Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Emily K. Crispell

Date

The Biology of Colistin Resistance: A Heteroresistance Mechanism and Inhibition of a Resistance Pathway

By

Emily K. Crispell Doctor of Philosophy

Graduate Division of Biological and Biomedical Science Microbiology and Molecular Genetics

> David S. Weiss, Ph.D. Advisor

Minsu Kim, Ph.D. Committee Member

Charles P. Moran, Jr., Ph.D. Committee Member

Philip N. Rather, Ph.D. Committee Member

William M. Shafer, Ph.D. Committee Member

Accepted:

Lisa A. Tedesco, Ph.D. Dean of the James T. Laney School of Graduate Studies

Date

The Biology of Colistin Resistance: A Heteroresistance Mechanism and Inhibition of a Resistance Pathway

By

Emily K. Crispell B.S., Georgia Institute of Technology, 2009

Advisor: David S. Weiss, Ph.D.

An abstract of a dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Molecular Genetics 2018

Abstract

The Biology of Colistin Resistance: A Heteroresistance Mechanism and Inhibition of a Resistance Pathway

By Emily K. Crispell

Antibiotic resistant infections are a significant and increasing cause of morbidity and mortality worldwide. In particular, infections caused by multi-drug resistant Gram negative bacteria recalcitrant to commonly used classes of antibiotics are of particular concern, as the antibiotic colistin is often the only remaining treatment option. Given the importance of this last-resort antibiotic, it is imperative that we fully understand the scope of colistin resistance mechanisms so that novel treatment strategies can be identified. In this work, we utilized an Enterobacter *cloacae* model of colistin heteroresistance to gain insight into this elusive resistance mechanism. The heteroresistant strain harbored both colistin resistant and susceptible subpopulations that were genetically indistinguishable yet transcriptionally distinct. The resistant subpopulation increased during antibiotic treatment, receded to baseline after subculture without drug, and was distinct from persisters. Presence of the resistant subpopulation and modification of colistin drug target lipid A was dependent on the histidine kinase gene phoQ. Colistin therapy failed to rescue mice infected with the heteroresistant strain, however treatment of mice infected with the phoQ mutant was successful, indicating that resistant bacterial subpopulations can cause antibiotic treatment failures. As a further approach to reduce the impacts of colistin resistance, we utilized a model of colistin resistant Acinetobacter baumannii to develop a resistance inhibition strategy. We identified a small molecule inhibitor of the naxD-controlled colistin resistance lipid A modification pathway via tandem in vitro and in silico screens. The inhibitor restored colistin susceptibility in a *naxD*-dependent manner and blocked the addition of galactosamine onto lipid A. Finally, the inhibitor reduced colistin resistance in a panel of clinical A. baumannii isolates, highlighting the potential for modulation of resistance expression to restore colistin efficacy for diverse strains. Altogether, these results provide fundamental insights into the biology of colistin resistance, and set the stage for continued development of novel therapeutics to combat antibiotic resistance in the clinic.

The Biology of Colistin Resistance: A Heteroresistance Mechanism and Inhibition of a Resistance Pathway

By

Emily K. Crispell B.S., Georgia Institute of Technology, 2009

Advisor: David S. Weiss, Ph.D.

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Molecular Genetics 2018

Acknowledgements

I've been very fortunate to receive guidance from a strong network of mentors throughout every step of my educational and career journey. I would not have even entertained the thought of graduate school without the recognition and encouragement from Sarah Satola and Monica Farley, who provided me with both the space to "try out" a new field of science and the opportunities to grow and learn far beyond any of my initial expectations. I'm also indebted to Bill Shafer, Charlie Moran, and Phil Rather for granting me the opportunity to engage in their graduate level microbiology classes despite only being a technician, which indisputably piqued my interests in the challenging research problems that could be explored through graduate work. I thank David Weiss for his advice and encouragement throughout my graduate career, and for providing an environment where I could develop both the independence and confidence to achieve my goals. Likewise, I owe sincere thanks to everyone in the Weiss lab for willingly engaging in creative conversations about crazy ideas—science or otherwise, and for always jumping at the chance to celebrate any and every occasion, including birthdays, Fridays, new recipes, and successful cloning. My family and friends have often provided a much-needed dose of levity and perspective, for which I am truly grateful. Finally, I thank Ben Crispell for his encouragement and patience throughout this entire journey, and could not have accomplished this without his unwavering support.

TABLE OF CONTENTS

CHAPTER 1: Introduction	1
Overview of the Antibiotic Resistance Problem	2
Evolution of Antibiotic Resistance	
Colistin as a last-line therapy	6
Colistin Resistance in the Clinic	
References	
CHAPTER 2: Antibiotic Failure Mediated by a Resistant Subpopu	llation in Enterobacter
cloacae	
Abstract	
Introduction	
Results	
Figures	
Methods	
References	
Supplementary Figures	
Supplementary Tables	
CHAPTER 3: Resistance Inhibitor Suppresses Lipid A Modificati	ons and Reverses
Colistin Resistance in Acinetobacter baumannii	
Abstract	
Introduction	
Results	

Discussion	
Figures	
Methods	
References:	
CHAPTER 4: Discussion and Conclusion	
References:	
APPENDIX I: Antimicrobial Peptide Resistance Mechanism	s of Gram-Positive Bacteria
Abstract	
1. Introduction	
2. Extracellular Mechanisms of Resistance: Enzymatic Degrad	dation and AMP Blocking 160
3. Membrane and Cell Wall Modifications	
4. AMP Efflux Mechanisms	
5. Conclusions	
References	

LIST OF TABLES AND FIGURES

CHAPTER 2

Figure 1. A colistin resistant subpopulation increases in frequency during in vivo	
infection	44
Figure 2. Innate immune host defenses are required for the increased frequency of	
the colistin resistant subpopulation during infection	46
Figure 3. R/S is refractory to colistin during infection and leads to colistin treatment	
failure	48
Figure 4. PhoQ is required for the presence of the colistin resistant subpopulation	50
Figure 5. Clinical isolate harboring an undetected colistin resistant subpopulation	
causes a lethal, antibiotic resistant infection	52
Figure S1. Etests of colistin susceptible and resistant isolates	67
Figure S2. Bacteria from high and low antibiotic growth conditions behave	
identically after passage	68
Figure S3. DNA sequencing of susceptible and resistant subpopulations	70
Figure S4. Increase in the frequency of the colistin resistant subpopulation in the	
liver during <i>in vivo</i> infection	71
Figure S5. Frequency of the colistin resistant subpopulation increases during <i>in vivo</i>	
infection	72
Figure S6. Macrophage depletion via clodronate liposomes	73
Figure S7. The human antimicrobial peptide LL-37 leads to an increase in	
frequency of the colistin resistant subpopulation	74

Figure S8. Triple knockout mice lacking antimicrobials exhibit increased bacterial	
levels during infection	
Figure S9. Combinations of host antimicrobials control the increase in frequency of	•
the R/S colistin resistant subpopulation	
Figure S10. In vivo growth and expansion of R/S during colistin treatment of mice.	
Figure S11. Colistin resistant and susceptible subpopulations express different	
levels of lipid A modification genes	
Figure S12. Lipid A analysis reveals modifications present in the R/S resistant	
subpopulation	
Figure S13. Kanamycin persisters in R/S are not dependent on PhoQ	
Figure S14. PhoQ is required for the R/S colistin resistant subpopulation	
Figure S15. The frequency of the colistin resistant subpopulation of R/S-lo	
increases in the presence of drug	-
Figure S16. Colistin selects for the colistin resistant subpopulation of R/S-lo	
Figure S17. Host antimicrobials lead to an increase in the frequency of the colistin	
resistant subpopulation of R/S-lo	
Figure S18. The frequency of the R/S-lo colistin resistant subpopulation increases	
in macrophages	
Figure S19. The frequency of the R/S-lo resistant subpopulation increases during	
mouse infection	
Figure S20. Macrophages are required for the increase in the frequency of the R/S-	
lo resistant subpopulation during infection	

Figure S21. Specific host antimicrobials contribute to the increased frequency of	
the R/S-lo subpopulation in vivo	92
Figure S22. Inefficacy of colistin in reducing the levels of strain R/S-lo during <i>in</i>	
vivo infection	93
Figure S23. Schematic indicating how antibiotic-resistant subpopulations can lead	
to unexplained clinical treatment failure	94
Figure S24. Raw image files of lipid A thin layer chromatography	96
Supplementary Table 1. Gene expression of untreated and colistin treated strain R/S	
by RNAseq	97
Supplementary Table 2. Genes Differentially Expressed in the Colistin Treated	
Subpopulation of strain R/S by RNAseq	98
Supplementary Table 3. PhoQ regulated genes identified from RNAseq analysis	119
Supplementary Table 4. Primers Used for Bacterial Cloning	121

CHAPTER 3

Figure 1. Tandem screens to identify small molecule NaxD inhibitors that synergize	
with colistin	135
Figure 2. SC030 restores colistin susceptibility through NaxD	137
Figure 3. SC030 inhibits colistin resistant lipid A modifications	138
Figure 4. Colistin MIC reduced in highly resistant clinical strains	139
Table 1. Top hit compounds identified through each screen	140

APPENDIX 1

Table 1. Summary of Gram-positive Antimicrobial Peptides (AMP) Resistance	
Mechanisms	179
Figure 1. Overview of Antimicrobial Peptide Resistance Mechanisms in Gram-	
Positive Bacteria	181

CHAPTER 1: Introduction

Overview of the Antibiotic Resistance Problem

Antibiotic resistant infections are a growing problem that threaten the healthcare and wellbeing of patients worldwide. In 2013 alone, the CDC estimated that over 2 million cases and 23,000 deaths were directly attributed to antimicrobial resistant infections in the United States (1). Furthermore, the estimated yearly worldwide death rate due antibiotic resistance is predicted to increase from 700,000 associated deaths in 2014 to 10 million deaths annually by 2050 if left unchecked, surpassing even the death rate due to cancer (2). In 2008, the Infectious Diseases Society of America highlighted an important group of bacterial organisms, collectively identified as the "ESKAPE" pathogens, that are in part a source for this resistance increase (3). Bacterial species that comprise the ESKAPE group include *Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,* assorted *Enterobacter* species that include *Enterobacter cloacae*, and *Escherichia coli*. Resistant infections caused by these bacterial species, particularly *Acinetobacter baumannii* and *Enterobacter spp.*, are associated with high mortality rates and increased length of hospital stays (4-6).

The emergence of antibiotic resistance is not a new phenomenon. Indeed, Nobel Prize winning scientist Sir Alexander Fleming noted resistance to the antimicrobial penicillin as early as 1929, later determined by others to be the result of a secreted enzyme (7, 8). This observation occurred simultaneously with Fleming's initial discovery that the penicillin compound produced by the mold *Penicillium notatum* demonstrated growth inhibitory activity against *Staphylococcus aureus* (8), and preceded the largescale production of penicillin for clinical use as an antimicrobial therapy in 1940 by co-Nobel Laureates Sir Howard Florey and Ernst Chain (9). A substantial portion of the antibiotics utilized clinically in the early years of antimicrobial treatment availability are naturally produced by microorganisms, therefore innate resistance mechanisms to these

antibiotics exist to protect the producer species. Such naturally produced early antibiotics included the tetracyclines, streptomycin, and chloramphenicol (10). The discovery of the tetracycline class of antibiotics was aided by their natural production from the soil-dwelling organisms *Streptomyces aureofaciens* and *Streptomyces rimosus* (11, 12). *S. rimosus* tetracycline producer strains encode tetracycline resistance genes *tetA* and *tetB* that function by transporting the antibiotic outside of the cell via efflux to prevent antibiotic activity (13). *Streptomyces griseus*, the producer organism of streptomycin, uses the enzyme AphE to phosphorylate streptomycin, thereby abrogating antimicrobial action within the producer cell (14).

Evolution of Antibiotic Resistance

Antibiotic resistance can naturally develop in susceptible bacteria as a result of the strong selective pressures for survival that are imposed during antibiotic exposure. The transmission of resistance mechanisms from producer or other resistant species along with the evolution of new resistance mechanisms that arise during antibiotic treatment have both contributed to the acquisition and spread of antimicrobial resistance. The transfer of resistance amongst different organisms is mediated by the exchange of genetic materials between each bacterium, and is supported by high genetic similarities of resistance genes found throughout diverse bacterial species (15, 16). Such transfers may originate from the packaging and transport of genetic materials by bacteriophages, through DNA exchange by direct conjugation between bacterial cells, or through the uptake of extracellular DNA via cellular competence. Multiple studies have identified antibiotic resistance markers in the genetic content of naturally occurring bacteriophages; such phages were isolated from a variety of environments, including raw poultry, fertilized soil, and clinical sources (17-19). Similarly, naturally occurring plasmids that encode

antibiotic resistance markers have been identified from diverse bacterial species over the last several decades (20-22). Conjugation and plasmid transfer was identified as a contributing factor to dissemination of the vanA vancomycin resistance gene amongst Enterococcus faecium strains (23, 24). More recently, the colistin resistance gene *mcr-1* was identified on plasmids isolated from poultry and clinical samples worldwide, supporting widespread dissemination of this resistance gene and raising concerns for the continued efficacy of this so-called "last resort" antibiotic (25, 26). Direct transfer of resistance genes via plasmid conjugation between the unrelated species Enterococcus faecalis and Escherichia coli was demonstrated in gnotobiotic mice (27). Such cross-species genetic transfer and the uptake of resistance genes has also been demonstrated to occur via natural competence, as with Acinetobacter baylyi, an organism closely related to the ESKAPE pathogen Acinetobacter baumannii (28). Genetic exchange in this system was dependent on the lysis of neighboring *Escherichia coli* cells. Extracellular DNA released upon the killing of E. coli was implicated as the primary source of exchanged genetic material, as DNase treatment inhibited resistance transfer (28). Competence and the intraspecies exchange of genetic material is also thought to play an important role in the evolution of resistance for naturally competent organisms, such as Neisseria meningitidis and Streptococcus pneumoniae (29, 30).

In addition to acquisition of foreign resistance genes, new antibiotic resistance mechanisms can also evolve innately during antibiotic exposure. Strong selective pressures for survival due to the lethality of antibiotic action are imposed on bacteria during antibiotic treatment. Therefore, genetic mutations that confer fitness advantages will be selected. The evolution of both vancomycin and daptomycin resistance during antibiotic therapy was observed in studies that tracked the clinical progression of disease in *Staphylococcus aureus* infected patients, and whole genome sequencing of isolates allowed for identification of genetic mutations that supported these

increases in resistance (31, 32). In another example, nonsynonymous mutations in the genetic sequences of penicillin binding proteins that support cell wall synthesis have been linked to the reduced efficacy of β-lactam antibiotics in a variety of bacterial species isolated from different patients (33-36). Outside the clinic, environmental sources of antibiotic exposure play an important role in the evolution of antibiotic resistance, as antibiotics in current clinical usage have been detected in sub-inhibitory concentrations in samples collected from soil, ground water, and drinking water (37). Importantly, these low level antibiotic exposures can still confer enough selective pressure for resistance to arise (38, 39).

Beyond the classical resistance mechanisms that rely on genetic changes, bacteria are also capable of evading antibiotic mediated killing through a decreased growth phenotype, termed "persistence". The persistence phenomenon was described soon after the introduction of antibiotics for clinical therapy, as penicillin treatment of Staphylococcal cultures inoculated into broth or serum frequently resulted in a small proportion of survivor cells (40). This subpopulation of persister cells was hypothesized to circumvent antibiotic action by remaining in a non-growing dormant state, as penicillin was observed to exert highest activity on cells in the logarithmic phase of growth. Furthermore, the progeny of persister cells were no more antibiotic resistant than the initial parental population, indicating that the resistance state was unstable. In additional support of this naturally occurring dormancy-dependent phenotype, manipulation of culture conditions to reduce population growth rates also decreased penicillin mediated killing. Indeed, single cellmicroscopy later visually demonstrated that large populations of bacterial cells inherently contain subpopulations of non-growing or slowly growing cells (41). Since the initial discovery of persistence, additional studies have demonstrated that cells with reduced metabolic output are broadly tolerant to multiple classes of antibiotics (42-44). Furthermore, reservoirs of slow and nongrowing persister cells were the primary source of infection relapse following antibiotic therapy in a mouse model of *Salmonella* infection, indicating that persistence might be a source of antibiotic tolerance in the clinic (45).

Colistin as a last-line therapy

In recent years, increases in resistance to multiple classes of antibiotics amongst Gram negative bacterial infections, including those caused by Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae, have led to the reintroduction of colistin usage in the clinic (1, 46-51). Colistin, also referred to as polymyxin E, is a polypeptide antibiotic of the polymyxin class of antimicrobials that is non-ribosomally synthesized by the soil bacterium Bacillus polymyxa (52, 53). It was introduced to the clinic during the 1960s, but fell out of favor due the development of newer antibiotics with less toxic side effects (54). Colistin may be administered in the salt form as colistin sulfate or as the prodrug colistin methanesulfonate (55). The structure of colistin consists of a decapeptide chain and ring containing 6 cationic residues attached to a fatty acid tail. These structural properties help target colistin to the outer cell membrane of Gram negative bacteria (53). The mechanism of action is not fully understood, but is thought to consist of initial electrostatic interaction between the cationic amino acids of colistin with the negatively charged phosphate moieties on the lipid A molecule on the outer membrane (56). This interaction causes displacement of cations associated with the outer membrane, leading to membrane insertion and disruption of both the outer and inner cell membranes (56). This model of activity is supported by fluorescence spectroscopy experiments that demonstrate membrane binding and leakage along with electron microscopy experiments demonstrating that colistin treatment induces shedding of the outer membrane and loss of cytoplasmic contents (57-59).

Reintroduction of colistin usage in the clinic has corresponded with reports of colistin resistance in bacterial isolates that are also multi-drug resistant (60-62). Historically, colistin resistance was associated with the acquisition of chromosomal mutations, however the first plasmid-mediated resistance mechanism was reported in 2016 (25). In accordance with other antibiotic producing bacteria, the native colistin producer species *Bacillus polymyxa* encodes an innate colistin resistance mechanism that synthesizes a colistinase enzyme to break down the antibiotic through cleavage of its polypeptide portion at the junction between the cyclic and linear peptide chain (63). Surprisingly, other reports of colistinase in bacteria of clinical importance have not been described (49). Instead, resistance primarily arises from mechanisms that modify the outer membrane drug target.

In order to understand the most common resistance mechanisms against colistin, one must first understand organization and structure of the Gram negative bacterial outer membrane. This complex structure is composed of an asymmetric bilayer, with a periplasmic-facing layer composed of phospholipids and the outward-facing layer composed predominately of lipid A (64). Lipid A is typically required for cell survival, although reports of non-essentiality do exist (65-67). The structure of lipid A is well characterized in *Escherichia coli*, and is typically composed of two phosphorylated glucosamine subunits attached to 6 hydrophobic acyl chains. The phosphate groups confer the negative charge associated with the cell surface. Lipid A serves as an anchor for the larger structural molecule lipopolysaccharide (LPS), which is composed of a lipid A base attached to a core anionic oligosaccharide and final outer oligosaccharide of variable length commonly referred to as O-antigen (68, 69). The lipid A synthetic pathway is well conserved amongst Gram negative bacteria, and requires a series of enzymatic steps that occur in the cytoplasm to generate the mature core molecule, after which it is transferred to the periplasm for further modification before final trafficking to the outer membrane (70).

Colistin Resistance in the Clinic

The majority of described mechanisms for resistance to cationic antimicrobial peptides such as colistin result from lipid A modifications that mask the negative charge conferred by the phosphorylated lipid A base structure. Well characterized colistin resistance modifications that are described in multiple species of bacteria involve the covalent attachment of phosphoethanolamine or 4-amino-4-deoxy-L-arabinose (L-Ara4N) molecules to the phosphate moieties of the lipid A glucosamine subunits (71-75), however other covalent additions such as galactosamine and palmitate have also been reported (76-78). Regulation of these modifications is complex, but often relies on activation of two-component regulatory systems, such as those encoded by the phoPQ and pmrAB genes in E. coli and Salmonella enterica, in response to environmental sensing (79-82). These genetic loci encode membrane-associated sensor proteins (PhoQ or PmrB) that recognize a variety of environmental signals and translate those detection events to initiate a signaling cascade. Signaling is mediated via autophosphorylation of the sensor protein at a conserved histidine residue and subsequent phosphotransfer to an aspartic acid residue on the cognate response regulator (PhoP or PmrA, respectively), which then undergoes conformational rearrangement to bind DNA promoters and modulate downstream gene transcription (81, 83, 84). The regulatory networks of PhoPQ and PmrAB are complex and interrelated, as both systems participate in a positive biofeedback loop and PhoP activation can subsequently stabilize activation of PmrA via intermediate proteins in some species (85-87). Despite regulon complexities, lipid A modification genes such as the *arnBCADTEF* operon that catalyzes the L-ara4N addition and

pmrC that catalyzes phosphoethanolamine additions are both under the control of these networks (88-91). A variety of mutations that alter regulatory output through these two component systems and thereby increase resistance to cationic antimicrobials including colistin have been described. Such mutations include those that increase activation of signaling through the sensor protein (71, 92, 93) or response regulator (81, 94, 95) and also mutations that inactivate negative regulators of these systems, such as the protein MgrB (96, 97). Intriguingly, sRNAs that postranscriptionally regulate PhoPQ expression have been described, however mutations in these loci have not yet been linked to colistin resistance (98, 99).

Despite heightened awareness of antibiotic resistance and characterization of a broad range of resistance mechanisms, unexplained treatment failures still occur that cannot be attributed to known resistance mechanisms (100). This phenomenon is particularly worrisome due to the aforementioned increases in multi-drug resistant infections that already have few to no antibiotic options for treatment. One poorly defined resistance mechanism that could in part be responsible for these treatment failures is heteroresistance (101). Although a comprehensive definition of heteroresistance has been debated, it is largely defined as a bacterial strain that contains a subpopulation of antibiotic susceptible cells coexisting with another subpopulation that exhibits increased resistance (102). Likewise, the clinical relevance of heteroresistance is also debated, particularly in the historically recognized class of vancomycin heteroresistant *Staphylococcus aureus* (103, 104). Despite these uncertainties, heteroresistance has been identified against several classes of antibiotics, including colistin, and in various bacterial species of clinical relevance. Our lab was one of the first to identify colistin heteroresistance in the ESKAPE pathogen, *Enterobacter cloacae* (105). Likewise, heteroresistance to colistin and other antibiotics is also reported in the

multi-drug resistant ESKAPE pathogens *Acinetobacter baumannii* and *Klebsiella pneumoniae* (106-111).

The primary goal of this thesis was to enhance our understanding of the biology of colistin resistance by both exploring the phenomenon of colistin heteroresistance and utilizing genetic information to manipulate the expression of colistin resistance. In Chapter 2, we further define the phenomenon of heteroresistance by investigating the genes and molecular mechanisms that mediate the colistin heteroresistant phenotype. Identification of genetic systems that contribute to heteroresistance is critical for defining regulatory mechanisms that modulate heterogeneous expression of antibiotic resistance, and also for uncovering genetic targets that could serve a role in future development of new antimicrobial inhibitors. In Chapter 3, we present a new strategy to modulate the expression of colistin resistance through inhibition of a resistance modification pathway in an effort to restore efficacy of this last resort drug. Overall, this work broadens our understanding of a poorly characterized antimicrobial resistance phenomenon and provides hope for reversing antibiotic resistance in an era of declining antibiotic efficacy.

References

- Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention; 2013.
- 2. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014.
- 3. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. The Journal of infectious diseases. 2008;197(8):1079-81.
- Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America.
 Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2009;48(1):1-12.
- Lin YC, Chen TL, Ju HL, Chen HS, Wang FD, Yu KW, et al. Clinical characteristics and risk factors for attributable mortality in Enterobacter cloacae bacteremia. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. 2006;39(1):67-72.
- Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2008;46(8):1254-63.
- Abraham EP, Chain E. An Enzyme from Bacteria able to Destroy Penicillin. Nature. 1940;146:837.

- Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzæ. Br J Exp Pathol. 1929;10(3):226-36.
- Chain E, Florey HW, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, et al. PENICILLIN AS A CHEMOTHERAPEUTIC AGENT. The Lancet. 1940;236(6104):226-8.
- Clardy J, Fischbach M, Currie C. The natural history of antibiotics. Curr Biol. 2009;19(11):R437-41.
- Duggar BM. Aureomycin; a product of the continuing search for new antibiotics. Annals of the New York Academy of Sciences. 1948;51(Art. 2):177-81.
- Finlay AC, Hobby GL, et al. Terramycin, a new antibiotic. Science (New York, NY).
 1950;111(2874):85.
- Ohnuki T, Katoh T, Imanaka T, Aiba S. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. Journal of bacteriology. 1985;161(3):1010-6.
- Trower MK, Clark KG. PCR cloning of a streptomycin phosphotransferase (aphE) gene from Streptomyces griseus ATCC 12475. Nucleic acids research. 1990;18(15):4615.
- 15. Courvalin P. Transfer of antibiotic resistance genes between gram-positive and gramnegative bacteria. Antimicrobial agents and chemotherapy. 1994;38(7):1447-51.

- Trieu-Cuot P, Courvalin P. Evolution and transfer of aminoglycoside resistance genes under natural conditions. The Journal of antimicrobial chemotherapy. 1986;18 Suppl C:93-102.
- Ross J, Topp E. Abundance of Antibiotic Resistance Genes in Bacteriophage following Soil Fertilization with Dairy Manure or Municipal Biosolids, and Evidence for Potential Transduction. Applied and environmental microbiology. 2015;81(22):7905-13.
- Shousha A, Awaiwanont N, Sofka D, Smulders FJ, Paulsen P, Szostak MP, et al.
 Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Applied and environmental microbiology. 2015;81(14):4600-6.
- Ziebell K, Johnson RP, Kropinski AM, Reid-Smith R, Ahmed R, Gannon VP, et al. Gene Cluster Conferring Streptomycin, Sulfonamide, and Tetracycline Resistance in Escherichia coli O157:H7 Phage Types 23, 45, and 67 v. Applied and environmental microbiology. 2011;77(5):1900-3.
- Rush MG, Gordon CN, Novick RP, Warner RC. PENICILLINASE PLASMID DNA FROM Staphylococcus aureus*. Proceedings of the National Academy of Sciences of the United States of America. 1969;63(4):1304-10.
- Tenover FC, Gilbert T, O'Hara P. Nucleotide sequence of a novel kanamycin resistance gene, aphA-7, from Campylobacter jejuni and comparison to other kanamycin phosphotransferase genes. Plasmid. 1989;22(1):52-8.

- Trieu-Cuot P, Gerbaud G, Lambert T, Courvalin P. In vivo transfer of genetic information between gram-positive and gram-negative bacteria. EMBO J. 1985;4(13A):3583-7.
- Moubareck C, Bourgeois N, Courvalin P, Doucet-Populaire F. Multiple Antibiotic Resistance Gene Transfer from Animal to Human Enterococci in the Digestive Tract of Gnotobiotic Mice. Antimicrobial agents and chemotherapy. 2003;47(9):2993-6.
- Sletvold H, Johnsen PJ, Wikmark OG, Simonsen GS, Sundsfjord A, Nielsen KM.
 Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. The Journal of antimicrobial chemotherapy.
 2010;65(9):1894-906.
- 25. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmidmediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious diseases. 2016;16(2):161-8.
- 26. Stoesser N, Mathers AJ, Moore CE, Day NP, Crook DW. Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. The Lancet Infectious diseases. 2016;16(3):285-6.
- 27. Doucet-Populaire F, Trieu-Cuot P, Andremont A, Courvalin P. Conjugal transfer of plasmid DNA from Enterococcus faecalis to Escherichia coli in digestive tracts of gnotobiotic mice. Antimicrobial agents and chemotherapy. 1992;36(2):502-4.

- Cooper RM, Tsimring L, Hasty J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. eLife. 2017;6.
- 29. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nature reviews Microbiology. 2018;16(4):226-40.
- Zighelboim S, Tomasz A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrobial agents and chemotherapy. 1980;17(3):434-42.
- 31. Baek KT, Thogersen L, Mogenssen RG, Mellergaard M, Thomsen LE, Petersen A, et al. Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrobial agents and chemotherapy. 2015;59(11):6983-91.
- 32. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(22):9451-6.
- Hamilton SM, Alexander JAN, Choo EJ, Basuino L, da Costa TM, Severin A, et al.
 High-Level Resistance of Staphylococcus aureus to beta-Lactam Antibiotics Mediated by
 Penicillin-Binding Protein 4 (PBP4). Antimicrobial agents and chemotherapy.
 2017;61(6).
- Long SW, Olsen RJ, Mehta SC, Palzkill T, Cernoch PL, Perez KK, et al. PBP2a mutations causing high-level Ceftaroline resistance in clinical methicillin-resistant

Staphylococcus aureus isolates. Antimicrobial agents and chemotherapy. 2014;58(11):6668-74.

- Smith AM, Klugman KP. Alterations in PBP 1A essential-for high-level penicillin resistance in Streptococcus pneumoniae. Antimicrobial agents and chemotherapy. 1998;42(6):1329-33.
- 36. Tomberg J, Unemo M, Ohnishi M, Davies C, Nicholas RA. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrobial agents and chemotherapy. 2013;57(7):3029-36.
- 37. Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet Infectious diseases. 2013;13(2):155-65.
- Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nature reviews Microbiology. 2014;12(7):465-78.
- Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS pathogens. 2011;7(7):e1002158.
- 40. Bigger J. TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION. The Lancet. 1944;244(6320):497-500.
- Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science (New York, NY). 2004;305(5690):1622-5.

- Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science (New York, NY). 2014;343(6167):204-8.
- Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K. Persisters: a distinct physiological state of E. coli. BMC microbiology. 2006;6:53.
- 44. Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-Dependent Persister Formation in Escherichia coli. mBio. 2017;8(1).
- Claudi B, Sprote P, Chirkova A, Personnic N, Zankl J, Schurmann N, et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014;158(4):722-33.
- 46. Vital Signs: Carbapenem-Resistant Enterobacteriaceae. MMWR Morbidity and mortality weekly report. 2013;62(9):165-70.
- 47. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017. Geneva: World Health Organization; 2017. Contract No.: Licence: CC BY-NC-SA 3.0 IGO.
- 48. GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS.
 Geneva: World Health Organization; 2017.
- 49. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005;40(9):1333-41.

- Logan LK. Carbapenem-resistant enterobacteriaceae: an emerging problem in children.
 Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2012;55(6):852-9.
- 51. Moradigaravand D, Reuter S, Martin V, Peacock SJ, Parkhill J. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nature microbiology. 2016;1:16173.
- Komura S, Kurahashi K. Partial purification and properties of L-2,4-diaminobutyric acid activating enzyme from a polymyxin E producing organism. Journal of biochemistry. 1979;86(4):1013-21.
- 53. Suzuki T, Hayashi K, Fujikawa K, Tsukamoto K. THE CHEMICAL STRUCTURE OF POLYMYXIN E: THE IDENTITIES OF POLYMYXIN E1 WITH COLISTIN A AND OF POLYMYXIN E2 WITH COLISTIN B. Journal of biochemistry. 1965;57:226-7.
- 54. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the reemerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet Infectious diseases. 2006;6(9):589-601.
- Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2006;50(6):1953-8.
- 56. Pristovsek P, Kidric J. Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. Journal of medicinal chemistry. 1999;42(22):4604-13.

- Koike M, Iida K, Matsuo T. Electron microscopic studies on mode of action of polymyxin. Journal of bacteriology. 1969;97(1):448-52.
- 58. Moore RA, Bates NC, Hancock RE. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansylpolymyxin. Antimicrobial agents and chemotherapy. 1986;29(3):496-500.
- 59. Zhang L, Dhillon P, Yan H, Farmer S, Hancock RE. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa.
 Antimicrobial agents and chemotherapy. 2000;44(12):3317-21.
- 60. Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A. Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae - Washoe County, Nevada, 2016. MMWR Morbidity and mortality weekly report. 2017;66(1):33.
- 61. Jean SS, Hsueh PR, Lee WS, Chang HT, Chou MY, Chen IS, et al. Nationwide surveillance of antimicrobial resistance among non-fermentative Gram-negative bacteria in Intensive Care Units in Taiwan: SMART programme data 2005. International journal of antimicrobial agents. 2009;33(3):266-71.
- 62. Ko KS, Suh JY, Kwon KT, Jung SI, Park KH, Kang CI, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. The Journal of antimicrobial chemotherapy. 2007;60(5):1163-7.
- Ito-Kagawa M, Koyama Y. Selective cleavage of a peptide antibiotic, colistin by colistinase. The Journal of antibiotics. 1980;33(12):1551-5.

- 64. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annual review of biochemistry. 2002;71:635-700.
- 65. Boll JM, Crofts AA, Peters K, Cattoir V, Vollmer W, Davies BW, et al. A penicillinbinding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(41):E6228-e37.
- 66. Galloway SM, Raetz CR. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. The Journal of biological chemistry. 1990;265(11):6394-402.
- 67. Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P. Meningitis bacterium is viable without endotoxin. Nature. 1998;392(6675):449-50.
- 68. Raetz CR. Biochemistry of endotoxins. Annual review of biochemistry. 1990;59:129-70.
- 69. Strain SM, Fesik SW, Armitage IM. Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by 13C and 31P nuclear magnetic resonance. The Journal of biological chemistry. 1983;258(22):13466-77.
- 70. Raetz CR, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in gramnegative bacteria. Annual review of biochemistry. 2007;76:295-329.
- Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrobial agents and chemotherapy. 2011;55(8):3743-51.

- Bhat R, Marx A, Galanos C, Conrad RS. Structural studies of lipid A from Pseudomonas aeruginosa PAO1: occurrence of 4-amino-4-deoxyarabinose. Journal of bacteriology. 1990;172(12):6631-6.
- 73. Leung LM, Cooper VS, Rasko DA, Guo Q, Pacey MP, McElheny CL, et al. Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. The Journal of antimicrobial chemotherapy. 2017;72(11):3035-42.
- Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. Journal of bacteriology. 2005;187(15):5387-96.
- 75. Zhou Z, Ribeiro AA, Lin S, Cotter RJ, Miller SI, Raetz CR. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-Larabinose, and phosphoethanolamine incorporation. The Journal of biological chemistry. 2001;276(46):43111-21.
- 76. Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS. A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2015;59(12):7911-4.
- Finst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, et al. Specific
 lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science
 (New York, NY). 1999;286(5444):1561-5.

- Llewellyn AC, Zhao J, Song F, Parvathareddy J, Xu Q, Napier BA, et al. NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. Molecular microbiology. 2012;86(3):611-27.
- 79. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122(3):461-72.
- Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, Hackett M, et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science (New York, NY). 1997;276(5310):250-3.
- 81. Roland KL, Martin LE, Esther CR, Spitznagel JK. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. Journal of bacteriology. 1993;175(13):4154-64.
- 82. Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell. 2000;103(1):113-25.
- Castelli ME, Garcia Vescovi E, Soncini FC. The phosphatase activity is the target for Mg2+ regulation of the sensor protein PhoQ in Salmonella. The Journal of biological chemistry. 2000;275(30):22948-54.
- 84. Kato A, Groisman EA. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes & development. 2004;18(18):2302-13.

- 85. Kato A, Mitrophanov AY, Groisman EA. A connector of two-component regulatory systems promotes signal amplification and persistence of expression. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(29):12063-8.
- 86. Rubin EJ, Herrera CM, Crofts AA, Trent MS. PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrobial agents and chemotherapy. 2015;59(4):2051-61.
- 87. Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, et al. Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(8):2862-7.
- Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Molecular microbiology. 1998;27(6):1171-82.
- 89. Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. Journal of bacteriology. 2004;186(13):4124-33.
- 90. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. The Journal of biological chemistry. 2001;276(46):43122-31.
- Wosten MM, Groisman EA. Molecular characterization of the PmrA regulon. The Journal of biological chemistry. 1999;274(38):27185-90.

- 92. Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M, Nordmann P. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrobial agents and chemotherapy. 2014;58(8):4762-6.
- 93. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli. The Journal of antimicrobial chemotherapy. 2017;72(10):2729-36.
- 94. Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrobial agents and chemotherapy. 2015;59(5):2780-4.
- 95. Lesho E, Yoon EJ, McGann P, Snesrud E, Kwak Y, Milillo M, et al. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. The Journal of infectious diseases. 2013;208(7):1142-51.
- 96. Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrobial agents and chemotherapy. 2014;58(10):5696-703.
- 97. Jayol A, Poirel L, Villegas MV, Nordmann P. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca. International journal of antimicrobial agents. 2015;46(1):108-10.
- 98. Coornaert A, Chiaruttini C, Springer M, Guillier M. Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS genetics. 2013;9(1):e1003156.
- 99. Coornaert A, Lu A, Mandin P, Springer M, Gottesman S, Guillier M. MicA sRNA links the PhoP regulon to cell envelope stress. Molecular microbiology. 2010;76(2):467-79.
- 100. Doern GV, Brecher SM. The Clinical Predictive Value (or Lack Thereof) of the Results of In Vitro Antimicrobial Susceptibility Tests. Journal of Clinical Microbiology.
 2011;49(9 Supplement):S11-S4.
- 101. Tenover FC, Moellering RC, Jr. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2007;44(9):1208-15.
- El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clinical microbiology reviews. 2015;28(1):191-207.
- 103. Claeys KC, Lagnf AM, Hallesy JA, Compton MT, Gravelin AL, Davis SL, et al. Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus: Does Vancomycin Heteroresistance Matter? Antimicrobial agents and chemotherapy. 2016;60(3):1708-16.
- 104. Satola SW, Lessa FC, Ray SM, Bulens SN, Lynfield R, Schaffner W, et al. Clinical and laboratory characteristics of invasive infections due to methicillin-resistant Staphylococcus aureus isolates demonstrating a vancomycin MIC of 2 micrograms per

milliliter: lack of effect of heteroresistant vancomycin-intermediate S. aureus phenotype. J Clin Microbiol. 2011;49(4):1583-7.

- Napier BA, Band V, Burd EM, Weiss DS. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme.
 Antimicrobial agents and chemotherapy. 2014;58(9):5594-7.
- 106. Band VI, Satola SW, Burd EM, Farley MM, Jacob JT, Weiss DS. Carbapenem-Resistant Klebsiella pneumoniae Exhibiting Clinically Undetected Colistin Heteroresistance Leads to Treatment Failure in a Murine Model of Infection. mBio. 2018;9(2).
- 107. Hung KH, Wang MC, Huang AH, Yan JJ, Wu JJ. Heteroresistance to cephalosporins and penicillins in Acinetobacter baumannii. J Clin Microbiol. 2012;50(3):721-6.
- 108. Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrobial agents and chemotherapy. 2007;51(10):3726-30.
- 109. Meletis G, Tzampaz E, Sianou E, Tzavaras I, Sofianou D. Colistin heteroresistance in carbapenemase-producing Klebsiella pneumoniae. The Journal of antimicrobial chemotherapy. 2011;66(4):946-7.
- Morand B, Muhlemann K. Heteroresistance to penicillin in Streptococcus pneumoniae.
 Proceedings of the National Academy of Sciences of the United States of America.
 2007;104(35):14098-103.

111. Richter SS, Satola SW, Crispell EK, Heilmann KP, Dohrn CL, Riahi F, et al. Detection of Staphylococcus aureus isolates with heterogeneous intermediate-level resistance to vancomycin in the United States. J Clin Microbiol. 2011;49(12):4203-7.

CHAPTER 2: Antibiotic Failure Mediated by a Resistant Subpopulation in *Enterobacter*

cloacae

by

Victor I. Band^{1,2,*}, Emily K. Crispell^{1,2,*}, Brooke A. Napier^{1,2}, Carmen M. Herrera³, Greg K.

Tharp⁴, Kranthi Vavikolanu⁵, Jan Pohl⁶, Timothy D. Read^{5,7,8}, Steven E. Bosinger^{1,2,4}, M. Stephen Trent³, Eileen M. Burd^{5,7,9}, David S. Weiss^{2,5,7,10,†}

¹Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA.
²Emory Vaccine Center, Atlanta, GA 30329, USA. ³Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA. ⁴Non-Human Primate Genomics Core, Yerkes National Primate Research Center, Robert W. Woodruff Health Sciences Center, Emory University, Atlanta, GA 30322, USA. ⁵Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
⁶Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, GA 30333, USA.
⁷Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA. ⁸Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
⁹Department of Medicine, Emory University, Atlanta, GA 30329, USA. ⁸Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.

*These authors contributed equally. [†]Corresponding author

Author Contributions: Experiments were conducted by VIB, EKC, and BAN. The manuscript was prepared by VIB, EKC and DSW. Clinical microbiological assays were conducted by EMB, who also provided the R/S strain. Lipid A analysis was performed by CMH and MST. Sequence

analysis was performed by EKC, GKT, KV, TDR, and SB. JP synthesized and purified host antimicrobials. Study was planned and directed by DSW.

Adapted from publication in Nature Microbiology 2016 May 9; 1(6):16053. doi: 10.1038/nmicrobiol.2016.53.

Abstract

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an *Enterobacter cloacae* isolate harboring a minor subpopulation highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal, and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defenses led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.

Introduction

Antibiotic resistance threatens the delivery of safe and effective healthcare¹ and is projected to lead to 10 million annual deaths worldwide by 2050^2 . Failure of antibiotic treatment results in increased length of patient stay, healthcare costs and mortality². Multi-drug resistant *Enterobacter* spp. have emerged as an increasing cause of hospital acquired infections³⁻⁵, with the drug colistin being relied on as a last line treatment^{6,7}. However, colistin resistant strains have emerged, further limiting treatment options⁸. Further complicating the treatment of some bacterial infections is the failure of antibiotic therapy in strains that are classified as susceptible; these infections may be non-responsive to treatment in ~10% of cases⁹. While relatively little is known about the causes of treatment failures, we show here that they can be mediated by antibiotic resistant subpopulations in *Enterobacter cloacae*. Furthermore, such antibiotic resistant subpopulations can be undetectable by current diagnostic tests.

Results

Phenotypically resistant subpopulation. A strain of Enterobacter cloacae was isolated from a renal transplant recipient¹⁰ and was observed to harbor a distinct subpopulation with resistance to colistin, visualized as numerous colonies within the zone of inhibition upon testing by colistin Etest (we refer to the strain as "R/S", to indicate the presence of both resistant and susceptible subpopulations) (Fig 1a). This was not observed with either colistin susceptible or resistant (Supplementary Figure 1) clinical strains. Population analysis profile (PAP) of R/S, in which a strain is assayed for survival on agar plates with increasing amounts of antibiotics, revealed a major proportion of bacteria (>90%) susceptible to 1 µg/mL colistin, and a highly resistant subpopulation, able to withstand at least 500 µg/mL colistin (Fig 1b). This was in contrast to the susceptible strain that was uniformly killed by 1 µg/mL colistin, and the resistant strain that was uniformly killed by 200 µg/mL colistin. The proportion of the R/S colistin resistant subpopulation was increased to upwards of 80% upon exposure to colistin (Fig 1c). Further analysis revealed that this increase was due to an initial selection against the colistin susceptible population over the first 2 hours of antibiotic exposure, followed by robust replication and expansion of the resistant population in the presence of the drug (Fig 1d). Importantly, this suggests that the resistant cells are not persisters, which do not significantly expand in number during antibiotic treatment¹¹⁻¹³. The increase in the resistant subpopulation was reversible, as subsequent growth after subculture in antibiotic free media led to a return of these cells to pre-treatment levels (Fig 1c). This suggests that the resistant subpopulation is not the result of a stable mutation. Furthermore, bacteria from within the zone of inhibition (where antibiotic levels are high) and outside this region (where antibiotic is low or not present) on a colistin Etest plate (Fig 1a) exhibited identical levels of susceptible and resistant populations after serial culturing in the absence or presence of colistin (**Supplementary Figure 2**), suggesting that bacteria from these two growth conditions are identical. Indeed, deep sequencing of R/S grown with and without colistin (conditions in which the resistant population accounted for the vast majority or minority of the total population, respectively, as summarized in Supplementary Figure 3) revealed identical genomes. Taken together, these data show that a minor antibiotic resistant subpopulation is capable of replicating in the presence of antibiotic, becoming predominant, and mediating resistance to high levels of drug.

To determine whether the increase in the proportion of the resistant subpopulation occurs during antibiotic treatment *in vivo*, we infected mice with R/S and treated with colistin or PBS. In colistin treated mice, we observed a significant increase in the frequency of the resistant subpopulation of bacteria isolated from the peritoneum (**Fig 1e**) and liver (**Supplementary Figure 4**). Surprisingly, there was also a robust increase in the resistant subpopulation during *in vivo* infection in the absence of colistin treatment (**Fig 1e**, **Supplementary Figure 4**). By 48 hours, the percentage of the resistant subpopulation increased from <10% to >80% (**Supplementary Figure 5**). These results highlight the process of infection as leading to a significant increase in the frequency of an antibiotic resistant subpopulation of bacteria.

Resistance to innate immune defenses. Various host pressures could be responsible for the increase in the colistin resistant subpopulation during infection. As macrophages are a major component of the early immune response¹⁴, we tested their role by depleting these cells with clodronate liposomes¹⁵ (**Supplementary Figure 6**) and subsequently infecting mice with R/S. In contrast to bacteria recovered from mice treated with control liposomes, which demonstrated a

robust increase in the frequency of the resistant subpopulation, those recovered from macrophagedepleted mice showed no such increase (Fig 2a). Based on these results, we next determined whether macrophages were sufficient to cause the increase in the resistant subpopulation, by infecting them *in vitro*. During macrophage infection, the colistin resistant subpopulation increased to 40% within only 2 hours (Fig 2b). Furthermore, this rise was dependent on internalization of the bacteria, since preventing phagocytosis with cytochalasin D abrogated this phenomenon (Fig 2b). Therefore, macrophages are both required and sufficient for the increased frequency of the resistant subpopulation during infection, underlining a role for a specific innate immune cell type in this process.

Macrophages possess many antibacterials¹⁶ and we hypothesized that specific components would be required for the increase in the frequency of the resistant subpopulation, testing reactive oxygen species (formed after treatment with hydrogen peroxide), lysozyme, and the murine cationic antimicrobial peptide CRAMP. All of these antibacterials resulted in a dose-dependent increase in the frequency of the colistin resistant subpopulation *in vitro* (**Fig 2c-e**), as did LL-37, the human ortholog of CRAMP (**Supplementary Figure 7**). These results led us to test whether the antibacterials were responsible for the increase in the resistant subpopulation during *in vivo* infection. We infected wild-type and triple knockout (TKO) mice lacking a functional NADPH oxidase (which leads to the production of reactive oxygen species¹⁷), lysozyme, and CRAMP. TKO mice were more susceptible to infection by R/S as they harbored over 10-fold more bacteria compared to WT (**Supplementary Figure 8**), demonstrating the importance of these antimicrobials in host defense. While a robust increase in the frequency of the resistant subpopulation was observed in wild-type mice, this was abrogated in TKO mice (**Fig 2f**). The frequency of the resistant subpopulation in mice lacking one of these three antimicrobials was not significantly different from that in wild-type mice, while it was decreased in double KO mice lacking the NADPH oxidase and CRAMP or lysozyme (**Supplementary Figure 9**). These data identify a role for specific host innate immune antibacterials in the increase of an antibiotic resistant subpopulation during *in vivo* infection.

Subpopulation-mediated antibiotic failure. To determine the relevance of the increase in frequency of the resistant subpopulation during *in vivo* infection, we tested whether the R/S strain was able to resist colistin treatment. We infected mice with either R/S or a colistin susceptible strain, and treated the mice with PBS (as a control) or high doses of colistin after establishment of infection to simulate the progression of infection and treatment in the clinic. The levels of the susceptible strain in the peritoneum (Fig 3a) and liver (Fig 3b) were significantly reduced by colistin treatment. In contrast, the R/S strain was refractory to treatment with colistin as its levels were unchanged between the treated and untreated groups (Fig 3a-b). In a timecourse experiment, the level of the susceptible strain was reduced by 3 logs at 42 hours, whereas the level of the R/S strain was not diminished by colistin treatment, but instead increased by roughly 10-fold (Supplementary Figure 10). These data demonstrate that the presence of the resistant subpopulation results in inefficacy of colistin to reduce bacterial levels *in vivo*. Further, these results provide *in vivo* evidence that the resistant subpopulation does not behave like persisters which do not significantly expand in number during antibiotic treatment.

We next tested whether the role of the host immune system in the increase of the resistant subpopulation was directly responsible for the inefficacy of antibiotic therapy. We first found that colistin treatment of R/S-infected mice could cause a significant reduction in bacterial levels if initiated at the time of infection (prior to the increase in the frequency of the resistant subpopulation), but not if it was delayed until only 4 hours after infection (**Fig 3c**). However, in macrophage-depleted mice, treatment with colistin at 4 hours became effective, leading to a reduction in bacterial levels (**Fig 3c**) and indicating that the host-driven increase in the frequency of the resistant subpopulation is responsible for the inefficacy of antibiotic treatment.

To further test the relevance of this *in vivo* phenomenon, we infected mice with a lethal dose of bacteria and treated with either PBS or colistin after 12 hours. Both the susceptible and R/S strains led to lethal infections in the absence of colistin (**Fig 3d,e**). In the presence of colistin, only mice infected with the susceptible strain were rescued (**Fig 3d**), whereas those infected with R/S still succumbed to infection within 100 hours (**Fig 3e**). These data demonstrate the impact of an antibiotic resistant subpopulation in mediating a lethal infection in the presence of high dose antibiotic treatment.

PhoQ-dependent resistant subpopulation. We next set out to determine the molecular mechanism underlying the phenotype of the resistant subpopulation. RNAseq analysis was conducted **(Supplementary Figure 3, Table S1)** to determine whether there were transcriptional differences between the susceptible and resistant subpopulations of R/S. In total this analysis revealed 325 genes upregulated and 360 genes downregulated in the resistant subpopulation as compared to the susceptible subpopulation **(Table S2)**. While this approach should detect differences between the two subpopulations, it may also identify expression differences due to colistin treatment. Among the upregulated genes, we noticed a signature **(Table S3)** associated with the two-component histidine kinase PhoQ¹⁸⁻²⁵, which has previously been implicated in polymyxin resistance, in part through its role in modification of the lipid A portion of lipopolysaccharide²⁶. To validate the RNAseq data, we confirmed that the resistant subpopulation

expressed higher levels of the predicted lipid A modification genes *arnB* and *eptA*²⁷ (Supplementary Figure 11). These data suggested that R/S displayed a modified lipid A profile, which we confirmed by thin layer chromatography (TLC) (Supplementary Figure 12). Further, modified lipid A species increased in abundance during growth of R/S in the presence of colistin, consistent with their expression by the resistant subpopulation (Supplementary Figure 12). To test whether the lipid A modifications were dependent on PhoQ, we constructed an R/S deletion mutant lacking *phoQ* ($\Delta phoQ$). Indeed, lipid A from the $\Delta phoQ$ strain lacked the specific lipid A modifications observed in wild-type R/S that were enhanced in the presence of colistin, which were restored in a *phoQ* complemented strain (Supplementary Figure 12). Thus, the R/S resistant subpopulation exhibits PhoQ-dependent lipid A modifications and is transcriptionally distinct when compared to the susceptible subpopulation.

To interrogate the potential contribution of PhoQ to the R/S resistance phenotype, we examined the colistin resistance profile of $\Delta phoQ$. Strikingly, the $\Delta phoQ$ strain exhibited a complete absence of the resistant subpopulation by Etest, while the susceptible subpopulation remained unaffected, as the border of the zone of clearing was unaltered from that of wild-type R/S (Fig 4a). Complementation with phoQ restored the presence of the resistant subpopulation (Fig 4a). This was also confirmed by PAP, where $\Delta phoQ$ lacked the resistant subpopulation present in R/S and behaved similar to the susceptible strain (Fig 4b). Importantly, R/S and $\Delta phoQ$ harbored equivalent levels of persisters, clearly indicating that the colistin resistant subpopulation (which depends on PhoQ) is not made up of persister cells (Supplementary Figure 13). The *phoQ* mutant additionally exhibited no colistin resistant subpopulation after exposure to host antimicrobials (Supplementary Figure 14A), during macrophage infection (Supplementary Figure 14B), or during *in vivo* infection (Supplementary Figure 14C). Without the presence of

the resistant subpopulation, $\Delta phoQ$ was susceptible to colistin treatment *in vivo*, exhibiting a significantly decreased bacterial load (Fig 4c). Furthermore, the ability of colistin to rescue mice from an otherwise lethal inoculum was restored during infection with $\Delta phoQ$ (Fig 4d). Thus, the presence of the colistin resistant subpopulation is dependent on PhoQ, which is required for a lethal drug resistant infection.

Undetected subpopulation. The size of the resistant subpopulation can vary greatly between strains, as exemplified by a distinct E. cloacae clinical isolate (termed R/S-lo) which harbors a colistin resistant subpopulation between 0.01 and 0.001% of the total population (Fig 5a), over 1,000-fold less prevalent than that of R/S when grown in media without antibiotic. Similar to R/S, the increase of the R/S-lo resistant subpopulation in the presence of colistin (Supplementary Figure 15) was due to initial selection against the susceptible subpopulation followed by expansion of the resistant subpopulation (Supplementary Figure 16). The frequency of the resistant subpopulation was likewise increased by treatment with H₂O₂, lysozyme, CRAMP, and LL-37 (Supplementary Figure 17), during macrophage infection (Supplementary Figure 18), and during in vivo infection of mice (Supplementary Figure 19), and was greatly diminished in macrophage-depleted (Supplementary Figure 20) and TKO mice (Supplementary Figure 21). These data revealed that similar to R/S, the frequency of the resistant subpopulation of R/S-lo is increased by colistin as well as the activity of specific host innate immune components. During in vivo infection, while the levels of a susceptible strain were significantly reduced by colistin treatment, the levels of R/S-lo were unaffected (Supplementary Figure 22). These data directly correlated with a failure of colistin therapy to rescue R/S-lo infected mice from a lethal infection (Fig 5c), whereas mice infected with a susceptible strain were completely rescued (Fig 5b).

Importantly, unlike R/S, R/S-lo was clinically classified as being susceptible to colistin, as the resistant subpopulation (present at a frequency of only 1 in 10,000 CFU) was not detected by Etest **(Fig 5d)**. Therefore, this seemingly colistin susceptible strain, harboring an undetected resistant subpopulation, is capable of causing an antibiotic resistant and lethal infection *in vivo*.

It is worrisome that R/S-lo was not identified as colistin resistant, and we wondered whether the resistant population could be detected by diagnostic testing when it is more frequent during host infection. We directly plated peritoneal lavage samples from infected mice in the absence of subculture, and were able to detect the R/S-lo resistant subpopulation by Etest, as indicated by colonies within the zone of inhibition (**Fig 5e, g**). In contrast, when these samples were processed by the clinical microbiology laboratory (as would occur with a sample from a human patient, and including a critical subculture step), Etest could no longer detect the diminished resistant subpopulation (**Fig 5f, g**). Strikingly, these data reveal how and when detection of the resistant subpopulation can be missed during routine diagnostic testing, and how this can translate into an unexplained failure of antibiotic therapy.

Discussion

The findings presented here highlight the role of a minor colistin resistant bacterial subpopulation in mediating antibiotic treatment failure *in vivo*. This resistant subpopulation is genetically identical to the susceptible subpopulation, but exhibits differences in gene expression and lipid A modification. Furthermore, the presence of this resistant subpopulation is dependent on the histidine kinase PhoQ. The data also highlight an unexpected role for specific host innate immune components (lysozyme, CRAMP and H_2O_2) in the increase of the antibiotic resistant subpopulation

induced by host immune pressure *in vivo* was shown to be critical for eventual failure of colistin therapy.

Like bacterial persistence, the phenotypic resistance phenomenon we describe involves a resistant subpopulation, but there are important differences. Persistence involves a small subpopulation of bacteria that are tolerant to a drug due to a state of low metabolic activity, with no or limited replication²⁸. Wakamoto et al showed that in some cases persisters can replicate, although it is at a very low rate, and is insufficient to cause an overall increase in the numbers of the population¹¹. In contrast, we describe a resistant subpopulation that rapidly replicates both *in* vitro and in vivo in the presence of antibiotic, and leads to a very significant overall increase in bacterial population level (Fig 1d, Supplementary Figure 10). Further, we directly show that the PhoQ-dependent colistin resistant subpopulation is distinct from persisters, which are also present but independent of PhoQ (Supplementary Figure 13). Several papers have recently demonstrated the importance of persisters as a reservoir of infection during antibiotic treatment in vivo¹², which can continue to replicate after treatment has been stopped, leading to relapse¹³. In contrast, we demonstrate that the colistin resistant subpopulation described here facilitates bacterial growth and subsequent host lethality even in the presence of antibiotic. Persistence has also been linked to immune pressure, as bacteria within macrophages can have increased numbers of persisters²⁹. We observe a similar link, as both in vitro and in vivo, specific host antimicrobials lead to an increased frequency of the resistant subpopulation. Taken together, both persisters and the resistant subpopulation described here highlight the ability of a minority of a bacterial population to exert a striking effect on the outcome of infection and antibiotic treatment. While persisters are kept at bay by antibiotic treatment and form a reservoir that can cause relapse, the colistin resistant subpopulation described here has the ability to cause acute infection and lethality during the course of antibiotic treatment.

We propose to refer to the resistance phenomenon described here as clonal heteroresistance. The phenomenon of heteroresistance, in which a resistant subpopulation exhibits an increased level of antibiotic resistance relative to the larger susceptible subpopulation, was described as far back as 1947³⁰. However, its relevance to infection and resistance has remained unclear, and even its definition has been debated. We use the term clonal heteroresistance to distinguish the phenomenon we describe from the blanket term heteroresistance which is often used to refer to mixed populations of genetically distinct bacteria³¹⁻³⁴. We show that clonal heteroresistance, in addition to mediating lethal infection in the presence of antibiotic, can also go undetected and cause unexplained treatment failure during *in vivo* infection (**Supplementary Figure 23**). Current widely used methods of antibiotic susceptibility testing rely on *in vitro* culture and analysis. Our data show that these methods can greatly alter results and present an inaccurate picture of the level of *in vivo* resistance. Our findings highlight both a need and opportunity for improved diagnostics to detect antibiotic resistant subpopulations and ultimately prevent such treatment failures.

Acknowledgements

We would like to thank Sarah Satola, Monica Farley, and the Georgia Emerging Infections Program for providing *Enterobacter cloacae* strains Mu117, Mu819 and R/S-lo, Philip Rather for providing plasmid pMQ310, and the Yerkes Nonhuman Primate Genomics Core for help with DNA sequencing and analysis, and Chui-Yoke Chin and Denise Bonenberger for breeding and genotyping of knockout mice. We would also like to thank Rafi Ahmed, Arash Grakoui and William Shafer for comments and revisions of the manuscript. D.S.W. is supported by a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease award, VA Merit Award I01 BX002788, and NIH grant AI098800. E.K.C. is supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number T32AI106699. MST is supported by the National Institutes of Health (grants R01AI064184, R01AI76322, R21AI11987) and the Army Research Office (grant 61789-MA-MUR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the Department of Veterans Affairs or the Centers for Disease Control and Prevention.

Competing Financial Interests

The authors declare no competing financial interests.

Figures

Figure 1. A colistin resistant subpopulation increases in frequency during in vivo infection

. a, Testing of *E. cloacae* clinical isolate R/S by colistin Etest, with drug concentration indicated in μ g/mL. Colonies within the zone of inhibition indicate a colistin resistant subpopulation. Data is representative of >10 Etests. **b**, Population analysis profile of R/S as well as colistin-susceptible and -resistant *E. cloacae* clinical isolates (n=3). **c**, Percentage of the colistin resistant subpopulation in R/S in antibiotic-free media, after 24 h treatment with 100 μ g/mL colistin, and after 8 h subculture of the colistin treated culture in antibiotic free media. "% Colistin resistant" represents the number of CFU in each culture that can grow on media containing 100 μ g/mL

colistin, as a percentage of the total CFU in the culture (n=3). **d**, Colistin resistant and total CFU of R/S during 7 h treatment with 100 μ g/mL colistin in liquid culture (n=3). **e**, Pre-infection inoculum (black bar) was used to infect mice, and peritoneal lavage was performed and harvested 24 h later and plated to calculate % colistin resistant CFU (n=5). Mice were treated at 8, 14 and 20 h with colistin (grey bar) or PBS (red bar). Error bars represent s.e.m. (Mann-Whitney test, * p < 0.05, ** p < 0.01).

Figure 2. Innate immune host defenses are required for the increased frequency of the colistin resistant subpopulation during infection.

a, Mice pre-treated with PBS liposomes (as a control; grey) or clodronate liposomes (to deplete macrophages; red) were infected with R/S (pre-infection; black). After 8 h, peritoneal lavage fluid was harvested and plated to calculate % colistin resistance (n=5). **b**, Murine bone marrow-derived macrophages were untreated or pretreated with cytochalasin D, infected with R/S, and % colistin resistance was calculated at the indicated timepoints (n=6). **c-e**, R/S was either untreated or treated with the indicated amounts of (**c**) H₂O₂, (**d**) lysozyme, or (**e**) CRAMP for 5 h, and % colistin resistance was calculated (n=3). **f**, Wild-type (WT; grey) or triple knockout (TKO; red) mice lacking the gp91 subunit of the NADPH oxidase, lysozyme, and CRAMP were infected with R/S (pre-infection; black). At 8 h postinfection, peritoneal lavage fluid was harvested and plated to calculate % colistin resistance (n=5). Data is compiled from two independent experiments. Error

bars represent s.e.m. (Mann-Whitney test, ** p < 0.01). in **a,f**, (Student's two-tailed t-test, * p < 0.05) in **b**.

Figure 3. R/S is refractory to colistin during infection and leads to colistin treatment failure. a,b, Mice infected with R/S or the susceptible isolate were treated with colistin at 8, 14 and 20 h. CFU were quantified at 24 h in the (**a**) peritoneal lavage fluid and (**b**) liver (n=5). **c,** Mice pretreated with PBS (first and second panels) or clodronate (third panel) liposomes were infected with R/S and treated with colistin at 0 h (first panel) or 4 h (second and third panels). A second dose of

colistin was administered 2 h after the first, and 2 h later peritoneal lavage fluid was plated to enumerate CFU (n=5). **d,e,** Survival of mice infected with R/S or the colistin susceptible isolate. Mice were treated with colistin or PBS starting at 12 h post infection, with additional doses given every 6 h thereafter. Surviving mice were monitored until day 24 (n=5). Error bars represent s.e.m., center values represent median. (Mann-Whitney test, * p < 0.05, ** p < 0.01, n.s. = not significant).

Figure 4. PhoQ is required for the presence of the colistin resistant subpopulation.

a, Colistin Etest of R/S, $\Delta phoQ$, and the complement (phoQ-comp) strains, with drug concentration indicated in µg/mL. Colonies within the zone of inhibition indicate a colistin resistant subpopulation. Data are representative of 2 Etests. **b**, Population analysis profile of R/S, $\Delta phoQ$, and colistin susceptible and resistant *E. cloacae* strains (n=3). **c**, Mice infected with R/S or $\Delta phoQ$ were treated with colistin at 8, 14 and 20 h. CFU were quantified at 24 h in the peritoneal lavage fluid (n=5). **d**, Survival of mice infected with R/S (upper panel) or $\Delta phoQ$ (lower panel). Mice were treated with colistin or PBS starting at 12 h post infection, with additional doses given

every 6 h thereafter (n=5). Error bars represent s.e.m., center values represent median. (Mann-Whitney test, * p < 0.05, n.s. = not significant).

Figure 5. Clinical isolate harboring an undetected colistin resistant subpopulation causes a lethal, antibiotic resistant infection.

a, Population analysis profile of *E. cloacae* clinical isolate R/S-lo compared to R/S and the colistin susceptible and resistant isolates (n=3). **b-c**, Infection of mice with (**b**) the colistin susceptible isolate or (**c**) R/S-lo with or without colistin treatment every 6 h and initiated 12 h post infection (n=5). Surviving mice were monitored until day 24. **d-f**, Colistin Etest, with drug concentration indicated in μ g/mL, of R/S-lo from (**d**) pre-infection inoculum, (**e**) peritoneal lavage sample from a mouse infected for 8 h and (**f**) the peritoneal lavage sample subcultured overnight in drug-free media (n=5). Colonies in the zone of inhibition (**e**, red arrows) indicate resistant bacteria. Images representative of 5 individual samples are shown. **g**, The samples from **d-f** were plated to determine % colistin resistance (n=5). Error bars represent s.e.m.

Methods

Bacterial strains. *E. cloacae* strain R/S was isolated from a blood sample from a renal transplant recipient at Emory University Hospital (Atlanta, GA). *E. cloacae* R/S-lo, the colistin susceptible strain Mu819, and the colistin resistant strain Mu117 were isolated from urine samples from patients at other Atlanta, GA hospitals.

Bacterial culture. All bacterial strains were streaked on Mueller-Hinton (MH) agar plates and grown in MH medium at 37°C in a shaking incubator from a single colony before each experiment. Colony forming units (CFU) were determined by plating dilutions on MH agar plates incubated at 37°C and then counting bacterial colonies at the lowest distinguishable dilution.

Bacterial genetics. To generate strain $\Delta phoQ$, 600-700bp upstream and downstream fragments of the genomic region surrounding *phoQ* were PCR amplified with primers 81 and 118, and 82 and 119, respectively **(Table S4)** and fused with the hygromycin resistance cassette HmR amplified from vector pMQ310 with primers 79 and 80³⁵ using SOE PCR³⁶. The suicide vector pEXR6K was generated by replacing the pMB1 ori from PCR linearized plasmid pEX100T³⁷ using primers 110 and 111 with the R6K ori amplified from plasmid pMQ310 with primers 108 and 109 using the Gibson Assembly Cloning Kit (Invitrogen). The HmR construct was inserted into SmaI (New England Biolabs) digested pEXR6K by Gibson assembly and the resulting plasmid was transformed to strain R/S by electroporation. Transformants were selected on MH agar containing 150µg/mL hygromycin (Sigma) then passaged to LB agar containing 20% sucrose and no NaCl to counterselect for vector loss. Chromosomal replacement of *phoQ* with the hygromycin marker was confirmed by Sanger sequencing. To generate strain *phoQ*-comp, the promoter region of the *phoPQ* operon was amplified with primers 142 and 143 and fused by SOE PCR to gene *phoQ*

55

amplified with primers 144 and 145. The resulting construct was inserted to plasmid pBAV-1K-T5-GFP³⁸ PCR linearized with primers 146 and 147 to create the complementation vector. The vector was transformed to strain $\Delta phoQ$ by electroporation and selected on MH agar containing 90 µg/mL kanamycin (Sigma).

Antibiotic susceptibility testing. Colistin susceptibility of all strains was determined using the Etest method. Briefly, the inoculum was prepared from colonies grown on a 5% sheep blood agar plate (Remel, Lenexa, KS) for 18 hours. Several colonies were suspended in 0.9% sterile saline (Remel) and adjusted to a concentration equivalent to a 0.5 McFarland turbidity standard. The suspension was used to streak a 100mm diameter MH agar plate and the Etest strip (bioMérieux, Marcy-l'Étoile, France) was placed. The plate was incubated at 35°C for 20 hours and the minimum inhibitory concentration (MIC) was read where inhibition of growth intersected the Etest strip. Small colonies that grew within the zone of inhibition were included in the MIC determination. Etest analyses of samples from mouse infections were plated directly from peritoneal lavage samples without subculturing. Population analysis profiles were performed by growing bacteria to mid-log phase, and then plating on MH agar containing various concentrations of colistin. Percentage colistin resistance was calculated as the number of bacteria that grew on 100µg/mL colistin divided by the number of bacteria that grew on MH alone.

Mice. Wild-type C57BL/6J mice were purchased from Jackson Laboratories (Bar, Harbor, ME) and used at age 8-10 weeks, all experiments using age- and sex-matched mice. Triple knockout (TKO) mice deficient in the gp91 component of the NADPH oxidase, lysozyme, and CRAMP, as well as double knockout mice lacking two of the indicated antimicrobials, were derived by crossing $cybb^{-/-}$ (gp91; from Jackson Laboratories), $lysM^{-/-}$ (lysozyme; generously provided by Dr. Daniel Portnoy, UC Berkeley), and $cnlp^{-/-}$ (CRAMP; Jackson Laboratories) mice. TKO mice were

investigated for health defects by histology and bacterial culture of various organs, with no overt health differences observed in uninfected TKO mice when compared to wild-type. Mice were housed under specific-pathogen free conditions in filter-top cages at Yerkes National Primate Center, Emory University, and provided food and water ad libitum. All experimental procedures were approved by the Emory University Institutional Animal Care and Use Committee. Sample size, reported in figure legends, was determined by allowing for significance by Mann-Whitney test ($n \ge 4$) while minimizing number of animals used, and thus 5 mice were used per group for the majority of experiments. No randomization or blinding was done in the animal studies.

Mouse infections. $\sim 5x10^7$ CFU were administered per mouse for infections to quantify bacterial load; $\sim 2x10^8$ CFU were administered for survival experiments. Bacterial inocula were suspended in phosphate buffered saline (PBS) and 100uL was inoculated intraperitoneally (i.p.) to each mouse. Colistin methanesulfonate was injected i.p. in 100uL PBS at a dosage of 10mg/kg/dose. Mice were monitored by weight, and were sacrificed if found to be below 80% starting weight, as mandated by IACUC protocol. Mice were sacrificed and liver, spleen and peritoneal lavage samples were collected into sterile PBS. Solid organ samples were homogenized using a tissue-tearor (BioSpec, Bartlesville, OK), and then all samples were plated for CFU and % colistin resistance.

Macrophage depletion. Macrophages were depleted from mice using clodronate liposomes (clodronateliposomes.com, Haarlem, Netherlands). Mice were injected with 200µL liposomes i.p. 3 days prior to infection, and then injected again with 100µL liposomes i.v. 1 day prior to infection. Mice were infected i.p. for 8 hours before peritoneal lavage fluid was harvested and plated for CFU. Part of this sample was also used for flow cytometry to confirm macrophage depletion.

Macrophage infection. Macrophages were derived from the bone marrow of mice. Briefly, femurs from mice were removed and whole bone marrow was flushed out. The bone marrow cells were grown in media containing Dulbecco's Modified Eagle Medium (DMEM), 10% fetal bovine serum (FBS) and macrophage colony-stimulating factor (M-CSF) which induces the differentiation and growth of macrophages. After confluent layers of macrophages were derived, cells were plated into 24 well plates at $3x10^5$ cells per well. Bacteria were added to the wells at $3x10^6$ CFU per well for a multiplicity of infection (MOI) of 10:1. Plates were centrifuged to synchronize the infection. After 30 minutes, the macrophages were washed and 100μ g/mL of gentamicin was added to the media to remove and prevent growth of extracellular bacteria. At 1, 2, and 4 hours post infection, macrophages were incubated with 1% saponin in PBS for 2 minutes to lyse open cells and remove bacteria. Samples were then plated for CFU and % colistin resistance calculated. To prevent internalization of bacteria, some wells were pretreated with 1 μ g/mL of cytochalasin D for 30 minutes before addition of bacteria.

Flow cytometry. Peritoneal lavage fluid was stained with F4/80-PE/Cy7 (BM8) (Biolegend, San Diego, CA) and CD11b-APC/A700 (M1I70) (eBioscience, San Diego, CA) antibodies for 35 minutes. Red blood cells were lysed with RBC lysis buffer (Becton Dickinson, Franklin Lakes, NJ) for 5 minutes. Cells were fixed with 1% paraformaldehyde and analyzed on an LSRII flow cytometer (BD). Macrophages were defined as F4/80+CD11b+ cells.

DNA and RNA Isolation. An overnight liquid culture of R/S grown at 37°C in MH broth was back diluted in triplicate to either fresh MH broth or MH broth containing 100µg/mL colistin to enrich for susceptible or colistin resistant bacteria, respectively. Cultures were grown to exponential phase at 37°C and harvested for DNA and RNA isolation. CFU were calculated as above. DNA was isolated using the DNEasy Blood and Tissue Kit (Qiagen) following the Gram negative bacteria protocol with RNase treatment. RNA was isolated using a modified phase extraction method³⁹ with initial incubation in TriReagent (Zymo) followed by phase separation with chloroform. RNA was precipitated from the aqueous phase with isopropanol and 1.2M NaCl at 4°C and further purified with the Directzol RNA Kit (Zymo) following the recommended DNase treatment step.

DNA and RNA sequencing. Sample integrities were verified with the Agilent 2100 Bioanalyzer (Agilent). DNA libraries were prepared using the NexteraXT DNA kit (Illumina). For RNA libraries, samples were first depleted of ribosomal RNAs using the Ribo-Zero rRNA Removal Kit (Illumina) and libraries prepared using the EpiCentre ScriptSeq Complete (Bacteria) Low Input kit (Illumina). Next generation short sequence reads were generated with the Illumina HiSeq 1000 platform at the Yerkes National Primate Research Center Nonhuman Primate Genomics Core (http://www.yerkes.emory.edu/nhp_genomics_core/). Long sequence reads were generated with the PacBio II platform using the P5-C3 chemistry at the Duke University Sequencing and Genomic Technologies Shared Resource.

De novo genome assembly and sequence analysis. A hybrid de novo assembly was performed using both Illumina and PacBio data using Celera Assembler version 8.2^{40} . The sequence data resolved into two contigs, one representing the chromosome and the other representing the plasmid. Quality of the assembly was confirmed by analysis using the ALE tool⁴¹. The assembly was automatically annotated using the NCBI prokaryotic annotation pipeline. Illumina whole shotgun sequences of the samples enriched for colistin resistance (COL) and colistin susceptibility (MH) were aligned against the assembled genome using bwa-0.7.12⁴² and visualized the samtools-1.2 mpileup function⁴³. Single nucleotide polymorphisms between the assembled genome and

short sequence reads were manually analyzed to determine sequence conservation between COL and MH samples.

RNAseq analysis. Single end Illumina libraries from reverse-transcribed RNA were mapped against the Enterobacter de novo assembled reference using Bowtie2⁴⁴. Differential gene expression between the three colistin-treated strains and controls was quantified by the cufflinks/cuffdiff tools in CufflinksVersion $2.2.1^{45,46}$. Sequences of differentially expressed genes with significant q-values were analyzed with Blast2Go software version 3.1.3 to identify the *Escherichia coli* gene ortholog and putative function⁴⁷.

Quantitative Reverse Transcriptase PCR (qRT-PCR). RNA was harvested as above. One-step qRT-PCR was performed using the Power SYBR Green RNA-to-C_t kit (Applied Biosystems) with primers **(Table S4)** on a StepOnePlus Real-time PCR System (Applied Biosystems) according to the manufacturer's instructions. *rpoD* was used as the internal control gene⁴⁸. Relative expression was calculated as $2^{-(\Delta Ct)}$.⁴⁹

Isolation and analysis of ³²P Lipid A species. *E. cloacae* strains were grown overnight in MH broth, diluted 1:400 in fresh MH broth containing appropriate selective antibiotics. For induction of resistant phenotype, 100 µg/ml colistin (Sigma) was used. *Escherichia coli* W3110 and WD101 strains were grown in LB broth overnight followed by a 1:100 dilution in fresh LB medium. After dilutions, cells were immediately labeled with 2.5 µCi/ml of inorganic ³²P-phosphate (Perkin Elmer) and harvested at A_{600} 0.5 (*E. cloacae*) or A_{600} 1.0 (*E. coli*). Lipid A extraction, separation and visualization was performed as previously described⁵⁰. Briefly, lipid A extraction was carried out by mild acidic hydrolysis and spotted onto silica TLC plate (10,000 cpm/lane). Labeled lipid A species were separated using a solvent mixture of chloroform, pyridine, 88% formic acid and water (50:50:16:5). TLC plate was exposed to a phosphoimager screen and visualized by

phosphoimaging analysis (Bio-Rad PMI). The analyzed images were cropped to aid in data analysis; the full unaltered images are available in Supplementary Figure 24.

Statistics. Statistical analyses were performed using Prism 5 (Graphpad Software). Significance of mouse experiments was determined with the Mann Whitney test, as not all data were normally distibuted, while all *in vitro* experiments were analyzed using the two-tailed student's t-test (on data with normal distribution). All experiments were repeated at least 2-3 times (and up to 10 times). All replicates shown are biological replicates.

Accession. DNA and RNA sequencing data were deposited at NCBI under Bioproject number PRJNA263343 as BioSamples SAMN03099688, SAMN04538424, and SAMN04538425.
References

- 1 United States Centers for Disease Control and Prevention. *Antibiotic Resistance Threats in the United States.* (2013).
- 2 Review on Antimicrobial Resistance. *Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations.* (2014).
- Mezzatesta, M. L., Gona, F. & Stefani, S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. *Future Microbiol* 7, 887-902, doi:10.2217/fmb.12.61 (2012).
- Davin-Regli, A. & Pagès, J. M. Enterobacter aerogenes and Enterobacter cloacae;
 versatile bacterial pathogens confronting antibiotic treatment. *Front Microbiol* 6, 392,
 doi:10.3389/fmicb.2015.00392 (2015).
- 5 Sanders, W. E. & Sanders, C. C. Enterobacter spp.: pathogens poised to flourish at the turn of the century. *Clin Microbiol Rev* **10**, 220-241 (1997).
- 6 Carlet, J. & Mainardi, J. L. Antibacterial agents: back to the future? Can we live with only colistin, co-trimoxazole and fosfomycin? *Clin Microbiol Infect* **18**, 1-3, doi:10.1111/j.1469-0691.2011.03702.x (2012).
- Nation, R. L. & Li, J. Colistin in the 21st century. *Curr Opin Infect Dis* 22, 535-543, doi:10.1097/QCO.0b013e328332e672 (2009).
- Livermore, D. M. *et al.* What remains against carbapenem-resistant Enterobacteriaceae?
 Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline,
 nitrofurantoin, temocillin and tigecycline. *Int J Antimicrob Agents* 37, 415-419,
 doi:10.1016/j.ijantimicag.2011.01.012 (2011).

- Kuper, K. M., Boles, D. M., Mohr, J. F. & Wanger, A. Antimicrobial susceptibility testing: a primer for clinicians. *Pharmacotherapy* 29, 1326-1343, doi:10.1592/phco.29.11.1326 (2009).
- Napier, B. A., Band, V., Burd, E. M. & Weiss, D. S. Colistin Heteroresistance in Enterobacter cloacae Is Associated with Cross-Resistance to the Host Antimicrobial Lysozyme. *Antimicrob Agents Chemother* 58, 5594-5597, doi:10.1128/AAC.02432-14 (2014).
- Wakamoto, Y. *et al.* Dynamic persistence of antibiotic-stressed mycobacteria. *Science*339, 91-95, doi:10.1126/science.1229858 (2013).
- 12 Claudi, B. *et al.* Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. *Cell* **158**, 722-733, doi:10.1016/j.cell.2014.06.045 (2014).
- Kaiser, P. *et al.* Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. *PLoS Biol* 12, e1001793, doi:10.1371/journal.pbio.1001793 (2014).
- Medzhitov, R. Recognition of microorganisms and activation of the immune response.
 Nature 449, 819-826, doi:10.1038/nature06246 (2007).
- 15 Van Rooijen, N. The liposome-mediated macrophage 'suicide' technique. *J Immunol Methods* 124, 1-6 (1989).
- Nathan, C. F. Mechanisms of macrophage antimicrobial activity. *Trans R Soc Trop Med Hyg* 77, 620-630 (1983).
- Iles, K. E. & Forman, H. J. Macrophage signaling and respiratory burst. *Immunol Res* 26, 95-105, doi:10.1385/IR:26:1-3:095 (2002).

- 18 Minagawa, S. *et al.* Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. *J Bacteriol* **185**, 3696-3702 (2003).
- 19 Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. & Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. *Proc Natl Acad Sci U S A* **89**, 10079-10083 (1992).
- Zwir, I. *et al.* Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. *Proc Natl Acad Sci U S A* 102, 2862-2867, doi:10.1073/pnas.0408238102 (2005).
- 21 Merighi, M., Ellermeier, C. D., Slauch, J. M. & Gunn, J. S. Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. *J Bacteriol* 187, 7407-7416, doi:10.1128/JB.187.21.7407-7416.2005 (2005).
- Lin, Q. Y. *et al.* Serratia marcescens arn, a PhoP-regulated locus necessary for polymyxin B resistance. *Antimicrob Agents Chemother* 58, 5181-5190, doi:10.1128/AAC.00013-14 (2014).
- 23 Monsieurs, P. *et al.* Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. *J Mol Evol* **60**, 462-474, doi:10.1007/s00239-004-0212-7 (2005).
- 24 Oshima, T. *et al.* Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. *Mol Microbiol* 46, 281-291 (2002).
- Choi, E., Groisman, E. A. & Shin, D. Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake. *J Bacteriol* 191, 7174-7181, doi:10.1128/JB.00958-09 (2009).

- Band, V. I. & Weiss, D. S. Mechanisms of Antimicrobial Peptide Resistance in Gram Negative Bacteria. *Antibiotics (Basel)* 4, 18-41, doi:10.3390/antibiotics4010018 (2015).
- Raetz, C. R., Reynolds, C. M., Trent, M. S. & Bishop, R. E. Lipid A modification systems in gram-negative bacteria. *Annu Rev Biochem* 76, 295-329, doi:10.1146/annurev.biochem.76.010307.145803 (2007).
- Keren, I., Minami, S., Rubin, E. & Lewis, K. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. *MBio* 2, e00100-00111, doi:10.1128/mBio.00100-11 (2011).
- 29 Helaine, S. *et al.* Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. *Science* 343, 204-208, doi:10.1126/science.1244705 (2014).
- 30 Alexander, H. E. & Leidy, G. Mode of action of streptomycin on type B *Hemophilus influenzae* : II. Nature of resistant variants. *J Exp Med* **85**, 607-621 (1947).
- Rinder, H. Hetero-resistance: an under-recognised confounder in diagnosis and therapy?
 J Med Microbiol 50, 1018-1020 (2001).
- Zheng, C. *et al.* Mixed Infections and Rifampin Heteroresistance among Mycobacterium tuberculosis Clinical Isolates. *J Clin Microbiol* 53, 2138-2147, doi:10.1128/JCM.03507-14 (2015).
- 33 El-Halfawy, O. M. & Valvano, M. A. Antimicrobial heteroresistance: an emerging field in need of clarity. *Clin Microbiol Rev* 28, 191-207, doi:10.1128/CMR.00058-14 (2015).
- Kao, C. Y. *et al.* Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment. *Infect Genet Evol* 23, 196-202, doi:10.1016/j.meegid.2014.02.009 (2014).

- Kalivoda, E. J. *et al.* New vector tools with a hygromycin resistance marker for use with opportunistic pathogens. *Mol Biotechnol* 48, 7-14, doi:10.1007/s12033-010-9342-x (2011).
- Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. *Gene* 77, 61-68 (1989).
- Schweizer, H. P. & Hoang, T. T. An improved system for gene replacement and xylE
 fusion analysis in Pseudomonas aeruginosa. *Gene* 158, 15-22 (1995).
- 38 Bryksin, A. V. & Matsumura, I. Rational design of a plasmid origin that replicates efficiently in both gram-positive and gram-negative bacteria. *PLoS One* 5, e13244, doi:10.1371/journal.pone.0013244 (2010).
- 39 Applied Biosystems. TRI Reagent® Solution RNA / DNA / Protein Isolation Reagent Manual. Ambion (2010).
- 40 Koren, S. *et al.* Hybrid error correction and de novo assembly of single-molecule sequencing reads. *Nat Biotechnol* **30**, 693-700, doi:10.1038/nbt.2280 (2012).
- Clark, S. C., Egan, R., Frazier, P. I. & Wang, Z. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. *Bioinformatics* 29, 435-443, doi:10.1093/bioinformatics/bts723 (2013).
- 42 Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**, 589-595, doi:10.1093/bioinformatics/btp698 (2010).
- Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

- Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol* 10, R25, doi:10.1186/gb-2009-10-3-r25 (2009).
- Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-Seq. *Bioinformatics* 27, 2325-2329, doi:10.1093/bioinformatics/btr355 (2011).
- 46 Trapnell, C. *et al.* Differential gene and transcript expression analysis of RNA-seq
 experiments with TopHat and Cufflinks. *Nat Protoc* 7, 562-578,
 doi:10.1038/nprot.2012.016 (2012).
- 47 Götz, S. *et al.* High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Res* **36**, 3420-3435, doi:10.1093/nar/gkn176 (2008).
- Landman, D., Salamera, J. & Quale, J. Irreproducible and uninterpretable Polymyxin B
 MICs for Enterobacter cloacae and Enterobacter aerogenes. *J Clin Microbiol* 51, 4106 4111, doi:10.1128/JCM.02129-13 (2013).
- Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. *Nat Protoc* 3, 1101-1108 (2008).
- 50 Herrera, C. M., Hankins, J. V. & Trent, M. S. Activation of PmrA inhibits LpxTdependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. *Mol Microbiol* 76, 1444-1460, doi:10.1111/j.1365-2958.2010.07150.x (2010).

Supplementary Figures

а

b

Susceptible

Resistant

Figure S1

Figure S1. Etests of colistin susceptible and resistant isolates. Colistin Etest analysis of (a) susceptible or (b) resistant *E. cloacae* clinical isolates, with drug concentration indicated in μ g/mL. Data shown are representative of 3 Etests.

Figure S2. Bacteria from high and low antibiotic growth conditions behave identically after passage. **a**, R/S was plated on a colistin Etest plate and bacteria (circled in red) were harvested from within or outside the zone of clearing and assayed for colistin resistant subpopulations, (n=3). **b,c**, Bacteria taken from (**b**) within the zone of inhibition, representing the colistin resistant subpopulation and (**c**) outside the zone of inhibition, representing the colistin susceptible subpopulation were cultured. Bacteria were first cultured in drug free media, then subcultured in 100µg/mL colistin containing media, and then subcultured in drug free media again, with samples

taken from each culture to assess colistin resistant subpopulations (n=3). Error bars represent s.e.m,.

Figure S3

Figure S3. DNA sequencing of susceptible and resistant subpopulations. Flow chart of the procedure for DNA sequencing of the susceptible and resistant subpopulations of R/S. Cultures of R/S were grown in media with or without colistin to generate predominantly resistant or susceptible populations, respectively. If the DNA sequences of the two subpopulations were different, this would be detected as sequence differences when comparing the cultures in which either the susceptible or resistant subpopulation comprised the overwhelming majority of the sample. DNA was isolated from each culture and sequenced via DNAseq analysis. This analysis revealed identical genome sequences between each culture, indicating that the genome sequence of the susceptible and resistant subpopulations are identical. The same approach was used to harvest RNA for RNAseq analysis, which revealed significant transcriptome differences between the two subpopulations (see Tables S2 and S3).

Figure S4

Figure S4. Increase in the frequency of the colistin resistant subpopulation in the liver during *in vivo* infection. An inoculum of strain R/S (black bar) was used to infect mice intraperitoneally. Mice were treated with colistin (grey bar) or PBS (red bar) at 8, 14 and 20 hours. At 24 hours, liver samples were harvested and plated to quantify the number of colistin-resistant and total bacteria (n=5). Error bars represent s.e.m., (Mann-Whitney test, * p < 0.05).

Figure S5. Frequency of the colistin resistant subpopulation increases during *in vivo* **infection. a,b** % colistin resistance of R/S during a 48 hour mouse infection. Bacteria were recovered at each time point from (**a**) peritoneal lavage (n=5) or (**b**) liver samples (n=5). Error bars represent s.e.m.

Figure S6

Figure S6. Macrophage depletion via clodronate liposomes. Number of macrophages in peritoneal lavage fluid of PBS or clodronate liposome treated mice. Macrophages were defined as $CD11b^{+}F4/80^{+}$ cells by flow cytometry. Data compiled from 4 separate experiments (n=20). Error bars represent s.e.m. (Student's two-tailed t-test, ***, p < 0.001.)

Figure S7

Figure S7. The human antimicrobial peptide LL-37 leads to an increase in frequency of the colistin resistant subpopulation. Strain R/S was treated with the indicated amounts of human LL-37 for 5 hours. Samples were plated to quantify the numbers of total and colistin-resistant bacteria and % colistin resistance was calculated (n = 3). Error bars represent s.e.m.

Figure S8

Figure S8. Triple knockout mice lacking antimicrobials exhibit increased bacterial levels during infection. Wild type or triple knockout (TKO) mice lacking lysozyme (*lysM*), CRAMP (*cnlp*) and the gp91 component of the NADPH oxidase (*cybb*) were infected with R/S, and CFU in the liver and peritoneal lavage fluid were quantified at 8 hours post infection (n = 5). Error bars represent s.e.m. (Mann-Whitney test, * p < 0.05).

Figure S9. Combinations of host antimicrobials control the increase in frequency of the R/S colistin resistant subpopulation. Single knockout mice lacking lysozyme (*lysM*), CRAMP (*cnlp*)

or the NADPH oxidase (*cybb*) (**a**) and double knockout mice lacking the indicated combinations of the antimicrobials (**b**) were infected with R/S for 8 hours, and the % colistin resistance was compared to that of the initial inoculum (n = 4 or 5). Error bars represent s.e.m. (Mann-Whitney test, * p < 0.05., n.s. = not significant).

78

а

Figure S10. *In vivo* growth and expansion of R/S during colistin treatment of mice. Wild-type mice were infected with a lethal dose of (a) a susceptible strain (n = 4 to 6) or (b) R/S (n = 4 to 6) and then given doses of colistin every six hours starting at 12 hours post infection. Mice were

Figure S11

Figure S11. Colistin resistant and susceptible subpopulations express different levels of lipid A modification genes. RNA was harvested from strain R/S cultured without (Untreated) or with colistin (+Colistin) as in Figure S3 to generate cultures with increased prevalence of the colistin susceptible or resistant subpopulation, respectively. Relative expression compared to the

81

housekeeping gene *rpoD* of (**a**) *arnB* (n = 3) and (**b**) *eptA* (n = 6) lipid A modification genes was quantified by qRT-PCR. (Error bars represent s.e.m. Mann-Whitney test, * p < 0.05).

Figure S12. Lipid A analysis reveals modifications present in the R/S resistant subpopulation. Lipid A species were harvested from strains cultured without or with colistin treatment as in Figure S3 to generate cultures with increased prevalence of the colistin susceptible or resistant subpopulation, respectively. **a**, Thin layer chromatography separation of lipid A species was performed on R/S cultured without (Untreated) or with (+Colistin) colistin pretreatment, the

phoQ deletion mutant ($\Delta phoQ$), $\Delta phoQ$ complemented with an empty vector (Empty Vector), complemented with *phoQ* (Untreated) or complemented with *phoQ* and then treated with colistin (+Colistin). **b**, Thin layer chromatography of reference *E. coli* strains W3110 (wild-type parent strain with unmodified lipid A) and WD101 (modified lipid A) with known lipid A modifications were used as controls⁵⁰. Data is representative of multiple experiments (n = 3).

Figure S13. Kanamycin persisters in R/S are not dependent on PhoQ. R/S and $\Delta phoQ$ were treated with 900 µg/mL kanamycin and CFU/mL enumerated (n = 3). The period between 6 and 8 hours with a plateau in killing represents the population of surviving persisters.

Figure S14. PhoQ is required for the R/S colistin resistant subpopulation. a, % colistin resistance of R/S and $\Delta phoQ$ after 5 hour treatment with 100uM H₂O₂, 5 mg/mL lysozyme, 5 μ g/mL CRAMP or 10 ug/mL LL-37 (n = 3). b, % colistin resistance of R/S and $\Delta phoQ$ during macrophage infection at the indicated timepoints (n = 3). c, % colistin resistance of R/S and $\Delta phoQ$ after 24 hour mouse infection (n = 5). No resistant colonies were detected (n.d.) for all $\Delta phoQ$ samples. Error bars represent s.e.m.

Figure S15. The frequency of the colistin resistant subpopulation of R/S-lo increases in the presence of drug. % colistin resistant bacteria was calculated for R/S-lo before colistin treatment, after 20 h in 100 μ g/mL colistin, and after 8 h drug free subculture (n = 3). Error bars represent s.e.m.

Figure S16. Colistin selects for the colistin resistant subpopulation of R/S-lo. Colistin resistant and total CFU of R/S-lo during 14 h treatment with 100μ g/mL colistin in liquid culture (n = 3). Error bars represent s.e.m.

Figure S17. Host antimicrobials lead to an increase in the frequency of the colistin resistant subpopulation of R/S-lo. R/S-lo was treated for 5 h with the indicated concentrations of (a) H_2O_2 (n = 3), (b) lysozyme (n = 3), (c) CRAMP (n = 3) or (d) LL-37 (n = 3) and % colistin resistance was calculated. Error bars represent s.e.m.

Figure S18

Figure S18. The frequency of the R/S-lo colistin resistant subpopulation increases in macrophages. Bone marrow-derived macrophages were infected with R/S-lo. % colistin resistance of R/S-lo within macrophages pretreated or untreated with cytochalasin D is shown at each timepoint (n = 6). Error bars represent s.e.m. (Student's two-tailed t-test, * p<0.05).

Figure S19. The frequency of the R/S-lo resistant subpopulation increases during mouse infection. **a,b** % collistin resistance of R/S-lo during a 48 hour mouse infection. Bacteria were recovered at each time point from (**a**) peritoneal lavage (n = 5) or (**b**) liver samples (n = 5). Error bars represent s.e.m.

Figure S20. Macrophages are required for the increase in the frequency of the R/S-lo resistant subpopulation during infection. Mice pre-treated with PBS (as a control) or clodronate containing liposomes (to deplete macrophages) were infected with R/S-lo. % colistin resistance of R/S-lo recovered in peritoneal lavage fluid after 8 hour infection is shown (n = 5). Error bars represent s.e.m., center value represents median. (Mann-Whitney test, ** p< 0.01).

Figure S21. Specific host antimicrobials contribute to the increased frequency of the R/S-lo subpopulation *in vivo*. Triple knockout mice (TKO) lacking the NADPH oxidase gp91 subunit (which contributes to superoxide production), lysozyme and CRAMP were infected with R/S-lo. % colistin resistance of R/S-lo recovered in peritoneal lavage fluid after 8 hour infection is shown (n = 5). Error bars represent s.e.m., center value represents median. (Mann-Whitney test, * p < 0.05).

Figure S22. Inefficacy of colistin in reducing the levels of strain R/S-lo during *in vivo* infection. Mice infected with R/S-lo or a susceptible clinical isolate were treated with colistin at 8, 14 and 20 hours. CFU were quantified at 24 hours in the (a) peritoneal lavage fluid (n = 5) and (b) liver (n = 5). Error bars represent s.e.m. Mann-Whitney test, * p < 0.05.

Figure S23

Figure S23. Schematic indicating how antibiotic-resistant subpopulations can lead to unexplained clinical treatment failure. Graphic showing how antibiotic resistant subpopulations that are undetected by currently used diagnostic tests, such as that described in R/S-lo, can cause unexplained antibiotic treatment failure.

Figure S24. Raw image files of lipid A thin layer chromatography.
Supplementary Table 1. Gene expression of untreated and colistin treated strain R/S by RNAseq.

*File not included due to excessive length. Contains complete RNAseq gene expression data for entire chromosome and plasmid of *E. cloacae* strain R/S.

Supplementary Table 2. Genes Differentially Expressed in the Colistin Treated

Subpopulation of strain R/S by RNAseq.

Locus	Gene Homolog	Predicted Function	Log ₂ Expression Fold Change Induced	q value
NF29_17760	None	NA	6.89422	< 0.001
NF29_17775	None	NA	5.53341	< 0.001
NF29_17780	None	NA	4.39284	< 0.001
NF29_13050	wcaH	gdp-mannose mannosyl hydrolase	4.14589	< 0.001
NF29_13045	wcaG	nucleotide di-p-sugar epimerase or dehydratase	4.06472	< 0.001
NF29_00670	None	NA	3.87778	< 0.001
NF29_13065	cpsG	phosphoglucomutases and phosphomannomutases	3.80107	<0.001
NF29_13005	WZC	tyrosine-protein kinase	3.6544	< 0.001
NF29_13055	wcaI	colanic biosynthesis glycosyl transferase	3.52877	< 0.001
NF29_17785	acrB	acridine efflux pump	3.4121	< 0.001
NF29_13060	cpsB	mannose-1-phosphate guanyltransferase	3.40668	< 0.001
NF29_13040	gmd	gdp-d-mannose dehydratase	3.36701	< 0.001
NF29_09375	pgaB	poly-beta-1,6-N-acetyl-D-glucosamine N- deacetylase	3.33118	< 0.001
NF29_12995	wza	polysaccharide export protein	3.2636	< 0.001
NF29_13010	wcaA	colanic acid biosynthesis glycosyltransferase	3.26267	0.047
NF29_16365	ydeI	hydrogen peroxide resistance protein	3.23897	< 0.001
NF29_13000	wzb	probable protein-tyrosine-phosphatase	3.21338	< 0.001
NF29_09380	pgaA	outer membrane protein	3.1711	< 0.001
NF29_10190	None	NA	3.0716	< 0.001
NF29_13080	wcaK	galactokinase (ec)	3.01598	< 0.001
NF29_13035	wcaF	thiogalactoside acetyltransferase	2.95859	< 0.001
NF29_13410	None	NA	2.91173	< 0.001
NF29_12905	fbaB	fructose-bisphosphate aldolase class I	2.86936	< 0.001
NF29_20480	None	NA	2.82854	< 0.001
NF29_07135	arnA	10-formyltetrahydrofolate:1-methionyl-trna n- formyltransferase	2.72271	<0.001
NF29_13020	wcaC	glycosyl transferase	2.72053	0.0332956
NF29_13070	wcaJ	colanic acid biosynthsis udp-glucose lipid carrier transferase	2.70866	< 0.001
NF29_09370	pgaC	polysaccharide metabolism	2.69565	< 0.001
NF29_21650	entC	isochorismate hydroxymutase enterochelin biosynthesis	2.68738	< 0.001
NF29_07130	arnC	sugar transferase	2.65771	0.0152405
NF29_01875	mgtA	mg2+ transport p-type 1	2.65585	< 0.001

NF29_18075	eptA	lipid A phosphoethanolamine transferase	2.60527	< 0.001
NF29_13075	wzxC	probable export protein	2.58226	< 0.001
NF29_13405	None	NA	2.56454	< 0.001
NE20 21645	outE	dibudeou honzoeta omn lizaza	2 55925	0.0031206
NF29_21645	entE	ainydroxybenzoate-amp ligase	2.55835	4
NF29_16360	yghA	2-deoxy-d-gluconate 3-dehydrogenase	2.55599	< 0.001
NF29_07140	arnD	deformylase	2.52871	0.0203026
NF29_04500	ORF_0222	hypothetical protein	2.47583	< 0.001
NF29_05565	ibpB	heat shock protein	2.45974	< 0.001
NF29_19495	None	NA	2.45174	< 0.001
NF29_20485	ybjG	undecaprenyl pyrophosphate phosphatase	2.45085	< 0.001
NF29_13420	None	NA	2.4438	< 0.001
NE29 04495	wihG	polysaccharide export OMA protein	2 44034	0.0043649
NE20 20000	yjuu	homochov protoin	2.41473	-0.001
NF29_20990	yugs	uridine 5'-(beta-1-threo-pentapyranosyl-4-ulose	2.41475	<0.001
NF29_07125	arnB	diphosphate) aminotransferase, PLP-dependent	2.41056	< 0.001
NF29_13085	wcaL	colanic acid biosynthesis glycosyl transferase	2.38204	< 0.001
NF29_16230	ydgJ	virulence factor	2.28545	< 0.001
NF29_13030	wcaE	colanic acid biosynthesis glycosyl transferase	2.20957	< 0.001
NF29_02655	fieF	transport system permease protein	2.19688	< 0.001
NF29_15585	yehX	atp-binding component of a transport system	2.18695	< 0.001
NF29_16270	None	NA	2.17386	< 0.001
NF29_19375	efeU	ferrous iron transporter	2.14854	< 0.001
NF29_11685	tktB	transketolase 2 isozyme	2.14843	< 0.001
NE20 02280	arol	chaperone peptide-dependent heat shock	2 12276	<0.001
11129_02380	groL	4-amino-4-deoxy-L-arabinose transferase (lipid	2.13270	0.0011544
NF29_07145	arnT	A modification)	2.1231	6
NF29_13400	btuB	outer membrane receptor for transport of vitamin e and bacteriophage bf23	2.1083	<0.001
NF29_04305	ggt	gamma-glutamyltranspeptidase	2.07919	< 0.001
NE20 15505	F	· · · · · · · · · · · · · · · · · · ·	2.05157	0.0010421
NF29_15595	OSMF	transport system permease protein	2.03137	0
NF29_03360	DIC		2.03072	<0.001
NF29_18530	KAIE		2.03013	<0.001
NF29_21570	None	NA	2.0148	0.021
NF29_21965	potG	atp-binding component of a transport system	2.01086	< 0.001
NF29 04505	vjbE	threonine-rich protein	1.99874	< 0.001
		outer membrane protein receptor for colicin	1.00107	.0.001
NF29_14505	fhuA	and phages and phi80	1.99125	< 0.001
NF29_20165	ybjX	putative enzyme	1.98739	< 0.001

				0.0008422
NF29_21670	fepG	ferric enterobactin transport protein	1.95755	63
NF29_21975	None	NA	1.95544	< 0.001
NF29 21195	kdnR	atpase of high-affinity potassium transport b	1 94874	<0.001
NF29 17245	emrY	transport protein	1.93453	<0.001
NF29_20625	cusC	resistance protein	1.92689	0.037
NF29 09365	None	NA	1.92328	< 0.001
NF29_21695	fepA	outer membrane receptor for ferric enterobactin and colicins b and d	1.92291	< 0.001
NF29 19340	yhhW	quercetin 2,3-dioxygenase	1.92266	0.017486
NF29_04250	yjbJ	stress-induced protein	1.89618	< 0.001
NF29_21970	cysU	thiosulfate transport system permease t protein	1.89596	< 0.001
NF29_18950	ycfJ	hypothetical protein	1.88193	< 0.001
NF29_13090	wcaM	colanic acid biosynthesis protein	1.85449	< 0.001
NF29_09180	fecD	citrate-dependent iron membrane-bound protein	1.85136	0.0394595
NF29_13025	wcaD	colanic acid polymerase	1.8396	< 0.001
NF29_11690	talB	transaldolase a	1.83033	< 0.001
NF29_19370	efeO	ferrous ion transporter	1.82861	< 0.001
NF29_19630	mhpC	2-hydroxy-6-ketononadienedioic acid hydrolase	1.82592	<0.001
NF29 16880	oloX	part of glycogen a glycosyl debranching enzyme	1 82504	0.0035807
NF29_11460	rbsA	atp-binding component of d-ribose high- affinity transport system	1.80831	0.0131072
NF29_04490	yjbH	DUF940 family extracellular polysaccharide protein	1.79045	<0.001
NF29_11890	ilvI	acetolactate synthase valine large subunit	1.78936	< 0.001
NF29_12775	yehY	transport system permease protein	1.78119	0.0094613 7
NF29_16235	glpR	deor-type transcriptional regulator	1.77526	< 0.001
NF29_15505	None	NA	1.77378	0.0015824
NF29_22205	htpG	chaperone heat shock protein c	1.75733	< 0.001
NF29_13760	None	NA	1.75458	< 0.001
NF29_11680	ypfG	hypothetical protein	1.73647	< 0.001
NF29_20200	poxB	pyruvate oxidase	1.71714	< 0.001
NF29_18275	sufB	Fe-S cluster assembly protein	1.71448	< 0.001
NF29_14500	ymgE	hypothetical protein	1.71149	< 0.001
NF29_19860	None	NA	1.68455	0.0211008
NF29 20780	ybhF	atp-binding component of a transport system	1.68277	0.0016502 2
NF29_19610	None	NA	1.66892	< 0.001
NF29_14930	ychO	attaching and effacing pathogenesis factor	1.65712	< 0.001

NE20 21675			1 (1404	0.0025672
NF29_21675	fepC	atp-binding component of a transport system atp-dependent serine activating enzyme (may	1.64404	4
		be part of enterobactin synthase as component		
NF29_21680	entF	f)	1.64322	< 0.001
NF29_19625	None	NA	1.6256	0.0017488
NF29_01040	None	NA	1.61667	< 0.001
NF29_03990	ybdR	threonine dehydrogenase	1.60901	< 0.001
NF29_20775	ybhG	membrane protein	1.60595	0.0484751
NF29_10510	srlD	glucitol -6-phosphate dehydrogenase	1.58928	0.0231663
NF29_19865	None	NA	1.58214	< 0.001
NF29_12140	yfcG	thiol:disulfide oxidoreductase	1.57743	0.0239814
NF29_01310	sad	aldehyde dehydrogenase	1.57739	< 0.001
NE20 21655	(D	ferric enterobactin binding protein periplasmic	1.575(2)	0.0061090
NF29_21655	јерВ	component	1.5/563	5
NF29_17475	ydcS	transport protein	1.56135	0.0233201
NF29_20620	yajO	nad h-dependent xylose reductase	1.55861	0.0200753
NF29_14510	treA	cytoplasmic trehalase	1.55133	< 0.001
NF29_15135	tonB	sensitivity to colicins	1.55071	< 0.001
NF29_14475	dadX	alanine racemase catabolic	1.52918	0.0034273
NF29_00430	yacH	putative membrane protein	1.5079	< 0.001
NF29_00430 NF29_10965	yacH None	putative membrane protein	1.5079 1.50539	<0.001 0.0016674 4
NF29_00430 NF29_10965 NF29_00850	yacH None nhaA	putative membrane protein NA na+ h antiporter ph dependent	1.5079 1.50539 1.5053	<0.001 0.0016674 4 <0.001
NF29_00430 NF29_10965 NF29_00850	yacH None nhaA	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component	1.5079 1.50539 1.5053	<0.001 0.0016674 4 <0.001
NF29_00430 NF29_10965 NF29_00850 NF29_09185	yacH None nhaA fepB	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system	1.5079 1.50539 1.5053 1.50446	<0.001 0.0016674 4 <0.001 0.012397
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335	yacH None nhaA fepB ugpB	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein	1.5079 1.50539 1.5053 1.50446 1.48352	<0.001 0.0016674 4 <0.001 0.012397 0.0218179
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_19855	yacH None nhaA fepB ugpB None	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein NA	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899	<0.001 0.0016674 4 <0.001 0.012397 0.0218179 <0.001
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_19855 NF29_13305	yacH None nhaA fepB ugpB None amn	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein NA amp nucleosidase	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007	<0.001 0.0016674 4 <0.001 0.012397 0.0218179 <0.001 <0.001
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_19855 NF29_13305 NF29_16185	yacH None nhaA fepB ugpB None amn None	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein NA amp nucleosidase NA	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899	<0.001 0.0016674 4 <0.001 0.012397 0.0218179 <0.001 <0.001 <0.001
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_19855 NF29_13305 NF29_16185 NF29_17095	yacH None nhaA fepB ugpB None amn None sra	putative membrane proteinNAna+ h antiporter ph dependentferric enterobactin binding protein periplasmiccomponentsn-glycerol 3-phosphate transport systemperiplasmic binding proteinNAamp nucleosidaseNA30s ribosomal subunit protein s22	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43787	<0.001 0.0016674 4 <0.001 0.012397 0.0218179 <0.001 <0.001 <0.001 <0.001
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_04335 NF29_19855 NF29_13305 NF29_16185 NF29_17095 NF29_17400	yacH None nhaA fepB ugpB None amn None sra curA	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein NA amp nucleosidase NA 30s ribosomal subunit protein s22 NADP-dependent oxidoreductase	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43787 1.43614	<0.001 0.0016674 4 <0.001 0.012397 0.0218179 <0.001 <0.001 <0.001 <0.001 0.0007388 71
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_04335 NF29_19855 NF29_13305 NF29_16185 NF29_17400 NF29_16870	yacH None nhaA fepB ugpB None amn None sra curA	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein NA amp nucleosidase NA 30s ribosomal subunit protein s22 NADP-dependent oxidoreductase part of glycogen a glycosyl debranching	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43614 1.42887	$\begin{array}{c} < 0.001 \\ 0.0016674 \\ 4 \\ < 0.001 \\ \hline 0.012397 \\ \hline 0.0218179 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ \hline 0.0007388 \\ \hline 71 \\ 0.0014566 \\ \hline 5 \end{array}$
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_04335 NF29_04335 NF29_19855 NF29_13305 NF29_16185 NF29_17095 NF29_17400 NF29_16870	yacH None nhaA fepB ugpB None amn None sra curA glgX	putative membrane protein NA na+ h antiporter ph dependent ferric enterobactin binding protein periplasmic component sn-glycerol 3-phosphate transport system periplasmic binding protein NA amp nucleosidase NA 30s ribosomal subunit protein s22 NADP-dependent oxidoreductase part of glycogen a glycosyl debranching enzyme alcohol dehydrogenase class iii formaldehyde	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43787 1.43614 1.42887	$\begin{array}{c} < 0.001 \\ 0.0016674 \\ 4 \\ < 0.001 \\ 0.012397 \\ \hline 0.0218179 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ 0.0007388 \\ \hline 71 \\ 0.0014566 \\ \hline 5 \\ \end{array}$
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_09185 NF29_04335 NF29_19855 NF29_19855 NF29_13305 NF29_16185 NF29_17400 NF29_16870 NF29_17685	yacH None nhaA fepB ugpB None amn None sra curA glgX ycjQ	putative membrane proteinNAna+ h antiporter ph dependentferric enterobactin binding protein periplasmic componentsn-glycerol 3-phosphate transport system periplasmic binding proteinNAamp nucleosidaseNA30s ribosomal subunit protein s22NADP-dependent oxidoreductase part of glycogen a glycosyl debranching enzymealcohol dehydrogenase class iii formaldehyde glutathione-dependent	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43614 1.42887 1.41998	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_09185 NF29_04335 NF29_19855 NF29_19855 NF29_13305 NF29_16185 NF29_17095 NF29_17400 NF29_16870 NF29_17685 NF29_13865	yacH None nhaA fepB ugpB None amn None sra curA glgX ycjQ otsA	putative membrane proteinNAna+ h antiporter ph dependentferric enterobactin binding protein periplasmiccomponentsn-glycerol 3-phosphate transport systemperiplasmic binding proteinNAamp nucleosidaseNA30s ribosomal subunit protein s22NADP-dependent oxidoreductasepart of glycogen a glycosyl debranchingenzymealcohol dehydrogenase class iii formaldehydeglutathione-dependenttrehalose-6-phosphate synthase	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43787 1.43614 1.42887 1.41998 1.41951	$\begin{array}{c} < 0.001 \\ 0.0016674 \\ 4 \\ < 0.001 \\ 0.012397 \\ \hline 0.0218179 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ 0.0007388 \\ \hline 71 \\ 0.0014566 \\ \hline 5 \\ \hline 0.02952 \\ < 0.001 \\ \end{array}$
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_09185 NF29_04335 NF29_04335 NF29_19855 NF29_19855 NF29_13305 NF29_16185 NF29_17095 NF29_17400 NF29_16870 NF29_13865 NF29_13865 NF29_04820	yacH None nhaA fepB ugpB None amn None sra curA glgX ycjQ otsA yiaD	putative membrane proteinNAna+ h antiporter ph dependentferric enterobactin binding protein periplasmiccomponentsn-glycerol 3-phosphate transport systemperiplasmic binding proteinNAamp nucleosidaseNA30s ribosomal subunit protein s22NADP-dependent oxidoreductasepart of glycogen a glycosyl debranchingenzymealcohol dehydrogenase class iii formaldehydeglutathione-dependenttrehalose-6-phosphate synthaseouter membrane protein	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43614 1.42887 1.41998 1.41641	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_09185 NF29_04335 NF29_04335 NF29_19855 NF29_19855 NF29_13305 NF29_16185 NF29_16185 NF29_17095 NF29_17400 NF29_16870 NF29_17685 NF29_13865 NF29_04820 NF29_12925	yacH None nhaA fepB ugpB None amn None sra curA glgX ycjQ otsA yiaD yegP	putative membrane proteinNAna+ h antiporter ph dependentferric enterobactin binding protein periplasmiccomponentsn-glycerol 3-phosphate transport systemperiplasmic binding proteinNAamp nucleosidaseNA30s ribosomal subunit protein s22NADP-dependent oxidoreductasepart of glycogen a glycosyl debranchingenzymealcohol dehydrogenase class iii formaldehydeglutathione-dependenttrehalose-6-phosphate synthaseouter membrane proteinhypothetical protein	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43787 1.43614 1.42887 1.41998 1.41951 1.40893	$\begin{array}{c} < 0.001 \\ 0.0016674 \\ 4 \\ < 0.001 \\ 0.012397 \\ \hline 0.0218179 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ \hline 0.0007388 \\ 71 \\ 0.0014566 \\ 5 \\ \hline 0.02952 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ \hline \end{array}$
NF29_00430 NF29_10965 NF29_00850 NF29_09185 NF29_09185 NF29_04335 NF29_04335 NF29_19855 NF29_19855 NF29_13305 NF29_16185 NF29_17095 NF29_17400 NF29_16870 NF29_1685 NF29_13865 NF29_04820 NF29_12925 NF29_21110	yacH None nhaA fepB ugpB None amn None sra curA glgX ycjQ otsA yiaD yegP sucC	putative membrane proteinNAna+ h antiporter ph dependentferric enterobactin binding protein periplasmiccomponentsn-glycerol 3-phosphate transport systemperiplasmic binding proteinNAamp nucleosidaseNA30s ribosomal subunit protein s22NADP-dependent oxidoreductasepart of glycogen a glycosyl debranchingenzymealcohol dehydrogenase class iii formaldehydeglutathione-dependenttrehalose-6-phosphate synthaseouter membrane proteinhypothetical proteinsuccinyl- beta subunit	1.5079 1.50539 1.5053 1.50446 1.48352 1.47899 1.47007 1.45899 1.43787 1.43614 1.42887 1.41998 1.41641 1.40893 1.4085	$\begin{array}{c} < 0.001 \\ 0.0016674 \\ 4 \\ < 0.001 \\ 0.012397 \\ \hline 0.0218179 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ 0.0007388 \\ \hline 71 \\ 0.0014566 \\ \hline 5 \\ \hline 0.02952 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ \hline 0.007 \\ \end{array}$

NF29_09250	dkgA	aldose reductase	1.39884	< 0.001
NF29_14460	ycgB	sporulation protein	1.38271	< 0.001
NF29_09385	None	NA	1.38087	< 0.001
NF29_22355	ybaY	glycoprotein polysaccharide metabolism	1.37516	< 0.001
NF29_16600	marA	arac-type regulatory protein	1.37482	< 0.001
NF29_01045	osmY	hyperosmotically inducible periplasmic protein	1.37188	< 0.001
NF29_10840	None	NA	1.3649	< 0.001
NF29_17860	acnA	aconitate hydrase 1	1.36303	< 0.001
NF29_11880	ypeC	hypothetical protein	1.35438	< 0.001
NE20 16885	Nona	NA	1 34008	0.0062090
NF29_10883	whiP	lineprotein	1.34908	4
NE29_20330	y0j1	autoplasmia trabalasa	1 22070	<0.001
NE20 10880	None	NA	1.33979	<0.001
NF29_19880	None	atp-dependent serine activating enzyme (may	1.33877	<0.001
	_	be part of enterobactin synthase as component		0.0047005
NF29_19620	entF	f)	1.3371	3
NF29_18270	sufC	atp-binding component of a transport system	1.33522	0.035491
NF29_22535	yajO	nad h-dependent xylose reductase	1.32582	<0.001
NF29_19490	yqjA	general envelope maintenance protein	1.32495	4
NF29_18490	<i>pfkB</i>	6-phosphofructokinase ii suppressor of pfka	1.32365	0.0476518
NF29_05830	rbsC	transport system permease protein	1.32357	< 0.001
NF29_20630	emrB	transport protein	1.32344	0.0198526
NE20 02285	G	10 kd chaperone binds to hsp60 in mg-	1 22202	<0.001
NF29_02385	gros	suppressing its atpase activity	1.32283	<0.001
NF29_16350	gcd	glucose dehydrogenase	1.32221	7
NF29_13260	dacD	penicillin binding protein 6b	1.32168	< 0.001
NF29_12720	bglF	pts system beta- enzyme cryptic	1.31898	0.0452603
NE20 18345	nns 1	pep-protein phosphotransferase system enzyme	1 3 1 8 2 1	<0.001
11/29_18343	ррза	outer membrane protein receptor for colicin	1.31821	<0.001
NF29_00305	fhuA	and phages and phi80	1.31262	< 0.001
NF29_08835	patA	acetylornithine delta-aminotransferase	1.30479	< 0.001
NF29 16340	frm A	alcohol dehydrogenase class iii formaldehyde	1 30437	0.0144234
NE29_10790	veaM	arac_type regulatory protein	1 29356	0.0416457
NE20_12860	oteP	trebalose 6 phosphate biosynthetic	1 20000	0.07
NE20 17240	laun	low affinity potassium transport system	1.29090	0.027
NE20 17295	кир wroE	hypothetical protain	1.20300	<0.001
<u>INF29_1/383</u>	ynce	fumarase c= fumarate hydratase class ii	1.26209	<0.001
NF29_15345	fumC	isozyme	1.27359	0.0134729
NF29 02055	msr 4	peptide methionine sulfoxide reductase	1 26126	0.0007960
111 27 02000		F F Auto mounto building foundube	1.20120	00

NF29_12375	glpT	sn-glycerol-3-phosphate permease	1.26045	< 0.001
NF29 06190	hslV	heat shock protein proteasome-related	1.25423	< 0.001
				0.0030433
NF29_03145	fmrR	alpha helix chain	1.25337	4
NF29_17110	adhP	alcohol dehydrogenase	1.25113	< 0.001
NF29_08215	dhaK	dihydroxyacetone kinase	1.24836	< 0.001
NF29_15545	None	NA	1.24585	< 0.001
NF29_08105	gabD	succinate-semialdehyde nadp-dependent activity	1.23954	<0.001
NF29_10355	mdtH	transport protein	1.23783	0.0348671
NF29_14035	yecD	isochorismatase family protein	1.23039	0.0018016
NF29_18250	ldtE	transpeptidase	1.22806	0.0012491
NF29_14290	None	NA	1.21968	< 0.001
NF29_00425	acnB	aconitate hydrase b	1.21619	< 0.001
NF29 18725	yeaG	serine/threonine protein kinase	1.21496	< 0.001
NF29 18260	sufS	cysteine desulfurase	1.20541	0.0135879
	2			0.0006303
NF29_16225	cybB	cytochrome b	1.2025	35
NF29_06890	prlC	oligopeptidase a	1.19999	< 0.001
NF29_00665	fieF	putative transport system permease protein	1.1981	< 0.001
NF29_00900	yaaX	hypothetical protein	1.19061	0.0337188
NF29_12175	ulaA	ascorbate-specific permease IIC component	1.17932	0.011796
NF29_13340	mgtA	mg2+ transport p-type 1	1.17928	0.0080278 9
NF29_18940	bhsA	biofilm, cell surface and signaling protein	1.17043	< 0.001
NF29_15800	None	NA	1.16945	0.0114468
NF29 01005	deoB	phosphopentomutase	1.15831	< 0.001
NF29 11695	maeB	multimodular enzyme	1.15798	< 0.001
NF29 10150	gudD	glucarate dehydratase	1.15684	0.011796
NF29 02025	None	NA	1.15608	0.0230898
NF29 20725	ybiJ	hypothetical protein	1.15453	< 0.001
NF29 07955	yhdV	membrane protein	1.15365	0.0343176
NF29_19615	None	NA	1.14888	0.0357013
NF29 10690	ygaC	hypothetical protein	1.14868	< 0.001
NE20 12625	cir A	outer membrane receptor for iron-regulated colicin i receptor porin requires tonb gene	1 14220	0.0126626
NE20 11105	CIFA		1.14629	0.0152760
NF29_11185	murP	pts enzyme ii	1.14528	0.0153769
NF29_10665	nrdF	ribonucleoside-diphosphate reductase beta frag	1.14203	0.025
NF29_15670	acrF	resistance	1.13896	0.010331
NF29_00135	<i>ldcC</i>	lysine decarboxylase constitutive	1.13434	< 0.001

-				
NF29_07400	yhgF	30s ribosomal subunit protein s1	1.12657	< 0.001
NF29_06620	vigM	putative inner membrane EamA-like transporter	1 11351	0 0248536
NF29 00855	dnaJ	chaperone with heat shock protein	1.1123	< 0.001
NF29 12285	nuoL	hydrogenase 4 membrane subunit	1.11039	0.0260755
NF29 18730	yeaH	hypothetical protein	1.10578	< 0.001
			1 10202	0.0012115
NF29_11260	None	NA	1.10303	9
NF29_00805	carA	2-oxoglutarate dehvdrogenase	1.09651	<0.001
NF29_21115	<i>sucB</i>	(dihydrolipoyltranssuccinase e2 component)	1.09252	99
NF29_20810	ybhN	hypothetical protein	1.09024	0.0494455
NF29 11320	nenR	aminopentidase a i	1 08838	0.0010423
11129_11320	pepb	ferric iron reductase involved in ferric	1.00050	1
NF29_01100	fhuF	hydroximate transport	1.08493	< 0.001
NF29 20670	dps	inducible DNA binding protein	1.07932	0.0018448
			1.0750	0.0041138
NF29_04435	zntA	zinc-transporting atpase	1.0759	8
NF29_17265	fusA	gtp-binding protein chain elongation factor ef-g	1.07352	65
NE20 06195	hall	heat shock protein atpase homologous to	1.07001	<0.001
NF29_00183	nsiU	chaperones	1.07091	0.0021659
NF29_04430	yhhN	membrane protein	1.06487	4
NF29_16760	None	NA	1.06311	< 0.001
NF29_22715	phoA	alkaline phosphatase	1.04282	0.0177967
NF29_21095	mngA	protein modification induction of ompc	1.04117	0.0494455
NF29_01255	rhmT	transport protein	1.04005	0.0477068
NF29 12260	nuoG	nadh dehydrogenase i chain g	1 03827	0.0098444
NF29_08755	terC	transport protein	1.03742	0.021
	10.0		1.00712	0.0010663
NF29_14345	manY	pts enzyme mannose-specific	1.03419	7
NF29_11030	clpB	heat shock protein	1.03052	3
NE20 17070	G		1.00000	0.0007626
NF29_17070	osmC	osmotically inducible protein	1.02328	45
NF29_16220	gapA	glyceraldehyde-3-phosphate dehydrogenase a	1.01508	0.0397796
NF29_00685	sgrR	transport protein	1.00938	9
NF29_10370	None	NA	1.00736	0.0466146
NF29_05720	nstS	high-affinity phosphate-specific transport	1 00536	0.0012668
NF29 11335	550 4	thiosulfate sulfurtransferase	1 0045	0.0405085
11127_11333	SSEA		1.0043	0.0011713
NF29_10905	recN	protein used in recombination and dna repair	1.00095	7
NF29 02680	None	NA	1.00018	0.0245871

NE20 12200	1.0		0.0092(2	0.0036663
NF29_12380	gipQ		0.998362	0.0054966
NF29_02340	blc	outer membrane lipoprotein	0.997642	6
NF29 20340	artI	arginine 3rd transport system periplasmic	0 99378	0.0011082
11129_20540	<i>ui 11</i>		0.77570	0.0014245
NF29_00845	nhaR	transcriptional regulator lysr-type	0.985432	1
NF29_20900	mngR	transcriptional regulator	0.978152	0.0261676
NF29 13545	rcsA	transcription factor	0.974131	0.0065684 7
NF29 19395	putA	aldehvde dehvdrogenase	0.967466	0.0042731
NF29 16665	vaiC	sensor-type protein	0.965685	0.013304
NF29 18280	sufA	Fe-S cluster assembly protein	0.960938	0.0225183
	~			0.0026967
NF29_09195	ygaU	hypothetical protein	0.959918	8
NF29_01010	deoA	thymidine phosphorylase	0.957349	0.017698
		salmonella iron-containing alcohol		
NF29_09255	yqhD	dehydrogenase	0.953325	0.031
NF29_16245	ORF_0222	hypothetical protein	0.951608	0.0067032 7
NE20 01000	None	NIA	0.047001	0.0024609
NF29_01090	None	INA	0.94/091	0.0114914
NF29_18420		nypoineireal protein	0.944674	0.0114814
NF29_07255	ynn1	transport protein	0.942022	0.0324509
NF29_04775	аррВ	transport system permease protein	0.93906	0.013/90/
NF29_16895	None	NA	0.935135	0.0163526
NF29_22765	ampH	beta-lactamase penicillin resistance	0.930069	0.0337188
NF29_00470	yagG	glucuronide permease	0.928143	0.0253747
NF29_01985	fbp	fructose-1,6-bisphosphatase I	0.927548	0.005
NF29_07305	glgC	glucose-1-phosphate thymidylyltransferase	0.922654	0.0146679
NF29_14340	manZ	pts enzyme mannose-specific	0.916183	0.0051827
NF29_21870	mgtA	mg2+ transport p-type 1	0.909424	0.0042307
NF29_01870	None	NA	0.900605	0.012397
NF29_15365	rstA	response transcriptional regulatory protein (sensor)	0.899441	0.0401194
NF29_00435	None	hypothetical protein	0.89336	0.0452223
NF29 00445	aceF	pyruvate dehydrogenase (dihydrolipoyltransacetylase component)	0.892621	0.0075779 7
NF29 04310	None	NA	0.891442	0.0144234
				0.0075702
NF29_14580	None	NA	0.889346	1
NF29_07390	feoB	ferrous iron transport protein b	0.884113	0.0074742
NF29_00800	carB	carbamoyl-phosphate synthase large subunit	0.882134	0.0061367

NE20 22(05			0.001107	0.0073350
NF29_22685	yaiA	hypothetical protein	0.881186	4
NF29 21205	<i>kdpD</i>	system	0.876524	0.0441286
NF29_16700	None	NA	0 87574	0.017018
10/00	110110	periplasmic protein related to spheroblast	0.07371	0.017010
NF29_18585	spy	formation	0.87099	0.022
NE20 21270			0.97041	0.0089230
NF29_212/0	nage	pts n-acetyigiucosamine-specific enzyme flabc	0.87041	4
NF29_01855	pyrB	aspartate catalytic subunit	0.865969	2
NF29_13535	yodB	hypothetical protein	0.864506	0.0476518
NE20 21715	h of D	nad+-dependent betaine aldehyde	0.850660	0.0174216
NF29_21/13	Delb	denydrogenase	0.839009	0.01/4210
NF29_07120	None	NA	0.85041	0.0109307
NF29_12480	yajR	transport protein	0.847991	0.0114468
NF29 21885	None	NA	0 844488	0.0091122
				0.0091122
NF29_01290	yjiJ	metal-binding GTPase	0.840765	5
NF29_13335	uspG	filament protein	0.83288	0.0250078
NF29_12910	yegS	phosphatidylglycerol kinase metal-dependent	0.832667	0.0156956
NF29_02160	yjfY	hypothetical protein	0.829589	0.0129393
		nicotinic acid mononucleotide: -		
NE20 18000	sobP	dimethylbenzimidazole	0 9 2 9 4 1 2	0.0102724
NF29_18900	COUD	phosphorioosyntansierase	0.020413	0.0192734
NF29_22925	yaıV	2 oxoglutarate debydrogenase (decarboxylase	0.822457	0.0118042
NF29_21120	<i>sucA</i>	component)	0.821868	0.0189167
NF29_12770	osmF	transport system permease protein	0.8206	0.0337726
		involved in thiamin alternative pyrimidine		
NF29_22505	panE	biosynthesis	0.814279	0.022889
NF29_21960	yahO	hypothetical protein	0.813713	0.0125039
NF29 03150	fmrA	alcohol dehydrogenase class 111 formaldehyde glutathione-dependent	0.813543	0.0118546
NF29 04990	mtlA	pts mannitol-specific enzyme iiabc components	0.806934	0.0178866
NF29 12740	yohD	DedA family Inner membrane protein	0.806535	0.0143082
NF29 22255	acrA	membrane protein	0.803824	0.025422
		high-affinity transport of gluconate gluconate		
NF29_07360	gntP	permease	0.801483	0.041
NF29_13630	amyA	cytoplasmic alpha-amylase	0.801143	0.0324196
NF29_08210	yjgR	hypothetical protein	0.792627	0.0308215
NF29_22390	cysM	cysteine synthase o-acetylserine sulfhydrolase b	0.790252	0.0179159
NF29_21720	<i>betA</i>	choline a flavoprotein	0.787295	0.0205571
NF29_12990	yegH	transport protein	0.786646	0.0310697
NF29_12760	dld	d-lactate fad nadh independent	0.780696	0.0162865

NF29_13265	sbmC	DNA gyrase inhibitor	0.780381	0.0235752
NF29 19240	mysB	acidic protein suppresses mutants lacking function of protein export	0.779668	0.0174216
NF29_01280	cstA	carbon starvation protein	0.772438	0.028
NF29_02335	ampC	beta-lactamase penicillin resistance	0.772121	0.0478137
NF29_02015	ytfQ	laci-type transcriptional regulator	0.771716	0.0339596
NF29_13300	ypdF	aminopeptidase	0.76922	0.0315635
NF29_12765	bglX	beta-d-glucoside periplasmic	0.768687	0.0186806
NF29_09330	yghU	putative S-transferase	0.763663	0.0204871
NF29_14305	None	NA	0.757538	0.0357013
NF29_14470	dadA	d-amino acid dehydrogenase subunit	0.755606	0.033344
NF29_20335	artP	atp-binding component of a transport system	0.751241	0.022147
NF29_06840	yhjG	hypothetical protein	0.744233	0.0249741
NF29_17520	ompN	outer membrane protein	0.740507	0.0309671
NF29_18165	ydhS	oxidoreductase	0.739053	0.0401194
NF29_14230	ybjX	putative enzyme	0.729342	0.0340648
NF29_14585	None	NA	0.724281	0.0281026
NF29_14865	chaB	cation transport regulator	0.721401	0.0468289
NF29_15180	narP	nitrate nitrite response regulator (sensor)	0.716718	0.039
NF29_04180	yjbR	hypothetical protein	0.715429	0.0466081
NF29_19365	efeB	deferrrochelatase, periplasmic	0.712004	0.0337188
NF29_14235	pphA	protein phosphatase 1 modulates signals protein misfolding	0.708311	0.0336352
NF29_04780	dppA	dipeptide transport protein	0.705039	0.0466247
NF29_08705	yqjE	hypothetical protein	0.703604	0.0440834
NF29_12675	mglC	transport system permease protein	0.702629	0.0433655
NF29_21125	sdhB	succinate iron sulfur protein	0.698316	0.0379397
NF29_14645	None	NA	0.697571	0.0487165
NF29_06255	katG	catalase hydroperoxidase hpi	0.690655	0.0476518
NF29_05825	rbsA	atp-binding component of d-ribose high- affinity transport system	0.680732	0.0493609
NF29_10970	yfiB	outer membrane protein	-0.684748	0.0487456
NF29_16610	marC	channel protein	-0.692812	0.0452603
NF29_14890	None	NA	-0.694959	0.0468289
NF29_09635	serA	d-3-phosphoglycerate dehydrogenase	-0.700443	0.0414254
NF29_19715	yccF	hypothetical protein	-0.706155	0.041719
NF29_08320	yrbG	hypothetical protein	-0.707211	0.0417103
NF29_14260	msrC	free methionine-(R)-sulfoxide reductase	-0.707768	0.0398597
NF29_00005	mltD	transcriptional regulator for nitrite reductase (cytochrome c552)	-0.715224	0.0416443
NF29_19220	yceI	hypothetical protein	-0.716885	0.0357014

NF29_15130	yciI	putative DGPF domain-containing enzyme	-0.718207	0.0342599
NF29_06535	cyaA	adenylate cyclase	-0.721159	0.0484751
NF29_06260	gldA	glycerol dehydrogenase	-0.721278	0.033
NF29_22250	acrR	acrab operon repressor	-0.722562	0.0407741
NF29_08495	deaD	atp-dependent rna helicase	-0.724463	0.0357014
NF29_03665	None	NA	-0.72586	0.0337188
NF29_05200	slmA	nucleoid occlusion factor	-0.72682	0.0324509
NF29_04715	nusG	component in transcription antitermination	-0.728496	0.0453403
NF29_12210	yfbT	sugar phosphatase	-0.731067	0.040347
NF29_06590	pldA	outer membrane phospholipase a	-0.732358	0.0324509
NF29_02205	nsrR	nitric oxide-sensitive repressor for NO regulon	-0.733229	0.0317536
NF29_18790	yaiC	diguanylate cyclase	-0.73388	0.039
NF29_06545	None	NA	-0.741395	0.0324196
NF29_17845	yciS	hypothetical protein	-0.742242	0.0346119
NF29_05925	hemN	o2-independent coproporphyrinogen iii oxidase	-0.745698	0.0327062
NF29_07420	pck	phosphoenolpyruvate carboxykinase	-0.747995	0.0447646
NE20 12725	ngs 4	phosphatidylglycerophosphate synthetase = cdpdiacyl-sn-glycero-3-phosphate	0 740473	0.0347131
NF29_13723	pgsA	EtaZ atabilizar	-0.749473	0.034/131
NF29_00170	zарь	rtsz stabilizer	-0.750233	0.025401
NF29_09083	None	NA	0.754300	0.033491
NE29_03043	none		0.755846	0.0388213
NF29_10130	cisA	cardiolipin a major membrane phospholipid novobiocin sensitivity	-0.756557	0.0264126
NF29 05610	vidA	sugar phosphate phosphatase	-0.756712	0.0323119
NF29 03190	None	NA	-0.757418	0.0234473
NF29 15470	None	NA	-0.758377	0.0323119
NF29_13685	fliY	arginine 3rd transport system periplasmic binding protein	-0.760028	0.0349144
NF29_11570	рерА	aminopeptidase a i	-0.764043	0.028
NF29_12525	yejG	hypothetical protein	-0.764485	0.0248404
NF29_08175	sspA	regulator of transcription stringent starvation protein a	-0.764748	0.0437235
NF29_22500	yajQ	nucleotide-binding protein	-0.765185	0.0439125
NF29_13620	None	NA	-0.768072	0.0285825
NF29_09600	pgk	phosphoglycerate kinase	-0.768133	0.0467379
NF29_12805	yehS	hypothetical protein	-0.768355	0.0210217
NF29 11625	purC	phosphoribosylaminoimidazole- succinocarboxamide synthetase = saicar synthetase	-0.770327	0.0323119
NF29_07040	vobA	hypothetical protein	-0.770952	0.0259146

NF29_06955	None	NA	-0.77119	0.0221668
NF29_07615	None	NA	-0.772497	0.0221668
NF29_07850	trkA	transport of potassium	-0.772804	0.0218179
NF29_10660	proV	atp-binding component of a transport system	-0.773258	0.0452223
NF29_07365	nfuA	Fe-S biogenesis protein	-0.773813	0.029173
NF29_05045	secB	protein export molecular chaperone may bind to signel sequence	-0.774805	0.0428646
NF29_00930	creA	putative periplasmic protein	-0.776021	0.0235752
NF29_03220	None	NA	-0.776704	0.0203026
NF29_05910	polA	dna polymerase 3	-0.777196	0.0313963
NF29_20840	moaA	molybdopterin protein a	-0.778318	0.0208635
NF29_01110	ybaK	hypothetical protein	-0.780943	0.0192734
NF29_09520	yggS	UPF0001 family protein, PLP-binding	-0.78122	0.0194688
NF29_22675	yaiE	hypothetical protein	-0.781844	0.0209655
NF29_10640	mprA	regulator of plasmid mcrb operon (microcin b17 synthesis)	-0.781989	0.027
NF29_08535	yhbP	hypothetical protein	-0.783153	0.0306264
NF29_04035	yfcI	transposase_31 family protein	-0.784048	0.0358091
NF29_16290	yhjC	transcriptional regulator lysr-type	-0.784109	0.0206115
NF29_11765	ptsI	pep-protein phosphotransferase system enzyme i	-0.788765	0.0420944
NF29_19945	smtA	s-adenosylmethionine-dependent methyltransferase	-0.789279	0.0210579
NF29_13980	sfmA	fimbrial-like protein	-0.78929	0.0333643
NF29_17885	topA	dna topoisomerase type omega protein	-0.791933	0.0276591
NF29_01910	relB	negative regulator of translation	-0.793024	0.047784
NF29_08365	ispB	octaprenyl diphosphate synthase	-0.793841	0.024
NF29_08385	obgE	gtp-binding factor	-0.796123	0.0260986
NF29_09675	gcvH	in glycine cleavage carrier of aminomethyl moiety via covalently bound lipoyl cofactor	-0.796513	0.0309063
NF29_02150	priB	primosomal replication protein n	-0.797055	0.0329478
NF29_05730	glmU	n-acetyl glucosamine-1-phosphate uridyltransferase	-0.797085	0.0275214
NF29_20035	pflA	pyruvate formate lyase activating enzyme 1	-0.799589	0.0277362
NF29_22130	fetB	metal resistance protein	-0.801842	0.0254135
NF29_06350	yifA	regulator of pssa	-0.801894	0.0218179
NF29_11990	sixA	phosphohistidine phosphatase	-0.806482	0.0151882
NF29_15140	yciA	acyl-CoA esterase	-0.808592	0.0151976
NF29_14830	hemA	enzyme in alternate path of synthesis of 5- aminolevulinate	-0.81067	0.020488
NF29_08500	mtr	tryptophan-specific transport protein	-0.810735	0.0203026
NF29_08025	None	NA	-0.819321	0.0212622
NF29_00835	ribF	bifunctional riboflavin kinase/FAD synthetase	-0.819456	0.0151976

NF29_14400	yeaY	outer membrane protein	-0.820986	0.0163965
NF29_14285	kdgR	transcriptional regulator	-0.822474	0.025
NF29_04260	lexA	regulator for sos regulon	-0.823662	0.0246515
NF29_13190	rfb	dtdp-glucose dehydratase	-0.823991	0.0212622
NF29_19195	bssS	biofilm regulator	-0.826038	0.0210656
NF29_07845	mscL	mechanosensitive channel	-0.827829	0.0248679
NF29_12205	yfbU	hypothetical protein	-0.828502	0.0218179
NF29_09850	citA	sensor-type protein	-0.828602	0.0220471
NF29_02310	frdA	fumarate flavoprotein subunit	-0.830201	0.029173
NF29_21245	fldA	flavodoxin 1	-0.831137	0.0218179
NF29_22200	adk	adenylate kinase activity pleiotropic effects on glycerol-3-phosphate acyltransferase activity	-0.834034	0.0167199
NF29_18710	gapA	glyceraldehyde-3-phosphate dehydrogenase a	-0.834137	0.0307105
NF29_04375	panM	panothenate synthesis	-0.835848	0.012584
NF29_19995	rpsA	30s ribosomal subunit protein s1	-0.835921	0.0323119
NF29_02800	None	NA	-0.836895	0.012016
NF29 18560	chbB	pep-dependent phosphotransferase enzyme iv for and salicin	-0.838636	0.0115434
NF29_06100	cpxR	transcriptional regulator in 2-component system	-0.839545	0.0247963
NF29_08060	mreD	rod shape-determining protein	-0.844723	0.0477496
NF29_15940	btuE	vitamin b12 transport	-0.847785	0.023839
NF29_06395	ilvC	ketol-acid reductoisomerase	-0.851082	0.0189606
NF29_09930	ascG	ascbf operon repressor	-0.854622	0.0150746
NF29_18470	rpmI	50s ribosomal subunit protein a	-0.857716	0.023839
NF29_03310	None	NA	-0.858574	0.0099552 1
NF29_19845	cohE	phage repressor	-0.861523	0.019
NF29_10695	alaE	alanine exporter, alanine-inducible, stress responsive	-0.863036	0.0108295
NF29_09860	vid.I	GNAT family nutative N-acetyltransferase	-0.863425	0.0085242
NF29 08995	dnaG	dna biosynthesis dna primase	-0.863658	0.0102981
NF29 06660	ubiB	ubiquinone biosynthesis protein	-0.863746	0.0172453
NF29 11290	iscU	iron-sulfur cluster assembly scaffold protein	-0.863753	0.0129529
				0.0097658
NF29_19065	rluC	pseudouridylate synthase	-0.86721	5
NF29_02285	orn	oligoribonuclease	-0.870153	3
NF29_22585	secF	protein membrane protein	-0.873073	0.0115434
NF29_01715	None	NA	-0.875653	0.016
NF29_11305	hscA	heat shock member of hsp70 protein family	-0.876531	0.0067032 7
NF29_09855	yjdI	putative 4Fe-4S mono-cluster protein	-0.881776	0.0115434

NE20 11015		BamABCDE complex OM biogenesis	0.002240	0.0125070
NF29_11015	bamD	lipoprotein	-0.882249	0.0135879
NF29_20010	serC	3-phosphoserine aminotransferase	-0.883788	0.0115434
NF29_07630	fkpA	fkbp-type peptidyl-prolyl cis-trans isomerase	-0.884258	0.0166778
NF29_04200	nadR	probable nadab transcriptional regulator	-0.886704	0.0225183
NF29_07825	rplQ	50s ribosomal subunit protein 117	-0.88675	0.0135095
NF29_12495	yejL	hypothetical protein	-0.88699	0.0062090
NF29_06400	ppiC	peptidyl-prolyl cis-trans isomerase c (rotamase c)	-0.88833	0.012323
NF29_21430	mrdB	rod shape-determining membrane protein sensitivity to radiation and drugs	-0.88896	0.0077820 2
NF29 13375	None	NA	-0.89032	0.0061124
NF29 04510	pgi	glucosephosphate isomerase	-0.892992	0.012616
NF29_07900	vrdA	possible synthesis of cofactor for carnitine racemase and dehydratase	-0.89705	0.034727
NE29_07620	shyD	fkhp_type pentidyl_prolyl_cis_trans_isomerase	-0.897873	0.0121285
NE20 02235	hfa	host factor i for bacteriophage q beta a growth-	0.000135	0.012
NE20_00215	njq	protein chain clangetion feator of ta	0.002016	0.013
NF29_00213		ma alpha subunit	-0.902910	0.0140200
NF29_07820	грод	probable udp-n-acetyl-d-mannosaminuronic	-0.903491	0.0155578
NF29 06480	wecG	acid transferase synthesis of enterobacterial common antigen	-0.905286	0.0054625
NF29 22370	glnK	nitrogen regulatory protein p-ii 2	-0.906471	0.0323119
NF29 17820	vciT	deor-type transcriptional regulator	-0.906741	0.0052059
NF29 22610	acnH	acvl carrier protein (ACP) phosphodiesterase	-0.908025	0.0169477
NF29 01710	None	NA	-0.908798	0.0056161
NF29 06670	tatB	TatABCE protein translocation system subunit	-0.9096	0.0076608
NF29 19960	kdsB	ctp:cmp-3-deoxy-d-manno-octulosonate transferase	-0.911629	0.0204871
NF29_08155	rnlM	50s ribosomal subunit protein 113	-0.911908	0.0117809
NF29 02240	miaA	delta -isopentenylpyrophosphate trna- adenosine transferase	-0.912894	0.0127274
NE20 00105	ianU	undecontranul nuranhagehata sumthaga	0.014795	0.0084141
NF29_00193	ispu	undecaptenyi pyrophosphate synthase	-0.914785	1
NF29_05075	pgaC	biofilm PGA synthase	-0.915066	0.0074742
NF29_17540	None	NA	-0.918924	6
NF29_01145	osmC	osmotically inducible protein	-0.92156	0.0052059
NF29_08145	yhcB	hypothetical protein	-0.922279	0.0115434
NF29_08065	yhdE	dTTP/UTP pyrophosphatase	-0.922297	0.0437558
NF29_11145	rnc	rnase ds rna	-0.92374	0.02255
NF29 15760	vdfZ	polynucleotide phosphorylase/polyadenylase	-0.92466	0.0044648

		· · · · · · · · · · · · · · · · · · ·		
NF29 08485	nnn	polynucleotide phosphorylase cytidylate kinase	-0 925074	0.0112051
11129_00403	pnp		-0.923074	0.0047694
NF29_00745	djlA	dna binding protein	-0.925955	4
NF29_03780	None	NA	-0.926261	0.004
NE29 06275	nnc	phosphoenolpyruvate carboxylase	-0.928787	0.0069849
NF29_00540	sec M	regulator of secA translation	-0.930341	0.0151882
NF29_00220	rnsR	30s ribosomal subunit protein s2	-0.935624	0.0102964
NE29_18505	vniR	putative inner membrane protein	0.936601	0.0038601
1129_18303	ynib		-0.950001	0.0038001
NF29_04485	lacA	thiogalactoside acetyltransferase	-0.937362	8
NF29_23150	None	NA	-0.942712	0.0157434
NF29_04610	hupA	dna-binding protein hu-alpha (hu-2)	-0.943937	0.0108812
NF29_17855	ribA	gtp cyclohydrolase ii	-0.944953	0.0051827
NF29_21065	ybgC	acyl-CoA thioester hydrolase	-0.950737	0.006
NF29_06685	rfaH	transcriptional activator affecting biosynthesis of lipopolysaccharide f and haemolysin	-0.952412	0.0056088
NF29_18475	infC	protein chain initiation factor if-3	-0.952994	0.0096805
NE20 05245	tum U	ma mathulaga	0.054214	0.0075702
NF29_03243	ıттп		-0.954314	0.0063902
NF29_08645	tdcA	transcriptional regulator lysr-type	-0.955986	3
NF29 15530	mdt I	nossible chaperone	-0.956124	0.0038575
10129_10000	mais		-0.950124	0.0050610
NF29_04855	yiaF	barrier effect co-colonization resistance factor	-0.956597	4
NF29_19915	ycbL	probable hydroxyacylglutathione hydrolase	-0.962682	0.0044152
NF29_06305	htuR	outer membrane receptor for transport of vitamin e and bacterionhage bf?3	-0 964046	0.0233013
11129_00303	Olub		-0.204040	0.0029782
NF29_01740	None	NA	-0.96547	4
NF29_11770	ptsH	pts system protein hpr	-0.965508	0.0069368
NE29 03950	vaaV	hypothetical protein	-0.965678	0.0051626
1129_03930	yguv		-0.903078	0.0034691
NF29_11140	lepB	leader peptidase (signal peptidase i)	-0.965786	9
NF29_00145	dnaE	dna polymerase alpha subunit	-0 968797	0.0045452
	unuL		0.900797	0.0059006
NF29_08375	rpmA	50s ribosomal subunit protein 127	-0.976109	7
NF29_19315	ycdY	oxidoreductase component	-0.976696	0.003
NF29 07525	cvsG	uroporphyrinogen III methylase sirohaeme biosynthesis	-0.980251	0.0036752
		udp-3-o-(3-hydroxymyristoyl)-glucosamine n-	0.00001	
NE20 00170	1m-D	acyltransferase third step of endotoxin	0.082476	0.0044660
INF29_00170	ipxD	synnesis	-0.982470	0.0042731
NF29_18145	ribC	riboflavin alpha chain	-0.983709	9

				0.0050500
NF29 02780	speG	spermidine n1-acetyltransferase	-0.985465	0.0058582
NF29 02365	efp	elongation factor p (ef-p)	-0.986518	0.0051827
		glucose-inhibited division chromosome		0.0020970
NF29_05780	rsmG	replication	-0.986638	6
NF29_05765	atpE	membrane-bound atp f0 subunit c	-0.989302	3
NE20 02590	1. 1	Annual indicate the second starts	0.000070	0.0017155
NF29_03580	ainJ	damage-inducible protein j	-0.990079	9
NF29_15575	ynfK	dethiobiotin synthetase	-0.99066	6
		udp- c:undecaprenylphosphate c-1-phosphate		0.0042046
NF29 06435	wecA	common antigen	-0.99087	2
		peptidyl-prolyl cis-trans isomerase c (rotamase		0.0030147
NF29_06405	ppiC	c)	-0.995114	2
NF29 06425	trxA	thioredoxin-like protein	-0.99736	8
	D		1.0000.0	0.0057232
NF29_19025	асрР	acyl carrier protein	-1.00086	1
NF29_01865	ridA	enamine/imine deaminase	-1.00474	1
NIE 20. 00725	<i>(11</i>)		1.00027	0.0029890
NF29_09725	fldB	flavodoxin 2	-1.00837	0.0024303
NF29_19775	иир	atp-binding component of a transport system	-1.01109	5
NE20 08480		20g ribogomal gubunit protain g15	1.01222	0.0032217
NF29_08480	rpsO		-1.01555	0.0045498
NF29_18465	rplT	50s ribosomal subunit protein and regulator	-1.01362	8
NE29 23010	wafK	transpontidaça	1 02103	0.0030280
N129_23010	yujK		-1.02195	0.0035844
NF29_05950	typA	gtp-binding factor	-1.02421	7
NF29 08975	None	NA	-1 02474	0.0015272
NF29_06910	None	NA	-1 02497	0.001
	ivone	l-glutamine:d-fructose-6-phosphate	-1.024)7	0.0023139
NF29_05725	glmS	aminotransferase	-1.02621	3
NF29 00190	cdsA	cdp-diglyceride synthetase	-1.03057	0.0021659
NF29_22310	rcnR	alpha helix chain	-1.03598	0.0357013
			1.000000	0.0015818
NF29_11310	fdx	[2Fe-2S] ferredoxin	-1.03975	6
NF29 00620	mraZ	repressor	-1.0399	0.0022739
				0.0010423
NF29_16690	None	NA	-1.04008	7
NF29 17875	None	NA	-1.04088	6
				0.0021525
NF29_15020	tdk	thymidine kinase	-1.04096	3
NF29_09910	fepE	ferric enterobactin transport	-1.04379	0.002

NE20 22570		nucleoside channel receptor of phage t6 and	1.0449	0.0009163
NF29_22570	lSX		-1.0448	26
NF29_08650	tdcB	threonine catabolic	-1.0456	2
) <i>T</i>		1.045(2	0.0021659
NF29_04060	None	NA	-1.04563	4
NF29_06665	tatA	TatABCE protein translocation system subunit	-1.04693	4
			1.05415	0.0034372
NF29_22030	sfmA	fimbrial-like protein	-1.05417	9
NF29_21505	rnk	regulator of nucleoside diphosphate kinase	-1.05544	9
NE20 12/25	ID	linementein	1.05((2	0.0011868
NF29_13625	yedD		-1.05662	2
NF29_09700	yqfB	hypothetical protein	-1.05666	0.0067728
NF29 10700	stnA	chaperone activity rna splicing?	-1.05771	0.0023703
10,00	Sipii	emperene delivity ind spireing.	1.00771	0.0010423
NF29_13790	yecA	hypothetical protein	-1.0582	7
NE20 10605	vaal	hypothetical protain	1.05821	0.0063130
NF29_10003	учил		-1.03821	0.0021659
NF29_00225	тар	methionine aminopeptidase	-1.05835	4
NF29_09480	trmI	tRNA m(7)G46 methyltransferase	-1.05859	0.0343176
NE20 05220	V		1.0(102	0.0016502
NF29_05230	<i>gm</i> K		-1.06102	2
NF29_23155	None	NA	-1.06399	0.006
NF29_12230	lrhA	transcriptional regulator lysr-type	-1.06817	24
NF29_01220	None	NA	-1.06981	0.0012491
				0.0025238
NF29_09605	fbaA	fructose-bisphosphate class ii	-1.07244	2
NF29 05695	vieH	6-phosphogluconate phosphatase	-1.07246	0.0005699
_				0.0022073
NF29_01785	rraB	regulator of ribonuclease activity B	-1.07379	4
NF29 11095	orc A	formate acetyltransferase	-1 07428	0.0028590
11129_11093	Sterr		1.07120	0.0016502
NF29_10565	alaS	alanyl-trna synthetase	-1.07773	2
		pleiotrophic regulation of anaerobic		
NF29 14935	narL	respiration: response regulator for dris and for genes	-1 08486	0.0295041
11129_11930	nui E	Series	1.00100	0.0016693
NF29_06215	metJ	repressor of all met genes but metf	-1.08615	8
NE29 08370	rn111	50s ribosomal subunit protein 121	1 08893	0.0019264
11122_00370	10	udp-n-acetylglucosamine acetyltransferase	-1.00093	0.0031206
NF29_00160	lpxA	lipid a biosynthesis	-1.09237	4
NE20 14075			1.1076	0.0005151
NF29_14875	None	NA	-1.1076	79
NF29_04720	secE	preprotein translocase	-1.10895	< 0.001

		-		
NF29 04675	chbB	pep-dependent phosphotransferase enzyme iv for and salicin	-1.11022	0.0067279 9
NF29 01760	None	NA	-1.11153	< 0.001
				0.0029952
NF29_07250	None	NA	-1.11447	4
NF29 15550	dsbC	protein disulfide isomerase ii	-1.11629	2
		regulator for leucine (or lrp) regulon and high-		0.0010005
NF29 20085	lrn	affinity branched-chain amino acid transport	-1 12014	0.0012995
NF29_15065	vciU	hypothetical protein	-1.12014	<0.001
NE29_04090	hokD	nalymentide destructive to membrane notential	1 12261	0.0484583
NE20_00605	alaD	transprintional rangement of rails expression	1 12/12	<0.001
NF29_09093		ATD descendent Clearent and a better	-1.12412	<0.001
NF29_20145	clps	fluoride efflux channel dual topology	-1.12499	0.001
NF29_21475	flc	membrane protein	-1.12538	3
NE20 22505			1 10702	0.0007903
NF29_22595	yajC	DUE2542 C il contractione	-1.12/23	02
NF29_18805	ymjA	DUF2543 family protein	-1.12986	0.00/4231
NF29_11975	yfcZ	hypothetical protein	-1.13118	9
	7		1 12126	0.0009946
NF29_00390	hpt	hypoxanthine phosphoribosyltransferase	-1.13126	0.0022073
NF29_20055	dmsB	fe-s subunit	-1.14131	4
NE20 04490	· <i>T</i>	a hand the second ten is the "life products	1 145(1	0.0009521
NF29_04480	psiE	phosphate-starvation-inducible protein	-1.14361	0 0010423
NF29_08435	secG	protein export - membrane protein	-1.14645	7
NF29_17815	None	NA	-1.14689	< 0.001
NF29_05235	rpoZ	rna omega subunit	-1.14784	< 0.001
NF29_04790	eptB	KDO phosphoethanolamine transferase	-1.1491	< 0.001
NF29_06115	pfkA	6-phosphofructokinase i	-1.15722	0.0006578
		glycerolphosphate auxotrophy in plsb	1.1.005	0.001
NF29_19045	plsX	background	-1.16097	< 0.001
NF29_00185	rseP	serine endoprotease	-1.16116	< 0.001
NF29_08045	csrD	cytochrome c-type biogenesis protein	-1.16381	< 0.001
NF29 14080	znuA	protein	-1.16825	< 0.001
NF29 22100	None	NA	-1.16869	< 0.001
		transcription elongation factor: cleaves 3		0.0005019
NF29_08405	greA	nucleotide of paused mrna	-1.17473	45
NF29 04300	vhhY	protein s18 acetylation of n-terminal alanine	-1.18122	< 0.001
NF29 08410	vhbY	RNA-binding protein	-1.18656	< 0.001
NF29_04615	vjaG	hypothetical protein	-1,19058	< 0.001
			,000	0.0005286
NF29_04700	rplJ	50s ribosomal subunit protein 110	-1.19643	02

				0.0005020
NF29_14310	yobF	hypothetical protein	-1.19802	4
NF29_13430	mtfA	hypothetical protein	-1.20542	< 0.001
NF29 00870	satP	succinate-acetate/proton symporter	-1.20969	0.0009350
NF29 13705	sdiA	transcriptional regulator of ftsqaz gene cluster	-1.21014	< 0.001
NF29 21400	lptE	a minor lipoprotein	-1.21095	< 0.001
NF29_14100	yebK	transcriptional repressor of rpib expression	-1.21559	< 0.001
NF29_04935	malS	trehalase 6-p hydrolase	-1.22186	< 0.001
NF29_06290	fabR	transcriptional repressor of fabA and fabB	-1.22428	< 0.001
NF29_05915	yihA	GTP-binding protein	-1.2302	< 0.001
NF29_16530	None	NA	-1.23038	< 0.001
NF29_12085	cvpA	membrane protein required for colicin v production	-1.23282	<0.001
NF29_12025	yfcL	hypothetical protein	-1.24242	< 0.001
NF29_21070	ybgE	cyd operon protein	-1.24375	0.0357013
NF29_13710	yecF	hypothetical protein	-1.24965	< 0.001
NF29_19750	fabA	beta-hydroxydecanoyl thioester trans-2- decenoyl-acp isomerase	-1.25507	<0.001
NF29_20795	ybhQ	hypothetical protein	-1.25803	0.0011455
NF29_07875	smg	hypothetical protein	-1.2584	< 0.001
NF29_01140	None	NA	-1.25965	0.0008597 78
NF29_18100	grxD	glutaredoxin 3	-1.26009	< 0.001
NF29_05175	rpmG	50s ribosomal subunit protein 133	-1.26134	< 0.001
NF29_19640	None	NA	-1.26289	< 0.001
NF29_05890	yihD	hypothetical protein	-1.26785	< 0.001
NF29_12555	mepS	putative lipoprotein	-1.27287	< 0.001
NF29_15405	None	NA	-1.27745	< 0.001
NF29_09970	rppH	invasion protein	-1.2785	< 0.001
NF29_06915	pitA	low-affinity phosphate transport	-1.27882	< 0.001
NF29_02170	yjfO	biofilm peroxide resistance protein	-1.27892	< 0.001
NF29_17005	lamB	phage lambda receptor protein maltose high- affinity receptor	-1.28084	0.0016288
NF29_08490	nlpI	control proteins	-1.29203	< 0.001
NF29_05775	atpI	membrane-bound atp dispensable affects expression of atpb	-1.29564	<0.001
NF29_13275	yeeX	alpha helix protein	-1.29723	< 0.001
NF29_14385	yoaB	hypothetical protein	-1.30072	< 0.001
NF29_11845	yfeD	hypothetical protein	-1.30397	< 0.001
NF29_13715	uvrY	2-component transcriptional regulator	-1.30932	< 0.001
NF29_15230	None	NA	-1.31211	0.0007076 86

NF29_21075	None	NA	-1.31838	0.0110527
NF29_11850	yfeC	hypothetical protein	-1.33862	< 0.001
NF29_21080	cydB	cytochrome d terminal oxidase polypeptide subunit ii	-1.3513	<0.001
NF29_14315	cspC	cold shock protein	-1.35378	< 0.001
NF29_05185	yicR	dna repair protein	-1.36388	< 0.001
NE20 18180	None	NA	1 36657	0.0035844
NE20 10020	fahC	5 kata digluganata 5 raduatasa	1 29/99	<0.001
NF29_19030	jubb	(3R)-hydroxymyristol acyl carrier protein	-1.36466	<0.001
NF29_00165	fabZ	dehydratase	-1.39148	< 0.001
NF29 13815	None	NA	-1.39554	0.0047005 4
NF29 18110	sodB	superoxide iron	-1.40815	< 0.001
NF29_07580	yhfA	hypothetical protein	-1.41363	< 0.001
NF29_15455	None	NA	-1.41505	< 0.001
NF29_22600	tgt	trna-guanine transglycosylase	-1.41742	< 0.001
NF29_08850	yqjI	transcriptional regulator	-1.42051	< 0.001
NE20 07095	C.	site-specific dna inversion stimulation factor dna-binding protein a trans activator for	1 42100	<0.001
NF29_07985	fis	transcription	-1.42109	<0.001
NF29_11810	None	NA	-1.42139	4
NF29_05180	rpmB	50s ribosomal subunit protein 128	-1.43677	< 0.001
NF29_07535	nirB	nitrite reductase (nad h) subunit	-1.43937	< 0.001
NF29_11115	rpoE	rna sigma-e factor heat shock and oxidative stress	-1.45532	< 0.001
NF29_09595	epd	d-erythrose 4-phosphate dehydrogenase	-1.45729	< 0.001
NF29_05060	gpmM	putative 2,3-bisphosphoglycerate-independent phosphoglycerate mutase	-1.45801	<0.001
NF29 09645	zapA	cell division protein	-1.46004	< 0.001
NF29_01825	tabA	biofilm modulator regulated by toxins	-1.48786	< 0.001
NF29_18040	slyA	transcriptional regulator for cryptic hemolysin	-1.49109	< 0.001
NF29_15165	None	NA	-1.49178	< 0.001
NF29_13875	flhD	regulator of flagellar acting on class 2 operons transcriptional initiation factor	-1.49973	<0.001
NF29 17175	fdnG	formate dehydrogenase- nitrate- alpha subunit	-1.50032	0.0010423 7
NF29 09000	rpsU	30s ribosomal subunit protein s21	-1.50689	< 0.001
NF29_04850	csp4	cold shock protein transcriptional activator of	-1 51208	<0.001
NF29_06135	tni 4	triosenhosphate isomerase	-1 51604	<0.001
NF29 20675	None	NA	-1 52333	<0.001
NF29_13820	ftn A	cytoplasmic ferritin (an iron storage protein)	-1 52374	<0.001
NF29_07000	dusR	regulator protein	-1 52866	<0.001
111 27 07990	uusD		-1.52000	~0.001

				-
NF29_19055	yceD	hypothetical protein	-1.53357	< 0.001
NF29_22630	malZ	maltodextrin glucosidase	-1.58799	< 0.001
NF29_05520	dsdC	transcriptional regulator lysr-type	-1.59098	< 0.001
NF29_12505	rplY	50s ribosomal subunit protein 125	-1.59106	< 0.001
NF29_17190	nmpC	outer membrane porin protein locus of qsr prophage	-1.60239	<0.001
NF29_21515	uspG	filament protein	-1.61184	< 0.001
NF29_11225	glnB	regulatory protein p-ii for glutamine synthetase	-1.62296	< 0.001
NF29_21040	pal	peptidoglycan-associated lipoprotein	-1.62954	< 0.001
NF29_08660	tdcD	acetate kinase	-1.63886	< 0.001
NF29_04525	yjbD	DUF3811 family protein	-1.64397	< 0.001
NF29_07530	nirD	nitrite reductase (nad h) subunit	-1.68441	0.007
NF29_11970	fadL	transport of long-chain fatty acids sensitivity to phage t2	-1.69753	< 0.001
NF29_02485	yjdM	zinc-ribbon family protein	-1.74052	< 0.001
NF29_13880	flhC	regulator of flagellar biosynthesis acting on class 2 operons transcription initiation factor	-1.75895	< 0.001
NF29_21045	tolB	periplasmic protein involved in the tonb- independent uptake of group a colicins	-1.81124	<0.001
NF29_07350	malP	maltodextrin phosphorylase	-2.25258	< 0.001
NF29_17170	fdnH	formate dehydrogenase- nitrate- iron-sulfur beta subunit	-2.39407	0.0115434
NF29_04450	malM	periplasmic protein of mal regulon	-2.70674	< 0.001
NF29_17180	fdnG	formate dehydrogenase- nitrate- alpha subunit	-2.76031	< 0.001
NF29_07355	malQ	4-alpha-glucanotransferase (amylomaltase)	-2.82673	< 0.001
NF29_04470	malF	part of maltose periplasmic	-2.83987	< 0.001
NF29_13650	fliC	flagellar biosynthesis filament structural protein	-2.91338	< 0.001
NF29_05530	dsdA	d-serine dehydratase	-3.08263	< 0.001
NF29_04475	malG	part of maltose inner membrane	-3.42657	< 0.001
NF29_04460	malK	atp-binding component of a transport system	-3.52376	< 0.001
NF29_17165	fdnI	formate dehydrogenase- nitrate- cytochrome b556 gamma subunit	-3.52976	< 0.001
NF29_05525	dsdX	transport system permease	-3.72761	< 0.001

Supplementary Table 3. PhoQ regulated genes identified from RNAseq analysis. After

RNAseq analysis of R/S subpopulations, genes that were differentially expressed between the

populations.

			Fold Change After		
	Gene		Induction		
Locus	Homolog	Predicted Function	(Log2)	q value	Ref.
NF29_17785	acrB	acridine efflux pump	3.4121	< 0.001	[18]
NF29_18075	eptA/pagB /pmrC	lipid A phosphoethanolamine transferase	2.60527	< 0.001	[19]
NF29_16360	yghA	2-deoxy-d-gluconate 3-dehydrogenase	2.55599	< 0.001	[20]
NF29_20485	ybjG	undecaprenyl pyrophosphate phosphatase	2.45085	< 0.001	[18,20]
NF29_20990	ybgS	homeobox protein	2.41473	< 0.001	[20]
NF29_07125	arnB/pmr H	aminotransferase, PLP-dependent	2.41056	< 0.001	[21,22]
NF29_11685	tktB	transketolase 2 isozyme	2.14843	< 0.001	[23]
NF29_04505	yjbE	extracellular polysaccharide production threonine-rich protein	1.99874	< 0.001	[20]
NF29_11690	talB	transaldolase a	1.83033	< 0.001	[23]
NF29_10510	srlD	glucitol -6-phosphate dehydrogenase	1.58928	0.023	[18]
NF29_21110	sucC	succinyl- beta subunit	1.4085	0.007	[18]
NF29_17110	adhP	alcohol dehydrogenase	1.25113	< 0.001	[20]
NF29_00805	carA	carbamoyl phosphate synthase small subunit CDS	1.09651	< 0.001	[18]
		2-oxoglutarate dehydrogenase			
NF29_21115	sucB	component)	1.09252	0.001	[18]
NF29 20670	dps	global starvation conditions	1.07932	0.002	[20]
		heat shock protein atpase homologous to			
NF29_06185	hslU	chaperones	1.07091	< 0.001	[20]
NF29_12260	nuoG	nadh dehydrogenase i chain g	1.03827	0.010	[18]
NF29_21870	mgtA	mg2+ transport p-type 1	0.909424	0.004	[20,24]
NF29 15365	rstA	(sensor)	0.899441	0.040	[18,20,25]
NF29 07390	feoB	ferrous iron transport protein b	0.884113	0.007	[18,25]
NF29 01855	pyrB	aspartate catalytic subunit	0.865969	0.010	[18]
NF29_22255	acrA	membrane protein	0.803824	0.025	[18]
NF29_12760	dld	d-lactate fad nadh independent	0.780696	0.016	[20]
NF29 01280	cstA	carbon starvation protein	0.772438	0.028	[20]
NF29_14230	virK/ybjX	putative enzyme	0.729342	0.034	[18,20]
NF29_16290	yhjC	transcriptional regulator lysr-type	-0.784109	0.021	[18]

		in glycine cleavage carrier of aminomethyl moiety via covalently bound lipoyl			
NF29_09675	gcvH	cofactor	-0.796513	0.031	[23]
NF29_08500	mtr	tryptophan-specific transport protein	-0.810735	0.020	[20]
NF29_02310	frdA	fumarate flavoprotein subunit	-0.830201	0.029	[18]
NF29_11305	hscA	heat shock member of hsp70 protein family	-0.876531	0.007	[18]
NF29_20010	serC	3-phosphoserine aminotransferase	-0.883788	0.012	[18]
NF29_04510	pgi	glucosephosphate isomerase	-0.892992	0.013	[20]
NF29_02780	speG	spermidine n1-acetyltransferase	-0.985465	0.006	[18]
NF29_20055	dmsB	fe-s subunit	-1.14131	0.002	[18]
NF29_06115	pfkA	6-phosphofructokinase i	-1.15722	0.001	[18]
NF29_04935	malS	trehalase 6-p hydrolase	-1.22186	< 0.001	[18]
NF29_07985	fis	site-specific dna inversion stimulation factor dna-binding protein a trans activator for transcription	-1.42109	<0.001	[20]
NF29_07535	nirB	nitrite reductase (nad h) subunit	-1.43937	< 0.001	[18]
NF29_18040	slyA	transcriptional regulator for cryptic hemolysin	-1.49109	< 0.001	[18]
NF29_17190	nmpC	outer membrane porin protein locus of qsr prophage	-1.60239	< 0.001	[20]
NF29_08660	tdcD	acetate kinase	-1.63886	< 0.001	[20,24]
NF29_11970	fadL	transport of long-chain fatty acids sensitivity to phage t2	-1.69753	< 0.001	[18,20]
NF29_04450	malM	periplasmic protein of mal regulon	-2.70674	< 0.001	[18]
NF29_04470	malF	part of maltose periplasmic	-2.83987	< 0.001	[18,23]
NF29_04475	malG	part of maltose inner membrane	-3.42657	< 0.001	[18,23]
NF29_04460	malK	atp-binding component of a transport system	-3.52376	< 0.001	[18]
NF29_05525	dsdX	transport system permease	-3.72761	< 0.001	[20]
NF29_04455	lamB	phage lambda receptor protein maltose high-affinity receptor	-3.80665	< 0.001	[18]

Primer	Seguence (51 21)	Application
Name		linearize
110	CAACAGGTTGAACTGCTGATCTTCGCCTTTTTACGGTTCCTGGCC	pEX100T
	GGTTTAACGGTTGTGGACAACAAGTTTCTACGGGGTCTGACGCTC	linearize
111		pEX100T
108	GGCCAGGAACCGTAAAAAGGCGAAGATCAGCAGTTCAACCTGTTG	R6K ori
109	GAGCGTCAGACCCCGTAGAAACTTGTTGTCCACAACCGTTAAACC	R6K ori
		phoQ
142	TATGATAGAATTTGACGTCGCCCCGGTTTACTCAATGTTTATCC	promoter
142		region
	GTATGTGGCGTAAAATCCCTCTCATTTACAGGTGTTCATTGAGATAAT	promoter
143	AATC	region
	GATTATTATCTCAATGAACACCTGTAAATGAGAGGGATTTTACGCCAC	
144	ATAC	phoQ gene
145	GGTCTGCTAGTTGAACGGATCTTAACTATCGTTCAATGTGGGCTGC	phoQ gene
	GCCCACATTGAACGATAGTTAAGATCCGTTCAACTAGCAGACCATTAT	linearize
146	C	pBAV-1K-
146		15-GFP linearize
	CATTGAGTAAACCGGGGCGACGTCAAATTCTATCATAATTGTGGTTTC	nBAV-1K-
147		T5-GFP
	GAATTACGCTAATTGAAAATTTTTTTTTTGACTCAATATCTAGACTTGC	HmR
79		cassette
80	CCTCGCATTTTTCACATAACGGGTCAGGCGCCGGGGGGGG	HmR cassette
		phoQ
	GAGTCAAAAAAAAATTTTCAATTAGCGTAATTCGAACAGGTAGCCC	upstream
81		tragment
	CTCATTACCCTGTTATCCCTACCCGGGCGCATTGCTACGTCATCACCT	unstream
118	G	fragment
		phoQ
	ACCGCCCCGGCGCCTGACCCGTTATGTGAAAAATGCGAGG	downstream
82		fragment
		downstream
119		fragment
ont A 1E		qRT-PCR of
eptA-IF	GUATIATIOUUUTUGUA	eptA
eptA-1R	AGCGCATCCGATCGTCAAT	qRT-PCR of
-		eptA
arnB-2F	CGCCGGAACGTACTACAAGA	arnB
ornP 2D	GGGCATTATCCGTGACGACT	qRT-PCR of
amb-2K	UUULATTATCCUTUACUACI	arnB
		qRT-PCR of
rpoD-F3		rpoD
rpoD-R3	GGTGGAGAACTTGTAACCAC	rpoD
100 100		-7~-

Supplementary Table 4. Primers Used for Bacterial Cloning.

CHAPTER 3: Resistance Inhibitor Suppresses Lipid A Modifications and Reverses

Colistin Resistance in Acinetobacter baumannii

<u>Note:</u> Chapter 3 is adapted from a manuscript in collaboration with Yuhong Du, Spandan Chennamadhavuni, Chui Yoke Chin, Jordan Valdez, Dennis Liotta, Haian Fu, James Snyder, James Nettles, and David Weiss from Emory University along with Courtney Chandler and Robert Ernst from the University of Maryland, Baltimore

Author Contributions: DSW and EKC designed the study. EKC, YD, and HF performed the high throughput in vitro screen. JN and JS performed the *in silico* screen. SC and DL synthesized compounds and performed chemical analyses, EKC wrote the manuscript

Abstract

colistin.

Antibiotic resistant bacterial infections are a significant cause of morbidity and mortality in the United States, accounting for greater than 2 million cases and 23,000 deaths annually. If left unchecked, deaths due to antibiotic resistance are predicted to reach 10 million each year, roughly equivalent to one death every 3 seconds. According to the World Health Organization, multidrug resistant infections caused by the Gram negative nosocomial pathogen Acinetobacter baumannii are a critical concern, resulting in treatment with last-line antibiotics such as the outer membranetargeting cationic antimicrobial colistin. Colistin resistance in A. baumannii is controlled by the NaxD deacetylase, a protein involved in modification of the outer membrane lipid A component of lipopolysaccharide (LPS). A small molecule inhibitor of NaxD was identified by two tandem high-throughput screens: (1) an in vitro cell-based screen for molecules that re-sensitize resistant bacteria to colistin and (2) an *in silico* screen for compounds predicted to bind NaxD using a protein homology model. The inhibitor restored bactericidal activity of colistin against colistinresistant Acinetobacter baumannii. Inhibitor mediated killing was due to a naxD-dependent decrease in the colistin minimal inhibitory concentration, with no effect on bacterial viability in the absence of antibiotic. Furthermore, mass spectrometry revealed a reduction in colistin-resistant lipid A modifications in the presence of inhibitor. Finally, the inhibitor reduced the colistin minimal inhibitory concentration of A. baumannii up to 128-fold, restoring colistin susceptibility in highly resistant clinical strains. This small-molecule inhibitor demonstrates that modulation of an outer membrane resistance response can re-sensitize A. baumannii to the last-line antibiotic

Introduction

In a 2013 report released by the CDC, it was estimated that greater than 23 million antibiotic resistant infections occur annually in the United States, accounting for at least 23,000 deaths each year and placing a significant strain on the healthcare system (1). The burden of antibiotic resistance is not restricted to the United States, as a separate report sponsored by the Wellcome Trust and the UK Department of Health estimated that nearly 700,000 deaths were attributed to antibiotic resistance worldwide in 2014 (2). Antibiotic resistant infections caused by carbapenem-resistant *Acinetobacter baumannii* are of particular concern, as this organism was recently named a critical priority pathogen by the World Health Organization for which new antibiotics need to be developed (3). The incidence of carbapenem-resistant *A. baumannii* infections has increased in recent years, with reports of resistance commonly ranging between 45-64% of all isolates observed (4-7). As a result, treatment with polymyxin antibiotics such as colistin in either monotherapy or in combination with other drugs is sometimes the only therapeutic option (8-10). Unfortunately, reports of colistin resistance in carbapenem-resistant *A. baumannii* infections have already surfaced (7, 11).

Colistin is a bactericidal cationic antimicrobial peptide antibiotic that exerts its activity through interactions with the negatively charged lipid A molecule in the outer membrane of Gram negative bacteria (12, 13). Upon association with lipid A, colistin subsequently disrupts the outer membrane to induce membrane depolarization and leakage of contents (14). Resistance to the cationic antibiotic colistin in *A. baumannii* is typically associated with decoration of the phosphate groups on lipid A by molecules such as phosphoethanolamine that mask the phosphate-associated negative charge, thereby reducing polymyxin affinity (15, 16). Our laboratory recently identified *naxD* as a gene that supports polymyxin resistance in *A. baumannii* by facilitating the addition of

galactosamine to the outer membrane molecule lipid A (17). NaxD is a membrane-associated deacetylase of the YdjC superfamily that converts undecaprenyl phosphate (UDP) linked N-acetylgalactosamine to galactosamine, a precursor step that was previously found to be required for galactosamine attachment to the terminal phosphate on lipid A (17, 18). Furthermore, *naxD* mutant strains demonstrated reduced survival in the presence of polymyxin, indicating that inhibition of this protein could prove a promising target for reversing colistin resistance in *A*. *baumannii* and restoring susceptibility to this last-line drug (17).

In this work, we present a strategy to inhibit lipid A modification by galactosamine and reduce colistin resistance in *A. baumannii* through the inhibition of NaxD with a small molecule inhibitor. Two tandem screens were used to identify compounds with (1) high predicted affinity for the binding pocket of a NaxD using an *in silico* homology model and (2) that synergize with colistin to inhibit the growth of colistin resistant *Acinetobacter*. Hits were assessed for conservation of a core chemotype, then further analyzed for *naxD*-dependent reduction in colistin resistance and inhibition of lipid A modifications. Finally, we demonstrate that a *naxD*-dependent small molecule inhibitor increases colistin susceptibility in an assortment of colistin resistant clinical strains, highlighting the potential for resistance inhibitor antibiotic adjuvants as a strategy to combat resistance to last-line antibiotics in multi-drug resistant *A. baumannii* infections.

Results

Tandem screens identify a conserved chemotype that promotes colistin-dependent growth inhibition. Two separate screens were utilized to identify small molecule compounds that inhibit A. baumannii growth only in the presence of colistin and also have high affinity for the NaxD colistin resistance protein. The first screen was performed in vitro using the previously reported laboratory-adapted colistin resistant A. baumannii strain MAC204 that has a colistin minimal inhibitory concentration (MIC) of 16 µg/mL (19) (Figure 1 A). Bacterial growth inhibition was assessed for 133,920 compounds in a high throughput screen using 40 µM concentrations of each compound with the addition of 1µg/mL colistin. From this screen, 622 compounds demonstrated greater than 50% growth inhibition of MAC204 relative to an untreated control (0.46% hit rate) (Figure 1B). Of those primary hits, 56 compounds (0.042% total hit rate) exerted at least 3-fold more potent inhibition in when tested in combination with colistin relative to a compound only control. The top hit molecule from this screen, designated "SC030", inhibited growth of MAC204 by greater than 90% when applied in combination with colistin but demonstrated less than 10% inhibition when used as a standalone treatment (Figure 1B). Screen 2 was performed *in silico* by docking 728,000 compound structures from an assortment of drug discovery chemical libraries into the binding pocket of a NaxD homology model, built upon the YdjC family protein crystal structure from Thermus thermophiles (Figure 1A) (20). From this in silico screen, the top 34 compounds with highest computed binding affinities for NaxD were selected for in vitro analysis of colistin-dependent growth inhibition, as in screen 1. Of the top 34 compounds identified from screen 2, a single compound designated "SC021" demonstrated greater than 40% growth inhibition in the presence of colistin while exerting less than 10% growth inhibition as a single treatment (Figure 1C). Structural analysis of the top compound from each screen revealed a conserved chemotype associated with colistin-dependent growth inhibition (Table 1, blue) that consisted of a carboxamide linked thiazole ring with variation in functional groups at each end of the molecule. The molecular structure of the screen 1 compound SC030 consisted of a 5-nitrofuran group attached to a 4.5-dichloro benzothiazole group via an amide bond, while the screen 2 hit SC021 consisted of a 3-thio-4H-1,2,4-triazole group attached to 4,5dihydro naphtho thiazole group, also via an amide bond (Table 1). Finally, we docked the compound structure from screen 1, which contained the most favorable inhibition activities in the presence and absence of colistin, into the NaxD homology model binding pocket to identify how this compound could be interacting with the protein in relation to the native substrate UDP-Nacetylgalactosamine. Docking revealed that both the inhibitor and the native substrate attain predicted interactions with the putative NaxD catalytic triad at amino acids Asp 10, His 61, and His 119 (Figure 1E). Surprisingly, the inhibitor and native substrate appeared to inhabit completely distinct recognition grooves within the NaxD model, suggesting that additional chemotypes could potentially confer NaxD inhibition through an alternative catalytic site access channel (Figure 1E).

Inhibitor restores colistin susceptibility through *naxD*. After identification of a conserved chemotype that promoted colistin-dependent growth inhibition of *A. baumannii*, we next wanted to assess the degree of growth inhibition and also confirm that activity was dependent on *naxD*. To do so, we decided to focus on inhibitor SC030 identified in screen 1, which conferred the strongest desired activities from all molecules tested of (1) high growth inhibition in the presence of colistin combined with (2) low inhibition as a standalone treatment (**Figure 1**). To confirm the *in vitro* screen assay results and determine if the inhibitor in combination with colistin was bactericidal or simply prevented growth of colistin resistant *A. baumannii*, bacterial growth

was assessed over time during treatment with either the inhibitor or the inhibitor plus colistin. In control conditions, colistin resistant MAC204 cultures inoculated with 10⁵ CFU/mL grew to a final density of approximately 4×10^8 CFU/mL after 8 hours of growth, and supplementation with neither 1 μ g/mL colistin alone nor 40 μ M inhibitor affected final density of the culture. This confirmed that MAC204 was indeed resistant to 1 µg/mL colistin and that the inhibitor exhibited no growthinhibitory activity over time (Figure 2A). Growth media supplementation with inhibitor-colistin combination again prevented outgrowth of MAC204 as previously determined in screen 1, and CFU decreased to below the limit of detection within 2 hours post-inoculation, indicating that the inhibitor restored bactericidal activity of colistin against the colistin resistant MAC204. Next, the MIC of colistin in the presence or absence of 40μ M inhibitor was assessed to determine if the inhibitor could reduce colistin resistance to a clinically susceptible level of less than 4 µg/mL by broth microdilution assay. Broth microdilution confirmed that MAC204 was resistant to colistin in the absence of inhibitor, with an MIC ranging between 16-32 µg/mL (Figure 2B). Addition of 40 μ M inhibitor conferred a colistin MIC reduction to 2 μ g/mL, indicating that the inhibitor could restore clinical susceptibility in a colistin resistant strain (Figure 2B). In order to determine if inhibitor activity was *naxD* dependent, colistin MIC was evaluated in both the resistant wild type and a $\Delta naxD$ mutant strain. Elevated colistin resistance was previously found to require NaxD (17), therefore the colistin MIC of the mutant strain should be susceptible and the inhibitor should not further alter colistin MIC unless acting on a different cellular pathway. As previously described, colistin MIC of MAC204 $\Delta naxD$ was within the range of clinical susceptibility at 2 µg/mL (Figure 2B). Furthermore, addition of the inhibitor had little effect on the colistin MIC of the *naxD* mutant, indicating that the inhibitor indeed targets colistin resistance specifically via *naxD* (Figure 2B). Finally, we assessed the potency of colistin resistance inhibition to determine

if the desired activity could be achieved with nanomolar concentrations of SC030, as is typically preferred for drug candidates identified through primary screens (21). Potency of inhibition was tested using a sublethal 0.1X MIC colistin concentration for either wild type MAC204 or $\Delta naxD$ strains, with the addition of varying concentrations of inhibitor to determine potency. As before, the inhibitor exhibited little effect on growth of the *naxD* mutant in the presence of sublethal concentrations of colistin, however a 500 nM concentration of inhibitor SC030 completely restored colistin susceptibility to the resistant wild type strain, with an IC50 of 179 nM (**Figure 2C**). This nanomolar IC50 indicates that the inhibitor has strong activity at the low doses favorable for compounds of therapeutic value.

Inhibitor blocks lipid A modifications on cellular surface. Colistin resistant strains of *A. baumannii* are reported to express phosphoethanolamine and galactosamine (GalN) modifications on the outer membrane molecule lipid A (17, 19). Furthermore, GalN modification was found to be dependent on *naxD* in *A. baumannii* (17). Given that activity of the colistin resistance inhibitor required the presence of *naxD*, we next wanted to confirm that the inhibitor also blocks later stages of the resistance pathway that occur via GalN modification to lipid A. To do so, we grew cultures of colistin resistant MAC204 in control conditions or with the addition of 40µM inhibitor SC030 and isolated the lipid A fraction from cells. Lipid A was then analyzed by MALDI-TOF mass spectrometry to determine the presence or absence of GalN modification, as previously described (17). Under control conditions in the absence of inhibitor, mass spectrometry revealed primary peaks corresponding to bis-phosphorylated hepta-acylated lipid A (*m/z* = 1910) and that modified to contain either phosphoethanolamine (*m/z* = 2033), galactosamine (*m/z* = 2071), or a potential double galactosamine modification (*m/z* = 2216) (Figure 3A). After the addition of inhibitor, the 1910 *m/z* peak corresponding to unmodified lipid A remained relatively

unchanged, however there was substantial reduction in the 2033 m/z peak representing phosphoethanolamine modification and almost complete absence of peaks 2071 m/z and 2216 m/z corresponding to single and double galactosamine modification, respectively (**Figure 3B**). Altogether, these results indicate that the inhibitor blocks critical lipid A modifications on the cellular surface to restore colistin susceptibility in a resistant strain.

NaxD Inhibitor restores colistin susceptibility in highly resistant clinical strains. Despite the promising activity of inhibitor SC030 to block colistin resistance in preliminary screens using a laboratory derived colistin-resistant strain of A. baumannii, we were still uncertain if SC030 could work effectively against other strains of A. baumannii, particularly clinical strains. Clinical isolates are known to utilize a variety of pathways to generate antibiotic resistance during infections, as environmental factors that help drive evolution of resistance may vary (22). Therefore, we next wanted to determine if the inhibitor could also reduce colistin resistance in A. baumannii strains isolated from clinical infections. To do so, colistin MIC was determined with and without the inhibitor for a panel of colistin resistant A. baumannii clinical isolates representing a variety of infection types and geographic locations. For all strains tested, colistin MIC under control conditions in the absence of inhibitor ranged between 8 µg/mL to 256 µg/mL, indicating that all strains tested had elevated colistin MIC and could be clinically classified as resistant (Figure 4). We then tested colistin resistance with the addition of 800 nM inhibitor, a concentration slightly higher than the IC50 determined using the laboratory strain MAC204 but still within the nanomolar range preferred for activity screens. MAC204 was tested as a control with these adjusted conditions, and as previously demonstrated (Figure 2B), addition of the inhibitor reduced the colistin MIC of MAC204 from a clinically resistant level down to 1 µg/mL, equivalent to an approximate 8-fold decrease in resistance (Figure 4). Likewise, addition of the inhibitor reduced

colistin MIC by at least 8-fold in 7 of the 8 clinical strains tested (**Figure 4**). Notably, the inhibitor was able to restore colistin susceptibility and reduce colistin MICs from 256 μ g/mL to less than 2 μ g/mL in even the highly resistant strains CI-4 and ARCL, representing an approximate 128-fold decrease in colistin MIC. These results highlight the promising potential of compound SC030 to exhibit broad colistin resistance inhibition against *A. baumannii* strains of clinical origin of from a variety of backgrounds.
Discussion

The development of colistin resistance in carbapenem *A. baumannii* infections is of critical concern, as colistin is one of the only remaining treatment options for such infections (8-10). As a novel strategy to combat colistin resistance, we sought to develop a small molecule inhibitor that would restore colistin susceptibility in *A. baumannii* strains that were already colistin resistant while exerting negligible effects on bacterial viability when given alone, thereby rescuing the efficacy of colistin as a last resort drug. Such strategies have been successfully implemented for some beta-lactam antibiotics with the development of clavulanic acid as an inhibitor of beta-lactamase resistance enzymes (23). Despite the success of clavulanic acid, relatively few studies have evaluated such antibiotic adjuvants in the context of colistin resistance, and no studies to date focus on inhibiting galactosamine modification of lipid A (24, 25).

Through tandem *in silico* and *in vitro* screens, we successfully identified a small molecule inhibitor chemotype of colistin resistance in *A. baumannii*. The top candidate molecule identified in the screens, SC030, exhibited little effect on bacterial growth when administered alone, however was able to restore colistin susceptibility in a colistin resistant strain. Inhibition of colistin resistance was dependent on the *naxD* gene that promotes GalN modification of lipid A in *A. baumannii*, and the inhibitor effectively blocked this lipid A modification. Finally, the colistin resistance inhibitor was effective in the majority of clinical strains tested, indicating that inhibitor SC030 has the potential to act on *A. baumannii* strains of clinical relevance. It is currently unknown why SC030 displayed little effect in one of the strains tested, however recent studies suggest that a poorly characterized mechanism of colistin resistance that is independent of lipid A modification can occur in *Acinetobacter*, and requires complete loss of lipid A from the outer membrane (26). This unique resistance mechanism is likely independent of *naxD* and could explain the lack of

inhibitor effect, however the relevance and prevalence of this mechanism is unknown. Ultimately, inhibitor SC030 was capable of restoring colistin susceptibility in highly resistant clinical strains of *A. baumannii* that had presenting colistin MICs equal to 256 μ g/mL. Taken together, these results highlight the potential for small molecule antibiotic adjuvants to restore susceptibility to the last resort antibiotic colistin, and paves the way for a new strategy to reduce the impacts of colistin resistance in *A. baumannii* by modulating expression of resistance modifications to the colistin target lipid A.

Acknowledgements

We thank Min Qui for help performing the high throughput *in vitro* screens and members of the Weiss laboratory for critical evaluation and thoughtful discussions. We also thank Monica Farley and Sarah Satola from the Georgia Emerging Infections Program, Brandi Limbago from the CDC, Paige Waterford, Neil Woolford, and Robert Hancock for kindly sharing clinical strains with us.

Figures

Figure 1. Tandem screens to identify small molecule NaxD inhibitors that synergize with colistin. (A) Overall screen strategy. Compounds were screened either for *in vitro* for colistin-dependent growth inhibition of a colistin resistant *A. baumannii* strain (screen 1) or high affinity binding *in silico* to the NaxD-homology model based on the YdjC crystal structure from *Thermus thermophilus* (screen 2). (B) Colistin-dependent growth inhibition for top 34 primary hits from *in vitro* screen 1, with the final top hit compound displayed in orange. (C) Colistin-dependent growth inhibition from *in vitro* synergy testing for top 34 hits from screen 2, with the top hit compound displayed in orange. (D) Docking of screen 1 top hit "SC030" (in salmon) into *Acinetobacter baumannii* NaxD homology model (in blue), showing proposed interaction with catalytic site

(left), substrate channel (middle), and in relation to the functional portion of the native substrate (in green) (right).

Figure 2. SC030 restores colistin susceptibility through NaxD. (A) Killing assays were performed on wild type MAC204 using either 40 μ M inhibitor SC030 (green), 1 μ g/mL colistin (blue), or 1 μ g/mL colistin plus 40 μ M inhibitor (red), relative to a no treatment control (black). Assay limit of detection indicated by dashed line. (B) Broth microdilution assessment of colistin MIC was performed with colistin alone (solid bars) or with the addition of 40 μ M inhibitor SC030 (hatched bars). P<0.05 by t-test. Breakpoint for clinical susceptibility indicated by dashed line. (C) Dose response curves for growth inhibition of wild type colistin resistant MAC204 and Δ naxD strains was performed using a 0.1X MIC sublethal concentration of colistin for each strain with varying inhibitor doses. IC50=179nM, determined using GraphPad Prism v. 5.0.

Figure 3. SC030 inhibits colistin resistant lipid A modifications. (A) MALDI-TOF profile of lipid A harvested from colistin resistant MAC204 grown under control conditions. (**B**) MALDI-TOF profile of lipid A harvested from MAC204 grown with 40µM inhibitor SC030. Modifications that correspond to phosphoethanolamine are highlighted by a red asterisk, while those representing galactosamine modification are highlighted by a blue asterisk.

Figure 4. **Colistin MIC reduced in highly resistant clinical strains.** Colistin MIC was assessed by broth microdilution under control conditions (pink bars) or with the addition of 800nM inhibitor SC030 (orange bars). Strain MAC204 was utilized as a control. Breakpoint for clinical susceptibility indicated by dashed line.

Screen	Compound	Name
1		SC030
2		SC021

 Table 1. Top hit compounds identified through each screen.
 Conserved chemotype

(highlighted in blue) consisted of a carboxamide linked thiazole ring.

Methods

Bacteria. *Acinetobacter baumannii* colistin resistant strain MAC204 was previously generated by Robert Ernst (19). The *naxD* mutant in MAC204 was generated by replacing the *naxD* with a kanamycin resistance cassette, as previously described (17). Strains MU134, MU185, and MU151 were provided by the Georgia Emerging Infections Program, as part of the population based active surveillance for multi-drug resistant *Acinetobacter* infections in the Atlanta area. Strains ARCL and CI-4 were obtained from the Centers for Disease Control (27). Strains 4119 and 3942 were provided by Paige Waterman of Walter Reed Army Institute of Research (28). Strain AB15/132 was collected in the United Kingdom and provided by Neil Woolford (16). Strain C14 was collected was provided by Robert Hancock at the University of British Columbia.

Colistin susceptibility assays. Susceptibility testing was performed by broth microdilution using Mueller Hinton broth (MHB) in 96-well flat bottom microtiter plates according to CLSI guidelines. In brief, colistin sodium sulfate (Sigma) was dissolved in water and potency adjusted to achieve the desired concentrations. Inhibitor SC030 (Emory Chemical Biology Discovery Center ID# 26620219) was dissolved in DMSO and diluted to appropriated concentrations in sterile distilled water. Overnight cultures were grown in MHB at 37°C with aeration, then back diluted in MHB to obtain appropriate cell density for a final assay concentration of $5x10^5$ CFU/mL. Growth was assessed after 20 hr incubation at 37°C, without aeration.

In vitro screen. High throughput screening was performed at the Emory Chemical Biology Discovery Center in 384-well plates, using 25% TSB supplemented with 0.5mM FeCl₃. Compounds were dissolved in DMSO and assayed at 40uM concentration. Overnight cultures of bacteria were inoculated as above for colistin susceptibility assays. Plates were incubated at 30°C

for 20hrs without aeration. Data were analyzed using Cambridge Bioassay. Where appropriate, colistin was added to the assay at a final concentration of 1 μ g/mL. Primary positive hits demonstrated greater than 50% growth inhibition in the presence of colistin and final hits demonstrated greater than 3-fold inhibition when applied as a colistin-inhibitor treatment relative to an inhibitor only control.

In silico screen. A homology model of *A. baumannii* NaxD (NCBI gene ID A1S_2623) was generated with Chimera (https://www.cgl.ucsf.edu/chimera/) using the crystal structure of *T. thermopilus* Ydjc family protein TTHBO29 (20). Compound structures for virtual screening were obtained from the MayBridge (https://www.maybridge.com) and Specs (http://www.specs.net/snpage.php?snpageid=home) screening compound chemical databases, and interaction of structures with the NaxD model was screened using Glide-docking requesting 5 poses per structure. Top scoring structures were saved, and compounds ordered from the respective libraries for downstream *in vitro* screening as above.

Lipid A Analysis. Lipid A was harvested and analyzed as previously described (17). In brief, bacterial cultures were grown at 37°C in Mueller Hinton broth containing 40 μ M SC030 (where applicable) and a 0.1X MIC subinhibitory concentration of colistin to induce maximal lipid A modification. Cultures were harvested at OD600=1.0, washed in PBS, and pellets frozen for downstream lipid A extraction. Pellets were processed by incubation at 37°C in isobutyric acid and ammonium hydroxide, pelleted, and supernatants collected for lipid A isolation by resuspension in 3:1.5:0.25 C:M:H₂O with Dowex beads (Sigma). Spectra were acquired by MALDI-TOF in negative ion mode on a Bruker microFlex and processed using flexAnalysis software.

References:

- Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention; 2013.
- 2. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014.
- GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS. Geneva: World Health Organization; 2017.
- 4. Su CH, Wang JT, Hsiung CA, Chien LJ, Chi CL, Yu HT, et al. Increase of carbapenemresistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: association with hospital antimicrobial usage. PLoS One. 2012;7(5):e37788.
- Weiner LM, Fridkin SK, Aponte-Torres Z, Avery L, Coffin N, Dudeck MA, et al. Vital Signs: Preventing Antibiotic-Resistant Infections in Hospitals - United States, 2014. MMWR Morbidity and mortality weekly report. 2016;65(9):235-41.
- Yong D, Shin HB, Kim YK, Cho J, Lee WG, Ha GY, et al. Increase in the Prevalence of Carbapenem-Resistant Acinetobacter Isolates and Ampicillin-Resistant Non-Typhoidal Salmonella Species in Korea: A KONSAR Study Conducted in 2011. Infection & chemotherapy. 2014;46(2):84-93.
- Zilberberg MD, Kollef MH, Shorr AF. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: A survey study. Journal of hospital medicine. 2016;11(1):21-6.
- Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America.

Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2009;48(1):1-12.

- 9. Paul M, Daikos GL, Durante-Mangoni E, Yahav D, Carmeli Y, Benattar YD, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. The Lancet Infectious diseases. 2018;18(4):391-400.
- Zusman O, Altunin S, Koppel F, Dishon Benattar Y, Gedik H, Paul M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. The Journal of antimicrobial chemotherapy. 2017;72(1):29-39.
- 11. Nowak J, Zander E, Stefanik D, Higgins PG, Roca I, Vila J, et al. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. The Journal of antimicrobial chemotherapy. 2017;72(12):3277-82.
- Moore RA, Bates NC, Hancock RE. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansylpolymyxin. Antimicrobial agents and chemotherapy. 1986;29(3):496-500.
- Pristovsek P, Kidric J. Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. Journal of medicinal chemistry. 1999;42(22):4604-13.
- Koike M, Iida K, Matsuo T. Electron microscopic studies on mode of action of polymyxin. Journal of bacteriology. 1969;97(1):448-52.
- 15. Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC

17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrobial agents and chemotherapy. 2011;55(8):3743-51.

- Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, et al.
 Phosphoethanolamine modification of lipid A in colistin-resistant variants of
 Acinetobacter baumannii mediated by the pmrAB two-component regulatory system.
 Antimicrobial agents and chemotherapy. 2011;55(7):3370-9.
- Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS. A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2015;59(12):7911-4.
- Llewellyn AC, Zhao J, Song F, Parvathareddy J, Xu Q, Napier BA, et al. NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. Molecular microbiology. 2012;86(3):611-27.
- Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV, Hazlett KR, et al. Unique structural modifications are present in the lipopolysaccharide from colistinresistant strains of Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2013;57(10):4831-40.
- 20. Imagawa T, Iino H, Kanagawa M, Ebihara A, Kuramitsu S, Tsuge H. Crystal structure of the YdjC-family protein TTHB029 from Thermus thermophilus HB8: structural relationship with peptidoglycan N-acetylglucosamine deacetylase. Biochem Biophys Res Commun. 2008;367(3):535-41.
- Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-49.

- 22. Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrobial agents and chemotherapy. 2015;59(1):536-43.
- Reading C, Cole M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrobial agents and chemotherapy. 1977;11(5):852-7.
- Brackett CM, Furlani RE, Anderson RG, Krishnamurthy A, Melander RJ, Moskowitz SM, et al. Second Generation Modifiers of Colistin Resistance Show Enhanced Activity and Lower Inherent Toxicity. Tetrahedron. 2016;72(25):3549-53.
- 25. Harris TL, Worthington RJ, Hittle LE, Zurawski DV, Ernst RK, Melander C. Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance. ACS Chem Biol. 2014;9(1):122-7.
- 26. Boll JM, Crofts AA, Peters K, Cattoir V, Vollmer W, Davies BW, et al. A penicillinbinding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(41):E6228-e37.
- Napier BA, Burd EM, Satola SW, Cagle SM, Ray SM, McGann P, et al. Clinical use of colistin induces cross-resistance to host antimicrobials in Acinetobacter baumannii. mBio. 2013;4(3):e00021-13.
- 28. Lesho E, Yoon EJ, McGann P, Snesrud E, Kwak Y, Milillo M, et al. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. The Journal of infectious diseases. 2013;208(7):1142-51.

CHAPTER 4: Discussion and Conclusion

The rise in antibiotic resistance over the last several years has raised global healthcare concerns regarding the continued successful treatment of patients with bacterial infections. Antibiotic resistance has specifically been highlighted by public health organizations such as the Centers for Disease Control and the World Health Organization as a significant problem, warranting increased disease surveillance and a renewed research focus to help reduce long term consequences conferred by untreatable infections (1, 2). Antibiotic resistance was noted in particular as a growing problem for Gram negative bacteria that historically caused nosocomial infections and have now developed resistance to the preferred cell-wall acting antibiotics of the cephalosporin and carbapenem classes (3, 4). These types of infections, including those caused by the species *Enterobacter cloacae* and *Acinetobacter baumannii*, are associated with increased morbidity and mortality and may require treatment with the cationic antimicrobial colistin as an option of last resort (3, 5, 6). Colistin was initially introduced to the clinic several decades ago, however its usage fell out of favor after the development of alternative antibiotics with more favorable toxicity profiles (7). Unfortunately, the recent increases in nonsusceptibility to more favored classes of antibiotics, such as the carbapenems, have led to reintroduction of colistin usage and a corresponding increase in resistance to this last-line drug (8, 9).

As a whole, the insights revealed through this dissertation serve to enhance our knowledge pertaining to the biology of antibiotic resistance. In particular, this work focused the problem of colistin resistance as an opportunity to explore two complementary sides of the resistance problem by: (1) deciphering the bacterial genetics of a colistin resistance mechanism, and (2) utilizing genetic information to identify novel approaches to manipulate the expression of colistin resistance. Given that colistin has become an increasingly important antibiotic in recent years, it is imperative that we fully understand colistin resistance mechanisms and identify methods to combat resistance in order to prolong the efficacy of this last resort drug.

One elusive form of colistin resistance that was previously noted in the literature but poorly characterized was heteroresistance. These reports of heteroresistance typically described a culture of bacteria that appeared predominantly susceptible to the antibiotic, however the appearance of breakthrough colonies growing on elevated concentrations of drug was usually noted (10). In Chapter 2, we further characterized the properties of antibiotic heteroresistance utilizing a model of colistin heteroresistant E. cloacae. With this model, we confirmed that only a subpopulation of cells within the bacterial culture were capable of survival and growth on high concentrations of colistin, and moreover identified that the resistant subpopulation prevalence could change in response to environmental pressures. In depth interrogation of genomic and transcriptomic data revealed that the colistin susceptible and resistant cell populations appeared genetically identical but exhibited markedly different gene expression profiles. We subsequently identified a transcriptional signature that was upregulated in the resistant population and corresponded to the PhoPQ two component regulatory system. This hallmark paved the way for identification of the sensor kinase gene phoQ of this two component system as being required for colistin heteroresistance. phoQ was also required for high-level expression of arnB, a gene involved in the production of aminoarabinose modifications to the outer membrane molecule lipid A, which is widely recognized as the colistin drug target. Finally, we demonstrated that phoQ was required for colistin treatment failure in a murine model of infection with colistin heteroresistant E. cloacae.

Future directions for this study will aim to characterize the population dynamics of the resistant subpopulation. Remaining questions include identifying how resistant cells arise within a population and also determining if resistance is heritable or transiently expressed in these cells.

An important point to note is that the gene phoQ is widely conserved throughout many species of Gram negative *Enterobacteriaceae*, including other strains of *E. cloacae* and additional ESKAPE pathogen species that include *Escherichia coli* and *Klebsiella pneumoniae* (11, 12). Given the prevalence of this gene and the apparent lack of colistin heteroresistance in all strains within these species, it is critical that we identify additional genetic factors that regulate the heteroresistance phenomenon so that a more complete understanding of colistin heteroresistance can be developed.

In addition to our work, recent publications have suggested additional mechanisms that contribute to heteroresistance. Mutations in genes that regulate the activity of PhoPQ were identified in colistin heteroresistant strains of *K. pneumoniae* (13). Gene duplication events that transiently increased the chromosomal copy number of *pmrD*, a gene that links PhoPQ to additional regulatory networks, was recently implicated in low-level colistin heteroresistance in the Gram negative species *Salmonella enterica* (14). Finally, upregulation of efflux pumps was also identified in colistin heteroresistant strains of *Enterobacter cloacae*, implying that colistin toxicity in the bacterial cell can be alleviated through export from the cellular compartment (15). Altogether, the variety of mechanisms implicated in colistin heteroresistance clearly highlight that we have not yet uncovered the complete genetic pathway for this resistance phenomenon, and paves the way for future research.

Once we understand how resistance arises, new drug targets for the development of resistance inhibitors can be identified. Compounds that inhibit bacterial resistance mechanisms serve as an alternative strategy to reduce the impact of antibiotic resistance by restoring efficacy to drugs that are currently on the market. This strategy of resistance inhibition was successfully employed with the development of clavulanic acid to inhibit beta-lactamase resistance enzymes (). To achieve full efficacy, clavulanic acid is now administered as a dual treatment in conjunction

with certain beta-lactam antibiotics to treat organisms that harbor enzymatic resistance to these drugs (16).

In Chapter 3, we utilized this historical example of resistance modulation as an example to guide our strategy in developing a small molecule inhibitor that could alter colistin resistance, thereby restoring efficacy of this critical antibiotic. Previous work from our group identified the naxD colistin resistance gene in ESKAPE pathogen species of Acinetobacter baumannii, and subsequently characterized NaxD as an enzyme that primes the addition of galactosamine residues onto the lipid A molecule in the outer membrane, resulting in elevated resistance to colistin (17). Given that *naxD* mutants of A. baumannii display increased susceptibility to colistin, we sought to develop inhibitors of NaxD that could reverse colistin resistance and restore colistin efficacy against resistant strains of A. baumannii. To do so, we employed a combinatorial strategy to identify *naxD* inhibitors that would act as antibiotic adjuvants to restore colistin susceptibility in a pre-existing colistin resistant strain. Tandem high throughput screens were utilized to enrich for compounds that exhibited both (1) synergistic activity with colistin and (2) high predicted interaction with NaxD. Through these screens, a conserved inhibitor chemotype was identified, and one molecule that was representative of this chemotype successfully repressed colistin resistance with a high degree of potency, but exerted no effect on a naxD mutant strain. Furthermore, we demonstrated that the inhibitor prevented galactosamine addition to lipid A, confirming that the compound indeed blocked NaxD-dependent cellular modifications required for colistin resistance. Finally, we verified that the inhibitor could successfully restore colistin susceptibility in multiple strains of A. baumannii isolated from human infections, emphasizing the potential for this strategy to combat colistin resistance in the clinic.

Future directions for this study will include testing of the inhibitor against additional species of bacteria where NaxD homologs have been identified, such as the intrinsically colistin resistant *Francisella* species (18). Given that the inhibitor blocks resistance modifications to lipid A, there is potential for this molecule to reduce resistance to other cationic antimicrobials that target the outer membrane, such as the cathelicidin group of antimicrobial peptides produced as an innate immune defense mechanism in many organisms. Cross-resistance between colistin and the human cathelicidin LL-37 was previously demonstrated in *A. baumannii*, therefore the potential for this new inhibitor to work in such a manner is promising (19). Despite our early successes with the NaxD inhibitor *in vitro*, much works remains to fully validate the efficacy of this compound. To build on this current study, the structure activity relationship of the inhibitor with NaxD will be further explored through targeted protein mutagenesis combined with chemical modification of the inhibitor to identify which compound-protein interactions are critical for activity. These results will ultimately pave the way for future development of a modified inhibitor that exhibits more powerful activity.

In conclusion, this body of work ultimately defines a new paradigm in the antibiotic resistance field through characterization of a previously vague resistance mechanism, while simultaneously increasing our knowledge of colistin resistance and highlighting a pathway forward to help combat this global healthcare crisis.

References:

- Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention; 2013.
- 2. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014.
- Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2009;48(1):1-12.
- 4. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. The Journal of infectious diseases. 2008;197(8):1079-81.
- Lin YC, Chen TL, Ju HL, Chen HS, Wang FD, Yu KW, et al. Clinical characteristics and risk factors for attributable mortality in Enterobacter cloacae bacteremia. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. 2006;39(1):67-72.
- Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2008;46(8):1254-63.
- Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the reemerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet Infectious diseases. 2006;6(9):589-601.

- Falagas ME, Karageorgopoulos DE, Nordmann P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future microbiology. 2011;6(6):653-66.
- 9. Samonis G, Korbila IP, Maraki S, Michailidou I, Vardakas KZ, Kofteridis D, et al. Trends of isolation of intrinsically resistant to colistin Enterobacteriaceae and association with colistin use in a tertiary hospital. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2014;33(9):1505-10.
- El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clinical microbiology reviews. 2015;28(1):191-207.
- Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrobial agents and chemotherapy. 2014;58(10):5696-703.
- Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. Journal of bacteriology. 2001;183(6):1835-42.
- Halaby T, Kucukkose E, Janssen AB, Rogers MR, Doorduijn DJ, van der Zanden AG, et al. Genomic Characterization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. Antimicrobial agents and chemotherapy. 2016;60(11):6837-43.
- Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Molecular microbiology. 2016;102(2):274-89.

- Telke AA, Olaitan AO, Morand S, Rolain JM. soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump. The Journal of antimicrobial chemotherapy. 2017;72(10):2715-21.
- Reading C, Cole M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrobial agents and chemotherapy. 1977;11(5):852-7.
- Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS. A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2015;59(12):7911-4.
- Llewellyn AC, Zhao J, Song F, Parvathareddy J, Xu Q, Napier BA, et al. NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. Molecular microbiology. 2012;86(3):611-27.
- Napier BA, Burd EM, Satola SW, Cagle SM, Ray SM, McGann P, et al. Clinical use of colistin induces cross-resistance to host antimicrobials in Acinetobacter baumannii. mBio. 2013;4(3):e00021-13.

APPENDIX I: Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

by

Kathryn L. Nawrocki[†], Emily K. Crispell[†] and Shonna M. McBride *

Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA

[†]These authors contributed equally to this work. *Corresponding Author.

Keywords: Clostridium difficile; antimicrobial; antimicrobial peptide; AMP; resistance

Author Contributions: K.L.N., E.K.C. and S.M.M. wrote the manuscript.

Published in Antibiotics

2014 Dec; 3(4): 461-492. doi: 10.3390/antibiotics3040461

Abstract

Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMPmediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.

1. Introduction

Antimicrobial peptides (AMPs) and the bacterial resistance mechanisms against them have been co-evolving for eons. A diverse array of life forms can produce AMPs, which can be used to promote immune defenses, nutrient acquisition or elimination of rival organisms from the environment. As a result, AMPs are found in a multitude of environments, ranging from mammalian tissues to soil and aquatic environments. This ubiquitous presence of AMPs in the environment provides strong selective pressure to drive the development of bacterial resistance against these peptides.

AMPs are typically small, charged, amphipathic molecules that can be produced in a variety of structures. Though structurally diverse, most AMPs work by interacting with the bacterial cell surface, followed by disruption of cellular integrity. Accordingly, the majority of bacterial resistance mechanisms function by limiting the interaction of AMPs with the bacterial cell surface. Mechanisms of AMP resistance include trapping or sequestering of peptides, outright destruction of AMPs by proteolysis, removal of AMPs from the cell via active transport, and structural modification of the cell surface to avoid interaction with AMPs. Many of these resistance mechanisms are upregulated in response to AMPs, allowing the bacteria to adaptively counter the effects of AMPs. Loss of these resistance mechanisms can impair the ability of bacteria to colonize plant or animal hosts and can attenuate virulence for many pathogens. Mechanisms of resistance may evolve specifically within a bacterial lineage or be genetically transferred from other AMP-resistant organisms.

In this review, we evaluate the available literature on Gram-positive bacterial resistance mechanisms to antimicrobial peptides. This review highlights methods of AMP resistance based on mode of action and location within the Gram-positive bacterial cell. We begin with an

overview of resistance mechanisms that act on AMPs extracellularly, and then discuss bacterial cell surface alterations. Finally, we consider removal of AMPs from the bacterial cell via transport.

2. Extracellular Mechanisms of Resistance: Enzymatic Degradation and AMP Blocking

The initial site of AMP interaction is at the bacterial cell surface. As a result, extracellular mechanisms of AMP inactivation have evolved as a first line of defense to minimize damage to the bacterial cell. Extracellular AMP resistance mechanisms have arisen in two main forms: enzymatic inactivation and sequestration (see Table 1 and Figure 1). The majority of these direct targeting mechanisms have evolved to recognize cationic AMPs. Cationic AMPs are positively charged peptides that may differentially target negatively charged moieties on the outer cell envelope, including teichoic acids, lipid II, and phosphatidylglycerol [1–3].

2.1. Extracellular Proteases

The degradation of AMPs by proteases is a mechanism of resistance found in many Gram-positive species, including *Enterococcus faecalis*, *Staphylococcus aureus*, and *Staphylococcus epidermidis* [4–6]. AMP-degrading proteases generally have broad substrate specificity, are typically found in mammalian pathogens, and include both metallopeptidases and cysteine proteases [7,8]. This section will present several examples of AMP-degrading proteases produced by Gram-positive bacteria and detail their effects on resistance.

AMP-degrading proteases are often secreted by bacteria into their surrounding extracellular environments. Gelatinase, an extracellular metallopeptidase produced by some strains of the opportunistic pathogen *E. faecalis*, cleaves the human cathelicidin, LL-37, resulting in the loss of

antimicrobial activity *in vitro* [4]. The production of gelatinase by *E. faecalis* is associated with bacterial dissemination in animal models of disease and with increased incidence of dental caries in humans [9,10]. One example of a secreted protease made by *S. aureus* that confers AMP resistance is the aureolysin enzyme [5]. Aureolysin can hydrolyze the C-terminal bactericidal domain of LL-37, rendering the AMP inactive [11]. An infection model using human macrophages revealed that aureolysin contributes to Staphylococcal persistence within the phagosomal compartment [12], an environment that contains high levels of the antimicrobial peptide, LL-37 [13]. Additionally, some species of Staphylococci possess proteases that combat anionic AMPs such as dermcidin, a negatively charged peptide secreted by human sweat glands [14]. SepA (or SepP1) made by *S. epidermidis*, is a secreted metalloprotease that can cleave and inactivate dermcidin [6,15]. The SepA protease appears to specifically target dermcidin *in vitro* [6,16].

Gram-positive proteases are also capable of targeting AMPs at the bacterial surface. SpeB is a cysteine proteinase secreted by the pathogenic bacterium *Streptococcus pyogenes* [17]. SpeB has broad substrate specificity and cleaves AMPs, such as LL-37, and other host proteins such as fibrin, immunoglobulins, and other immune modulators [4,18–21]. In an example of adaptive resistance, SpeB was found to complex with the host α_2 -macroglobulin (α_2 M) proteinase inhibitor during infection [22]. The catalytically active SpeB- α_2 M complexes are retained on the bacterial cell surface by association with the *S. pyogenes* G-related α_2 M-binding protein (GRAB) [22,23]. The SpeB- α_2 M complex has higher proteinase activity against LL-37, relative to free SpeB, and reduces killing of *S. pyogenes in vitro* [22].

2.2. Protein-Mediated Sequestration

Sequestration is another extracellular mechanism of AMP resistance [24–29,101]. Some Grampositive bacteria produce extracellular or surface-linked proteins that directly bind to AMPs and block access to the cell membrane. Mechanisms of protein-mediated AMP sequestration vary between species and strains. We have highlighted specific examples of AMP sequestration mechanisms identified amongst strains of *S. pyogenes*, *S. aureus*, *Streptococcus agalactiae*, and *Lactococcus lactis*.

Proteins that inhibit AMP activity through binding can be secreted into the extracellular environment to inhibit contact of bactericidal peptides with the cellular surface. For example, the Streptococcal inhibitor of complement (SIC) produced by S. pyogenes is a hydrophilic, secreted protein that sequesters many AMPs, thereby preventing them from reaching cell-surface targets [102]. SIC binds to α -defensions, LL-37, and lysozyme, neutralizing the AMPs and inhibiting their bactericidal activity against S. pyogenes [27,102,103]. SIC production promotes bacterial survival *in vitro* and increases the virulence of *S. pyogenes* in animal models of disease [26,104]. Staphylokinase secretion by S. aureus is another example of an extracellular AMP resistance mechanism. Production of the staphylokinase protein by S. aureus occurs through the lysogenic conversion of the hlb β -hemolysin toxin gene by a bacteriophage harboring the sak gene [105– 107]. Staphylokinase binds the murine cathelicidin mCRAMP in vivo and also complexes with human defensins HNP-1 and HNP-2 to reduce their bactericidal effects [28,29]. Studies of staphylokinase binding suggest that the staphylokinase-cathelicidin complex promotes host tissue invasion by activating the conversion of plasminogen to the host extracellular matrixdegrading enzyme, plasmin, although the role this conversion plays in Staphylococcal virulence remains unclear [29,101,108].

Proteins attached to the cellular surface can also bind AMPs to prevent contact with cellassociated targets. Examples of such proteins include the M1 protein of S. pyogenes and the pilus subunit, PilB of S. agalactiae. M1 of S. pyogenes can be found on the surface of most clinical isolates and has been linked to both host tissue adherence and invasive disease [109]. A hypervariable extracellular portion of the M1 protein was shown to bind LL-37 and prevent the AMP from reaching the cell membrane [24]. The sequestration of LL-37 by M1 also promotes Streptococcal survival in neutrophil extracellular traps (NETs) by reducing LL-37 activity [24]. Like the M proteins of S. pyogenes, pili are also associated with invasive disease and promotion of host cell adherence by S. agalactiae [110,111]. Pili are large, filamentous, multimeric protein complexes expressed on the cell surface of S. agalactiae and other bacteria. Expression of the Streptococcal pilin subunit, PilB, promotes association of LL-37 with the bacterial cell surface and correlates with increased resistance to the murine cathelicidin mCRAMP in vitro [25]. In addition, pilB mutants of S. agalactiae (GBS) exhibit reduced fitness relative to wild-type strains in murine infection models [25]. These data suggest that in addition to the adhesin properties of pili, pilus-mediated binding of AMPs also contributes to S. agalactiae virulence within the host.

Another family of membrane-associated AMP resistance proteins encompasses the LanI immunity proteins of some bacteriocin producer strains. LanI proteins are typically encoded near a bacteriocin biosynthetic operon and provide protection against the bacteriocin made by the producer bacterium [112,113]. LanI-type immunity proteins are lipoproteins that anchor to the bacterial cell surface and confer resistance by either binding directly to AMPs or outcompeting AMPs by binding directly to the cellular target [114–117]. The LanI lipoproteins often work in concert with LanFEG transporters, possibly acting as substrate-binding partners for specific lantibiotics. The best characterized of the transporter-associated LanI proteins are the NisI and

SpaI lipoproteins found in strains of *L. lactis* and *Bacillus subtilis*, respectively [36,37,118] (described in transporter section). But, several lantibiotic producers encode only a LanI immunity protein and do not encode an apparent LanFEG transporter (e.g., PepI of *S. epidermidis* [119], lactocin S [120] of *L. sakei* and epicidin 280 of *S. epidermidis* [121]). In these systems, the LanI lipoprotein confers full immunity to the associated lantibiotic. Though some LanI structures have been characterized, LanI lipoproteins generally have low, if any, homology to one another [116,122]. Thus, it is unclear if mechanism of action for LanI-mediated immunity is conserved between different LanI lipoproteins.

2.3. Inhibition of AMP Activity by Surface-Associated Polysaccharides

Extracellular polysaccharide production has long been recognized as a factor that promotes both virulence and host colonization by many bacteria [123–125]. Extracellular polysaccharides are composed of structurally diverse polymers that are enzymatically produced by some Grampositive species [126,127]. Extracellular polysaccharides that are attached to the cellular surface through covalent linkages with the cell wall are known as capsules (capsular polysaccharide, or CPS), while loosely attached polymers are referred to as exopolysaccharides, or EPS [128– 130]. Polysaccharide-mediated AMP resistance is thought to occur by shielding the bacterial membrane via binding or electrostatic repulsion of AMPs [34,131].

The production of capsular polysaccharides provides resistance to a variety of AMPs and other antimicrobials and can allow some bacteria to evade host detection. Capsule-AMP binding can be mediated by the electrostatic interaction of positively charged AMPs with the negatively charged polysaccharide capsule [32]. For example, free capsular extracts from *Streptococcus pneumoniae* bind both polymyxin B and the α -defensin HNP-1, preventing these AMPs from

reaching the cell membrane and promoting bacterial survival *in vitro*. Additionally, both polymyxin B and HNP-1 promote release of the capsule from *S. pneumoniae* without loss of cell viability, suggesting that capsule release may be a mechanism of AMP resistance by sequestering AMPs away from the bacterial cell surface [32]. In another example, production of the exopolysaccharide intercellular adhesion, PIA, by *S. epidermidis* reduces killing by human defensin hBD-3, cathelicidin (LL-37), and the anionic AMP dermcidin. PIA is hypothesized to shield the bacterial membrane from the effects of AMPs [33,34]. Predictably, PIA production is associated with *S. epidermidis* virulence in multiple animal infection models [132,133]. However, while many exopolysaccharide capsules can provide resistance to AMPs, this protection is not universal to all capsule-producing Gram-positive bacteria [134–136].

3. Membrane and Cell Wall Modifications

The bacterial cell wall and membrane comprise a major target for the bactericidal activity of AMPs [137–139]. Bacteria frequently modify cell surface components to counter the effects of AMPs by reducing the net negative charge of the cell, altering membrane fluidity, or directly modifying AMP targets [140–142].

3.1. Repulsion of AMPs

Many AMPs target bacterial cells through electrostatic interactions with the cell surface [137–139]. The net charge of the bacterial cell surface is generated by anionic components of the cell membrane and cell wall, such as phospholipids and teichoic acids [143–145]. In turn, positively charged AMPs are attracted to the negatively charged bacterial cell surface [144,145]. Hence, a

broad strategy of resistance to positively charged AMPs is to alter the components on the cell surface to decrease the net negative charge of the cell, thereby limiting the electrostatic interaction of AMPs with the bacterial cell surface.

One component of the bacterial cell membrane that carries a negative charge is phosphatidylglycerol [144,145]. But in many Gram-positive bacteria, the negative charge on phosphatidylglycerol can be masked via the addition of a positively charged amino acid by the multipeptide resistance factor protein, MprF [146,147]. MprF is an intergral lysylphosphatidylglycerol synthetase that synthesizes and translocates aminoacylatedphosphatidylglycerol to the external membrane layer of the bacterial cell. MprF synthases were initially found to incorporate a positively charged lysine into phosphatidylglycerol (Lys-PG), decreasing the net negative charge on the bacterial membrane. In S. aureus, Listeria monocytogenes, E. faecalis, Enterococcus faecium, B. subtilis, and Bacillus anthracis, the aminoacylation of phosphatidylglycerol by MprF confers resistance to positively charged AMPs [47-49,148-150]. Additionally, an MprF homolog is present in Mycobacterium tuberculosis, which also confers resistance to positively charged AMPs. This MprF homolog, LysX, carries out the same functions as MprF, with the addition of a lysyl-tRNA synthetase activity [46,151]. Lysinvlation of phosphatidylglycerol confers resistance to a broad spectrum of AMPs, including human defensins, gallidermin, nisin, lysozyme, daptomycin, polymyxin B, and vancomycin (Table 1) [46,150–159]. In addition to lysine modifications, some MprF orthologs can modify membrane phosphatidylglycerol with multiple amino acids, including alanine and arginine [149,160]. The enhanced antimicrobial resistance provided by aminoacylation of phosphatidylglycerol is also associated with increased virulence for several Gram-positive pathogens [46,48,49,161,162].

The Dlt pathway is another enzymatic mediator of AMP resistance that has been identified and studied in many Gram-positive genera including *Staphylococcus*, *Listeria*, *Enterococcus*, *Bacillus*, *Clostridium*, *Streptococcus*, and *Lactobacillus* [2,40–45,163–168]. The enzymatic functions of the DltABCD proteins lead to the D-alanylation of teichoic acids and lipoteichoic acids of the cell wall [169]. The addition of D-alanine to the backbone of teichoic acids can mask the negative charge present along these glycopolymers, thereby leading to increased surface charge and lower attraction of positively charged antimicrobials [169]. Similar to MprF, D-alanylation of teichoic acids by the Dlt pathway leads to a global change in charge distribution across the cell surface, allowing resistance to a broad range of cationic AMPs including vancomycin, nisin, gallidermin daptomycin, polymyxin B, lysozyme, and cathelicidins [2,39,141,163,166,170–172].

In addition to charge modification of teichoic acids, high-resolution microscopy of Group B *Streptococcus* revealed that D-alanylation could increase cell wall density, leading to increased surface rigidity [173]. Accordingly, D-alanylation may confer resistance to AMPs both by reducing the electrostatic interactions between AMPs and the cell surface and by decreasing the permeability of the cell wall [173]. As AMPs are ubiquitous within animals, D-alanylation of the cell wall can affect host colonization for pathogens and non-pathogenic species [41,152,164,174,175].

3.2. Target Modification

The cell wall is a common antimicrobial target for Gram-positive organisms. As a result, bacteria have evolved multiple modifications that limit antimicrobial targeting of the cell wall. Lysozyme, or *N*-acetylmuramide glycanhydrolase, an antimicrobial enzyme, is an important component of the host innate immune defense. Lysozyme is cationic at physiological pH, which

facilitates its interaction with negatively charged bacterial surfaces. The cationic and muramidase activities of lysozyme directly target the bacterial peptidoglycan, the primary constituent of the cell wall [176]. The muramidase domain of lysozyme hydrolyzes the β -1,4 linkages between *N*acetylglucosamine and *N*-acetylmuramic acid of peptidoglycan, leading to the breakdown of the peptidoglycan macromolecular structure and eventual lysis of the cell [177–179]. As a result, bacterial resistance mechanisms have evolved to counter both the muramidase and cationic activities of lysozyme. In this section, we detail the mechanisms by which peptidoglycan is modified to limit lysozyme activity.

Two peptidoglycan modifiers that contribute to AMP resistance in some Gram-positive bacteria are the enzymes PgdA and OatA. It is proposed that the modifications made by both of these enzymes lead to steric hindrance between AMPs and the cell surface, thereby limiting the contact between lysozyme and its target [180]. PgdA deacetylates *N*-acetylglucosamine residues of peptidoglycan, generating a less favorable substrate for lysozyme [181–184]. PgdA was first implicated as a peptidoglycan deacetylase in the respiratory pathogen *S. pneumoniae*. PdgA and other peptidoglycan deacetylase orthologs have been shown to contribute to AMP resistance in many bacteria, including *Enterococcus*, *Streptococcus*, *Listeria* and *Bacillus* species [56–58,180,183 55,185]. Moreover, deacetylation of peptidoglycan enhances colonization and virulence in several pathogens, including *E. faecalis*, *L. monocytogenes* and *S. pneumoniae* [185–187]. As *N*-acetylglucosamine deacetylases are encoded within the genomes of most Grampositive bacteria, these enzymes likely contribute to lysozyme and host colonization in many more species.

OatA (also known as Adr in *S. pneumoniae*) is another type of peptidoglycan modifying enzyme found in Gram-positive bacteria that confers resistance to lysozyme [188–190]. OatA
performs *O*-acetylation at the C6-OH group of *N*-acetylmuramyl residues in peptidoglycan [188– 190]. *O*-acetylation of *N*-acetylmuramyl residues is thought to prevent lysozyme from interacting with the β -1,4 linkages of peptidoglycan by steric hindrance [180]. OatA and orthologous proteins have been characterized in *Staphylococcus*, *Enterococcus*, *Lactococcus*, *Bacillus*, *Streptococcus* and *Listeria* species [51,52,54,58,180,187,191]. Like deacetylation mechanisms, *O*-acetylation of peptidoglycan is likely to be widespread among Firmicutes and has been noted to contribute to virulence in animal models of infection [52,54,187,190,192].

A peptidoglycan modifier unique to *Mycobacterium* is the enzyme NamH (<u>N-a</u>cetyl<u>m</u>uramic acid <u>hy</u>droxylase). NamH hydroxylates *N*-acetylmuramic acid residues leading to the production *N*-glycolylmuramic acid. The modification of peptidoglycan by NamH was determined to confer lysozyme resistance in *Mycobacterium smegmatis* [59]. It is likely that NamH confers lysozyme resistance to Mycobacterial species through the generation of *N*-glycolylmuramic acid, as NamH is well conserved in Mycobacterial genomes. It is hypothesized that *N*-glycolylmuramic acid residues may stabilize the cell wall; however, the mechanism of resistance is not fully understood [193]. However, recent work suggests that the presence of an *N*-glycolyl group blocks lysozyme from accessing the

 β -1,4 peptidoglycan bonds, preventing the muramidase activity of lysozyme and leaving the cell wall intact [59].

3.3. Alterations to Membrane Order

Apart from AMP repulsion and AMP target modifications as mechanisms of resistance, other changes in membrane composition can also reduce the susceptibility of bacteria to AMP-mediated killing. Alterations in Gram-positive membrane composition appear to contribute to

AMP resistance by affecting the peptide interactions with the cell membrane. In particular, the degree of membrane fluidity appears to be an important determinant of AMP susceptibility.

The addition of other membrane components can also increase rigidity and lead to resistance to host AMPs and daptomycin in *S. aureus* [198]. Increased membrane rigidity in some Grampositive organisms can result from carotenoid overproduction [199,200]. Carotenoids are organic pigments made of repeating isoprene units that are produced by plants, bacteria, and fungi [201]. Carotenoids, such as staphyloxanthin made by *S. aureus*, can stabilize the leaflets of the cell membrane by increasing order in the fatty acid tails of membrane lipids and lead to decreased susceptibility to AMPs [199,202,203]. This stabilization of fatty acid tails leads to an increase in cell membrane rigidity, which is suggested to limit insertion of AMPs into the membrane [204,205].

Though a higher concentration of saturated fatty acids in the membrane confers AMP resistance in some bacteria, other bacteria increase unsaturated fatty acid concentrations to increase resistance. In *S. aureus*, increased levels of unsaturated membrane lipids increase the resistance to the host AMP, tPMP (thrombin-induced platelet microbicidal proteins) [206]. Unsaturated fatty acids contain double bonds along the length of their carbon chain, which causes lipid disorder, thereby increasing membrane fluidity and impacting resistance to antimicrobials [206,207]. Other studies in AMP resistance found that methicillin-resistant *S. aureus* isolates that developed resistance to daptomycin also had increased resistance to host tPMPs and the human neutrophil peptide, hNP-1. These co-resistant strains have a phenotype defined by increased cell wall thickness and increased membrane fluidity [198]. It is hypothesized that these altered membrane arrangements may prevent efficient AMP insertion into the membrane [198.206.207].

At present, there is no clear explanation as to how alterations in membrane fluidity or rigidity lead to AMPs resistance. From the examples discussed above, it could be argued that the degree of fluidity required for resistance to a particular AMP may be as varied as the structures of the AMPs themselves, or perhaps is constrained to groups with similar mechanisms of action.

4. AMP Efflux Mechanisms

Transport, or efflux, is a common mechanism used by Gram-positive bacteria for the removal of toxic compounds and antimicrobials from cells. The majority of antimicrobial peptide efflux

mechanisms consist of multi-protein ABC (ATP-binding cassette) transporter systems, which use ATP to drive the transport of substrates across or out of the cell membrane [208]. There are three primary types of ABC transporter systems implicated in Gram-positive AMP resistance: threecomponent ABC-transporters, two-component ABC-transporters, and single protein multi-drug resistance transporters, or MDR

pumps [209]. All ABC-transporters are composed of two distinct domains: the transmembrane domain (permease) and the nucleotide-binding domain (NBD), which facilitates ATP-binding [209]. A less common efflux mechanism that has been identified is the Major Facilitator (MFS) Transporter module, which facilitates small solute transport via a chemiosmotic ion gradient [210]. This section will present the key types of AMP transporters found in Gram-positive bacteria and highlight the AMP resistance characteristics of these systems.

4.1. Three-Component (LanFEG) Transporter Systems

Three-component ABC transporters, or LanFEG systems, are best characterized in AMPproducing bacteria. LanFEG systems are members of the ABC-type 2 sub-family of transporters, and consist of one protein with a nucleotide-binding domain (LanF) and two distinct transmembrane permeases (LanE and LanG) [211]. The majority of the characterized LanFEG systems are self-immunity mechanisms that provide protection against bacteriocins (typically lantibiotics) made by bacteriocin producer strains [38,112] (Table 1). The LanFEG transporters are often found in conjunction with LanI membrane-associated lipoproteins that can function in tandem with the transporter to provide greater resistance to AMPs [112,212,213].

The best-characterized LanFEG transporters are the NisFEG and SpaFEG systems found in strains of *L. lactis* and *B. subtilis* that produce the lantibiotic AMPs nisin and subtilin,

respectively. Both NisFEG and SpaFEG provide resistance to their cognate substrates, but full resistance is achieved in concert with their associated substrate-binding lipoproteins, NisI and SpaI [100,213–215]. Immunity to the lantibiotic nukacin ISK from *Streptococcus warneri* does not involve a LanI protein, but instead contains a distinct membrane-associated protein termed NukH [96,216]. In contrast to the LanI proteins, NukH is not a lipoprotein; however, NukH does appear to function as a substrate-binding partner to the NukFEG transporter. Similar to LanI, NukH confers partial immunity to nukacin ISK, but full immunity requires the complete NukFEGH system [216,217].

Most characterized LanFEG systems confer resistance only to the AMP made by a producer strain, although examples have been identified that provide resistance to multiple AMP substrates in non-producer bacteria. In Clostridium difficile, the CprABC transporter (a LanFEG ortholog) confers resistance to nisin, gallidermin, and likely other structurally dissimilar lantibiotic peptides [85,86]. The regulation of immunity and AMP biosynthetic genes are typically coupled in bacteriocin producer strains [112]. The ability of the CprABC system to confer resistance to multiple unrelated peptides may result from the uncoupling of the immunity mechanism from bacteriocin synthesis. But non-producers that have immunity genes in the absence of AMP biosynthetic operons can have relaxed substrate specificity that allows for recognition of multiple bacteriocins. Thus, Lan transporter cross-immunity to multiple AMPs could provide a significant competitive advantage to non-producer bacteria. Indeed, a homology search for LanFEG proteins reveals that the genomes of many other Firmicutes encode predicted bacteriocin transporters that are not coupled with apparent bacteriocin synthesis genes. Hence, like other antibacterial resistance mechanisms, the LanFEG systems have found their way into non-producing species [85,86].

4.2. Two-Component ABC-Transporter Systems

Two-component ABC-transporters make up the majority of transporter-mediated AMP resistance characterized in non-AMP producing bacteria. The canonical two-component ABC-transporter consists of one nucleotide-binding protein and a separate membrane-spanning permease [218,219]. Unlike most LanFEG systems, two-component transporters often provide resistance to multiple AMPs and are common among Gram-positive bacteria. As outlined in Table 1, numerous examples of these transporters have been identified that can provide resistance to AMPs produced by humans and bacteria, including cyclic peptides and some non-peptide antibiotics [218,220].

There are two main types of two-component ABC-transporter systems that confer resistance to AMPs among Gram-positive bacteria. The first and most common type is often referred to as the BceAB group [218,221]. BceAB transporter systems contain an archetypal ATP-binding protein of about 225–300 amino acids and a larger permease component that ranges in size from 620–670 amino acids. The prototype of this transporter group, BceAB, was first identified as a bacitracin resistance mechanism in *B. subtilis* [67,68]. Since the identification of BceAB, dozens of similar transporters have been discovered in pathogenic and non-pathogenic Gram-positive species, including *S. aureus, L. monocytogenes*,

S. pneumoniae, and *L. lactis* (see Table 1 for examples) [62,71,77,80]. Members of the BceAB group have demonstrated resistance to a wide-range of bacteriocins, mammalian and fungal defensins, peptide antibiotics, and other antimicrobial compounds (Table 1). Although many of the BceAB transporters confer resistance to AMPs *in vitro*, the roles of these transporters in the virulence of pathogenic species are not known.

Another common type of a Gram-positive ABC-transporter that confers AMP resistance is the BcrAB(C) system. The BcrAB(C) transporter confers resistance to bacitracin and was originally identified in a bacitracin producer strain of *Bacillus licheniformis* [81]. BcrAB transporters can be distinguished from the BceAB systems by size and topology: BcrA is an ATP-binding cassette that ranges from about 280–320 amino acids, while the BcrB permease modules are smaller, at approximately 200–250 amino acids. BcrAB is often encoded with a third protein, BcrC (or BcrD), which allows for higher resistance to bacitracin than the BcrAB transporter alone [81,222,223]. Initially it was hypothesized that BcrC functioned as part of the BcrAB ABC-transporter, however it was later demonstrated that BcrC acts as an undecaprenyl pyrophosphate (UPP) phosphatase that competes with bacitracin for UPP [222]. The BcrAB transporters are predicted to be structurally similar to the LanFEG transporters, though the Lan systems function through two dissimilar permease components, while Bcr systems operate with only one permease subunit (BcrB) [38,82,218]. Aside from the bacitracin producer strains, BcrAB and orthologous transporters have been shown to confer resistance to bacitracin in many strains of *E. faecalis*, as well as some *Streptococcus* and *Clostridium* species [35,82,83,224].

4.3. Single Membrane Protein Antimicrobial Transporters

Multi-drug resistance (MDR) ABC-transporters are common bacterial mechanisms of resistance to peptide and non-peptide antibiotics [225]. Though these transporters are most common among characterized mechanisms for non-peptide antimicrobial resistance in Grampositive bacteria, there are examples of MDR transporters that confer resistance to AMPs. One notable MDR AMP resistance mechanism consists of the LmrA/B proteins encoded by some *L. lactis* strains [60,226]. A LmrA MDR efflux pump was first described in a non-producer strain of

L. lactis [226]. LmrB is an ortholog of LmrA found in *L. lactis* strains that produce the bacteriocins LsbA and LsbB [60]. LmrA/LmrB are membrane proteins with six predicted transmembrane segments and a C-terminal, nucleotide-binding domain [60]. LmrA provides broad resistance against a long list of peptide antibiotics and cytotoxic compounds, while LmrB confers resistance to the two bacteriocins LsbA and LsbB [60,226]. A BLASTp homology search revealed the presence of additional orthologs of LmrA/B encoded within the genomes of hundreds of Gram-positive Firmicutes, though the function and significance of these remains unknown.

A less common type of single-protein transporter involved in antimicrobial peptide resistance is exemplified by the QacA transporter of *S. aureus* [61]. QacA is a member of the major facilitator superfamily (MFS) of membrane transport proteins, which use proton motive force, rather than ATP, to drive the efflux of substrates [227]. QacA confers resistance to a variety of toxic dyes, antiseptics and disinfectants [228,229]. In addition to cationic toxins, QacA provides resistance to thrombin-induced platelet microbicidal protein (tPMP), a host-derived antimicrobial peptide [61]. QacA-dependent tPMP resistance was found to confer a survival advantage in an animal model of infection, and increased resistance to tPMP in *S. aureus* also correlates with endocarditis in humans [61,230]. QacA orthologs have also been identified in other staphylococci, as well as in *Enterococcus* and *Bacillus* species, though the ability of these orthologs to transport AMPs is not understood [231,232].

5. Conclusions

Antimicrobial peptides are diverse in both structure and function and are produced by all forms of life. As such, AMPs are an ancient defense mechanism, and resistance mechanisms to AMPs have been selected for as long as AMPs have existed. Gram-positive bacteria are ancient producers of AMPs and as a consequence, these organisms likely developed some of the first AMP resistance mechanisms.

Herein we have detailed a wide variety of AMP resistance mechanisms found in Grampositive bacteria (summarized in Figure 1). AMPs resistance mechanisms can be broad spectrum, such as MprF and the Dlt pathway which function by decreasing the net negative charge of the bacterial cell surface, thereby reducing the attraction for positively charged AMPs from the cell. Conversely, AMP resistance mechanisms can be highly specific and only confer resistance to a single peptide. AMP resistance mechanisms can be confined to a particular species or genus, such as NamH in *Mycobacterium*, or can be distributed among multiple species, such as the LanFEG systems. AMPs resistance mechanisms are dynamic; they can be passed from species to species via bacteriophages or horizontal gene transfer, and can change specificity and function over time through evolution [85,86,105,233]. Under selective pressure, AMP resistance mechanisms can evolve to suit the needs of a particular species in its own niche [234].

At present, many AMPs are being investigated as potential antimicrobial therapies [235–240]. AMP drug development should be carefully vetted because like any naturally-produced antimicrobial, cognate resistance mechanisms for AMPs are already present in the producer bacterium. While these resistance mechanisms may be found more frequently in producer strains, each has the propensity to be passed on to other genera or species within a shared environmental niche. Because the presence of AMPs provides high selective pressure for the acquisition of resistance, it is important to consider the potential for resistance mechanism transfer between bacteria when developing AMPs for clinical use [241,242]. Additionally, depending on the AMP resistance mechanism that is selected for, a multitude of issues may arise if the mechanism of resistance is broad-spectrum. A broad-spectrum AMP resistance mechanism could restrict the already limited clinical treatment options for use against some Gram-positive pathogens and may undermine our own immune response by conferring resistance

to our own innate immune system peptides [243].

Antimicrobial peptide resistance is not as well characterized for Gram-positive bacteria as it is for Gram-negative bacteria. Thus, it is likely that many more mechanisms of antimicrobial resistance remain to be discovered in Gram-positive species. As more AMPs are found, new Gram-positive AMP resistance mechanisms will undoubtedly be revealed.

Acknowledgments

We give special thanks to Rita Tamayo and Adrianne Edwards for helpful criticism of this manuscript. We sincerely apologize to any colleagues whose work was not cited due to the large volume of manuscripts on this topic. This work was supported by the U.S. National Institutes of Health through research grants DK087763 and DK101870 to SMM and training grant AI106699 to KLN. The content of this manuscript is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health.

Conflicts of Interest

The authors declare no conflict of interest.

Name	Mechanism of Action	Antimicrobial Resistance	Organisms	Reference			
AMP Degradation							
Aureolysin	Protease	LL-37	S. aureus	[5,11]			
Gelatinase	Protease	LL-37	E. faecalis	[4,10]			
SepA	Protease	dermcidin	S. epidermidis	[6,16]			
SpeB	Protease	LL-37	S. pyogenes	[4,21,22]			
Sequestration/Competition for AMP target							
M Protein	Binding at surface	LL-37	S. pyogenes	[24]			
PilB	Binding at surface	cathelicidins	S. agalactiae	[25]			
SIC	Extracellular binding	α-defensins, LL-37, lysozyme	S. pyogenes	[26,27]			
Staphylokinase	Extracellular binding	Cathelicidin, defensins	S. aureus	[28,29]			
LciA	Binding at surface	Lactococcin A	L. lactis	[30,31]			
Capsule	Binding/shielding	Polymyxin B, HNP-1	S. pneumoniae	[32]			
Exopolysaccharide	Shielding/	LL-37, hBD-3,	S. epidermidis	[33–35]			
	Sequestration	dermcidin					
				[36–38]			
LanI lipoproteins	Binding or competition	lantibiotics	<i>L. lactis, B. subtilis</i> , other lantibiotic producers				
Cell Surface Modifications							
DltABCD	D-alanylation of	daptomycin.	S. aureus, L.	[2.39-45]			
	teichoic acids	vancomycin, nisin, defensins, protegrins	monocytogenes, B. cereus, C. difficile, S. pyogenes, S. agalactiae, B. anthracis, S. suis	[_,0, .0]			
MprF	Lysylation of	defensins,	S. aureus, L.	[46-50]			
-	phoshatidylglycerol	thrombin-induced platelet microbicidal protein	monocytogenes, B. anthracis, M. tuberculosis				
OatA	Peptidoglycan	lvsozvme	S. aureus, S. epidermidis.	[51-54]			
	O-acetylase	.,	S. lugdunensis, E. faecalis, L. monocytogenes				
PdgA	Peptidoglycan N-acetylglucosamine	lysozyme	S. pneumoniae, E. faecalis, S. suis,	[55–58]			
	deacetylase A		L. monocytogenes, B. anthracis				
NamH	<i>N</i> -acetylmuramic acid hydroxylase	lysozyme	M. smegmatis	[59]			

 Table 1. Summary of Gram-positive Antimicrobial Peptides (AMP) Resistance Mechanisms.

Name	Mechanism of Action	Antimicrobial Resistance	Organisms	Reference
AMP Efflux	01 Action			
Опе-сотропе	nt transporter			
I mrB	ABC transporter	I shA/I shB	I lactis	[60]
	ABC transporter/	thrombin-induced platelet	L. iuciis S aureus	[61]
Qach	alteration of membrane	microbigidal protein (tPMP)	5. uureus	
	structure	merobleidai protein (tr Wir)		
Ree 4R type	structure			
Anr A P	ABC transporter	nisin gallidarmin bagitragin	I monocutoganas	[62 62]
AIIIAD	ABC transporter	ß lactams	L. monocylogenes	[02,05]
BeeAB	ABC transporter	Bacitracin ^a actagardine	B subtilis ^a	[64 68]
DUCAD	ABC transporter	marsagidin plactasin	D. Sublitis, S. mutang	[04-08]
DroAD	ABC transporter	nisin nukacin ISK 1	S. mutans	[60]
DIAAD	ABC transporter	haaitraain	s. uureus	[09]
DedAD	ABC transporter	nisin enduracidin	R subtilis	[66]
I SUAD	ABC transporter	allidormin subtilin	D. SUDIIIIS	[00]
MbrAP	ABC transporter	bagitragin	S mutans	[25]
SD0912	ABC transporter	bacitracin veneerosmuein	S. mulans	[33]
SF0012- SD0012	ABC transporter	bacitraciii, vancoresinyciii	s. pneumonide	[/0]
SP0015 SP0012	ABC transporter	bagitragin lingomygin nisin	S proumonias	[71]
SP0912- SP0012	ABC transporter	bacitiaciii, inicolityciii, insin	5. pheumoniue	[/1]
VroDE	APC transportar	haaitraain nigin nukaain	C annous	[60 72 76]
VIADE	ABC transporter		S. aureus	[09,72-70]
VraEG	ABC transporter	nisin colistin bacitracin	S aurous	[60 72 75 77
viaro	ABC transporter	vancomycin indolicidin	S. uureus, S. anidarmidis	701
		LI 27 hPD2	5. epidermidis	[9]
VsaCB	ABC transporter	nisin	I lactis	[80]
Rer AR type	Abe transporter	man	L. Iuclis	[00]
BcrAB(C)	ABC transporter	hacitracin	R lichaniformis	[81]
BcrAB(D)	ABC transporter	bacitracin	E faecalis	[82 83]
LanEEG type	Abe transporter	baeimaeim	E. Juccuns	[02,05]
As-48EFG(H)	ABC transporter	AS-48	E faecalis	[84]
CprABC	ABC transporter	nisin galidermin other	C difficile	[85 86]
сриньс	Abe transporter	lantibiotics	C. ayyıcııc	[05,00]
EpiFEG(H)	ABC transporter	epidermin gallidermin	S enidermidis	[87]
LtnFE(I)	ABC transporter	lacticin 3147	L lactis	[88 89]
McdFEG	ABC transporter	macedocin	S macedonicus	[90]
MrsEGE	ABC transporter	mersacidin	Bacillus sp HIL	[91 92]
NIISI OL	The transporter	mersuerum	Y-84, 54728	[,,,,2]
MutFEG	ABC transporter	mutacin II	S mutans	[93]
NisFEG(I)	ABC transporter	nisin	L. lactis	[37,94]
NukFEG(H)	ABC transporter	nukacin	S. warneri	[95,96]
SboFEG	ABC transporter	salivaricin B	S. salivarius	[97]
ScnFEG	ABC transporter	streptococcin A-FF22	S. pyogenes	[98]
SmbFT	ABC transporter	Smb. haloduracin	S. mutans	[99]
SpaFEG	ABC transporter	subtilin	B. subtilis	[36,100]

Table 1. Cont.

^a Confers only bacitracin resistance in *B. subtilis*.

Figure 1. Overview of Antimicrobial Peptide Resistance Mechanisms in Gram-Positive Bacteria.

(A) Extracellular mechanisms of AMP resistance include peptide degradation by secreted proteases, AMP sequestration by secreted or membrane associated protein (e.g., pili, immunity proteins, M proteins), or blocking by capsule polysaccharides; (B) Cell wall and membrane modifications include: Alteration of charge by lysination of the phospholipid head groups or D-alanylation of the lipoteichoic backbone, modification of the cell wall by deacetylation of N-acetylglucosamine or O-acetylation of N-acetylmuramyl residues, and alterations in membrane fluidity by phospholipid tail saturation or carotenoid additions; (C) Transport mechanisms of antimicrobial efflux from the cell include: ATP-driven ABC transporters composed of a single,

double, or triple protein pump and involve a supplementary immunity protein, or single protein transporters driven by proton motive force.

References

- Koprivnjak, T.; Peschel, A. Bacterial resistance mechanisms against host defense peptides. *Cell. Mol. Life Sci.* 2011, 68, 2243–2254.
- Peschel, A.; Otto, M.; Jack, R.W.; Kalbacher, H.; Jung, G.; Gotz, F. Inactivation of the dlt operon in *Staphylococcus aureus* confers sensitivity to defensins, protegrins, and other antimicrobial peptides. *J. Biol. Chem.* **1999**, *274*, 8405–8410.
- 3. Staubitz, P.; Neumann, H.; Schneider, T.; Wiedemann, I.; Peschel, A. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. *FEMS Microbiol. Lett.* **2004**, *231*, 67–71.
- Schmidtchen, A.; Frick, I.M.; Andersson, E.; Tapper, H.; Bjorck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. *Mol. Microbiol.* 2002, *46*, 157–168.
- Sabat, A.; Kosowska, K.; Poulsen, K.; Kasprowicz, A.; Sekowska, A.; van Den Burg, B.; Travis, J.; Potempa, J. Two allelic forms of the aureolysin gene (*aur*) within *Staphylococcus aureus*. *Infect. Immun.* 2000, *68*, 973–976.
- Lai, Y.; Villaruz, A.E.; Li, M.; Cha, D.J.; Sturdevant, D.E.; Otto, M. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. *Mol. Microbiol.* 2007, *63*, 497–506.
- Hase, C.C.; Finkelstein, R.A. Bacterial extracellular zinc-containing metalloproteases. *Microbiol. Rev.* 1993, 57, 823–837.
- 8. Del Papa, M.F.; Hancock, L.E.; Thomas, V.C.; Perego, M. Full activation of *Enterococcus faecalis* gelatinase by a C-terminal proteolytic cleavage. *J. Bacteriol.* **2007**, *189*, 8835–8843.

- Engelbert, M.; Mylonakis, E.; Ausubel, F.M.; Calderwood, S.B.; Gilmore, M.S. Contribution of gelatinase, serine protease, and fsr to the pathogenesis of *Enterococcus faecalis* endophthalmitis. *Infect. Immun.* 2004, 72, 3628–3633.
- Thurlow, L.R.; Thomas, V.C.; Narayanan, S.; Olson, S.; Fleming, S.D.; Hancock, L.E. Gelatinase contributes to the pathogenesis of endocarditis caused by *Enterococcus faecalis*. *Infect. Immun.* 2010, 78, 4936–4943.
- Sieprawska-Lupa, M.; Mydel, P.; Krawczyk, K.; Wojcik, K.; Puklo, M.; Lupa, B.; Suder, P.; Silberring, J.; Reed, M.; Pohl, J.; *et al.* Degradation of human antimicrobial peptide LL-37 by *Staphylococcus aureus*-derived proteinases. *Antimicrob. Agents Chemother.* 2004, *48*, 4673–4679.
- Kubica, M.; Guzik, K.; Koziel, J.; Zarebski, M.; Richter, W.; Gajkowska, B.; Golda, A.; Maciag-Gudowska, A.; Brix, K.; Shaw, L. A potential new pathway for *Staphylococcus aureus* dissemination: The silent survival of *S. aureus* phagocytosed by human monocyte-derived macrophages. *PLoS One* 2008, *3*, e1409.
- Rivas-Santiago, B.; Hernandez-Pando, R.; Carranza, C.; Juarez, E.; Contreras, J.L.; Aguilar-Leon, D.; Torres, M.; Sada, E. Expression of cathelicidin LL-37 during *Mycobacterium tuberculosis* infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. *Infect. Immun.* 2008, *76*, 935–941.
- Schittek, B.; Hipfel, R.; Sauer, B.; Bauer, J.; Kalbacher, H.; Stevanovic, S.; Schirle, M.; Schroeder, K.; Blin, N.; Meier, F.; *et al.* Dermcidin: A novel human antibiotic peptide secreted by sweat glands. *Nat. Immunol.* 2001, *2*, 1133–1137.
- 15. Teufel, P.; Gotz, F. Characterization of an extracellular metalloprotease with elastase activity from *Staphylococcus epidermidis*. *J. Bacteriol.* **1993**, *175*, 4218–4224.

- Cheung, G.Y.; Rigby, K.; Wang, R.; Queck, S.Y.; Braughton, K.R.; Whitney, A.R.; Teintze, M.; DeLeo, F.R.; Otto, M. *Staphylococcus epidermidis* strategies to avoid killing by human neutrophils. *PLoS Pathog.* 2010, *6*, e1001133.
- Hauser, A.R.; Stevens, D.L.; Kaplan, E.L.; Schlievert, P.M. Molecular analysis of pyrogenic exotoxins from *Streptococcus pyogenes* isolates associated with toxic shock-like syndrome. *J. Clin. Microbiol.* 1991, 29, 1562–1567.
- Elliott, S.D. A proteolytic enzyme produced by group A Streptococci with special reference to its effect on the type-specific M antigen. *J. Exp. Med.* **1945**, *81*, 573–592.
- Kapur, V.; Majesky, M.W.; Li, L.L.; Black, R.A; Musser, J.M. Cleavage of interleukin 1 beta

(IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from *Streptococcus pyogenes*. *Proc. Natl. Acad. Sci. USA* **1993**, *90*, 7676–7680.

- Kapur, V.; Topouzis, S.; Majesky, M.W, Li, L.L.; Hamrick, M.R.; Hamill, R.J.; Patti, J.M.; Musser, J.M. A conserved *Streptococcus pyogenes* extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. *Microb. Pathog.* 1993, *15*, 327–346.
- 21. Rasmussen, M.; Bjorck, L. Proteolysis and its regulation at the surface of *Streptococcus* pyogenes. Mol. Microbiol. **2002**, *43*, 537–544.
- Nyberg, P.; Rasmussen, M.; Bjorck, L. Alpha2-Macroglobulin-proteinase complexes protect *Streptococcus pyogenes* from killing by the antimicrobial peptide LL-37. *J. Biol. Chem.* 2004, 279, 52820–52823.
- Rasmussen, M.; Muller, H.P.; Bjorck, L. Protein GRAB of *Streptococcus pyogenes* regulates proteolysis at the bacterial surface by binding alpha2-macroglobulin. *J. Biol. Chem.* 1999, 274, 15336–15344.

- Lauth, X.; von Kockritz-Blickwede, M.; McNamara, C.W.; Myskowski, S.; Zinkernagel, A.S.; Beall, B.; Ghosh, P.; Gallo, R.L.; Nizet, V. M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. *J. Innate. Immun.* 2009, *1*, 202–214.
- Maisey, H.C.; Quach, D.; Hensler, M.E.; Liu, G.Y.; Gallo, R.L.; Nizet, V.; Doran, K.S. A group B streptococcal pilus protein promotes phagocyte resistance and systemic virulence. *FASEB J.* 2008, *22*, 1715–1724.
- Frick, I.M.; Akesson, P.; Rasmussen, M.; Schmidtchen, A.; Bjorck, L. SIC, a secreted protein of *Streptococcus pyogenes* that inactivates antibacterial peptides. *J. Biol. Chem.* 2003, 278, 16561–16566.
- Fernie-King, B.A.; Seilly, D.J.; Davies, A.; Lachmann, P.J. Streptococcal inhibitor of complement inhibits two additional components of the mucosal innate immune system: Secretory leukocyte proteinase inhibitor and lysozyme. *Infect. Immun.* 2002, *70*, 4908–4916.
- Jin, T.; Bokarewa, M.; Foster, T.; Mitchell, J.; Higgins, J.; Tarkowski, A. *Staphylococcus aureus* resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism.

J. Immunol. 2004, 172, 1169–1176.

- Braff, M.H.; Jones, A.L.; Skerrett, S.J.; Rubens, C.E. *Staphylococcus aureus* exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. *J. Infect. Dis.* 2007, *195*, 1365–1372.
- 30. Diep, D.B.; Havarstein, L.S.; Nes, I.F. Characterization of the locus responsible for the bacteriocin production in *Lactobacillus plantarum* C11. *J. Bacteriol.* **1996**,*178*, 4472–4483.

 Diep, D.B.; Skaugen, M.; Salehian, Z.; Holo, H.; Nes, I.F. Common mechanisms of target cell recognition and immunity for class II bacteriocins. *Proc. Natl. Acad. Sci. USA* 2007, 104,

2384-2389.

- Llobet, E.; Tomas, J.M.; Bengoechea, J.A. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. *Microbiology* 2008, 154, 3877–3886.
- Vuong, C.; Kocianova, S.; Voyich, J.M.; Yao, Y.; Fischer, E.R.; DeLeo, F.R.; Otto, M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. *J. Biol. Chem.* 2004, 279, 54881–54886.
- Vuong, C.; Voyich, J.M.; Fischer, E.R.; Braughton, K.R.; Whitney, A.R.; DeLeo, F.R.; Otto, M. Polysaccharide intercellular adhesin (PIA) protects *Staphylococcus epidermidis* against major components of the human innate immune system. *Cell. Microbiol.* 2004, *6*, 269–275.
- 35. Tsuda, H.; Yamashita, Y.; Shibata, Y.; Nakano, Y.; Koga, T. Genes involved in bacitracin resistance in *Streptococcus mutans*. *Antimicrob*. *Agents Chemother*. **2002**, *46*, 3756–3764.
- 36. Klein, C.; Entian, K.D. Genes involved in self-protection against the lantibiotic subtilin produced by *Bacillus subtilis* ATCC 6633. *Appl. Environ. Microbiol.* **1994**, *60*, 2793–2801.
- Kuipers, O.P.; Beerthuyzen, M.M.; Siezen, R.J.; de Vos, W.M. Characterization of the nisin gene cluster nisABTCIPR of *Lactococcus lactis*. Requirement of expression of the *nisA* and *nisI* genes for development of immunity. *Eur. J. Biochem.* 1993, *216*, 281–291.
- Saris, P.E.; Immonen, T.; Reis, M.; Sahl, H.G. Immunity to lantibiotics. *Antonie Van Leeuwenhoek* 1996, 69, 151–159.

- Peschel, A.; Vuong, C.; Otto, M.; Gotz, F. The D-alanine residues of *Staphylococcus aureus* teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. *Antimicrob. Agents Chemother.* 2000, *44*, 2845–2847.
- Abachin, E.; Poyart, C.; Pellegrini, E.; Milohanic, E.; Fiedler, F.; Berche, P.; Trieu-Cuot, P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of *Listeria monocytogenes*. *Mol. Microbiol.* 2002, *43*, 1–14.
- Abi Khattar, Z.; Rejasse, A.; Destoumieux-Garzon, D.; Escoubas, J.M.; Sanchis, V.; Lereclus, D.; Givaudan, A.; Kallassy, M.; Nielsen-Leroux, C.; Gaudriault, S. The dlt operon of *Bacillus cereus* is required for resistance to cationic antimicrobial peptides and for virulence in insects. *J. Bacteriol.* 2009, 191, 7063–7073.
- Cox, K.H.; Ruiz-Bustos, E.; Courtney, H.S.; Dale, J.B.; Pence, M.A.; Nizet, V.; Aziz, R.K. Gerling, I; Price, S.M.; Hasty, D.L. Inactivation of DltA modulates virulence factor expression in *Streptococcus pyogenes*. *PLoS One* 2009, *4*, e5366.
- Fisher, N.; Shetron-Rama, L.; Herring-Palmer, A.; Heffernan, B.; Bergman, N.; Hanna, P. The dltABCD operon of *Bacillus anthracis* sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity. *J. Bacteriol.* 2006, *188*, 1301–1309.
- Fittipaldi, N.; Sekizaki, T.; Takamatsu, D.; Harel, J.; Dominguez-Punaro Mde, L.; von Aulock, S.; Draing, C.; Marois, C.; Kobisch, M.; Gottschalk, M. D-Alanylation of lipoteichoic acid contributes to the virulence of *Streptococcus suis*. *Infect. Immun.* 2008, *76*, 3587–3594.
- 45. Poyart, C.; Pellegrini, E.; Marceau, M.; Baptista, M.; Jaubert, F.; Lamy, M.C.; Trieu-Cuot,P. Attenuated virulence of *Streptococcus agalactiae* deficient in D-alanyl-lipoteichoic acid

is due to an increased susceptibility to defensins and phagocytic cells. *Mol. Microbiol.* **2003**, *49*, 1615–1625.

- 46. Maloney, E.; Stankowska, D.; Zhang, J.; Fol, M.; Cheng, Q.J.; Lun, S.; Bishai, W.R.; Rajagopalan, M.; Chatterjee, D.; Madiraju, M.V. The two-domain LysX protein of *Mycobacterium tuberculosis* is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. *PLoS Pathog.* 2009, *5*, e1000534.
- 47. Samant, S.; Hsu, F.F.; Neyfakh, A.A.; Lee, H. The *Bacillus anthracis* protein MprF is required for synthesis of lysylphosphatidylglycerols and for resistance to cationic antimicrobial peptides.

J. Bacteriol. 2009, 191, 1311–1319.

- Thedieck, K.; Hain, T.; Mohamed, W.; Tindall, B.J.; Nimtz, M.; Chakraborty, T.; Wehland, J.; Jansch, L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on *Listeria monocytogenes*. *Mol. Microbiol.* 2006, *62*, 1325–1339.
- 49. Peschel, A.; Jack, R.W.; Otto, M.; Collins, L.V.; Staubitz, P.; Nicholson, G.; Kalbacher, H.; Nieuwenhuizen, W.F.; Jung, G.; Tarkowski, A.; *et al. Staphylococcus aureus* resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. *J. Exp. Med.* **2001**, *193*, 1067–1076.
- Oku, Y.; Kurokawa, K.; Ichihashi, N.; Sekimizu, K. Characterization of the *Staphylococcus aureus mprF* gene, involved in lysinylation of phosphatidylglycerol. *Microbiology* 2004, 150, 45–51.

- 51. Bera, A.; Herbert, S.; Jakob, A.; Vollmer, W.; Gotz, F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of *Staphylococcus aureus*. *Mol. Microbiol.* **2005**, *55*, 778–787.
- Bera, A.; Biswas, R.; Herbert, S.; Gotz, F. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. *Infect. Immun.* 2006, 74, 4598–4604.
- 53. Herbert, S.; Bera, A.; Nerz, C.; Kraus, D.; Peschel, A.; Goerke, C.; Meehl, M.; Cheung, A.; Gotz, F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. *PLoS Pathog.* 2007, *3*, e102.
- Aubry, C.; Goulard, C.; Nahori, M.A.; Cayet, N.; Decalf, J.; Sachse, M.; Boneca, I.G.; Cossart, P.; Dussurget, O. OatA, a peptidoglycan O-acetyltransferase involved in *Listeria monocytogenes* immune escape, is critical for virulence. J. Infect. Dis. 2011, 204, 731–740.
- 55. Vollmer, W.; Tomasz, A. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in *Streptococcus pneumoniae*. J. Biol. Chem. **2000**, 275, 20496–20501.
- Fittipaldi, N.; Sekizaki, T.; Takamatsu, D.; de la Cruz Dominguez-Punaro, M.; Harel, J.; Bui, N.K.; Vollmer, W.; Gottschalk, M. Significant contribution of the pgdA gene to the virulence of *Streptococcus suis*. *Mol. Microbiol.* 2008, *70*, 1120–1135.
- 57. Boneca, I.G.; Dussurget, O.; Cabanes, D.; Nahori, M.A.; Sousa, S.; Lecuit, M.; Psylinakis, E.; Bouriotis, V.; Hugot, J.P.; Giovannini, M.; *et al.* A critical role for peptidoglycan N-deacetylation in *Listeria* evasion from the host innate immune system. *Proc. Natl. Acad. Sci. USA* 2007, *104*, 997–1002.
- 58. Laaberki, M.H.; Pfeffer, J.; Clarke, A.J.; Dworkin, J. O-Acetylation of peptidoglycan is required for proper cell separation and S-layer anchoring in *Bacillus anthracis*. *J. Biol. Chem.*

2011,

286, 5278–5288.

- Raymond, J.B.; Mahapatra, S.; Crick, D.C.; Pavelka, M.S., Jr. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. *J. Biol. Chem.* 2005, 280, 326–333.
- Gajic, O.; Buist, G.; Kojic, M.; Topisirovic, L.; Kuipers, O.P.; Kok, J. Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. *J. Biol. Chem.* 2003, 278, 34291–34298.
- Kupferwasser, L.I.; Skurray, R.A.; Brown, M.H.; Firth, N.; Yeaman, M.R.; Bayer, A.S. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. *Antimicrob. Agents Chemother.* 1999, 43, 2395–2399.
- Mandin, P.; Fsihi, H.; Dussurget, O.; Vergassola, M.; Milohanic, E.; Toledo-Arana, A.; Lasa,
 I.; Johansson, J.; Cossart, P. VirR, a response regulator critical for *Listeria monocytogenes* virulence. *Mol. Microbiol.* 2005, *57*, 1367–1380.
- 63. Collins, B.; Curtis, N.; Cotter, P.D.; Hill, C.; Ross, R.P. The ABC transporter AnrAB contributes to the innate resistance of *Listeria monocytogenes* to nisin, bacitracin, and various beta-lactam antibiotics. *Antimicrob. Agents Chemother.* **2010**, *54*, 4416–4423.
- 64. Rietkotter, E.; Hoyer, D.; Mascher, T. Bacitracin sensing in *Bacillus subtilis*. *Mol. Microbiol*.
 2008, 68, 768–85.
- Schneider, T.; Kruse, T.; Wimmer, R.; Wiedemann, I.; Sass, V.; Pag, U.; Jansen, A.; Nielsen, A.K.; Mygind, P.H.; Raventos, D.S.; *et al.* Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. *Science* 2010, *328*, 1168–1172.

- 66. Staron, A.; Finkeisen, D.E.; Mascher, T. Peptide antibiotic sensing and detoxification modules of *Bacillus subtilis*. *Antimicrob*. *Agents Chemother*. **2011**, *55*, 515–525.
- Mascher, T.; Margulis, N.G.; Wang, T.; Ye, R.W.; Helmann, J.D. Cell wall stress responses in *Bacillus subtilis*: The regulatory network of the bacitracin stimulon. *Mol. Microbiol.* 2003, 50, 1591–604.
- Ohki, R.; Giyanto; Tateno, K.; Masuyama, W.; Moriya, S.; Kobayashi, K.; Ogasawara, N. The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in *Bacillus subtilis. Mol. Microbiol.* 2003, 49, 1135–1144.
- Kawada-Matsuo, M.; Yoshida, Y.; Zendo, T.; Nagao, J.; Oogai, Y.; Nakamura, Y.; Sonomoto, K.; Nakamura, N.; Komatsuzawa, H. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in *Staphylococcus aureus*. *PLoS One* 2013, *8*, e69455.
- Becker, P.; Hakenbeck, R.; Henrich, B. An ABC transporter of *Streptococcus pneumoniae* involved in susceptibility to vancoresmycin and bacitracin. *Antimicrob. Agents Chemother*. 2009, *53*, 2034–2041.
- 71. Majchrzykiewicz, J.A.; Kuipers, O.P.; Bijlsma, J.J. Generic and specific adaptive responses of *Streptococcus pneumoniae* to challenge with three distinct antimicrobial peptides, bacitracin,

LL-37, and nisin. Antimicrob. Agents Chemother. 2010, 54, 440-451.

- 72. Li, M.; Cha, D.J.; Lai, Y.; Villaruz, A.E.; Sturdevant, D.E.; Otto, M. The antimicrobial peptide-sensing system aps of *Staphylococcus aureus*. *Mol. Microbiol.* **2007**, *66*, 136–147.
- 73. Sass, P.; Jansen, A.; Szekat, C.; Sass, V.; Sahl, H.G.; Bierbaum, G. The lantibiotic mersacidin is a strong inducer of the cell wall stress response of *Staphylococcus aureus*. *BMC Microbiol*.

8, e186.

- Yoshida, Y.; Matsuo, M.; Oogai, Y.; Kato, F.; Nakamura, N.; Sugai, M.; Komatsuzawa, H.
 Bacitracin sensing and resistance in *Staphylococcus aureus*. *FEMS Microbiol. Lett.* 2011, *320*, 33–39.
- Hiron, A.; Falord, M.; Valle, J.; Debarbouille, M.; Msadek, T. Bacitracin and nisin resistance in *Staphylococcus aureus*: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. *Mol. Microbiol.* 2011, *81*, 602–622.
- Pietiainen, M.; Francois, P.; Hyyrylainen, H.L.; Tangomo, M.; Sass, V.; Sahl, H.G.;
 Schrenzel, J.; Kontinen, V.P. Transcriptome analysis of the responses of *Staphylococcus aureus* to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance.

BMC Genomics 2009, 10, 429.

- 77. Meehl, M.; Herbert, S.; Gotz, F.; Cheung, A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in *Staphylococcus aureus*. *Antimicrob*. *Agents Chemother*. **2007**, *51*, 2679–2689.
- 78. Falord, M.; Karimova, G.; Hiron, A.; Msadek, T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* 2012, 56, 1047–1058.

- Li, M.; Lai, Y.; Villaruz, A.E.; Cha, D.J.; Sturdevant, D.E.; Otto, M. Gram-positive threecomponent antimicrobial peptide-sensing system. *Proc. Natl. Acad. Sci. USA* 2007, *104*, 9469–9474.
- Kramer, N.E.; van Hijum, S.A.; Knol, J.; Kok, J.; Kuipers, O.P. Transcriptome analysis reveals mechanisms by which *Lactococcus lactis* acquires nisin resistance. *Antimicrob. Agents Chemother.* 2006, 50, 1753–1761.
- Podlesek, Z.; Comino, A.; Herzog-Velikonja, B.; Zgur-Bertok, D.; Komel, R.; Grabnar, M. Bacillus licheniformis bacitracin-resistance ABC transporter: Relationship to mammalian multidrug resistance. Mol. Microbiol. 1995, 16, 969–976.
- Manson, J.M.; Keis, S.; Smith, J.M.; Cook, G.M. Acquired bacitracin resistance in *Enterococcus faecalis* is mediated by an ABC transporter and a novel regulatory protein, BcrR. *Antimicrob. Agents Chemother.* 2004, 48, 3743–3748.
- Matos, R.; Pinto, V.V.; Ruivo, M.; Lopes Mde, F. Study on the dissemination of the bcrABDR cluster in *Enterococcus* spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. *Int. J. Antimicrob. Agents* 2009, *34*, 142–147.
- Diaz, M.; Valdivia, E.; Martinez-Bueno, M.; Fernandez, M.; Soler-Gonzalez, A.S.; Ramirez-Rodrigo, H.; Maqueda, M. Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. *Appl. Environ. Microbiol.* 2003, 69, 1229–1236.
- 85. McBride, S.M.; Sonenshein, A.L. Identification of a genetic locus responsible for antimicrobial peptide resistance in *Clostridium difficile*. *Infect. Immun.* **2011**, *79*, 167–176.

- Suarez, J.M.; Edwards, A.N.; McBride, S.M. The *Clostridium difficile* cpr locus is regulated by a non-contiguous two-component system in response to type A and B lantibiotics. *J. Bacteriol.* 2013, 195, 2621–2631.
- Otto, M.; Peschel, A.; Gotz, F. Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of *Staphylococcus epidermidis* Tu3298. *FEMS Microbiol. Lett.* 1998, *166*, 203–211.
- Draper, L.A.; Grainger, K.; Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, R.P. Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. *Mol. Microbiol.* 2009, *71*, 1043–1054.
- McAuliffe, O.; O'Keeffe, T.; Hill, C.; Ross, R.P. Regulation of immunity to the twocomponent lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. *Mol. Microbiol.* 2001, *39*, 982–993.
- Papadelli, M.; Karsioti, A.; Anastasiou, R.; Georgalaki, M.; Tsakalidou, E. Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by *Streptococcus macedonicus. FEMS Microbiol. Lett.* 2007, 272, 75–82.
- Altena, K.; Guder, A.; Cramer, C.; Bierbaum, G. Biosynthesis of the lantibiotic mersacidin: Organization of a type B lantibiotic gene cluster. *Appl. Environ. Microbiol.* 2000, *66*, 2565–2571.
- 92. Guder, A.; Schmitter, T.; Wiedemann, I.; Sahl, H.G.; Bierbaum, G. Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. *Appl. Environ. Microbiol.* 2002, *68*, 106–113.

- Chen, P.; Qi, F.; Novak, J.; Caufield, P.W. The specific genes for lantibiotic mutacin II biosynthesis in *Streptococcus mutans* T8 are clustered and can be transferred en bloc. *Appl. Environ. Microbiol.* 1999, 65, 1356–1360.
- 94. Siegers, K.; Entian, K.D. Genes involved in immunity to the lantibiotic nisin produced by *Lactococcus lactis* 6F3. *Appl. Environ. Microbiol.* **1995**, *61*, 1082–1089.
- 95. Aso, Y.; Nagao, J.; Koga, H.; Okuda, K.; Kanemasa, Y.; Sashihara, T.; Nakayama, J.; Sonomoto, K. Heterologous expression and functional analysis of the gene cluster for the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. *J. Biosci. Bioeng.* 2004, *98*, 429–436.
- 96. Aso, Y.; Sashihara, T.; Nagao, J.; Kanemasa, Y.; Koga, H.; Hashimoto, T.; Higuchi, T.; Adachi, A.; Nomiyama, H.; Ishizaki, A.; *et al.* Characterization of a gene cluster of *Staphylococcus warneri* ISK-1 encoding the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. *Biosci. Biotechnol. Biochem.* **2004**, *68*, 1663–1671.
- 97. Hyink, O.; Wescombe, P.A.; Upton, M.; Ragland, N.; Burton, J.P.; Tagg, J.R. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain *Streptococcus salivarius* K12. *Appl. Environ. Microbiol.* 2007, 73, 1107–1113.
- McLaughlin, R.E.; Ferretti, J.J.; Hynes, W.L. Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of *Streptococcus pyogenes*. *FEMS Microbiol. Lett.* **1999**, *175*, 171–177.
- 99. Biswas, S.; Biswas, I. SmbFT, a putative ABC transporter complex, confers protection against the lantibiotic Smb in Streptococci. *J. Bacteriol.* **2013**, *195*, 5592–5601.

- 100. Stein, T.; Heinzmann, S.; Dusterhus, S.; Borchert, S.; Entian, K.D. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host *Bacillus subtilis* MO1099. *J. Bacteriol.* 2005, *187*, 822–828.
- Rabijns, A.; de Bondt, H.L.; de Ranter, C. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. *Nat. Struct. Biol.* 1997, *4*, 357–360.
- Akesson, P.; Sjoholm, A.G.; Bjorck, L. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 1996, 271, 1081–1088.
- 103. Pence, M.A.; Rooijakkers, S.H.; Cogen, A.L.; Cole, J.N.; Hollands, A.; Gallo, R.L.; Nizet, V. Streptococcal inhibitor of complement promotes innate immune resistance phenotypes of invasive M1T1 group A *Streptococcus. J. Innate Immun.* 2010, *2*, 587–595.
- 104. Buckley, A.M.; Spencer, J.; Candlish, D.; Irvine, J.J.; Douce, G.R. Infection of hamsters with the UK *Clostridium difficile* ribotype 027 outbreak strain R20291. *J. Med. Microbiol.* 2011, 60, 1174–1180.
- 105. Xia, G.; Wolz, C. Phages of *Staphylococcus aureus* and their impact on host evolution. *Infect. Genet. Evol.* 2014, 21, 593–601.
- 106. Van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of *Staphylococcus aureus* are located on beta-hemolysin-converting bacteriophages. *J. Bacteriol.* 2006, *188*:1310–1315.
- 107. Coleman, D.C.; Sullivan, D.J.; Russell, R.J.; Arbuthnott, J.P.; Carey, B.F.; Pomeroy, H.M. *Staphylococcus aureus* bacteriophages mediating the simultaneous lysogenic conversion of

beta-lysin, staphylokinase and enterotoxin A: Molecular mechanism of triple conversion. *J. Gen. Microbiol.* **1989**, *135*, 1679–1697.

- 108. Jin, T.; Bokarewa, M.; McIntyre, L.; Tarkowski, A.; Corey, G.R.; Reller, L.B.; Fowler, V.G., Jr. Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient *Staphylococcus aureus* strains. *J. Med. Microbiol.* **2003**, *52*, 919–923.
- Bisno, A.L.; Brito, M.O.; Collins, C.M. Molecular basis of group A streptococcal virulence. *Lancet Infect. Dis.* 2003, *3*, 191–200.
- 110. Madzivhandila, M.; Adrian, P.V.; Cutland, C.L.; Kuwanda, L.; Madhi, S.A. Distribution of pilus islands of group B *streptococcus* associated with maternal colonization and invasive disease in South Africa. *J. Med. Microbiol.* **2013**, *62*, 249–253.
- 111. Maisey, H.C.; Hensler, M.; Nizet, V.; Doran, K.S. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. *J. Bacteriol.* 2007, *189*, 1464–1467.
- Chatterjee, C.; Paul, M.; Xie, L.; van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. *Chem. Rev.* 2005, *105*, 633–684.
- 113. Alkhatib, Z.; Abts, A.; Mavaro, A.; Schmitt, L.; Smits, S.H. Lantibiotics: How do producers become self-protected? *J. Biotechnol.* 2012, *159*, 145–154.
- 114. Halami, P.M.; Stein, T.; Chandrashekar, A.; Entian, K.D. Maturation and processing of SpaI, the lipoprotein involved in subtilin immunity in *Bacillus subtilis* ATCC 6633. *Microbiol. Res.* 2010, *165*, 183–189.
- 115. Hoffmann, A.; Schneider, T.; Pag, U.; Sahl, H.G. Localization and functional analysis of PepI,

the immunity peptide of Pep5-producing *Staphylococcus epidermidis* strain 5. *Appl. Environ. Microbiol.* **2004**, *70*, 3263–3271.

- 116. Christ, N.A.; Bochmann, S.; Gottstein, D.; Duchardt-Ferner, E.; Hellmich, U.A.; Dusterhus, S.; Kotter, P.; Guntert, P.; Entian, K.D. Wohnert, J. The First structure of a lantibiotic immunity protein, SpaI from *Bacillus subtilis*, reveals a novel fold. *J. Biol. Chem.* 2012, 287, 35286–35298.
- 117. Qiao, M.; Immonen, T.; Koponen, O.; Saris, P.E. The cellular location and effect on nisin immunity of the NisI protein from *Lactococcus lactis* N8 expressed in *Escherichia coli* and *L. lactis. FEMS Microbiol. Lett.* **1995**, *131*, 75–80.
- Takala, T.M.; Saris, P.E. C terminus of NisI provides specificity to nisin. *Microbiology* 2006, 152, 3543–3549.
- 119. Reis, M.; Eschbach-Bludau, M.; Iglesias-Wind, M.I.; Kupke, T.; Sahl, H.G. Producer immunity towards the lantibiotic Pep5: Identification of the immunity gene pepI and localization and functional analysis of its gene product. *Appl. Environ. Microbiol.* **1994**, *60*, 2876–2883.
- Skaugen, M.; Abildgaard, C.I.; Nes, I.F. Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. *Mol. Gen. Genet.* 1997, 253, 674– 686.
- 121. Heidrich, C.; Pag, U.; Josten, M.; Metzger, J.; Jack, R.W.; Bierbaum, G.; Jung, G.; Sahl, H.G. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. *Appl. Environ. Microbiol.* 1998, *64*, 3140–3146.

- 122. Twomey, D.; Ross, R.P.; Ryan, M.; Meaney, B.; Hill, C. Lantibiotics produced by lactic acid bacteria: structure, function and applications. *Antonie Van Leeuwenhoek* 2002, *82*, 165–185.
- 123. Peterson, P.K.; Wilkinson, B.J.; Kim, Y.; Schmeling, D.; Quie, P.G. Influence of encapsulation on staphylococcal opsonization and phagocytosis by human polymorphonuclear leukocytes. *Infect. Immun.* **1978**, *19*, 943–949.
- 124. Nelson, A.L.; Roche, A.M.; Gould, J.M.; Chim, K.; Ratner, A.J.; Weiser, J.N. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. *Infect. Immun.* 2007, 75, 83–90.
- 125. Ashbaugh, C.D.; Warren, H.B.; Carey, V.J.; Wessels, M.R. Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J. Clin. Invest. 1998, 102, 550–560.
- 126. Kogan, G.; Uhrin, D.; Brisson, J.R.; Paoletti, L.C.; Blodgett, A.E.; Kasper, D.L.; Jennings,
 H.J. Structural and immunochemical characterization of the type VIII group B *Streptococcus* capsular polysaccharide. *J. Biol. Chem.* 1996, *271*, 8786–8790.
- 127. Bentley, S.D.; Aanensen, D.M.; Mavroidi, A.; Saunders, D.; Rabbinowitsch, E.; Collins, M.; Donohoe, K.; Harris, D.; Murphy, L.; Quail, M.A.; *et al.* Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. *PLoS Genet.* **2006**, *2*, e31.
- 128. Candela, T.; Fouet, A. *Bacillus anthracis* CapD, belonging to the gammaglutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. *Mol. Microbiol.* **2005**, *57*, 717–726.
- Deng, L; Kasper, D.L.; Krick, T.P.; Wessels, M.R. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B *Streptococcus. J. Biol. Chem.* 2000, 275, 7497–7504.

- Mack, D.; Fischer, W.; Krokotsch, A.; Leopold, K.; Hartmann, R.; Egge, H.; Laufs, R. The intercellular adhesin involved in biofilm accumulation of *Staphylococcus epidermidis* is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. *J. Bacteriol.* 1996, *178*, 175–83.
- Campos, M.A.; Vargas, M.A.; Regueiro, V.; Llompart, C.M.; Alberti, S.; Bengoechea, J.A. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. *Infect. Immun.* 2004, 72, 7107–7114.
- 132. Rupp, M.E.; Fey, P.D.; Heilmann, C.; Gotz, F. Characterization of the importance of *Staphylococcus epidermidis* autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. *J. Infect. Dis.* 2001, *183*, 1038–1042.
- 133. Rupp, M.E.; Ulphani, J.S.; Fey, P.D.; Bartscht, K.; Mack, D. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of *Staphylococcus epidermidis* in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. *Infect. Immun.* **1999**, *67*, 2627–2632.
- 134. Beiter, K.; Wartha, F.; Hurwitz, R.; Normark, S.; Zychlinsky, A.; Henriques-Normark, B. The capsule sensitizes *Streptococcus pneumoniae* to alpha-defensins human neutrophil proteins 1 to 3. *Infect. Immun.* 2008, 76, 3710–3716.
- 135. Wartha, F.; Beiter, K.; Albiger, B.; Fernebro, J.; Zychlinsky, A.; Normark, S.; Henriques-Normark, B. Capsule and D-alanylated lipoteichoic acids protect *Streptococcus pneumoniae* against neutrophil extracellular traps. *Cell. Microbiol.* **2007**, *9*, 1162–1171.

- 136. Jansen, A.; Szekat, C.; Schroder, W.; Wolz, C.; Goerke, C.; Lee, J.C.; Turck, M.; Bierbaum,
 G. Production of capsular polysaccharide does not influence *Staphylococcus aureus* vancomycin susceptibility. *BMC Microbiol.* 2013, *13*, e65.
- 137. Boman, H.G. Peptide antibiotics and their role in innate immunity. *Annu. Rev. Immunol.* 1995,

13, 61–92.

- 138. Powers, J.P.; Hancock, R.E. The relationship between peptide structure and antibacterial activity. *Peptides* **2003**, *24*, 1681–1691.
- 139. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389-395.
- 140. Nizet, V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. *Curr. Issues. Mol. Biol.* 2006, *8*, 11–26.
- 141. Peschel, A. How do bacteria resist human antimicrobial peptides? *Trends Microbiol.* 2002, 10, 179–186.
- Hancock, R.E.; Rozek, A. Role of membranes in the activities of antimicrobial cationic peptides. *FEMS Microbiol. Lett.* 2002, 206, 143–149.
- 143. Weidenmaier, C.; Peschel, A. Teichoic acids and related cell-wall glycopolymers in Grampositive physiology and host interactions. *Nat. Rev. Microbiol.* **2008**, *6*, 276–287.
- 144. Goldfine, H. Bacterial membranes and lipid packing theory. J. Lipid. Res. 1984, 25, 1501– 1507.
- 145. Wiese, A.; Munstermann, M.; Gutsmann, T.; Lindner, B.; Kawahara, K.; Zahringer, U.; Seydel, U. Molecular mechanisms of polymyxin B-membrane interactions: direct correlation between surface charge density and self-promoted transport. *J. Membr. Biol.* **1998**, *162*, 127– 138.

- 146. Ernst, C.M.; Peschel, A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. *Mol. Microbiol.* **2011**, *80*, 290–299.
- 147. Ernst, C.M.; Staubitz, P.; Mishra, N.N.; Yang, S.J.; Hornig, G.; Kalbacher, H.; Bayer, A.S.; Kraus, D.; Peschel, A. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. *PLoS Pathog.* 2009, *5*, e1000660.
- 148. Kristian, S.A.; Durr, M.; van Strijp, J.A.; Neumeister, B.; Peschel, A. MprF-mediated lysinylation of phospholipids in *Staphylococcus aureus* leads to protection against oxygenindependent neutrophil killing. *Infect. Immun.* 2003, *71*, 546–549.
- 149. Bao, Y.; Sakinc, T.; Laverde, D.; Wobser, D.; Benachour, A.; Theilacker, C.; Hartke, A.; Huebner, J. Role of mprF1 and mprF2 in the pathogenicity of *Enterococcus faecalis*. *PLoS One*2012,

7, e38458.

- Hachmann, A.B.; Angert, E.R.; Helmann, J.D. Genetic analysis of factors affecting susceptibility of *Bacillus subtilis* to daptomycin. *Antimicrob. Agents Chemother.* 2009, 53, 1598–1609.
- 151. Maloney, E.; Lun, S.; Stankowska, D.; Guo, H.; Rajagoapalan, M.; Bishai, W.R.; Madiraju, M.V. Alterations in phospholipid catabolism in *Mycobacterium tuberculosis* lysX mutant. *Front. Microbiol.* 2011, 2, e19.
- 152. Weidenmaier, C.; Peschel, A.; Kempf, V.A.; Lucindo, N.; Yeaman, M.R.; Bayer, A.S. DltABCD- and MprF-mediated cell envelope modifications of *Staphylococcus aureus* confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. *Infect. Immun.* 2005, *73*, 80338038.

- 153. Mukhopadhyay, K.; Whitmire, W.; Xiong, Y.Q.; Molden, J.; Jones, T.; Peschel, A.; Staubitz, P.; Adler-Moore, J.; McNamara, P.J.; Proctor, R.A.; *et al. In vitro* susceptibility of *Staphylococcus aureus* to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. *Microbiology* 2007, *153*, 1187–1197.
- 154. Ruzin, A.; Severin, A.; Moghazeh, S.L.; Etienne, J.; Bradford, P.A.; Projan, S.J.; Shlaes,
 D.M. Inactivation of mprF affects vancomycin susceptibility in *Staphylococcus aureus*. *Biochim. Biophys. Acta* 2003, *1621*, 117–121.
- 155. Nishi, H.; Komatsuzawa, H.; Fujiwara, T.; McCallum, N.; Sugai, M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin,

as well as vancomycin, gentamicin, and antimicrobial peptides, in *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **2004**, *48*, 4800–4807.

- 156. Jones, T.; Yeaman, M.R.; Sakoulas, G.; Yang, S.J.; Proctor, R.A.; Sahl, H.G.; Schrenzel, J.; Xiong, Y.Q.; Bayer, A.S. Failures in clinical treatment of *Staphylococcus aureus* infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. *Antimicrob. Agents Chemother.* 2008, *52*, 269–278.
- Friedman, L.; Alder, J.D.; Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in *Staphylococcus aureus*. *Antimicrob. Agents Chemother*. 2006, *50*, 2137–2145.
- 158. Yang, S.J.; Mishra, N.N.; Rubio, A.; Bayer, A.S. Causal role of single nucleotide polymorphisms within the mprF gene of *Staphylococcus aureus* in daptomycin resistance. *Antimicrob. Agents Chemother.* 2013, 57, 5658–5664.
- Salzberg, L.I.; Helmann, J.D. Phenotypic and transcriptomic characterization of *Bacillus subtilis* mutants with grossly altered membrane composition. *J. Bacteriol.* 2008, *190*, 7797–7807.
- Roy, H.; Ibba, M. Broad range amino acid specificity of RNA-dependent lipid remodeling by multiple peptide resistance factors. *J. Biol. Chem.* 2009, *284*, 29677–29683.
- 161. Mishra, N.N.; Yang, S.J.; Chen, L.; Muller, C.; Saleh-Mghir, A.; Kuhn, S.; Peschel, A.; Yeaman, M.R.; Nast, C.C.; Kreiswirth, B.N.; *et al.* Emergence of daptomycin resistance in daptomycin-naive rabbits with methicillin-resistant *Staphylococcus aureus* prosthetic joint infection is associated with resistance to host defense cationic peptides and mprF polymorphisms. *PLoS One* **2013**, *8*, e71151.
- 162. Slavetinsky, C.J.; Peschel, A.; Ernst, C.M. Alanyl-phosphatidylglycerol and lysyl-phosphatidylglycerol are translocated by the same MprF flippases and have similar capacities to protect against the antibiotic daptomycin in *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* 2012, 56, 3492–3497.
- McBride, S.M.; Sonenshein, A.L. The dlt operon confers resistance to cationic antimicrobial peptides in *Clostridium difficile*. *Microbiology* 2011, 157, 1457–1465.
- 164. Walter, J.; Loach, D.M.; Alqumber, M.; Rockel, C.; Hermann, C.; Pfitzenmaier, M.; Tannock, G.W. D-alanyl ester depletion of teichoic acids in *Lactobacillus reuteri* 100-23 results in impaired colonization of the mouse gastrointestinal tract. *Environ. Microbiol.* 2007, *9*, 1750–1760.

- 165. Koprivnjak, T.; Mlakar, V.; Swanson, L.; Fournier, B.; Peschel, A.; Weiss, J.P. Cation-induced transcriptional regulation of the dlt operon of *Staphylococcus aureus*. J. Bacteriol. 2006, 188, 3622–3630.
- 166. Le Jeune, A.; Torelli, R.; Sanguinetti, M.; Giard, J.C.; Hartke, A.; Auffray, Y.; Benachour, A.

The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of *Enterococcus faecalis*. *PLoS One* **2010**, *5*, e9658.

167. Neuhaus, F.C.; Heaton, M.P.; Debabov, D.V.; Zhang, Q. The dlt operon in the biosynthesis of

D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb. Drug Resist. 1996, 2, 77-84.

168. Perego, M.; Glaser, P.; Minutello, A.; Strauch, M.A.; Leopold, K.; Fischer, W. Incorporation of

D-alanine into lipoteichoic acid and wall teichoic acid in *Bacillus subtilis*. Identification of genes and regulation. *J. Biol. Chem.* **1995**, *270*, 15598–15606.

- 169. Neuhaus, F.C.; Baddiley, J. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. *Microbiol. Mol. Biol. Rev.* 2003, 67, 686–723.
- 170. Yang, S.J.; Kreiswirth, B.N.; Sakoulas, G.; Yeaman, M.R.; Xiong, Y.Q.; Sawa, A.; Bayer, A.S. Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of *Staphylococcus aureus*. J. Infect. Dis. 2009, 200, 1916–1920.

- 171. Guariglia-Oropeza, V.; Helmann, J.D. *Bacillus subtilis* sigma(V) confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids. *J. Bacteriol.* 2011, 193, 6223–6232.
- 172. Jann, N.J.; Schmaler, M.; Kristian, S.A.; Radek, K.A.; Gallo, R.L.; Nizet, V.; Peschelm A.; Landmann, R. Neutrophil antimicrobial defense against *Staphylococcus aureus* is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. *J. Leukoc. Biol.* 2009, 86,

1159–1169.

- 173. Saar-Dover, R.; Bitler, A.; Nezer, R.; Shmuel-Galia, L.; Firon, A.; Shimoni, E.; Trieu-Cuot,
 P.; Shai, Y. D-Alanylation of lipoteichoic acids confers resistance to cationic peptides in group B *streptococcus* by increasing the cell wall density. *PLoS Pathog.* 2012, *8*, e1002891.
- 174. Kristian, S.A.; Lauth, X.; Nizet, V.; Goetz, F.; Neumeister, B.; Peschel, A.; Landmann, R. Alanylation of teichoic acids protects *Staphylococcus aureus* against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. *J. Infect. Dis.* 2003, *188*, 414–423.
- 175. Collins, L.V.; Kristian, S.A.; Weidenmaier, C.; Faigle, M.; van Kessel, K.P.; van Strijp, J.A.; Gotz, F.; Neumeister, B.; Peschel, A. *Staphylococcus aureus* strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. *J. Infect. Dis.* 2002, *186*, 214–219.
- 176. Meyer, K.; Thompson, R.; Palmer, J.W.; Khorazo, D. The nature of lysozyme action. *Science* **1934**, *79*, 61.
- 177. Meyer, K.; Palmer, J.W.; Thompson, R.; Khorazo, D. On the mechanism of lysozyme action.*J. Biol. Chem.* 1936, *113*, 479–486.

- 178. Chipman, D.M.; Sharon, N. Mechanism of lysozyme action. Science 1969, 165, 454-65.
- 179. Nash, J.A.; Ballard, T.N.; Weaver, T.E.; Akinbi, H.T. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity *in vivo. J. Immunol.* **2006**, *177*, 519–526.
- Hebert, L.; Courtin, P.; Torelli, R.; Sanguinetti, M.; Chapot-Chartier, M.P.; Auffray, Y.; Benachour, A. *Enterococcus faecalis* constitutes an unusual bacterial model in lysozyme resistance. *Infect. Immun.* 2007, 75, 5390–5398.
- 181. Amano, K.; Araki, Y.; Ito, E. Effect of N-acyl substitution at glucosamine residues on lysozyme-catalyzed hydrolysis of cell-wall peptidoglycan and its oligosaccharides. *Eur. J. Biochem.* 1980, 107, 547–553.
- 182. Amano, K.; Hayashi, H.; Araki, Y.; Ito, E. The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. *Eur. J. Biochem.* **1977**, *76*, 299–307.
- 183. Psylinakis, E.; Boneca, I.G.; Mavromatis, K.; Deli, A.; Hayhurst, E.; Foster, S.J.; Varum, K.M.; Bouriotis, V. Peptidoglycan N-acetylglucosamine deacetylases from *Bacillus cereus*, highly conserved proteins in *Bacillus anthracis*. J. Biol. Chem. 2005, 280, 30856–30863.
- 184. Blair, D.E.; Schuttelkopf, A.W.; MacRae, J.I.; van Aalten, D.M. Structure and metaldependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. *Proc. Natl. Acad. Sci. USA* 2005, *102*, 15429–15434.
- 185. Vollmer, W.; Tomasz, A. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in *Streptococcus pneumoniae*. *Infect. Immun.* **2002**, *70*, 7176–7178.
- 186. Benachour, A.; Ladjouzi, R.; le Jeune, A.; Hebert, L.; Thorpe, S.; Courtin, P.; Chapot-Chartier, M.P.; Prajsnar, T.K.; Foster, S.J.; Mesnage, S. The lysozyme-induced peptidoglycan N-

acetylglucosamine deacetylase PgdA (EF1843) is required for *Enterococcus faecalis* virulence. *J. Bacteriol.* **2012**, *194*, 6066–6073.

- Rae, C.S.; Geissler, A.; Adamson, P.C.; Portnoy, D.A. Mutations of the *Listeria monocytogenes* peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. *Infect. Immun.* 2011, 79, 3596–3606.
- 188. Crisostomo, M.I.; Vollmer, W.; Kharat, A.S.; Inhulsen, S.; Gehre, F.; Buckenmaier, S.; Tomasz, A. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of *Streptococcus pneumoniae*. *Mol. Microbiol.* **2006**, *61*, 1497–1509.
- 189. Bera, A.; Biswas, R.; Herbert, S.; Kulauzovic, E.; Weidenmaier, C.; Peschel, A.; Gotz, F. Influence of wall teichoic acid on lysozyme resistance in *Staphylococcus aureus*. J. *Bacteriol.* 2007, 189, 280–283.
- 190. Davis, K.M.; Akinbi, H.T.; Standish, A.J.; Weiser, J.N. Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by *Streptococcus pneumoniae*. *PLoS Pathog.* 2008, *4*, e1000241.
- 191. Veiga, P.; Bulbarela-Sampieri, C.; Furlan, S.; Maisons, A.; Chapot-Chartier, M.P.; Erkelenz, M.; Mervelet, P.; Noirot, P.; Frees, D.; Kuipers, O.P.; *et al.* SpxB regulates O-acetylation-dependent resistance of *Lactococcus lactis* peptidoglycan to hydrolysis. *J. Biol. Chem.* 2007, 282, 19342–19354.
- 192. Shimada, T.; Park, B.G.; Wolf, A.J.; Brikos, C.; Goodridge, H.S.; Becker, C.A.; Reyes, C.N.;Miao, E.A.; Aderem, A.; Gotz, F.; *et al. Staphylococcus aureus* evades lysozyme-based

peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. *Cell Host Microbe* **2010**, *7*, 38–49.

- 193. Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. *Annu. Rev. Biochem.* 1995, 64, 29–63.
- 194. Mazzotta, A.S.; Montville, T.J. Nisin induces changes in membrane fatty acid composition of *Listeria monocytogenes* nisin-resistant strains at 10 degrees C and 30 degrees C. J. Appl. Microbiol. 1997, 82, 32–38.
- 195. Verheul, A.; Russell, N.J.; van't Hof, R.; Rombouts, F.M.; Abee, T. Modifications of membrane phospholipid composition in nisin-resistant *Listeria monocytogenes* Scott A. *Appl. Environ. Microbiol.* **1997**, *63*, 3451–3457.
- 196. Ming, X.T.; Daeschel, M.A. Nisin resistance of foodborne bacteria and the specific resistance responses of *Listeria monocytogenes* Scott A. J. Food Protect. **1993**, *56*, 944–948
- 197. Crandall, A.D.; Montville, T.J. Nisin resistance in *Listeria monocytogenes* ATCC 700302 is a complex phenotype. *Appl. Environ. Microbiol.* **1998**, *64*, 231–237.
- 198. Mishra, N.N.; McKinnell, J.; Yeaman, M.R.; Rubio, A.; Nast, C.C.; Chen, L.; Kreiswirth, B.N.; Bayer, A.S. *In vitro* cross-resistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant *Staphylococcus aureus* isolates. *Antimicrob. Agents Chemother.* 2011, 55, 4012–4018.
- Mishra, N.N.; Liu, G.Y.; Yeaman, M.R.; Nast, C.C.; Proctor, R.A.; McKinnell, J.; Bayer,
 A.S. Carotenoid-related alteration of cell membrane fluidity impacts *Staphylococcus aureus* susceptibility to host defense peptides. *Antimicrob. Agents Chemother.* 2011, 55, 526–531.
- 200. Mishra, N.N.; Rubio, A.; Nast, C.C.; Bayer, A.S. Differential adaptations of methicillinresistant *Staphylococcus aureus* to serial *in vitro* passage in daptomycin: Evolution of

daptomycin resistance and role of membrane carotenoid content and fluidity. *Int. J. Microbiol.* **2012**, *2012*, e683450.

- 201. Britton, G. Structure and properties of carotenoids in relation to function. *FASEB J.* 1995, 9, 1551–1558.
- 202. Pelz, A.; Wieland, K.P.; Putzbach, K.; Hentschel, P.; Albert, K.; Gotz, F. Structure and biosynthesis of staphyloxanthin from *Staphylococcus aureus*. J. Biol. Chem. 2005, 280, 32493–32498.
- 203. Katzif, S.; Lee, E.H.; Law, A.B.; Tzeng, Y.L.; Shafer, W.M. CspA regulates pigment production in *Staphylococcus aureus* through a SigB-dependent mechanism. *J. Bacteriol.* 2005, 187, 8181–8184.
- 204. Subczynski, W.K.; Wisniewska, A. Physical properties of lipid bilayer membranes: Relevance to membrane biological functions. *Acta Biochim. Pol.* **2000**, 47, 613–625.
- 205. Wisniewska, A.; Subczynski, W.K. Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. *Biochim. Biophys. Acta* **1998**, *1368*, 235–246.
- 206. Bayer, A.S.; Prasad, R.; Chandra, J.; Koul, A.; Smriti, M.; Varma, A.; Skurray, R.A.; Firth, N.; Brown, M.H.; Koo, S.P.; *et al. In vitro* resistance of *Staphylococcus aureus* to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. *Infect. Immun.* 2000, *68*, 35483553.
- 207. Van Blitterswijk, W.J.; van der Meer, B.W.; Hilkmann, H. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. *Biochemistry* 1987, 26, 1746–1756.

- 208. Davidson, A.L.; Chen, J. ATP-binding cassette transporters in bacteria. *Annu. Rev. Biochem.*2004, 73, 241–268.
- 209. Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. *Microbiol. Mol. Biol. Rev.* 2008, 72, 317–364, table of contents.
- 210. Pao, S.S.; Paulsen, I.T.; Saierk M.H. Jr. Major facilitator superfamily. *Microbiol. Mol. Biol. Rev.* 1998, 62, 1–34.
- 211. Reizer, J.; Reizer, A.; Saier, M.H., Jr. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. *Protein Sci.* **1992**, *1*, 1326–1332.
- Stein, T.; Heinzmann, S.; Kiesau, P.; Himmel, B.; Entian, K.D. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in *Bacillus subtilis*. *Mol. Microbiol.* 2003, 47, 1627–1636.
- 213. Stein, T.; Heinzmann, S.; Solovieva, I.; Entian, K.D. Function of *Lactococcus lactis* nisin immunity genes *nisI* and *nisFEG* after coordinated expression in the surrogate host *Bacillus subtilis*. J. Biol. Chem. 2003, 278, 89–94.
- 214. Immonen, T.; Saris, P.E. Characterization of the *nisFEG* operon of the nisin Z producing *Lactococcus lactis* subsp. *lactis* N8 strain. *DNA Seq.* 1998, 9, 263–274.
- 215. Ra, S.R.; Qiao, M.; Immonen, T.; Pujana, I.; Saris, E.J. Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in *Lactoccocus lactis* N8. *Microbiology* **1996**, *142*, 1281–1288.
- 216. Aso, Y.; Okuda, K.; Nagao, J.; Kanemasa, Y.; Thi Bich Phuong, N.; Koga, H.; Shioya, K.; Sashihara, T.; Nakayama, J.; Sonomoto, K. A novel type of immunity protein, NukH, for the

lantibiotic nukacin ISK-1 produced by *Staphylococcus warneri* ISK-1. *Biosci. Biotechnol. Biochem.* **2005**, *69*, 1403–1410.

- 217. Okuda, K.; Yanagihara, S.; Shioya, K.; Harada, Y.; Nagao, J.; Aso, Y.; Zendo, T.; Nakayama, J.; Sonomoto, K. Binding specificity of the lantibiotic-binding immunity protein NukH. *Appl. Environ. Microbiol.* **2008**, *74*, 7613–7619.
- Gebhard, S. ABC transporters of antimicrobial peptides in Firmicutes bacteria—Phylogeny, function and regulation. *Mol. Microbiol.* 2012, *86*, 1295–1317.
- Higgins, C.F. ABC transporters: Physiology, structure and mechanism—An overview. *Res. Microbiol.* 2001, *152*, 205–210.
- 220. Dintner, S.; Staron, A.; Berchtold, E.; Petri, T.; Mascher, T.; Gebhard, S. Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes bacteria. *J. Bacteriol.* 2011, 193, 3851–3862.
- 221. Revilla-Guarinos, A.; Gebhard, S.; Mascher, T.; Zuniga, M. Defence against antimicrobial peptides: Different strategies in Firmicutes. *Environ. Microbiol.* **2014**, *16*, 1225–1237.
- 222. Bernard, R.; El Ghachi, M.; Mengin-Lecreulx, D.; Chippaux, M.; Denizot, F. BcrC from *Bacillus subtilis* acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. *J. Biol. Chem.* 2005, *280*, 28852–28857.
- 223. Shaaly, A.; Kalamorz, F.; Gebhard, S.; Cook, G.M. Undecaprenyl pyrophosphate phosphatase confers low-level resistance to bacitracin in *Enterococcus faecalis*. J. Antimicrob. Chemother. 2013, 68, 1583–1593.
- Charlebois, A.; Jalbert, L.A.; Harel, J.; Masson, L.; Archambault, M. Characterization of genes encoding for acquired bacitracin resistance in *Clostridium perfringens*. *PLoS One* 2012, 7, e44449.

- 225. Butaye, P.; Cloeckaert, A.; Schwarz, S. Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. *Int. J. Antimicrob. Agents* 2003, 22, 205–210.
- 226. Van Veen, H.W.; Venema, K.; Bolhuis, H.; Oussenko, I.; Kok, J.; Poolman, B.; Driessen, A.J.; Konings, W.N. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. *Proc. Natl. Acad. Sci. USA* **1996**, *93*, 10668–10672.
- 227. Saidijam, M.; Benedetti, G.; Ren, Q.; Xu, Z.; Hoyle, C.J.; Palmer, S.L.; Ward, A.; Bettaney, K.E.; Szakonyi, G.; Meuller, J.; *et al.* Microbial drug efflux proteins of the major facilitator superfamily. *Curr. Drug Targets* 2006, *7*, 793–811.
- Littlejohn, T.G.; Paulsen, I.T.; Gillespie, M.T.; Tennent, J.M.; Midgley, M.; Jones, I.G.; Purewal, A.S.; Skurray, R.A. Substrate specificity and energetics of antiseptic and disinfectant resistance in *Staphylococcus aureus*. *FEMS Microbiol. Lett.* **1992**, *74*, 259–265.
- 229. Leelaporn, A.; Paulsen, I.T.; Tennent, J.M.; Littlejohn, T.G.; Skurray, R.A. Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J. Med. Microbiol. 1994, 40, 214–220.
- 230. Bayer, A.S.; Cheng, D.; Yeaman, M.R.; Corey, G.R.; McClelland, R.S.; Harrel, L.J.; Fowler, V.G., Jr. *In vitro* resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of *Staphylococcus aureus* correlates with an endovascular infectious source. *Antimicrob. Agents Chemother.* 1998, 42, 3169–3172.
- 231. Solheim, M.; Aakra, A.; Vebo, H.; Snipen, L.; Nes, I.F. Transcriptional responses of *Enterococcus faecalis* V583 to bovine bile and sodium dodecyl sulfate. *Appl. Environ. Microbiol.* 2007, 73, 5767–5774.

- 232. Fernandez-Fuentes, M.A.; Abriouel, H.; Ortega Morente, E.; Perez Pulido, R.; Galvez, A. Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. *Int. J. Food Microbiol.* 2014, *172*, 49–56.
- 233. Gay, K.; Stephens, D.S. Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in *Streptococcus pneumoniae*. J. Infect. Dis. **2001**, 184, 56–65.
- 234. Peschel, A.; Sahl, H.G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. *Nat. Rev. Microbiol.* **2006**, *4*, 529–536.
- Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. *Future Microbiol.* 2011, *6*, 635–651.
- 236. Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. *Curr. Opin. Pharmacol.* **2006**, *6*, 468–472.
- 237. Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. *Nat. Biotechnol.* **2006**, *24*, 1551–1557.
- 238. Van Heel, A.J.; Mu, D.; Montalban-Lopez, M.; Hendriks, D.; Kuipers, O.P. Designing and producing modified, new-to-nature peptides with antimicrobial activity by use of a combination of various lantibiotic modification enzymes. *ACS Synth. Biol.* 2013, *2*, 397–404.
- 239. Jung, W.J.; Mabood, F.; Souleimanov, A.; Zhou, X.; Jaoua, S.; Kamoun, F.; Smith, D.L. Stability and antibacterial activity of bacteriocins produced by *Bacillus thuringiensis* and *Bacillus thuringiensis* ssp. *kurstaki. J. Microbiol. Biotechnol.* 2008, 18, 1836–1840.
- 240. Chehimi, S.; Delalande, F.; Sable, S.; Hajlaoui, M.R.; van Dorsselaer, A.; Limam, F.; Pons,
 A.M. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from *Bacillus thuringiensis*. *Can. J. Microbiol.* 2007, *53*, 284–290.

- 241. Weigel, L.M.; Clewell, D.B.; Gill, S.R.; Clark, N.C.; McDougal, L.K.; Flannagan, S.E.; Kolonay, J.F.; Shetty, J.; Killgore, G.E. Tenover, F.C. Genetic analysis of a high-level vancomycin-resistant isolate of *Staphylococcus aureus*. *Science* 2003, *302*, 1569–1571.
- 242. Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. *Infect. Drug. Resist.* **2014**, *7*, 167–176.
- 243. Napier, B.A.; Band, V.; Burd, E.M.; Weiss, D.S. Colistin heteroresistance in *Enterobacter cloacae* is associated with cross-resistance to the host antimicrobial lysozyme. *Antimicrob. Agents Chemother.* 2014, 58, 5594–5597.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).