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Abstract

This dissertation includes a variety of research projects focusing on nonequilib-
rium phenomena at the nanoscale. To be specific, two main systems are investigated.
The first one is the highly nonthermal phonon system in current driven nanostruc-
tures. Our research demonstrates that at cryogenic temperature the current-driven
phonon distribution in a variety of metallic microstructures is qualitatively different
from that expected for Joule heating, as manifested by a weakly-singular linear de-
pendence of resistance on current. In other words, the phonons generated by electron
scattering events are far from equilibrium and may not be adequately described by a
temperature as implied by the Joule’s heating law. Our result suggests the possibility
of further optimum of thermal dissipation in nanodevices beyond the limits set by
the Joule heating law. As a follow up, we perform nonlocal electronic measurements
utilizing an electrically biased metallic nanowire as a phonon source, and a separate
nanowire serving as the phonon detector, to investigate the thermalization process
of the nonequilibrium phonons. Analysis of the dependence on the thickness of the
spacer separating the nanowires shows that these non-equilibrium phonons relax via
strongly anharmonic processes that cannot be described in terms of the usual few-
phonon scattering. Our findings provide insight into the mechanisms of current-driven
phonon generation, transport, and relaxation at nanoscale in a vertically stacked de-
vice, which will likely facilitate new approaches to efficient Joule heat dissipation in
3D integrated circuits (IC).

The second system is ferromagnet /antiferromagnet (F/AF) structure experienc-
ing random interfacial coupling. Here, we utilize magnetoelectronic measurements
to analyze the effective exchange fields at permalloy/CoO interface. Our results
cannot be explained in terms of quasi-uniform effective exchange fields but are in
agreement with the random-field hypothesis of Malozemoff[Phys. Rev. B 35, 3679
(1987)]. The approach developed here also opens a new route for the quantitative
analysis of effective exchange fields and anisotropies in magnetic heterostructures for
memory, sensing and computing applications. For example, we demonstrate that
ideal memristors—devices whose resistance is proportional to the charge that flows
through them—can be realized using spin torque-driven viscous magnetization dy-
namics. The latter can be accomplished in the spin liquid state of thin-film F/AF
heterostructures with frustrated exchange, where the memristive response is tunable
by proximity to the glass transition, while current-induced Joule heating facilitates
non-volatile operation and second-order memristive functionality beneficial for neu-
romorphic applications.
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ŝ ∥ x̂ (c), at two frequencies of sinusoidal driving current. (b),(d) De-

pendence of resistance variation on the total charge Q = I0 ∗∆t of the

current pulses with varied amplitude I0 at fixed duration ∆t = 100 ns

[curves], and varied ∆t at fixed I0 = 0.24 mA [dots], for ŝ ∥ ẑ (b) and
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Chapter 1

Introduction

This thesis focuses on several seemingly disparate topics: i) studies of generation

of nonequilibrium phonon generation by electric current in nanostructures described

in chapter 2, ii) studies of propagation and relaxation mechanisms of high energy

phonons described in chapter 3, iii) studies of frustrated magnetism in thin-film

ferromagnet/antiferromagnet bilayers described in chapter 4, and iv) demonstra-

tion of the possibility to achieve ideal memristive functionality using viscous mag-

netization dynamics in magnetically frustrated nanostructures based on ferromag-

net/antiferromagnet bilayers, in chapter 5. Despite significant differences among

materials and phenomena studied in this work, all of these studies are united by

the overarching theme of non-equilibrium phenomena at nanoscale that transcend

the conventional concepts developed in the studies of weakly perturbed or equilib-

rium systems at macroscales. The underlying idea is that at nanoscale, matter can

be strongly perturbed without beyond damaged or irreversibly changed. The out-

come of the studies of such strong perturbed systems is a unique insight into the

interactions that stabilize (or destabilize) dynamical and static states of matter, and

the approaches to controlling them. In our studies of current-generated phonons at

nanoscale, we have found that large current densities easily achievable at nanoscale
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but not in macroscopic systems result in a highly non-equilibrium phonon distri-

bution, qualitatively different from the usual expectations from the Joule heating.

This has provided microscopic insight into electron-phonon scattering. By analyzing

the propagation and relaxation of these phonons in nanostructures, we determined

that the phonon relaxation mechanism is qualitatively different from the usually ex-

pected few-phonon scattering, but rather is a non-perturbative process that cannot

be described with existing theories of phonon relaxation. Our studies of thin-film

ferromagnet/antiferromagnet bilayer benefited from the possibility to produce, at

nanoscale, astronomically large effective magnetic fields of the order of 1000 Tesla

(the largest magnetic fields achieved at the High Magnetic Field Lab in Tallahassee,

FL is about 100 Tesla for a fraction of a second). These huge effective fields were pro-

duced possible by the Heisenberg exchange interaction across the interface between

two thin magnetic films, which allowed us to analyze the resulting large changes in

the magnetic properties of these materials, and explore the possible applications for

these changes. In particular, we showed that the viscous magnetization dynamics

stemming from the hierarchical energy landscape produced by magnetic frustration

in ferromagnet/antiferromagnet bilayers can be utilized to develop an ideal memristor

– a nanodevice particular useful for artificial neuromorphic systems. The next Section

provides the background on different material systems we utilized in our studies, the

relevant phenomena, and the approaches used in the studies.

1.1 Phonon and lattice vibration

Since the following two chapters will be about the observation and detection of highly

nonequilibrium phonon system in current driven nano-devices, it would be useful to

first review the background knowledge of lattice vibration and phonon. From the

view of classical mechanics, the lattice vibration can be approximated as a ”small”
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vibration problem. The word ”small” indicates that during the vibration, the atom

only slightly deviates from its equilibrium position and the restoring force(energy) can

be expressed as an series expansion around the energy minimum position. However,

it is worthy to note that the idea of series expansion is not always applicable. For

instance, highly nonlinear potential widely exists in nature, where due to the existence

of bistable states, the series expansion won’t converge. We would return to the

discussion of the role of highly nonlinear potential in phonon relaxation process in

the chapter about ”Transport and relaxation of current-generated nonequilibrium

phonons from nonlocal electronic measurements”.

Assuming that there are N atoms in the crystal and their equilibrium positions

are
−→
Rn. When the atoms deviates from their equilibrium position by

−−−→
µn(t), the atom

position can be expressed as
−→
Rn +

−−−→
µn(t). In this case, since for N atoms, there are

3N components for their displacement and the potential energy of the system can be

expanded as:

V = V0 +
3N∑
i=1

(
∂V

∂µi

)0 ∗ µi +
1

2

3N∑
i,j=1

(∂2V )

∂µi∂µj

µiµj + ... (1.1)

Since we are expanding around equilibrium position, ( ∂V
∂µi

)0 = 0. Setting V0 = 0,

the potential of the restoring force of the system can be written as 1
2

∑3N
i,j=1

(∂2V )
∂µi∂µj

µiµj.

Here, the harmonic approximation is used, i.e., the potential is only expanded to

quadratic term. In this case, there is no interaction between the normal modes

(phonons). It is worthy to stress here that in some cases, the harmonic approxi-

mation is not enough to explain the observation and higher order term need to be

included. For example, in the problem of heat transfer in crystal. The form of diffu-

sive heat transport j = −κdT
dx
, indicates the heat transfer, instead of free propagation

of lattice vibration (phonons), is similar to the form of heat transfer in gas, where the

energy transfer is mediated by the collision between gas molecules. In this case, the
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mechanism behind diffusive heat transfer is the interaction between phonons, which

redistributes phonon energy, so higher order terms, which descries phonon scattering

events, much be included to provide a microscopic explanation for the diffusive heat

transfer in crystal.

Back to the harmonic approximation, the kinetic energy of the N atom system is

T =
1

2

3N∑
i=1

mµ̇i
2 (1.2)

As usually done in classical mechanics [11], we can use normal coordinates to avoid

the cross term like µiµj in the energy term. The normal coordinates are connected

with the original coordinates by
√
mµi =

∑3N
i=1 aijQi. By using the proper normal co-

ordinates the V and T can be expressed as T = 1
2

∑3N
i=1 mQ̇i

2
and V = 1

2

∑3N
i=1 ωi

2Qi
2.

In this case, the Lagrangian L=T-V and the normal momentum is pi =
∂L
∂Q̇i

. Ftom

the normal equation, the vibration can be characterized with

Q̈i + ωi
2Qi = 0, i = 1, 2, ...3N (1.3)

Since in the normal coordinate system, these variables are independent, the solution

is Qi = Asin(ωit + δ). Since the oscillation of Q is related to the real oscillation

of atoms via the normal transformation. For one the oscillation of Qj, it means

an collective oscillation mode of the whole system (mui =
aij√
mi
Asin(ωjt + δ)). As

demonstrated above, the key to solve the harmonic oscillation of lattice is to find the

correct orthogonal transformation (the normal modes).

1.2 Phonon modes in 1D spring chain

The simplest model of lattice vibration is a 1D spring chain [12]. In this system, ob-

jects with the same mass (m) are connected by identical springs with spring constant
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Figure 1.1: Schematic plot of the 1D spring chain

(β) [Fig. 1.1(a)]. When there is a displacement of one oscillator around position a as

shown in Fig. 1.1(b), its potential can be expressed as v(δ) = 1
2
β ∗ δ2, so the restoring

force is F = −∂V
∂δ

= −βδ. Since the system is relatively simple, here we can just solve

it by writing Newton’s equation of the chain and ”guess” a trial solution, which is

equivalent to the general method based on using orthogonal transformation discussed

in the last section. For the equation of motion of the n th atom in the chain, it only

interacts with its two neighbors n-1 and n+1. The relevant displacement of the n-1

atom is δ = µn − µn−1, so the forced exerted on the nth atom is −β(νn − µn−1). For

the n+1 atom on its right hand side, the relative displacement is δ = µn − µn−1 and

the force exerted on the n th atom is −β(µn+1 − µn). Combining the forces together,

the equation of motion of the n th atom can be expressed as:

mµ̈n = β(µn+1 − µn)− β(µn − µn−1) (1.4)

Since for every atom there is a similar equation of motion, there are N such equa-

tions. Thus, the dynamics of the 1D spring chain is determined by the N differential

equations. With the help of numerical method, given the initial condition, which is

the displacement and speed of each atom at t=0, even for a long chain (N = 300)
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the dynamics of the system can be calculated pretty fast with computer. However,

to provide further physical insight, it is worthy to solve it analytically.

1.3 Dispersion of 1D chain

Instead of using the method about orthogonal transformation mentioned in the last

section, here we can ”guess” the solution has the following form µnq = Aei(ωt−naq) and

ω, A, q are parameter. It is worthy to note that the since Eq. (1.4) is a linear homo-

geneous equation, a complex solution can be used. By importing the trial solution

into the Eq. (1.4), the expression turns out to be

ω2 =
2β

m
sin2(

aq

2
) (1.5)

, which is independent on the position of the atom (n). Thus, µnq = Aei(ωt−naq) is

a solution of Eq. (1.4) once the condition in Eq. (1.5) is satisfied. Here, Eq. (1.5)

describes the dispersion of wave in the spring chain. The main difference between

q in Eq. (1.5) and the wave vector in a continuous medium is that changing q to

q+ 2πN
a

(N is integer), doesn’t influence the oscillation of any atom in the chain. For

simplicity, q is usually limited in −π/a < q < π/a, which is named the Brillouin zone

of the chain and q value out of the Brillouin zone can’t provide any new oscillation

mode.

Since the Eq. (1.4) is only applicable to the atoms with two neighbors, which is

not applicable to the two atoms at the end of the chain. One possible solution is to

specially write Newton’s equation for the terminal atoms. However, it would both

break the periodic symmetry of the chain and will lead to wave reflection at the end.

Another method is to connect the two ends of the 1D chain and make the system

a loop, so the wave could keep propagating without reflection. It is called periodic

boundary condition, which is widely used in numerical simulation of physical systems
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Figure 1.2: (a) The dispersion of 1D spring chain with identical mass (b) The propa-
gation of wave packet in 1D spring chain in wave vector space. (c) Phonon dispersion
of a 1D spring chain with alternating mass. Figure recreated from Wikipedia.

when we want to avoid extra complexity at ”real physical boundary”. With such

periodic boundary condition, it means that for a chain with length N, when the index

of atom increase by N, the oscillation µnq = Aei(ωt−naq) should be the same, which

means e−iNaq = 1, i.e., q can only choose some discrete values. (q = 2π
Na

∗ integer).

As the range of q is −π/a < q < π/a, with step 2π
Na

, there are N oscillation modes

available. Considering the degree of freedom of the 1D chain is also N, it indicates

with q = 2π
Na

∗ integer, ω2 = 2β
m
sin2(aq

2
), the motion of the chain is fully characterized

by µnq = Aei(ωt−naq).

Here we plot the dispersion of the 1D chain. As shown in Figure 1.2(a), the

dispersion is nonlinear. Here a solid line is used, because for real crystal the atom

number N is large and the the wave vector q is approximately continuous.

To give the reader an idea of the simulation of 1D chain that will be used in

the following chapter, here we simply simulate the propagation of a wave packet in

such 1D chain. The reason, why we would like to simulate a wave packet instead

of a plane wave is that the wave packets is a spacially local object, making it visual

for the study of scattering events. Moreover, as a wave packet has a finite width in

Fourier space (since it is not monochromatic), compared with plane wave, which is a

delta function in Fourier space, it is easier to be identified in Fourier analysis. For a

chain with N=300, a wave packet is build by setting the initial condition of atom with



8

the product between a plane wave with wave length 10 and a Gaussian function with

width 10. Here, the dispersion is used to determine ω, when initializing the system.

As shown in Figure 1.2(b), in Fourier space, we can see that the wave packet keep

propagating. By making the width of the wave packet wider (narrower), the wave in

Fourier space can be narrower (wider).

Before ending this section, it is worthy to mention that our analysis need to be

modified for crystal with multiple atoms in one unit cell. For these crystals, the

simplest model is a 1D chain but with mass alternating between m1 and m2, in this

case as shown in Figure 1.2(c), an extra phonon branch appears. In this case, the

upper one is named optical modes, because its frequency is high and is accessible by

infrared photons. The lower branch is called acoustic phonon. Generally speaking,

optical modes represent the relative oscillation between atoms within one unit cell

and the acoustic modes account for the collective oscillation of the unit cells.

1.4 How do phonons propagate: ballistically or

diffusively?

As discussed in the previous section, due to the similarity between Fourier’s heat

transfer law in crystal and the heat transfer in gas, we conclude that heat transfers in

crystal diffusively mediates by phonon scattering events, which exchange their energy

like atoms in gas. However, with the advancement in nanofabrication and cryogenic

technique, the size of electronic devices is approaching phonon mean free path (MFP),

i.e., phonons, instead of scattering with each other to main a local quasi-equilibrium

distribution (the Bose-Einstein distribution), freely propagates [13, 14, 15]. In this

case, if we calculate the heat conductance via q = −κ∇T , the κ would varies with the

sample size, which indicates the breakdown of diffusive heat transport. The ballistic

heat transfer is of great significance in semiconductor process, since the non-diffusive
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Figure 1.3: SEM image of the Al pad with converging (a) and diverging (c) lens.
(b) (d) Heat distribution predicted by simulation. (e) (f) (g) The experimental
and simulated decay time of the device measured with micro time-domain thermore-
flectance [1].

heat transfer can lead to hot spots in devices, where the effective temperature is higher

than prediction from diffusive model. Thus, ballistic phonon propagation is widely

investigated and multiple theory frameworks, such as the Lattice Boltzmann Method

(LBM), which directly solves the Boltzmann equation in a network of discrete points,

have been developed [16, 17, 18].

The existence of ballistic phonon transport also provides, the opportunity to

”guide” or even focus the heat flow [1], which is not possible in diffusive heat transfer

region, where the energy transfer is dominated by random phonon scattering process.

For material with long phonon MFP, there have been proof of principle experiments

about heat focus and guiding. As shown in Figure 1.3, the heat (phonons) can be

focus with a designed pattern on an Aluminum pad, which presages complete control

over directionality of ballistic heat fluxes in nanostructures.
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Figure 1.4: The classifications of magnetic materials. The anti-ferromagnetism can
be viewed as a special case of ferrimagnetism. Table from [2].

1.5 Magnetic order of materials

For the previous sections, we focus on the basic knowledge of lattice vibration, which

is relevant to the two chapters about the ”Nonequilibrium phonon distribution in

current-driven nano- and micro-structures ” and ”Propagation and relaxation of the

highly nonequilibrium phonon”. Since chapter 4 and 5 will be about the nonequi-

librium (glassy) behavior of magnetization in ferromagnetic/antiferromagnetic hetero

structure and its potential application in neuromorphic devices, it would be useful

introduce some basic concepts about magnetic order in materials.

Depending on the magnetic order, material can be are classified as paramagnet,

diamagnet, ferromagnet, ferrimagnet and antiferromagnet. Although these terminol-

ogy may sound awkward, practically we simply need to answer a few questions to

identify the magnetic order of an unknown material [2]. Before we proceed, it would
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be convenient to introduce the idea of magnetic susceptibility, which is defined as

M = M0 + χ̄H (1.6)

Here M is the net magnetic moment per unit volume, also named magnetization. H is

the external field and M0 is the spontaneous magnetization (the magnetization when

external field is zero). χ̄ is the magnetic susceptibility of magnetic material. Since

both M and H are vectors, in the most general case χ̄ is a 3×3 matrix [19]. However,

in many materials χ̄ is isotropic, so χ̄ can be considered as a scalar.

Then we can classify a material following the sequence shown in Figure 1.4. Ma-

terials with no permanent magnetic moments are called diamagnet and the direction

of induced magnetization in a diamagnet is opposite to the direction of external field.

A classical explanation for the existence of diamagnetism can be provided based on

Lenz’s Law. When external magnetic field is applied, due to Lenz’s Law, the elec-

tronic orbital motions are modified to generate an opposite magnetic field, so the net

increase of magnetic flux can be reduced. The diamagnetic response is pretty generic,

however, due to its small magnitude in materials that contain permanent magnetic

moments, its contribution is usually overshadowed by the permanent magnetic mo-

ments.

It is interesting to note that living biologics is usually a diamagnet. As show in the

Figure 1.5, since a living frog is in diamagnetic state, it can be elevated by a strong

magnetic field (∼ 10T ), which is around 103 stronger than the field of a refrigerator

magnet.

If a material has permanent magnetic moment and no long range order, its named

a paramagnetic. For a paramagnet, when external field is zero, due to the random

orientation of its magnetic moments, the net magnetization is zero. However, when

external magnetic field is applied, the inner moments are aligned with the external



12

Figure 1.5: (a) The picture of a frog levitated by magnetic field (b) The grav-
ity is canceled by the diamagnetic force in this experiment. (Pictures from
https://mriquestions.com/how-to-levitate-a-frog.html)

field (H), manifesting themselves as a positive induced magnetization, i.e. χ > 0.

The material with long range order and parallel nearest neighbor is ferromagnet.

Due to the Heisenberg exchange, they can persist finie magnetization with zero exter-

nal field. In daily life, when a material is called magnet, it is usually a ferromagnet.

As it has a constant magnetization, which can be rotated by external field, ferromag-

net has been the central part of magnetic storage technique and widely investigated

by the society.

In some materials, some quantum mechanical coupling such as RKKY or super

exchange, can lead to the anti-parallel configuration between nearest magnetic mo-

ments. If the magnetic moments of the nearest neighbors perfectly cancel each other,

it is called antiferromagnet. For materials, where the anti-parallel magnetic moments

doesn’t perfectly cancel each other, they are classified as ferrimagnetic material.

Since in our research, ferromagnet is the key active material, we would briefly

introduce the idea of magnetic texture, magnetic dynamics and magnetoelectronic

measurement techniques about ferromagnetic material.
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Figure 1.6: Micromagnetic spin configurations (a) single domain state (b)two do-
main state, usually appears in small particle with strong uniaxial anisotropy. (c)
(d) Multidomain states (e) Bloch domain wall in thin film with strong perpendicular
anisotropy (f) Neel domain wall in thin magnetic film with in-plane anisotropy. [3]

1.6 Magnetic texture in ferromagnetic material

In this section, we will focus on the distribution of magnetization in ferromagnet.

The understanding of magnetic texture (domain) structure, is of great importance

for practical application of ferromagnetic material. For example, in hard disk drive

(HDD), data is stored as magnetic domains. Further understanding of the physics

behind magnetic domains and their interactions could help us minimize the domain

size and stabilize the domain structure, which could increase the storage density and

life time. Some of the representative domain structures are shown in Figure 1.6

[3]. Within each domain, there is a large number of microscopic magnetic moments

pointing along the same direction. The regions between adjacent domains are domain

wall, where the magnetization rotates from one domain to another. In static state,

the domain is the result of minimization of magnetic energy E,

E =

∫
{A[∇(

M

Ms

)]2 −K1
(n ·M)2

(Ms)2
− µ0M ·H − µ0

2
M ·Hd(M)}dV (1.7)

n is the unit vector of the local anisotropy, H is the external field and Hd is the
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demagnetizing filed, which originates from the magnetostatic self-interaction. The

first term in Eq. (1.7) is the exchange interaction term. In ferromagnetic system such

term favors the alignment of adjacent magnetization along the same direction. The

second term represents a local uniaxial anisotropy. As a phenomenological expres-

sion, this term may have different physical origins, such as shape anisotropy or crystal

anisotropy. The third term is the Zeeman energy of magnetic moment in external field.

The last term is the self-interaction energy andHd =
1
4π

∫ 3(r−r′)(r−r′)·M(r′)−|r−r′|2M(r′)

|r−r′|2 dV ′.

The appearance of integration in the self energy is not surprising, since to calculate

the self energy of dV, the field generated by the rest part of the ferromagnet needs

to be summed up. Due to the complexity of double integration in Eq. (1.7) for

self-interaction energy, when doing simple analysis the last term is usually omitted.

Then we would like to go trough the magnetic textures in Figure 1.6. In panel (a),

it is a single domain state, where all of the magnetization in the cube pointing along

the same direction. Such single domain structure is usually available in nano mag-

netic particles. For larger magnetic material without strong anisotropy, the domain

structure shown in panel (b) (c) and (d) is common, because in these multi-domain

structures the magnetic induction line is closed and the self-interaction energy is min-

imized. (Just like when putting two bar magnets together, they (energetically) prefers

an anti-parallel configuration). Panel (e) (f) are zoom-in views of domain wall. (e)

is a Bloch wall and (f) is a Neel domain wall. As shown in Figure 1.6, since multi-

ple magnetic structures are possible in the same cube, determination of the actually

magnetic state in a device can be tricky. In some cases, when the energy landscape of

the magnetic texture is complicated, there can be multiple meta stable states and the

magnetization can even be frustrated, reminding us the possibility of glassy behavior,

which will be discussed in detail in the following chapters.

Besides the ”common” domain structure shown in Figure 1.6, there are other

topologically interesting domain structures. For example, the vortex structure is
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Figure 1.7: Schematic diagram of spin configurations (a) Bloch wall (b) Neel wall
(c) clockwise and counterclockwise vortex (d) magnetic bubble (e) skyrmion [4].

shown in Figure 1.7 (c) [4]. Although it is similar to the domain in Figure 1.6(a);

however, the magnetization rotates continuously. (interestingly, noticing that the

magnetization on different sizes of a vortex is opposite, sometimes within a magnetic

stripe, vortex itself can be a domain wall [20]). Panel (e) in Figure 1.7 shows a special

texture called skyrmions, which is an research active field. Skyrmions are interesting

because they can be tiny (∼100 nm), localized (compared with vortex, skyrmions can

exist in uniform magnetic background) and topologically protected (stable) [21].

Since in previous part of this section, we mainly focus on magnetization within

domains, here it is worthy to briefly discuss the region between domains, the domain

wall. In a simple model of 1D spin chain [22], where only the exchange energy

and uniaxial anisotropy is considered, for a 180 degree domain wall, the balancing

between these two terms gives θ = ±2arctan[ey/∆]. Here, θ represents the rotation

of magnetization within the domain wall and ∆ =
√

A
K1

is the domain wall width

parameter. Although there are different ways to define the domain wall width, ∆

gives the order of magnitude of domain wall width. For common magnetic materials,

the domain wall width is around a few hundreds of atoms. It is worthy to note that
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Figure 1.8: Domain structure imaged by XMCD (www-ssrl.slac.stanford.edu
/stohr/xmcd), MFM (Wikipedia), MOKE [5] and Lorentz TEM [4].

the domain wall width is proportional to
√
A and inversely proportional to

√
K1. The

result matches with our physical intuition. For system with large exchange stiffness

(large A), a spatially slow rotation is preferred as the large exchange stiffness prefers

small angle rotation between the magnetic moment of adjacent atoms. However, when

the anisotropy is large, since in the middle of the domain wall, the magnetization is

pointing along the hard axis, which is not energetically favored by the anisotropy term.

Thus, for system the large anisotropy, domain wall would be ”narrow”. Nevertheless,

in common magnetic texture, the domain wall width is much smaller than the size

of domain and that is why in panel (a) (b) (c) (d) of Figure 1.6, domain walls are

depicted as solid lines.
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1.7 Imaging techniques of magnetic texture

In previous sections, we discussed the magnetic textures in ferromagnetic material.

One natural question is how to detect the variation of domain structure. Multiple

methods have been developed to directly observe the magnetic domain structure, such

as X-ray magnetic circular dichroism (XMCD) [23], Magneto-optic Kerr effect [5],

Magnetic force microscope [24] and Lorentz transmission electron microscopy [4].

Some pictures of domain structure taken by these techniques are shown in Figure 1.8.

These techniques provide direct image of domain structures.

1.8 Anisotropic magnetoresistance

Moreover, magnetoresistance could also provide useful information of magnetic struc-

ture. Although, generally magnetoresistance measurement can’t directly probe the

domain structure in real space, it has the advantage of simple measurement setup

and high-precision detection. Here we would briefly introduce the anisotropic mag-

netoresistance (AMR).

The configuration of AMR measurement is schematically shown in Figure 1.9(a).

For example in Permalloy (Py), its resistance depends on the angle between of mag-

netization (assuming it is in single domain state) and current, R = Rmax−∆Rsin2(φ)

(Figure 1.9(b)). In this case, the sample resistance is maximized when the magnetiza-

tion is parallel with the current and minimized when perpendicular. The magnitude

of AMR is usually ∼1% of the sample resistance.

1.9 Giant magnetoresistance

Another kind of magnetoresistance that has been widely explored is giant magne-

toresistance (GMR) [25]. It was firstly discovered in multilayer structures, where a
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Figure 1.9: (a) Schematic diagram of AMR measurement (b) AMR result of a Py
layer.

thin nonmagnetic material is sandwiched by two ferromagnetic layers. It is mag-

nitude can be up to 50% of sample resistance, which is much larger than AMR.

GMR can be realized in current in plane (CIP) and current perpendicular to plane

(CPP) structure. The configuration of a CPP-GMR device is shown in Figure 1.10(a).

When the magnetization in the two ferromagnetic layers are parallel (anti-parallel),

the magnetoresistance is minimized (maximized). For intermediate conditions, the

magnetoresistance can be expressed as R = R0 +∆Rsin2 Θ
2
.

The dependence of magnetoresistance on the configuration of magnetization can

be explained in a phenomenological two current model. As shown in Figure 1.10(b),

the current can be viewed as a superposition of the movement of spin up and spin

down current. When the electron spin is parallel with the magnetization, the chan-

nel is in low resistance state R↑↑. When the electron spin is antiparallel with the

magnetization, the channel is in high resistance state R↑↓. Assuming that the two

current channels form a parallel circuit, the total resistance of the GMR device is

RP =
2R↑↑R↑↓
R↑↑+R↑↓

(large) for anti-parallel magnetization and RAP =
R↑↑+R↑↓

2
(small) for

parallel magnetization.
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Figure 1.10: Schematic plot of the two current model for giant magnetoresistance.
Picture from Wikipedia.

1.10 Landau–Lifshitz–Gilbert (LLG) equation and

magnetic dynamics

In the section about magnetic domain structure, we encountered the problem where

due to the existence of local minimum in the energy landscape, the multiple domain

structures can be stable. In this case, the actual final state of magnetization would be

determined by the evolution of magnetization with its initial condition. LLG equation

is a classical description of magnetic dynamics and widely used as the foundation of

micromagnetic simulation [26].

dm̂

dt
= −µ0γm̂× H⃗eff − αm̂× dm̂

dt

+σDLm̂× (m̂× ŝ) + σFLm̂× ŝ.

(1.8)
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Figure 1.11: Schematic figure of the contribution of different terms in LLG equation
with Slonczewski’s spin transfer torque. Picture accommodated from ”NIST: spin
torque tutorial”.

Here, m̂ and ŝ are unit vectors along the magnetizations and injected spin, respec-

tively, µ0 is the vacuum permittivity, α is Gilbert damping, and γ is the gyromagnetic

ratio. The effective field H⃗eff includes crystalline and/or shape anisotropies, and the

external and demagnetizing fields. As schematically shown in Figure 1.11, the first

term is simply describes the Larmor precession. The second term is the Gilbert

damping, which characterize the relaxation of magnetization toward its equilibrium

position. Since the magnitude of the damping term is proportional to the precession

rate dm̂
dt
, it can be viewed as a viscous damping. The third and forth terms are the

Slonczewski’s spin transfer torque (STT) term [27], which describes the torque ex-

erted on the magnetization by injected spin current. The STT is the key of spintronic

devices and will be discussed in detail in chapter five.

1.11 What is memristor?

Since chapter five is about the proposal of an ideal memristor in viscous magnetic

system, it would be worthy to briefly introduce the idea of ”memristor”. There

are three common devices in a electronic circuit, capacitor, resistor and inductor.

As shown in Figure 1.12(a), multiple electrical quantities are connected by these
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Figure 1.12: (a) Conceptual symmetries between resistor, capacitor, inductor, and
memristor (Picture from Wikipedia) (b) The IV curve of a memristor The inset
shows a schematic illustration of biological synapse [6].

devices. In 1960’s, it is noticed that due to the symmetry, it is possible to introduce

a quantity ”memristance” [28] with its value defined by M = dΦ
dq
. Here Φ is the

magnetic flux and q is the charge. This definition is a little bit awkward, as the

direct measurement of magnetic flux and charge is difficult. By using the Faraday’s

law and the definition of current, the expression of memristance can be written as

M(q(t)) = dΦ
dq

= dΦ/dt
dq/dt

= V (t)
I(t)

. In this case, the memristor can be viewed as a special

resistor, with its resistance defined by the amount of charge passing through. For an

ideal memristor, its memristance should be proportional the charge (q). When driven

by ac current, its IV curve has a ”butterfly shape, as demonstrated in Figure 1.12(b).

This device is of great interest, since it can emulate the functionality of neuron by

itself, which will be discussed in more detail in chapter five.

Multiple systems have been demonstrate as candidates for memristor. One exam-

ple is the structure shown in Figure 1.13, where a TiO2 layer is sandwiched by two Pt

electrodes [7]. Depending on the external bias, Pt ”filament” can form or annihilate,

leading to the variation of resistance. Since the formation and annihilation process of

Pt filament is induced by the integration effect of current, the resistance is a function

of charge flow. As shown in Figure 1.13, its IV curve has the butterfly shape, which
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Figure 1.13: IV plot of Pt-TiO2-Pt based memristor. [7]

is the signature of memristive functionality.

As demonstrated above, the key point of a memristor is the dependence of mem-

ristance on the ”integration” of a physical quantity. Such dependence is not rare in

physical system. For example, the moving distance of an object in a highly viscous

medium is the integration of force over time. It suggests that the memristive func-

tionality can be realized via viscous dynamics. Here, we provide a proof-of-principle

result of a viscous memristor.

As shown in Figure 1.14 (a), we first connect a motor electrically in series with

a variable resistor and also connect their shafts. The rotation angle of the well-

lubricated motor with low inertia is proportional to the charge Q that flows through

it, while the resistance of the variable resistor is proportional to the angle of its shaft,

i.e. R = R0 + aQ. (The damping in the motor plays the role of viscosity, i.e., its

rotation angle is approximately proportional to the integration of current overtime.)

To explicitly demonstrate its memristive functionality, the IV curve is plotted in

Figure 1.14 (b). As demonstrated in the section about LLG equation, the viscous
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Figure 1.14: (a) Picture of the memristor made up of a motor and a variable resistor.
(b) The IV curve of the device.

damping also exists in magnetic system (the Gilbert damping). In chapter five we

will continue on the idea of building memristor via viscous dynamics and an ideal

memristor based on viscous magnetization dynamics driven by spin torque will be

proposed.
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Chapter 2

Nonequilibrium phonon

distribution in current-driven

nano- and micro-structures

2.1 Joule’s heating and diffusive heat transfer

Downscaling of modern electronic devices and circuits places ever increasing demands

on their operation under increasingly non-equilibrium conditions. At small electric

current density J in metallic materials, the electric field E is given by the Ohms

law E = ρJ , where the material resistivity ρ is assumed to be independent of J .

At sufficiently large J , ρ generally becomes bias-dependent, resulting in a nonlinear

(non-Ohmic) dependence of E on J .

Non-Ohmic behaviors are common in non-metallic structures. For instance, the

conductivity of tunnel junctions is generally bias-dependent, due to the phonon-

mediated inelastic tunneling [29]. The non-Ohmic behaviors observed in disordered

graphene are associated with the bias-assisted hopping transport of charge carri-

ers [30]. In semiconductors, the non-Ohmic behaviors at large bias are manifested by
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the phenomenon of current saturation, which is associated with the onset of spon-

taneous emission of optical phonons [31]. A strongly non-equilibrium distribution of

electrons formed at large bias can also result in purely electronic non-Ohmic contri-

butions to transport properties [32].

In metallic structures, the most common mechanism of non-Ohmic behaviors is as-

sociated with electron scattering on phonons generated by current, generally resulting

in an increase of ρ with increasing current. In macroscopic systems, current-generated

phonons inevitably thermalize, and the effects of current can be well described as an

increase of temperature T ∗(J) characterizing the distributions of both electrons and

phonons. This temperature increase is defined as Joule heating [33, 34]. The thermal

energy, generated at a rate w = ρJ2 per unit volume, is dissipated by the diffusion

of electrons and phonons away from the heated region, as described by the Fourier’s

heat diffusion equation (q = −κ∇T ) [35].

Since most materials exhibit a significant variation of resistivity with temperature,

its current-dependence is commonly utilized for the characterization of Joule heat-

ing. This approach is also often extended to nanostructures [36, 37, 38]. However,

recent studies have shown that in nanoscale systems, the electron and the phonon

distributions may not be adequately described by a single current-dependent temper-

ature [39, 40], because electrons and/or phonons can escape from the system before

they thermalize. We broadly define this regime as the breakdown of the Joule heat-

ing approximation. For instance, if electrons can quickly escape and are sufficiently

weakly coupled to phonons, their effective temperature can be significantly lower than

that of phonons, resulting in complex nonlocal energy transfer processes between the

two subsystems [41, 42, 43, 44, 45, 46]. In this case, the electrons and phonons can

still be separately characterized by effective temperatures, which are generally not

the same for the two subsystems.

Electrons and/or phonons may also form a nonequilibrium distribution within
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the respective subsystem, which cannot be characterized by an effective tempera-

ture [47, 48, 49]. One example is the ultra fast laser excitation. In those experiments,

as the fs laser pulse is much shorter than thermalization process of electron and

phonons system. Right after the excitation, the electron/phonon system is in highly

nonequilibrium state and the following relation process has been investigated in de-

tail by pump probe measurement [50]. Though significant progress has been recently

achieved in the understanding of non-equilibrium states of electrons and phonons at

nanoscale [51, 52, 53, 54, 55], a comprehensive microscopic understanding of current-

induced thermal energy generation and transport has not yet emerged.

2.2 Experimental approach

Here, we experimentally demonstrate that at cryogenic temperatures, common nanos-

tructures such as thin-film metallic nanowires exhibit an anomalous linear variation

of resistance with current. We show that this dependence cannot be described by a

current-dependent temperature, and is thus inconsistent with the Joule heating ap-

proximation. As the temperature is increased, the linear dependence is broadened,

and behaviors consistent with Joule heating eventually emerge at sufficiently high

temperatures. Nevertheless, signatures of anomalous current dependence persist at

temperatures as high as 200 K. We attribute the observed behaviors to substantially

non-equilibrium phonon distribution facilitated by the fast phonon escape from the

nanoscale system. Based on our interpretation, we show that the observed anomalous

behaviors can provide insight into the nonequilibrium electron and phonon dynam-

ics at nanoscale, lead to new approaches to the characterization of electron-phonon

interaction, and facilitate the optimization of thermal management in electronic nan-

odevices.

Below, we discuss mainly the results for thin-film Pt wires deposited on undoped
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Si substrates. Similar wires are extensively utilized for spin current generation in

spin-orbitronic devices that rely on the spin Hall effect exhibited by Pt [56, 57, 58,

59, 60], as well as microscale heaters and thermometers [61]. We have also performed

measurements for other materials and substrates: Au wires on Si, as briefly discussed

below, Pt wires on SiO2 and sapphire, as well as resistive metallic nanocontacts.

All these measurements yielded consistent results, suggesting that the observed non-

equilibrium phenomena are quite general to micro- and nano-scale current-driven

structures characterized by efficient phonon relaxation.

The studied wires were fabricated by a combination of e-beam lithography and

high-vacuum sputtering. To ensure consistent thermal contact between the wires and

the substrate, native surface oxide was removed from the Si surface by HF etching

immediately prior to the Pt wire deposition. The deposited Pt was polycrystalline,

due to the large lattice mismatch between Pt and Si. The wires were contacted by

four Cu(150) electrodes for the four-probe resistance measurements, which allowed

us to eliminate the contribution of the contact resistance between the electrodes and

the wires. Here and below, numbers in parentheses are thicknesses in nanometers.

Differential resistance R = dV/dI was measured using the standard lock-in technique,

with ac current Iac = 10 µA rms superimposed with the dc current I of up to ±4 mA.

The measured resistivity of the studied Pt films linearly depended on the inverse

film thickness d [inset in Fig. 2.1(a)], consistent with the expected contribution of

surface scattering [62]. For large thicknesses, the resistivity approaches the usual

values reported for bulk sputtered Pt [62]. We note that thin Pt films deposited

on SiO2 and sapphire exhibit significantly lower resistivity than similar films on Si.

Since the roughness ≈ 0.25− 0.3 nm rms of the substrate and of the film surface, as

measured by atomic force microscopy, was similar for all these films, we conclude that

the large resistivity of thin Pt films on Si is caused by the diffuse electron scattering at

the Pt/Si interface. This allowed us to explore a large range of transport parameters
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controlled by the film thickness. We emphasize that the reported nonequilibrium

effects were also observed in thin films deposited on sapphire and SiO2, where the

interface contribution to resistivity was much smaller. Therefore, these effects are not

associated with the specific scattering properties of the interface.

The morphology of the substrate and deposited film surfaces were characterized by

atomic force microscopy, which yield similar roughness values of 0.25 − 0.3 nm rms.

Additionally, the geometries of the fabricated structures were verified by scanning

electronic microscopy (SEM). An example of the SEM image for the a 5 nm thick,

1 µm-long, 500 nm-wide Pt wire is shown in Fig. 2.1(a).

We characterized the restivity of the Pt films deposited on etched Si by measuring

the resistance of several 1 µm-long, 500 nm-wide Pt wires as a function of temperature

and wire thickness. The resistivity exhibits a linear dependence on inverse thickness

at all temperatures, as shown in Fig. 2.1(b) for 295 K and 5 K, consistent with the

expected contribution of surface scattering.

2.3 Breakdown of Joule’s heating at cryogenic tem-

perature

Figure 2.2 shows representative resistance vs current curves for a 1 µm-long and

500 nm-wide Pt(5) wire. At the experimental temperature T = 295 K, the resis-

tance R(I) follows a quadratic dependence on current I [Fig. 2.2(a)]. This result

is consistent with Joule heating. Indeed, electrical energy is dissipated in the wire

at a rate W = RI2. Since the rate of thermal energy dissipation from the wire is

proportional to its temperature increase, one can expect that the temperature of the

wire follows a quadratic dependence on current T ∗ ≈ T0 + CI2. The resistance of

the Pt(5) wire exhibits an approximately linear dependence on T close to T = 295 K

[inset in Fig. 2.2(b)]. Thus, R(I) is expected to follow a quadratic dependence, in
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Figure 2.1: (a) SEM image of one of the studied samples, a 5 nm thick, 1 µm-long,
500 nm-wide Pt wire contacted by four 150 nm-thick Cu leads. (b) Dependence of
the resistivity of Pt films on Si vs the inverse of their thickness at T = 5 K and
295 K, as labeled, at I = 0. The resistivity was determined from the resistance of the
1 µm-long, 500 nm-wide Pt wires. Solid lines are linear fitting.

agreement with our data.

At T = 5 K, the dependence R(I) is well described by the linear function R(I) =

R0 + α|I|, where α is a constant [Fig. 2.2(b)]. This dependence cannot be explained

by Joule heating. In particular, numerical simulations confirm that for Joule heating,

the dependence T ∗(I) of the Pt wire temperature on current should be quadratic even

at cryogenic temperatures. The resistance of Pt is almost independent of temperature

up to 20 K, due to the freeze-out of large-momentum phonons, and starts to increase

approximately linearly with T at higher temperatures [inset in Fig. 2.2(b)]. Simula-

tions show that as a consequence, Joule heating should not affect R for currents up to

about 1.8 mA, and should lead to an approximately quadratic dependence R(I) for

larger currents. The observed dependence R(I) is clearly qualitatively inconsistent

with these expectations.

The anomalous current dependence of resistance cannot be attributed to tunnel-

ing or electron hopping effects discussed in the introduction, because the electron
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Figure 2.2: (a) Resistance vs current for a 1 µm-long, 500 nm-wide, 5 nm-thick Pt
wire deposited on etched Si substrate, at room temperature T = 295 K. Curve is the
best fit to the data with a quadratic function. Inset: Resistivity of Pt deposited on
Si substrates vs inverse Pt thickness, at 295 K. (b) Same as (a), at T = 5 K. Curve
is a fit with the linear function R(I) = R(0) + α|I|, where α is a fitting parameter.
Inset: the dependence of the wire resistance on temperature at I = 0.

transport properties of the studied metallic thin film wires are determined by scat-

tering rather than tunneling, as can be inferred from the decrease of resistance with

decreasing temperature [inset in Fig. 2.2(b)]. The effects of contact resistance are

eliminated in our measurements by the four-probe geometry. We also performed

separate two-probe measurements that produced very similar results, except for the

overall resistance increase due to the contribution of electrodes, confirming that the

contact resistance is not relevant to the observed effects.

We can also eliminate the purely electronic contribution to the dependence R(I),

because the linear term in this dependence does not change sign with the direction of

current, and is negligible for inversion-symmetric materials such as Pt. [32]. One can

also expect that such effects should also sensitively depend on the band structure.

However, our results for an Au wire discussed below are very similar to those for Pt,

despite large differences in their band structure. Resistance may be also affected by

the complex nonlocal transport phenomena, which have been reported for mesoscopic
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wires with mean free path comparable to the wire dimensions [63]. However, we

estimate that the mean free path in our Pt(5) film is only 2 nm, due to the diffuse

electron scattering at the Pt/Si interface, resulting in negligible nonlocal effects.

2.4 Dependence of R(I) on temperature

We hypothesize that the observed anomalous low-temperature dependence R(I) is

associated with electron scattering on non-equilibrium phonons generated by current,

whose distribution and population are qualitatively different from that expected from

the Joule heating picture. Indeed, analysis presented below indicates that the linear

R(I) dependence can be explained within the Drude-Sommerfeld approximation for

electron transport, in conjunction with the simple kinetic analysis of phonon relax-

ation in the limit of negligible thermalization. Independent estimates of phonon

relaxation rates confirm the validity of this approximation. Fast escape of the gener-

ated phonons from the system is expected to be the only requirement for the observed

non-equilibrium behaviors, and therefore such behaviors should be quite common in

current-driven micro- and nano-structures characterized by efficient phonon relax-

ation.

We now discuss the dependence on temperature, which provides insight into the

mechanism of the emergence of behaviors consistent with Joule heating at high tem-

peratures. As the temperature is increased from 5 K, the linear dependence re-

mains evident at large currents, but the zero-current singularity becomes increasingly

smoothed-out [Fig. 2.3(a)]. This broadening is reminiscent of the thermal effects ob-

served in electronic spectroscopy of tunnel junctions and point contacts, which can

be accounted for by convolving the zero-temperature spectra with the normalized

derivative df0
dϵ

of the Fermi-Dirac distribution function f0(ϵ) =
1

eϵ/kBT+1
, where ϵ is the

energy relative to the chemical potential [64]. This function can be well approximated
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Figure 2.3: (a) Symbols: R vs I for the same sample as in Fig. 2.2, at the labeled
values of T . Curves: best fits with the linear function R(I) = R0+α|I| convolved with
the Gaussian g(I) = 1√

2π∆I
e−I2/2∆I2 . Some of the data points are omitted for clarity,

but fitting was performed for the entire data set. (b),(c) Parameters extracted from
the data fitting: the Gaussian width ∆I (b) and the slope of the linear dependence
(c). The line in (b) is the best linear fit of the data for T > 20 K.

by the Gaussian

g(ϵ) =
1√
2πσ

e−ϵ2/2σ2

, (2.1)

with σ ≈ 1.6kBT . Indeed, a linear function R(I) = R(0) + α|I| convolved with the

Gaussian

g(I) =
1√

2π∆I
e−I2/2∆I2 . (2.2)

provides a good fitting for all our R(I) data measured at different temperatures, as

shown by curves in Fig. 2.3(a). At T > 200 K, the width ∆I of the Gaussian becomes

larger than the range of the dc current scan, resulting in a significant uncertainty of the

fitting. Nevertheless, these data suggest that a non-equilibrium current-driven phonon

distribution, not described by Joule heating, can be formed at sufficiently large bias

even in the ambient temperature range. On the other hand, at small currents, thermal

broadening results in a quadratic R(I), consistent with the dependence expected for

Joule heating.

We emphasize that in the studied microstructures, phonons are not expected to
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thermalize even at elevated temperatures, due to their efficient relaxation. Instead,

behaviors consistent with Joule heating emerge because of the thermal broadening of

the electron distribution, resulting in a nearly thermal distribution of the generated

phonons.

In tunnel junctions or point contacts, the characteristic electron energy competing

with the thermal broadening is defined by the bias across the junction [64]. We hy-

pothesize that in the studied metallic wires, the characteristic electron energy defining

the thermal broadening scale is the energy provided to electrons by electric field be-

tween the scattering events, which is to a good approximation proportional to the bias

current. Indeed, the Gaussian width ∆I follows a linear dependence at T > 20 K,

extrapolating to ∆I = 0 at T = 0 [right scale in Fig. 2.3(b)]. This result is consis-

tent with our hypothesis that the observed broadening of R(I) originates from the

thermally induced spectral broadening of the electron distribution, whose width is

proportional to temperature. In other words, the thermal broadening of R(I) can be

interpreted in terms of the competition between the thermal energy kBT of electrons,

and the average energy acquired by electrons between scattering events due to the

electric field in the wire. The broadening saturates at T < 20 K, suggesting the

existence of an additional non-thermal broadening effect. Indeed, at small bias and

low temperatures, the energy (and thus the momentum) of phonons generated by

current is small, resulting in a reduced contribution of the generated phonons to elec-

tron scattering, and thus resistance. We expect that detailed theoretical analysis of

these broadening effects, which is beyond the scope of the present work, will provide

quantitative information about the relevant energy scales, leading to new quantitative

insights into electron transport in nanostructures.

The slope of the linear dependence decreases with increasing temperatures up to

90 K, and then increases at higher temperatures [Fig. 2.3(c)]. These variations are

likely associated with the temperature dependence of phonon relaxation rate, which
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is dominated by the dissipation into the substrate, as shown below. Qualitatively,

there is some correlation between the observed variations of the slope and the temper-

ature dependence of thermal conductivity of bulk Si, which increases with increasing

temperature at low temperatures, exhibits a peak typically at temperatures between

30 K and 100 K, and then decreases at higher temperatures [10, 8]. However, the

variations of thermal conductivity are almost two orders of magnitude larger than

those of the slope in Fig. 2.3(c), suggesting that phonon relaxation may not be ade-

quately described by the diffusive heat transport. Indeed, the phonon mean free path

in Si significantly exceeds the dimensions of the studied structures [65]. Therefore,

phonons are expected to quasi-ballistically escape into the Si substrate, with negligi-

ble contribution from the phonon-phonon scattering governing heat diffusion. Thus,

measurements of temperature-dependent slope of R(I) in nanostructures, such as

those discussed here, may provide a new method for characterizing phonon transport

and relaxation at nanoscale.

2.5 Dissipation channels of the nonequilibrium

phonons

Non-equilibrium phonon distribution in the studied Pt wires, manifested by the linear

dependence R(I), is associated with fast relaxation of phonons due to their efficient

escape from the system, before they become thermalized. To elucidate the mecha-

nisms of phonon relaxation, we analyze the effects of the wire geometry. Phonons are

expected to dissipate mainly into the thick Cu leads and the substrate. If phonons

dissipate predominantly into the leads, then the efficiently of their dissipation should

decrease with increasing wire length L, due to the longer average distance they travel

before escaping. On the other hand, the phonon dissipation efficiency, per unit Pt

volume, should not be significantly affected by the wire thickness d, aside from the
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Figure 2.4: Effects of the Pt wire geometry. (a),(b) Temperature dependence of the
Gaussian broadening width ∆J (a) and the linear slope (b) of ρ(J), for 10 nm-thick
Pt wires with lengths L = 1 µm, 3 µm, and 5 µm, as labeled. (c),(d) Same as (a),
(b), for 1µm-long Pt wires with thicknesses d = 5 nm, 7 nm, 10 nm, and 15 nm, as
labeled in (c). Inset in (d): Dependence of the phonon relaxation rate τph on the
Pt thickness, determined from the data at T = 5 K using Eq. (2.11) (symbols), and
linear fit with zero intercept (line).

effects of thickness on the phonon mean free path. However, if phonons dissipate

predominantly into the substrate, the length of the wire should not affect the phonon

escape into the substrate. On the other hand, increasing the wire thickness d should

lead to an increase of the average phonon escape time, resulting in less efficient dis-

sipation (per unit Pt volume). Figure 2.4 summarizes the results for different values

of L and d. To facilitate direct comparison of different geometries, we analyze the

dependence of resistivity ρ = RA/L on the current density J = I/A, where A is the

cross-section area of the wire. In all cases, we obtained accurate fits of the data by

using a linear dependence convolved with the Gaussian. For the thickest (15 nm) Pt

wire, the analysis is limited to T ≤ 100 K, because of the large thermal broadening
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for this thickness.

The thermal broadening ∆J is independent of the wire length [Fig. 2.4(a)]. The

linear slope of ρ(J) is almost independent of length at temperatures up to about

80 K, and starts to increase with increasing length at higher temperatures. However,

the dependence on length remains modest even at T = 160 K. Thus, we conclude

that at cryogenic temperatures, phonons relax in the studied Pt wires predominantly

through the substrate.

In contrast to the effects of the wire length, wire thickness significantly affects

the characteristics of ρ(J), Figs. 2.4(c),(d). The broadening increases by a factor of

two when d is increased from 5 nm to 10 nm, and saturates at larger d. For Pt(5),

it increases linearly with temperature T > 20 K. This result is consistent with our

interpretation of the broadening in terms of the competition between the electron’s

thermal energy kT and the energy ∝ J provided by the electric field between electron

scattering events. The observed curving of the dependence ∆J(T ) for larger Pt

thickness, especially apparent in Fig. 2.4(c) for Pt(10) and Pt(15), can be attributed

to the larger relative contribution of electron-phonon scattering to the electron mean

free path, resulting in the reduction of energy acquired by electrons between the

scattering events.

The linear slope of ρ(J) also exhibits a significant dependence on the wire thick-

ness, especially apparent at higher temperatures [Fig. 2.4(d)]. The slope increases

with wire thickness up to 10 nm, and then decreases for Pt(15), in the temperature

range up to 100 K where the broadening was sufficiently small to allow a reliable

determination of the slope. These nonmonotonic variations can be explained by the

competition between the decrease of the phonon generation rate, with increasing Pt

thickness, due to the smaller contribution of scattering at the Pt interfaces, and the

increase of phonon escape time, as shown by the analysis below [see also inset in

Fig. 2.4(d)].
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2.6 Mechanics of the breakdown of Joule’s heating

To interpret the observed behaviors, and to evaluate the material parameters that

control the non-equilibrium phonon distribution, we perform kinetic rate analysis

of the current-driven phonon population. In the Drude-Sommerfeld approximation,

the electron mean free path is le = m∗vF
ne2ρ

, where vF and m∗ are the Fermi velocity

and the effective mass, respectively [66]. In the presence of electric field, the rate of

electron scattering per unit volume is r = J
ele

= neρ
vFm∗J . Assuming that one phonon

is generated in each scattering event, the rate of phonon generation per unit volume

is
dnph

dt
|gen = r. Relaxation due to the quasi-ballistic phonon escape from Pt can be

described by the relaxation time approximation

dnph

dt
|rel = −nph − n0

τph
, (2.3)

where n0 is the phonon population in the absence of current, and τph is the relaxation

time, which is equal to the phonon escape time due to the rapid phonon escape. In

the steady state,
dnph

dt
|gen + dnph

dt
|rel = 0, or

nph = n0 +
τphneρ

vFm∗ J. (2.4)

The parameters n, vF , and ρ in this expression are generally dependent on the cur-

rent density J . For good metals such as Pt, the carrier density is to a very good

approximation independent of current. To analyze the bias-driven variations of vF ,

we note that electric bias results in a shift of the Fermi surface, affecting the average

Fermi velocity [67]. Using the Drude-Sommerfeld approximation, we find ∆v⃗ = J⃗/ne

for the bias-driven change of the electron velocity between the scattering events. For

Pt(5) at I = 4 mA, we calculate that ∆vF is less than 5% of vF . Furthermore, the

net effect is expected to become negligible when averaged over the Fermi surface,

since the variation of the magnitude of electron velocity depends on the direction of
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wavevector. In contrast, the dependence of ρ on J is generally non-negligible, as is

apparent from the experimental results discussed above. Below, we first derive the

general expression accounting for this dependence, and then show that the contribu-

tion of the current-dependence of ρ to the phonon population in our measurements

is small.

To establish the relationship between the current dependence of resistance and

phonon generation/relaxation characteristics, we use the Matthiessen’s rule for the

electron mean free path in the presence of current-generated phonons, 1/le = 1/le,0+

nphσe−ph. Here, le,0 is the mean free path in the absence of phonons, and σe−ph is

the average electron-phonon scattering cross section. Combining with Eq. (2.4), we

obtain

ρ(J) =
ρ(0)

1− τphσe−phJ/e
. (2.5)

Expanding in powers of the current density, we obtain to the lowest order in

τphσe−phJ/e

ρ(J) ≈ ρ(0)[1 + τphσe−phJ/e]. (2.6)

According to this relation, to the lowest order in J , the resistivity is expected to de-

pend linearly on the current density, in agreement with our experimental data. The

validity of Eq. (2.11) is contingent upon several conditions. First, the kinetic rate

equation Eq. (2.3) relies on negligible phonon thermalization. We utilized several

independent approaches to estimate that this condition is well-satisfied in the stud-

ied wires. For very thick films or bulk samples, phonon thermalization is expected

to result in the usual Joule heating characterized by a qualitatively different depen-

dence ρ(J). Second, the generated phonons must efficiently scatter electrons, which

requires that their characteristic momentum is comparable to the Fermi momentum

of electrons, such that the electron scattering on the generated phonons can described

by the average scattering cross-section parameter σe−ph. Because of the energy con-
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servation, this condition is not satisfied at small bias, consistent with the observed

rounding of the linear dependence around J = 0. Finally, the linear approximation

for ρ(J) holds only for J ≪ e/τphσe−ph. Based on Eq. (2.11), this condition can be

equivalently formulated as (R(J)/R(0) − 1) ≪ 1. This is well-satisfied for the the

presented measurements, with the largest value of (ρ(J)/ρ(0) − 1) ≈ 0.17 reached

at I = 4 mA for the Pt(5) wire. We have performed additional measurements of

the nonlinear regime at larger currents, which could be well described by the general

Eq. (2.10) without any additional fitting parameters.

It should be emphasized that the obtained results are independent of the func-

tional form of ρ(T ), which usually exhibits an approximately linear dependence on

temperature at high temperatures, and saturates at low temperatures, due to the

freeze-out of large-momentum phonons. As a consequence, Joule heating results in

a quadratic or even slower dependence ρ(J), instead of the linear dependence in the

non-thermalized regime discussed above.

These differences are closely related to the differences between phonon populations

and characteristic energies in the two regimes. In particular, according to Eq. (2.4),

the population of non-equilibrium phonons is proportional to current density. Mean-

while, their characteristic energy is determined by the energy acquired by electrons

due to electric field between the scattering events, which is also approximately propor-

tional J . We can contrast this with Joule heating at sufficiently high temperatures,

when ρ(T ) is approximately linear, and ρ(J) is quadratic. In the degenerate regime

above the Debye temperature, the average phonon energy is independent of T , while

according to the Rayleigh-Jeans law, their population is proportional to T . Thus,

in the Joule heating regime, the average phonon energy is independent of J , while

their population is quadratic in J . The total phonon energy ∝ J2 is the same in both

regimes, as expected since the dissipated power is w = ρJ2.

The result in Eq. (2.11) demonstrates that the linear slope of the dependence ρ(J)
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provides direct information about phonon relaxation and electron-phonon scattering.

For the studied Pt wires, because of the effects of electron scattering at the film

interfaces, as reflected the thickness dependence of resistivity [inset in Fig. 2.2(a)], the

phonon population [and thus the slope of ρ(J)], determined by the balance between

phonon generation and escape rates, exhibits a complex dependence on d [Fig. 2.4(d)].

This is reflected in Eq. (2.11) by the dependence of the slope of ρ(J) on both ρ(0) and

τph. To gain insight into the observed variations, we use σe−ph determined from the

temperature dependence of resistivity and the measured ρ(0) to calculate the values of

τph for different Pt wire thicknesses d. The dependence of τph(d), determined from the

T = 5 K data, is well described by a linear function with zero intercept, as expected

for the substrate-dominated relaxation [inset in Fig. 2.4(d)]. The experimental values

of τph are in a semi-quantitative agreement with the calculation of the quasi-ballistic

phonon escape time into the substrates based on the acoustic mismatch theory. These

results confirm that phonon relaxation in the studied Pt wires is dominated by the

fast quasi-ballistic phonon escape into the substrate, which facilitates non-equilibrium

current-driven phonon distribution.

2.7 Generality of the observation: the linear R(I)

in Au wire

We have confirmed the general relevance of the observed behaviors to nanostruc-

tures with efficient thermal dissipation, by measurements of current-dependent re-

sistance in Pt wires fabricated on different substrates, as well as resistive metallic

nanocontacts. Here, we briefly discuss the results for an Au(5) wire deposited on

HF-cleaned undoped Si substrate. A Ni(0.5) wetting layer was inserted between

Au(5) and the substrate, to improve adhesion and ensure the continuity of the ul-

trathin Au(5). The geometry of this wire was identical to that of the Pt(5) wire
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Figure 2.5: (a) Symbols: resistance vs current for a 1 µm-long, 500 nm-wide Au(5)
wire on Si substrate, at the labeled values of temperature. Curves: results of the
data fitting with a linear function R(I) = R(0) + α|I| convolved with the Gaussian.
(b),(c) Parameters extracted from the data fitting: the Gaussian width ∆I (b) and
the slope of the linear dependence (c). The line in (b) is the best linear fit of the data
for T > 20 K.

in Figs. 2.2, 2.3. At T = 5 K, the dependence R(I) is well approximated by the

linear function [Fig. 2.5(a)], in agreement with the results for Pt. This dependence

becomes increasingly broadened with increasing temperature, with the broadening

proportional to temperature at T > 20 K [ Fig. 2.5(b)]. The temperature dependence

of the broadening is almost identical to that for Pt(5). At T = 5 K, the resistance of

the Au(5) wire is 4 times smaller than that of Pt, while the linear slope is about 3.5

times smaller than for Pt(5). In contrast to Pt(5), the slope for Au(5) monotonically

increases with temperature. This dependence is similar to that observed for Pt(10)

and Pt(15), but the magnitude of the variations is smaller, closer to Pt(5) and Pt(10).

The similarities between the results for Pt and Au, two materials with very different

electronic band structures, confirms that the mechanisms underlying the observed

effects are likely quite general to micro- and nano-scale systems characterized by ef-
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ficient thermal dissipation. The almost identical thermal broadening for Pt and Au

implies that the energy acquired by the electrons due to the electric field between

the scattering events is almost the same for the two materials. Based on the Drude-

Sommerfeld approximation, this energy is proportional to the effective electron mass

and Fermi velocity, and inversely proportional to the electron density. The latter is

similar in Pt and Au, while the effective electron mass is about 1.6 times larger in

Pt and the Fermi velocity is about 1.4 times smaller [68]. Thus, the almost identical

values of ∆J likely result from a fortuitous cancellation of different contributions to

thermal broadening. Studies of other materials where such a fortuitous cancellation

is not expected can provide a critical test for the proposed interpretation.

At T = 5 K, the normalized slope 1
ρ(0)

dρ(J)
dJ

is only 20% smaller for Pt(5) than for

Au(5). According to Eq. 2.11, this implies that τphσe−ph is similar for these materials.

However, estimates based on the temperature dependence of resistivity show that

σe−ph,P t ≈ 4σe−ph,Au, and therefore the phonon relaxation time in Au(5) at 5 K is

about 5 times larger than in Pt(5). The difference between phonon relaxation times

becomes even larger at higher temperatures, as manifested by the increase of the slope

for Au(5). This difference is likely associated with the much larger phonon escape

time from the Au film. The escape time calculated from the acoustic mismatch at

Au/Si interface, assuming isotropic momentum distribution of the generated phonons,

is 75 ps, less than half of the relaxation time determined from the slope of R(I) at

5 K. We speculate that the large value of τph for Au originates from its poor wetting

of the substrate, resulting in reduced phonon transparency of the interface with Si.

Elucidating the relationship between wetting and phonon transparency of interfaces,

by measurements such as those presented here, will be important for gaining further

insight into thermal relaxation mechanisms in nanostructures, and for optimizing the

thermal management in nanoelectronic devices.
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2.8 Dependence on the substrate type

To verify that the anomalous R vs I dependence associated with nonequilbrium

current-driven phonon distribution is not limited to Pt wires on Si substrates discussed

in the previous section, we have studied thin-film Pt wires fabricated on sapphire

and oxidized Si [surface SiO2 thickness 300 nm]. Figure 2.6(a) shows temperature-

dependent thermal conductivities of Si, sapphire, and fused quartz. The thermal

conductivity of the fused quartz (SiO2) is several orders of magnitude smaller than

that of Si and sapphire. Thus, using SiO2 as a substrate allowed us to test whether

high thermal conductivity of the substrate is essential for the observed nonequilibrium

phenomena.

The dependences R vs I are shown in Figs. 2.6 (b) and (c) for Pt(5) wires fab-

ricated on sapphire and SiO2, respectively. The resistivity of Pt(5) on sapphire is

slightly smaller than for Pt(5) on SiO2, and about three times smaller than for the Si

substrate. These differences were reproducible among different samples. The value

of ρ for the sapphire substrate is slightly smaller than for SiO2, because Pt grows

on sapphire preferentially with (111) texture, as was verified by x-ray diffractometry,

resulting in less electron scattering at the crystalline grain boundaries. The resistiv-

ities of very thick/bulky Pt films [200 nm-thick Pt in our studies] deposited on Si

or SiO2 substrates are similar to each other, confirming the interfacial origin of the

additional contribution to the resistivity of Pt on Si. We attribute this contribution

to the strongly diffuse electron scattering at the Pt/Si interface, associated with a

combination of large electronic and structure mismatch between the two materials,

perhaps combined with some interfacial alloying. We note that if Si diffused into Pt

over distances beyond a thin interfacial region, e.g. comparable to the smallest stud-

ied Pt thickness of 5 nm, then the dependence of resistivity on thickness [Fig. 2.1(b)]]

would have exhibited a nonlinear increase at small Pt thicknesses.

For sapphire, the current-driven resistance increase between I = 0 and I = 4 mA
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Figure 2.6: (a) Temperature dependence of thermal conductivity of Si, sapphire, and
fused quartz, as labeled [from Refs. [8, 9, 10]]. (b) R vs I for a 1µm-long, 500 nm-wide
Pt(5) wire fabricated on sapphire substrate, at T = 5 K and 300 K, as labeled. (c)
Same a (b), but using a Si substrate with a 300 nm-thick thermal SiO2 surface layer.
Blue straight lines are guides for the eye.

is about 20 Ω both at 5 K and 300 K, Fig.2.6(b). In contrast, the increase for the

oxidized Si substrate is significantly larger, almost 60 Ω at 5 K, and 35 Ω at 300 K,

Fig.2.6(b). These results are consistent with the large differences between the thermal

conductivities of the two substrates, which are expected to determine the phonon

relaxation rates in the Pt wires. In particular, not only is the thermal conductivity

of SiO2 smaller than that of sapphire, resulting in a larger resistance increase, but

it also decreases at low temperatures, in contrast to the increase in sapphire. This

is consistent with the increasing current-dependent resistance variation for Pt on Si

with decreasing temperature.

Despite significant quantitative differences among different substrates, at 5 K the

curves R(I) are almost linear both for sapphire and SiO2, consistent with the non-

equilibrium current-induced phonon distribution. A slight upcurving, more significant

for SiO2, is consistent with the nonlinear effects of phonon generation due to the

electron scattering on the generated phonons. This effect is the most pronounced

for SiO2 substrate, because of the slower phonon relaxation. However, it becomes

noticeable at sufficiently large current for other substrates, as discussed below for Pt

on Si.
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2.9 Dependence on the wire thickness for Pt on

sapphire

In previous sections, we discussed how the observed complex thickness-dependence

of the ρ(J) curves reflects a competition between the decrease of scattering (phonon

generation rate) and the increase of the phonon relaxation time τph. Despite the

complexity of the observed variations of the raw data with thickness d, the calculated

τph(d) exhibited a linear dependence on thickness with a zero intercept, consistent

with the expectation that phonon relaxation is dominated by the phonon escape into

the substrate.

Here, we confirm this relationship for Pt wires on sapphire. Namely, we show

that the slope of ρ(J) exhibits a nonmonotonic dependence on d, but nevertheless the

calculated phonon τph exhibits a simple linear dependence on thickness.

Figure 2.7: (a) Temperature dependence of thermal broadening (∆J) of Pt wires with
different thickness on sapphire substrate. (b) Temperature dependence of slope of Pt
wires with different thickness on sapphire substrate. (c) Dependence of the phonon
relaxation time τph on the thickness of Pt on sapphire, determined from the data at
T = 5 K (symbols), and linear fit with zero intercept (line).

We fabricated 1 µm-long, 500 nm-wide Pt wires with thicknesses d = 5 nm, 7.5 nm,

10 nm, and 15 nm on sapphire substrate, and measured their R(I) dependences at

temperatures between 5 K and 295 K. All the R(I) curves were well fitted with a

with linear function convolved with the Gaussian, allowing us to determine the slope
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and broadening ∆J , as discussed in previous sections [Figs. 2.7(a),(b)].

The temperature dependences of both parameters are qualitatively similar to those

observed for Pt on Si, with some deviations consistent with the smaller effects of

interface scattering. In particular, for Pt on Si, the dependence ∆J(T ) was linear for

d = 5 nm, and became increasingly curved for larger d. The curving was explained by

the increasing contribution of electron scattering on thermal phonons, which reduces

the energy acquired by electrons between the scattering events. For Pt on sapphire,

the effects of interfacial scattering are smaller, i.e. the relative contribution of thermal

phonons to scattering is larger. Accordingly, ∆J(T ) exhibits strong curving for all

the studied Pt wires on sapphire [Fig. 2.7(a)].]

The slopes of ∆J(T ) exhibit a generally nonmonotonic dependence on d, similarly

to Pt on Si. We used these data and Eq.(2.6) to determine τph. The latter exhibits a

linear dependence on the Pt thickness with zero intercept, as shown in Fig. 2.7(c) for

T = 5 K. The characteristic values of τph are larger for Pt on sapphire than for Pt on

Si. This is consistent with the larger sound speed in sapphire (10 km/s vs 8 km/s in

Si). The higher sound speed in sapphire results in a larger acoustic mismatch between

Pt and substrate, resulting in a smaller average transmission coefficient. The effect

is larger than may be naively inferred from the modest difference between the sound

velocities, because of the large range of wavevectors of phonons experiencing a total

internal reflection.

2.10 Dependence of resistance on current in a re-

sistive nanocontact

Our results for thin-film metallic wires on thermally conductive substrates suggest

that nonequlibrium phonon distribution is generally formed in current-driven nanos-

tructures characterized by efficient phonon relaxation. This hypothesis is supported
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Figure 2.8: (a) Schematic of the resistive nanocontact, based on a 70-nm Ta(10)
disk sandiched between two thick conducting electrodes, and the pseudo-four-probe
measurement setup. (b) R vs I for the studied nanocontact, at the labeled values of
temperature. The straight lines are guides for the eye.

by measurements of R vs I for a resistive nanocontact - a nanostructure whose geom-

etry and thermal dissipation mechanisms are completely different from those of thin-

film wires. The studied nanocontact is shown schematically in Fig. 2.8(a). It consists

of a circular Ta(10) disk with a 70 nm diameter, sandwiched between a micrometer-

scale Cu(50) bottom lead, and Cu(100) top lead. The electrical leads are separated

by a SiO2(15) insluating layer. The nanostructure was fabricated using a multi-step

e-beam lithography process we developed for the studies of current-induced magne-

tization dynamics in magnetic nanostructures, and described in detail in multiple

publications [69]. The resistance of the nanocontact is measured in the pseudo-four-

probe geometry, with current and voltage contacts attached to the opposite sides of

the Cu leads, as shown in the schematic.

In addition to the contribution of 4 Ω of the bulk Ta resistivity, estimated based

on the separately measured resistivity of sputtered β − Ta of about 1500 nΩ·m, the

measured resistance of 10.8 Ω at 5 K comprises the interfacial resistance of Ta/Cu

interfaces, which is expected to be high because of the large crystalline and band
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structure mismatch between Ta and Cu, and also a contribution from the Cu leads,

non-negligible in the pseudo-four-probe geometry. Our prior studies of similar mag-

netic spin-valve nanopillars suggest that the latter is about 1 Ohm.

Altogether, the resistance of the studied nanocontacts is likely dominated by the

Ta(10) layer and its interfaces, which are also expected to provide a dominant con-

tribution to the current-induced phonon generation. Meanwhile, the thick highly

conductive Cu leads provide efficient thermal dissipation. According to our analysis,

if the escape of phonons from the Ta layer into the Cu leads is faster than their ther-

malization, a linear dependence of resistance on current is expected. Indeed, a linear

dependence R(I) is observed for the studied nanocontact at T=5 K [Fig. 2.8(b)]. The

linear dependence becomes increasingly smeared out at higher temperatures, consis-

tent with the thermal broadening mechanisms discussed for thin-film wires in previous

sections.

2.11 COMSOL simulation of Joule heating

To eliminate the possibility that the linear dependence of Pt wire resistance on cur-

rent, observed in our experiments at cryogenic temperatures, can be explained by

Joule heating, we performed simulations of current-dependent temperature distribu-

tion in Pt wires utilizing the COMSOL Multiphysics software. To reproduce R(I)

measured in the experiment at T = 300 K, we introduce boundary thermal conductiv-

ity 1× 108 K ·m2/W at the interface between sample and substrate, which accounts

for imperfect thermal contact and the effects of acoustic mismatch on thermal con-

ductivity discussed below. We note that the COMSOL simulation is based on the

quasi-equilibrium (thermalized) approximation for the phonon distribution underly-

ing the Joule heating law, and diffusive approximation for the heat flow underlying

the Fourier’s equation.
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Figure 2.9: COMSOL simulations of Joule heating at temperature T = 5 K. (a)
Schematic of sample configuration used in the simulation. The simulated dimensions
of the Pt wire are 1µm ×500 nm ×5 nm. (b) Top view of the pseudocolor map
of the calculated temperature distribution of the structure shown in (a), at current
I = 4 mA. (c) Average sample temperature vs current. The curve is a fitting with a
quadratic function. (d) Sample resistance vs current, determined from the calculated
current-dependent temperature distributions such as shown in panel (b), and the
measured dependence of resistivity on temperature. Blue line is R = 229.6 Ω, and
the red curve is a fit of the I > 2.2 mA data with the quadratic function.

The simulated configuration, including the Pt wire, Cu leads and the Si substrate,

closely matches the experimentally studied geometry, as illustrated in Fig. 2.9(a). A

top view of the temperature distribution calculated at current I = 4 mA is shown in

Fig. 2.9(b). It is worthy to notice that since compared to Pt, the Cu leads are much

thicker and has much smaller resistivity, the heating in Cu leads is much smaller than

the Pt wire. The highest calculated temperature, near the center of the wire, is 90 K

at this current. Based on the measured R(T ) dependence, the sample resistance is

expected to increase by less than 13 Ω at I = 4 mA, which is inconsistent with the

increase of 40 Ω observed in the experiment. Figure. 2.9(c) shows the calculated de-
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pendence of the average temperature in the Pt wire on current. This dependence is

precisely fitted by the quadratic function, in agreement with the qualitative analysis

in previous sections. Combining the calculated current-dependent spatial distribu-

tion of temperature with the measured dependence of resistivity on temperature,

we obtain the dependence of sample resistance on current expected for Joule heat-

ing. The calculated current-dependent sample resistance is constant at small bias

I < 1.8 mA, because resistance is almost temperature-independent at T < 20 K, and

is well approximated by a quadratic function at I > 2.2 mA [Fig. 2.9(d)]. This result

is inconsistent with the experimental observation of a linear dependence of resistance

on current, confirming that the Joule heating approximation is inapplicable to the

studied system at cryogenic temperatures.

2.12 Estimation of phonon escape time from the

acoustic mismatch

We estimate the phonon escape time from Pt into the Si substrate using quasi-ballistic

phonon transport approximation, which is justified by the small thickness of the

studied Pt wires. The escape time is determined by the phonon scattering at the

Pt/Si interface, which can be analyzed using the theory of acoustic mismatch [70].

For an acoustic wave incident from Pt at an angle θ1 and refracted into Si at an angle

θ2 related to θ1 by Snell’s law [Fig. 2.10 (a)], the transmission coefficient is

α =
4D2c2
D1c1

· cosθ2
cosθ1

(D2c2
D1c1

+ cosθ2
cosθ1

)2
. (2.7)

Here, c is the speed of sound, and D is the mass density, with the subscript ”1”

used for Pt, and ”2” - for Si. The escape time can be then estimated as τ = 2d
αc1

.

Since the speed of sound in Si is higher than in Pt, transmission is possible only at
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Figure 2.10: (a) Schematic of the configuration used in the acoustic mismatch calcu-
lation. Phonons are generated in the Pt layer and are scattered at the Pt/Si interface.
The probability of transmission into the Si substrate determines the escape rate. (b)
Comparison between the phonon relaxation time of Pt derived from experiment with
relaxation time calculated with acoustic mismatch vs Pt thickness d. The experi-
mentally determined dependence τph(d) is between the values of τesc obtained in two
different limits of phonon momentum distribution considered in the acoustic mis-
match calculations, as shown by blue and red curves.

incidence angles smaller than the critical angle θc for the total internal reflection.

We note that the average transmission probability exhibits a strong dependence on

the momentum distribution of phonons. The distribution can be calculated with

Boltzmann equation, which is beyond the scope of this work. Instead, we consider

two limiting approximations. First, we assume that the momentum distribution of

the generated phonons is confined to the plane of incidence shown in Fig. 2.10(a),

and is isotropic in this plane. The average phonon transmission coefficient is then

ᾱ =

∫ θc
0 αθ1dθ1

θc
π
2

θc

=

∫ θc
0

αθ1dθ1
π
2

(2.8)

For Pt(5) on Si, the average phonon escape time, estimated based on Eq. (2.8),

is τesc =
2d
ᾱc1

=21 ps. This estimate neglects imperfections at the Pt/Si interface that

produce an additional acoustic barrier reducing the transmission. Thus, this estimate
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provides a lower bound for the phonon escape time from Pt. For Au(5) on Si, similar

analysis gives τesc = 15 ps.

For the second limiting estimate, we assume that the distribution of the momenta

of the generated phonons is isotropic in three dimensions, so the transmission prob-

ability needs to be averaged over the solid angle. In this limit, the average phonon

transmission coefficient is

ᾱ =

∫ 2π

0

∫ θc
0

αsin(θ) dθdϕ

2π
(2.9)

For Pt(5) on Si, the average phonon escape time estimated based on Eq. (2.9) is

τesc =
2d
ᾱc1

=118 ps. As shown in Fig. 2.10(b), the phonon relaxation time determined

from the experiment lies between the two limiting values of escape times calculated

as described above. More precise matching between the experiment and the acoustic

mismatch calculation requires a more detailed quantitative analysis of the momentum

distribution of the generated phonons. For Au(5) on Si, similar analysis based on the

assumption of spatially isotropic phonon momentum distribution gives τesc=75 ps, less

than half of the experimental relaxation time. As mentioned above, the discrepancy

between the two values likely originates from the poor wetting of the substrate by

Au, resulting in a reduced phonon transparency of the Au/Si interface.

2.13 Estimation of phonon scattering time

Phonons generated by current do not become thermalized if the thermalizing scatter-

ing is slower than relaxation. We can estimate the phonon scattering time based on

the known phonon average mean free path, l ≈ 1 µm at 300K for Pt [71, 72, 73], and

the sound velocity c = 2.6 × 103 m/s, giving τsc = lph/c = 3.8 × 10−10 s. Since not

all phonon-phonon scattering is inelastic, this estimate gives a lower bound on the

phonon thermalization time. Nevertheless, the estimated value of τsc is significantly



53

larger than the estimated phonon escape time, confirming that the nonequilibirum

phonon distribution generated in the studied microwires by current does not thermal-

ize even at room temperature.

2.14 Nonlinear dependence of resistance on large

driving current

The general expression for ρ(J), Eq.(2.6) is

ρ(J) =
ρ(0)

1− τphσe−phJ/e
. (2.10)

This is a nonlinear dependence that can be approximated by a linear dependence

When driving current is small, the first order expansion gives

ρ(J) ≈ ρ(0)(1 + τphσe−phJ/e). (2.11)

only at sufficiently small currents [Eq.(2.6)]. Note that the slope of the dependence

Eq.(2.11) valid at small currents uniquely defines the entire nonlinear dependence

Eq.(2.10), without any additional fitting parameters. This provides an independent

test for the validity of the proposed interpretation and analysis.

The significance of the nonlinearity is determined by the value of τphσe−phJ/e, or

equivalently the value of (R(I)/R(0)− 1). For the Pt on Si data discussed above, the

largest value of (R(I)/R(0)−1) = 0.17 was reached for the Pt(4) wire at I = 4 mA at

T = 5 K. The corresponding nonlinear relative correction to resistance is 0.172 = 0.03,

too small to be noticeable in these data. On the other hand, for the Pt(5) wire on

SiO2 discussed above, (R(I)/R(0) − 1) = 0.7 at I = 2 mA, so the nonlinearity is

much more noticeable in Fig. 2.6(c)

Here, we show that the nonlinear dependence R(I) becomes apparent at large
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Figure 2.11: (a) Symbols: Dependence of resistance on driving current for the 1µm-
long, 500 nm-wide Pt(7) wire on Si at 5 K. Red line is the fitting of the I > 1 mA
data with Eq. (2.11). Blue curve is the fitting of the I < −1 mA data with Eq. (2.12.)

driving currents even for Pt on Si, and that it can be precisely fitted with Eq. (2.10)

without any additional parameters. We use a 1µm-long, 500 nm-wide Pt(7) wire on

Si substrate as an example [Fig. 2.11]. The measured dependence is symmetric with

respect to the current direction. We use the two different branches in this Figure,

I < 0 and I > 0, to illustrate the nonlinear effects. We fit only the data at |I| > 1mA,

to avoid the complications associated with small-current broadening effects discussed

above.

At large driving currents, the dependence R(I) clearly becomes nonlinear, as

illustrated by the poor linear fit shown by the red line for the I > 0 data in Fig. 2.11.

For small nonlinearity, we expand Eq. (2.10) to the second order in J ,

ρ(J) ≈ ρ(0)(1 + τphσe−phJ/e+ (τphσe−ph/e)
2 ∗ J2). (2.12)

Fitting using this dependence, without any additional fitting parameters, provides

excellent agreement with the data, as shown by the blue curve for the I < 0 data in
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Fig. 2.11.

In previous sections, we focused on the linear regime at smaller currents, for two

main reasons. First, the observed linear dependence provided a stark contrast with

the Joule heating picture, allowing us to unambiguously assert that the latter is

inapplicable to the studied system. Second, we kept the driving currents within a

comfortable range, where the effects of heating and electromigration were insufficient

to damage the studied samples.

2.15 Estimation of electron-phonon scattering cross-

section

The electron-phonon scattering crossection σe−ph determines the relationship between

the population of phonons and their contribution to resistivity, as follows. According

to the Matthiessen’s rule for the electron mean path (1/le = 1/le,0 +nphσe−ph). Here,

le,0 is the mean free path in the absence of phonons, and σe−ph is understood as

the average scattering cross-section over the phonon distribution. Using the Drude

formula ρ = m∗vF
ne2le

, we obtain

ρ(nph) = ρ(0) +
m∗vFnphσe−ph

ne2
, (2.13)

or in the differential form

σe−ph =
ne2

m∗vF

dρ

dnph

=
ne2

m∗vF

∂ρ/∂T

∂nph/∂T
(2.14)

We can use Eq. (2.14) to extract σe−ph from the temperature dependence of re-

sistivity and the known thermal phonon distribution. For temperatures above the

Debye temperature TD, we can approximate nph ≈ 3natT/TD, so that
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σe−ph ≈ ne2TD

3natm∗vF

∂ρ

∂T
. (2.15)

We are interested in the scattering cross section on large-momentum phonons

generated by current, corresponding to the linear regime of R(I) observed at suffi-

ciently large currents, as discussed in the previous section. Large-momentum ther-

mal phonons also dominate electron-phonon scattering in thermal equilibrium at high

temperatures (T > TD), due to the dominance of their phase volume over the small-

momentum phonons. Thus, we can assume that the average scattering cross section on

thermal phonons above the Debye temperature is similar to that on current-generated

phonons in the linear R(I) regime (at sufficiently large bias). We use the dependence

ρ(T ) close to T = 300 K and Eq. (2.15) to obtain σe−ph = 4.6× 10−22 m2 for Pt, and

σe−ph = 1.3× 10−22 m2 for Au.
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Chapter 3

Transport and relaxation of

current-generated nonequilibrium

phonons from nonlocal electronic

measurements

3.1 Motivation: the propagation and decay of the

nonequilibrium phonons

As described in the previous chapter, at cryogenic temperature the phonon system

in current driven nano/micro- devices can be far from equilibrium and the effect of

current can’t be characterized as an elevation of sample temperature. The nano-wire

device investigated in the last chapter has the advantage of being easy for fabrication

and giving clear proof of principle result. However, there are two main drawbacks.

Firstly, it is hard to disentangle the phonon generation and detection process, since

both process happens simultaneously in the same wire. Moreover, such structure

could not provide further information about the propagation and relaxation of the
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nonequilibrium phonons after generated in the wire. In this section, a nonlocal ge-

ometry is used, where we study phonons generated by current in a Pt nanowire,

by measuring resistance of another nanowire separated from the first one by an in-

sulating spacer. For thin spacer, the resistance varies almost linearly with current

at cryogenic temperatures, while an additional quadratic contribution emerges for

thicker spacers. These observations suggest a non-thermal distribution of current-

generated phonons that relax via strongly nonlinear dynamical processes rather than

few-phonon scattering. Our results provide insight into the nonequilibrium phonon

dynamics at nanoscale, which may facilitate efficient heat management in electronic

nanodevices.

3.2 Experimental setup for nonlocal measurement

We present nonlocal electronic measurements utilizing a phonon-detecting nanowire

separated from the phonon-generating wire by an electrically insulating spacer. The

separation between phonon generation and detection allows us to confirm non-thermal

distribution of current-generated phonons. Our approach also allows us to character-

ize inelastic phonon scattering, and to elucidate its mechanisms.

Our samples were fabricated by e-beam lithography and sputtering. They con-

sisted of two 7 nm-thick, 1 µm-wide and approximately 18 µm-long Pt nanowires

fabricated on top of one another on undoped Si substrates, and contacted by Cu

electrodes [Fig. 3.1(a)]. Their large length ensured that phonon escape into the elec-

trodes was negligible. The wires were separated by an insulating amorphous SiO2

spacer whose thickness d was varied between 5 and 100 nm. To generate phonons, dc

current Is was applied to the top wire. The resistance Rd of the bottom wire used as

a phonon detector was simultaneously measured using lock-in detection with a small

ac current Id = 10 µA applied to this wire. Both wires were metallic with resistance
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Figure 3.1: (a) Pseudocolor SEM image of one of the studied samples and measure-
ment setup. (b) ∆Rd/Rd(0) vs Is for d = 25 nm (circles) and 100 nm (crosses),
at T = 300 K. Here, ∆Rd = Rd(Is) − Rd(0). Curve: COMSOL simulation for
d = 100 nm. The curve is well-approximated by a parabola. The result for d = 25 nm
[not shown] is nearly identical. (c) Rs vs T at Is = 0. The temperature depen-
dence of Rd is similar. (d) Crossection of the temperature distribution calculated for
d = 100 nm, at Is = 4 mA and T = 300 K.

of about 800 Ω, with negligible contribution from contact resistance, as verified by

separate 4-probe measurements. The resistance between the wires was at least 25 MΩ

at cryogenic temperatures.

3.3 Room temperature result

Figure 3.1(b) shows Rd(Is) for two spacer thicknesses, d = 25 nm and 100 nm, at

temperature T = 300 K (Room-temperature measurements for d < 25 nm were un-

reliable because ofelectron activation across spacer). To account for minor geometric

differences leading to slightly different resistances, the data are offset and normalized
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by Rd(0). The two datasets closely follow the same quadratic dependence. This result

is consistent with Joule heating and Fourier’s law of heat diffusion. Indeed, the rate

of Joule dissipation per unit source wire area is w = dPtρj
2
s , where dPt is its thickness,

js is the current density, and ρ is resistivity. For the studied thin-film wires, the latter

is dominated by scattering on the surfaces and impurities, as evidenced by its weak

dependence on T [Fig. 3.1(c)], so to the lowest order the variation of ρ with js can

be neglected.

The dissipated energy produces a heat flux q = w flowing through the spacer and

the sensing layer into the substrate and spreading over the characteristic depth zc

defined by the wire width, as illustrated by the COMSOL simulation, Fig. 3.1(d). In

the 1d approximation, this can be modeled by a heat sink with the temperature T at

the depth zc below the sensing Pt wire. According to the Fourier’s law, q = −κ∇T ,

where κ is the thermal conductivity of the substrate. We infer that the temperature of

the detector wire Td = T+z0dPtρjs
2/κ does not depend on the properties of the spacer,

and is quadratic in Is. Above the Bloch–Grüneisen temperature ΘR ≈ 50 K [74], the

resistance Rd of the detector wire is linear in T [Fig. 3.1(c)], so Rd is expected to be

quadratic in Is, in agreement with the data and the COMSOL simulations based on

the Fourier’s law [curve Fig. 3.1(b)].

Similar analysis predicts a quadratic Rs(Is), but with a coefficient that depends

on the properties of the spacer. The resistivity of the Pt wires saturates below ΘR

[Fig. 3.2(c)]. Therefore, for measurements performed at T ≪ ΘR, Joule heating

should result in almost constant Rs at small Is, crossing over to a quadratic de-

pendence at large Is, as illustrated by the COMSOL simulation [dashed curve in

Fig. 3.2(a)].
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Figure 3.2: (a) Rs vs Is for d = 5 nm at T = 7 K. Symbols: data, dashed curve:
COMSOL simulation, solid curve: fit with the function γ(α,∆Is, Is) defined in the
text. (b) ∆Rd/Rd(0) vs Is for d = 5 nm (solid curve) and 100 nm (dashed), at
T = 7 K.

3.4 Low temperature result

The measured Rs(Is) at T = 7 K [symbols in Fig. 3.2(a)] is qualitatively different

from this prediction. Instead, it can be well-fitted by Rs(I) = Rs(0) + γ, where γ

is a linear function of |Is| convolved with a Gaussian of width ∆Is, γ(α,∆Is, Is) =

α
∫
dI|I|e−(I−Is)2/2∆I2s /

√
2π∆Is [solid curve in Fig. 3.2(a)] (Phonon generation due to

electron-phonon scattering can be neglected, sinceresistance is dominated by scatter-

ing at the boundaries and defects even atlarge bias.). A similar result obtained in

Ref. [75] was interpreted as evidence for the non-equilibrium distribution of current-

generated phonons that cannot be described by an effective temperature. We now

outline this interpretation. According to the Drude-Sommerfeld model, the rate of

electron scattering in the source wire is proportional to Is. Assuming that one phonon

is generated in each electron scattering event, and that phonons escape into the sub-

strate before they can thermalize, one obtains from the kinetic balance relation a

linear dependence of current-generated phonon population on current [75]. Electron
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scattering on these phonons leads to a linear dependence Rs(|Is|).

In this picture, phonon distribution must be non-thermal by energy conservation

argument. The deposited electrical energy is quadratic in Is, while the number of the

generated phonons is proportional to |Is|, and thus the average energy per phonon is

also proportional to |Is|. The same conclusion is obtained by considering the energy

imparted by electric bias to each electron between the scattering events, which must

be transferred to the phonon generated upon scattering. Smoothing of the weak

singularity at Is = 0, accounted for by the Gaussian of width ∆Is, is explained by

the reduced electron scattering cross-section on low-energy phonons.

For thermalized phonon distribution below the Debye temperature ΘD = 240 K

of Pt, the average phonon energy ⟨ϵ⟩ is linear in T , as follows from the Debye integral

⟨ϵ⟩ ∝
∫∞
0
(ex − 1)−1kTx3dx/

∫∞
0
(ex − 1)−1x2dx ∝ T . Thus, for Ts ∝ I2s , ⟨ϵ⟩ ∝ I2s . At

T > ΘD, the average energy of thermalized phonons is independent of T , as follows

from the Raleigh-Jeans law for the thermal mode population, n(ϵ) = kT/ϵ. One can

conclude that linear dependence of Rs on |Is| is inconsistent with thermal distribution

of current-generated phonons.

3.5 Dependence on spacer thickness

Non-local measurements provide a test for this interpretation. If the distribution

of phonons injected into the spacer is non-thermal, their inelastic scattering is ex-

pected to result in gradual thermalization. Thus, as the spacer thickness is increased,

Rd(Is) may be expected to gradually transform from the linear dependence to the

form expected for Joule heating. Indeed, Rd(Is) for d = 5 nm is close to the lin-

ear dependence Rs(Is), while the dependence for d = 100 nm is closer to parabolic

[Fig. 3.2(b)]. As a consequence, at small Is the normalized Rd is larger for d = 5 nm

than for d = 100 nm, and smaller at large Is, with a crossover at |Is| = 4 mA.
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Figure 3.3: Dependence of the amplitudes α (a) and β (b) of the linear and the
quadratic contributions to Rd(Is) on d, determined from fits such as shown in the
inset for d = 5 nm, at T = 7 K. Curves are fits with the exponential dependences
α0e

− d/d0 in (a), and β0 − β1e
−d/d0 in (b).

All the Rd vs Is curves obtained at T = 7 K were well-approximated by a sum of

the function γ(α,∆Is, Is) used for fitting the local measurements, with the same value

of ∆Is, and the quadratic function βI2s [inset in Fig. 3.3(a)]. The first contribution

describes the ”primary” phonons generated in the source wire that diffuse to the

detector without experiencing thermalizing inelastic scattering. The quadratic term

was empirically found to provide a good fitting to the data. It reflects the presence of

a ”secondary” group of phonons generated due to inelastic scattering of the ”primary”

phonons.

The amplitude α of the linear contribution decreases, while the quadratic contribu-

tion increases with increasing d [Fig. 3.3]. The dependence α(d) is well-approximated

by the exponential decay with decay length d0 = 44±2 nm [curve in Fig. 3.3(a)]. The

variability of the quadratic amplitude β is significantly larger. Nevertheless, it can

be also fitted using the same exponential form describing its increase and saturation

at large d [curve in Fig. 3.3(b)]. These results are consistent with increasing effects of

inelastic scattering that involves annihilation of the primary phonons and generation
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of the secondary phonons.

We note that β(d) extrapolates to a finite value β(0) = 8×10−4 mA−2, indicating

that the secondary phonons are also generated at Pt/SiO2 interfaces. We can estimate

the probability Pel that the primary phonon is transmitted elastically across the

Pt/SiO2 interface, by using the extrapolated value β(∞) = 2.8× 10−3 mA−2, which

corresponds to all the primary phonons converted into secondary phonons in a thick

spacer. Accounting for the two Pt/SiO2 interfaces separating the source from the

detector, we obtain P 2
el = 1− 8/28, i.e., Pel = 0.85.

Based on the energy conservation arguments discussed above, the density n1 of the

primary phonons and their average quasiparticle energy ϵ1 are proportional to |Is|.

The quadratic term in the dependence Rd(Is) indicates that the density n2 of the

secondary phonons is quadratic in Is, and thus their average quasiparticle energy ϵ2

is independent of Is. This implies that the secondary phonons generated at T = 7 K

are not thermalized, since the average energy of thermalized phonons at T ≪ ΘD

would be proportional to I2s [see above].

3.6 Model for the thermalization of nonequilib-

rium phonons

To analyze inelastic scattering that results in the generation of secondary phonons,

we consider the continuity equations in the relaxation time approximation, ∂n1/∂t =

−∇ · f1 − n1/τin for the primary phonons, and ∂n2/∂t = −∇ · f2 + n1ϵ1/τinϵ2 for the

secondary phonons. Here, f1,2 are the quasiparticle fluxes of the two phonon groups,

and we used energy conservation to relate the secondary phonon generation to the

annihilation rate 1/τin of the primary phonons.

In the diffusive phonon transport approximation justified by the small phonon

MFP lel ≈ 5 nm in amorphous SiO2 at cryogenic temperatures [13, 76], f1,2 =
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−D∇n1,2, where D = vphlel/3 is the diffusion coefficient and vph is the phonon group

velocity, which can be approximated by the sound velocity ≈ 4.5 km/s in amorphous

SiO2. Thus, we estimate D ≈ 7.5× 10−6m2/s.

The phonon distribution in the spacer depends only on the normal coordinate z,

defined to be directed into the substrate, with the origin located in the SiO2 spacer

at the boundary with the source wire. Assuming that the only phonon source is at

z < 0, we obtain for the stationary state at z > 0

n1(z) = n
(0)
1 e−z/

√
Dτin ,

n2(z) = n
(0)
1

ϵ1
ϵ2

+ (n
(0)
2 − n

(0)
1

ϵ1
ϵ2
)e−z/

√
Dτin

(3.1)

where n
(0)
1 (n

(0)
2 ) is the primary (secondary) phonon density at z = 0. These depen-

dences are consistent with the observed exponential decay of α and the correspond-

ing increase of β [Fig. 3.3(b)], allowing us to estimate the inelastic scattering time

τin = d20/D = 270 ps. The inelastic scattering length, defined as the length of the

phonon path between inelastic scattering events, is lin = τinvph = 1.2 µm. Such a

large value is promising for the possibility to transport non-thermalized phonons over

significant distances, by utilizing materials with large phonon MFP.

3.7 The mechanisms of secondary phonon genera-

tion

We now analyze the mechanisms of secondary phonon generation. Inelastic scatter-

ing is usually described in terms of three- and four-phonon processes [77, 78, 79]. In

these processes governed by quasiparticle energy and momentum conservation, the

average energies of the generated phonons linearly scale with the energies of the an-

nihilated phonons, which is inconsistent with our results. A cascade of three-phonon
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Figure 3.4: (a) Schematic of the 1d simulation of inelastic phonon scattering by a
strongly anharmonic defect as a chain of masses connected by springs. Top inset:
example of a strongly anharmonic defect associated with a bistable atomic position
in amorphous solid. Bottom inset: potential vs displacement for the mass n0 attached
to the anharmonic springs. Left (right) inset: mode energy vs wavevector times the
lattice constant for the phonon wavepacket before (after) scattering. (b) Wavevector
distribution vs time during phonon scattering on the defect. (c) Average wavevector of
the generated phonon modes vs the incident phonon wavevector, obtained by cutting
out twice the Guassian width around the wavepacket center after scattering.

processes could result in effective thermalization. However, this cannot explain our

observation of similar behaviors over a wide range of spacer thicknesses. Damping of

long-wavelength acoustic waves can be described by the diffusive Akhiezer mechanism

associated with the strain-induced modulation of phonon spectrum [80]. However, this

quasi-adiabatic mechanism is not applicable to high-energy nonequilibrium phonons

generated at large electric bias.

Since inelastic scattering requires anharmonicity, but weak anharmonicity respon-

sible for the few-phonon processes cannot account for our observations, we conclude
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that secondary phonons are likely generated due to strongly anharmonic dynamics.

Such dynamics may be related to the bosonic peak ubiquitous in the spectra of amor-

phous materials [81, 82, 83] and to the problem of phonon glass [84, 85], and may be

associated with quasi-localized nonlinear defect states such as bistable atomic con-

figurations [top inset in Fig. 3.4(a)], as well as interstitial impurities and incoherent

interfaces [86, 87].

To model phonon scattering by a bistable defect, we consider a wavepacket prop-

agating along a 1d chain of masses n = 1..300 connected to their neighbors by springs

[Fig. 3.4(a)]. Masses n = 1 and 300 are also connected to avoid artifacts from bound-

ary reflections. All the springs are linear with the same spring constant, except the

two springs connected to the mass n0 = 150 are described by the double-well poten-

tial energy U(x) = −k1x
2/2 + k3x

4/4, resulting in bistable equilibrium of mass n0

[bottom inset in Fig. 3.4(a)].

Dynamics spanning both potential wells cannot be described in terms of the per-

turbative anharmonic expansion because of the saddle point of the potential at x = 0.

Scattering of the wavepacket on the defect results in the generation of a broad range

of modes throughout the entire Brillouin zone, Fig. 3.4(b), instead of the usual har-

monics expected for weak anharmonicity [11]. Figure. 3.4(c) shows that the average

wavevector of the generated modes remains almost constant when the center wavevec-

tor of the incident wavepacket is varied by more than a factor of 5, consistent with

our experimental observations. This result indicates a breakdown of the perturbative

picture underlying the concept of quasiparticles [phonons] [88], enabling nonresonant

scattering not constrained by the usual quasiparticle momentum and energy conser-

vation laws.
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3.8 Phonon transport and relaxation in a crys-

talline MgO spacer
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Figure 3.5: Symbols: ∆Rd(Is)/Rd(0) vs Is, for the sample that consists of two 7 nm-
thick Pt nanowires separated by a 25 nm-thick crystalline MgO spacer, at T = 7 K.
Solid curve: fitting with the superposition of the function γ(α,∆Is, Is), defined in
previous sections, and the quadratic function βI2s .

The studies above focused on phonon diffusion and relaxation in amorphous SiO2

spacer sandwiched between two Pt wires. Our observation of the quadratic contribu-

tion to the dependence Rd(Is), which emerges with increasing spacer thickness, was

interpreted in terms of inelastic phonon scattering on strongly anharmonic defects

that scrambles phonon momentum and energy conservation laws governing weakly

anharmonic processes. In amorphous materials such as SiO2, a significant density of

such defects may be generally expected thanks to the local structural disorder. This

raises the question whether the observed behaviors are general, and may be expected

for the technologically relevant materials, or specific only to SiO2 and perhaps other

amorphous materials.

To address this question, we prepared an additional sample with the same struc-

ture and geometry as described above, but with a crystalline MgO spacer instead of

amorphous SiO2. This spacer was fabricated using the approach well-established in
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the spintronics community, where MgO is extensively utilized as a tunneling barrier in

magnetic tunnel junctions [89, 90]. The 25 nm-thick MgO spacer layer was deposited

on top of the bottom Pt wire by high-vacuum rf sputtering in ultrahigh-purity Ar.

After the top Pt wire was deposited on top of the MgO spacer, the sample was an-

nealed in vacuum at 350◦ C for 1 hour, which resulted in the crystallization of MgO

layer into the rocksalt structure [91, 92]. An additional 1 nm-thick MgO spacer was

also deposited between the Si substrate and the bottom Pt nanowire to prevent the

diffusion of Si into Pt during the annealing. We verified that the resulting electronic

properties of the Pt wires were similar to those in the samples with SiO2 spacers.

The same nonlocal measurements as described in previous sections for SiO2 spac-

ers were performed for this sample at T = 7 K, as shown in Fig. 3.5. The dependence

Rd(Is) is close to linear in |Is|, with some smoothing at small Is. It is clearly incon-

sistent with Joule heating, which is expected to exhibit a current-independent region

at small Is and a quadratic increase at larger Is. These data are well-approximated

by the superposition of the smoothed linear function γ(α,∆Is, Is) defined in previous

sections and the quadratic function βI2s , the same form as the fitting performed for

SiO2 spacers. This result suggests that the behaviors reported above are likely quite

general to both crystalline and amorphous spacers.

Both the linear amplitude α = 11 × 10−3 mA−1 and the quadratic amplitude

β = 2.16×10−3 mA−2 are larger than the corresponding values α = 7.6×10−3 mA−1,

β = 2 × 10−3 mA−2 for the same-thickness SiO2 spacer. We speculate that both

the elastic phonon MFP and the inelastic scattering time in crystalline MgO are is

likely larger than in amorphous SiO2, due to the smaller density of structural defects

including the strongly anharmonic defects mediating phonon relaxation. According

to Eq. (3.1) in previous sections, this should result in a slower decay of the ”primary”

phonons into the ”secondary” ones. This can explain the larger linear amplitude,

but not the larger quadratic amplitude. Thus, scattering at the Pt/spacer interfaces
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likely plays an important role. Detailed measurements of the dependence on MgO

spacer thickness, and comparison to the corresponding data for SiO2, are necessary

to unambiguously establish the mechanisms underlying these differences.

3.9 Dependence on experimental temperature

In previous sections, we have analyzed the dependences Rd(Is) at room tempera-

ture, and showed that they are consistent with the Joule heating approximation and

Fourier’s law of heat diffusion. Meanwhile, the results obtained at T = 7 K are incon-

sistent with Joule heating, and were interpreted instead in terms of the highly non-

thermal distribution of current-generated phonons. These results raise the question

about the mechanism of transition between these two qualitatively different phonon

generation regimes.

The effects of temperature on the local current-dependent resistance variations

were studied in detail in Ref. [75]. It was shown that the width ∆Is, which describes

the broadening of the linear dependence Rs(|Is|), linearly increases with T > 20 K.

The function γ(α,∆Is, Is) introduced above can be approximated by a quadratic

dependence in the range of current |Is| < ∆Is, and by the linear dependence at

|Is| > ∆Is. At cryogenic temperatures, ∆Is is significantly smaller than the range of

applied currents, so the variations of Rs are dominated by the linear dependence.

At room temperature, ∆Is is extrapolated to become slightly larger than the

range of applied currents, so the entire measured dependence Rs(Is) [and consequently

Rd(Is)] is expected to be well-approximated by a quadratic form consistent with Joule

heating. This result can be expected based on the general statistical arguments.

Indeed, electric field applied to metallic nanowire biases the electron distribution,

opening inelastic electron scattering channels that result in the generation of non-

thermal phonons. At sufficiently high temperatures, this bias becomes smaller than
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Figure 3.6: (a) Rs(Is) for d = 5 nm, at the labeled values of T . Solid curves are best
fits with γ(α,∆Is, Is). (b) ∆Is vs T extracted from the fits of Rs(Is). The solid line
is a linear fit for T > 15 K. (c), (d) ∆Rd(Is)/Rd(0) vs Is for d = 5 nm (c) and 100 nm
(d), at T = 60 K. Curves are calculations using the function γ(α(T = 7K),∆Is(T =
60K), Is) + β(T = 7K)I2s .

the thermal broadening of the electron distribution. By the principle of detailed

balance, the distribution of phonons generated by scattering of almost thermalized

electrons is also almost thermalized, i.e., it can be well-approximated as Joule heat.

Our non-local measurements allow us to independently test this picture by eliminating

possible artifacts from the electrical biasing in local measurements, and to explore

the role of thermal phonons in phonon transport and relaxation. We start with

the local measurements of Rs(Is) to confirm the previously reported behaviors and

determine the relevant parameters. As shown in Fig. 3.6(a) for several values of T ,
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as the temperature is increased, the Rs vs Is curves become increasingly smoother at

small Is, but the linear dependence at larger Is remains evident at the highest shown

temperature T = 60 K. All of these data are well-approximated by the function

γ(α,∆Is, Is), with the value of ∆Is linearly increasing with T > 20 K [Fig. 3.6(b)],

and the value of α remaining almost independent of temperature. These results are

consistent with the findings of Ref. [75].

We note that thermal broadening provides an energy scale allowing one to estimate

the average energies of non-equilibrium phonons generated by current, as follows from

the above discussion of the thermal broadening mechanisms. In particular, the slope

of the dependence ∆Is(T ) in Fig. 3.6(b) is d∆Is
dT

≈ 0.03 mA/K. According to our

interpretation, I = ∆Is is the crossover bias where the characteristic energy of the

generated non-equilibrium phonons is similar to the thermal energy of electrons, i.e.

⟨ϵ1(Is)⟩ /Is = kb/
d∆Is
dT

, where kB is the Boltzmann constant, which amounts to about

3 meV per mA of bias current. This implies that the non-equilibrium effects described

in this work could be observed at room temperature at Is > 9 mA for the studied Pt

nanowires. In our measurements, we limited the applied current to smaller values in

order to avoid current-induced damage.

These results also allow us to estimate the characteristic energy of secondary

phonons generated in the SiO2 spacer. The dependence of the linear amplitude on the

spacer thickness is α(d) = 1.3× 10−2e−d/d0 mA−1, while for the quadratic amplitude

varies as β(d) = 2.8 × 10−3 − 2.0 × 10−3e−d/d0 mA−2. Here, d0 = 44 nm is the

decay length. Assuming that the electron scattering crossection on these phonons is

similar to that for the primary phonons, this implies that at Is = 1 mA, an average

of 1.3 × 10−2/2.0 × 10−3 = 6.5 secondary phonons are generated by annihilation

of one primary phonon. Thus, based on the above estimates of ⟨ϵ1(Is = 1mA)⟩,

⟨ϵ2⟩ = 0.5 meV. This value is likely an underestimate, because it would place the

secondary phonons in the spectral range where electron scattering crossection on
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these phonons is small, so they would not provide a significant contribution to the

current-dependent resistance. Nevertheless, these estimates indicate that both the

primary and the secondary phonons in SiO2 are likely predominantly acoustic.

Several thermal effects may be expected in the nonlocal measurements. The ther-

mal broadening of the electron distribution in the source wire results in the increas-

ing broadening of phonon distribution, as reflected by the increase of the broadening

parameter ∆Is in the local measurements. In addition, scattering of the current-

generated phonons on thermal vibrations may influence the transport properties and

the relaxation of phonons at the Pt/SiO2 interfaces and in the SiO2 spacer

Figures 3.6(c) and (d) show the dependences Rd(Is) for d = 5 nm and 100 nm,

respectively, at T = 60 K. The curves show the dependences calculated based on

the temperature-dependent local measurements and the nonlocal measurements per-

formed at T = 7 K. These calculations account for the thermal broadening in the

source wire but not for the possible thermal effects on phonon propagation and relax-

ation. Specifically, the calculated dependence is the sum of γ(α(d),∆Is(T = 60K), Is)

and β(d)I2s , with the same values of all the parameters as at T = 7 K, except for the

increased value ∆Is as determined from the local measurements.

For d = 5 nm, the calculated curve is in excellent agreement with the data

[Fig. 3.6(c)]. This agreement provides further support for the validity of our inter-

pretation and analysis of phonon generation and transport in the studied structures.

It also indicates that the effects of thermal vibrations on phonon transport across

the Pt/SiO2 interfaces are negligible. In contrast, for d = 100 nm, the experimen-

tal dependence is significantly more curved than the calculated curve, indicating an

increased efficiency of primary phonon relaxation into the secondary phonons. This

result may be expected due to the decrease of the phonon diffusion coefficient asso-

ciated with scattering of the current-generated phonons on thermal phonons. Ad-

ditionally, thermal fluctuations may enhance activation of the strongly anharmonic
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Figure 3.7: (a) Cross section view of the nonlocal measurement setup used in COM-
SOL simulation. (b) Ts vs Is at 7K in simulation. (c) Simulated dependence of Rs

on Is (d) Simulated dependence of Td on Is (e) COMSOL simulated dependence of
Rd on Is

defects that likely provide the dominant mechanism for the phonon relaxation. Addi-

tional detailed experimental studies and calculations are necessary to fully elucidate

the mechanisms of this effect.

3.10 COMSOL simulation

To further confirm that our observation in experiment can’t be explained within the

framework of diffusive heat transfer and Joule’s heating picture. We performed COM-

SOL simulation. The structure in simulation is schematically plotted in Fig. 3.7(a),

where two 1µm-wide 18µm-long, and 7nm-thick Pt wires are separated by a SiO2

insulator layer. The size of Si substrate is more than a magnitude larger than the

wire length and the dependence of ρPt on T measured in experiment is included in

the simulation. In the simulation DC current is applied in the top(phonon generat-
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ing) wire. The temperature and resistance of the two wires are calculated by solving

coupled differential equations accounting diffusive heat transfer and Joule’s heating

via COMSOL.

As shown in Fig. 3.7(b) and (d), the DC current ”heats” up the structure and

the device temperature (Ts and Td) quadratically increases with the DC current.

Moreover, the fact that since the bottom wire is closer to heat sink, for the same Is

its temperature (Td) should be lower than the top wire (Ts) is correctly captured in the

simulation. The dependence of resistance of the two wires on Id is shown in Fig. 3.7

(c) and (e). For small Id, Ts (Td) is in low temperature region where the impurity

scattering dominates and ρPt is independent on T . In this case, even though the Ts

(Td) quadratically increases with Is, the Rs (Rd) stays constant. When the Id is large,

since in high temperature range the resistance linearly increases with temperature,

both Rs and Rd should quadratically increase with Is, which is correctly captured

in COMSOL simulation. The qualitative inconsistency between the dependence of

Rs and Rd on Is in simulation and experiment, suggests that the observation in

experiment is can’t be explained by diffusive heat transfer and Joule’s heating.
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Chapter 4

Experimental demonstration and

analysis of random field effects in

ferromagnet/antiferromagnet

bilayers

4.1 Ferro-/Antiferromagnetic heterostructure

From this section, we would like to disccus the nonequilibrium phenomenon in the sec-

ond system , ferromagnet /antiferromagnet structure experiencing random interfacial

coupling. The exploration of ferromagnet/antiferromagnet (F/AF) heterostructures

started over 60 years ago with the discovery, by Meiklejohn and Bean, of exchange

bias (EB) effect - asymmetry of the ferromagnetic hysteresis loop that emerges below

a certain blocking temperature TB [93]. EB can be utilized for “pinning” the magneti-

zation of Fs, which has found extensive applications in magnetoelectronic sensors and

memory devices [94, 95, 96, 96, 97]. A recent resurgence of interest in the fundamental

properties of F/AF heterostructures has been motivated by the emergence of AF spin-
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tronics - a research field that aims to take advantage of the vanishing magnetization

of AFs, their high characteristic dynamical frequencies, and weak coupling to external

fields to develop efficient, fast, and stable magnetic nanodevices [98]. While some of

the implementations of such AF-based devices rely on standalone AFs [99, 100, 101],

many others utilize auxiliary Fs, usually in F/AF heterostructures, to generate spin

currents for nanodevice operation, detect the state of AFs, and/or directly control

this state via exchange interaction [102, 103, 104, 105, 106, 107, 108].

Extensive studies of F/AF heterostructures have revealed complex behaviors that

sensitively depend on a variety of experimental and material parameters, which could

not be explained by näıve models assuming perfectly magnetically ordered materials

and interfaces [109]. This has lead to the realization that inhomogeneous magnetiza-

tion states are likely formed in AF and/or F to minimize the exchange energy at the

F/AF interfaces. Several models have been developed to account for this possibility.

For instance, some of the observed magnetic properties were attributed to the mag-

netic domain walls formed in AF to reduce the interfacial exchange energy [110, 111].

It was also proposed that spin glass-like magnetically disordered states can be formed

near the F/AF interface [112, 113, 114].

Even atomic-scale imperfections can reverse the exchange interaction across the

F/AF interface, which led Malozemoff [115] to suggest that the effects of this interac-

tion can be approximated by an uncorrelated random effective field acting on AF at

its interface with F. Analysis based on the extension of the Imry-Ma argument [116]

suggested that as a result, AF breaks up into domains. This model predicted EB

magnitude qualitatively consistent with the experimental observations. Extending

this analysis to ultrathin AF films, Malozemoff also predicted a crossover to the

“Heisenberg domain state” (HDS), wherein AF magnetic domains shrink to sizes be-

low the AF domain wall width [117]. The magnetization of AF is then envisioned to

become twisted everywhere, and the long-range magnetic ordering of AF is lost.
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The implications of these predictions for the fundamental properties of F/AF

heterostructures have so far received relatively little attention [118, 119]. Recent

time-domain measurements of magnetization states in F/AF bilayers utilizing several

common AF materials have revealed universal power law aging [120, 121, 122]. Ag-

ing was observed only for AF films with thickness below a certain material-dependent

value. Thus, aging was attributed to the emergence of a HDS. Based on the analysis of

the dependence of aging on the magnetic history and temperature, it was conjectured

that in terms of the dynamical properties, the HDS is a correlated spin glass [122].

This conjecture was supported by measurements of ac susceptibility, which demon-

strated that the temperature dependence of the dynamical response is consistent with

the glass transition at the EB blocking temperature TB [123]. In particular, the mag-

netization exhibited viscous dynamics above TB and elastic dynamics below TB, with

viscosity varying by several orders of magnitude close to this temperature. These re-

cent results highlighted the potential significance of the random-field effects proposed

by Malozemoff, but have not directly demonstrated the existence of random effective

exchange fields at F/AF interfaces.

If the effects of exchange interaction across the F/AF interface can be described

by an effective random field exerted on AF, then its reciprocal effects on F can be

similarly described by an effective random field. Indeed, the Heisenberg exchange

interaction preserves rotational symmetry, and therefore the local exchange torques

exerted across F/AF interface on AF should be opposite to the local torques exerted

by AF on F. Theoretical studies have shown that random fields acting on Fs produce

an inhomogeneous magnetization state, with the magnitude of deviations from the

saturated state related to the external field by certain scaling exponents dependent

on the system dimensionality [124, 125, 126].

Here, we present experimental characterization and analysis of effective exchange

fields in Permalloy(Py)/CoO bilayers, one of the “classic” F/AF bilayer systems ex-
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tensively studied in the context of EB. In the next section, we introduce our approach.

In Section 4.3, we present measurements of the effects of the applied field on the mag-

netization states for different thicknesses t of Py, and show that our results for one of

the field directions are inconsistent with the approximation of quasi-uniform effective

exchange field produced by CoO. In Section 4.4, we present an analytical model for

the effects of uncorrelated random field on 2d systems. In Section 4.5, we utilize a

combination of scaling arguments and micromagnetic simulations to extend our anal-

ysis to the thin-film geometry of our experiment. In Section 4.6, we use the developed

approach to show that our experimental results can be explained in terms of the un-

correlated effective random exchange field exerted on Py at its interface with CoO.

We also analyze the temperature dependences of the characteristics extracted from

our analysis, and show that they are consistent with prior measurements of similar

systems. We conclude with a discussion of the scientific and technological relevance

of our results.

4.2 Our approach

To introduce our approach to characterizing the exchange interaction at F/AF inter-

faces, we consider the interactions defining the equilibrium state of the magnetization

M⃗(r⃗) of the F with thickness t in an F/AF bilayer. We assume that M⃗ is confined

to the film plane (the xy plane) by the demagnetizing effects. We neglect the small

magnetocrystalline anisotropy of F=Py, which is negligible compared to the other

effects discussed here. We also neglect the effects of dipolar magnetic fields, since the

analysis of the data presented below excludes highly inhomogeneous magnetization

states where these effects may be significant. This set of approximations is commonly

referred to as the standard xy spin model.

The Zeeman interaction of M⃗ with the in-plane external field H is characterized
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Figure 4.1: Uncorrelated vs correlated random field effects. (a),(b) Distribution of
uncorrelated random field h = 50 kOe on a 2d mesh of square 2 nm×2 nm cells (a) and
the resulting magnetization distribution calculated using the mumax3 micromagnetic
simulation software for a Py(6) film (b), atH = 4 kOe. For clarity, only a 1 µm×1 µm
region of the 2 µm × 2 µm simulation region is shown. (c),(d) same as (a),(b), for
random field with the correlation length lh = 18 nm.

by the magnetic energy density ϵZ = −µ0M⃗ · H⃗, where µ0 is the vacuum permeabil-

ity. The exchange interaction within F can be described by the Heisenberg energy

density ϵex = A
M2 ((∇⃗M⃗x)

2 + (∇⃗M⃗y)
2), where A is the exchange stiffness. Finally, our

analysis must include the effects of exchange interaction at the F/AF interface. At

the microscopic level, the Heisenberg exchange energy per atom at the interface is

Eex,F/AF = 2JF/AF ⟨s⃗F ⟩ ⟨s⃗AF ⟩, where JF/AF is the Heisenberg exchange constant char-

acterizing the strength of the interaction across the interface, s⃗F is the spin of the F

atom at the interface, and s⃗AF is the spin of the nearest-neighbor AF atom. Different

local atomic arrangements at the interface introduce a correction factor of order one,

which can be absorbed in the definition of JF/AF . The interfacial contribution to the

energy density can be interpreted, in the spirit of Weiss’s molecular field theory, as
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an effective field Hint = −2JF/AF ⟨s⃗AF ⟩ /gµB exerted on the interfacial F spins due to

the exchange interaction across the interface. Here, g = 2 is the g-factor for Py, and

µB is the Bohr magneton. This contribution can be also approximated as an effec-

tive spatially-varying field acting on the entire F, if we assume that t is sufficiently

small so that the magnetic configuration of F does not significantly vary through

its thickness. This approximation is relaxed in the computational analysis presented

later in this chapter. For F=Py with fcc crystal structure characterized by the cubic

lattice constant a = 0.36 nm, the area per atom at the (111)-textured interface is

P = a2/4
√
3. The magnetic energy density associated with the exchange interaction

across the F/AF interface can then be written as ϵex,F/AF = −µ0M⃗(r⃗)⃗h(r⃗), where

h(r⃗) =
4
√
3JF/AF ⟨s⃗AF (r⃗)⟩

µ0Mta2
(4.1)

is the effective exchange field dependent on the in-plane position r⃗ but uniform

through the thickness of F. The magnetic energy density of F is then

ϵ = −µ0M⃗(H⃗ + h⃗) +
A

M2
[(∇⃗Mx)

2 + (∇⃗My)
2]. (4.2)

Following the notations of Garanin et al. [124], who analyzed the 3d version of

a similar xy model, we introduce the angle φ(r⃗) between the magnetization and the

field H⃗, and the angle ϕ(r⃗) between h⃗ and H⃗. Minimizing the energy
∫
ϵ(r⃗)d2r with

respect to φ(r⃗), we obtain

A

µ0M
∇2φ(r⃗)−Hsinφ(r⃗) = hsin(φ(r⃗)− ϕ(r⃗)). (4.3)

This equation can be simplified for sufficiently large H, when the magnetization

is almost saturated, and φ is small. We note that even in this limit, often described

as the weak random field approximation [124], the magnitude of h needs not be small

compared to H. In particular, the component h sinϕ parallel to H⃗ can be large
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(both locally and on average), as is the case for F/AF bilayers, where this component

determines the unidirectional and the uniaxial anisotropies associated with exchange

bias [127, 128]. The component h⊥ = h sinϕ perpendicular to H⃗ may also be large

if it rapidly varies in space, since its effects on the magnetization are averaged out

by the exchange stiffness. Separating the contributions of h∥ and h⊥ in Eq. (4.3), we

obtain

A

µ0M
∇2φ− φ(H + h∥) = −h⊥. (4.4)

We assume that neither the preparation of the magnetic system (such as field-

cooling) nor its magnetocrystalline properties favor any particular in-plane direction

non-collinear with H⃗. The symmetry with respect to the direction of H⃗ implies that

the average of h⊥ over a sufficiently large area must vanish, and therefore this quantity

must vary in space, changing sign over some characteristic length scale lh.

Malozemoff’s uncorrelated random-field approximation is based on the assump-

tion that effective field varies randomly on the atomic lengthscale, i.e. lh ∼ a. While

the effective field itself is uncorrelated, the exchange stiffness of the ferromagnet de-

fines the magnetic correlation length lM =
√
A/µ0M(H +

〈
h∥
〉
). This is illustrated

in Figs. 4.1(a),(b) by the micromagnetic simulations for a Permalloy=Py(6) film sub-

jected to an uncorrelated random field h = 50 kOe. Here, the number in parenthesis

is the thickness in nanometers. The statistical properties of the magnetization state

in this limit are analyzed in Sections 4.4 and 4.5. We note that because of the negli-

gible anisotropy of Py, the local magnetic configuration in such as state is determined

entirely by the competition between the random field and the exchange stiffness.

Therefore, the magnetization in such a state is twisted everywhere, i.e. it is an xy

version of the HDS predicted by Malozemoff.

Here, we consider the opposite limit of quasi-uniform h⊥, lh > lM , such that the

first term in Eq.(4.4) can be neglected. This limit may provide a good description
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for the exchange-spring behaviors of thin-film polycrystalline AFs, where the charac-

teristic length scales for the variation of interfacial exchange torques, determined by

the “winding” of the exchange spring, are expected to be determined by the size of

AF grains [129, 102].

In this limiting case, φ = h⊥/(H + h∥), i.e. M⃗(r⃗) is simply aligned with the local

net effective field H⃗ + h⃗, as illustrated by the simulations in Figs. 4.1(c),(d). For the

average magnitude of deviation from saturation, we obtain

〈
φ2

〉
=

⟨h2
⊥⟩

(H + h∥)2
, (4.5)

where we have neglected the higher-order effects associated with the spatial variations

of h∥. This approximation is justified, for example, for H ≫ h∥.

By fitting the experimentally determined dependence of ⟨φ2⟩ on H with Eq.(4.5),

one can determine the parameters ⟨h2
⊥⟩ and h∥. In the discussion and figures pre-

sented in the next section, we will for brevity use the notation h⊥ when referring to√
⟨h2

⊥⟩. For lh ≫ le, both h∥ and h⊥ are expected to scale inversely with the thickness

t of the ferromagnet [see Eq. (4.1)]. Some of the data discussed below exhibit signifi-

cant deviations from this expected dependence. We will present analysis based on a

combination of analytical calculations, simulations, and scaling, to show that these

results are consistent with Malozemoff’s hypothesis of uncorrelated random effective

exchange field.

4.3 Experiment setup

Multilayer films with the structure CoO(6)Py(t)Ta(5) were deposited on 6 mm×2 mm

silicon substrates at room temperature, in a high vacuum sputtering system with

the base pressure of 5 × 10−9 Torr. The numbers in parenthesis are thicknesses in

nanometers, the thickness t of Py was varied between 5 nm and 50 nm, and Ta(5)
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served as a capping layer protecting the films from oxidation. The multilayers were

deposited in 150 Oe in-plane magnetic field, which is known to facilitate magnetic

ordering in CoO. Py and Ta were deposited by dc sputtering from the stoichiometric

targets, in 1.8 mTorr of ultrapure Ar, while CoO was deposited from a Co target

by reactive sputtering in ultrapure oxygen atmosphere, with the partial pressure of

oxygen optimized as in our previous studies of CoO-based systems [130, 121, 123].

To characterize the unsaturated magnetization state of the Py films in the studied

heterostructures, we utilized electronic measurements of the variations of resistance

R due to the anisotropic magnetoresistance (AMR), using ac current with rms am-

plitude of 50 µA and lock-in detection in the four-probe van der Pauw geometry.

The AMR exhibits a 180◦-periodic sinusoidal dependence on the angle between the

magnetization of Py and the direction of current, as was verified by measurements at

temperature T = 300 K above the Neel temperature of CoO, TN = 291 K [inset in

Fig. 4.2(a)].

Measurements described below were performed for two orientations of the external

field, one collinear and the other perpendicular to the direction of current, so that

in the saturated state the AMR was maximized and minimized, respectively. Any

deviations from saturation resulted in resistance decrease in the first configuration,

and increase in the other. These were the signals detected in our magnetoelectronic

measurements to characterize the inhomogeneous states. Data analysis was limited

only to resistance ranges deviating by less than 10% of the full magnetoresistance

from the saturation value, ensuring the small-angle limit for φ. For the measurements

performed at T < TN , the sample was cooled through TN in field H = 1 kOe. The

cooling field was aligned with the positive direction of the field H utilized in the

subsequent measurements.

At high temperature T > TN , CoO is a paramagnet, and is not expected to sig-

nificantly affect the state of Py. The magnetization M⃗ of Py is expected to become
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saturated at small fields determined by the magnetocrystalline anisotropy of Py. In-

deed, magnetoelectronic hysteresis loop measurements show negligible variations of

R, aside from a sharp peak at small H associated with the reversal of M , as shown in

Fig. 4.2(a) for Py(7.5)/CoO(6). In contrast, at T = 7 K, the R vs H curves exhibit

gradual variations and do not saturate even at H = ±4 kOe, Fig. 4.2(b).

These data clearly indicate the presence of a large transverse component H⊥ of

the effective exchange field, resulting in the deviations of magnetization from the

saturated state even at large H. The curves labeled a,c were acquired using the field

direction collinear with the current direction, such that the resistance is maximized

when M is saturated along the field. Meanwhile, the curves labeled b,d were acquired

with the field perpendicular to the current, resulting in the resistance minimum in

the saturated state. These two complementary sets of measurements are necessary

for the quantitative data analysis, as discussed below.

The peaks in the hysteresis curves correspond to the magnetization reversal points.

These points are shifted in the negative-field direction in Fig. 4.2(b), as expected due

to the exchange bias effect. We note that the values of R(H) do not exactly coincide

for two opposite directions of field sweep. The difference can be attributed to the

aging phenomena in AF, as demonstrated by recent time-domain measurements [121].

Aging effects were shown to be large for CoO thicknesses below 4 nm, and become

rapidly reduced for larger thicknesses. To minimize their possible influence on our

analysis, we focus below only on the hysteresis branches obtained with the field swept

from larger to smaller magnitudes. To directly relate our R(H) data to the analysis

presented above, we note that AMR provides direction information about the local

deviations of the magnetization state from saturation, according to R = Rmin +

∆Rsin2φ for H⃗ perpendicular to the current, and R = Rmax − ∆Rsin2φ for H⃗

parallel to the current. Here, Rmin and Rmax are the minimum and the maximum

of resistance due to AMR, respectively, ∆R = Rmax − Rmin, and φ(r⃗) is the angle
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Figure 4.2: Evidence for random-field effects in Py/CoO bilayers. (a) Magnetoelec-

tronic hysteresis loop of Py(7.5)/CoO(6) measured at 300 K, with the external field H⃗
oriented in-plane perpendicular to the current. Inset: dependence of resistance on the
direction of in-plane field H = 1 kOe, at T = 300 K. (b) Symbols: Magnetoelectronic
hysteresis loop for Py(7.5)/CoO(6) at T = 7 K, for external field parallel to current
(labeled a,c) and perpendicular to current (labeled b,d). Curves: fits with Eq. (4.5).
(c)-(f) Symbols: h∥ (c), (d) and h⊥ (e), (f) vs 1/t obtained from the fits as shown in
(b), for the four hysteresis branches a-d. Lines are linear fits with zero intercept.
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between H⃗ and M⃗ . For h⊥ characterized by a large correlation length lh, we obtain

from Eq.(4.5) for small φ

R = Rmax −∆R
h2
⊥

(H + h∥)2
, (4.6)

for the external field direction parallel to current, and

R = Rmin +∆R
h2
⊥

(H + h∥)2
, (4.7)

for the external field perpendicular to current. We emphasize that Eqs. (4.6), (4.7)

are valid only in the limit of large correlation length lh of h⃗, so that the magnetization

locally follows the direction of the total effective field.

The curves in Fig. 4.2(b) show the results of data fitting with Eqs.(4.6) and (4.7),

with h∥ and h⊥ treated as independent parameters for each of the four branches, but

with the same fitting values of Rmin, Rmax, and ∆R = Rmax−Rmin. By fitting all the

four branches of the hysteresis loops obtained for different thicknesses t of Py with

Eqs. (4.6) and (4.7), the dependence of h∥ and h⊥ on t was determined. Since both

of these quantities represent the effects of exchange interaction at the F/AF interface

averaged over the thickness of Py, they are expected to scale inversely with t [see

Eq. (4.1)]. To assess the validity of this expectation, we plot the dependences of h∥

and h⊥ on 1/t in Figs. 4.2(c),(d) and Figs. 4.2(e),(f), respectively.

The dependence h∥(1/t) is well described by a linear fit with zero intercept for all

four branches [Figs. 4.2(c),(d)], consistent with our analysis. We emphasize that this

result is expected regardless of the correlation length lh of the effective exchange field,

because the spatial average of h∥(r⃗) is finite. Similarly, h⊥(1/t) is also well described

by a linear fit with zero intercept, for the hysteresis branches c,d corresponding to

the magnetization state reversed relative to the field-cooling, Fig. 4.2(f). This result

indicates that the correlation length lh of the effective exchange field is large in this
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reversed state, consistent with the picture of AF exchange spring “wound” by the

reversal of magnetization, with the same “winding” direction over a significant volume

of CoO the may include the entire grains of the polycrystalline CoO film [129, 102].

In contrast, for the two branches a,b corresponding to the magnetization aligned

with the field-cooling direction, the dependence h⊥(1/t) is strongly nonlinear [Fig. 4.2(e)],

demonstrating that the correlated effective exchange field approximation underlying

Eqs.(4.6) and (4.7) is invalid. We emphasize that the linear fits in this panel are

included only to highlight the nonlinear variations of the data. These fits are not

used in this work to determine any physically meaningful parameters of the studied

system.

The values of h⊥(1/t) extracted from our analysis increase superlinearly with

increasing 1/t. This result can be qualitatively expected for the effects of random field

with a small correlation length, because at large 1/t (small t), magnetic correlations

within F are less efficient in averaging the short-scale variations of the field. To

quantitatively analyze our results, in the next sections we will extend our analysis

of the magnetization state of F in F/AF bilayer to include the effects of random

uncorrelated effective fields, and show that the results of Fig. 4.2(d), for the field

parallel to the cooling field, are consistent with the presence of uncorrelated random

effective exchange field at the Py/CoO interface.

4.4 2d xy model of uncorrelated random field ef-

fects

In this section, we analyze the effects of an uncorrelated random field on a 2d magnetic

system. This analysis is expected to be applicable to magnetic films with sufficiently

small thickness t, such that their magnetization is uniform through the thickness.

In the next section, we present realistic 3d micromagnetic simulations of thin films,
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and show that their results asymptotically approach our analytical predictions for 2d

systems in the limit of vanishing film thicknesses.

Since Py is characterized by negligible magnetocrystalline anisotropy, and its mag-

netization in the studied films remains in-plane due to the large demagnetizing field,

the system can be described by the 2d xy model. We follow the approach of Garanin

et al., who analyzed the 3d version of a similar random-field xy model [124]. The

system is characterized by the position-dependent angle φ(r⃗) between the magneti-

zation and the external field, which is determined by the distribution of the effective

field h⃗(r⃗) according to Eq. (4.4). The average of the component h∥ of the effective

field parallel to H⃗ , which is nonzero in the experimental system discussed above, is

absorbed into the definition of H. Thus, in the analysis below, we assume that both

h∥ and h⊥ form the same random distributions with zero averages. Since φ is small

at sufficiently large H, the term φh∥ in Eq. (4.4) can be neglected, giving

A

µ0M
∇2φ− φH = −h⊥. (4.8)

The random field h⊥ is assumed to be uncorrelated among different lattice sites i, j,

⟨h⊥,ih⊥,j⟩ = h2δij/2. In the micromagnetic simulations discussed in the next section,

the simulation cells play the role of the lattice sites. To capture the effects of random

field, the cubic cell size D must be smaller than the magnetic correlation length

lM . The magnitude of the random field is then scaled between the two descriptions

according to h⊥,mmD = h⊥,at

√
P , where P is the area per site of the 2d lattice,

√
P = a for square lattices, and

√
P = a/4

√
3 for the (111) face of the fcc lattice. In

the continuous limit discussed in this section,

⟨h⊥(r⃗)h⊥(r⃗
′)⟩ = h2Pδ(r⃗ − r⃗′)/2. (4.9)
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Using k = 1/lM =
√

µ0MH/A, we rewrite Eq. (4.8) as

(∇2 − k2)φ = −h⊥µ0M/A. (4.10)

The solution in terms of the Green’s function G(k, r⃗) of the operator ∇2 − k2 is

φ(r⃗) = −µ0M

A

∫
d2r⃗′G(k, r⃗ − r⃗′)h⊥(r⃗

′). (4.11)

The Green’s function can be expressed in terms of the modified Bessel function of

the second kind, K0(x) =
1
2

∫ +∞
−∞

eixtdt√
1+t2

, G(k, r⃗) = −K0(k|r|)/2π. The average of φ2

over the realizations of random field is

〈
φ2(r⃗)

〉
=

(
µ0M

2πA

)2 ∫
d2r⃗′d2r⃗′′K0(k|r⃗ − r⃗′|)·

·K0(k|r⃗ − r⃗′′|) ⟨h⊥(r⃗
′)h⊥(r⃗

′′)⟩ .
(4.12)

Using the correlation relation Eq. (4.9), we obtain

〈
φ2(r⃗)

〉
=

µ2
0M

2h2P

8π2A2

∫
d2r⃗′K2

0(k|r⃗ − r⃗′|). (4.13)

Finally, we use the relation
∫
d2rK2

0(kr) = π/k2 to obtain

〈
φ2

〉
=

µ2
0M

2h2P

8A2k2
=

µ0Mh2P

8AH
. (4.14)

In comparison, Garanin et al. [124] obtained ⟨φ2⟩ ∝ h2/
√
H for the 3d xy random

field model, and our correlated-random-field result, Eq. (4.9), is ⟨φ2⟩ ∝ h2/H2. In

all cases, < φ2 >∝ h2. This can be expected from the general Eq. (4.8) for the

magnetization distribution, which is invariant under the scaling transformation h⊥ →

αh⊥, φ → αφ. Thus, this result is expected to generally hold regardless of the system
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geometry or the spatial properties of h⃗. On the other hand, these expressions contain

different powers of external field H, dependent on the random field distribution and

the dimensionality of the system. All these relations can be written in an explicitly

dimensionless form as

〈
φ2

〉
= C

(
h

H

)2(
P

l2M

)d

, (4.15)

where the numeric coefficient C and the power-law exponent d are dependent on the

system realization. For the correlated random field, d = 0, while for the uncorrelated

random field in 2d (3d), d = 1 (3/2). Based on the scaling arguments for the random

field, we expect d = n/2 for the uncorrelated random field in n dimensions. In the

next section, we use Eq. (4.15) as an ansatz with d treated as a fitting parameter,

to analyze the micromagnetic simulations of interfacial exchange effects in F/AF

bilayers.

4.5 Simulations of uncorrelated random field ef-

fects

The analytical model introduced in the previous section is expected to quantitatively

describe the effects of uncorrelated random field only for atomically-thin F. For finite

thickness of F in F/AF bilayers, magnetic moments away from the F/AF interface

experience only indirect effects of effective exchange field averaged over their neigh-

bors, introducing spatial correlations that are not accounted for by the model. In

this section, we use 3d micromagnetic simulations and an extension of the scaling

arguments presented above to analyze a more realistic model where random field is

applied only to one of the surfaces of a thin Py film. We also show that the results

are consistent with the analytical model in the limit of ultrathin films.
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We performed micromagnetic simulations with the mumax3 software [26], using

the standard parameters for Py, the magnetization µ0M = 1.0 T, Gilbert damping

α = 0.01, and exchange stiffness A = 1.3 × 10−11 J/m. The simulated volume was

2 µm × 2 µm × t, with varied thickness t. This volume was discretized into cubic

cells, whose size D was varied from 1 nm to 12 nm to evaluate the discretization

effects, as described below. Periodic boundary conditions were used to eliminate

edge effects. Random uncorrelated field with fixed magnitude h was generated by

selecting a random variable ϕ uniformly distributed over the interval [0, 2π]. In all

the simulations discussed below, this field was applied only to the bottom layer of the

simulation mesh.

In the limit of vanishing film thickness, D → 0 and only one layer present in the

simulation mesh, this system maps onto the analytical model described in the previous

section via D2 → P . The magnitude of h can be related to the effective exchange

field experienced by the atoms at the interface, according to Hint = 33/42hD2/a2 for

the (111)-textured surface of fcc ferromagnet with a cubic lattice constant a.

The simulations were performed with the magnetic system initialized in a uni-

form state aligned with the field H⃗, and were continued until the dynamics became

negligible for all the simulation cells. The distribution was then analyzed to de-

termine ⟨φ2⟩. Figs. 4.1(a),(b) illustrate a representative random field distribution

and the resulting magnetization map in the equilibrium state, for t = D = 2 nm,

H = 4 kOe, h = 50 kOe. While the random field distribution is uncorrelated,

the resulting magnetization distribution exhibits correlations on the length scale

lM =
√

A/µ0MH = 6 nm. For the correlated field with the correlation length

lh > lM , the magnetization is expected to simply follow the local direction of the net

effective field, as was verified by the simulation using random field with correlation

length lh = 18 nm [Figs. 4.1(c),(d)].

To determine the optimal simulation cell size D that does not significantly dis-
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Figure 4.3: Micromagnetic simulations of random field effects. (a) ⟨φ2⟩ vs cell size D
for a 12 nm-thick Py film, at H = 3 kOe and µ0hD

2 = 5 T · nm2. (b) Symbols: ⟨φ2⟩
vs h for a 10 nm-thick Py film, at H = 6 kOe. Curve: fit with a quadratic function.
(c) ⟨φ2⟩ vs H, for Py films with t = 2 nm and t = 20 nm, as labeled. Symbols are the
results of simulations, and curves are fits using the ansatz Eq. (4.15). (d) Dependence
of the power law exponent d in Eq. (4.15) on the Py film thickness.

tort the magnetization response to the random field, we performed simulations with

different values of D ranging from 1 nm to 12 nm, Fig. 4.3(a). To facilitate direct

comparison, the value of h was adjusted so that hD2 remained independent of D, in

accordance with the scaling relations expected for the random field. The value of ⟨φ2⟩

monotonically decreases with increasing D, as expected due to the filtering effect of

larger cells on the short-scale random field variations. In the simulations discussed

below, we use a sufficiently small cell size D = 2 nm so that these filtering effects are

small, while keeping the simulations of thicker films manageable. Figure 4.3(b) shows
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the dependence of ⟨φ2⟩ on h, with all the other parameters fixed. This dependence

is precisely described by the quadratic relation expected from Eq. (4.15). Thus, it is

sufficient to perform simulations only for one value of h small enough to satisfy the

weak random field approximation φ2 ≪ 1.

The central goal of our simulations was to determine the dependence of random

field effects on the film thickness. To this end, we performed simulations of the

dependence of the magnetization state on the external bias field H = 0.5− 6 kOe for

thicknesses t = 2 − 40 nm, with h fixed at 100 Oe. In all cases, the dependence of

⟨φ2⟩ on H could be precisely fitted by Eq. (4.15), or equivalently

〈
φ2

〉
= C ′h

2D4

H2−d
, (4.16)

with the power-law exponent d and the constant C ′ = CD−4(µ0Ma2/4
√
3A)d used as

fitting parameters. In this expression, we scaled h by the cell size, so that the constant

C ′ becomes independent of D. Figure 4.3(c) shows the fits for two representative

thicknesses t = 2 nm and 20 nm, yielding the best-fit values d = 1.065 and 1.57,

respectively. We note that these two representative dependences are substantially

different, demonstrating that precise fitting requires the value of d to be varied with

t.

Figure 4.3(d) shows the dependence of the power-law exponent d on the film

thickness, extracted from the ⟨φ2⟩ vsH curves such as those shown in Fig. 4.3(c). This

dependence extrapolates to d = 1 in the limit of vanishing film thickness, consistent

with the results of the analytical 2d xy model described in the previous section. The

value of d increases with t, reaching ds = 1.57 for t = 20 nm, and becomes constant

at larger t. Qualitatively, these behaviors can be interpreted in terms of the crossover

from the effective 2d regime to the effective “bulk” regime, where the effects of random

field become almost completely averaged out far enough from the interface, such that
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increasing t simply rescales ⟨φ2(H)⟩ due to averaging over the larger volume, without

changing the functional relation. We emphasize that random field is applied only to

one of the film surfaces. Thus, this regime is not equivalent to the 3d random-field

model considered by Garanin et al. [124]. Indeed, the saturation value ds is different

from d = 3/2 obtained in the latter case.

4.6 Analysis of experimental results

We now show that Eq. (4.15), with the power-law exponent d(t) determined from

the micromagnetic simulations, provides an explanation of our experimental data,

supporting Malozemoff’s uncorrelated random-field hypothesis.

If the effects of the exchange field at the Py/CoO interface can be approximated

by a random field uncorrelated on the atomic scale, then the dependence of R on

H can be inferred from Eq. (4.16), with the power-law exponent d and the scaling

constant C ′ determined from the simulations discussed above, H offset by h∥, and

h2D4 replaced by H2
inta

4/4
√
3,

R = Rmax −
C ′∆R

4
√
3

H2
inta

4

(H + h∥)2−d
, (4.17)

for the external field parallel to current, and

R = Rmin +
C ′∆R

4
√
3

H2
inta

4

(H + h∥)2−d
, (4.18)

for the external field perpendicular to current.

Figure 4.4(a) shows the same data as in Fig. 4.2(b), but now fitted using Eqs. (4.17),

(4.18), with the power-law exponent d = 1.28 for Py(7.5) determined from the mi-

cromagnetic simulations described above. Both this fitting and the fitting with d = 0

in Fig. 4.2(b) provide good fits for the data. This shows that, in contrast to the mi-
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Figure 4.4: Quantitative analysis of effective exchange fields. (a) Symbols: the
same magnetoelectronic hysteresis loop as in Fig. 4.2(b), acquired at T = 7 K for
Py(7.5)/CoO(6). Curves: fits of branches a,b based on Eq. (4.15), with the power-
law exponent d = 1.28 determined from the micromagnetic simulations. (b) The
magnitude of the effective random exchange field µ0Heff vs Py thickness, determined
from fits such as shown in panel (a). (c) Coercivity HC , effective exchange bias field
HEB, effective uniaxial anisotropy field Hua, and unidirectional anisotropy field Hud

vs T , determined for Py(6)/CoO(6) as discussed in the text. (d) Parallel component
h∥,+ of the effective exchange field, [open symbols and right scale] and the effective
random field Heff [solid symbols and right scale] vs T for Py(6)/CoO(6), obtained
from branch a of the R vs H data.

cromagnetic simulations, the power-law exponent d cannot be accurately determined

from the experimental data. The reason for this discrepancy is that the values Rmin

and Rmax of resistance in the saturated states with the magnetization perpendicular

and parallel to current, respectively, as well as the parallel component h∥ of the effec-

tive exchange field, cannot be independently determined, and must be thus treated as

additional fitting parameters. The experimental data do not provide sufficient infor-

mation to accurately determine these parameters together with d. While fitting the

experimental R vs H curves does not allow us to determine d, we can still establish
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whether the observed behaviors are consistent with the uncorrelated random field

approximation. We use the approach similar to that described in Section 4.3, where

we have shown that the correlated effective field approximation cannot describe the

magnetization state for the field aligned with the cooling field [see Fig. 4.2(d)]. We

fit the R(H) curves for different thicknesses t of Py with Eqs. (4.17), (4.18), using the

thickness-dependent values of d(t) and C ′(t) obtained from the micromagnetic simu-

lations. Each such fitting independently yields the value of the effective exchange field

Hint. The uncrorrelated random field approximation is valid if the obtained values

of Hint are independent of t. However, if the effective exchange field is correlated,

then the values of Hint extracted from such fitting should increase with t, because in

contrast to the uncorrelated field, the effects of the correlated field are not averaged

out by larger thickness.

Figure 4.4(b) shows the values of µ0Hint determined from the fits of R(H) for dif-

ferent Py thicknesses. The values exhibit modest variations around the average value

of 1 × 103 T, and appear to slightly decrease at large t, but clearly do not increase,

as would be expected for the correlated field. We note that our procedure for calcu-

lating the values of Heff involves multiple sources of random and systematic errors,

including the uncertainty of the thicknesses of Py, slight variations of the deposition

conditions resulting in the variation of Heff among different samples, as well as the

uncertainty of the fitting itself. These uncertainties are difficult to estimate a priori,

warranting more detailed studies of multiple similar samples to assess them statis-

tically. Nevertheless, the results shown in Fig. 4.4(b) for five samples with different

thicknesses provide strong evidence for the validity of random-field approximation.

Furthermore, the magnitude of µ0Heff of about 1× 103 T is about 10 times smaller

than the typical strength of the nearest-neighbor exchange interactions in magnetic

materials [131], as would be expected given that the spin-flop of AF spins at the

F/AF interface results in their partial alignment [127, 128].
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Our approach to quantifying the effective exchange fields in F/AF bilayers is

validated by the analysis of the relationship between these fields and the essential

characteristics of the magnetic hysteresis loop, the coercivity HC = (H1 − H2)/2

and the exchange bias field HE = (H1 +H2)/2. Here, H1 (H2) is the magnetization

reversal field on the down (up) sweep, signified by the sharp peaks in R vs H curves

[see Fig. 4.4(b)]. The exchange bias field is generally attributed to the unidirectional

anisotropy, while the enhanced coercivity is attributed to the uniaxial anisotropy

acquired by F due to the exchange interaction at F/AF interface.

Our approach allowed us to determine the value of h∥, the net effective exchange

field experienced by Py, separately for the magnetization orientation parallel to the

cooling field [by fitting R(H) branches a,b with Eqs. (4.17), (4.18)], and for the

magnetization orientation opposite to the cooling field [by fitting R(H) branches c,d

with Eqs. (4.6), (4.7)]. We label the corresponding two values h∥,+ and h∥,−. The

effective unidirectional and uniaxial anisotropy fields can be then directly determined

as Hud = (h∥,+ + h∥,−)/2 and Hua = (h∥,+ − h∥,−)/2, respectively. We emphasize

that these values are determined by fitting the R(H) curves for small deviations from

saturation at large fields, completely independently from HC , HE that characterize

magnetization reversal at small fields.

Figure 4.4(c) shows the temperature dependences of all four characteristics HE,

HC , Hud, and Hua, for the Py(6)/CoO(6) sample at T ≤ 200 K. At higher tempera-

tures, the deviations from saturation were too small to reliably determine h∥ by fitting

the R(H) curve. The relations among HE, HC , Hud, and Hua are consistent with the

results for a similar Py/CoO bilayer system, obtained by a completely different tech-

nique of transverse ac susceptibility [123]. In particular, that study showed that the

unidirectional anisotropy in this system is much smaller than the effective exchange

bias field, and does not follow the temperature dependence of the latter. The data in

Fig. 4.4(c) are consistent with this observation. Transverse ac susceptibility measure-
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ments also showed that HE and HC are about half of Hua, and approximately follow

the temperature dependence of the latter. These observations are also confirmed by

the results in Fig. 4.4(c). While these results may seem surprising, they are consistent

with the analysis of Ref. [123], which suggested that the asymmetry of the hystere-

sis loop for the Py/CoO bilayers is predominantly caused not by the unidirectional

anisotropy, but rather by the different mechanisms of magnetization reversal between

the two opposite magnetization states stabilized by the uniaxial anisotropy.

The random field Heff , determined by fitting branches a and b of the R(H) curve

with Eqs. (4.17) and (4.18), decreases with increasing temperature [solid symbols

and right scale in Fig. 4.4(d)], following the same overall trends as h∥,+ [open symbols

and left scale in Fig. 4.4(d)]. The similarity between the behaviors of these two

quantities is a manifestation of their common origin from the exchange interaction at

the Py/CoO interface.
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Chapter 5

Ideal memristor based on viscous

magnetization dynamics driven by

spin torque

5.1 Memristor: an electronic neuron

As a follow up of the last section, here we demonstrate the potential memristive

functionality of such system, which can be used for neuromorphic computing and

artificial neural networks. Artificial neural networks, modeled after the functionality

of brain, have recently emerged as a promising alternative to the traditional von

Neumann computer architecture [132, 133, 134]. Among the advantages of neural

networks are built-in adaptability, robust fault-tolerant operation, and the ability

to process large amounts of data in real time. At the core of these capabilities is

a network of neurons extensively connected by synapses. Synaptic plasticity - the

dependence of the connection strength on the history of the transmitted signals - is

central to the neural network’s functionality [135, 136, 137].

An efficient hardware implementation of synaptic plasticity is provided by mem-
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ristors - two-terminal circuit elements whose resistance is ideally proportional to the

integral control parameter such as the total charge that passes through them [28,

138, 139, 140]. However, this “ideal” memristive behavior has not been achieved

yet. Instead, many types of “generalized memristors” - devices whose properties de-

pend in some way on their electronic history - have been explored for neuromorphic

applications [141].

One of the most extensively studied memristors is based on the electromigra-

tion of oxygen in metal oxides [142, 7]. However, physical motion of atoms lim-

its device endurance, while abrupt formation and destruction of oxygen-depleted

conductive filaments results in behaviors more akin to a switch. Another notable

approach utilizes magnetic domain wall (DW) motion through a ferromagnetic (F)

nanowire incorporated in a magnetic tunnel junction (MTJ) [143]. The DW is driven

by the spin-transfer torque (STT), and its position is read-out via the tunneling

magnetoresistance (TMR). Magnetism-based operation enables high endurance, but

thermal fluctuations and defects compromise controllable STT-driven DW motion at

nanoscale [144].

5.2 Ideal memristor in magnetic system

Here, we show that nearly ideal magnetoelectronic memristors can be implemented

using nanoscale single-domain F characterized by strongly damped (viscous) dy-

namical characteristics, which can be achieved by sandwiching it with an ultrathin

low-anisotropy antiferromagnet (AF) in the correlated spin liquid state. The active

magnetic layer is incorporated into a magnetoresistive heterostructure such as MTJ

[Fig. 5.1(a)], enabling its control by STT and readout via TMR. We also discuss

practical device limitations and benefits.
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Figure 5.1: (a) Schematic of the proposed STT-driven memristor and the relevant
parameters. (b) Typical sinusoidal dependence of resistance R on the in-plane magne-
tization orientation. The expected angular range of nearly ideal memristive behaviors
is hatched. The dashed line is a guide for the eye.

5.3 Memristive functionality of the proposed de-

vice

STT-driven magnetization dynamics of a nanoscale single-domain F is described by

the macrospin Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation,

dm̂

dt
= −µ0γm̂× H⃗eff − αm̂× dm̂

dt

+σDLm̂× (m̂× ŝ) + σFLm̂× ŝ.

(5.1)

Here, m̂ and ŝ are unit vectors along the magnetizations of the free layer and the po-

larizer, respectively [Fig. 5.1(a)], µ0 is the vacuum permittivity, α is Gilbert damping,

and γ is the gyromagnetic ratio. The effective field H⃗eff includes crystalline and/or

shape anisotropies, and the external and demagnetizing fields. The damping-like

(DL) and the field-like (FL) contributions to Slonczewski’s STT [145] are character-
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ized by efficiencies σDL and σFL, respectively, which are proportional to the driving

current density J and its spin polarization P . For instance, the DL-STT efficiency

is σDL = −γℏJP/4Msed, where ℏ is the Planck’s constant, Ms is the saturation

magnetization, and d is the thickness of F.

The effects of thermal fluctuations are not included in Eq. (5.1) or in our analysis

of magnetization dynamics below. The amplitude of thermal fluctuations is expected

to scale inversely with
√
α, similarly to the Einstein relation for the Brownian motion

of a particle. Thus, the proposed highly damped magnetic dynamics is not expected

to be significantly affected by thermal fluctuations even for the superparamagnetic

systems similar to those utilized in p-bits [146].

First, we consider a simple case of negligible magnetocrystalline and shape anisotropies,

and ŝ normal to the plane. In this geometry, the effective FL-STT field is normal

to the plane. Its effect is negligible at practical driving currents due to the large

demagnetizing field. The solution of Eq. (5.1) is the out-of-plane precession (OPP)

mode driven by DL-STT [147, 148, 149, 150],

m̂z = σDL/αµ0γMS

m̂x + imy = eiσDLt/α+iϕ0
√

1−m2
z.

(5.2)

Since the angular velocity ω = σDL/α of precession is inversely proportional to

damping, this dynamics can be described as viscous. The absence of a damping-

dependent threshold current demonstrates that efficient STT-driven dynamics can be

achieved even at large α.

The angle between m̂ and ŝ remains constant, and does not produce resistance

variations due to precession. To generate magnetoelectronic signals, ŝ can be tilted

towards the x-axis. We assume that the tilt angle is sufficiently small, so that the

effect of tilting on the dynamics can be neglected. Since the TMR is only sensitive to

the properties of magnetic layers within essentially atomic thickness from the tunnel
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Figure 5.2: Results of simulations using Eq. (5.1) for a 5 nm-thick, 100 nm-diameter
circular disk with Ms = 800 kA/m, P = 0.3, α = 10, and negligible in-plane
anisotropy. R0 = 2 Ω and ∆R = 1 Ω were used for magnetoelectronic coeffi-
cients. (a),(c) IV hysteresis loop for ŝ ∥ ẑ (a) and ŝ ∥ x̂ (c), at two frequencies
of sinusoidal driving current. (b),(d) Dependence of resistance variation on the total
charge Q = I0 ∗∆t of the current pulses with varied amplitude I0 at fixed duration
∆t = 100 ns [curves], and varied ∆t at fixed I0 = 0.24 mA [dots], for ŝ ∥ ẑ (b) and
ŝ ∥ x̂ (d), with φ = 90◦ at t = 0.

junction, it is not expected to be affected by the additional AF interfaced with the

F-layer on the side opposite to the tunnel junction. The TMR is determined by the

angle φ between the magnetization of the free layer and the projection of the polarizer

magnetization on the film plane, aproximately described by R(φ) = R0 +∆Rcos(φ)

[Fig. 5.1(b)]. R(φ) is almost linear in the approximately 120◦ range of φ around

90◦, as shown by a hatched region in Fig. 5.1(b). In this region, precession of m̂

produces a nearly linear variation of R at a rate proportional to the current, i.e., the
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resistance change is proportional to the total charge Q that flows through the device,

as expected for an ideal memristor [138]. The memristive response, characterized by

the slope of R(Q), is tunable by varying α.

Our analysis is supported by numerical integration of Eq. (5.1) for sinusoidal

driving current, which is common in the characterization of memristors [7, 151]. The

pinched IV hysteresis [Fig. 5.2(a)] confirms memristive functionality. The hysteresis

decreases with increasing ac current frequency f , as expected since the charge that

flows through the device over any given part of the driving cycle is ∝ 1/f . Fig-

ure 5.2(b) shows the calculated response to square current pulses of varied amplitude

I0 and duration ∆t. The dependenceR(Q) is linear at smallQ = I0∆t, and is the same

for the varied pulse amplitude as for the varied duration, confirming ideal memristive

behaviors. At larger Q, the dependence becomes nonlinear and then non-monotonic

due to φ exceeding 180◦, resulting in the loss of memristive functionality.

This problem can be overcome by utilizing in-plane polarization ŝ. To analyze

this case, we consider the overdamped limit α ≫ 1. The left-hand side of Eq. (5.1) is

negligible compared to the Gilbert damping term. Taking a cross-product of Eq. (5.1)

with m̂, we obtain,

α
dm̂

dt
= −µ0γH⃗eff + σDLm̂× ŝ+ σFLŝ. (5.3)

This equation describes a rotation of m̂ towards the net effective field comprising

H⃗eff , the effective DL-STT field H⃗DL = −σDLm̂× ŝ/µ0γ, and the effective FL-STT

field H⃗FL = −σFLŝ/µ0γ. For in-plane ŝ, H⃗DL slightly tilts m̂ out of plane, which

can be neglected. Meanwhile, H⃗FL rotates m̂ towards the orientation parallel or

antiparallel to ŝ, depending on the sign of σFL.

The magnitude of FL-STT depends on the system’s geometry and its electronic

properties [27]. However, since only the FL-STT contributes to the dynamics dis-
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cussed here, the specific relation between σFL and σDL is not important. For con-

creteness, we use the same value for σFL as for σDL. A different value of σFL is

expected to simply rescale the characteristic currents required for the device opera-

tion, and does not influence the functionality of the proposed device.

Figure 5.2(c) shows that the IV curves exhibit the same hysteretic features as for

ŝ ∥ ẑ. The dependence R(Q) is linear at small Q, confirming ideal memristor func-

tionality [Fig. 5.2(d)]. At large Q, the dependence R(Q) saturates as m̂ approaches ŝ,

but does not become non-monotonic [Fig. 5.2(d)]. We note that saturation is expected

for all memristors, otherwise their resistance would diverge or become negative. As

an additional benefit of this configuration, TMR provides a more efficient readout

of the memristor state. This mode of memristor operation can be also accomplished

using spin-orbit torques, which can be described by in-plane ŝ [152, 153].

5.4 The influence of shape anisotropy

We now analyze the effects of finite in-plane anisotropy, always present in real sys-

tems due to imperfections. For ŝ ∥ ẑ, OPP is expected to onset above some critical

current density JC at which STT overcomes the anisotropy. Consider easy y-axis

uniaxial anisotropy characterized by anisotropy coefficient K2. For a given K2, the

corresponding energy scales, such as the energy barrier between easy magnetization

directions, scale with the size of the system.At J < JC , STT-driven rotation of m̂

is expected to stop at φ0 = sin−1(2σDL/µ0γK2)/2, obtained from Eq. (5.1) using

dm̂/dt = 0. The maximum possible value of φ0 = 45◦, at σDL = µ0γK2/2, corre-

sponds to STT balancing the maximum anisotropy torque [148]. We note that OPP

can onset at smaller σDL than obtained from the static balance, because the trajec-

tory of m̂ on the Bloch sphere need not pass through the attractor at φ0 = 45◦.

Indeed, JC obtained by numeric integration of Eq. (5.1) slightly decreases at small
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α=60

(a)

K2=0

J=1.2Jc

J=0.8Jc

(b)

(c)

α=10

Figure 5.3: Effects of finite in-plane anisotropy. (a) Critical current density Jc for the
onset of OPP mode vs α, for K2 = 4 kA/m. Insets: R(t) for J = 0.8JC (bottom), and
J = 1.2JC (top), at α = 10. (b) R(Q) for square current pulses with varied duration,
at J = 0.8JC and 1.2JC . The line shows the ideal memristive behavior, the dashed
curve shows the result for negligible anisotropy. (d) R(t) for φ0 = 20◦, at the labeled
values of α.

α [Fig. 5.3(a)]. At large α relevant to this work, JC saturates to a value consistent

with the above analysis, and only slightly larger than its α = 0 limit, confirming the

possibility to efficiently drive viscous magnetization dynamics by STT.

In response to square current pulses, R(Q) deviates from the ideal memristive

behaviors more strongly than for the system with negligible anisotropy, due to the

dependence of the anisotropy-induced torque on φ [Fig. 5.3(b)]. In the subcritical

regime, the magnetization can rotate only up to φ0, limiting the operational range.

However, this regime may be beneficial for avoiding the non-monotonic behaviors

that compromise memristive functionality. Another consequence of anisotropy is the

relaxation of m̂ towards the easy axis, resulting in memory loss at a rate dependent



108

on damping [Fig. 5.3(c)]. Using a trial solution mx = sin(Aexp(−t/t1)), my =

cos(Aexp(−t/t1)), mz = const of Eq. (5.1) at I = 0, with constant relaxation time t1

and A, we obtain t1 = α/K2µ0γ for small deviations from equilibrium.

Memory loss can be minimized by utilizing a system where damping is very large

in the absence of driving, but becomes smaller at finite current. This can be accom-

plished by interfacing the active F layer with an ultrathin low-anisotropy antiferro-

magnet (AF). Exchange frustration at the F/AF interface has been shown to result

in the formation of a correlated spin glass at low temperature [154]. The energy

landscape of this system is expected to span a wide range of scales that rapidly vary

with temperature, as is generally observed for glass-forming systems [155]. Above

the glass transition temperature T = Tg [156, 154], The AF spin glass melts and

forms viscous spin liquid, imparting large damping α ∝ ν to F [157] , which is highly

tunable by temperature. The value of ν was shown to exponentially increase as T

decreases towards Tg, with the latter determined by the thickness of AF [158].

Thanks to these properties, T can be used as the second memristor control pa-

rameter, with Tg tuned to achieve a large α in the absence of driving. Driving current

increases the nanodevice temperature due to Joule heating, decreasing α and enabling

STT-driven rotation of m̂. The variation of α is affected by the temporal profile of

the driving current, on the timescale of the thermal relaxation time τ . Below, we

show that this dependence enables additional second-order memristive functionality

beneficial for neuromorphic applications [159, 160].

5.5 Neuromorphic functionality of the device:

STDP of non-overlapping pulses

To model these effects, we use the relaxation time approximation for the device tem-

perature, dT/dt = I2R/C − (T − T0)/τ , where C is the heat capacity, τ is the
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(a)

Δt2=40 ns

(b)

(d)(c)

Figure 5.4: Effects of temperature-dependent damping in a spin glass-forming het-
erostructure. (a) R vs t for a 1 µs-long pulse of current I0 = 0.4 mA. Inset:
∆T = T −T0 vs t. (b) Dependence of the resistance change driven by five 150 ns-long
pulses of current I0 = 0.4 mA with the interval ∆t2 between the pulses. Inset: T
vs t for ∆t2 = 40 ns. (c) Schematic of the pre- and post- synaptic excitation pulses
applied to the memristor. (d) Variation of resistance induced by the sequence of two
pulses as a function of delay ∆t3.

thermal relaxation time, and T0 is the temperature of the environment, and α(T ) =

α(T0)e
a(T−T0) for the temperature dependence of damping, with a = −0.46 [157].

Figure 5.4(a) shows the time dependence of resistance in response to a square

pulse of current. The pulse increases T by 30 K, as shown in the inset. The resulting

decrease of damping enables STT-driven rotation of m̂ by the pulse. The temperature

decreases back to T0 after the end of the pulse, resulting in negligible relaxation of m̂

towards the easy axis. Because of the finite thermal relaxation time, the response to

multiple current pulses depends on their relative timing, as illustrated in Fig. 5.4(b)
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for sequential pulses. For small delay between the pulses, the temperature increase

driven by a pulse remains significant at the onset of the subsequent pulse [inset

in Fig. 5.4(b)], resulting in a larger response to the latter. Thus, current-driven

temperature variation serves as an additional state control variable, which provides

second-order memristive functionality - dependence of the final device state on the

timing of the driving current pulses.

This feature can be particularly beneficial for synaptic functions. In real neural

systems, the synaptic plasticity is controlled by the relative timing of the voltage

spikes, which is realized by the sensitivity modulation mediated by the spike-driven

Ca2+ ion concentration [161, 162]. The release and the spontaneous decay of Ca2+

results in the effective summation of closely timed pulses, leading to spike timing-

dependent plasticity (STDP), which plays an important role in the neural network’s

functionality. The relaxation of temperature in the proposed memristive devices

closely emulates the decay of Ca2+ concentration in neural networks, providing a

simple and efficient implementation of STDP with non-overlapping pulses.

As a proof-of-principle demonstration of second-order memristive functionality,

we simulate the response of the proposed memristor to non-overlapping pre- and

post- synaptic pulses. For simplicity, only square pulses are considered. Pre- and

post- synaptic pulses, with 0.4 mA amplitude and 150 ns length, are applied to the

memristor with a varied delay ∆t3 between the pulses [Fig. 5.4(c)]. The variation of

resistance after both pulses is plotted in Fig. 5.4(d) as a function of ∆t3.

Depending on the sign of ∆t3, the synapse experiences potentiation or depression.

To analyze the physical mechanism accounting for this STDP functionality, we note

that the pre- and post- synapse pulses rotate the magnetization of the free layer in

opposite directions. However, the temperature of the system is low at the onset of the

first pulse, so the damping is large. Thus, the first pulse does not induce a significant

rotation of the free layer, and only acts as a “heating pulse”. If the second pulse comes
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within the thermal relaxation time, the temperature of the system is still elevated,

and the damping is reduced. The efficiency of rotation of magnetization by the second

pulse is then significantly enhanced. Thus, the total variation of resistance is only

determined by the second pulse. Depending on whether the second pulse is pre- or

post- synapse, the variation of resistance can be positive (potentiation) or negative

(depression).
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Chapter 6

Summary

In this thesis, we mainly focus on the nonequilibrium phenomena in electronic and

magnetic nano-scale systems. To be specific, in the chapter about ”Nonequilibrium

phonon distribution in current-driven nano- and micro-structures”, our measurements

and analysis have demonstrated that the phonons generated by electric current in con-

ducting microstructures characterized by efficient thermal dissipation, generally form

a strongly nonequilibrium distribution that cannot be described by a temperature.

The nonequilibirum distribution is manifested by the linear dependence of resistance

on current qualitatively inconsistent with the expected effects of Joule heating. The

linear dependence is observed at sufficiently high currents at temperatures as high

as 200 K. The dependence of the observed phenomena on the structure, geometry,

substrate and interface properties, and temperature can provide unique information

about the electron-phonon scattering, phonon relaxation rates and mechanisms, and

thermal effects.

The most important message of our work is that on the microscopic level, scatter-

ing of electrons driven by electric bias generates phonons with a non-thermal distri-

bution, whose contribution to resistance and other material properties can be qual-

itatively different from those expected for Joule heating. This result is expected to
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have broad implications for the optimization of thermal properties of electronic de-

vices and nanostructures, and for the studies of current-induced phenomena. For

instance, at high current densities, the linear dependence R(I) associated with the

non-equilibrium phonon distribution can fall significantly below the approximately

quadratic dependence expected for Joule heating. In this regime, the average energy

of phonons generated by current is larger than that of thermal phonons described

by Joule heating, but their population is smaller than the thermalized population

with the same total energy. This regime may be advantageous for the optimization

of thermal management in nanoscale devices, for several reasons. First, additional

energy dissipation due to electron scattering on the generated phonons can be sig-

nificantly smaller than in the Joule heating limit, reducing the possibility of thermal

runaway [52]. Second, the escape of the generated nonequilibrium phonons from

the system can be more efficient than for Joule heating, due to the smaller rates of

phonon-phonon scattering. Finally, the generated high-frequency phonons are less

likely to contribute to current-induced physical degradation associated with the slow

metastable mechanical degrees of freedom.

Current-induced phenomena have been extensively studied in the context of spin

Hall effect, in thin Pt films similar to those discussed in our work [56, 57, 58, 38,

59, 60]. Our results may warrant re-examination of the Joule heating effects in these

experiments. Similarly, low-temperature thermoelectric measurements at nanoscale

commonly employ resistive heating of wires similar to those analyzed in our study.

As a follow up, in the chapter about ”Transport and relaxation of current-generated

nonequilibrium phonons from nonlocal electronic measurements”, a nonlocal measure-

ment is applied, which enables the investigation of the propagation and relaxation of

the highly nonequilibrium phonons. Here, we studied non-equilibrium phonons gener-

ated by current in a ”source” Pt nanowire, by measuring the resistance of a ”sensing”

nanowire insulated from the source by a SiO2 spacer. At cryogenic temperatures,



114

the dependence of resistance on current can be precisely fitted by the sum of a lin-

ear and a quadratic function. The linear contribution exponentially decreases, while

the quadratic one similarly increases with increasing spacer thickness. We interpret

these results as evidence for a highly non-thermal distribution of current-generated

phonons, which relax by inelastic scattering mediated by strongly anharmonic defects

that alleviate the constraints imposed by the quasiparticle momentum and energy con-

servation. Our results suggest a new route for the characterization of nonequilibrium

current-generated phonons, and for optimizing Joule heat management in electronic

nanodevices.

In the fourth chapter, the nonequilibrium (glassy like), behavior of magnetiza-

tion in FM/AF hetero-structure is investigated. Here, due to the complicated energy

landscape induced by the random interfacial coupling, our experiment suggests that

the magnetization in FM layer is likely in frustrated Heisenberg domain state, where

magnetization is twisted through out the film. To summarize our findings, we have

developed a new method for studying random effective exchange fields at magnetic

interfaces. Our method utilizes measurements of deviations from saturation charac-

terized by ⟨φ2⟩ - the average of the square of the angle between the magnetization and

the external field - which follows a power-law dependence on the applied field with

the exponent dependent on the characteristics of the exchange field. For the random

effective exchange field correlated on the length scales exceeding the magnetic corre-

lation length, the exponent is different from that for the uncorrelated random field,

allowing one to distinguish between these two limiting cases. Moreover, the power-law

exponent varies as a function of the film thickness, due to the correlations associated

with averaging of the effective random field through the magnetic film thickness. By

extension, we expect that the specific value of the power-law exponent for a given

film thickness, if known precisely, can be utilized to determine the correlation length

of random field.
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Our results are expected to have broader impact on the studies and applications

of thin magnetic film systems. First, the effective exchange field in F/AF bilayers,

which is the focus of our study, is just one specific case of many magnetic interfacial

effects extensively researched and commonly utilized in the existing and emerging

technologies. Those include the Ruderman–Kittel–Kasuya–Yosida (RKKY) inter-

action commonly employed in magnetic multilayer sensors and in artificial antiferro-

magnets, interfacial magnetic anisotropies commonly utilized to induce perpendicular

magnetic anisotropy in magnetic heterostructures, and the interfacial Dzyaloshinski-

Moriya interaction [94, 97, 131]. Understanding the spatial characteristics of these

effects is crucial for the development of efficient and reproducible nanodevices. We

note that the magnetic anisotropy is equivalent to effective fields for small-angle vari-

ations of magnetization, and therefore can be analyzed using the same approach as

introduced above.

Finally, we mention some of the projected fundamental insights that can become

facilitated by our work. Our demonstration of uncorrelated effective random field

effects in F/AF heterostructures opens the possibility to explore important funda-

mental consequences of these effects, such as topologically nontrivial magnetization

states [125, 124]. Such states can profoundly affect the magnetic properties, but to the

best of our knowledge, their effects in F/AF heterostructures have not yet been ex-

plored. Another potentially profound consequence of magnetic frustration associated

with uncorrelated effective random fields is the possibility to engineer magnetic energy

landscapes whose energy scale is determined by the exchange interaction, rather than

the magnetic anisotropy as in unfrustrated magnetic systems. The former is three to

four orders of magnitude larger than the latter, providing a unique opportunity to

develop ultrasmall thermally stable nanomagnetic devices.

As a follow up, in the next chapter, based on our new understanding of the ran-

dom interaction at FM/AF interface, we proposed a magnetic realization of ideal
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memristor. In this work, we have demonstrated the possibility to implement nearly

ideal memristive behaviors characterized by a linear dependence of a two-terminal

device resistance on the charge that flows through it, by utilizing spin torque-driven

viscous magnetization dynamics. The latter property can be achieved by utilizing

a spin glass-forming hybrid heterostructure with frustrated exchange interactions,

which also enables non-volatile operation and the implementation of spike timing-

dependent plasticity with non-overlapping pulses, due to Joule heating and the strong

dependence of damping on temperature. Together with the expected high-endurance

of magnetism-based memristor implementation, these characteristics make the pro-

posed devices particularly attractive for the hardware implementation of synaptic

functions in artificial neural networks.
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