

is hampered by the exponential scaling of electronic structure calculations for the

full normal-mode analysis required by the Hückel-coupling approach. In order to

overcome this limitation, a composite ab initio technique is proposed for treating the

potential energies in the LMon-Hückel approach. The composite technique applies

two separate electronic structure methods to solve for the vibrational frequencies. A

computationally efficient method capable of accurate geometry prediction, e.g, MP2,

is chosen as the first method method and used for the geometry optimization and har-

monic analyses. A more accurate method, e.g., CCSD(T), is then used to determine

the energies for the anharmonic calculation. The resulting anharmonic frequencies

from the composite method are found to produce frequencies comparable to those

calculated solely at the higher level of theory, but at substantially less cost. This
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composite approach is analogous to the practice used in energetic studies of large

molecular systems where structures are optimized using a lower level of theory, and

then the energy evaluated using a higher level single point calculation.

The LMon-Hückel approach and its proposed composite formalism is applied here

to hydrogen chloride (HCl) clusters. These diatomic molecular clusters allow the

LMon approaches to be tested in their simplest form due to the one-dimensional na-

ture of the HCl stretches.

The study of HCl clusters, specifically (HCl)2-6, shown in Figure 3.1 remains a

topic of continued experimental interest. The dimer is the most studied of these

clusters.55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 It is characterized by a single weak hydro-

gen bond and a large amplitude motion by which the hydrogen donating and ac-

cepting monomers can interchange. The weak hydrogen bonding results in a ground

state splitting of 15 cm−1.61 Multidimensional potential energy surfaces67,66,63 have

been generated and applied in full, six-dimensional, solutions to the vibrational

Schrödinger equation.63,64 The trimer has been the focus of considerable effort ex-

perimentally.70,71,59,72,73,74 In the trimer, (HCl)3, a “closed-shell” of hydrogen bonds

is capable of forming.75 Each monomer donates and accepts a single hydrogen bond

creating a triangle with C3h symmetry in its lowest energy configuration. This clus-

ter has been studied using high-resolution spectroscopy to determine the excitation

energy of the H-Cl stretch in the gas phase.71,59 Owing to the high symmetry of this

cluster it might be naively concluded that there is a single excitation energy resulting

from the equivalence of the three HCl units. The monomers are indeed identical;

however, from both spectroscopy and theory it is observed that the three-fold sym-

metry is broken slightly, in the space of excitation. This symmetry breaking is due

to dynamical monomer-monomer coupling, which is directly related to the vibration-

vibration energy The next cluster, the tetramer, has been studied to a lesser extent

relative to the smaller clusters.70,59,76,72 The minima of the tetramer is characterized
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by a puckered ring conformation with four degenerate HCl subunits. The final two

clusters, the pentamer and hexamer, both present challenges to modern experimen-

tal spectroscopy as well as theory. Both are characterized by lower symmetry than

the smaller clusters and a breakdown of the single-ring conformation. These confor-

mational changes can result in broader, less structured spectra and the loss of the

size-dependent frequency shift. The pentamer, while still described by a ring at its

global minima begins to fold onto itself resulting in five unique monomer subunits.

The hexamer loses the single ring conformation and is instead best described as two

perturbed trimer clusters stacked on top of each other. The perturbed stacking results

in only three unique monomer units describing the cluster. In helium nanodroplets70

both clusters were assigned, but only a tentative assignment was made for the pen-

tamer using the ragout-jet FTIR technique.76

        N = 2                              N = 3                                              N = 4


        N = 5                                                     N = 6


Figure 3.1: Global minimum geometries of HCl clusters.



CHAPTER 3. (HCL)N CLUSTERS 35

3.2.2 Methods for Preforming On-the-Fly Vibrational Calculations

Local-Monomer Model

The local-monomer (LMon) model solves the Schrödinger equation in terms of the

LMon normal-modes of each monomer embedded in the cluster. The LMon modes

are determined, in the specific case of the HCl clusters, from diagonalizing monomer-

centric 6× 6 Hessians. The resulting LMon modes for a HCl monomer correspond to

five low-frequency frustrated translations and rotations and a single high-frequency

intramolecular stretch. The simplest and fastest possible application of the LMon

method is presented here, which ignores explicit coupling of the stretch to the low-

frequency modes. Following this assumption, the 1D Schrödinger equation to be

solved is,

[Ti + Vi(Qi)− ϵni
]χni

(Qi) = 0, (3.1)

where i is the specific monomer, Qi is the LMon intramolecular coordinate, Ti is the

kinetic energy, Vi is the potential energy, ϵni
the nth

i energy level and χni
the nth

i

wavefunction. The solution to Equation 3.1 is determined by first generating a 1D

potential from a 10th order polynomial fit from 17 ab initio energies along the stretch-

ing coordinate, Qi. The ab initioenergies are non-equally spaced along Qi to allow for

optimal fitting and to span the range of the 1D wavefunction. The potential is then

discretized into a 1000 points and the Schrödinger equation solved using the discrete

variable representation (DVR).23 Based on the difference between the ground and

first excited state levels in the DVR calculation, the LMon anharmonic fundamental

frequency is calculated.

Hückel-Coupling

The harmonic frequencies from the LMon method for a cluster, Ωi, can be com-

pared to those from a full normal-mode analysis, ωi. The differences between the two

frequencies are expected to be small. However, when degeneracies and near degenera-
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cies occur in the LMon results, additional monomer-monomer coupling can be added

to bring the LMon frequencies into agreement with the full normal-mode frequen-

cies. This monomer-monomer coupling is added via a Hückel-coupling matrix.53 In

the simplest case a single nearest neighbor coupling constant, β0, is considered. This

coupling constant and the LMon frequencies are arranged into a matrix and diagonal-

ized to give a new set of frequencies, ω̃, approximately equal to the full normal-mode

frequencies, ω. An example of the application of nearest neighbor coupling for the

HCl trimer stretches is,


Ω1 β0 β0

β0 Ω2 β0

β0 β0 Ω3

 ⇒


ω̃1 0 0

0 ω̃2 0

0 0 ω̃3

 , (3.2)

where the double arrow refers to the diagonalization of the matrix. This coupling can

and is also considered here even in the absence of such degeneracies. For clusters larger

than the trimer, multiple coupling constants are required to account for farther than

nearest neighbor coupling and bring the LMon and normal frequencies into agreement.

The multiple coupling constant matrix for the HCl tetramer is,



Ω1 β1 β2 β1

β1 Ω2 β1 β2

β2 β1 Ω3 β1

β1 β2 β1 Ω4


⇒



ω̃1 0 0 0

0 ω̃2 0 0

0 0 ω̃3 0

0 0 0 ω̃4


, (3.3)

where two unique coupling constants, β1 and β2, are used. These coupling constants

are then used to modify the LMon anharmonic frequencies of a cluster by simply

substituting these for the Ω’s and diagonalizing the resulting matrix.53

The values of coupling constants are determined as parameters in least-squares fits

of the split local-monomer model frequencies (LMonβi
) and the full normal-mode fre-
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quencies. A general approach to calculating the constants was derived previously53

and involves treating the LMon analysis as an approximation to the full normal-mode

analysis.

Composite Ab Initio Approach

In the case of large HCl clusters, geometry optimizations and normal-mode analysis

using an accurate electronic structure method e.g., coupled-cluster, requires a large

amount of computer time. Due to the high cost, a composite ab initio technique is

proposed. It is applied to the LMon calculations of anharmonic frequencies for the

pentamer and hexamer clusters with preliminary tests applied to the dimer, trimer

and tetramer. In the composite technique two ab initio methods, which are refered

to here as A and B, are applied. The first method, A, is chosen to be a method

which can efficiently and accurately predict cluster stationary points. It is used to

compute an optimized cluster geometry, perform full and LMon harmonic normal

mode analyses and derive Hückel-coupling constants. The second method in the ap-

proach, B, is selected to be more accurate than A, either by including a higher level

of electron correlation or a larger basis set. This method is used to compute energies

along the LMon mode, HCl stretch, determined from A at the minima determine

with A. The resulting 1D potential, using B energies, is then used to calculate LMon

anharmonic frequencies. Monomer-monomer coupling is added to these composite

LMon frequencies via the coupling constants determined from A. The anharmonic

frequencies computed with the composite ab initio technique are exactly equal to cal-

culation of anharmonic frequencies with B when, A is able to optimize the cluster to

the identical conformation as B, and the monomer-monomer coupling derived from

the harmonic frequencies using A is the same as the coupling in B.

Ab Initio Calculations

The global minimum geometries of (HCl)2-6 optimized using CCSD(T)-F12b/aug-

cc-pVTZ (aVTZ) theory for the dimer, CCSD(T)-F12b/aug-cc-pVDZ (AVDZ) for
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the trimer and tetramer and MP2/6-311++G(3df,3dp) for the pentamer and hex-

amer can be seen in Figure 3.1. All geometry optimizations were performed starting

from the coordinates reported in the Supplementary Information of Ref[70]. Addi-

tional specifics of the ab initio methods used in the vibrational analyses are detailed

in the following section. All calculations are for Chlorine-35. Electronic structure

calculations were performed using MOLRPO 2010.77

3.2.3 On-the-Fly (HCl)1−6 Vibrational Frequencies

Monomer

Before reporting on the HCl clusters it is prudent to examine the accuracy of elec-

tronic structure methods with respect to the isolated HCl monomer. Anharmonic and

harmonic fundamental vibrational frequencies calculated using different levels of the-

ory are reported in Table 3.1 for the monomer along with a benchmark experimental

value.78 Previous ab inito calculations using MRCI and an aug-cc-pV5Z (aV5Z) basis

set are in effectively exact agreement with the experimental value.79 The frequency of

the most rigorous anharmonic calculation, CCSD(T)-F12b/aV5Z, red shifts 6 cm−1

relative to experiment. Reducing the basis set of the CCSD(T)-F12b calculation to

aVTZ and aVDZ further red shifts the frequency. When MP2/6-311++G(3df,3pd)

is applied, the resulting frequency is red shifted 76 cm−1 from experiment. This ap-

parent failure of MP2 motivates the application of the higher level methods used for

the 1D calculation of HCl fundamental energies.
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Table 3.1: Harmonic and anharmonic frequency (cm−1) of HCl monomer using different electronic
structure methods.

Method Anharmonic Harmonic
CCSD(T)-F12b/aV5Z 2892 3009
CCSD(T)-F12b/aVTZ 2891 2994
CCSD(T)-F12b/aVDZ 2906 2996

MP2/6-311++G(3df,3pd) 2962 3057
MRCI/aug-cc-pV5Z79 2886 2993

Experiment78 2886

Dimer

In Table 3.2, harmonic frequencies from full and LMon normal-mode analyses of

the dimer are reported using two different electronic structure methods, CCSD(T)-

F12b/aVTZ and MP2/6-311++G(3df,3pd). The local-normal-mode analysis LMon

frequencies of the dimer are seen to be in near exact agreement with the full normal-

mode frequencies using either electronic structure method. Harmonic frequencies

computed using MP2 are closer to those computed using the CCSD(T)-F12b, than

in the monomer. While this might indicate vibrational frequency calculations of HCl

clusters can be performed using MP2, the subsequent large clusters, reported on be-

low, do not show agreement between MP2 and CCSD(T) results. In addition to the

reasonable agreement between harmonic frequencies, the two methods give similar

global minima, with bond distances, hydrogen bond lengths and angles differing by

less than 0.01 Å and 2 respectively.

Table 3.2: Harmonic frequencies (cm−1) of the HCl dimer from indicated calculations see text for
details.

MP2/6-311++G(3df,3pd) CCSD(T)-F12b/aVTZ
Mode Full LMon Full LMon
ν1 3005 3005 2976 2977
ν2 2962 2961 2951 2957

Moving beyond harmonic analysis, computed anharmonic frequencies are reported

in Table 3.3 where the frequencies listed under the header with two methods used the
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composite technique for computing the ab initio energies. MP2/6-311++G(3df,3pd),

was used for the geometry optimization and harmonic analyses and CCSD(T)-F12b/aVTZ

was used to determine the energies of the 1D potential cuts. Frequencies computed us-

ing the composite technique henceforth are referred to by the second electronic struc-

ture method listed. Table 3.3 also reports benchmark theoretical results, which used

a full-dimensional treatment of the system. The composite CCSD(T)-F12b/aVTZ

frequencies are in very good agreement with the results obtained using the tradi-

tional, non-composite, technique, differing by less than 2 cm−1. The LMon method

used here is the simplest possible calculation of anharmonic frequencies for the dimer,

requiring (in addition to the geometry optimization and LMon analysis) only 17 elec-

tronic structure energies per mode. Even with this simple approach good agreement

is achieved with the previous benchmark calculations reported by Ref[ 63], which

required the use of a full, six-dimensional, surface to compute. (Note, however, those

calculations account for the interchange tunneling splitting, which is ignored in the

present calculations.)

Table 3.3: Anharmonic frequencies (cm−1) of the HCl dimer from calculations using the LMon-Hückel
approaches as described in the text and comparisons with benchmark six-dimensional results.

CCSD(T)-F12b/aVTZ MP2/6-311++G(3df,3pd) Ref[ 63]CCSD(T)-F12b/aVTZ
Mode LMon LMon 6D
ν1 2876 2877 2874
ν2 2830 2832 2857

Trimer

Both MP2/6-311++G(3df,3pd) and CCSD(T)-F12b/aVDZ levels of theory predict

a global minimum with D3h symmetry. The geometric parameters of the two pre-

dicted geometries are in close agreement. The MP2/6-311++G(3df,3pd) calculation

predicts HCl and hydrogen bond lengths to be 0.006 Å and 0.031 Å longer than the

CCSD(T)-F12b/aVDZ geometry. Both methods find a 2 : 1 degeneracy pattern in
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the full normal-mode frequencies and a three-fold degeneracy in the LMon frequen-

cies, reported in Table 3.4.

Table 3.4: Harmonic frequencies (cm−1) of the HCl trimer from indicated calculations, see text for
details.

MP2/6-311++G(3df,3pd) CCSD(T)-F12b/aVDZ
Mode Full LMon LMonβ0 Full LMon LMonβ0

ν1 2916 2940 2879 2879 2900 2880
ν2 2952 2940 2910 2910 2900 2910
ν3 2952 2940 2910 2910 2900 2910
β0 −12.10 −10.02

The LMon method predicts a single degenerate frequency using either electronic

structure theories, as opposed to the 2 : 1 pattern due to the lack of monomer-

monomer coupling in the calculations. This is corrected by applying the Hückel-

coupling approach, given for the trimer by Equation 3.2. In Equation 3.2 the matrix

on the left hand side contains the monomer-monomer coupling constant, β0, given in

Table 3.4 and the LMon frequencies, Ω. The right hand side matrix consists of the

eigenvalues of the left, where ω̃ are the coupled LMonβ0 frequencies. Considering that

the LMon can be described by a single triply-degenerate frequency, Ω0, the analytical

solutions for the eigenvalues to Equation 3.2 are Ω0+2β0 and Ω0−β0, with the former

eigenvalue being doubly degenerate. The splitting pattern and more explicitly the

LMonβ0 frequencies are in perfect agreement with the full normal-modes frequencies

for the respective electronic structure calculations. Comparison of the frequency val-

ues of the two electronic structure methods finds the MP2/6-311++G(3df,3pd) full

and LMon frequencies are all red shifted approximately 40 cm−1 from the CCSD(T)-

F12b/aVDZ values. However, the coupling constants of the two methods only differs

by 2 cm−1. It is worth noting that Equation 3.2 has been used previously by Fárník

and Nesbitt as part of an exciton model,80 which they used to help assign the spectra

of the HCl trimer’s isotopologues. While the LMon-Hückel approach follows in the
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spirit of the exciton model, the two methods are distinctly different, and considering

their difference, agreement between two models’ results is not expected.

Anharmonic frequencies are given for the trimer in Table 3.5. Looking at the tra-

ditional and composite CCSD(T)-F12/aVDZ LMon frequencies in Table 3.5, the two

methods’ triply-degenerate frequency shows excellent agreement with a difference less

than 10 cm−1. The three-fold degeneracy in both approaches is corrected when Equa-

tion 3.2 is applied, using the anharmonic LMon values forΩ and the β0 values in Table

3.4. The resulting coupled anharmonic frequencies, LMonβ0 , have the proper 2 : 1

degeneracy pattern. In the composite calculations the MP2/6-311++G(3df,3pd) cou-

pling constant is applied. The final coupled anharmonic frequencies, LMonβ0 , from

the traditional and composite methods using CCSD(T)-F12b/aVDZ differ on average

less than 10 cm−1. Considering the agreement between the traditional and composite

CCSD(T)-F12b/aVDZ frequencies, the composite CCSD(T)-F12/aVTZ frequencies

are calculated. The results show a slight blue shift relative the the smaller basis set

calculation which agrees with the trend observed in monomer calculations reported

in Table 3.1.

Table 3.5: Anharmonic frequencies (cm−1) of the HCl trimer from calculations using the LMon-Hückel
method as described in the text.

CCSD(T)-F12b/aVDZ MP2/6-311++G(3df,3pd) CCSD(T)-F12b/aVDZ
CCSD(T)-F12b/aVDZ CCSD(T)-F12b/aVTZ

Mode LMon LMonβ3 LMon LMonβ3 LMon LMonβ2

ν1 2791 2771 2784 2760 2778 2753
ν2 2791 2801 2784 2796 2778 2790
ν3 2791 2801 2784 2796 2778 2790

Tetramer

Using CCSD(T)-F12b/aVDZ, it is observed that this cluster is characterized by two

identically puckered global minima. Connecting the two minima is a planar structure,

30 cm−1 above the global minima. When studied using MP2/6-311++G(3df,3pd) the
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same conformations are observed with the planar geometry 14 cm−1 above the global

minima. Considering how small the difference is between the planar and puckered

geometries, the ground state would likely be delocalized across the two global min-

ima, resulting in the experimental observation of an average planar conformation.

The effect of a delocalized ground state is approximated by applying the vibrational

analyses to the planar structure. The planar CCSD(T)-F12b/aVDZ optimized ge-

ometry’s HCl bond is 1.289 Å and hydrogen bond length is 2.392 Å. The respective

distances using MP2/6-311++G(3df,3pd) are 1.284 Å and 2.354 Å. Similar relative

deviations of the distances are observed between the two electronic structure methods

when comparing the puckered conformations.

Table 3.6 contains the harmonic vibrational analyses of the tetramer. First, con-

sider the differences between the two electronic structure methods. The CCSD(T)-

F12b/aVDZ full and LMon frequencies are approximately 30 cm−1 blue shifted rela-

tive to the MP2/6-311++G(3df,3pd). In both methods, full normal-mode frequencies

show a 1 : 2 : 1 degeneracy pattern while the LMon, due to the degenerate monomer

subunits, has a four-fold degeneracy. Diagonalizing the simplest Hückel-coupling ma-

trix, given in Equation 3.3, where β1 = β0, β2 = 0 and Ω are the LMon frequencies,

the proper 1 : 2 : 1 splitting is observed in the the LMonβ0 . However, the applica-

tion of the single coupling constant is not sufficient to bring the full and LMonβ0 into

agreement for either electronic structure calculation. When two constants are applied

in Equation 3.3, β(1-2), the average difference between the now fully coupled frequen-

cies, LMonβ2 and the full normal-mode frequencies are less than 2 cm−1. Examining

the effects of the different electronic structure methods on the coupling constants

shows minimal difference in the coupling relative to the deviations in the calculated

vibrational frequencies.
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Table 3.6: Harmonic frequencies (cm−1) of the HCl tetramer from indicated calculations, see text for
details.

MP2/6-311++G(3df,3pd) CCSD(T)-F12b/aVDZ
Mode Full LMon LMonβ0 LMonβ2 Full LMon LMonβ0 LMonβ2

ν1 2857 2895 2865 2858 2831 2863 2837 2833
ν2 2901 2895 2895 2901 2868 2863 2863 2869
ν3 2901 2895 2895 2901 2868 2863 2863 2869
ν4 2919 2895 2924 2919 2883 2863 2890 2884
β0 −14.73 −13.36
β(1-2) −15.28 −6.39 −12.79 −5.22

The results of anharmonic frequency calculations are reported in Table 3.7. Com-

paring the traditional and composite CCSD(T)-F12b/aVDZ results for the four-fold

degenerate LMon frequency, the results of the two techniques differ by 12 cm−1. Af-

ter applying the coupling constants the anharmonic LMonβ2 frequencies differ on

average 18 cm−1. The latter difference is much smaller than the 70 cm−1 difference

between the monomer CCSD(T)-F12b/aVDZ and MP2/6-311++G(3df,3pd) frequen-

cies. The composite CCSD(T)-F12b/aVTZ frequencies shows a blue shift of approx-

imately 15 cm−1 relative to the non-composite CCSD(T)-F12b/aVDZ results.

Table 3.7: Anharmonic frequencies (cm−1) of the HCl tetramer from calculations using the LMon-
Hückel method as described in the text.

CCSD(T)-F12b/aVDZ MP2/6-311++G(3df,3pd) CCSD(T)-F12b/aVDZ
CCSD(T)-F12b/aVDZ CCSD(T)-F12b/aVTZ

Mode LMon LMonβ3 LMon LMonβ3 LMon LMonβ2

ν1 2747 2717 2735 2698 2732 2702
ν2 2747 2753 2735 2742 2732 2738
ν3 2747 2753 2735 2742 2732 2738
ν4 2747 2768 2735 2760 2732 2753

Pentamer and Hexamer

For these clusters, geometry optimizations and harmonic analyses were performed

using MP2/6-311++G(3df,3pd). The subsequent anharmonic potentials in the com-

posite approach were generated using CCSD(T)-F12b/aVTZ and CCSD(T)-F12b/aVDZ
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for the pentamer and hexamer, respectively. The computed frequencies for the pen-

tamer and hexamer are given in Tables 3.8 and 3.9, respectively.

Table 3.8: Harmonic and anharmonic vibrational frequencies (cm−1) of the HCl pentamer.

Harmonic Anharmonic

MP2/6-311++G(3df,3pd) MP2/6-311++G(3df,3pd)
CCSD(T)-F12b/aVTZ

Mode Full LMon LMonβ0 LMonβ3 LMon LMonβ3

ν1 2854 2898 2862 2854 2724 2680
ν2 2888 2894 2883 2888 2721 2714
ν3 2889 2893 2885 2891 2719 2718
ν4 2912 2890 2916 2912 2716 2736
ν5 2920 2890 2919 2920 2716 2747
β0 −15.2
β(1-3) −14.87 −7.36 0.41

Table 3.9: Harmonic and anharmonic vibrational frequencies (cm−1) of the HCl hexamer.

Harmonic Anharmonic

MP2/6-311++G(3df,3pd) MP2/6-311++G(3df,3pd)
CCSD(T)-F12b/aVDZ

Mode Full LMon LMonβ0 LMonβ3 LMon LMonβ3

ν1 2935 2917 2937 2940 2759 2781
ν2 2933 2917 2927 2933 2759 2773
ν3 2919 2909 2921 2919 2750 2759
ν4 2902 2909 2901 2902 2750 2742
ν5 2895 2907 2895 2896 2746 2735
ν6 2878 2907 2886 2878 2746 2718
β0 12.56
β(1-3) −12.75 −6.74 5.75

Starting with the pentamer, the cluster’s global minimum geometry has no iden-

tical monomer subunits. As a result, the HCl stretch vibrations using the LMon

method are not fully degenerate. However, the lack of monomer-monomer coupling

still results in LMon frequencies deviating on average 21 cm−1 from the full normal-

mode frequencies. Applying a single coupling constant using the following matrix
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with β1 = β0, β2 = β3 = 0 and the diagonal, Ω, equal to the LMon frequencies,



Ω1 β1 β2 β3 β1

β1 Ω2 β1 β2 β3

β2 β1 Ω3 β1 β2

β3 β2 β1 Ω4 β1

β1 β3 β2 β1 Ω5


, (3.4)

the difference between the LMonβ0 and full normal-modes frequencies is reduced to

4 cm−1. Near exact agreement with the normal-mode frequencies is achieved when

the LMon frequencies are fully coupled with three separate constants, β(1-3), to give

the LMonβ3 frequencies. Using the MP2/6-311++G(3df,3pd) harmonic results and

subsequent CCSD(T)-F12b/aVTZ 1D cuts, the composite CCSD(T)-F12b/aVTZ an-

harmonic frequencies were determined.

Moving now to the hexamer, the cluster is characterized by three doubly-degenerate

LMon frequencies at the global minimum. These frequencies again are in disagreement

with the full normal-mode frequencies. The application of the simple Hückel-coupling

matrix using, 

Ω1 β1 β2 β3 β2 β1

β1 Ω2 β1 β2 β3 β2

β2 β1 Ω3 β1 β2 β3

β3 β2 β1 Ω4 β1 β2

β2 β3 β2 β1 Ω5 β1

β1 β2 β3 β2 β1 Ω6


, (3.5)

with β1 = β0 and β2 = β3 = 0 yields LMonβ0 with an average of 3 cm−1 difference

from the full normal-mode frequencies. This agreement with only a single coupling

constant underlies the similarities of the hexamer geometry to that of the trimer where

only a single coupling constant is required. Additional coupling of the LMon frequen-
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cies is achieved by applying three separate constants β(1-3) to give the LMonβ3 . The

final LMonβ3 frequencies deviate an average of 1 cm−1 from the full normal-mode fre-

quencies. Only three coupling constants are required to couple the six LMon modes.

If four constants are applied overfitting occurs and the coupled and full normal-mode

frequencies no longer agree. Finally, applying the composite technique CCSD(T)-

F12b/aVDZ, anharmonic frequencies were determined.

Comparisons with Experiment

The presented anharmonic frequencies represent the simplest approach to comput-

ing anharmonic frequencies in a computationally efficient manner. It is likely that

the simplicity of the approach results in errors in the calculations. To explore the

extent of these errors, the theoretical frequencies are compared to experiments for the

trimer, tetramer, pentamer and hexamer. Figure 3.2 shows stick spectra using an-

harmonic frequencies computed using the highest level composite computations with

MP2/6-311++G(3df,3pd) double harmonic intensities, alongside digital renderings of

experimentally measured spectra. The theoretical values are all blue-shifted relative

to the experiments. Important trends seen experimentally, such as the ordering of

prominent cluster peaks, are captured by the present calculations without scaling or

semi-empiricism. The theoretical shift varies on average approximately 30 cm−1 be-

tween clusters. The approximate average peak errors relative to experimental peaks

for the trimer, tetramer, pentamer and hexamer are 20 cm−1, 40 cm−1, 50 cm−1 and

20 cm−1, respectively.
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Figure 3.2: Anharmonic stick spectra and relative intensities of the HCl trimer, tetramer, pentamer and
hexamer from the current work (a), helium nanodroplets70 (b) and ragout-jet FTIR76 (c). Additional
peak positions of note are trimer: 2810 cm−1 and tetramer: 2774− 2778 cm−1.59 Dimer peak positions
from jet-cooled infrared spectroscopy: 2880 cm−1 and 2857 cm−1.60

Errors in the calculations which can be traced to the various assumptions that

were made. Starting from the application of the composite method, test applica-

tions on the trimer and tetramer indicate errors in assuming the ability of MP2/6-

311++G(3df,3pd) to match CCSD(T)-F12b/aVTZ geometries result in frequency er-

rors of approximately 12 cm−1. Deviations in MP2/6-311++G(3df,3pd) and CCSD(T)-

F12b/aVTZ coupling constants in the tetramer were as large as 3 cm−1, which due to

diagonalizing of the coupling matrixes can result in twice the deviation in the frequen-

cies. Combining these errors, the total error of the composite techniques is on the

order of 18 cm−1. Considering anharmonic MP2/6-311++G(3df,3pd) calculations of

the monomer result in a 70 cm−1 error, the composite technique is a substantial im-

provement. Based on calculations of the monomer, the explicit error in anharmonic

CCSD(T)-F12b/aVTZ and CCSD(T)-F12b/aVDZ frequency calculations is 5 cm−1
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and 20 cm−1. Additional errors that exist in the ab initio methods, such as basis set

superposition error, are difficult to measure. The final source of error is the lack of

low-frequency mode coupling, i.e. 1D approximation. While it is an extreme case for

the effects of low-frequency mode coupling, theoretical benchmark 6D calculations

and the 1D calculations of the dimer give an approximate error of 27 cm−1 for the

lack of coupling (assuming non-errors in the potential). The final maximum errors in

the calculations are predicted to be on the order of 50 cm−1.

3.2.4 Summary and Conclusions

In this section a method to compute on-the-fly anharmonic vibrational frequencies for

molecular clusters, using the local-monomer method is reported. The local-monomer

model gives a ideal framework to solve for the molecular vibrations of molecular clus-

ters effectively. In the direct approach, additional improvements to the computation

time were made possible by a composite ab initio technique. The method was applied

successfully to compute anharmonic frequencies for the HCl dimer, trimer, tetramer,

pentamer and hexamer. The calculations were capable of computing frequencies a

maximum of 50 cm−1 away from experiment.

The computational cost of the direct method demonstrated here is quite small, es-

pecially relative to traditional approaches. Consider, the largest cluster studied here,

the HCl hexamer. The optimization at each step computes the gradient which, if

numerical gradients are employed, requires 60 electronic energy points. The subse-

quent numerical Hessian calculation to compute harmonic frequencies requires 2593

energies. Given that a single point HCl hexamer CCSD(T)-F12b/aVDZ calculation

requires 85 minutes of CPU time on a single compute node, each optimization step

would take 85 hours to compute and the full hessian would take over 150 days. Such

calculations are too computationally expensive. Using MP2/6-311++G(3df,3pd) the
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computation times are reduced substantially, requiring 20 minutes per single point

energy, 20 hours per optimization step and 36 days to generate the Hessian. However

anharmonic frequencies computed using MP2/6-311++G(3df,3pd) were shown to be

quite inaccurate in computations of the HCl monomer. In the LMon calculations

of the HCl hexamer the composite technique was used which allows for the speed

of MP2/6-311++G(3df,3pd) in the optimization and harmonic analysis along with

the accuracy of CCSD(T)-F12b/aVDZ. The most costly part of the calculations was

the full harmonic analysis. Computation of the anharmonic frequencies are relatively

cheap, requiring only 51 CCSD(T)-F12b/aVDZ energies to study the three doubly-

degenerate monomers (17 points each).

Improvements to the LMon results can be achieved by coupling low-frequencies

vibrations to HCl stretches. Diatomic clusters, such as (HCl)n, when examined using

the LMon method are described by a single high-frequency stretching mode and five

low-frequency modes. Calculations fully coupling the five low-frequency modes to the

stretch allows for highly accurate studies of the anharmonic vibrational frequencies.

Such calculation can only be considered using the LMon approach.

3.3 A New Many-Body Potential Energy Surface for HCl Clusters

and Its Application to Anharmonic Spectroscopy and Vibration-

Vibration Energy Transfer in the HCl Trimer

3.3.1 Context

Despite the clear success of the LMon approach to study HCl clusters in the previous

section, the on-the-fly approach is still limited in its application. In order to study

dynamic properties such as pre-dissociation behavior or vibrational energy relaxation

and exhaustively large number of potential evaluations are required. This motivated

the creation of a rapidly callable many-body potential energy surface to describe HCl



CHAPTER 3. (HCL)N CLUSTERS 51

clusters of arbitrary size.

Specifically, the surface is constructed from previous highly accurate, semi-empirical

monomer78 and dimer63 surfaces and a new high-level ab initio three-body potential.

The new potential is applied in this section to study the properties of the HCl trimer,

(HCl)3. The stationary points, normal frequencies and De values are computed. An-

harmonic vibrational energies for the H-Cl stretches of the ring are calculated with

explicit 3-mode coupling and local-monomer calculations, which are compared to

the previous on-the-fly calculations and experiment. In the latter calculations the

Hückel-approach is used. The resulting coupling constant from the Hückel-approach

can also be used to model the time-dependent vibration-vibration energy transfer of

a single H-Cl stretch excitation to the neighboring monomers of the trimer. This

energy transfer is investigated harmonically using quantum and classical approaches

and anharmonically using quasi-classical simulations. The accuracy and the applica-

bility of the many-body potential is tested on larger clusters by performing geometry

optimizations and normal-mode analyses of the tetramer, pentamer and hexamer.

Additional testing is performed by computing the anharmonic H-Cl stretch frequen-

cies for the tetramer using explicit 4-mode coupling calculations and comparing the

results with experiment.

3.3.2 (HCl)n Many-Body Potential Energy Surface

A one-, two, and three-body potential energy surface for an arbitrary cluster (HCl)n

is given by

Vn =
n∑

i=1

Vone-body(i) +
n∑

i<j

Vtwo-body(i, j) +
n∑

i<j<k

Vthree-body(i, j, k), (3.6)
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where the indices i, j and k denote the collective coordinates of each of the n

monomers.

One-Body Potential

The one-body potential potential energy, Vone-body, is the spectroscopically accu-

rate potential energy function of Coxon and Hajigeorgiou.78 This potential was con-

structed from least-squares fits to microwave and infrared spectral lines of the isolated

HCl monomer in its various isotopic forms.

Two-Body Potential

The intrinsic two-body potential energy, Vtwo-body, is computed using the ES1-EL po-

tential energy surface for the dimer.63 The ES1-EL surface is a semi-empirical surface

based on the ES1 potential of Elrod and Saykally66 with the addition of an electro-

static interaction potential. The original ES1 potential was generated from least-

squares fits to spectroscopic data and guided by an earlier ab initio potential energy

surface.68 The ES1-EL surface used in exact quantum calculations accurately pre-

dicts spectroscopic properties including, rotational-vibrational levels,81 ground state

splittings, vibrational predissociation behavior,58 and the dissociation energy, D0, to

within 14 cm−1 of the most recent measurement.82 The 14 cm−1 disagreement is due

in part to the original potential being fit to an earlier dissociation energy 8 cm−1

different from the most recent measurement.

The intrinsic two-body potential is obtained from the ES1-EL dimer potential using

the simple expression

Vtwo-body(i, j) = V ES1-EL
dimer (i, j)− V ES1-EL

monomer(i)− V ES1-EL
monomer(j), (3.7)

where the dimer potential is just the full ES1-EL potential and the monomer potential

was obtained using a 10th-order polynomial fit in the H-Cl distance of the monomer

energy with the two monomers separated to their dissociation limit. This fit was done
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for numerical convenience.

Three-Body Potential

The intrinsic three-body HCl potential energy surface, denoted Vthree-body, was gen-

erated from a least-squares fit to 51, 466 three-body energies computed using coupled

cluster with single, doubles, perturbative triples and explicit correlation (CCSD(T)-

F12a) and the augmented correlation consistent double zeta basis set (aug-cc-pVDZ

or aVDZ). The energies were calculated using the 2010 MOLPRO quantum chemistry

program.77 Specifically, Vthree-body is determined as

Vthree-body = V ab initio
trimer −

3∑
i<j

V ab initio
dimer (i, j)− 3

3∑
i=1

V ab initio
monomer(i), (3.8)

where V ab initio
trimer is the full HCl trimer energy, V ab initio

dimer (i, j) are the energies of the

three dimers and V ab initio
monomer(i) are the three monomer energies all calculated at the

CCSD(T)-F12/aVDZ level of theory.

The fit was performed using a sixth-order polynomial with a permutationally in-

variant basis in the fifteen variables, exp(−rij/λ), where rij is the intermolecular

distance between two atoms and λ a range parameter chosen to be 2 bohr.3,83,84

These Morse-like variables assure the proper dissociation limits are described by the

fit. The potential spans geometries with maximum center-of-mass monomer distances

ranging between 4.7 and 30.0 bohr. Geometries in this range are characterized by

three-body energies as low as −2482 and as high as 236 cm−1, and full trimer energies

as large as 23, 450 cm−1. The total three-body root-mean-square (RMS) fitting error

is 6 cm−1. A plot of the fitting RMS as a function of three-body energy is given in

Figure 3.3.
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Figure 3.3: Root-mean-square (RMS) of the three-body potential fitting error as a function of the
trimer’s three-body energy.

Points for fitting were generated by first performing direct-dynamics trajectories of

the HCl trimer using Density Functional Theory B3LYP/aVDZ energies and gradi-

ents. Then the energies of a subset of the B3LYP/aVDZ geometries from trajectories

were re-evaluated using CCSD(T)-F12/aVDZ. This level of theory was chosen for

its speed and accuracy. The effectiveness of the aVDZ versus a larger aug-cc-pVTZ

(aVTZ) basis was tested on the HCl trimer. The trimer’s three stationary points were

optimized and normal-mode analyses performed using the two levels of theory. The

resulting harmonic frequencies differ on average 8 cm−1 and their absolute three-body

energies differ on average 11 cm−1. These results indicate that the aVDZ energies are

of sufficient accuracy for this study.

In addition to the three-body potential energy surface, a fit to the full trimer

energies was done as a means of testing the coverage and accuracy of the CCSD(T)-

F12/aVDZ-based surface. The full trimer surface was tested using classical molecular

dynamics to assure that all relevant configurations were considered for the full trimer

potential, as well as the intrinsic three-body potential (which was based on the same

geometries). Additionally, the coverage of the fitted full trimer potential was mon-

itored by comparing its ability to accurately reproduce ab initio normal-mode fre-



CHAPTER 3. (HCL)N CLUSTERS 55

quencies, dissociation energies and stationary point energies. An iterative procedure

of fitting, testing and adding points was used until the desired accuracy and span of

the surface was achieved. Tests similar to those of the full energy surface were then

performed for the three-body potential added to the one- and two-body potentials.

Considering, however, that electronic structure properties are not an absolute ref-

erence for the results of the many-body potential, the surface was deemed sufficient

when the addition of more points resulted in no significant change in the HCl trimer’s

properties, i.e. stationary points, harmonic frequencies and dissociation energy. It is

perhaps worth stating that this hybrid potential is expected to perform better than

Vtrimer, because the one- and two-body components are, by design, of experimental or

near-experimental accuracy.

3.3.3 Calculations of the HCl Trimer

General Properties

Various properties of the HCl trimer were computed using the many-body po-

tential. The three stationary points of the potential, previously reported by Rauk

and Armstrong, were located.85 Images of these geometries are reported in Table

3.10, along with their relative energies computed from the new potential surface,

CCSD(T)-F12a/aVDZ and CCSD(T)-F12a/aVTZ calculations. The De values using

these methods are also reported in Table 3.10. All of the harmonic frequencies for

the three trimer configurations, the dimer and monomer are given in Table 3.11. The

behavior of the two- and three-body potentials as the trimer dissociates to three sep-

arate monomers or to a dimer and monomer are demonstrated in Figure 3.4. The

two-body, three-body and total energies all vary smoothly across the dissociation

coordinates. Its is clear from the figure that the two-body interaction energy con-

tributes a significant amount more to the total energy than the three-body energy. At
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the global minimum the total two-body energy is −2047 cm−1 while the three-body

interaction energy is −316 cm−1. In addition to the two-body interaction stabilizing

the trimer more than the three-body, it also remains “turned on” at longer distances.

The two- and three-body interaction potentials each respectively “turn-off” at Cl −

Cl distances of ∼ 40 and ∼ 25 bohr.

Table 3.10: Energies (cm−1) of three low-lying stationary points of the HCl trimer and De values.

Structure Many-Body CCSD(T)-F12a/aVDZ CCSD(T)-F12a/aVTZ

Ring

0 0 0

Z

737 740 725

Y

1138 1297 1196

Trimer
De [ 3(HCl) ] 2336 2570 2394

De [ HCl + (HCl)2 ] 1643 1813 1678
Dimer

De [ 2(HCl) ] 692 756 707
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Figure 3.4: Potential energy surface cuts of the two-, three- and many-body (total) potentials of the
trimer. The configuration of the minima in each cut is the ring conformation. Cuts were taken (left) as
a function of the monomer−dimer center-of-mass distance along a path which leads to dissociation into
a dimer and a monomer and (right) as a function of the Cl−Cl distance as the monomers are uniformly
compressed and then separated.

Table 3.11: Harmonic frequencies (cm−1) for HCl clusters using the many-body potential surface and
ab initio calculations at the respective methods minima. The labels ring, Z and Y refer to the three
different conformations of the trimer.

PES CCSD(T)-F12a/aVTZ
ring Z Y ring Z Y
95 27 6 81 39 16
95 68 53 81 78 58
119 89 72 97 93 67
208 106 81 219 118 141
208 138 98 219 186 173
268 178 158 287 200 191
271 242 196 293 251 235
271 247 291 294 265 323
439 389 299 480 428 343
2904 2932 2959 2874 2901 2917
2927 2960 2981 2906 2932 2932
2927 2980 2984 2906 2975 2950

Anharmonic Vibrational Spectroscopy
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The potential energy of the new many-body surface should be of higher accuracy

than the ab initio methods (CCSD(T)-F12a/aVTZ) used to preform the previous

on-the-fly study the trimer. Considering the improved accuracy of the new poten-

tial, anharmonic fundamental excitation energies for the ring trimer using the afore-

mentioned local-monomer and Hückel-coupling approach are computed. Anharmonic

H-Cl stretch frequencies are also computed using explicit 3-mode coupling to further

test the assumption that the explicit anharmonic and harmonic stretch couplings are

comparable. The program Multimode19,20,21 was used to solve for the vibrational

energies. The three H-Cl stretching normal-modes were chosen as the coordinates

for a vibrational configuration interaction calculation, leaving all other normal co-

ordinates fixed at zero. The calculation was performed with 10 primitive harmonic

basis functions for each mode. The maximum quanta for a single mode was tested

from 7−10, and these results converged to within in 0.01 cm−1. In the calculations

only the three stretches were allowed to couple, that is to say, a 3-mode representa-

tion was considered. This simplified calculation allows for explicit examination of the

anharmonic coupling in terms of just the stretches and allows for direct comparison

with the Hückel-coupling calculation. The inclusion of lower frequencies modes in

the calculation are possible, however, their effects are likely to be small. This as-

sumption is in contrast to vibrational calculations of the HCl dimer where, due to

significant tunneling splitting, low frequency modes should be considered for accurate

vibrational calculations.63,65,59 Tunneling splitting in the trimer has been reported as

insignificant.86

The H-Cl stretch frequencies from harmonic full normal-mode (Full), local-monomer

(LMon) and Hückel-coupling (LMonβ0) calculations, as well as from anharmonic local-

monomer, Hückel-coupling and explicit three-mode coupling (3-mode) calculations are

reported in Table 3.12. The gas phase experimental value is given for comparison in

Table 3.12. As expected, the full harmonic normal-mode frequencies show a 1:2 degen-
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eracy pattern whereas the local frequencies are triply degenerate. In the Hückel-model

in Equation 3.2, the normal-mode frequencies split analytically according to a singly

degenerate Ω0 − β0 and doubly degenerate Ω0 + 2β0 values. Considering these ana-

lytical functions the local-monomer frequency and the full normal-mode frequencies,

the β0 for the trimer is ∼8 cm−1. Application of β0 to the local-monomer frequency

using Equation 3.2 gives the Hückel-coupled frequencies in exact agreement with the

full normal frequencies. Moving then to the anharmonic frequency calculations, the

degenerate local-monomer anharmonic frequency shifts 90 cm−1 relative to the har-

monic results. The degenerate anharmonic local-monomer frequencies were coupled

using the harmonic β0 to give the Hückel-coupled anharmonic frequencies with a 1:2

degeneracy pattern. Comparing the latter to the explicit three-mode calculation the

differences are quite small, with ν1 differing by 5 cm−1 and the degenerate ν2 and ν3

differing by 1 cm−1. The three-mode and Hückel-coupled frequencies for the infrared

active modes, ν2 and ν3 are within 5 cm−1 of the gas phase experimental value.71,59

These calculations, using the new potential, are in better agreement with experiment

than previous Hückel-coupled CCSD(T)-F12b/aVTZ calculations which reported the

infrared active vibration to be 2790 cm−1.87

Table 3.12: Vibrational frequencies (cm−1) of the HCl trimer from indicated calculations and experi-
ment, see text for details.

Harmonic Anharmonic Experiment71
Full LMon LMonβ0 3-Mode LMon LMonβ0

ν1 2904 2919 2904 2788 2808 2793 -
ν2 2927 2919 2927 2814 2808 2815 2810
ν3 2927 2919 2927 2814 2808 2815 2810
β0 7.51

Vibration-Vibration Energy Transfer

The previous subsection demonstrated that in the local-monomer picture the H-

Cl stretches of the trimer are triply degenerate. This degeneracy, however, is lifted
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by monomer-monomer coupling, which is directly related to the rate of vibration-

vibration energy transfer between the monomers. Considering this, the quantum

Hückel-model can be used to simulate a wavepacket propagating in a three-state

system, where each state is a monomer-centric H-Cl stretch.

The steps taken in the wavepacket calculation are the following.

The eigenstates of the Hückel matrix, ψn, are given in terms of the monomer basis,

ϕn, by

ψ1 =
1√
3
ϕ1 +

1√
3
ϕ2 +

1√
3
ϕ3 (3.9)

ψ2 =
1√
2
ϕ1 −

1√
2
ϕ3 (3.10)

ψ3 =
1√
6
ϕ1 −

2√
6
ϕ2 +

1√
6
ϕ3 (3.11)

Inverting, the three localized states are given by,

ϕ1 =
1√
3
ψ1 +

1√
2
ψ2 +

1√
6
ψ3 (3.12)

ϕ2 =
1√
3
ψ1 +

√
2√
3
ψ3 (3.13)

ϕ1 =
1√
3
ψ1 −

2√
2
ψ2 +

1√
6
ψ3 (3.14)

The Hückel eigenstate, ψ1 corresponds to the Ω0−β0 eigenvalue and ψ2 and ψ3 corre-

spond to the degenerate Ω0+2β0 eigenvalue. The local eigenstates are all equivalent.

The initial localized wavepacket, Ψ, is chosen as Ψ(0) = ϕ2. For the present dis-

cussion this is the initially excited H-Cl monomer. As usual, the time-dependence of

the wavepacket is given by (with ℏ = 1),

Ψ(t) =
1√
3
ψ1e

−iE1t +

√
2√
3
ψ3e

−iE3t, (3.15)

where E1 = Ω0−β0 and E3 = Ω0+2β0. The projection of this wavepacket at some later
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time onto the initial wavepacket is denote by Cexcited(t) where “excited” is a reminder

that this is the vibrationally excited monomer. Cexcited(t) is given immediately by

Cexcited(t) =
1√
3
ψ1e

−iE1t

[
3 cos

(
(E1 − E3)t

2

)
− i sin

(
(E1 − E3)t

2

)]
(3.16)

The time-dependent population of the initially excited state is |Cexcited(t)|2, and this

is given by

Pexcited(t) =
5

9
+

4

9
cos((E1 − E3)t) (3.17)

The populations of the initially unexcited states are given by a similar procedure,

with the result

Punexcited(t) =
2

9
− 2

9
cos((E1 − E3)t) (3.18)

Applying this approach, the time-dependent population which result from the

wavepacket calculation is given by

Pexcited(t) =
5

9
+

4

9
cos(3β0t) (3.19)

for the initially excited state and by

Punexcited(t) =
2

9
− 2

9
cos(3β0t) (3.20)

for both initially unexcited states. Note that there are two equivalent “unexcited”

populations and that the sum of the three time-dependent probabilities adds to one,

as it should.

The time constant, τ , associated with the energy transfer is the time when Pexcited(t)

first reaches a minimum, π/3β. In the present case β0 = 7.51 cm−1 and this gives a

τ value of 0.73 ps. The population at τ in the original excited state is 1/9 and 4/9

in both of the unexcited states. The average populations of the three states over a
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period, 2π, are 5/9 in the original excited state and 2/9 in the unexcited states.

Before describing the classical calculations of this energy transfer, is worth noting

that quantum calculations of the splitting of the HCl trimer monomer stretch energies

were done previously using the same Hückel (also known as Exciton)-model by Fárník

and Nesbitt.59,71 In their calculations the same matrix given in Equation 3.2 was

used, except the local frequencies and β0 and were determined from least-squares fits

to experimental infrared peaks of the trimer’s isotopologs. Their calculations yielded

a local HCl stretching frequency of 2807.90 cm−1 (in fortuitously exact agreement

with the local-monomer frequency reported in Table 3.12) and a coupling constant

of −1.89 cm−1. As these authors noted this coupling constant results in a ring vi-

brational energy transfer time of ∼ 2.8 ps. The agreement with the present analysis

is quite good, with the difference between the experiment and theoretical constants

coming from the 5 cm−1 error in the fundamental frequency calculation, note above.

Classical simulations of this vibration-vibration energy transfer among the monomer

is of interest for purely theoretical reasons, as it offers another example of the differ-

ence (or not) between classical and quantum coherence, an issue that was recently

illuminated by Miller.88 In addition, these simulations are also of specific interest be-

cause they are related to they study of the predissociation dynamics of the HCl trimer

discussed in the following section. In the current study, the classical molecular dy-

namics trajectory calculations were performed for the trimer in its ring configuration.

Simulations were performed using the Verlet propagator with a 0.25 fs time step on

the PES. The chosen time step resulted in an energy drift less than 7 cm-1 over the

course of the simulations. Each simulation began with a single local-monomer H-Cl

stretch of the ring being excited with no additional energy added to the other modes

of the ring. The energy of the excitation, 50 cm−1, was kept small to minimize anhar-

monic effects and in this way to keep the three HCl oscillators on-resonance with each

other. The system was initialized using normal-mode sampling. Over 300 trajectories
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were simulated, each propagated with a 0.25 fs time step. The local-monomer stretch

energies were recorded every 1 fs for each trajectory and the behavior of the three

stretches independently average over all 300 trajectories. The classical results are

shown in Figure 3.5 along with the results of the wavepacket propagation. As seen

in the 3 ps shown, there is virtually identical agreement between the classical and

quantum calculations of the time-dependent populations. Thus, on this, and actually

longer time scales, the vibration-vibration energy transfer serves as a clear example

of agreement between classical and quantum coherence.
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Figure 3.5: Vibration-vibration energy transfer of the local H-Cl stretch in the HCl trimer, computed
using the Hückel-model and classical trajectories. The unexcited stretch refers to either of the two
unexcited monomer stretches, as their behavior is identical in both models. Additional details provided
in the text.

Given that trimer system is treated essentially harmonically, both in the quantum

Hückel-model and in the classical model, their agreement is not surprising. In order

to consider a perhaps more meaningful representation of the energy transfer an an-
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harmonic quasi-classical study of the vibrational relaxation was also performed. This

study began with each normal mode initialized with a scaled harmonic energy so

that the total ZPE equals the correct one determined from a DMC simulation, which

is discussed in the following section, and one local H-Cl stretch mode was given its

ZPE plus an additional energy of 2810 cm−1, corresponding to one quantum of ex-

citation. An ensemble of 5,800 quasi-classical trajectories were run and the energies

of the local H-Cl stretches monitored as a function of time. The ensemble-averaged

HCl monomer excitation energies were considered for roughly 250 ps and fit using a

single-exponential, E = b+ ae−k0t, and bi-exponential E = b+ a1e
−k1t+ a2e

−k2t func-

tions. The two functions were characterized by small fitting errors, less than 0.007

normalized energy units.

Plots of the vibrational energy relaxation and subsequent stretch relaxation are

given in Figure 3.6. The anharmonic transfer process occurs first with a rapid, 0.7

ps, energy transfer (similar to the observed harmonic energy transfer process) where

14% of the initial energy is removed from the initial stretch. Then a subsequent,

slower energy exchange occurs, which can be described by either a single exponential

with a time constant of 44 ps or a bi-exponential with a fast and slow component of

15 and 77 ps, respectively. Over the course of the 250 ps trajectory, the original exci-

tation energy distributes among the H-Cl stretching modes with virtually no transfer

of energy to the intermolecular modes. The harmonic classical recurrences are not

observed, very likely because the present simulations are anharmonic and because the

inclusion of ZPE motion in the intramolecular modes distorts the perfect planar ring

configuration.
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Figure 3.6: Vibration-vibration energy transfer of the local H-Cl stretch in the HCl trimer, computed
using quasi-classical trajectories. Additional details provided in the text.

Figure 2.

3.3.4 Calculations of Larger HCl Clusters

The new many-body potential can be applied to systems larger than the trimer with

very realistic results. Consider the HCl tetramer, which takes a bent ring configura-

tion at its global minimum. This tightly bound ring represents a conformation where

the four-body interaction is likely to be at its highest. Computing the CCSD(T)-

F12a/aVDZ interaction energies of the HCl tetramer, the individual contributions

are 83% two-body, 15% three-body and 2% four-body. Thus 98% of the interaction

energy is captured by the two- and three-body potentials. The effect of the absence

of the four-body interaction was examine by performing a geometry optimization of

the tetramer on the new potential. The resulting geometry differs from the previ-

ously optimized CCSD(T)-F12a/aVDZ geometry in the H-Cl stretches by 0.01 Å, in

the hydrogen bond distances by 0.01 Å and in the bending angle by 0.1◦. In ad-

dition, a Multimode calculation for the four H-Cl stretching modes was performed.
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This calculation considered the normal-modes of the four H-Cl stretches with all other

normal-modes set to zero, an explicit 4-mode calculation. The details of the basis and

integration points were identical to those of the trimer 3-mode study presented above.

The vibrational study was conducted for the planar configuration of the tetramer, con-

sidering that zero-point energy of the tetramer would likely be enough for the tetramer

to freely pass over the 13 cm−1 bending barrier (measured on the new potential) re-

sulting in an averaged planar geometry. The planar and bent configurations of the

tetramer are in Figure 3.7. The calculation determined the fundamental frequency of

the degenerate infrared active mode to be 2789 cm−1, which is within 11 cm−1 of the

gas phase experimentally reported range, 2774 − 2778 cm−1.59,71 The new potential

was also used to optimize the global minimum geometries of the HCl pentamer and

hexamer clusters, previously computed using MP2/6-311G++(3df,3pd).70,89 Compar-

ing the ab initio and new potential’s optimized pentamers and hexamer geometries

are both characterized by a root-mean-square-deviation less than 0.11 Å. The normal-

mode frequencies for the two tetramer conformations, the pentamer and the hexamer

are reported in the Table 3.13.

Figure 3.7: Transition state (top) and global minimum (bottom) of the HCl tetramer.
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Table 3.13: Harmonic frequencies for (HCl)4−6 clusters using the many-body potential surface at the
global minima and (HCl)4 low lying transition state conformations.

Tetramer-Planar Tetramer-Bent Pentamer Hexamer
2i 8 3 31
33 27 10 34
108 112 13 37
116 114 19 37
116 116 107 48
118 116 113 55
235 228 116 102
248 236 122 103
248 240 124 111
250 240 212 117
274 314 222 124
372 373 229 125
372 373 248 180
500 476 254 194
2891 2894 316 210
2907 2911 378 244
2907 2911 386 249
2918 2921 391 280
- - 467 316
- - 2898 329
- - 2913 346
- - 2914 377
- - 2923 405
- - 2927 441
- - - 2906
- - - 2912
- - - 2919
- - - 2923
- - - 2932
- - - 2938

Although not examined here, the many-body potential can be applied to vibrations

other than H-Cl stretches. Measurements of the dimer internal molecular modes (not

contain in the fitting data set) that were calculated using ES1-EL63 shows agreement

with experimental measurements.66,90,81 Considering the latter agreement and the

global nature of the new three-body potential, the many-body potential’s description

of the intermolecular modes of the trimer and larger clusters should also be accurate.
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The potential can also be used for the calculation of H-Cl stretch combination bands

and overtones. However, the expected accuracy is somewhat uncertain because the

experimental data set from which the dimer potential was built does not contain

stretching overtones.66

3.3.5 Summary and Conclusions

In this subsection a new one-, two- and three-body potential energy surface for hy-

drogen chloride clusters of arbitrary size is presented. The potential was constructed

from an experimentally accurate one-body potential, a high quality semi-empirical

two-body potential and a new high-level ab initio three-body interaction. The lat-

ter three-body potential was fit to 52,000 CCSD(T)-F12a/aVDZ three-body energies

with an RMS fitting error of 6 cm−1. The new many-body potential was applied

to study the HCl trimer. The stationary points, harmonic frequencies of the trimer

were all computed. The local-monomer method with Hückel-coupling was used to

compute the anharmonic frequencies as well as explicit 3-mode coupled frequencies.

Both theoretical methods predicted the infrared active vibration to within 5 cm−1 of

experiment. The comparison of the 3-mode coupled and local-monomer anharmonic

frequencies further validates the use of harmonic Hückel-coupling as a highly effec-

tive and justified correction to the local-monomer method. A wavepacket calculation

using the Hückel-model was used to consider the rate of vibration-vibration energy

transfer in the HCl trimer. A coherent beating between excited and unexcited states

was observed. Nearly identical beating was seen in classical dynamic calculations

of the energy transfer. Anharmonic quasi-classical studies of the vibration-vibration

energy transfer revealed a very different transfer processes occurs between the HCl

monomers. Finally, the applicability of the new potential to clusters larger than the

trimer is demonstrated. Geometries for the tetramer, pentamer and hexamer were

computed in agreement with ab initio studies. In addition, an anharmonic 4-mode



CHAPTER 3. (HCL)N CLUSTERS 69

coupled anharmonic frequency calculations were performed for the tetramer in good

agreement with experiment.

3.4 Experiment and Theory Elucidate the Multichannel Predissocia-

tion Dynamics of the HCl Trimer: Breaking Up Is Hard To Do

3.4.1 Context

The hydrogen bond (H-bond) is the most pervasive bond in nature. It holds the

strands of DNA together91 as well as provide the �glue� for water.92 Not surprisingly

all aspects of this bond, including its formation and breakup, have been of ongoing

interest to both theoreticians and experimentalists for over a century.93,94,95,96 This

desire to understand H-bonding has prompted the study of several paradigm systems

for which the energetics and dynamics can be interrogated exhaustively, with the bulk

of the work focused on dimers of water and other small hydride molecules.97,98,99,58,100

65,101,102,103,104 Recently, impressive progress has been made towards detailed studies

of prototypical H-bonded systems larger than dimers.105,106,107,41,108,76,70,109,59 These

studies stand to reveal much more about the dissociation dynamics of H-bonded net-

works and the cooperative nature of these interactions.

The hydrogen chloride trimer, (HCl)3, as discussed in the previous sections is an

ideal prototype for such detailed studies.76,70,59,71,75,86,72,85,73,74 The stretch fundamen-

tal frequency of the trimer has been measured with high-resolution spectroscopy in

the gas phase at 2810 cm−1,59,71 which is enough excitation energy result in dissocia-

tion via one of two channels. Breaking two hydrogen bonds leads to dimer + monomer

fragments (Channel I), whereas breaking of three hydrogen bonds generates directly

three monomers (Channel II).

In this section the theoretical contribution to a combined experimental and theo-

retical study are presented. The experimental work studied the vibrational predis-
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sociaiton of the HCl trimer in a pulsed supersonic molecular beam after a pulsed

IR excitation of the HCl stretch at 2810 cm−1 The dissociated rotationally excited

HCl fragments were ionized by (2+1) resonance-enhanced multiphoton ionization

(REMPI) and detected using time-of-flight (TOF) mass spectrometry and velocity

map imaging (VMI).110,102,103,99,101,97 These experiments resulted in the measurement

of correlated product state distributions. The molecular dissociation energies, D0, of

both channels I and II were computed based on the measured distributions and the

conservation of system energy

D0(Channel I) = Erot(monomer) + Evib,rot(dimer) + ET − hνIR − Einternal(trimer),

(3.21)

D0(Channel II) =
3∑

i=1

Erot(monomeri) + ET − hνIR − Einternal(trimer), (3.22)

where Eint(trimer) is the internal energy of the trimer prior to excitation, hνIR is

the 2809 cm−1 used for the HCl excitation, Erot(monomer) is the rotational energy

of the single HCl monomer or ith HCl monomer, Evib,rot(dimer) is the rovibrational

energy of the dimer cofragment, and ET is the c.m. translational energy. The study

is the first experimental study of its kind to follow the evolution of an H-bonded

trimer from initial vibrational excitation to fragment internal and translational energy

distributions.

3.4.2 Theoretical Methods for the Study of (HCl)3 Predissociation

The previously constructed (HCl)3 many-body potential energy surface was used to

study trimer’s predissociation. As stated previously, in the context of the trimer the

many-body representation is complete, characterizing the three one-body interactions,

the three two-body interactions and the one three-body interaction. Dissociation en-

ergies were calculated using the De values of the PES and also complete basis set

(CBS) calculations, along with numerically exact zero-point energies computed using
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DMC simulations29,30 for the trimer and dimer and discrete variable calculations23

for the monomer. The dynamics studies were performed using quasi-classical trajec-

tories.

The DMC simulations were performed for the HCl dimer and trimer. Five simu-

lations were performed for each system using 30000 “walkers,” an imaginary times

step of 2.5 atomic units, an α value of 0.4, an equilibration period of 3000 steps and

a propagation period of 39400 steps. A trajectory demonstrating the convergence of

the simulations for the trimer is given in Figure 3.8. The dimer and trimer ZPEs

were taken to be the average of their five simulations and their respective standard

deviations taken to be the statistical uncertainty associated with their respective sim-

ulations. Additional errors associated with the three-body potential were considered

in the DMC calculations by comparing the extent with which the three-body energy

affected the ZPE by computing DMC simulations with just the one- and two-body

potentials and by comparing anharmonic HCl monomer ZPE computed using same ab

initio method as the three-body potential and the Coxon and Hajigeorgiou78 monomer

potential�s ZPE. The error in the ZPE associated with the three-body potential was

found to be ∼1 cm−1. The ZPE for the HCl monomer was computed using a DVR.
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Figure 3.8: Diffusion Monte Carlo simulation of the HCl dimer (blue) and trimer (red) as a function of
imaginary time step.

Quasi-classical trajectories were propagated to obtain the dissociation dynamics of

the HCl trimer system. Simulations were performed using the Verlet propagator with

a 0.25 fs time step on the PES. The chosen time step resulted in an energy drift less

than 7 cm−1 over the course of the simulations. Every trajectory was performed with

zero-point energy (ZPE) and additional vibrational excitation energy of one local-

monomer stretch; the details of this excitation will be discussed as the calculations

are introduced. The dissociation of the trimer was monitored with respect to the

three monomer�s c.m. distances. If all three distances were greater than 6.5 Å, then

dissociation to three monomers occurred, but if one distance was less than 6.5Å, then

the trimer was labeled as dissociating to a dimer and monomer. This distance is suf-

ficiently large for the intermolecular interaction to be negligible. Trajectories giving

any fragment (monomer or dimer) with less than the proper ZPE were discarded.

The predissociation dynamics of the trimer were first explored by initializing the

QCT at global minimum with ZPE scaled to the anharmonic value and one extra

quanta of stretch energy, 2810 cm−1. A set of 20 trajectories, each simulated for over
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20 ns, were performed. Three of the trajectories dissociated to a monomer and a

dimer, but only one with at least ZPE in the products. The remainder of the trajec-

tories failed to dissociate. Additional shorter timescale trajectories were performed

to collect dissociative “outlier” trajectories. This approach yielded an additional six

trajectories that dissociated to a monomer and a dimer. The length that the simula-

tions needed to be propagated to observe cluster dissociation is consistent with the

nanosecond lifetime indicated by experimental linewidths.59,71.

Based on the dissociative results a “critical” open-chain configuration was located

from which dissociation occurred. This is the Z configuration shown in Table 3.10. A

set of trajectories starting from this critical geometry were performed to study the en-

ergy distributions of the dissociated products. These trajectories were initiated with

scaled ZPE (using the same scaling factor applied at the minima) and the remaining

relaxed fundamental excitation energy microcanonically distributed among the nine

low frequency modes. A total of 100,000 trajectories were performed in this manner,

each propagated for 10 ps. In total 20,176 trajectories dissociated to a monomer and

a dimer.

A final series of trajectories involving the dissociation of “hot” dimers was per-

formed. These trajectories were initiated from the dimer global minimum with the

goal of examining the energy distributions of the two monomers . Scaled ZPE was

added to the dimer at its global minimum using the scaling factor derived from DMC

simulations. Excitation energy of 1,100 cm−1 was added microcanonically to the

low-frequency vibrations of the dimer. This energy coincides with an internal dimer

energy which would allow two monomers to dissociate both with J” = 5. In total

85,000 trajectories were performed with 2,882 dissociating with at least ZPE in the

two monomers.
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3.4.3 Ground State Properties and Dissociation Energies of (HCl)2−3

Isosurface representations of the HCl dimer and trimer are given in Figure 3.9. The

dimer ground state wavefunction is highly delocalized across the two equivalent global

minima resulting in two �banana� shaped proton distributions. Relative to the dimer,

the trimer is much more localized with the hydrogen bonds remaining unbroken in the

ground state. The protons are still delocalized about the global minimum geometry

forming three �mushroom� shaped proton distributions. The anharmonic ZPEs from

the DMC (and DVR) for the monomer, dimer and trimer are 1483, 3235 ± 1 and

5260 ± 1 cm−1, respectively. Relative to harmonic ZPEs the anharmonic values are

red-shifted 14 cm−1 in the monomer, 81 cm−1 in the dimer and 106 cm−1 in the

trimer.

Figure 3.9: Isosurface representations of the HCl dimer (left) and trimer (right) ground state wavefunc-
tions.

Complete basis set (CBS) extrapolations were performed to determine highly accu-

rate De values for the HCl trimer system. The results of these calculations should be

considered benchmark values for the dissociation energy. The extrapolated energies

were computed at CCSD(T)/aug-cc-pVTZ optimized geometries using CCSD(T)/aug-

cc-pVXZ where X refers to the cardinal number in the basis set. The three variable
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extrapolation fitting function, E(X) = ECBS + Ae−XB,was used, where A and B

are fitting parameters and X=2, 3, 4 and 5, i.e., aug-cc-pVDZ, aug-cc-pVTZ, aug-

cc-pVQZ and aug-cc-pV5Z. The De values from the many-body potential and CBS

calculations are given in Table 3.14.

Table 3.14: HCl trimer and dimer De values (cm−1).

System De [PES] De [CBS]
(HCl)3→ 3(HCl) 2336 ± 45 2373
(HCl)3→HCl + (HCl)2 1643 ± 31 1675
(HCl)2→ 2(HCl) 692 ± 14 699

The true dissociation energies, D0, which includes the differences between the elec-

tronic dissociation, De, and the respective zero-point energies for the trimer and dimer

are listed in Table 3.15. The experimental results reported in Table 3.15 are taken

from VMI experiments. Two sets of theoretical dissociation energies were computed

using the DMC ZPE and De values obtained with the many-body potential (PES)

and also from complete basis set calculations (CBS). Both the PES and CBS dis-

sociation energies are in excellent agreement with the experimental measurements.

The more accurate CBS values deviate a maximum of 10 cm−1 when the theoretical

and experimental error bars are considered. While the De values of the PES were

reported in the previous subsection for the trimer but an estimate of there error in

those measurements is made here. Beginning with the two-body interaction, the 14

cm−1 difference from the experimental D0 and the ES1-EL potential is taken to be

the PES error associated with breaking a hydrogen bond between two monomers.

Due to this error the two-body error of the De for the dimer is ±14 cm−1 for each

H-bond broken. The three-body error in the De value can be taken from the dif-

ference between the three-body interaction energy computed using the many-body

potential and complete basis set calculation, ±3 cm−1. The experimental trimer dis-

sociation energies obtained for Channels I and II and the dimer’s dissociation energy

of 439 cm−1 82 place the cooperative (non-additive) contribution at ∼250 cm−1, in
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good agreement with the theoretical values of ∼251 cm−1 and ∼271 cm−1, obtained

for the two theoretical methods.

Table 3.15: HCl trimer and dimer D0 values (cm−1).

System D0 [PES] D0 [CBS] Experiment
(HCl)3→ 3(HCl) 1526 ± 46 1564±1 1545±10
(HCl)3→HCl + (HCl)2 1102 ± 33 1133±2 1142± 20
(HCl)2→ 2(HCl) 425±29 431±1 439±182

3.4.4 Rotational and Translation Distributions of (HCl)3 Fragments

Two different VP channels are possible following excitation of the trimer�s H-Cl stretch

fundamental; Channel I (monomer + dimer) has an excess energy of ∼1700 cm−1

[2809−(∼1100 cm−1)] and Channel II (three monomers) restricts the excess energy

to ∼1300 cm−1 [2809−(∼1500 cm−1)]. The corresponding maximum allowed J” val-

ues for HCl from these channels are 12 and 10, respectively. Figure 3.10 presents

a comparison of these experimental populations and the relative populations com-

puted by QCT calculations. Both theory and experiment show that the rotational

populations decrease sharply for J”≥5, and the population of J”=11 is only ∼ 5%

of the population of J”=5. Since J”=11 is the only level that is associated solely

with Channel I, it has special importance in image analysis, as demonstrated below.

According to the calculations the HCl rotational state distribution corresponding to

Channel I is broad, encompassing all the allowed states and peaking at J”=4.
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Figure 3.10: Comparison of theoretical and available experimental HCl monomer rotational populations.

Figure 3.11 displays the experimental and theoretical c.m. ET distributions from

HCl monomer fragments in different J” levels, where the experimental results char-

acterizes all HCl fragments, regardless of the dissociation process, and the theoretical

results characterize only monomers the dissociate from Channel I. While the ex-

perimental and theoretical distributions match quite well for J”=10, they deviate

progressively more as the monitored J” level decreases, with the greatest mismatch

for J”=5.
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Figure 3.11: Comparison of c.m. ET distributions obtained by detecting HCl fragment (red curve) in
J”=5, 8 and 10. Black curves are the corresponding distributions obtained from QCT calculation for
Channel I.

The cause for this mismatch becomes clear when considering the possible internal

energies of the dimer cofragments associated with each monitored HCl(J”) monomer

fragment. The dimer internal energy distribution is given in Figure 3.12. The inset of

Figure 3.12 displays the percentage of monomers that could possibly dissociate at a
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given J”. When the internally “hot” dimers dissociate, they produce monomers with a

broad ET distribution extending to very low translational energies. The dissociation

of these “hot” dimer fragments, [(HCl)2]**, into two HCl monomers is referred to as

Channel Ia. The final velocity of the HCl(J”) monomer generated via this pathway

depends on the velocities of dimers generated in Channel I and the velocity of HCl

generated via Channel Ia.
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Figure 3.12: Internal energy distribution of dissociated dimer relative to its anharmonic ZPE (black).
The inset (red) contains a plot of the percentages of monomers which can possibly dissociate from the
dimer with a given J”, assuming that one monomer dissociates with J” = 0 and zero translational energy.

The limited amount of internal energy in the dimer results in relatively lower trans-

lational energies for the “hot” dimer fragments. This is supported by the results of

the final series of QCT trajectories performed on the HCl dimer. The translational

energy distribution for J” = 5 compared with the distribution of the monomer disso-

ciated directly from the trimer is shown in Figure 3.13 where the dimer’s monomer

distribution is clearly much colder than the trimer�s distribution.
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Figure 3.13: HCl monomer translational distribution for J” = 5 with the monomer dissociating from an
internally “hot” dimer (red) and vibrationally excited trimer via the monomer + dimer channel (green).

3.4.5 Dissociation Mechanism of (HCl)3

The QCT calculations show that the rate-limiting step in the VP is the transfer

of H-Cl stretch excitation to the intermolecular modes of the trimer. This is in

agreement with Farnik and Nesbitt, who suggested based on their spectroscopic work

that V-V transfer is followed by energy transfer to low frequency modes and then ring

opening.59,71 Indeed, simulations find that once the H-Cl stretch relaxes, one H-bond

can break and the ring can transition to an open chain configuration, 737 cm−1 higher

in energy. This conformer is stable enough to allow energy to localize and break a

second H-bond, forming a monomer and dimer (Channel I). The minimum energy

path to this configuration is demonstrated in Figure 3.14.
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Figure 3.14: Minimum energy path from trimer to open-chain configuration.

The trajectory calculations show that even after reaching the critical configuration

of the open-chain trimer, the breaking off of an HCl monomer is not instantaneous; it

involves many vibrational motions, with H-bonds breaking and reforming until finally

an HCl monomer breaks off. Similar behavior has been found before in QCT calcula-

tions of the water trimer.103 This may indicate a common mechanism of breakup of

cyclic trimers. The measured rotational energy distribution of the HCl monomer and

the c.m. ET distributions correlated with specific HCl(J”) fragment states are quite

broad, in accordance with the experimental observations.

3.4.6 Summary and Conclusions

The combination of experiment and theory were able to yield a wealth of information

and accurate results on the detailed dissociation mechanism of the ring HCl trimer.

The calculations demonstrate that it is now possible to describe properties of clusters

such as D0 and cooperative three-body interactions with excellent accuracy. The

successful description of the multi-channel breakup of the benchmark HCl trimer is

important also in predicting the success of calculations of dissociation dynamics of

larger H-bonded networks for which experiments are becoming progressively more

difficult. The excellent agreement between theory and experiment demonstrated here
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attests to the ability of such calculations to provide reliable values of properties and

mechanisms for larger H-bonded clusters.
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4
Mixed (HCl)n and (H2O)m Clusters

4.1 Overview

The molecular properties of heterogenous clusters present a challenging and important

system for rigorous study. These systems can often behave significantly differently

than their homogenous precursors. One such system that is of both fundamental

and practical interest are clusters of water and hydrogen chloride. A reasonable as-

sumption upon the mention of a system such as this is the general chemistry reaction

HCl(aq)+H2O(aq)→H3O+(aq)+Cl–(aq). This equation for acid formation however

does not apply at the nanocluster limit. The question of when such a transition occurs

remains a hotly debated question. In order to understand the transition, a detailed
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understanding of the nanoclusters that are stable as molecular HCl and H2O must

be obtained. These cluster provide a challenging system for investigating the effects

of heterogeneity in molecular clusters. In the HCl cluster study in Chapter 3 there

was a 1 : 1 ratio of hydrogen bond donors and acceptors. The heterogenous system

has, for every additional heterogeneous pair, a ratio of 3 : 2 donors to acceptors. This

uneven ratio allows for a very different set of molecular configurations and behaviors

than in the homogeneous case of either H2O or HCl.

This chapter is divided into two sections as follows. The first presents the construc-

tion of a full-body potential energy surface for the HCl-H2O dimer. The potential is

used to resolve a debated aspect of the ground state behavior, specifically whether the

experimentally observed conformation is planar or bent. In addition, a benchmark

value for the dimer dissociation into two fragments is computed. The second section

builds off the HCl-H2O dimer potential as well as the (HCl)n potential presented in

Chapter 3 to create a many-body (HCl)n(H2O)m potential. Vibrational ground state

properties of the cluster are detailed for the mixed dimer, trimers and tetramers along

with their respective fundamental stretch excitations.

4.2 A New Ab Initio Potential Energy Surface for HCl-H2O, Diffu-

sion Monte Carlo Calculations of D0 and a Delocalized Zero-

point Wavefunction

4.2.1 Context

Complexes of HCl with H2O have been the focus of recent experimental98,97,111,112,40,41

and theoretical113,114,115,116,117 studies. The high interest in these complexes is due,

in part, to their impact on atmospheric chemistry, specifically their role in ozone

depletion.118,119,120,121 Recent studies have focused on the static and dynamic be-

haviors of small HCl-(H2O)n clusters to gain knowledge of their interactions at an

atomic level. These clusters remain a challenge particularly with respect to the
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movement from molecular HCl-(H2O)n to the ionized Cl−(H2O)n−1H3O+ clusters.

Several theoretical studies have pointed to ionization at a four-water monomer clus-

ter.122,123,124,125,126,127,128 However, recent high level quantum mechanical studies pre-

dict the coexistence of non-ionized clusters at the four monomer limit.114,117 The

complexity of the problem is even more apparent from the lack of experimental con-

sensus on the identification of the ionized cluster.129,40 A building block to under-

standing the clusters at the four-water limit and beyond is a detailed knowledge of

even smaller HCl-H2O clusters, the first of which is the HCl-H2O dimer. The dimer,

which is of great interest in its own right, has been firmly identified using a variety of

techniques including velocity-map imaging with resonance-enhanced multiphoton ion-

ization,98,97 infrared studies in liquid helium,55,41,40,70 microwave spectroscopy,130,131

ragout-jet FTIR132,109 cavity ringdown spectroscopy133 and infrared-matrix isolation

spectroscopy.134,135,136,137,138 Of these studies refs. 1 and 2 have reported studies of

the molecular dissociation of the dimer. In those studies the fragments translational

energy distributions were measured, allowing for the determination of the dimer’s

dissociation energy (D0), which was reported to be 1334 ± 10 cm−1.98 Previous the-

oretical studies124,139,140,127 have reported values of D0; at the highest level of theory,

CCSD/aug-cc-pVDZ+,127 with an approximate anharmonic zero-point energy (ZPE)

calculated from MP2/aug-cc-pVDZ+, a value of 1189 cm−1was reported. This is not

in good agreement with experiment.

Previous theoretical studies of the dimer indicate that its potential surface is char-

acterized by three stationary points all consisting of the HCl donating a hydrogen

bond to the H2O molecule.126,125,139,141,140,124,127 The non-planar structure global min-

imum with labeled coordinates is shown in Figure 4.1. It is clear from examining

the structure that there exists two equivalent non-planar minima with a planar C2v

saddle-point connecting them through a bend of the θ2 angle and a slight bend in

the θ3. Estimates of this double well barrier height vary with different levels of the-
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ory, with the previous highest-level CCSD(T)/6-311++G(2d,2p) calculation giving

85 cm−1.141

RHCl! R!

ROH!

θ3!

θ2! θ1!

Figure 4.1: Geometry of the global minimum with labeled coordinates.

Given how low the saddle-point barrier is, the question of what experimental con-

figuration is observed has been of interest because of the likely possibility for the ZPE

of the system to lie close to the barrier and this might result in a delocalized wavefunc-

tion spanning the double well potential. The dimer ZPE from harmonic vibrational

analysis using the optimized global minimum geometry was found to exist above the

isomerization barrier for MP2, MP3, MP4 and CCSD(T) with a 6-311++G(2d,2p)

basis set.141 In the same study an MP3-level 1-D potential with the aforementioned

basis as a function of the bending angle with all other modes fixed at their optimized

configuration was fit to a polynomial and used to obtain a ZPE 4 cm−1below the

inversion barrier. From this, the authors suggested the possibility of an average ge-

ometry of C2v structure. Delocalized wavefunctions of this type have been reported

previously in full dimensional calculations in systems like H+
5 ,142,143 H3O2,144 and

CH+
5 .83

The nature of the ground state configuration of HCl-H2O has been inferred by

examining experimentally fit rotational coefficients and theoretical models. Kisiel et

al.130 reported a 1-D potential cut along θ2 at the MP2/aug-cc-pVDZ level of theory

assuming θ3 to be 180 deg. The potential was fit to a quartic-quadratic potential and

the ZPE determined from the analytical double well solutions to be just below the
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inversion barrier. A calculated expectation value of the ground state angle was re-

ported to be ∼146 deg. In these studies, statistically better fits to rotational spectra

were achieved by using this non-planar angle. From their study an estimate of the

A rotational constant of 12 cm−1was made. However, later Ragout-jet FTIR spec-

troscopy132 and infrared laser spectroscopy in helium droplets145 both estimated the

A-constant to be 14 - 15 cm−1.

Here a new, full (nine)-dimensional potential energy surface (PES) is reported to

describe the HCl-H2O system. The full-dimensional potential is used to perform Dif-

fusion Monte Carlo (DMC) simulations in order to compute accurate the ground state

wavefunction of the dimer and obtain accurate ground state energies for the dimer

and fragments. The DMC results are used alongside complete basis set limit dissoci-

ation energy calculations to obtain D0 values for the dimer. Analogous calculations

are reported for the fully deuterated isotopologue of the dimer.

4.2.2 Theoretical Methods for the Study the (HCl)(H2O)

The PES is a fit to 44637 configurations and energies obtained with CCSD(T)-F12b,12

using the aug-cc-pVTZ basis set. All energies were calculated using the 2010 MOL-

PRO quantum chemistry program77 The energies were fit by representing the PES in

a basis of permutationally invariant polynomials in Morse-like variables, exp(−rij/λ)

, where rij is the intermolecular distance between two atoms and λ a range parameter

chosen to be 2 a.u.3 The maximum total polynomial order of the fit is six. The surface

is characterized by a total RMS fitting error of 24 cm−1. A plot of the energy as a

function of the number of points and the respective RMS fitting error is shown for

a portion of the fitting data in Figure 4.2. A separate set of 615 geometries ranging

from 0 to 9000 cm−1 above the global minimum that were not included in the fitting

set was used to further test the surface. In the test set, the RMS of geometries with

energies greater than 3500 cm−1 increased as a function of the energy to a maximum
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RMS of 80 cm−1 at 9000 cm−1. Given that the purpose of the surface is an accu-

rate description of the dissociation of the complex as well as a future goal of the IR

spectroscopy of experimentally relevant states, the present PES is adequate for these

purposes. The geometries, reported in Table 4.1, and harmonic frequencies, reported

in Table 4.2 of the dimer’s minimum, saddle point and dissociated monomers are all

well described by the surface. Smooth dissociation of the dimer into HCl and H2O is

achieved at large separations as shown in Figure 4.3.

Figure 4.2: Energy as a function of the number of points and the respective RMS fitting error for a
portion of the fitting data.

Table 4.1: Geometry (Å and degrees) of indicated configuration from ab initio calculations and the
potential energy surface for the global minimum, transition state and dissociated monomers.

Minimum Planar Monomers
ab initio PES ab initio PES ab initio PES

RHCl 1.292 1.292 1.289 1.289 1.277 1.277
ROH 0.960 0.960 0.959 0.959 0.959 0.956
θ1 105.15 105.12 105.64 105.67 104.44 104.45
θ2 135.63 135.87 180.0 179.93 - -
θ3 177.96 177.43 180.0 180.0 - -
R 1.902 1.903 1.916 1.917 - -
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Table 4.2: Harmonic Frequencies (cm−1) for HCl-H2O from ab initio calculations and the PES for the
global minimum, transition state and dissociated monomers.

Minimum Planar Monomers
ab initio PES ab initio PES ab initio PES

145 149 152 161i - -
167 169 146 142 - -
190 196 150 152 - -
452 458 386 391 - -
559 562 512 512 - -
1647 1649 1644 1646 1650 1641
2800 2800 2841 2848 2994 2991
3826 3827 3838 3842 3835 3836
3940 3934 3948 3951 3944 3954

Figure 4.3: Minimum energy potential along the dissociation coordinate of the dimer computed using
the new dimer potential energy surface.

The data for fitting was obtained from geometries calculated using classical direct-

dynamic simulations, performed with density functional theory, B3LYP/ aug-cc-

pVTZ. These classical simulations began with a variety of different kinetic and po-

tential energies. Long-distance molecular configurations characterized by a HCl-H2O

separation greater than 5.5 Å were sampled by re-evaluating portions of the shorter-

distance geometries at increased intermolecular separation. The maximum Cl-O dis-

tance of the fitted geometries was 12 Å. The surface fitting proceeded in the usual

iterative fashion, specifically, by 1) performing a preliminary fit, 2) testing the fit
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using classical trajectories and DMC calculations of the ZPE and then 3) adding ad-

ditional points in poorly described areas and re-fitting. The process completes when

the objectives are met. In the present case, this is when the surface produces accurate

properties of stationary points, yields sensible classical trajectories up to around 15

000 cm−1 and dissociates smoothly with an accurate description of the fragments.

As is well known, basis set superposition error (BSSE) is a concern in hydrogen-

bonded systems. To investigate this for HCl-H2O, counterpoise (CP) corrected ener-

gies146 and benchmark energies determined from a complete basis set (CBS) extrap-

olation147 were calculated. The CBS calculations also account for basis set incom-

pleteness error (BSIE). The CP correction was applied according to

∆EBSSE = E∗
HCl + E∗

H2O − E†
HCl − E†

H2O (4.1)

ECP = Edimer −∆BSSE, (4.2)

where E∗ refer to the energies of the monomer in the dimer basis and E† are the

energies of the monomers in their own basis, both in the same configuration as in the

dimer complex. The CBS calculations were performed by fitting CCSD(T) energies

computed using aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z and the

following equation

f(n) = ECBS + αe−βn, (4.3)

where n is the cardinal number of the basis set, f(n) the energy, α and β fitting pa-

rameters and ECBS the energy at the complete basis set limit determined by the fit.

A comparison of some relevant uncorrected, CP-corrected, CBS and PES determined

energies are given in Table 4.3. The CP-corrected energies gave a higher energy De

and double-well barrier height than the CBS values. In this case, the uncorrected

energies as well as those from the PES are in good agreement with the CBS values.
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Table 4.3: Double-well barrier (DWB) and electronic dissociation De (cm−1) from ab initio calculations
(see text for details) and the PES.

Property PES CCSD(T)/aVTZ-F12b CCSD(T)/aVTZ-F12b-CP CCSD(T)/CBS
DWB 59 59 70 49
De 1924 1929 1848 1915

DMC calculations were conducted in the standard way.29,30 In these calculations

30000 “walkers” were equilibrated for 10000 steps and propagated for 190000 steps

with a step size of 2.5 imaginary atomic time units and an α of 2.5. The ZPE

was determined by performing 19 block averages of the trajectory and then taking

the average of the 19 blocks to be the ZPE and the deviation in the blocks as the

statistical uncertainty. The value of the ZPE is within 3 cm−1 of simulations using

a 5.0 imaginary atomic time unit step size, thus assuring minimal systematic errors

are present with the smaller step size.

4.2.3 Ground State Properties of the (HCl)(H2O)

Based on the DMC simulations, the bound HCl-H2O complex’s anharmonic ZPE is

6688 ± 3 cm−1. The ZPE from the surface of the dissociated H2O and HCl monomers

was obtained by performing a DMC calculation with the fragments separated by 12

Åand a value of 6126 ± 3 cm−1 was determined. This compares very well with a

separate DMC using the spectroscopically-accurate Partridge-Schwenke water poten-

tial148 and a new HCl potential. The latter was generated from a 8th order polynomial

fit using a Morse-like basis to 215 CCSD(T)/aug-pVTZ-F12b points. The DMC ZPE

for these separated fragments is 6121 ± 2 cm−1, which is in excellent agreement with

the PES result.

From the PES dimer and fragment ZPEs and the PES De of 1924 cm−1, D0 is

given by 1362 ± 3 cm−1. This is in good agreement with the experimental value of

1353 ± 4 cm−1. However, using the De from the CCSD(T)/CBS calculation and the

ZPE from the Partridge-Schwenke and current HCl potential the D0 is given by 1348
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cm−1 with an uncertainty of ± 3, in even better agreement with experiment. (It is

interesting to note that using the harmonic ZPEs from the PES, the D0 is 1254 cm−1,

which is not in good agreement with the rigorously calculated D0 and experiment.)

The D0 for the deuterated isotopologue was calculated to be 1476 ± 3 cm−1 (using

the CBS De).

In addition to determining the ZPE, the DMC calculations allow for the visualiza-

tion of the HCl-H2O wavefunction. An isosurface showing the ground state wavefunc-

tion of the dimer is given in Figure 4.4. As seen, the hydrogen atoms of the water

molecule are largely delocalized across the two global minima, yielding an average C2v

configuration. Similar delocalized behavior was observed for the DMC calculations

on other deuterated forms of the complex.

Figure 4.4: Visualization of the HCl-H2O dimer DMC ground state wavefunction from two perspectives.

To further support this visual finding of delocalization of the ground vibrational

state wavefunction, a 1-D Schrödinger equation using the relaxed 1-D potential along

the transition state’s out-of-plane imaginary frequency bending mode was solved nu-

merically.149,150,151 Specifically, this involved moving along the imaginary normal

mode coordinate of the saddle point and the performing a geometry optimization

using the other real valued normal mode coordinates. In these calculations the re-

laxed 1-D cut was fit to a 10th order polynomial. The Schrödinger equation was

solved numerically using 1000 equally-spaced points using a discrete variable repre-
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sentation calculation. The ZPE is 52 cm−1above the double-well barrier. In addition,

the square of the double-well wavefunction indicates that the most probable configu-

ration is that of the planar C2v geometry. A plot of the 1-D double well potential with

its ZPE and the square of the wavefunction are given in Figure 4.5. In addition, to

investigate isotope effects on the ZPE barrier, a 1-D potential curve for the DCl-D2O

dimer was constructed and solved resulting in a ZPE 13 cm−1 above the barrier and

a delocalized wavefunction.

Figure 4.5: Relaxed 1-D potential cut along the imaginary frequency mass-scaled normal mode of the
transition state. The solution to the 1-D Schrödinger equation for the ZPE and the square of the
wavefunction are shown in red.

Additional support for the reality of the C2v zero-point geometry comes from a com-

parison of theoretical and experimental rotational constants. The rotational constants

were computed using the geometries optimized on the PES. The B- and C-constants

are 0.13 cm−1 in both geometries and A-constant is 11.47 cm−1 in the Cs global mini-

mum and 14.34 cm−1 in the planar C2v saddle point. The latter is in good agreement

with the experimentally reported values from infrared spectroscopy of 14.85 cm−1
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from studies in helium145 and between 14-15 cm−1 from gas phase studies.132

4.2.4 Summary and Conclusions

To conclude, an accurate full-dimensional potential energy surface based on CCSD(T)-

F12b/aug-cc-pVTZ energies was constructed for of HCl-H2O. The surface is capable

of reproducing the geometries, harmonic frequencies, dissociation energy and isomer-

ization pathway of ab initio calculations. The surface was used to perform rigorous

calculations of the dimer D0 and report a value of 1348 ± 3 cm−1 in good agreement

with the experimentally measured value of 1334 ± 10 cm−1. In addition, the DMC

calculations allowed for the visualization and rigorous determination of the HCl-H2O

ground state geometry as being highly delocalized over the double well minimum

resulting in an average C2v configuration. The delocalized average C2v was further

verified by determination of the double well ZPE above the inversion barrier in a 1-D

calculation using in the saddle point imaginary-frequency normal mode. Additional

support comes from agreement of the saddle-point geometry’s A-constant, 14 cm−1,

with experimental values, ∼14 - 15.145,132

4.3 Effects of Zero-Point Delocalization on the Vibrational Fre-

quencies of Mixed HCl and Water Clusters

4.3.1 Context

It is traditionally assumed in molecular studies that a global minimum energy config-

uration can effectively characterize the properties of a system, e.g., rotation constants.

This concept hinges on the zero-point motion at the system’s global minimum effec-

tively “averaging-out” to zero-displacement and localizing the system at the global

minimum configuration. If, however, an estimate of the zero-point energy at the
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minimum is larger than or even comparable to barrier(s) to other isomers, then delo-

calization of the zero-point wavefunction may be indicated. This is especially the case

if there are low-frequency, large-amplitude motions that connect to other stationary

points. In these cases, properties based on assuming a global minimum reference

structure may be in error.

The previous section demonstrated a clear example of this delocalized ground-state

behavior in terms of the (HCl)(H2O) dimer.152,141,130 The (HCl)(H2O) dimer is the

smallest mixed cluster and as such it is the start of a series of mixed (HCl)n(H2O)m

clusters that eventually leads to the formation of ionized HCl acid. This is a topic of

considerable interest.153,141,145,109,129,133,154,116,155,36,117,114,126,127,139,128,125,123,124,140,156,136

131,135,137,134,55,157 A number of theoretical studies have reported that the smallest clus-

ter for which HCl dissociation occurs is four H2O and one HCl.154,116,126,127,139,128

123,124,140,41,157 Infrared vibrational spectroscopy experiments on the clusters have

sought to identify the first case of acid formation.153,40,41,145,129,109,133 In the course

of these studies it has been suspected that the larger clusters may exhibit similar

delocalization behavior as that observed in the dimer. Electronic structure calcula-

tions have found that the lowest energy configurations of mixed clusters containing

between three and five monomers are non-planar rings. The non-planar conforma-

tion is reasonable as these place the free OH stretches above and below the plane of

the ring. However, if the barrier for the free OHs to move through the plane of the

cluster is small enough, the cluster could delocalize over several configurations in the

ground vibrational state. Indeed, detailed analysis of the microwave spectrum of the

(HCl)2(H2O)1 cluster performed by Kisiel and co-workers concluded that some aspects

of the spectrum imply an effectively planar configuration.155 Since the global mini-

mum is not planar, this stands as another example of a delocalized ground state. The

authors go on to say that the precise details of the cluster’s internal motions are still to

be resolved. This is done here for (HCl)2(H2O)1 and for other (HCl)n(H2O)m clusters.
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Finally, while ground-state delocalization has been reported in numerous systems, in-

cluding ArnHF,158,159 CH+
5 ,160 H+

5 ,161,143,162 H3O–
2

163 and H3O+(H2O)3Cl
– 154,117,36,157,

the effects of the delocalization on fundamental vibrational frequencies have not been

extensively studied.

In this section, the details of the zero-point behavior of all (HCl)n(H2O)m dimers,

trimers and tetramers are reported along with how the delocalization affects these

cluster’s fundamental vibrational frequencies. Direct comparisons are made with

available experimentally reported vibrational frequencies. The studies were performed

using diffusion Monte Carlo calculations and anharmonic coupled vibrational calcula-

tions, all conducted on a state-of-the-art many-body potential energy surface. While

previous theoretical studies of the vibrational spectroscopy were performed for these

systems,141,126,125,127 no study considered the effects of ground-state delocalization

combined with an anharmonic, coupled-mode vibrational analysis.

4.3.2 Many-Body Potential for (HCl)n(H2O)m Clusters

All calculations in this section were conducted with a new full-dimensional, many-

body potential energy surface containing all one- two- and three-body interactions

for the (HCl)n(H2O)m clusters (without consideration of dissociation to ions). The

many-body potential, V , for a cluster consisting of n HCl monomers and m H2O

monomers, and limited to three-body interactions, is given by

V (Hn,Wm) =
n∑

i=1

VH(i) +
m∑
i=1

VW(i)+

n∑
i<j

VHH(i, j) +
n∑

i=1

m∑
j=1

VHW(i, j) +
m∑
i<j

VWW(i, j)+

n∑
i<j<k

VHHH(i, j, k) +
n∑

i<j

m∑
k=1

VHHW(i, j, k) +
n∑

i=1

m∑
j<k

VHWW(i, j, k) +
m∑

i<j<k

VWWW(i, j, k),

(4.4)
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where H refers to HCl monomers and W refers to H2O monomers. This notation is

used, when convenient below, to refer to the various clusters.

The many-body potential is constructed from existing and new ab initio-based po-

tentials. The homogenous one- two- and three-body interactions are described by the

WHBB many-body water potential11,48 and with the many-body HCl potential de-

tailed in Chapter 3.164 In both potentials the one-body monomer potentials are spec-

troscopically accurate ones.78,148 The intrinsic two-body HCl potential is extracted

from the semi-empirical EL-ES1 dimer potential.64 The heterogenous two-body inter-

action for HW is accounted for using an intrinsic two-body fit to the same ∼ 44, 000

configurations used to generate CCSD(T)-F12/aug-cc-pVTZ potential in the pervious

section.152 The two-body and three-body components of the WHBB potential are a

permutationally invariant fit to roughly 30,000 CCSD(T)/aug-cc-pVTZ energies and

40,000 MP2/aug-cc-pVTZ energies, respectively. All of the previously reported po-

tentials have been used to compute dynamic and spectroscopic properties, for their

respective systems, in agreement with experiment.165,58,166,152,167 New to this work are

two MP2-F12/aug-cc-pVDZ, permutationally invariant, intrinsic three-body poten-

tials for the HHW and HWW interactions. These new three-body potentials were

each constructed from fits to roughly 50, 000 energies using permutationally invariant

polynomials up to total order six in terms of Morse variables, exp(−rij/λ), where

rij are the intermolecular distances and the range parameter, λ, equals 2 bohr.3,83,84

The root-mean squared deviation of the two fits were both less than 7 cm−1. A plot

demonstrating the fitting RMS as function of the computed energies is given in Figure

4.7. The RMS errors are small at the areas near the global minima (-542 for HHW

and -792 for HWW) and when the potentials are effectively zero. It is of note that

the three-body RMS’s do rise as the three-body interaction energy becomes less than

the interaction at the minimum. This is because fewer configurations are computed

at these points as they relate to areas where the two-body interactions are highly re-
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pulsive. The MP2-F12 method was chosen due to its speed and ability to reproduce

three-body energies for a test set of configurations to within 20 cm−1 of CCSD(T)-

F12/aug-cc-pVTZ calculations. All energies were computed using MOLPRO 2010.77

The four-body interactions in the (HCl)1(H2O)3, (HCl)3(H2O)1 and (HCl)2(H2O)2

clusters account for less than 4% of the total interaction energy. Its small contribu-

tion justifies excluding this higher-body interaction in the many-body potential.
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Figure 4.6: Root-mean-square (RMS) of the three-body potential fitting errors as a function of the
trimers’ three-body energies.

The many-body potential allows for smooth dissociation of any arbitrary sized clus-

ter with each of the interactions going to zero at their respective interaction limits.

The range and relative contributions of the various interactions, as it pertains to the

two mixed trimers, are shown with one-dimensional cuts shown in Figure 4.7. The

cuts were constructed by simultaneously compressing and then separating the three

monomers along vectors which allow the monomers to pass through the respective

trimer minima. Examination of the plots shows that the two-body interactions con-

tribute substantially more to the total interaction energy (∼ 85%) relative to the
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three-body interactions (∼ 15%). The three-body energy is relevant only at small

molecular distances, with the interaction becoming effectively zero at average heavy

atom distances greater than 6 Å and 5 Å for the HHW and HWW potentials, respec-

tively.
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Figure 4.7: Potential energy cuts of three-body and two-body potentials in the (HCl)2(H2O) [HHW]
and (HCl)-(H2O)2 [HWW].

4.3.3 Theoretical Methods for the Study the (HCl)n(H2O)m

The many-body potential surface was used to perform diffusion Monte Carlo simula-

tions for the six mixed clusters to obtain the full-dimensional ground state vibrational

wavefunctions.29,30 Plotting and visual examination of these wavefunctions as shown

in the previous studies reported in this dissertation, allows for the extent of ground

state delocalization to be surmised. Furthermore, by comparing the wavefunction

plots with the geometries of optimized stationary points, a DMC based configuration

may be identified. The simulations for each system were performed using 30,000

“walkers” an imaginary times step of 2.5 atomic units, an α value of 0.4, an equilibra-
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tion period of 3,000 steps and a propagation period of 10,000 steps. Two simulations

were performed for each system starting from the completely planar configuration

and from the global minimum. The plotted wavefunctions correspond to the lowest

zero-point energy of the two simulations. In the case of the dimer, the calculations

reported in the previous section repeated with the many-body representation of the

potential and not the explicit dimer potential.

Coupled, anharmonic vibrational configuration interaction calculations were per-

formed to obtain the stretching and bending energies of the dimer, trimer and tetramers

of (HCl)n(H2O)m. The calculations were done using with the code Multimode19,20,21.

Ideally, a full-dimensional calculation considering all the modes, including ones that

span the global minimum and saddle points, should be done. However, such a cal-

culation is not feasible for the large systems studied here, and so two approximate

approaches were taken. In brief, in one approach the ground state is characterized by

a single-reference configuration, either the global minimum or a planar saddle point.

Calculations are then performed at these configuration for a subset of high-frequency

local or full normal-modes which contain the HCl stretches, the OH stretches and

the HOH bend. In another, novel approach, multiple coupled vibrational calculations

(in a subset of local normal-modes) are done over a reaction path or surface which

describe the configurations which are explored by the large amplitude motions of the

clusters. This path or surface is constructed along the imaginary frequency normal-

modes of the first or second-order planar saddle points, with the geometry optimized

with respect to all non-imaginary frequency normal-modes. The imaginary frequency

normal-modes correspond predominately to the wagging motions of the free-OHs.

The later approach is denoted DLOC, to indicate it’s “delocalized” nature.

In the delocalized approach (DLOC) the Schrödinger equation is solved in reduced

dimensionality using one or two large amplitude modes described in detail below. This

is done by first defining a reaction coordinate or surface that contains the relevant
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saddle points and minima. The imaginary frequency normal-mode Qim of a first-order

saddle151,150,149 or two imaginary frequency normal-modes of a second-order saddle

point, if that is the relevant saddle point, are used to construct coordinates. In all

cases the imaginary frequency normal-modes correspond predominantly to the free

OH wagging motions. At each point on the surface the corresponding geometry is

optimized with respect to all non-imaginary frequency normal-modes. A discrete

variable representation calculation23 using 150 points per dimension is used to solve

for the delocalized ground state wavefunction of the surface. The vibrational frequen-

cies of hundreds of configurations on the surface are computed, weighted according

to the surface’s wavefunction squared and the values integrated to give a single set

of delocalized vibrational frequencies. In light of the DMC results the HWWW’s

reduced dimensional surface was generated in two dimensions, centered on a second-

order saddle point, with the free OH of monomers β and γ in planar configurations

and the OH of monomer α in a non-planar configuration. The grid of points along

the two imaginary frequencies were optimize with respect all the other non-imaginary

normal-modes except for the normal-mode associated with the large amplitude mo-

tion of monomer α’s free OH.

Returning to the Multimode calculations, in both the single and multi reference

calculations the low frequency modes were considered to have negligible effects on the

vibrations. In the previous studies of HCl trimer, Chapter 3, good agreement between

similar local calculations and those performed here were achieved without the con-

sideration of low frequency vibrations.164 Calculations were performed using either a

traditional approach involving the full normal-modes or a local approach. The tradi-

tional approach solves for the vibrational frequencies in terms of the normal-modes

of the whole cluster. The largest of these calculations was applied to HWW which

included seven modes and a three-mode representation of the potential. The local

approach uses the local-monomer (LMon) technique described in Chapter 3.48,87 The
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LMon method results in three-dimensional calculations for the H2O monomers and

one-dimensional calculations for the HCl. In clusters with multiple HCl monomers,

the HCl’s stretches are considered in the field of the H2O monomer(s). Substantially

smaller computation time is required to performed the LMon calculations, with an-

harmonic frequency errors on average less than 10 cm−1 relative to those computed

using traditional calculations. The local method makes it computationally possible

to perform the hundreds of calculations involved in the DLOC approach, as well as to

study the HWWW (eight modes) and HHWW (ten modes) cluster at their stationary

points. The Multimode basis was chosen to mirror the basis set of previous LMon

studies of HCl and water cluster. The modes involving the HCl and H2O monomers

used 10 and 13 harmonic basis functions, respectively.

The global minimum and neighboring low-lying stationary points (under 600 cm−1)

of the dimer, trimers and tetramers were located on the potential using codes con-

tained in the NLopt optimization package.168 The planar configurations for the six

clusters studied here are shown in Figure 4.8. While all the clusters’ (with the ex-

ception of the dimer) form non-planar ring configuration at their global minima, the

planar stationary points provide a better reference structure for this study (see dis-

cussion below). In the global minima the free OHs all point either above or below

the plane of the ring, alternating between the different sides of the ring plane. Other

low-energy stationary points are characterized by the free OHs oriented, individually,

either in or out of the ring plane. It should be noted that the configuration of the

(HCl)2(H2O)2 cluster with the monomer ordering HWHW is lower in energy than

the HHWW ordering shown in Figure 4.8. The HHWW form is, however, the one

reported experimentally41,40,153 and so is focused on here.



CHAPTER 4. MIXED (HCL)N AND (H2O)M CLUSTERS 102

Figure 4.8: Planar configurations of indicated HCl and H2O clusters.

4.3.4 Vibrational Ground State Properties of (HCl)n(H2O)m

Isosurface plots of the zero-point wavefunctions are shown in Figures 4.9 and 4.10

where, in Figure 4.9 the reference planar configurations in Figure 4.8 rotated 90

out of the plane of the page. In Figures 4.9 and 4.10, the H atom motion of the

free OH bonds displays the most delocalization. The HCl monomers are relatively

more localized, certainly far more localized than was seen in the HCl dimer.64,165

This seems reasonable due to constraints imposed by the ring configuration, as was

demonstrated by the contrasting nature of the DMC wavefunctions of the HCl dimer

and ring trimer.165 The extent of the delocalization in the free OHs can be under-

stood by examining the magnitude and shape of the OH wavefunction densities in

the planar positions of the clusters. Each free OH in the clusters behaves uniquely

and so they are best addressed individually. Full delocalization occurs when the OH
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density smoothly spans the two out-of-plane positions. These OHs move freely in the

ground state state as though no barrier to isomerization exists. The OHs of HW and

HWW(α), where the letter in parentheses refers to the specific monomer labeled in

Figure 4.8, both show this delocalized behavior. Experimental observations of these

OHs would find them in the plane of the cluster. Partial delocalization occurs when

the density in the planar positions is smaller than the out-of-plane positions. In this

case the zero-point energy in the OH large amplitude motion is not large enough

to overcome the planar barrier entirely, but still large enough to allow a significant

amount of barrier crossing to occur. Experimentally, these OHs will be seen as nearly

planar. The free OHs of HHW, HWW(β), HHHW, HHWW and HWWW(α) all show

this behavior and are best described by an effective planar orientation. The near pla-

narity of the HHW reported here is in agreement with recent microwave observations

of the cluster.155 Small or zero delocalization occurs when nearly no hydrogen density

is observed in the planar position. These OHs remain localized on one side of the plane

of the molecule in the ground state. Localized free OHs appear only in HWWW(β)

and HWWW(γ), with HWWW(γ) being much more localized than HWWW(β). It is

worth noting that this transition to a more localized configuration as the number of

H2O monomer increases is not surprising if one recalls that the water trimer’s ground

state wavefunction is localized at ring shaped global minima with the OHs all in non-

planar orientations. In the case of mix-clusters, as the number of H2O monomers

grows the clusters begin to behave more like the pure H2O clusters for which the free

OHs localize.169
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HW!HHW! HWW!

HWWW!HHWW!HHHW!

Figure 4.9: An isosurface representations of the vibrational ground state wavefunctions of the indicated
mixed HCl and H2O clusters computed using diffusion Monte Carlo simulations. The wavefunction
representations are shown relative to the planar configurations.
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Figure 4.10: Isosurface representations of the vibrational ground state wavefunctions of the indicated
mixed HCl and H2O clusters computed using diffusion Monte Carlo simulations. The wavefunction
representations are shown relative to the planar configurations.

Based on the DMC wavefunctions, the most-probable zero-point structures were

determined, which represent the best single-reference geometry to perform vibra-

tional calculations. The planar saddle points are the most-probable configurations

for all but the HWWW cluster. A non-planar, first order-saddle point best de-

scribes HWWW, with the monomer (γ) and (β) oriented on opposite sides of the ring

plane and monomer (α) in a plane of the ring. The energy differences in wavenum-

bers between the global minimum and the DMC most-probable configurations are:

57(HW); 366(HWW); 117(HHW); 326(HHWW); 72(HWWW) and 100(HHHW). It

is also worth mentioning that the third-order planar saddle point configuration of

HWWW is 586 cm−1 above the global minimum. Considering how high this is rela-

tive to the other cluster’s planar configurations it is not surprising that it is largely

unsampled in the ground state. For convenience in what follows the DMC predicted
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structures are referred to as “planar”.

4.3.5 Vibrational Excited State Properties of (HCl)n(H2O)m

Anharmonic coupled vibrational energies were computed for the (HCl)n(H2O)m clus-

ters using single-reference approaches at the global minima and planar geometries,

and also using the DLOC approach. Presented first is a detailed discussion of the

HWW cluster, which best demonstrates the effects of delocalization on the vibra-

tional frequencies. The vibrational frequencies of all six clusters are then discussed

in a more summary fashion.

The anharmonic and harmonic vibrational frequencies of the HWW trimer are pre-

sented in Table 4.4, where the results in the “Minimum” and “Planar” columns refer,

respectively, to the single reference results computed at the global minimum and pla-

nar second-order saddle point configuration. The results in the “DLOC” column refer

to the calculation that spanned multiple stationary points using the coordinates and

wavefunction weighting shown in Figure 4.11. This notation is also applied below. As

seen, the HCl stretch exhibits a 133 cm−1 harmonic and 170 cm−1 anharmonic shift

between the two configurations. As expected, the DLOC calculation predicts the HCl

stretch fundamental between the stationary point calculations but closer to the pla-

nar configuration result. Similar differences in the stationary point results of the OH

stretches are observed, with the exception being the bound OH stretch of monomer

β. The calculated bend frequency, however, shows very small variation between the

three calculations. These results point to the large amplitude motions having a large

effect on the computed vibrational frequencies resulting in large blue shifts. Compar-

ing the computed values with experiment for the HCl-stretch, there are differences

of -118, +52, and -30 cm−1 for the minimum, planar and DLOC calculations, respec-

tively. The better agreement with experiment for the planar and especially the DLOC

calculation is expected, based on the discussion of the DMC wavefunction, where the
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most probable configuration is the planar one. The delocalization of the wavefunc-

tion is large and thus the DLOC calculation is expected to provide the best physical

description of the three and so the closer agreement with experiment is gratifying.

The next most-sensitive results are for the H-bonded OH-stretch of H2O(α). For this

stretch the planar and DLOC results are in much better agreement with the tenta-

tive experimental assignment. The other OH-stretches differ only slight amongst the

three calculations. The agreement of the computed OH-stretches with experiment is

satisfactory, especially with regards to the more robust predictions of Reference145.

Considering the understandably poor results for the HCl-stretch using the minimum

as the reference, it is worth noting that a one-dimensional anharmonic HCl stretch fre-

quency has been reported for the global minimum using MP3/6-311++G(2d,2p).141

The result of 2467 cm−1, which is in good agreement with experiment appears to be

fortuitous and probably due to cancellation of error in the MP3 calculation.

Table 4.4: Harmonic, anharmonic and experimental vibrational frequencies (cm−1) for HCl(H2O)2.
†= 109 ‡= 145 ∗=Tentative Assignment

Minimum Planar DLOC
Harm. Anharm. Harm. Anharm. Anharm. Experiment

νbend-(H2O)α
1643 1586 1641 1580 1585 -

νbend-(H2O)β
1654 1598 1646 1590 1587 -

νstretch-HCl 2550 2342 2683 2512 2430 2460†

νbonded stretch-(H2O)α
3695 3480 3751 3556 3518 3563†∗

νbonded stretch-(H2O)β
3782 3590 3786 3589 3591 3618 †∗

νfree stretch-(H2O)β
3898 3703 3927 3725 3717 3764†∗/3708‡

νfree stretch-(H2O)α
3910 3710 3946 3764 3742 3791†∗/3731‡



CHAPTER 4. MIXED (HCL)N AND (H2O)M CLUSTERS 108

Figure 4.11: The HWW Qim two-dimensional potential energy surface (left) and ground state normalized
wavefunction squared (right). The surface’s zero-point energy is 319 cm−1.

To sum up thus far, agreement between experiment and the DLOC and planar

configuration calculations validates the conclusion from the DMC wavefunctions of

the zero-point state that the OHs are indeed highly delocalized. Also, the neglect

of dynamical coupling to low-frequency intermolecular modes in the LMon approach

used for this mixed cluster appears to be justified for the desired level of accuracy,

which is of the order of 10-20 cm−1. This level of accuracy was found for several ho-

mogeneous water clusters11 for which benchmark results are available and also for the

very floppy HCl discussed in Chapter 3.87 To briefly review, for the latter the local

normal-mode approach gives 2847 and 2860 cm−1 for the two HCl fundamentals87

compared to the benchmark results of 2857 and 2877 cm−1.64 The delocalization of

the free OHs have a significant effect on both the OH and HCl stretches resulting in

inaccurate calculation of the fundamentals at the global minimum.

Analogous calculations to those just discussed for HWW were performed for each
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cluster with their explicit values reported in Tables 4.5, 4.6, 4.7, 4.8 and 4.9. Plots

of each cluster’s reduced dimensional potentials and their respective wavefunctions,

similar to Figure 4.11, are reported in the supporting information of 170. Due to

the large number of calculated peak it is more useful to consider the results of Ta-

bles 4.5 - 4.9 in a general fashion with respect to the available experimental results

than on an individual basis. Plots of the available experimental peak positions of

the HCl-stretch and corresponding calculated results are shown in Figure 4.12. Com-

paring the single-reference calculations, the average absolute deviation is 65 cm−1.

The minimum and planar configuration results’ absolute differences from the DLOC

calculations are 39 and 30 cm−1, respectively. The deviations between calculations

are, however, not uniform. The largest differences are observed for the lowest fre-

quency stretch in each of the clusters. These low frequency stretches all correspond

to stretches of HCl monomers ( labeled A in Figure 4.8) that donate a H-bond to a

H2O monomer. The exception to this behavior appears to be for HWWW. This is be-

cause unlike the other clusters the H-bond H2O monomer’s free OH is in a non-planar

configuration in its ground state according to the DMC calculation. This allows the

ground state in the area of the HCl monomer to resemble the global minima configu-

rations. The similar configurations results in near equivalent vibrational frequencies.

In this cluster the predicted vibrational frequency’s agreement with experiment is of

note as its peak position was only speculatively assigned in Reference 109. The mean

absolute differences between the experimental peak positions and calculated results

are ∼ 20 cm−1 for the DLOC and planar calculations and 50 cm−1 for the minimum

calculations. These summary results illustrate clearly the importance of considering

the delocalized nature of the ground vibrational state (and also the excited state).
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Table 4.5: Harmonic and anharmonic vibrational frequencies for HW.†= 109 ‡= 145 ∗= 41

Minimum Planar DLOC
Harm. Anharm. Harm. Anharm. Anharm. Experiment

νbend-H2O 1648 1592 1648 1582 1587 -
νstretch-HCl 2803 2653 2853 2719 2689 2715∗/2724†

νbonded stretch-H2O 3827 3655 3829 3661 3656 -
νfree stretch-H2O 3933 3748 3943 3758 3755 3762.9‡

Table 4.6: Harmonic and anharmonic vibrational frequencies for HHW.†= 109 ‡= 145 ∗= 41

Minimum Planar DLOC
Harm. Anharm. Harm. Anharm. Anharm. Experiment

νbend-H2O 1646 1588 1639 1579 1581 -
νstretch-(HCl)A

2663 2484 2751 2597 2544 2580†
νstretch-(HCl)B

2870 2759 2863 2753 2748 2757†/2774∗
νbonded stretch-H2O 3781 3573 3789 3592 3582 -
νfree stretch-H2O 3905 3711 3929 3740 3729 3723‡

Table 4.7: Harmonic and anharmonic vibrational frequencies for HHWW. ‡= 145 ∗= 41

Minimum Planar DLOC
Harm. Anharm. Harm. Anharm. Anharm. Experiment

νbend-(H2O)α 1652 1603 1659 1605 1605 -
νbend-(H2O)β 1674 1609 1673 1607 1609 -
νstretch-(HCl)A

2433 2224 2581 2395 2328 -
νstretch-(HCl)B

2813 2693 2814 2695 2693 2670∗
νbonded stretch-(H2O)α 3637 3407 3695 3493 3461 -
νbonded stretch-(H2O)β 3758 3546 3766 3550 3547 -
νfree stretch-(H2O)α 3875 3686 3908 3724 3718 3731‡
νfree stretch-(H2O)β 3897 3712 3911 3738 3719 -

Table 4.8: Harmonic and anharmonic vibrational frequencies for HHHW.†= 153 ∗= 41

Minimum Planar DLOC
Harm. Anharm. Harm. Anharm. Anharm. Experiment

νbend-H2O 1670 1609 1666 1603 1602 -
νstretch-(HCl)A

2619 2434 2700 2538 2495 -
νstretch-(HCl)B

2846 2726 2845 2724 2722 2705∗
νstretch-(HCl)C

2884 2783 2881 2779 2769 2754†
νbonded stretch-H2O 3749 3534 3753 3550 3540 -
νfree stretch-H2O 3894 3716 3910 3739 3728 -
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Table 4.9: Harmonic and anharmonic vibrational frequencies for HWWW.†= 109 ∗= 41

Minimum Planar DLOC
Harm. Anharm. Harm. Anharm. Anharm. Experiment

νbend-(H2O)α 1655 1606 1657 1605 1608 -
νbend-(H2O)β 1667 1608 1674 1610 1610 -
νbend-(H2O)γ 1683 1611 1676 1613 1613 -
νstretch-HCl 2376 2155 2368 2145 2160 2180†

νfree stretch-(H2O)α 3570 3342 3565 3337 3368 -
νfree stretch-(H2O)β 3660 3449 3688 3482 3474 -
νfree stretch-(H2O)γ 3749 3542 3754 3545 3547 -
νbonded stretch-(H2O)β 3889 3695 3887 3693 3690 3708∗

νbonded stretch-(H2O)α 3896 3706 3896 3705 3717 3718∗

νbonded stretch-(H2O)γ 3914 3721 3929 3730 3726 -
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Figure 4.12: Plot of anharmonic vibrational frequencies for the HCl stretch in the (HCl)n(H2O)m clusters.
The monomer labeling used in the text is applied here for cases where multiple HCl monomers are present.
The vibrational frequencies were computed at the global minimum configurations (Minimum) and the
DMC predicted stationary point configurations (Planar), and using the DLOC calculations. Available
experimental values are plotted for comparison.109,153,40,41

An analogous summary plot is given in Figure 4.13 for the OH stretches. The

single-reference calculations absolute mean deviation is 21 cm−1. The minimum and
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planar configuration results average absolute deviations from the DLOC results are,

17 and 9 cm−1, respectively. Comparing the computed frequencies with experiment,

the frequencies differ by 17 cm−1 from the global minimum results, 15 cm−1 from the

planar configuration results and 9 cm−1 from the DLOC results. While the differences

are not as large as in the HCl stretches, the consideration of the delocalization still

results in the computation of more accurate OH stretch frequencies. It should be

noted that the HOH bends show no more than a 10 cm−1 difference between any of

the three calculations.
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Figure 4.13: Plot of anharmonic vibrational frequencies for the OH stretch in the (HCl)n(H2O)m clusters
that have reported experimentally in Reference145. The monomer labeling used in in the text is applied
here for cases where multiple H2O monomers are present. The vibrational frequencies were computed
at the global minimum configurations (Minimum) and the DMC most probably configurations (Planar),
and using the DLOC calculations.

It is useful to comment on the vibrational spectroscopy of these systems in terms of

their harmonic frequencies. The large anharmonic coupled frequency shifts between
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the three calculations, especially for each cluster’s lowest frequency HCl stretch, are

present in the harmonic results as well. An example of the harmonic behavior is

shown for HWW in Table 4.4, which are now consider in some detail. While the delo-

calization is an anharmonic effect, the stationary point dependence of the frequencies

is not. The HCl stretch harmonic frequency computed at the minimum shifts up by

133 cm−1 at the most probably planar reference configuration. This can be compared

to the 170 cm−1 shift from the anharmonic coupled calculations. Nevertheless, both

sets of harmonic results are much higher than experiment, as expected. The lower

harmonic frequency is closer to experiment than the higher frequency result but this

apparent “better” agreement is actually a misleading indicator of the most probable

configuration. So clearly, a standard harmonic analyses (with perhaps a standard

scale factor) at the global minimum would be a misrepresentation of the cluster dy-

namics. A DMC calculation of the zero-point wavefunction is not typically accessible

to most theoretical studies, so investigating delocalization using approximate meth-

ods will often be necessary. This can be done by locating stationary points that are

“near” the global minimum both in energy and configuration space. Standard har-

monic analyses at these stationary points may be revealing of which configuration is

the most likely.

4.3.6 Summary and Conclusions

In summary, large amplitude motions can have a significant effect on the vibrational

frequencies of molecular clusters. Using a full dimensional potential energy surface

diffusion Monte Carlo zero-point wavefunctions were obtained. The mixed HCl and

H2O dimer, trimer and tetramer clusters are delocalized in their respective ground

states. Anharmonic coupled calculations of the first excited states of the HCl and

OH stretch that were computed at the most probable DMC configuration are in good
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agreement with experiment, whereas calculations that were performed at the con-

ventional global minimum were not. The largest effects on these reported stretches

involved HCls donating a H-bond to ground state delocalized H2Omonomers. The ob-

served ground state delocalization behavior and its effect on fundamental frequencies

is likely not limited to just these mixed clusters as certainly other systems with large

amplitude motions will encounter similar frequency shifts due to the delocalization.

When studying these types of clusters, even at the harmonic level, it is prudent to

consider the effects of ground state delocalization in order to achieve the best possible

physical description of the vibrational dynamics and even the (zero-point averaged)

structure.
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5
H3O+(H2O)3 Cl− Solvent Ion Pair Cluster

5.1 Overview

The proton transfer reaction is ubiquitous in pure and heterogenous liquid water.

This is why the answer to the question, “How many waters are required for a single

HCl monomer to auto-dissociation into H+ and Cl–?” is of fundamental interest.

The question has recently be a hotly debated one due to the complexities it presents

both from an experimental and theoretical perspective. This section is dedicated to

this question. In it a local-monomer based many-body potential energy surface is

constructed comprising of five separate interactions to study the embedded H3O+.

The anharmonic 12-mode spectra for the embedded H3O+ is computed using this
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embedded PES.

5.2 Isolating the Spectral Signature of H3O+ in the Smallest Droplet

of Dissociated HCl Acid

5.2.1 Context

Fundamental studies of acids in biological and chemical contexts are obviously of great

and intense interest.171,172,173,174,175 Recent research has focused on basic questions,

such as how many water molecules are required for acid formation, i.e., dissociation,

to be favored over undissociated states.176,177,178,179,180,181,182 The answer is typically

sought by the detecting the presence or absence of signature spectral features of the

hydrated proton in the infra-red. These signatures are a matter of current high in-

terest not only in acids but in closely related contexts, such as the purely hydrated

H+ with no negative counter ion. In the latter, the fundamental question is whether

the hydration state is of the Eigen form, H3O+, or the Zundel form, H5O+
2 , where

the proton is bridged between two water molecules. In both areas of research, IR

spectroscopy has been the dominant experimental tool; however, the interpretation

of the measured spectra are a major challenge. This has been been highlighted for

the vibrations of H+ ions embedded in molecular clusters176,183,184,185,186,187,188,189 and

most recently for the H+(H2O)21 cluster.190

Acid clusters, such as hydrated HCl, arguably present even greater challenges for

the interpretation of the IR spectrum than hydrated H+ clusters, while still sharing as-

pects in common. The majority of experimental studies of hydrated HCl have focused

on small (HCl)m(H2O)n clusters, in which HCl is not dissociated to an ion pair. Many

of these cluster were discussed in the previous chapter.130,55,134,137,135,131,136,109,132,153,170

From a number of independent theoretical studies, consensus has been reached that

for HCl(H2O)4, among the several minima, the dissociated configuration, H3O+(H2O)3

Cl−, is the most stable one.156,123,139,128,127,124 This configuration, shown in the inset
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of Figure 5.1, is denoted as a solvent-ion-pair (SIP) conformation with C3 symmetry.

Numerous path integral and classical dynamical studies of this and larger ionized

clusters have been reported.114,116,36,117,191 Experimental IR spectroscopy studies of

the HCl(H2O)4 cluster in superfluid He nanodroplets at below 1 K reported evidence

of the SIP, based on two spectral features at around 2670 cm−1 and theoretical sup-

port129,153 The peaks were assigned using scaled harmonic frequencies to the symmet-

ric stretch of the H3O+ in two nearly isoenergetic SIP conformations.129 However, the

peak location and spectral line shape are nearly identical to those of the HCl stretch

of the undissociated (HCl)2(H2O)2 cluster.41,153 In addition, Møller-Plesset pertur-

bation theory (MP2) harmonic calculations, the most sophisticated level of theory

applied to the SIP to-date, obtain the symmetric stretch at ∼2900 cm−1, clearly in

disagreement with the previous calculations.153,41 The theoretical reports of the SIP

are summarized in Table 5.1. Furthermore, it is unclear whether the kinetic energy

needed to surmount the barriers to transition from undissociated configurations to

the SIP configuration are accessible in the helium droplets where experiments took

place.192 Motivated by both the central importance of the HCl(H2O)4 cluster and the

uncertainty in the experimental evidence for its dissociation, a calculation of the IR

spectrum of the signature H3O+ ion in the SIP configuration was performed.
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Figure 5.1: Global minimum SIP configuration from two perspectives and its embedded H3O+ harmonic
and coupled anharmonic spectrum. Each stick represents an individual state with the band shapes
produced from the convolution of a Gaussians. The intensities of the two spectra are unscaled.

Table 5.1: Summary of the SIP H3O+ harmonic stretch frequencies (cm−1).

Theory νAsym. Str. νAsym. Str. νSym. Str.
B3LYP/D9511(p,d)124 2600 2608 2786
MP2/6-311+G*123 2747 2747 2987
BLYP/aVTZ129 - - 2708
MP2/6-311+(3df,3pd)41 - - 2921
RI-MP2/aVTZ129 - - 2903
MP2/aVDZ 2649 2649 2880

5.2.2 Theoretical Methods for the Study of H3O+(H2O)3Cl−

The SIP cluster, which has thirty-six vibrational degrees-of-freedom, is far too large

for rigorous quantum calculations and so the Local Monomer approach (LMon) was

used.48,87 This is the same approach that was applied successfully to the undissoci-

ated HCl clusters mentioned above.170 In the application to HCl(H2O)4, the LMon
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approach is expanded to consider coupling among the twelve vibrational degrees-

of-freedom (six intramolecular and six intermolecular) of H3O+ embedded in the

H3O+(H2O)3 Cl− cluster shown in Fig. 5.2. The calculations make use of an ab ini-

tio-based potential energy surface, built from the highest quality electronic structure

methods feasible and coupled-anharmonic vibrational calculations.

Figure 5.2: Representations of the 12 LMon eigenvectors for the H3O+ embedded in the SIP cluster. The
first six modes refer to intermolecular motions and the last six intramolecular motions. The abbreviations
used are Frus. = Frustrated, Trans. = Translation, Rot. = Rotation, Sym = Symmetric, Asym =
Asymmetric, Str. = Stretch. The labels, X, Y, Z are used to refer to the relative axis of the mode, where
the Z-axis passes through the Cl− and the O of the H3O+.

More specifically, the LMon potential energy surface (PES) describes the motion of

H3O+ embedded in the SIP cluster, with fixed positions for the three H2O monomers

and the Cl−. The equilibrium configuration of this cluster was determined by a

full-dimensional geometry optimization, using Coupled Cluster Singles Doubles and

Perturbative Triples excitations (CCSD(T)), explicit correlation (-F12)12 and the

augmented correlation consistent double zeta basis (aVDZ).13 At this configuration
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the LMon PES is given by

V = VH3O+ + VH3O+Cl− +
3∑

i=1

VH3O+H2O(i) +
3∑

i<j

VH2O(i)(H3O+)H2O(j) +
3∑

i=1

VH3O+(Cl−)H2O(i),

(5.1)

where the terms are as follows. VH3O+ is the potential of the isolated H3O+ monomer,

which describes the six intramolecular vibrational degrees-of-freedom. VH3O+Cl− is

the twelve degree-of-freedom intrinsic two-body potential of H3O+ interacting with

the fixed-position Cl−, where the additional six degrees-of-freedom describe the H3O+

intermolecular modes. The meaning of the remaining terms in Eq. 5.1 follow the de-

scription of the VH3O+Cl− and should be obvious. Each potential is a full-dimensional

permutationally invariant linear-least squares fit to tens of thousands of electronic

energies.3,193 The one- and two-body interaction energies used for the fits were com-

puted using CCSD(T) with the augmented correlations consistent triple zeta (aVTZ)

basis or higher. These levels of theory are not computationally feasible for the three-

body interactions and so CCSD(T)-F12/aVDZ energies were used. The higher-body

interactions are neglected in the LMon PES, as they contribute less than 1% of the

total cluster interaction energy.128

The newly developed LMon PES considered all one- two- and three-body H3O+ in-

teractions. The contribution of each of interaction terms in the SIP are given in Table

5.2. The details of each of the interaction potentials included in the LMon PES are

shown in Table 5.3. The H3O+H2O interaction energy and dipole moment were taken

as the intrinsic interaction energy and dipole moments of a previously reported PES

and DMS.9 All other interactions were taken from fits to a 5th order permutationally

invariant polynomial with a basis of Morse like variables, exp(−rij/λ), where rij are

the intermolecular distances and the range parameter, λ, equals 2 bohr.3 For a given

interaction, the same level of theory was used to compute all of the required monomer,
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dimer and trimer energies. The points for the new potentials were taken from sections

of the geometries which are sampled in the Multimode calculations. More specifically,

the points are the displacements of one-, two-, three- and four-mode grids of the LMon

modes of the CCSD(T)-F12a/aVDZ configuration. The fitting was done in an iter-

ative fashion whereby addition points were added to the fitting data base until no

significant changes were observed in the harmonic and anharmonic frequencies with

respect to the addition of more points. The potentials were also tested using classical

molecular dynamics and diffusion Monte Carlo simulations of the embedded H3O+.

The LMon DMS was formulated in a similar manner and contains all one- and two-

body H3O+ dipole interactions computed using MP2/aVTZ. The details of each of

the LMon DMS parts are shown in Table 5.4 These and all other reported ab initio

calculations were performed using the electronic structure package MOLPRO 2010.77

Table 5.2: Details of the SIP many-body interactions from CCSD(T)-F12/aVDZ.

Interaction kcal |Percentage|
(H3O)Cl -111.0 43.0
H3O(H2O) -80.8 31.3
(H2O)Cl -39.6 15.4
H3O(H2O)2 15.6 6.0
(H2O)2Cl 4.7 1.8
(H2O)2 2.7 1.1
H3O(H2O)Cl 1.7 0.7
4-body + 5-body -1.5 0.6
(H2O)3 -0.4 0.1

Table 5.3: Details of the components of the PES surface’s total number of points, fitting root-mean-
squared-deviation (RMSD) and energy span.

Interaction Method Total Points RMSD Energy Span
H3O+ CCSD(T)-F12b/aVQZ 1601 9 19500
H3O+Cl− CCSD(T)-F12b/aVTZ 11307 10 13500
H3O+H2O[ 9] CCSD(T)/aVTZ 48189 35 -
H3O+(H2O)Cl− CCSD(T)-F12b/aVDZ 28073 9 9800
H3O+(H2O)2 CCSD(T)-F12b/aVTZ 21740 6 4200
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Table 5.4: Details of the components of the DMS surface’s total number of points and fitting root-
mean-squared-deviation (RMSD).

Interaction H3O+ H3O+Cl− H3O+H2O[ 9]

Total Points 1601 11307 48189
RMSDx (a.u.) 0.0011 0.0061 0.0159
RMSDy (a.u.) 0.0024 0.0017 0.0106
RMSDz (a.u.) 0.0017 0.0014 0.0100

The code Multimode was used to obtain the embedded, 0 K, H3O+ IR spectrum

employing the LMon PES and DMS.19,20 The Multimode basis was limited to those

states having a total number of quantum less than or equal to eight with a maximum

of eight quanta allowed in each modes.

The twelve-mode calculation reported here included a 4-mode representation of the

potential. Changes in peak positions and intensities were progressively smaller moving

from two- to three- and then four-mode representations, indicating the calculations

had converged or were close to convergence. Due to the exponential increase in

computation time, calculations involving five-mode or greater coupling could not

be performed in a reasonable amount of time to further verify that twelve mode

calculation was converged. Additional support for the convergence is provided by the

results of a reduced dimensional calculations involving only the six highest frequency

modes where five-mode coupled calculations were performed. The peak positions in

these reduced dimensional calculations changed by less than 1 cm−1 when increased

from four- to five-mode coupling.

Before discussing the IR spectrum, the numerical validation of the approach taken

is presented. This is done by examining harmonic frequencies and double harmonic

intensities computed for the SIP cluster using various methodologies; these are given

in Table 5.5. First, to test the accuracy of the LMon approach, results from a full

harmonic normal-mode analysis (thirty-six degrees-of-freedom) and a LMon harmonic

normal-mode analysis, both performed using MP2/aVDZ, are given in columns one

and two of Table 5.5. As seen, they are in good agreement with each other for the 12
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LMon modes. The average percent difference between the full and LMon approach

is 9%, with the six highest frequencies differing by no-more than a 1% on average.

Similar agreement is observed for the intensities in the two approaches. While the

values in this test were computed with MP2/aVDZ, similar differences between full

and LMon results are to be expected for subsequent higher level calculations. A full

dimensional normal-mode analysis using CCSD(T) was not feasible for this system,

due to the huge computation time required. However, a LMon normal-mode analysis

using CCSD(T)-F12/aVDZ was performed and the results are reported in column

three of Table 5.5. Comparison of the ab initio to the LMon PES frequencies, shown

in column four of Table 5.5, provide a semi-quantitative measure of the LMon PES

quality. The comparison is not exact because of differences in the potentials and

the configuration with which the analyses were applied. The LMon PES uses higher

quality basis sets for the one- and two-body interactions, which constitute 90% of the

total energy. Furthermore, the LMon PES lacks the unphysical effects of basis set

superposition error, which are present in the direct calculation.194 The differences in

the direct ab initio and LMon PES energetics result in small (∼ 0.01 Å) geometric

differences in the minimum energy structure of the embedded H3O+. The optimized

structure parameters of H3O+ from the ab initio and LMon PES are reported in Table

5.6. The frequencies from the LMon PES values differ by less that 7% from the direct

LMon CCSD(T)-F12/aVDZ calculations. While some of these differences may be

the result of fitting errors or the lack of higher-body effects, they are more likely the

results of a more accurate description of one and two-body interactions in the LMon

PE . As a result, the LMon values can be considered the benchmark for this system.
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Table 5.5: Harmonic frequencies (cm−1) and normalized double harmonic intensities of the embedded
H3O+ in the SIP configuration computed using the different approaches.

Full Local Local Local
Modes MP2/aVDZ MP2/aVDZ CCSD(T)-F12/aVDZ LMon PES

Freq. Inten. Freq. Inten. Freq. Inten. Freq. Inten.
Frust. Trans. X 328 14 238 3 236 3 228 0
Frust. Trans. Y 329 14 239 3 236 3 228 0
Frust. Trans. Z 392 1 306 1 305 1 303 0
Frust. Rot. Z 840 0 804 0 797 0 794 0
Frust. Rot. Y 979 6 873 0 890 0 913 0
Frust. Rot. X 979 6 874 0 891 0 913 0
Umbrella 1489 36 1469 23 1475 26 1399 37
Bend 1758 2 1748 2 1781 2 1889 1
Bend 1758 2 1749 2 1781 2 1889 1
Asym. Str. 2649 100 2665 100 2713 100 2803 100
Asym. Str. 2650 100 2667 100 2713 100 2803 100
Sym. Str. 2880 76 2881 50 2960 48 2957 71

Table 5.6: Properties of the embedded H3O+ in the SIP configuration. Distances are reported in
Ångstroms and angles in degrees.

Coordinate LMon PES CCSD(T)-F12/aVDZ
OH-Bonds 1.018 1.020
Hydrogen-Bonds 1.550 1.538
Umbrella Angle 105.0 104.1
O· · ·Cl 3.541 3.535

5.2.3 IR Spectrum of H3O+(H2O)3Cl−

The harmonic and coupled anharmonic IR spectra are shown in Fig. 5.1. In both

spectra, the individual vibrational states are represented by sticks. Each stick was

broadened with a Gaussian function of width 8 cm−1 to generate vibrational band

shapes. Before discussing the greatly contrasting results, it is worth mentioning that

the harmonic spectrum was computed nearly instantaneously, requiring less than 300

evaluations of the LMon PES and the set-up and diagonalization of a 12×12 Hes-

sian matrix. The calculation of the anharmonic spectrum required over a week of

CPU time running serial on a workstation, with over five-million evaluations of the

LMon PES and the set-up and diagonalization of the 26496×26496 VCI Hamiltonian

matrix. This dichotomy in computational cost is mirrored in the resulting spectra.

The harmonic spectrum is very simple, with only four harmonic states contributing

to three significant features. In the anharmonic spectrum there are 206 IR active

states from which eight individual Gaussian peaks were assigned. The eight peaks
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all have intensity greater than at least 10% of the largest Gaussian feature. Clearly

the harmonic approximation is not suitable for characterizing the complexity of the

embedded H3O+. The harmonic results in addition to failing to account for most

of the H3O+ vibrational states, significantly overestimates the IR intensities of the

features. The most intense anharmonic peak (891 km/mol) is less than a quarter of

the harmonic spectrum’s (3898 km/mol) most intense peak. Another interpretation

of this “overestimation” of the intensities is that coupling “splinters” these large sin-

gle peaks into many smaller dispersed ones. This is a common feature of complex

spectra.195

In the anharmonic-coupled spectrum, each of the VCI state wavefunctions is heavily

mixed, that is to say no single stick corresponds to “pure” fundamental or overtone.

In vibrational calculations with a small level of mode mixing VCI states are character-

ized by predominately one VSCF state with the square of the its respective coefficient

equaling between 0.8 and 0.9 (where 1.0 would indicate completely pure state). The

highly mixed VCI states are, however, characterized by dominate squared coefficients

equaling less 0.5. Due to the heavy state mixing and the large (206) number of ob-

served IR active states, the convoluted Gaussian bands of the spectra were assigned

based on the contribution of virtual VSCF states in the band. In this approach, the

ranges of each Gaussian peak whose intensities were greater than 10% of the most

intense Gaussian peak were first identified. The coefficients of each VCI state in the

Gaussian peak were squared, scaled by the VCI state’s intensity and then summed

over all VCI states. The analysis gives a qualitative picture of the contribution of each

independent VSCF virtual state over the range of several VCI states that form the

Gaussian peaks. The results of this analysis for VSCF virtual states, which contribute

at least 50% of the largest virtual state coefficients are shown in Table 5.7 for the eight

reported peaks. It is of note that in the case of the asymmetric stretch peak the sum

of the two degenerate VCI states has the largest contribution in the associated band.
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This analysis is complemented by comparing the peak positions to those computed

by a separate, reduced-dimensional, calculation that involved only the six-highest fre-

quency modes of the H3O+. The result of the analysis of the eight spectral features is

provided in Table 5.8, where the labels used in the Fig. 5.1 have been expanded upon.
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Table 5.7: Results of weighted virtual state analysis for the twelve-mode H3O+ in the SIP configuration
four-mode coupled spectra. Each band is labeled along with the number of IR active VCI states in the
band. All states whose weighted coefficients are within 50% of the largest state’s coefficient are shown for
each respective bands. The percent of the largest virtual VSCF state are given, followed by the respective
state. The twelve integers listed in each virtual VSCF state are the excitations from the ground state
where each sequential number refers to respective harmonic mode.

———————————
5 States in 1300.0 - 1400.0

100.0 < 0 0 0 0 0 0 1 0 0 0 0 0 >
———————————

13 States in 2150.0 - 2220.0
100.0 < 0 0 0 0 1 0 1 0 0 0 0 0 >
55.87 < 0 0 0 0 0 1 1 0 0 0 0 0 >

———————————
21 States in 2370.0 - 2415.0

100.0 < 4 0 0 0 0 0 1 0 0 0 0 0 >
82.36 < 0 0 0 0 0 0 0 0 0 1 0 0 >
71.03 < 0 0 0 0 0 0 0 0 0 0 1 0 >

———————————
19 States in 2415.0 - 2473.0

100.0 < 0 0 0 2 1 0 0 0 0 0 0 0 >
97.70 < 0 0 0 2 0 1 0 0 0 0 0 0 >
64.67 < 1 0 1 0 2 0 0 0 0 0 0 0 >
64.13 < 1 1 0 0 1 1 0 0 0 0 0 0 >
62.69 < 1 1 3 0 0 1 0 0 0 0 0 0 >
60.63 < 1 0 1 0 0 2 0 0 0 0 0 0 >
58.91 < 0 1 1 0 0 2 0 0 0 0 0 0 >
51.52 < 0 1 1 0 2 0 0 0 0 0 0 0 >
50.66 < 1 1 3 0 1 0 0 0 0 0 0 0 >

———————————
15 States in 2480.0 - 2515.0

100.0 < 0 1 0 0 0 1 1 0 0 0 0 0 >
99.68 < 0 1 0 0 1 0 1 0 0 0 0 0 >
93.88 < 1 0 0 0 1 0 1 0 0 0 0 0 >
87.29 < 1 0 0 0 0 1 1 0 0 0 0 0 >
67.88 < 0 1 0 1 0 0 1 0 0 0 0 0 >
58.06 < 1 0 0 1 0 0 1 0 0 0 0 0 >
52.19 < 0 0 0 1 0 0 0 0 1 0 0 0 >

———————————
24 States in 2515.0 - 2560.0

100.0 < 0 0 0 0 0 0 2 0 0 0 0 0 >
84.20 < 0 0 0 0 0 0 0 0 0 0 0 1 >

———————————
50 States in 2680.0 - 2750.0

100.0 < 0 0 0 0 0 1 0 1 0 0 0 0 >
94.71 < 0 0 0 1 0 0 0 1 0 0 0 0 >
92.52 < 0 0 0 0 1 0 0 0 1 0 0 0 >
81.71 < 1 2 0 0 1 1 0 0 0 0 0 0 >
77.29 < 0 1 2 0 0 0 0 1 0 0 0 0 >
70.26 < 4 0 2 0 0 1 0 0 0 0 0 0 >
51.14 < 0 0 0 0 1 0 0 1 0 0 0 0 >

———————————
76 States in 2750.0 - 2860.0

100.0 < 0 0 0 0 0 0 0 0 0 0 0 1 >
70.05 < 1 0 0 2 1 0 0 0 0 0 0 0 >
53.89 < 0 4 0 0 0 0 0 1 0 0 0 0 >
53.73 < 0 1 0 2 0 1 0 0 0 0 0 0 >
50.18 < 0 0 0 0 0 0 2 0 0 0 0 0 >
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Table 5.8: Quantum deconstruction of the IR spectrum of the SIP embedded H3O+. The sections
Reduced and Complete refer to the results of the reduced-dimensional six-highest-frequency-mode coupled
calculation and the full twelve-mode coupled calculation, respectively. The frequencies are reported in
cm−1 and the intensities in normalized units. The column “# of States” indicates the number of VCI
states in the band range

Reduced Complete
Vibration Peak Peak Band Range Intensity # of States
Umbrella 1367 1357 1300 - 1400 46 5
Umbrella + Frus. Rot. X/Y - 2179 2150 - 2220 63 13
Asym. Str. 2458 2391 2370 - 2415 100 21
2 · Frus. Rot. Z + Frus. Rot. X/Y - 2435 2415 - 2473 18 19
Umbrella + Frus. Tran. X/Y + Frus. Rot. X/Y - 2500 2480 - 2515 25 15
2 · Umbrella 2569 2531 2515 - 2560 50 24
Bend + Frus. Rot. - 2704 2680 - 2750 36 50
Sym. Str. 2778 2811 2750 - 2860 52 76

Numerous features in the VCI spectrum correspond to overtones and combination

bands of the frustrated modes and umbrella motion which cannot be described us-

ing the standard double-harmonic approach. Many of these features, notably the

band spanning 2415 - 2473 cm−1, are characterized by several states that individually

have small IR intensity. When the Gaussian convolution of these states with their

neighbors is considered, bands with appreciable intensity are observed. The features,

predominately in the range 2370 - 2860 cm−1 result from interactions among the

stretching modes which lead to significant intensity sharing. The intensity sharing

between the symmetric stretch and umbrella overtone is of particular note. In the

VCI state analysis a Fermi resonance is observed between the symmetric stretch and

umbrella overtone resulting in significant transfer of intensity from the symmetric

stretch to the overtone. Outside the heavily mixed 2415 - 2473 cm−1 region there are

two well defined peaks associated with the fundamental of the umbrella motion and

combination bands of the umbrella + frustrated rotation.

Clearly, the spectral features of the SIP spectrum are complex, even after isolat-

ing the H3O+ features. Additional spectral features associated with the higher energy

conformer of the SIP could also contribute to the observed experimental spectrum.129

This alternate configuration is ∼200 cm−1 higher in energy and characterized by the

rotation of one of the H2O monomer’s free OHs into a non-symmetric position. LMon

CCSD(T)-F12/aVDZ harmonic stretch frequencies of this conformer shift as much as



CHAPTER 5. H3O+(H2O)3 CL− SOLVENT ION PAIR CLUSTER 129

47 cm−1 from the lower energy SIP conformation. While transitions between the

higher energy structure and the ground state are unlikely, as a ∼400 cm−1 barrier

must first be crossed, its formation in experimental studies alongside the lowest en-

ergy structure, could be possibility. Fortuitously, these features are outside the bulk

of SIP H3O+ spectral signature. However, they do coincide with the H3O+ combi-

nation bands of the umbrella + frustrated rotation. A visualization of this alternate

configuration and its harmonic frequencies are reported in the Figure 5.3 and Table

5.9.

A	
   B	
  

C	
   D	
  

Figure 5.3: Higher energy local minima of the SIP and unionized HCl(H2O)4 cluster: (A), non-symmetric
higher energy SIP cluster; (B), five-membered ring configuration; (C), four-member ring with water
monomer accepting and donating a hydrogen bond to the ring; and (D) four-member ring with water
monomer accepting a hydrogen bond from the ring.
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Table 5.9: CCSD(T)-F12/aVDZ local harmonic frequencies (cm−1) for the SIP cluster in the alternate
non-symmetric conformation.

Mode Frequency
Frust. Trans. X 221
Frust. Trans. Y 243
Frust. Trans. Z 305
Frust. Rot. Z 769
Frust. Rot. Y 873
Frust. Rot. X 922
Umbrella 1470
Bend 1763
Bend 1793
Stretch 2683
Stretch 2757
Stretch 2969

There are three other minima of note for the HCl(H2O)4 cluster which include

undissociated HCl monomers. These three structures include a HCl(H2O)3 ring with

a fourth water monomer accepting a single hydrogen-bond from the ring, a similar

structure where the fourth water monomer donates and accepts a hydrogen-bond from

the ring and a five-member ring. These structures were studied using the many-body

potential described in Chapter 4. Visualizations of these structures are provided in

Figure 5.3. The energies of these configurations relative to the SIP configuration

(kcal) and their respective LMon HCl anharmonic frequencies (cm−1) are: 6.0, 2093;

4.6, 2220; and 3.0, 2161. These HCl fundamental excitations are quite pure and so do

not display the splintering that characterizes the embedded H3O+ spectrum. Thus,

spectral features associated with these are at down-shifted from the main portion of

the IR region of the SIP complex.

The complexity and diffuse nature of the H3O+ vibrational spectrum embedded

in the SIP is likely not limited to this “smallest droplet of acid” but also occurs for

embedded H3O+ in other systems. For example, both the H+(H2O)21 and H+(H2O)4

clusters broad spectra peaks were associated with embedded H3O+. The broad nature

of these features are of note, considering they were performed at very cold temper-
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atures. A possible explanation for this is the same anharmonic effects which cause

the broad feature in the SIP cluster also occur for these systems as well. This, com-

bined with delocalization of the free OH of the water monomers in these non-counter

ion systems could result in reported line shapes. Further merit for this comparison

comes from the report of a umbrella + frustrated rotation combination band in the

H+(H2O)21 similar to that reported here.186

5.2.4 Summary and Conclusions

In summary, a calculation of the IR spectrum for the solvent-ion-pair conformation of

HCl(H2O)4) in a fashion that isolates the contribution from the signature hydronium

ion, H3O+. The computed spectrum indicates that the vibrational states of the H3O+

are highly mixed, resulting in dispersed spectral features between 1300 and 3000 cm−1,

with the region between 2100 and 2900 cm−1 being especially rich. These predictions

point out the complexity of the SIP spectrum and offer guidelines for experiment.
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