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Abstract 

 

The Effect of Produce Type, Season, and Postharvest Handling on Microbial Quality of 
Fresh Produce Collected Near the U.S.-Mexico Border  

 
By Elizabeth Adam 

 

Food quality has important implications to human health, and fresh produce is becoming 
increasingly recognized as a vehicle for pathogen transmission to humans. Since produce 
is often eaten raw and pathogens may persist after washing, it is essential to identify 
potential routes of contamination in the production environment in order to establish 
preventative measures. The study goals were to evaluate the effects of produce type, 
season, and packing shed step on produce microbial concentrations and to assess how 
statistical treatment of samples below the microbial assay’s limit of detection would 
affect results. Produce samples were collected from farms and packing sheds near the 
U.S.-Mexico border (n=727) and processed by enumerative methods for E. coli, 
Enterococcus, total aerobic bacteria (APC), and total coliforms. Linear regression and 
maximum likelihood estimation for left-censored data (Tobit regression) were compared. 
Cantaloupe, mustard greens, cabbage, fall and spring sampling, and most packing steps 
were significantly and positively correlated with microbial concentrations on produce. 
Both regression methods produced estimates of similar direction and significance, but 
beta estimates from the Linear models were underestimated and the standard deviations 
were too small. In summary, produce type, season, and packing shed step were 
significantly associated with microbial concentrations on produce. Additionally, the Tobit 
regression produced more accurate results compared to the Linear regression. This 
investigation highlights several potential routes of produce contamination in the 
production environment and demonstrates the need to account for left-censored data in 
the analysis of microbial datasets. 
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INTRODUCTION 

The burden of foodborne illness, due to the consumption of contaminated 

produce, is an increasing concern on a global and national level. From 1998-2007, 684 

outbreaks accounting for over 26,000 cases of illness were linked to contaminated 

produce [1]. Moreover, produce was associated with the largest number of foodborne 

illnesses during this period compared to other food commodities (e.g. poultry, beef) [1]. 

A wide variety of produce and pathogens have been implicated in high-profile outbreaks. 

Several examples include E. coli O157:H7 linked to ready-to-eat bagged spinach [2], 

Salmonella enterica serovar Saintpaul traced to jalapeño and serrano peppers [3, 4], 

Salmonella enterica serovar Poona linked to cantaloupe [5], Cyclospora cayetanensis 

traced to raspberries [6], and Hepatitis A linked to green onions [7]. Recently, an 

outbreak of Listeria monocytogenes linked to contaminated cantaloupe was responsible 

for 30 deaths across 28 states [8]. These examples, among others, highlight the need for 

continued food safety efforts and novel approaches to counteract the increasing burden of 

disease stemming from the consumption of contaminated fruits and vegetables.   

 

Contamination in the Production Environment 

Despite the fact that there are numerous established risk factors present 

throughout the farm-to-fork chain, the production environment lacks sufficient 

preventative measures and mitigating practices (reviewed in [9, 10]). At the farm level, 

contaminated irrigation water, stormwater runoff, animal intrusion, and field application 

of feces have been linked to outbreaks [11], (reviewed in [9]). During post-harvest 
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production, contaminated shed surfaces, worker hygiene, and improper cooling have all 

been implicated as microbial hazards [12, 13]. There is a need to identify high-risk steps 

early in the supply chain because produce is often eaten raw, without a step to kill 

pathogens, and washing contaminated produce has not been proven to effectively remove 

pathogens (reviewed in [14, 15]).  

 

Limitations of Outbreak Studies 

While outbreak studies have established several risk factors for produce safety, 

they do not provide sufficient evidence to establish critical control points in daily 

production practices because of time constraints and the retrospective nature of these 

studies. Outbreak studies and subsequent media coverage have been shown to increase 

consumer awareness and knowledge about food safety [16], but a limitation is that they 

often do not identify the source of contamination within a short enough timeframe to 

prevent illnesses. Due to the retrospective nature of outbreak investigations, the 

implicated harvest is often finished by the time the investigation has been initiated 

(reviewed in [9]), making it difficult for researchers to identify the source of fecal 

contamination. For example, during the 2003 Hepatitis A outbreak due to the 

consumption of contaminated green onions, researchers were able to trace contamination 

to two farms in Mexico, but were not able to locate the specific point of contamination 

within the production process [7]. Conversely, researchers were able to trace the 2008 

outbreak strain of Salmonella enterica serovar Saintpaul to agricultural water on a 

Mexican farm, but the outbreak had spread across 43 states and resulted in 1,500 reported 

cases of illness [3]. Although trace-back investigations play an essential role in reducing 
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the burden of foodborne illness, the food safety field lacks prospective studies that can 

improve prevention and mitigation practices by evaluating produce, farm, and packing 

shed features during daily production activities. Identifying these factors in the 

production environment that impair produce microbial quality will help identify potential 

access points for future interventions.  

 

Past and Current Studies 

To address this need, we conducted two cross-sectional field epidemiological 

studies in farms and packing sheds along the U.S.-Mexico border [17-19]. We found that 

produce samples taken from packing sheds were more contaminated than those taken 

from the fields. Also, the microbial indicator concentrations on cantaloupe changed 

significantly throughout the production process, although microbial concentrations on 

herbs and leafy greens did not. Generic E. coli concentrations on cantaloupe increased 

significantly throughout the packing process, and Enterococcus concentrations increased 

between the conveyor belt (after washing) and the packing box [18, 19]. Further analysis 

showed that produce type, country of origin, season of collection, and post-harvest 

processing were significant predictors of E. coli prevalence on produce [17]. In this 

current study, as well as our past studies, we chose to asses produce quality through 

quantifying indicator concentrations rather than by testing for the presence of pathogens 

because pathogens are often found in low levels and are assumed to be focally distributed 

in the environment, making them difficult to locate [17-20]. Additionally, because the 

scope of this study involves determining potential contamination points in the production 

process rather than locating the source of a specific pathogen (e.g. as in an outbreak 
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study), indicators were sufficient in exposing vulnerabilities in the supply chain. In 

addition to building on our past work, there is a need to address new statistical 

challenges, including the treatment of samples that are below the microbial assay’s limit 

of detection (LOD).     

 

Statistical Background 

It is important to account for samples that are below the microbial assay’s LOD in 

order to optimally make use of the full dataset and to avoid biased results. The microbial 

assay’s inherent LOD prevents us from quantifying the exact numeric estimates of the 

portion of the dataset that is below the LOD, although these samples still reflect 

information about the measurement (i.e. a value below the LOD indicates a low microbial 

concentration even though it cannot be quantified) (reviewed in [21, 22]). Data values 

that are below the LOD are referred to as left-censored. There are various methods for 

addressing left-censored data observations including, substituting imputed numbers that 

follow the microbial concentration distribution of the samples, setting the left-censored 

data points to half of the LOD value or equal to the LOD (reviewed in [22-24]). These 

approaches are convenient, commonly practiced, and do not require researchers to learn 

alternative modeling approaches. However, they yield biased results, and the bias 

increases as the proportion of left-censored data points increases (reviewed in [22]). A 

simulation study found that the approach of using imputed values from the distribution to 

represent left-censored data observations distorted the variance by producing overly 

narrow confidence intervals and thus increased the potential for Type I error when 30% 

or more of data were left-censored [22]. When more than 5-10% of the measurements 
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were left-censored, assignment of the left-censored data observations to half of the LOD 

value led to biased results [22]. Using the substitution of single (e.g. LOD/2) or imputed 

values method for left-censored data produces standard deviations that are too small 

because the censored data points are moved towards the center of the distribution 

(reviewed in [25]). Consequently, the overly narrow confidence intervals of the estimates 

may increase the likelihood of incorrectly finding a risk factor to be significant (Type I 

error) (reviewed in [22]). An alternative to substituting values for the left-censored data 

observations is to perform a Tobit regression, which uses the maximum likelihood 

estimation (MLE) method to model the distribution of the censored data. The benefits of 

the MLE method are that it provides estimates closer to the true population values, 

produces smaller confidence intervals than other processes, and allows convenient 

hypothesis testing with likelihood ratio tests (reviewed in [24]). Although the benefits of 

Tobit regression for microbial data have been demonstrated in simulation studies, there 

has been limited application to the field of food safety. To the best of our knowledge, this 

method has not been used in produce studies, but has been implemented for studies on 

Campylobacter in poultry and Listeria monocytogenes in smoked fish [21, 25]. Therefore, 

there is a need to evaluate the application of Tobit regression for modeling risk factors of 

fruit and vegetable contamination.  

 

Project Goals 

In our analysis, we aimed to evaluate the relationship between the produce-

associated factors: produce type, season of sample collection, post-harvest processing 

step and microbial concentrations on produce. A secondary goal was to compare standard 
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modeling procedures used in food safety studies (Linear, Logistic) to Tobit regression 

and to evaluate the impact of model choice on study results. Our findings can contribute 

to the field of food safety through identifying crops, seasons, and packing shed steps that 

should be targeted for prevention and mitigation practices in order to prevent potential 

fecal contamination. Our statistical investigation can provide practical instruction to food 

safety experts on the most appropriate and accurate analysis methods.   
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METHODS 
 

Produce Sample Collection 

From November 2000 to December 2003, we collected 14 types of leafy greens 

and produce from 15 farms and 8 packing sheds on the U.S. side of the U.S.-Mexico 

border. Produce sampling methods have been described thoroughly in our previous 

studies [18, 19]. We limited this analysis to the 13 produce types that were both grown 

and packaged on the U.S. side of the border (arugula, cabbage, cantaloupe, celery, Swiss 

chard, cilantro, collard greens, dill, kale, mustard greens, parsley, spinach, and turnip 

greens). A total of 767 produce samples were collected from the field and at various steps 

in the packing shed, including the harvesting bin, the wash tank, the turntable, the rinse 

cycle, the conveyor belt, and the final packing box. The harvesting bin was used to move 

samples from the field to the packing shed, and the turntable was used to move leafy 

greens through the rinse cycle.  

 

Microbial Quality 

The post-harvest processes and therefore sampling locations varied by produce 

type. At any unique sampling location, or time, duplicate samples of 400 to 600g of 

produce were collected. The samples were packed on ice, shipped overnight to North 

Carolina State University, and processed for microbial indicators (APC, total coliforms, 

total Enterococcus, and total E. coli) using enumerative methods within 24 hours of 

sample collection. Microbial methods have been described more thoroughly in our 
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previous studies [18, 19]. The limit of detection of the microbial assays was 10 cfu/g 

produce. 

 

Statistical Analyses 

Microbial indicator data were analyzed using SAS 9.2 (SAS Institute Inc., Cary, 

N.C.) at an alpha level of 0.05. Indicator concentrations (APC, total coliforms, total 

Enterococcus, and total E. coli) were normalized using a log10 transformation; however, 

E. coli distributions remained positively skewed. Therefore, non-parametric methods 

were used for E. coli analysis. Season of produce collection was defined as fall 

(September, October, and November), winter (December, January, and February), and 

spring (March, April, and May). There were no samples collected in the summer. 

Kruskal-Wallis tests with Tukey’s tests for multiple comparisons were used to determine 

if there were significant indicator concentration differences by season and by packing 

shed step. We evaluated several modeling approaches to best determine significant 

predictors of fecal indicator concentrations on produce, and found that the preferred 

regression method varied by indicator type. For all models, we checked model 

assumptions and used manual forward and backwards selection processes [26].  

We used multivariate predictive Linear regression models to evaluate the effects 

of produce type, season of sample collection, and processing location on APC, total 

coliforms, and Enterococcus concentrations (log10 cfu/g). Key assumptions were that 

produce type, season, and processing location were independent, and that the outcome 

variable, log10 cfu/g of each specific indicator, was normally distributed. For the 
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categorical predictors, the referent group was the category that provided the most stable 

estimate. The output beta estimate represents the change in log10 cfu/g due to one factor 

(e.g. produce type), adjusted for the other variables in the model. However, some total 

coliform and Enterococcus concentrations were below the limit of detection of the 

microbial assay (10 cfu/g). For the Linear models, we assigned a value (5 cfu/g) halfway 

between 0 and the detection limit (10 cfu/g) to avoid over or under-representing the 

sample concentration [27]. In addition to the Linear regression models with an assigned 

value of 5 cfu/g to samples below the limit of detection, we constructed Tobit regression 

models, with a left-censoring limit (10 cfu/g) (reviewed in [22, 23]). The Tobit regression 

method is preferred to the Linear method because the Linear approach likely leads to 

biased estimates and variances since often a single value replaces all measurements 

below the limit of detection, and the distribution of the data is not considered (reviewed 

in [22]). The Tobit regression, on the other hand, better represents the data by considering 

the shape of the full distribution [21]. The Tobit regression model was constructed using 

the maximum likelihood estimation (MLE) method, which adjusts for the number of 

samples below the limit of detection when calculating and comparing the means of 

multiple groups (reviewed in [23]). Key assumptions are that the residual of the log10 

microbial concentrations were normally distributed, and that crops for which all samples 

are above or below the limit of detection were excluded from analysis (reviewed in [23]). 

The output beta estimates represent the marginal effects of the underlying relationship 

between the log10 microbial concentrations and the predictors. 

  As mentioned previously, E. coli concentrations were not normally distributed, 

even after log10 transformation. We used a multivariate, predictive logistic regression 
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model to evaluate the effect of produce type, season of sample collection, and processing 

location on log10 E. coli concentrations. E. coli was treated as a binary variable, with 

samples above the limit of detection (5 cfu/g = 0.70 log10 cfu/g) coded as “1”, and 

samples equal to the limit of detection coded as “0”. To meet a key assumption of logistic 

regression, we excluded crops for which all samples were above or below the limit of 

detection. The output odds ratio estimates the effect of one factor (e.g. produce type) 

controlling for the other variables in the model. In addition to the logistic regression 

model, we also constructed a general Linear model and a Tobit model for comparison. 

Although these models do not meet the assumption of normality of the dependent 

variable, we wanted to compare general trends of the estimates’ magnitude, direction, and 

significance across models.   
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RESULTS 
 

Descriptive Statistics 

To describe the distribution of microbial indicators (APC, Enterococcus, total 

coliforms, and E. coli) for the various produce types, we determined indicator prevalence, 

mean microbial concentrations, and standard deviations (Table 1). Microbial 

concentrations varied across indicators, but overall, cabbage, cantaloupe, cilantro, and 

mustard greens showed higher indicator concentrations compared to celery, collards, and 

kale. The highest E. coli and APC concentrations were found on cantaloupe samples, the 

highest Enterococcus concentrations were found on mustard greens and cantaloupe, and 

the highest total coliform concentrations were found on arugula and cantaloupe. APC was 

the most prevalent indicator, with all produce samples showing detectable concentrations, 

and generic E. coli was the least prevalent, with 6 out of 13 crop types having detectable 

concentrations. Of the 6 crop types with detectable E. coli, cabbage, cantaloupe, and 

cilantro had the highest prevalence of positive samples. All cantaloupe and mustard 

greens and 98% of cabbage were positive for Enterococcus. Additionally, all arugula and 

95% of dill samples were positive for total coliforms. Overall, indicator prevalence and 

concentrations varied by produce type, but high-risk crops including cabbage, cantaloupe, 

cilantro, and mustard greens appeared to be consistent across indicators. 

To determine whether produce total indicator levels (APC, Enterococcus, total 

coliform, and E. coli) varied by season, for each indicator, we evaluated concentration 

differences by season (Figure 1). For all indicators, samples from the spring and fall had 

significantly higher indicator levels than those collected in the winter. Samples with the 

highest levels of APC, total coliforms, and E. coli were collected in the fall, and samples 
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with the highest levels of Enterococcus were collected in the spring. In summary, 

produce indicator levels varied by season.  

To determine whether total indicator levels varied by post-harvest processing 

location, for each indicator, we evaluated the significance of concentration differences by 

processing location (Figure 2). Considering all indicators, samples from the rinse cycle, 

conveyor belt, and box had microbial indicator concentrations that were consistently, 

significantly higher than those taken from the field. Additionally, compared to other 

processing steps, only samples from the harvesting bin and final packing box had 

significantly higher E. coli indicator levels compared to samples from the field. In 

summary, post-harvest processing location appeared to influence indicator concentrations 

on produce.   

 

Predictors of APC, Enterococcus, and Total Coliform Concentrations on Produce 

To evaluate the adjusted association between indicator concentrations (APC, 

Enterococcus, and total coliform) and produce-associated factors (crop type, post-harvest 

processing step, and season), we used multivariate regression models (Table 2). As 

described in the methods, we also compared whether there was a difference in the 

analyses between defining the limit of detection as a single specific value (Linear 

regression), as we and others have previously done, or specifying a left-censoring limit 

(Tobit regression) [17, 21]. Tobit regression uses the MLE method to adjust for sample 

concentrations that are below the limit of detection (reviewed in [22]). Applying a left-

censoring limit in a Tobit regression is a statistically more efficient and accurate 
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approach to model microbial datasets that contain samples whose exact value cannot be 

quantified and so a range must be used (e.g. below the limit of detection) (reviewed in 

[23]). In our case, there was no exact value for indicator concentrations below the limit of 

detection of 1.0 log10 cfu/g (Table 2). 

  Across all three indicators (APC, Enterococcus, and total coliforms), celery, 

collards, and turnip greens were associated with significantly lower indicator 

concentrations than parsley, while cantaloupe was significantly associated with higher 

indicator concentrations than parsley, controlling for season and processing location. 

Cantaloupe, cilantro, and mustard greens were positively correlated with APC 

concentrations compared to parsley, while celery, collards, dill, and turnip greens were 

negatively correlated. For Enterococcus, cabbage, cantaloupe, and mustard greens were 

positively correlated with microbial concentrations compared to parsley, while celery, 

cilantro, collards, spinach, and turnip greens were negatively associated. Arugula and 

cantaloupe were positively correlated with total coliform concentrations compared to 

parsley, while cabbage, celery, cilantro, collards, spinach, and turnip greens were 

negatively correlated. Similarly, across all indicators and using both analysis methods, 

the post-field processing steps appeared to contribute to significantly increased microbial 

indicator concentrations, compared to field. Additionally, fall and spring harvest 

appeared to be significantly and positively associated with microbial indicator 

concentrations compared to winter harvest. Overall, produce type, post-harvest 

processing step, and season appeared to be significantly associated with APC, 

Enterococcus, and total colifom concentrations on produce.  
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Both the Linear and Tobit regression methods produced estimates of varying 

magnitude and variance, but not significance and direction. In both the Enterococcus and 

total coliform models, the estimates from the Linear models were underestimated 

compared to the Tobit regression model. This underestimation of effect was likely due to 

the approach of specifying a single value for all data points below the limit of detection 

without considering the true distribution of the data (reviewed in [25]). Additionally, the 

standard errors of the estimates from the Linear models were smaller than those from the 

Tobit models, demonstrating an additional bias of the use Linear models for censored 

datasets, which fail to account for all of the variability in the data. However, because the 

overall significance and direction of the estimates remained unchanged, the differences in 

the two methods did not influence the overall inferences of our results. In summary, the 

Linear regression method produced biased and underestimated standard errors and 

estimates; however, the estimates from the Linear models had the same significance and 

direction as estimates from the Tobit regression.  

 

Predictors of E. coli Presence and Concentrations on Produce 

To determine the association between E. coli contamination and produce-

associated factors (crop type, post-harvest processing step, and season), we created 

multivariate, adjusted Linear, Tobit, and Logistic regression models. We chose to model 

E. coli on produce differently than the other indicators because its distribution did not 

meet the normality assumption of the Linear and Tobit regression methods, even after 

log-transformation. Therefore, we decided to use Logistic regression, which allowed E. 

coli to be modeled as a binary variable indicating presence or absence on a sample. We 



15 
 

also compared the three methods to evaluate whether there was a difference in the 

analyses between defining the limit of detection as a particular value (Linear and Logistic 

regression) and specifying a left-censoring limit (Tobit regression) to account for 

unobserved, left-censored data (Table 3). Cabbage and cantaloupe were significantly 

more likely to be contaminated compared to parsley. The samples from the harvesting bin 

had the highest chance of E. coli contamination compared to the field, although samples 

from the final packing box, conveyor belt, and turntable were also significantly 

associated with a higher probability of E. coli prevalence compared to the field.  Fall 

sample collection was significantly associated with E. coli presence compared to winter 

harvest. In summary, crop type, post-harvest processing step, and fall season were 

significantly associated with E. coli presence on produce. 

Similar to the Linear and Tobit regression results for the other indicators 

(Enterococus, total coliforms), the Linear regression estimates were biased towards the 

null and showed decreased variability compared to the Tobit regression estimates. 

Although the directionality of all estimates remained the same between the two models, 

the significance of some estimates varied between models. The significance of the 

estimates also differed slightly from the Logistic model. It is highly probable that the 

estimates from both the Linear and Tobit models were unstable due to the non-normal 

distribution of E. coli, which violates key model assumptions. Thus, the estimates from 

the Logistic model should be considered when drawing inferences about the E. coli 

results. In summary, while the Tobit method provides a convenient means to analyze 

censored data, failure to meet model assumptions (e.g. normality of the dependent 

variable) may yield biased results.       
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DISCUSSION 

The primary goal of this study was to evaluate the relationship between microbial 

indicator concentrations (APC, total coliforms, E. coli, Enterococcus) and produce-

associated factors: produce type, season of produce collection, and post-harvest 

processing step. A secondary goal was to compare two approaches to analyze microbial 

datasets that contain samples below the microbial assay’s limit of detection: standard 

Linear and Tobit regression models. We found produce type (e.g. cabbage, cantaloupe, 

and mustard greens), season (e.g. fall and spring), and most post-harvest processing steps 

to be significant predictors of microbial indicator concentrations. Lastly, the standard 

Linear and Tobit regression models produced estimates of different magnitudes and 

variances, but similar significance and direction.  

 

Predictors of Produce Microbial Quality  

Even after adjusting for multiple factors and processing steps, produce type was a 

significant predictor of microbial indicator concentrations on produce. We found that 

cantaloupe was significantly and positively associated with microbial indicator 

concentrations compared to parsley for all indicators (APC, total coliforms, E. coli, 

Enterococcus). Mustard greens were positively associated with microbial indicator 

concentrations for indicators APC, Enterococcus, and E. coli compared to parsley. 

Additionally, arugula was positively correlated with total coliform concentrations. Other 

leafy greens and herbs showed mixed results, compared to parsley. Cabbage was 

positively correlated with E. coli and Enterococcus concentrations, and negatively 

associated with total coliform concentrations. Cilantro was positively associated with 
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APC concentrations and negatively associated with total coliform and Enterococcus 

concentrations. Still other leafy greens and herbs were negatively associated with 

microbial indicators compared to parsley (celery, collards, dill, spinach, turnip greens) 

(Tables 2-3).  

Although there is a gap in knowledge about what biological mechanisms increase 

the susceptibility of certain fresh produce items to increased microbial concentrations, 

numerous factors may affect microbial concentrations on produce, including overall plant 

health, the presence of competitive microflora, the sites of microbial attachment, and 

produce surface characteristics. Plant damage, including bacterial soft rot and fungal 

decay are known risk factors for pathogen contamination of produce [28], (reviewed in 

[29]). A study comparing fungal-rotted fresh produce to healthy produce found that the 

diseased produce had almost a third more Salmonella incidence than the healthy fruits 

and vegetables [28]. On the other hand, plant-associated microflora may inhibit 

pathogens by producing antimicrobial compounds and by competing for nutrients, iron, 

and colonization sites (reviewed in [30, 31]). Additionally, the site of microbe attachment 

helps determine survival. While the produce’s surface provides a harsh environment that 

is subject to rapid fluctuations in temperature, UV light, and moisture (reviewed in [31]), 

pathogens that attach to plant roots can feed off of the nutrients that the plant creates and 

persist longer in the environment [32, 33]. In addition to pores and cut surfaces that can 

shelter microbes, biofilms and waxy cuticles have been shown to promote strong 

pathogen attachment (reviewed in [29]). A study on the in vitro attachment of 24 Listeria 

strains to cabbage observed that Listeria cells preferred to cluster around tissue that was 

damaged by small abrasions or tears. Researchers also found that the number of attached 



18 
 

cells and the strength of cell binding increased with time exposed to the cabbage tissue. 

In fact, after 24 hours, over 80% of the cells remained attached following multiple 

washings [34]. For cantaloupes, the rough, netted rind favors pathogen attachment and 

complicates sanitizing [35]. A study that investigated the attachment of 16 Salmonella 

strains to cantaloupe rinds found that washing with water did not significantly reduce 

pathogen concentrations [35]. Mustard greens have not been studied extensively, but 

pathogen attachment to leafy greens has been investigated [36, 37]. For leafy greens, the 

site of pathogen attachment on the leaf is an important factor in survival. A study on the 

attachment of E. coli O157:H7 to lettuce leaves found that pathogen cells tended to 

gather inside the stomata and were able to penetrate the leaf’s surface through cut edges. 

Researchers found that after chlorine treatment, the E. coli O157:H7 cells that were on 

the leaf’s surface died, the cells that had gathered in the stomata were marginally viable, 

and cells that had penetrated the leaf’s surface through the cut edges were viable [37]. 

This study indicates potential survival mechanisms for pathogens on leafy greens during 

harsh external conditions. Since our study methods involved homogenizing the produce 

samples, we may have detected internalized microbes on mustard greens, cabbage, and 

arugula. We did observe differences in results among the leafy greens vegetables, with 

some showing positive correlations to indicators and some showing negative 

associations, which may be due to additional produce-specific factors. A study on the 

attachment of 5 Salmonella serovars to cabbage, iceburg, and romaine lettuce found that 

Salmonella attachment to romaine lettuce was significantly greater than attachment to 

iceburg lettuce and cabbage, even under controlled lab conditions [36], indicating that 

unknown produce-specific factors may contribute to increased pathogen growth, even 
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among similar produce types. This may explain why mustard greens and cabbage had 

increased microbial indicator concentrations compared to other herbs and leafy greens. It 

is important to note that our results reflect fecal indicator concentrations rather than 

pathogen concentrations, and therefore, the underlying biology and mechanisms of the 

microbe attachment may be different. Additionally, although our findings identify several 

crops that are potentially at risk for contamination, the results do not explain which 

biological mechanisms were responsible for microbial transfer to produce.      

In addition to produce type, we found that the season of sample collection was 

significantly associated with increased microbial indicator concentrations [17]. The 

highest microbial concentrations were found in samples taken in the fall, followed by 

those taken in the spring (Figure 1). Increased temperatures and humidity in the spring 

and fall may have favored microbial growth. In a study where researchers inoculated 

several types of leafy greens with generic E. coli and E. coli O157:H7 to measure 

survival in the production environment, the microbes declined at a slower rate in the 

summer than in the fall [38].  Another study on E. coli O157:H7, Listeria, and Salmonella 

growth in compost found that temperature, humidity, light intensity, and pathogen growth 

increased seasonally from the winter to summer trials [39]. Additionally, excess rainfall 

in the spring and fall may have led to increased stormwater runoff or water system 

overflows, leading to field and reservoir pollution [40].  

We also found that the post-harvest processing steps were associated with 

microbial indicator concentrations. For APC, total coliforms, and Enterococcus, all 

packing shed steps were significantly associated with increased microbial concentrations 

compared to the field, adjusting for produce type and season (Table 2). For E. coli, 
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samples from the bin, turntable, conveyor belt, and packing box were significantly more 

likely to be contaminated compared to the field (Table 3). Although we were not able to 

identify the exact mechanism of microbial transfer to produce using our study design, 

numerous studies have implicated equipment surfaces, wash tanks, and worker hands [13, 

41, 42]. A study on microbial contamination of Satsuma mandarin fruit found that surface 

microbe counts increased after harvesting and sorting. Additionally, researchers isolated 

Bacillus cereus from sorting equipment, the harvest basket, worker gloves, and fruit 

sampled after sorting, although the pathogen was not detected on fruit sampled directly 

from the orchard [42]. A study on potential routes of cantaloupe contamination in 

packing sheds found that low wash tank temperatures resulted in no significant reduction 

in microbe counts. Additionally, researchers found increased microbial counts on melons 

after removal from the wash tank, indicating that later stages in the packing shed 

contributed to increased microbial counts [41]. Another study that investigated pathogen 

contamination at cantaloupe farms and packing sheds found that a high proportion of 

samples that were positive for E. coli were collected on transport trailers. Researchers 

suggested poor sanitation and cross-contamination from flies as potential mechanisms of 

contamination. Additionally, researchers isolated 3 Salmonella serovars from a cooler 

surface, which they hypothesized may have been due to the presence of birds or other 

animals [43].  These studies highlight the numerous potential routes of contamination in 

the post-harvest environment. 

 



21 
 

Comparison of Linear and Tobit Regression Methods 

Lastly, the Tobit and Linear models produced estimates of different magnitudes 

and variances, but similar significance and direction. Therefore, our overall conclusions 

that produce type, season of collection, and processing location were significantly 

associated with produce microbial concentrations did not change based on analysis 

method, but the Tobit regression provided more accurate measures. The estimates from 

the Linear regression models were biased towards the null, and therefore underestimated 

the effects of the risk factors on the microbial concentrations on produce. Additionally, 

the standard deviations from the Linear regression models were too small and did not 

account for the variability in the data. Based on the literature (reviewed in [22-25]) and 

our findings, we recommend use of the Tobit analysis method over the Linear method for 

microbial datasets that contain values below the assay’s limit of detection.  

Strengths and Limitations 

 Our study had both strengths and limitations. One potential limitation is that we 

assumed homogeneous sampling across farms while it is possible that samples from the 

same farm or packing shed may have had similar characteristics or a “clustering effect” 

that was not considered. However, our analysis reflects actual field conditions, and those 

inferences can be applied directly to developing preventative measures or locating 

potential mitigation points in the production environment. Another potential limitation is 

that we chose to model microbial indicators instead of pathogens because we expected 

low pathogen prevalence. In our previous analyses, we found that among 864 produce 

samples, 3 cantaloupe samples were positive for Salmonella enterica serovar Montevideo 

(2.3% among 132 cantaloupes, 0.3% among all produce) and 3 domestic cabbage 
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samples were positive for Listeria monocytogenes (7.0% among 43 cabbages, 0.3% 

among all produce). No samples were positive for E. coli O157:H7 or Shigella [18, 19]. 

Although the presence of microbial indicators may not indicate pathogen contamination, 

we were able to determine vulnerabilities within the production environment by 

identifying several produce-associated factors that were associated with microbial 

concentrations on produce. However, our study design did not allow us to identify the 

biological mechanisms of microbial transfer to produce. Nevertheless, we implemented 

the use of novel Tobit regression methods for produce microbial analysis to demonstrate 

the effectiveness and accuracy of this statistical tool in produce safety studies.      

 

Conclusions 

In summary, we found that produce type, season of sample collection, and 

packing shed processing step were all significant predictors of fecal indicator 

concentrations (APC, total coliforms, Enterococcus, E. coli) on fresh fruits and 

vegetables. We also found that the Tobit and Linear regression models provided 

estimates with similar direction and significance but different magnitudes and variances. 

This analysis contributes to the field of food safety through increasing content knowledge 

on potential preventative measures in the production environment. Identifying produce 

type, season, and packing shed step as potential predictors of produce contamination 

reaffirms results from our past analyses. This suggests that our findings are reliable, and 

that these produce-associated factors should be considered when designing interventions 

to prevent or control microbial contamination of produce. We also showed that 

performing standard Linear regression on microbial datasets with samples below the limit 
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of detection led to biased results. In addition to demonstrating the need to incorporate 

left-censored data in the analysis of microbial datasets, this study may provide a guide for 

such analyses. 
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TABLES 
 

Table 1. Indicator concentrations for all produce items (n=767)*  

Cropǂ n 
 E. coli Enterococcus Coliforms APC¥ 
 log10 cfu/g Prevalence log10 cfu/g Prevalence log10 cfu/g Prevalence log10 cfu/g 
 Mean ± SD %  Mean ± SD %  Mean ± SD %  Mean ± SD 

Arugula 15  1.0 ± 0.00 0  2.3 ± 1.13 60.0  3.4 ± 1.23 100.0  5.8 ± 0.52 

Cabbage 58  1.3  ± 0.60 29.3  3.3 ± 1.00 98.3  1.7 ± 0.72 58.6  5.7 ± 0.65 

Cantaloupe 126  1.5  ± 0.98 24.6  4.1 ± 1.03 100.0  3.1 ± 1.22 90.5  6.6 ± 0.67 

Celery 44  1.0  ± 0.23 2.3  1.1 ± 0.36 18.2  1.1 ± 0.23 22.7  4.6 ± 0.56 

Cilantro 187  1.3  ± 0.72 24.6  2.4 ± 1.28 69.0  2.2 ± 1.15 66.8  6.4 ± 0.94 

Collards 27  1.0  ± 0.00 0  1.2 ± 0.39 37.0  1.2 ± 0.49 22.2  4.4 ± 0.86 

Dill  21  1.0  ± 0.00 0  3.1 ± 0.98 95.2  2.4 ± 1.00 95.2  5.2 ± 0.64 

Kale 9  1.0  ± 0.00 0  1.0 ± 0.00 0  1.4 ± 0.40 66.7  4.9 ± 0.39 

Mustard 
Greens 

70  1.3  ± 0.79 12.9  4.3 ± 1.29 100.0  2.4 ± 1.26 78.6  6.2 ± 0.96 

Parsley 141  1.1  ± 0.44 11.4  3.1 ± 1.21 88.7  2.4 ± 1.10 80.9  6.0 ± 0.99 

Spinach 27  1.0  ± 0.00 0  2.2 ± 0.80 77.8  1.7 ± 0.67 63.0  5.8 ± 0.82 

Swiss chard 9  1.0  ± 0.00 0  1.7 ± 0.50 77.8  1.0 ± 0.00 0  5.3 ± 0.64 

Turnip 
Greens 

33  1.0  ± 0.00 0  1.8 ± 0.92 60.6  1.6 ± 0.87 60.6  5.9 ± 0.73 

     * Values are the mean microbial concentration of the produce type ± the standard deviation of the mean 

     ǂ The limit of detection is equal to 1.0 log10 cfu/g, so produce with values of 1.0 had undetectable levels of microbial indicators 
        ¥ APC was detectable on all produce samples 
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Table 2. Linear and Tobit regression models of the association between produce indicator concentrations and produce-
associated factors (n=749) 

 
APC 

 
Enterococcus Coliforms 

 
Linear model 

 
Linear model 

 
Tobit model 

 
Linear model  Tobit model 

Parameter Beta SE  Beta SE  Beta SE  Beta SE  Beta SE 
Intercept 5.07* 0.11  1.93* 0.15 

 
1.75* 0.18 

 
1.66* 0.15 

 
1.36* 0.20 

               Arugula 0.16 0.20  -0.46 0.29 
 

-0.56 0.34 
 

1.32* 0.29 
 

1.51* 0.35 
Cabbage -0.23 0.12  0.37* 0.17 

 
0.41* 0.19 

 
-0.91* 0.17 

 
-1.16* 0.22 

Cantaloupe 0.68* 0.10  1.04* 0.14 
 

1.08* 0.16 
 

0.56* 0.14 
 

0.61* 0.18 
Celery -0.91* 0.14  -1.58* 0.20 

 
-2.74* 0.32 

 
-1.28* 0.21 

 
-2.26* 0.32 

Cilantro 0.19* 0.09  -0.94* 0.12 
 

-1.08* 0.14 
 

-0.42* 0.13 
 

-0.54* 0.16 
Collards -1.60* 0.16  -1.97* 0.22 

 
-2.56* 0.30 

 
-1.49* 0.23 

 
-2.42* 0.36 

Dill -0.63* 0.17  0.31 0.25 
 

0.37 0.28 
 

0.06 0.25 
 

0.11 0.30 
Mustard greens 0.38* 0.11  1.46* 0.16 

 
1.52* 0.18 

 
0.07 0.16 

 
0.09 0.20 

Spinach 0.09 0.16  -0.57* 0.23 
 

-0.61* 0.26 
 

-0.54* 0.23 
 

-0.63* 0.29 
Turnip greens -0.34* 0.16  -1.52* 0.22 

 
-1.80* 0.26 

 
-1.13* 0.22 

 
-1.38* 0.29 

Parsley Referent 
      

         2. Bin 0.66* 0.10  0.95* 0.14 
 

1.10* 0.17 
 

0.70* 0.15 
 

0.94* 0.19 
3. Wash tank 0.55* 0.11  0.75* 0.15 

 
0.90* 0.18 

 
0.32* 0.15 

 
0.44* 0.20 

4. Turntable 0.56* 0.11  0.34* 0.16 
 

0.35 0.20 
 

0.44* 0.17 
 

0.60* 0.22 
5. Rinse cycle 0.39* 0.10  0.61* 0.14 

 
0.71* 0.16 

 
0.82* 0.14 

 
1.09* 0.18 

6. Conveyor belt 0.42* 0.13  0.71* 0.19 
 

0.77* 0.21 
 

0.95* 0.19 
 

1.19* 0.23 
7. Box 0.61* 0.08  0.61* 0.11 

 
0.68* 0.13 

 
0.89* 0.11 

 
1.14* 0.14 

1. Field Referent 
      

 
  

 
  

 
  

Spring 0.55* 0.08  0.65* 0.11 
 

0.73* 0.13 
 

0.21 0.12 
 

0.27 0.15 
Fall 1.24* 0.10  1.53* 0.14 

 
1.74* 0.17 

 
0.71* 0.15 

 
0.84* 0.19 

Winter Referent 
         *P < 0.05 



32 
 

Table 3. Linear, Tobit, and Logistic regression models describing E. coli concentrations on produce (n=626) 
 Linear model  Tobit model  Logistic model 

Parameter Beta 95% CL  Beta 95% CL  OR 95% CL 
Intercept 0.53* 0.29 0.76  -3.61* -4.96 -2.27  -3.65* -4.71 -2.58 

            
Cabbage 0.25* 0.00 0.49  1.50* 0.48 2.52  4.00* 1.68 9.49 

Cantaloupe 0.47* 0.27 0.68  1.93* 1.02 2.84  4.09* 1.82 9.17 
Celery -0.01 -0.31 0.29  -1.14 -3.18 0.90  0.26 0.03 2.26 

Cilantro 0.02 -0.16 0.20  0.33 -0.49 1.14  1.39 0.68 2.88 
Mustard Greens 0.26* 0.03 0.49  1.40* 0.35 2.45  2.35 0.89 6.17 

Parsley Referent 
            

2. Bin 0.46* 0.24 0.68  2.35* 1.35 3.35  7.24* 3.02 17.35 
3. Wash tank 0.11 -0.12 0.34  0.86 -0.24 1.95  2.24 0.84 5.94 
4. Turntable 0.21 -0.06 0.47  1.51* 0.25 2.77  3.79* 1.24 11.57 
5. Rinse cycle 0.12 -0.10 0.33  0.79 -0.20 1.78  2.13 0.87 5.20 

6. Conveyor belt 0.10 -0.17 0.37  1.29* 0.22 2.35  3.65* 1.47 9.04 
7. Box 0.38* 0.22 0.55  1.80* 0.99 2.61  3.97* 1.94 8.14 
1. Field Referent 

            
Spring 0.10 -0.09 0.28  0.38 -0.45 1.21  1.22 0.60 2.51 

Fall 0.78* 0.54 1.03  2.66* 1.65 3.67  7.96* 3.46 18.36 
Winter Referent 

                   *P < 0.05 
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FIGURES 
 

 

 
 
 
 
 
 

 

 

 

 

Figure 1. Produce fecal indicator concentrations vary by season. Bars 
represent the mean microbial concentrations for all produce, and error 
bars represent the standard deviation of the mean (n=727). The Kruskal-
Wallis test, coupled with Tukey’s multiple comparison method, was used 
to evaluate the significance of concentration differences by season  
(α = 0.05).* P < 0.05 compared to winter; †P <0.05 compared to spring 
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Figure 2. Produce fecal indicator concentrations vary by processing location. The bar headers number the path of 
produce sample collection, which represents the order of the production process, starting at the field and ending at the 
final packing box. Bars represent the mean microbial concentrations for all produce samples, and error bars represent 
the standard deviation of the mean. The limit of detection is equal to 1.0 log10 cfu/g, so produce with values of 1.0 had 
undetectable levels of microbial indicators. The Kruskal-Wallis test, coupled with Tukey’s multiple comparison 
method, was used to evaluate the significance of concentrations differences by processing location (α = 0.05). We only 
reported significant comparisons between the initial field step and other processing locations (bin, wash tank, turntable, 
rinse cycle, conveyor belt, packing box).*P < 0.05 compared to field processing location. 
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APPENDIX A: IRB CLEARANCE 
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