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Abstract

Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal
Representations Learning
By Eslam Abdelaleem

Current experiments frequently produce high-dimensional, multimodal datasets—such
as those combining neural activity and animal behavior or gene expression and phe-
notypic profiling—with the goal of extracting useful correlations between the modal-
ities. Often, the first step in analyzing such datasets is dimensionality reduction. We
explore two primary classes of approaches to dimensionality reduction (DR): Indepen-
dent Dimensionality Reduction (IDR) and Simultaneous Dimensionality Reduction
(SDR). In IDR methods, of which Principal Components Analysis is a paradigmatic
example, each modality is compressed independently, striving to retain as much vari-
ation within each modality as possible. In contrast, in SDR, one simultaneously com-
presses the modalities to maximize the covariation between the reduced descriptions
while paying less attention to how much individual variation is preserved. Paradig-
matic examples include Partial Least Squares and Canonical Correlations Analysis.
Even though these DR methods are a staple of statistics, their relative accuracy and
data set size requirements are poorly understood. We introduce a generative linear
model to synthesize multimodal data with known variance and covariance structures
to examine these questions. We assess the accuracy of the reconstruction of the co-
variance structures as a function of the number of samples, signal-to-noise ratio, and
the number of varying and covarying signals in the data. Using numerical experi-
ments, we demonstrate that linear SDR methods consistently outperform linear IDR
methods and yield higher-quality, more succinct reduced-dimensional representations
with smaller datasets. Remarkably, regularized CCA can identify low-dimensional
weak covarying structures even when the number of samples is much smaller than
the dimensionality of the data, which is a regime challenging for all dimensionality
reduction methods. Our work corroborates and explains previous observations in
the literature that SDR can be more effective in detecting covariation patterns in
data. These findings suggest that SDR should be preferred to IDR in real-world data
analysis when detecting covariation is more important than preserving variation.
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Chapter 1

Introduction

Many modern experiments across various fields generate massive multimodal data

sets. For instance, in neuroscience, it is common to record the activity of a large

number of neurons while simultaneously recording the resulting animal behavior [44,

43, 46, 30]. Other examples include measuring gene expressions of thousands of cells

and their corresponding phenotypic profiles, or integrating gene expression data from

different experimental platforms, such as RNA-Seq and microarray data [10, 51, 45,

27, 31]. In economics, important variables such as inflation are often measured using

combinations of macroeconomic indicators as well as indicators belonging to different

economic sectors [20, 2, 15, 40]. In all of these examples, an important goal is to

estimate statistical correlations among the different modalities.

Analyses usually begin with dimensionality reduction (DR) into a smaller and

more interpretable representation of the data. We distinguish two types of DR: inde-

pendent (IDR) and simultaneous (SDR) [34]. In the former, each modality is reduced

independently, while aiming to preserve its variation, which we call self signal. In the

latter, the modalities are compressed simultaneously, while maximizing the covaria-

tion (or the shared signal) between the reduced descriptions and paying less attention

to preserving the individual variation. It is not clear if IDR techniques, such as the
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Principal Components Analysis (PCA) [25], are well-suited for extracting shared sig-

nals since they may overlook features of the data that happen to be of low variance,

but of high covariance [11]. In particular, poorly sampled weak shared signals, com-

mon in high-dimensional datasets, can exacerbate this issue. SDR techniques, such

as Partial Least Squares (PLS) [50] and Canonical Correlations Analysis (CCA) [26],

are sometimes mentioned as more accurate in detecting weak shared signal [9, 21, 36].

However, the relative accuracy and data set size requirements for detecting the shared

signals remain poorly understood for both classes of methods.

In this study, we aim to assess the strengths and limitations of linear IDR, rep-

resented by PCA, and linear SDR, exemplified by PLS and CCA, in detecting weak

shared signals. For this, we introduce a generative linear model that captures key

features of relevant examples, including noise, the self signal, and the shared signal

components. Using this model, we analyze the performance of the methods in dif-

ferent conditions. Our goal is to assess how well these techniques can (i) extract the

relevant shared signal and (ii) identify the dimensionality of the shared and the self

signals from noisy, undersampled data. We investigate how the signal-to-noise ratios,

the dimensionality of the reduced variables, and the method of computing correla-

tions combine with the sample size to determine the quality of the DR. We propose

best practices for achieving high-quality reduced representations with small sample

sizes using these linear methods.
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Chapter 2

Model

2.1 Relations to Previous Work

The extraction of signals from large-dimensional data sets is a challenging task when

the number of observations is comparable to or smaller than the dimensionality of the

data. The undersampling problem introduces spurious correlations that may appear

as signals, but are, in fact, just statistical fluctuations. This poses a challenge for DR

techniques, as they may retain unnecessary dimensions or identify noise dimensions

as true signals.

Here, we focus exclusively on linear DR methods. For these, the Marchenko-Pastur

(MP) distribution of eigenvalues of the covariance matrix of pure noise derived using

the Random Matrix Theory methods [33] has been used to introduce a cutoff between

noise and true signal in real datasets. However, recent work [13] has shown that, when

observations are a linear combination of uncorrelated noise and latent low-dimensional

self signals, then the self signals alter the distribution of eigenvalues of the sampling

noise, questioning the validity of this naive approach.

Moving beyond a single modality, [4] calculated the singular value spectrum of

cross-correlations between two nominally uncorrelated random signals. However, it
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remains unknown whether the linear mixing of self signals and shared signals affects

the singular value spectra of noise, and how all of these components combine to limit

the ability to detect shared signals between two modalities from data sets of realistic

sizes. Filling in this gap using numerical simulations is the main goal of this paper,

and analytical treatment of this problem will be left for the future.

The linear model and linear DR approaches studied here do not capture the full

complexity of real-world data sets and state-of-the-art algorithms. However, if sam-

pling issues and self signals limit the ability of linear DR methods to extract shared

signals, it would be surprising for nonlinear methods to succeed in similar scaling

regimes on real data. Thus extending the previous work to explicitly study the ef-

fects of linear mixtures of self signals, shared signals, and noise on limitations of DR

methods is likely to endow us with intuition that is useful in more complex scenarios

routinely encountered in different domains of science.

Examples of scenarios with shared and self signals include inference of dynamics

of a system through a latent space [12, 8], where shared signals correspond to latent

factors that are relevant for predicting the future of the system from its past, while

self signals correspond to nonpredictive variation [3]. In economics, shared and self

signals correspond to diverse macroeconomic indicators that are grouped into corre-

lated distinct categories in structural factor models [14, 20, 40, 2]. In neuroscience,

shared signals can correspond to the latent space, by which neural activity affects

behavior, while self signals encode neural activity that does not manifest in behav-

ior and behavior that is not controlled by the part of the brain being recorded from

[42, 44, 35, 41, 37, 46, 30].

Interestingly, in the context of the neural control of behavior, it was noticed

that SDR reconstructs the shared neuro-behavioral latent space more efficiently and

using a smaller number of samples than IDR [41]. Similar observations have been

made in more general statistical contexts [9, 21, 36], though the agreement is not
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uniform [17, 18, 19]. Because of this, most practical recommendations for detecting

shared signals are heuristic [22], with widely acknowledged, but poorly understood

limitations and possible resolutions [29]. Our goal is to ground such rules in numerical

simulations and scaling arguments.

2.2 Linear Model with Self and Shared Signals

We consider a linear model with noise, mself,X,mself,Y self signals that are relevant to

each modality independently, as well as mshared shared signals that capture the inter-

relationships between modalities. It results in T observations of two high-dimensional

standardized observables, X and Y :

[
X̃ ∈ RNX

]
= RX︸︷︷︸

Independent white noise

+ UXVX︸ ︷︷ ︸
Self-Signal for X

+ PQX︸ ︷︷ ︸
Shared-Signal

,

[
Ỹ ∈ RNY

]
= RY︸︷︷︸

Independent white noise

+ UY VY︸ ︷︷ ︸
Self-Signal for Y

+ PQY︸ ︷︷ ︸
Shared-Signal

, (2.1)

X = X̃/σX̃ , Y = Ỹ /σỸ . (2.2)

The observations ofX and Y are linear combinations of the following: (a) Independent

white noise components RX and RY with variances σ2
RX

and σ2
RY

. (b) Self-signal

components UX and UY residing in lower-dimensional subspaces Rmself,X and Rmself,Y

with variances σ2
UX

and σ2
UY

. (c) Shared-signal components P in a shared lower-

dimensional subspace Rmshared with variance σ2
P . These components are projected

into their respective high-dimensional spaces RNX and RNY using fixed quenched

projection matrices VX , VY , QX , and QY with specified variances σ2
VX

, σ2
VY
, σ2

QX
, and

σ2
QY

, all respectively. Entries in these matrices are drawn from a Gaussian distribution

with a zero mean and the corresponding variances. Further, division by σX̃ and σỸ

standardizes each column of the data matrices by their empirical standard deviations.

The total variance in the matrix X̃ can be calculated as the sum of the variances of
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its individual components: σ2
X̃
= σ2

RX
+mself,X×σ2

UX
σ2
VX

+mshared×σ2
Pσ

2
QX

. A similar

calculation can be done for the total variance in Ỹ .

We define self and shared signal-to-noise ratios γself,X/Y , γshared,X/Y as the relative

strength of signals compared to background noise per component in each modality.

These definitions allow us to examine how easily self or shared signals in each dimen-

sion can be distinguished from the noise.

γself,X/Y =
σ2
UX/Y

σ2
VX/Y

σ2
RX/Y

, γshared,X/Y =
σ2
Pσ

2
QX/Y

σ2
RX/Y

(2.3)

Our main goal is to evaluate the ability of linear SDR and IDR methods to recon-

struct the shared signal P between X and Y while overlooking the effects of the self

signals UX , UY on the statistics of the shared ones.
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Chapter 3

Methods

We apply DR techniques to X and Y to obtain their reduced dimensional forms ZX

and ZY , respectively. ZX , ZY are of sizes that can range from T × 1 to T ×NX and

T × NY , respectively. As an IDR method, we use PCA [25]. As SDR methods, we

apply PLS [50] and CCA [26, 47, 52], including both normal and regularized versions

of the latter. Each of these methods focuses on specific parts of the overall covariance

matrix

CX,Y =

CXX CXY

CY X CY Y

 =

 1
T
X⊤X 1

T
X⊤Y

1
T
Y ⊤X 1

T
Y ⊤Y

 . (3.1)

PCA aims to identify the most significant features that explain the majority of the

variance in CXX and CY Y , independently. PLS, on the other hand, focuses on singular

values and vectors that explain the covariance component CXY . Along the same

lines, CCA aims to find linear combinations of X and Y that are responsible for

the correlation (CXY /
√
CXXCY Y ) between X and Y . A detailed description of each

method is in the next section 3.1.

For every numerical experiment, we generate training and test data sets (Xtrain, Ytrain)

and (Xtest, Ytest) according to Eqs. (2.1-2.2). We apply PCA, PLS, CCA, and reg-

ularized CCA (rCCA) to the training to obtain the singular directions WXtrain
and
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WYtrain
for each method (detailed in section 3.1). We then evaluate the projections of

the test data on these singular directions

ZXtest = XtestWXtrain
,

ZYtest = YtestWYtrain
. (3.2)

Finally, we evaluate the reconstructed correlations metric RC ′, which measures how

well these singular directions recover the shared signals in the data, corrected by the

expected positive bias due to the sampling noise, as detailed in section 3.2. RC ′ = 0

corresponds to no overlap between the true and the recovered shared directions, and

RC ′ = 1 corresponds to perfect recovery.

3.1 Linear Dimensionality Reduction Methods

3.1.1 PCA

PCA is a widely used linear IDR method that aims to find the orthogonal principal

directions, such that a few of them explain the largest possible fraction of the vari-

ance within the data. PCA decomposes the covariance matrix of the data matrix X,

CXX = 1
T
X⊤X, into its eigenvectors and eigenvalues through singular value decom-

position (SVD). The SVD yields orthogonal directions, represented by the vectors

w
(i)
X , that capture the most significant variability in the data. In most numerical im-

plementations [38], these directions are obtained consecutively, one by one, such that

the dot product between any two directions is zero w
(i)
X ·w(j)

X = δij. The eigenvectors

w
(i)
X are obtained as the best solution to the optimization problem:

w
∗(i)
X = argmax

w
(i)
X

w
(i)
X

⊤
X(i)⊤X(i)w

(i)
X

w
(i)
X

⊤
w

(i)
X

. (3.3)
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Here X(i) is the ith deflated matrix where X(1) is the original matrix, and for

every subsequent i+ 1, the matrix is deflated by subtracting the projection of X on

the obtained weights: X(i+1) = X − Σi
s=1Xw(s)w

⊤
(s). The eigenvectors are sorted in

decreasing order according to their corresponding eigenvalues, and the first k eigen-

vectors w
(i=1:k)
X are selected to form the projection matrix WX . The obtained vectors

determine the size of the reduced form ZX , where |ZX | = k is the number of vectors

retained from the decomposition of X. The vectors w
(i)
X are then stacked together

to form the projection matrix WX . The low-dimensional representation ZX is then

obtained by multiplying the original data matrix X with this projection matrix, re-

sulting in the reduced data matrix ZX = XWX . Similar treatment is done for Y in

order to obtain ZY = YWY

One of the main advantages of PCA is its simplicity and efficiency. However, one

of the drawbacks of this method is that it performs DR for X and Y independently,

and one then searches for relations between ZX and ZY by regressing one on the

other. Thus obtained low-dimensional descriptions may capture variance but not the

covariance between the two datasets.

3.1.2 PLS

PLS, or Partial Least Squares, performs SDR by finding the shared signals that

explain the maximum covariance between two sets of data [50]. PLS performs the

SVD of the covariance matrix CXY = 1
T
X⊤Y (or equivalently CY X = 1

T
Y ⊤X). The

left and right singular vectors (w
∗(i)
X , w

∗(i)
Y ) are obtained consecutively pair by pair

such that w
(i)
X · w(j)

Y = δij. They are solutions of the optimization problem:

(w
∗(i)
X , w

∗(i)
Y ) = argmax

w
(i)
X ,w

(i)
Y

w
(i)
X

⊤
X(i)⊤Y (i)w

(i)
Y√

(w
(i)
X

⊤
w

(i)
X )(w

(i)
Y

⊤
w

(i)
Y )

(3.4)
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The matrices X(i), Y (i) are deflated in a similar manner to PCA 3.1.1. The singular

vectors are sorted in the decreasing order of their corresponding singular values, and

the first k vectors are selected to form the projection matrices (WX ,WY ). The ob-

tained vectors determine the size of the reduced form (ZX , ZY ), where |ZX | = |ZY | =

k is the number of vectors retained. The vectors (w
(i)
X , w

(i)
Y ) are then stacked together

to form the projection matrices (WX ,WY ) respectively. The low-dimensional repre-

sentations (ZX , ZY ) are obtained by projecting the original data matrices (X, Y ) onto

these projection matrices: ZX = XWX , and ZY = YWY .

In summary, PLS performs simultaneous reduction on both datasets, maximiz-

ing the covariance between the reduced representations ZX and ZY . This property

makes PLS a powerful tool for studying the relationships between two datasets and

identifying the underlying factors that explain their joint variability.

3.1.3 CCA

CCA is another SDR method, which aims to find the directions that explain the

maximum correlation between two datasets [26]. However, unlike PLS, CCA obtains

the shared signals by performing SVD on the correlation matrix CXY√
CXX

√
CY Y

. The

singular vectors (w
∗(i)
X , w

∗(i)
Y ) are obtained consecutively pair by pair such that w

(i)
X ·

w
(j)
Y = δij. CCA enforces the orthogonality of w

(i)
X , w

(i)
Y independently as well, such

that w
(i)
X · w(j)

X = w
(i)
Y · w(j)

Y = δij. The singular vectors are obtained by solving the

optimization problem:

(w
∗(i)
X , w

∗(i)
Y ) = argmax

w
(i)
X ,w

(i)
Y

w
(i)
X

⊤
X(i)⊤Y (i)w

(i)
Y√

(w
(i)
X

⊤
X(i)⊤X(i)w

(i)
X )(w

(i)
Y

⊤
Y (i)⊤Y (i)w

(i)
Y )

. (3.5)

Like in PLS 3.1.2, the matrices X(i), Y (i) are deflated in a similar manner. In addition,

the first k singular vectors (w
∗(i)
X , w

∗(i)
Y ) are stacked together to form the projection

matrices (WX ,WY ), which then are used to obtain the reduced data matrices ZX =



11

XWX , and ZY = YWY .

One of the key differences between PLS and CCA is that while both perform SDR,

CCA also simultaneously performs IDR implicitly. Indeed, it involves multiplication

of CXY by C
−1/2
XX on the left and C

−1/2
Y Y on the right, which, in turn, requires finding

singular values of the X and the Y data matrices independently.

3.1.4 Regularized CCA - rCCA

While CCA is a useful method for finding the maximum correlating features between

two sets of data, it does have some limitations. Specfically, in the undersampled

regime, where T ≤ max(NX , NY ), the matrices CXX and CY Y are singular and their

inverses do not exist. Using the pseudoinverse to solve the problem can lead to

numerical instability and sensitivity to noise. Regularized CCA (rCCA) [47, 52] over-

comes this problem by adding a small regularization term to the covariance matrices,

allowing them to be invertible. Specifically, one tales

C̃XX = CXX + cXIX , (3.6)

C̃Y Y = CY Y + cY IY , (3.7)

where C̃XX , C̃Y Y are the new regularized matrices, cX , cY > 0 are small regularization

parameters and IX , IY are identity matrices with sizes NX×NX , NY ×NY respectively.

This original implementation of rCCA resulted in correlation matrices with di-

agonals not equal to one. Thus, a better implementation uses a different form of

regularization [52] by adding the regularization parameters cX and cY individually to

the equations as an affine combination (i. e.,
∑n

i ci = 1) as the following:

C̃XX =
1

T
(cX1w

⊤
XX

⊤XwX + cX2w
⊤
XwX) (3.8)

C̃Y Y =
1

T
(cY1w

⊤
Y Y

⊤Y wY + cY2w
⊤
Y wY ). (3.9)
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This results in the regularized equations for X and Y to be:

C̃XX = 1
T

(
(1− cX)w

⊤
XX

⊤XwX + cXw
⊤
XwX

)
(3.10)

C̃Y Y = 1
T

(
(1− cY )w

⊤
Y Y

⊤Y wY + cYw
⊤
Y wY

)
, (3.11)

where cX and cY are the regularization parameters, with values between 0 and 1.

Writing the regularization conditions in this form is in fact a convex interpolation

problem between PLS and CCA, which is a more robust solution and does not suffer

from shortening the length of correlations due to the added regularization. As a result,

this implementation of rCCA achieves the best accuracy among all other methods.

3.2 Assessing Success and Sampling Noise Treat-

ment

To assess the success of DR, we calculated the ratio between the total correlation

between ZXtest and ZYtest , defined as in Eq. (3.2), and the total correlation between X

and Y , which we input into the model. Specifically, we take the total correlation as

the Frobenius norm of the correlation matrix, ||A||F =
√∑

i σ
2
i (A), where σ(A) are

the singular values of the matrix A. Therefore, the metric of the quality of the DR is

RC =
||Corr(ZXtest , ZYtest)||F

||Corr(P, P )||F
=

||Corr(ZXtest , ZYtest)||F
mshared

, (3.12)

where Corr stands for the correlation matrix between its arguments, and we use

||Corr(P, P )||F = mshared as the total shared correlation that one needs to recover.

Statistical fluctuations aside, RC should vary between zero (bad reconstruction of the

shared variables) and one (perfect reconstruction).

In many real-world applications, the number of available samples, T , is often
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Figure 3.1: The resulting correlations are averages of all the points in the phasespace,
then averaged over 10 different realizations of the matrices. The error bars are for
two standard deviations around the mean

limited compared to the dimensionality of the data, NX and NY . This undersampling

can introduce spurious correlations. We are not aware of analytical results to calculate

the effects of the sampling noise on estimating singular values in the model in Eq. (2.1)

[5]. Thus, to estimate the effect of the sampling noise, we adopt an empirical approach.

Specifically, we generate two random matrices, ZXrandom
and ZYrandom

, of sizes T ×|ZX |

and T ×|ZY |, respectively. We then calculate the correlation between these matrices,

denoted as RC0, for multiple such trials using the metric in Eq. (3.12). For random

ZXrandom
and ZYrandom

, RC should be zero. However, Fig. 3.1 shows that, especially for

large dimensionalities of the compressed variables and small T , the sampling noise

results in a significant spurious RC0 > 0, which may even be larger than 1! Crucially,
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RC0 does not fluctuate around its mean across trials, so that the sampling bias is

narrowly distributed.

To compensate for this sampling bias, we subtract it from the reconstruction

quality metric,

RC ′ = RC −RC0. (3.13)

It is this RC ′ that we plot in all Figures in this paper as the ultimate metric of the

reconstruction quality. While subtracting the bias is not the most rigorous mathe-

matically, it provides a practical approach for reducing the effects of the sampling

noise.

3.3 Implementation

We used Python and the scikit-learn [38] library for performing PCA, PLS, and

CCA, while the cca-zoo [7] library was used for rCCA. For PCA, SVD was performed

with default parameters. For PLS, the PLS Canonical method was used with the

NIPALS algorithm. For both PLS and CCA, the tolerance was set to 10−4 with a

maximum convergence limit of 5000 iterations. For rCCA, regularization parameters

were set as c1 = c2 = 0.1. All other parameters not explicitly here were set to their

default values.

All figures shown in this paper were averaged over 10 independent realizations

of RX , RY , UX , UY , P , while fixing the projection matrices VX , VY , QX , QY . We then

performed an additional round of averaging everything over 10 realizations of the

projection matrices themselves. The simulations were parallelized and run on Amazon

Web Services (AWS) servers of instance types ml.c5.2xlarge.

scikit-learn
cca-zoo
ml.c5.2xlarge
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Chapter 4

Results

We perform numerical experiments to explore the undersampled regime, T ≲ NX , NY .

We use T = {100, 300, 1000, 3000} samples, NX = NY = 1000. We explore the case of

one shared signal only,mshared = 1 and we mask this shared signal by a varying number

of self signals and noise. We vary the number of retained dimensions, (|ZX |, |ZY |),

and explore how many of them are needed to recover the shared signal in the noise

and the self signal background with different SNR.

For brevity, we explore two cases: (1) One self-signal in X and Y in addition to

the shared signal (mself = 1); (2) many self-signals in X and Y . For both cases, we

calculate the quality of reconstruction as the function of the shared and the self SNR,

γshared and γself. In all figures, we show RC ′ for severely undersampled (first row,

T = 300) and relatively well sampled (second row, T = 3000) regimes. We also show

the value of RC0, the bias that we removed from our reconstruction quality metric,

for completeness, see section 3.2 for details.
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4.1 One self-signal in X and Y in addition to the

shared signal (mself = 1)

4.1.1 Keeping 1 dimension after reduction (|ZX/Y | = 1)

Figure 4.1 shows that, in Case 1, when one dimension is retained in DR of X and

Y , PCA populates the compressed variable with the largest variance signals and

hence struggles to retain the shared signal when γself > γshared, regardless of the

number of samples. However, both PLS and rCCA excel in achieving nearly perfect

reconstructions. When T ≪ NX , straightforward CCA cannot be applied (see 3.1.3-

3.1.4), but it too achieves a perfect reconstruction when T > NX .

4.1.2 Keeping 2 dimensions after reduction (|ZX/Y | = 2)

In Fig. 4.2, we allow two dimensions in the reduced variables. For PCA, we expect

this to be sufficient to preserve both the self and the shared signals. Indeed, PCA now

works for all γs and T , although with a slightly reduced accuracy for large shared

signals compared to Fig. 4.1. PLS and rCCA continue to deliver highly accurate

reconstructions. So does the CCA for T > NX . Spurious correlations, as measured

by RC0 grow slightly with the increasing dimensionality of ZX , ZY compared to

Fig. 4.1. This is expected since more projections must now be inferred from the same

amount of data.
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Figure 4.1: Performance of PCA, PLS, CCA, rCCA, and noise in recovery of the
shared signal for |ZX | = |ZY | = 1 = mself. PCA struggles to detect shared signals
when they are weaker than the self signals. PLS and rCCA demonstrate nearly
perfect reconstruction. CCA displays no reconstruction in the undersampled regime
T ≪ NX , and it is nearly perfect for large T .



18

RC′

0.0

0.2

0.4

0.6

0.8

1.0
RC0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

01
01

Adding 1 self-signal, keeping two dimensions after reduction

T
 =

 1
00

T
 =

 3
00

T
 =

 1
00

0
T

 =
 3

00
0

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A1
PCA

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A2

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B1
PLS

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C1
CCA

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D1
rCCA

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D3
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E1
Noise

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E4

Figure 4.2: Same as Fig. 4.1, but for |ZX | = |ZY | = 2 = mself +mshared. Now there
are enough compressed variables for PCA to detect the shared signal. Other methods
perform similarly to Fig. 4.1, albeit the noise is larger.
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4.2 Many self-signal in X and Y in addition to the

shared signal (mself = 30)

4.2.1 Keeping 1 dimension after reduction (|ZX/Y | = 1)

We now turn to mself ≫ mshared. We use mshared = 1, mself = 30 for concreteness.

We expect that the performance of SDR methods will degrade weakly, as they are

designed to be less sensitive to the masking effects of the self signals. In contrast,

we expect IDR to be more easily confused by the many strong self-signals, degrading

the performance. Indeed, Fig. 4.3 shows that PCA now faces challenges in detecting

shared signals, even when the self signals are weaker than in Fig. 4.1. Increasing

T improves its performance only slightly. Somewhat surprisingly, PLS performance

also degrades, with improvements at T ≫ NX . CCA again displays no reconstruction

when T ≪ NX , switching to near perfect reconstruction at large T . Crucially, rCCA

again shines, maintaining its strong performance, consistently demonstrating nearly

perfect reconstruction.

4.2.2 Keeping 30 dimensions after reduction (|ZX/Y | = 30)

Since one retained dimension is not sufficient for PCA to represent the shared signal

when γshared ≲ γself , we increase the dimensionality of reduced variables |ZX | = |ZY | =

mself ≫ mshared), cf. Fig. 4.4. PCA now detects shared signals even when they are

weaker than the self-signals, γshared < γself , but at a cost of the reconstruction accuracy

plateauing significantly below 1. In other words, when self and shared signals are

comparable, they mix, allowing for partial reconstruction. However, even at T ≫

NX , PCA cannot break into the phase diagram’s lower right corner. Other methods

perform similarly, reconstructing shared signals over the same or wider ranges of

sampling and the SNR ratios than in Fig. 4.3. For all of them, the improvement comes
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Figure 4.3: Reconstruction results for mself = 30, mshared = 1, and |ZX | = |ZY | = 1.
PCA struggles to detect any shared signals when they are even comparable to the self
ones. PLS performance also degrades. CCA displays its usual impotence at small T .
Finally, rCCA demonstrates nearly perfect reconstruction for all parameter values.
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at the cost of the decreased asymptotic performance. The most distinct feature of this

regime is the dramatic effect of noise, where 30-dimensional compressed variables can

accumulate enough sampling fluctuations to recover correlations that are supposedly

nearly twice as high as the data actually has.
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Figure 4.4: DR performance for |ZX | = |ZY | = mself > mshared). PCA now detects
shared signals even when they are weaker than the self signals. However, the quality
of reconstruction is significantly lower than in Fig. 4.2. PLS detects signals in a
larger part of the phase space, but also with a significant reduction in quality, which
improves with sampling. CCA has its usual problem for T ≪ NX , and, like PLS, it
has a significantly lower reconstruction quality than in the regime in Fig. 4.3. rCCA
is able to detect the signal in the whole phase space, but again with worse quality.
Finally, spurious correlations are high, though they decrease with better sampling.
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4.2.3 Keeping 31 dimensions after reduction (|ZX/Y | = 31)

Figure 4.5 now explores a regime when the dimensionality of the compressed variables

is enough to store both the self and the shared interactions at the same time, |ZX | =

|ZY | = mself + mshared = 31. With just one more dimension than Fig. 4.4, PCA

abruptly transitions to being able to recover shared signals for all SNRs, albeit still

saturating at a far from perfect performance at large T . PLS, CCA, rCCA, and noise

show behavior remain similar to Fig. 4.4.
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Figure 4.5: PCA, PLS, CCA, rCCA, and noise results when 31 dimensions are kept
after reduction (|ZX | = |ZY | = mself + mshared). PCA now can detect more shared
signals when they are weaker than the self signals (A1), however, with a significantly
lower quality compared to figure 4.2, but suddenly explores the whole phase space,
still with lower accuracy than Case 1. PLS, CCA, rCCA, and noise show similar
behavior to figure 4.4.
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4.3 Key Parameters and Testing Technique for Di-

mensionality of Self and Shared Signals

Our analysis suggests that there are three relevant factors that determine the ability

of DR to reconstruct shared signals. The first is the strength of the shared and the

self signals compared to each other and to noise. For brevity, in the following analysis,

we fix γself and define the ratio γ̃ = γshared/γself to represent this effect. The second

factor affecting the performance is the ratio between the number of shared and self

signals, denoted by m̃ = mshared/mself. The third factor is the number of samples per

dimension of the reduced variable, denoted by q̃ = T/|Z|.

In Fig. 4.6, we illustrate how these parameters influence the performance of DR,

RC ′. Each subplot varies q̃, while holding T constant and changing |ZX |. We compare

the results of PCA (representing IDR) and rCCA (representing SDR). Each curve is

averaged over 10 trials, with error bars indicating 1 standard deviation around the

mean, using algorithmic parameters as described in section 3.3.

We see that the relative strength of signals, as represented by γ̃, plays a significant

role in determining which method performs better. If the shared signals are larger

(bottom) both approaches work. However, for weak shared signals (top), SDR is

generally more effective. Further, the ratio between the number of shared and self

signals, m̃, also plays an important role. When m̃ is large (left), IDR is more likely

to detect the shared signal before the self signals, and it approaches the performance

of SDR. However, when m̃ is small, IDR is more likely to capture the self signals

before moving on to the shared signals, degrading performance (right). Finally, not

surprisingly, the number of samples per dimension of the compressed variables, q̃, is

also critical to the success. If q̃ is small, the signal is drowned in the sampling noise,

and adding more retained dimensions hurts the DR process. This expresses itself as

a peak for SDR performance around |ZX | = mshared. For IDR, the peak is around
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|ZX | = mself + mshared, thus requiring more data to achieve performance similar to

SDR.

We observe that the performance of rCCA (SDR) is almost independent of chang-

ing m̃ or γ̃, indicating that it focuses on shared dimensions even if the latter is masked

by self signals. The algorithm crucially depends on q̃, where adding more dimensions

(decreasing q̃) than needed hurts the reduction. This is because, for a fixed number

of samples, the reconstruction of each dimension then gets worse. In contrast, for

PCA (IDR), the performance depends on all three relevant parameters, q̃, m̃, and γ̃.

At some parameter combinations, the performance of IDR in reconstructing shared

signals approaches SDR. However, in all cases, SDR never performs worse than IDR

on this task.
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Figure 4.6: Performance of PCA (IDR) and rCCA (SDR) for different values of
the relevant parameters of the model: the number of samples per dimension of the
compressed variable (q̃), the strength of shared signals relative to the self ones (γ̃),
and the ratio of the number of shared to self signal components (m̃), while fixing the
number of samples (T = 1000) and the number of shared dimensions (mshared = 10).
Note that decreasing q̃ (left to right) corresponds to increasing the dimension of the
latent space |ZX | at a fixed number of samples T .
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Chapter 5

Discussions

5.1 Extensions and Generalizations

We proposed a generative linear model, which we believe captures multiple desired

features of multimodal data with shared and non-shared signals. The model focused

only on data with two measured modalities. However, while not a part of this study,

the model can be readily extended to accommodate more than two modalities (e. g.,

Xi = Ri + UiVi + PQi for i = 1, ..., n, where n represents the number of modalities).

Then, methods such as Tensor CCA, which can handle more than two modalities [32],

can be used to get insight into DR on such data.

5.2 Explaining Observations in the Literature

We analyzed different DR methods on data generated by this model in different pa-

rameter regimes. We showed that linear SDR methods are clearly superior to their

IDR counterparts for detecting shared signals. We can thus make a strong practical

suggestion that, whenever the goal is to reconstruct a low dimensional representa-

tion of covariation between two components of the data, IDR methods (PCA) should

always be avoided in favor of SDR. Of the examined SDR approaches, rCCA is a
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clear winner in all parameter regimes and should always be preferred. This find-

ing explains the results of, for example, [41] and others that SDR can recover joint

neuro-behavioral latent spaces with fewer latent dimensions and using fewer samples

than IDR methods. Further, our observation that SDR is always superior to IDR in

the context of our model corroborates the theoretical findings of [34], who proved a

similar result in the context of discrete data and a different SDR algorithm, namely

the Symmetric Information Bottleneck [16]. Collectively, these diverse investigations,

linear and nonlinear, theoretical, computational, and empirical, provide strong evi-

dence that generic (not just linear) SDR methods are likely to be more efficient in

extracting covariation than their IDR analogs.

5.3 Is SDR strictly effective in low sampling situ-

ations?

Our study answers an open question in the literature surrounding the effectiveness

of SDR techniques. Specifically, there has been debate about whether PLS, an SDR

method, is effective at low sampling [9, 21, 17, 18]. Our results show that SDR is not

necessarily effective in the undersampled regime. It works well when the number of

samples per retained dimension is high (even if the number of samples per observed

dimension is low), but only when the dimensionality of the reduced description is

matched to the actual dimensionality of the shared signals.

5.4 Diagnostic Test for number of latent signals

In addition to the previous, our results can be used as a diagnostic test to determine

the number of shared versus self signals in data. As demonstrated in Fig. 4.6, to-

tal correlations between ZX and ZY obtained by applying PCA and rCCA increase
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monotonically as the dimensionality of Zs increases, until this dimensionality be-

comes larger than the signal dimensionality. For PCA, the signal dimensionality is

equal to the sum of the number of the shared and the self signals, mshared+mself. For

rCCA, it is only the number of the shared signal. Thus increasing the dimensionality

of the compressed variables and tracking the performance of rCCA and PCA until

they diverge can be used to identify the number of self signals in the data, provided

that the data, indeed, has a low-dimensional latent structure. This approach can be

a valuable tool in various applications, where the characterization of shared and self

signals in complex systems can provide insights into their structure and function.

5.5 Limitations, and Future Work

5.5.1 Linearity of the model

While this work has provided useful insight, the assumptions made here may not

fully capture the complexity of real-world data. Specifically, our data is generated

by a linear model with random Gaussian features. It is unlikely that real data have

this exact structure. Therefore, there is a need for further exploration of the advan-

tages and limitations of linear DR methods on data that have a low-dimensional, but

nonlinear shared structure. This can be done using more complex nonlinear genera-

tive models, such as nonlinearly transforming the data generated by Eq. (2.1-2.2), or

random feature two-layered neural network models [39].

5.5.2 Linearity of the methods

A different possible future research direction is to explore the performance of non-

linear DR methods on data from generative models with a latent low-dimensional

nonlinear structure. Autoencoders and their variational extensions are a natural ex-

tension of IDR to learn nonlinear reduced dimensional representations [24, 28, 23].
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Meanwhile, Deep CCA and its variational extensions [1, 49, 6, 48] should be explored

as a nonlinear version of SDR. Both of these types of methods can potentially capture

more complex relationships between the modalities and improve the quality of the

reduced representations, and it is not clear if the SDR class of methods is always

more efficient than the IDR one.

5.5.3 Linearity of the metric

Our analysis also depends on the choice of metric used to quantify the performance of

DR, and different choices should also be explored. For example, to capture nonlinear

correlations, mutual information can be utilized to quantify the relationships between

the reduced representations.

5.6 Conclusion

In conclusion, we highlight a general principle that, when searching for a shared signal

between different modalities of data, SDR methods are preferable to IDR methods.

Additionally, the differences in performance between the two classes of methods can

tell us a lot about the underlying structure of the data. Finally, for a limited number

of samples, naive approaches, such as increasing the number of compressed dimensions

indefinitely to overcome the masking of shared signals by self signals are infeasible.

Thus, the use of SDR methods becomes even more essential in such cases, and de-

spite the aforementioned limitations, we believe that our work provides a compelling

addition to the body of knowledge that SDR outperforms IDR in detecting shared

signals quite generally.
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