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Abstract 

Bayesian Functional Genome-wide Association Study using Standardized 
Individual-level and Summary-level GWAS Data 

By Lei Wang 

Background: Genome-wide association study associates specific genetic variations with the 
human complex traits and diseases. And Bayesian Functional Genome-wide Association Study 
(BFGWAS) method integrates functional annotation with GWAS data, based on a multivariate 
Bayesian regression model for variants in locus. The current method requires individual-level 
data, which limits the scope of application of the BFGWAS method to public available GWAS 
summary data. The main bottleneck is implementing MCMC algorithm using only GWAS 
summary data and reference linkage disequilibrium (LD) information. Thus, my thesis project is 
to adapt the BFGWAS method for standardized genotype and phenotype data so that it can be 
applied to summary data.  
 
Methods and Materials: In this project, I derived the MCMC algorithm using standardized 
genotype and phenotype from either the individual-level or the summary-level data. A simulation 
study is conducted to test this novel method. I used the odds ratio from the real GWAS summary 
data of Age-related Macular Degeneration, and then simulated quantitative phenotype data for 
testing our tools with standardized individual-level and summary-level GWAS data. 

Results: From the simulation results, the tools when using summary statistics can greatly 
improve the work efficiency comparing to the individual data. The total time cost for individual 
data is 2.1505 min. And this could be 0.0905 min when using summary statistics. Since the 
summary-level data was generated from the individual-level data, using summary-level data 
showed similar performance as using individual-level data. By taking variants with posterior 
causal probability larger than 0.1 as potential causal variants in our work, the detected potential 
SNPs from individual data and summary statistics are comparably consistent. 

Conclusion: In this paper, I propose to extend the BFGWAS method for studying summary-
level GWAS data through the MCMC algorithm based on standardized genotype and phenotype. 
The usefulness of summary statistics was demonstrated in a simulation. However, there are also 
some limitations here. The reference LD matrix may miss some values in real data, and this will 
cause computation error in MCMC algorithm and result in an unreliable conclusion. Thus, 
further real data will be considered and tested in the future work. 
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Introduction 
 
 

Genome-wide association studies (GWAS) is very useful to identify genes that may related to 

human complex traits and diseases.[1] Currently, such studies, and the large number of valid 

results obtained, have greatly changed the way and efficiency of research on complex traits. 

Through the analysis of thousands of single-nucleotide polymorphisms (SNPs), underlying 

important variants of a disease can be detected. For example, the GWAS study about age-related 

macular degeneration (AMD) shows that Y402H variant in CFH, the rs10490924 single-

nucleotide polymorphisms are the potential risk factors for AMD.[2] Hundreds of associated loci 

are in linkage disequilibrium (LD). And most of them have unknown functions or located outside 

the protein-coding regions. And a flexible Bayesian selection model can dramatically increase 

the computational efficiency and power for detecting potential variants according to the linkage 

disequilibrium (LD). [3]  

 

However, the current Genome-wide association studies have a limitation of computational cost. 

When using Markov chain Monte Carlo (MCMC) algorithm to generate the result from complete 

genotype data, a long CPU hour is expected. [3] Typically, using summary statistics will be a 

good option to reduce the working time. Using the estimated linkage disequilibrium (LD) from a 

reference panel with individual-level genotype data, a meta-analysis of genome-wide association 

studies (GWAS) can compute fast. And another benefit is that the LD between the unknown 

causal variants at the locus can explain the total variation more comprehensively. [4] The reason 

is that a single genotyped SNP may cannot account for the variation. Thus, applying summary 
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statistics to current Bayesian functional Genome-wide Association Studies will increase both the 

working efficiency and the power to detect unknown casual variants.  

 

Besides, the importance of using public GWAS data set with large sample size is become an 

advanced topic nowadays. [5] However, when only handling individual data with original 

approach, the computational time is usually very time consuming. This is a challenge for us to 

apply public GWAS data with summary level data in an easier way.  

 

Intuitively, if a method only uses summary statistics of Genome-wide Association Studies 

(GWAS) and an external LD reference panel, this method will give a more efficient computation. 

According to the recent polygenic prediction method, PRS-CS indicates that standardized 

genotypes, which have each column centered and have unit variance), will give us an option to 

apply the summary statistics by using LD information from an external reference panel without 

individual-level data. [6] This method is very revealing. Because on the conceptual framework, 

PRS-CS and Bayesian Functional Genome-wide Association studies (GWAS) have very similar 

structures. If standardized genotypes are used, the external LD reference panel and summary 

statistics can be directly used. This will greatly improve the current operating efficiency, reduce 

the variance between different distribution and results less errors, and even improve the detection 

ability of unknown potential causal SNPs. Thus, I plan to extend current BFGWAS tool for 

public data with the help of summary statistics and standardization. 

 

Thus, in this project, I combine genome-wide association studies (GWAS) with Bayesian 

functional methods and standardization together, using only summary statistics to detect the 
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potential variants through linkage disequilibrium (LD) with the simulation data. As expected, 

this method will increase the working efficiency and the power to detect unknown variants.  
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Material and Method 
 
Bayesian Variable Selection Model: 
 
In the genome-wide association studies, millions of genetic variants are measured. The aim of 

identifying these SNPs in BFGWAS can be treated as a variable selection problem. [7] The 

standard Bayesian variable selection regression (BVSR) model is used as the basic framework 

construction for our process. With the help of this basic model, I can build a simple way to apply 

the summary statistics. 

 

𝑌!×# = 𝑍!×$𝛽$×# + 𝜖!×#, 𝜖!×#~𝑀𝑉𝑁(0, 𝐼!×!) 

 

In this linear regression model, 𝑌!×# is the standardized phenotype vector with n individuals, 

𝑍!×$ is the standardized genotype matrix with p genetic variants. Different from the BVSR 

model with centered phenotype vector and centered genotype matrix, the standardized version 

has 𝜖!×# follows a multivariable normal distribution with 0 mean and unit variance. Thus, I can 

give a simpler posterior for summary statistics. The 𝛽%,' is the vector of the effect sizes of each 

specific annotation category q, and the 𝛽%,' follows a “spike-and-slab” [8] prior: 

 

𝛽%,'~𝜋'𝑁 10,
1
𝑛 𝜎'

(	6 + 71 − 𝜋'9𝛿)7𝛽%,'9, 𝑞 ∈ {1,2, … , 𝑄} 

 

The individual data was separated into Q non-overlap segments. The 𝛽% in each annotation 

category q, it has 𝜋' probability to be a normal distribution of 𝑁 B0, #
!
𝜎'(	C, and 71 − 𝜋'9 

probability to choose a point mass function 𝛿)7𝛽%,'9 at 0. Thus, 𝜋' is the unknown probability 
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for variants in the 𝑞*+ category and 𝜎'( is the corresponding effect-size variance.  Assuming that 

this (𝜋' , 𝜎'() summary statistics for category q: 

 

𝜎'(~𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝐺𝑎𝑚𝑚𝑎(𝐾#, 𝐾(), 𝜋'~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

 

The priors [9] are used for (𝜋' , 𝜎'(). For example, I assumed 𝜎'(~𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝐺𝑎𝑚𝑚𝑎(𝐾#, 𝐾() with 

𝐾# = 𝐾( = 0,	and 𝜋'~𝐵𝑒𝑡𝑎(𝑎, 𝑏) with a mean 10,-. The prior distribution will let our Bayesian 

model to estimate mainly depend on the association from real data in each category. I can give an 

inference for categorical specific parameters (𝜋' , 𝜎'(), which can represent the most importance 

information in each category. Our goal is to estimate this pair parameters more easily, I introduce 

an indicator latent variable [10] instead: 

 

𝛾%,'~𝐵𝑒𝑟𝑛𝑢𝑙𝑙𝑖(𝜋') 

 

Assuming a new indicator latent variable 𝛾% for each category that follows a Bernoulli 

distribution with a probability 𝜋'. And I already have 𝑌!×# and 𝑍!×$ standardized. Thus, I have 

𝑌.𝑌 = 𝑛, and 𝑍.𝑍 = 𝑛𝐷, and n is sample size. Matrix D can directly derive from the external 

reference LD matrix. According to these, I can derive the posterior distribution for each 

estimator according to the simplified transformation.  
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Posterior Distribution of Estimators: 
 
Through the Bayesian method, the joint posterior probability for each category is given: 

 

𝑃(𝜎(, 𝜋, 𝛽, 𝛾|𝑌, 𝑍)~𝑃(𝑌|𝑍, 𝛽, 𝛾)𝑃(𝛽|𝛾, 𝜎()𝑃(𝛾|𝜋)𝑃(𝜋)𝑃(𝜎() 

 

The joint posterior distribution is the product of each conditional posterior of estimators and their 

own prior distributions. The Bayesian method gives us a way to provide estimators from the 

individual data and apply them into the Markov Chain Monte Carlo (MCMC) algorithm. 

 

The Conditional Posterior Distribution: 
 
According to the joint posterior distribution, I can derive conditional posterior distribution for 

each estimator. For category q, I should have conditional posterior for 𝛽: 

 

𝑃(𝛽|0||𝑌, 𝑍, 𝛾, 𝜎(, 𝜋) ∝ 𝑃(𝑌|𝑍, 𝛽|0|, 𝛾)𝑃(𝛽|𝛾, 𝜎() 

𝑃(𝛽|0||𝑌, 𝑍, 𝛾, 𝜎(, 𝜋) ∝ exp Z−
1
2 7𝑌 − 𝑍𝛽|0|9

.7𝑌 − 𝑍𝛽|0|9[ ∙ exp Z−
1
2𝛽|0|

. 7𝑛 ∙ 𝑉|0|
,#9 ∙ 𝛽|0|[ 

𝑃(𝛽|0||𝑌, 𝑍, 𝛾, 𝜎(, 𝜋) ∝ exp Z−
1
2 ]𝛽|0|

. 7𝑍.𝑍 + 𝑛𝑉|0|
,#9𝛽|0| − 2𝛽|0|

. 𝑍.𝑌^[ 

 

 

The conditional posterior distribution of 𝛽|0| is as proportion to the product of conditional 

distribution of Y and the distribution of 𝛽 given the pair estimated parameter 𝛾 and 𝜎(. After a 

transformation, the conditional posterior distribution of 𝛽|0|  actually follows a multivariate 

normal distribution: 
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𝑃7𝛽|0|_𝑌, 𝑍, 𝛾, 𝜎(, 𝜋9~𝑀𝑉𝑁 B𝜇1|"| , Σ1|"|C 

Σ1|"| = 7𝑍.𝑍 + 𝑛𝑉|0|
,#9,# =

1
𝑛 (𝐷 + 𝑉|0|

,#) 

𝜇1|"| = Σ1|"| ∙ 𝑍
.𝑌 = 𝑛 ∙ Σ1|"| ∙ 𝛽b  

 

The reason that using summary statistics to generate the posterior distribution is there is a 

connection between our estimators and the summary statistics after standardization. GWAS 

summary statistics are given: 

 

𝛽b =
𝑍.𝑌
𝑛 ;	𝑍.𝑌 = 𝑛 ∙ 𝛽b 

𝐷 =
𝑍.𝑍
𝑛 ;	𝑍.𝑍 = 𝑛 ∙ 𝐷 
𝑌.𝑌 = 𝑛 

  

These summary statistics can give a simple way to generate estimated 𝛽b . And D can be 

approximated by a reference panel so that I can do the estimation easier and more efficient [11]. 

Also, with the help of these summary statistics generated from the individual data, I can only use 

summary statistics to do the association analysis. Since the conditional posterior distribution 

consider of  𝛽 has given, we can also have the latent indicator variable  𝛾 in each category from 

the integration [12] of 𝛽 : 
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𝑃(𝛾|𝑌, 𝑍, 𝜎(, 𝜋) ∝ d 𝑃(𝑌|𝑍, 𝛽, 𝛾)𝑃(𝛽|𝛾, 𝜎()𝑃(𝛾|𝜋) 𝑑𝛽
1

 

∝
1

f(2𝜋)! ∙ f(2𝜋)2 ∙ gh1𝑛 𝑉|0|h

∙ d exp	(−
1
2 [𝛽|0|

. 7𝑍.𝑍 + 𝑛𝑉|0|
,#9𝛽|0| − 2𝛽|0|

. (𝑍.𝑌) + 𝑌.𝑌]) ∙ 𝑃(𝛾|𝜋)𝑑𝛽
1

 

∝ 𝑃(𝛾|𝜋) ∙
g_Σ1_

gh1𝑛 𝑉|0|h
∙ exp k−

𝑛
2 71 − 𝑛 ∙ 𝛽

b.𝛴1𝛽b9m 

 
 
After integration, the conditional posterior distribution can be estimated. And here, |𝛾| is the 

number of SNPs with 𝛾%' = 1. Also, there are some key computations. These computations will 

give us an overview about how standardization can simplify the calculation: 

 

𝛴1|"| =
1
𝑛 (𝐷 + 𝑉|0|

,#),# 

 
With the help of this key computational equation, summary statistics are applied to estimate both 

𝛽 and 𝛾 by using Markov chain Monte Carlo (MCMC) algorithm. 
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Markov Chain Monte Carlo Algorithm: 
 
The challenges of standard MCMC algorithm are the memory usage and convergence rate. In 

this process, there are K non-overlap genome blocks to improve the efficiency. Firstly, the initial 

category specific parameters are set up [13]. An category specific parameters pair (𝜋' , 𝜎'() was 

assumed. The 𝜎'(~𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝐺𝑎𝑚𝑚𝑎(𝐾#, 𝐾() with 𝐾# = 𝐾( = 0,	and 𝜋'~𝐵𝑒𝑡𝑎(𝑎, 𝑏) with a 

mean 10,-. The summary statistics 𝑍.𝑌 and 𝑍.𝑍 can improve the working efficiency here since 

the correlation from the external reference panel can be provided. 

 

EM Update: 
 
In each genome block, an estimation step and a maximum step are applied [14]. The E-step 

estimates the variant specific parameters according to the most recent (𝜋' , 𝜎'(). And the M-step 

maximized the expected log-posterior-likelihood functions based on the variant specific 

parameters in the E-step. 
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Simulation Study Results 
 

Test Data: 
 
The 1KG reference data is used as the individual genotype data. I used the genotype data of 1KG 

samples of the AMD associated CFH locus from one genome block.  This genome block was 

from base position 196179832 to 197268053 in Chromosome 1 with total 31330 SNPs and 3689 

SNPs are analyzed. The true casual SNPs contains 15 SNPs for 2504 observations. Also, the 

phenotypes are simulated based on a logistic regression model [15]. Thus, we can generate the 

cases and controls by using the odd ratio directly. Phenotype is taken as 1’s for cases and 0’s for 

controls in our Bayesian regression model. 

 
Individual Data with Standardization: 
 
After simulating the test data, the summary statistics is firstly generated from the individual data.  

The summary statistics contains two parts, one is the z-score and another one is the LD 

inference. The setting for the generating process includes that 0.005 is used as the minor allele 

frequency threshold [16]. After the MCMC algorithm, 9 potential SNPs are introduced with 

causal probability higher than 0.1 which means it has a relatively high probability to be a 

potential true causal SNP. And there are 3689 total SNPs was analyzed. There are 9 potential 

causal SNPs were selected from the result of the individual data. The table 1 show the ID, 

reference allele and minor allele and other useful information. 

 

In the estimator part, we can see rs78217329 has a relatively large p-value. And the rank is 727 

which is the lowest rank in these 9 SNPs. Typically, in the analysis part, this kind of SNP will be 

removed since the result is not such significant and the rank is not such reasonable. 
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Use Summary Statistics with Standardization: 
 
With the MAF 0.005 threshold and the casual probability with 0.1, the basic information when 

using summary statistics with standardization shows a similar ability to detect the potential SNPs 

with the individual one. And the casual probability is relatively high and reasonable. However, 

the rs61818915 is not in the individual result and rs3766405 is not in the potential SNPs when 

using summary statistics with standardization.  

 
Efficiency Comparison: 
 
Table 1 Basic Information for Individual Data with Standardization 

ID Reference Alternative MAF Probability BETA P-value Rank 
rs10801558 T G 0.5076 0.1880 -0.3755 5.97E-32 1 
rs10922108 A T 0.5080 0.3180 -0.3761 6.00E-32 3 
rs10922109 C A 0.5076 0.2050 -0.3749 5.97E-32 2 
rs1410996 G A 0.5050 0.1010 -0.3729 6.09E-32 5 
rs148072867 A C 0.2835 1.0000 -0.2607 1.02E-11 32 
rs3766405 C T 0.5050 0.1880 -0.3732 6.09E-32 4 
rs68045083 CAT C 0.3712 1.0000 0.2426 3.50E-12 29 
rs74861068 G A 0.0795 0.8500 0.1714 1.15E-10 39 
rs78217329 G GT 0.4904 1.0000 0.3820 0.01064 727 

 

Table 2 Basic Information of SNPs when using Summary Statistics with Standardization 

ID Reference Alternative MAF Probability BETA P-value Rank 
rs10801558 T G 0.5076 0.2686 -0.3720 5.97E-32 1 
rs10922108 A T 0.5080 0.3100 -0.3728 6.00E-32 3 
rs10922109 C A 0.5076 0.2076 -0.3713 5.97E-32 2 
rs1410996 G A 0.5050 0.1140 -0.3696 6.09E-32 5 
rs148072867 A C 0.2835 0.4468 -0.2609 1.02E-11 32 
rs61818915 C A 0.2542 0.5532 -0.2414 4.48E-12 30 
rs68045083 CAT C 0.3712 0.9779 0.2492 3.50E-12 29 
rs74861068 G A 0.0795 0.9204 0.1710 1.15E-10 39 
rs78217329 G GT 0.4904 1.0000 0.3731 0.01064 727 

 



 12 

Besides, considering the efficiency of results between individual data and summary statistics, we 

can see the casual probability are all relatively reasonable in table 2. Although some of the 

potential casual SNPs in the table are not as same as the true causal SNPs, they have a reasonable 

high correlation between each other. 

 

Also, the effect of potential casual SNPs between the individual and summary statistics results 

has a high consistency. According to the figure 1, we can also see that the casual probability of 

between two models have a similar result. This indicates a reasonable power and accuracy of 

using summary statistics in detecting the potential casual SNPs. And at the same time, the sum of 

casual probability of summary statistics’ result is 5, which is same as the result with the 

individual data. Thus, a consistency result can be provided. 

 

Figure 1 The Consistency of the Results between the Summary Statistics and Individual Data 
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However, there is a potential problem. Although the result of summary statistics and individual 

data have a consistent similarity, these detected potential causal potential SNPs may not as same 

as the true SNPs. One of the reasons is that we use the same data for generating the summary 

statistics and then apply these summary statistics into the original data. This could lead to an 

unreliable result. And most points are located near 0 since a large number of SNPs in 3689 total 

analyzed SNPs are not possible to be a true casual SNP. 

 

Another objective is that hoping standardization and the using of summary statistics will improve 

the work efficiency. In other words, our computational time costs will have a great decrease. 

When conduct the simulation study with the same setting for MCMC and LD windows. The 

results show a quite clear improvement on using the summary statistics.  

 

Table 3 The Work Efficiency for Different Method 

 Individual data with 
standardization 

Summary statistics with 
standardization 

Time on MCMC 0.0062 min 0.0040 min 
Time on Proposal 0.0043 min 0.0022 min 
Time on Posterior 4294.3300 min 176.03700 min 
Total computation time 2.1505 min 0.0905 min 
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Discussion 
 

This project has a main aim that to make BFGWAS applicable for public summary-level GWAS 

data. In the simulation study, the computational time can be reduced greatly by using the 

summary statistics. And the computational errors can be reduced as well. However, when only 

using the simulation data, the result of potential SNPs is not such reliable. To some extent, the 

non-differential measurement error in phenotypes can lead to unreliable causal inference. [17] 

 

Typically, standardization will reduce some potential error in MCMC algorithm. However, the 

improvement of the standardization may not be such reliable in the real data. One of the reasons 

is that we the LD matrix in posterior computation is not such ideal. Sometimes, standardization 

will cause the LD matrix to become hard to interpretate when having missing values in LD 

matrix. To be specific, the covariance will be scaled and lead to some very similar correlations 

between different SNPs pairs. [18] But this problem is not such matter since we can consider the 

correlation between these SNPs with the true SNPs to give a relative convincing result when we 

apply this tool in the real data. Difference between the cohort of real data and LD reference will 

also cause some potential errors. 

 

We simulated the test data from the odds ratio of the true causal SNPs for a 1KG reference data. 

And then we use this simulated data to generate the summary statistics. This can avoid many 

potential out range problems (like the likelihood ratio). But this leads to an unreliable result for 

detecting the potential SNPs. This can be exacerbated by the extensive correlation between 

genetic variants caused by LD. [19] In brief, as a simulation for tool testing, it is enough. But for 

detecting potential SNPs, more data are needed to get a reasonable result. In the real data, the LD 
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matrix can have many unexpected problems like missing values. This will greatly affect the 

standardization process and results some unreliable conclusion. We need more tests in the real 

data in the future so that we can fix this tool more. 

 

And for the work efficiency, the summary statistics really can improve the work efficiency. 

However, considering standardization part, there could be a potential problem about the LD 

matrix when applying summary statistics in the real data. Since this is a simulation study, which 

indicates that the result could be similar since we use the summary statistics and simulation 

dataset from the same true causal SNPs data.  Thus, more results from the real data to detect the 

potential SNPs are needed.  

 

In the future, I plan to apply this tool with summary statistics and standardization to the real data 

of Alzheimer’s disease, which will be a public GWAS data. Since the limitation of LD matrix in 

the real data may cause computation error and lead to MCMC fail, the real data test is necessary 

in the future. At the same time, the reference LD matrix may have some missing values and lead 

to an inaccuracy result. Thus, some improvements are needed as well. These improvement and 

real data analysis will be conducted in my future work. I need to address these potential 

problems when I apply this method to the real data, which is Alzheimer’s disease. And then a 

more comprehensive tool will be provided. 
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