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Abstract

Results on Sidon and Bh Sequences
Sangjune Lee

A set A of non-negative integers is a Sidon set if all the sums a1 + a2,
with a1 ≤ a2 and a1, a2 ∈ A, are distinct. In this dissertation, we deal
with results on the number of Sidon sets in [n] = {0, 1, · · · , n − 1} and the
maximum size of Sidon sets in sparse random subsets of [n] or N (the set of
natural numbers). We also consider a natural generalization of Sidon sets
called Bh-sets with h ≥ 2. A set A of non-negative integers is called a Bh-set
if all the sums a1 + a2 + · · · + ah, with a1 ≤ a2 ≤ · · · ≤ ah and ai ∈ A, are
distinct.

The first question in this dissertation was suggested by Cameron–Erdős
in 1990. They proposed the problem of estimating the number of Sidon sets
contained in [n]. We obtain an upper bound 2c

√
n on the number of Sidon

sets which is sharp up to a constant factor in the exponent when compared
to the previous lower bound 2(1+o(1))

√
n.

Next, we investigate the maximum size of Sidon sets contained in sparse
random sets R ⊂ [n]. Let R = [n]m be a uniformly chosen, random m-
element subset of [n]. Let F ([n]m) = max{|S| : S ⊂ [n]m is Sidon}. Fix a
constant 0 ≤ a ≤ 1 and suppose m = (1 + o(1))na. We show that there is a
constant b = b(a) for which

F ([n]m) = nb+o(1) (1)

almost surely and we obtain what b = b(a) is. Surprisingly, between two
points a = 1/3 and a = 2/3, the function b = b(a) is constant.

Next, we deal with infinite Sidon sets in sparse random subsets of N. Fix
0 < δ ≤ 1, and letR = Rδ be the set obtained by choosing each element i ⊂ N
independently with probability i−1+δ. We show that for every 0 < δ ≤ 2/3
there exists a constant c = c(δ) such that a random set R satisfies the
following with probability 1:

• Every Sidon set S ⊂ R satisfies that |S ∩ [n]| ≤ nc+o(1) for every
sufficiently large n.

• There exists a large Sidon set S ⊂ R such that |S ∩ [n]| ≥ nc+o(1) for
every sufficiently large n.
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knowledge with me and has taught me how to research. His supervision and
support from the preliminary to the concluding level enabled me to complete
this dissertation.

I owe my deepest gratitude to Yoshiharu Kohayakawa for his valuable
discussions and collaborations. Without the help of Yoshi, this work would
not have been possible. Next, I am grateful to committee members, Ronald
Gould and Dwight Duffus for their careful reading and valuable comments. I
appreciate the fruitful conversations and help of Daniel Martin and Domin-
gos Dellamonica.

I am also grateful to many people for their support during my studies at
Emory University. First, I would like to thank professors at Emory Uni-
versity. Special thanks to David Borthwick, Eric Brussel, Dwight Duffus,
Ronald Gould, James Nagy, Raman Parimala, and Andrzej Ruciński for
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Chapter 1

Introduction

A set A of non-negative integers is called a Sidon set if all the sums a1 + a2,

with a1 ≤ a2 and a1, a2 ∈ A, are distinct. In 1930s the analyst S. Sidon asked

Erdős the maximum size of Sidon sets in [n] = {0, 1, · · · , n − 1}. Erdős was

captivated by the problem. Since then, the study of Sidon sets has been one

of the main concerns in additive number theory. In this dissertation, we deal

with results on the number of Sidon sets in [n] and the maximum size of Sidon

sets in sparse random subsets of [n] or N (the set of natural numbers). We also

consider a natural generalization of Sidon sets called Bh-sets with h ≥ 2. A set

A of non-negative integers is called a Bh-set if all the sums a1 + a2 + · · · + ah,

with a1 ≤ a2 ≤ · · · ≤ ah and ai ∈ A, are distinct. Thus, Sidon sets are B2-sets.

The first question in this dissertation was suggested by Cameron–Erdős in

1990. Let Zn be the family of Sidon sets contained in [n] = {0, 1, · · · , n − 1}.
They proposed the problem of estimating |Zn|. This problem is related to the

problem of determining the maximum size F (n) of Sidon sets in [n]. Results of

Chowla, Erdős, Singer, and Turán from the 1940s imply that F (n) =
√
n(1 +

o(1)). From this result, one can trivially obtain the following:

2F (n) ≤ |Zn| ≤
F (n)∑
i=1

(
n

i

)
, that is, 2(1+o(1))

√
n ≤ |Zn| ≤ 2c

√
n logn,
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where c is an absolute constant. One of the main results in Chapter 2 improves

the above upper bound on |Zn| to 2c
√
n, which is sharp up to a constant factor

in the exponent.

In Chapter 2, we also investigate the maximum size of Sidon subsets of

sparse, random subsets of [n]. Recall that the maximum size of Sidon sets in

[n] is
√
n(1 + o(1)). We are interested in replacing the ‘environment’ [n] by a

sparse, random subset R of [n].

Investigating how classical extremal results in ‘dense’ environments transfer

to ‘sparse’ settings has proved to be a deep line of research. A fascinating exam-

ple along these lines occurs in the celebrated work of Tao and Green [20], where

Szemerédi’s classical theorem on arithmetic progressions [43] is transferred to

certain sparse, pseudorandom sets of integers and to the set of primes them-

selves (see [37, 38, 44] for more in this direction). Much closer examples to our

setting are a version of Roth’s theorem on 3-term arithmetic progressions [39]

for random subsets of integers [29], and the far reaching generalizations due to

Conlon and Gowers [12] and Schacht [40]. For the sake of brevity, we shall not

discuss this further and refer the reader to [12], [40], [22, Chapter 8] and [27,

Section 4].

Now we introduce several definitions. Let F (R) be the maximum size of

Sidon subsets contained in R. Let [n]m be a random subset of [n] of cardinal-

ity m, with all the
(
n
m

)
subsets of [n] equiprobable. We study the behavior of

the random variable F ([n]m).

We first state the previous results about F ([n]m). First, if m = m(n)� n1/3,

then almost surely F ([n]m) = (1 − o(1))m. It can be shown by the usual

deletion method. On the other hand, if m = m(n) � n1/3, then almost surely

F ([n]m) = o(m). It is based on the recent results of Schacht [40] and Conlon and

Gowers [12]. Hence, we know that m = n1/3 is the threshold for the property

that the maximum size of Sidon sets in a random set [n]m of [n] is much smaller

than the size of a random set [n]m.

Now we state a weak version of our results which give more precise infor-
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mation about the behavior of F ([n]m). Fix a constant 0 < a ≤ 1 and suppose

m = (1 + o(1))na. We show that there exists a constant b = b(a) for which

F ([n]m) = nb+o(1) (1.1)

almost surely and we obtain the value of b = b(a). Surprisingly, between two

points a = 1/3 and a = 2/3, the function b = b(a) is constant. Our results in

fact determine F ([n]m) up to a constant multiplicative factor except for n2/3−δ <

m < n2/3(log n)8/3 for any fixed δ > 0. For the missing range of m, around n2/3,

our lower and upper bounds differ by a factor of O((log n)/ log log n).

In Chapter 3, we consider the analogous results on Bh-sets with h ≥ 3 which

are natural generalizations of Sidon sets. Recall that a set A of non-negative

integers is called a Bh-set if all the sums a1+a2+· · ·+ah, with a1 ≤ a2 ≤ · · · ≤ ah

and ai ∈ A, are distinct. Note that a B2-set is a Sidon set. First, we consider a

natural generalization of the problem of Cameron–Erdős. Let Zhn be the family

of Bh-sets contained in [n]. We show that there exists a constant ch, only

depending on h, such that |Zhn | ≤ 2chn
1/h

, which is sharp up to a constant factor

in the exponent when compared to the previous known lower bound 2(1+o(1))n1/h

. Second, we investigate the maximum size of Bh-sets in a sparse random set

[n]m ⊂ [n]. For a simpler explanation, we focus on B3-sets. Let a be a constant

with m = (1 + o(1))na. We show that if 0 < a ≤ 2/5 or 3/4 ≤ a ≤ 1, then

there exists b3 = b3(a) such that the maximum size of B3-sets contained in [n]m

is nb3+o(1) almost surely and we obtain the value of b3 = b3(a). The existence

remains open if 2/5 < a < 3/4.

The final investigation in this dissertation concerns infinite Sidon sets con-

tained in sparse random subsets of N. We begin with the previous results in

the dense environment N. While the maximum size of Sidon subsets of [n] is

known to be
√
n(1 + o(1)), the quantification of dense infinite Sidon subsets of

N is not completely understood.

For S ⊂ N, let S[n] := S ∩ [n]. The above result on the finite case implies

that any Sidon set S ⊂ N satisfies that for every sufficiently large n, depending
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on S,

|S[n]| ≤
√
n(1 + o(1)).

On the other hand, a greedy algorithm gives that there exists an infinite Sidon

subset S ⊂ N satisfying that for every sufficiently large n,

|S[n]| ≥ n1/3.

In 1998 Ruzsa showed that there exists an infinite Sidon subset S ⊂ N satisfying

that for every sufficiently large n,

|S[n]| ≥ nγ+o(1),

where γ :=
√

2 − 1 = 0.414 · · · . Indeed, the problem of estimating the largest

possible density of an infinite Sidon subset of N is a well-known hard problem.

In order to consider infinite Sidon sets in a sparse random subset of N, we

first define a sparse random set in N. Fix 0 < δ ≤ 1, and let R = Rδ be

a random set obtained by choosing each element i ∈ N independently with

probability i−1+δ.

Our result is as follows. Let a = a(δ) and b = b(δ) be such that with

probability 1, a random set Rδ satisfies the following:

• Every Sidon set S contained in Rδ satisfies that |S ∩ [n]| ≤ nb+o(1) for

every sufficiently large n.

• There exists a Sidon set S contained in Rδ such that |S ∩ [n]| ≥ na+o(1)

for every sufficiently large n.

We show that our constant b is the same as constant b in (1.1) for every 0 <

δ ≤ 1, and our constants a and b above are identical if 0 < δ ≤ 2/3. It remains

open whether constant a can be the same as constant b if 2/3 < δ ≤ 1.



Chapter 2

Finite Sidon sets

2.1 Introduction

Recent years have witnessed vigorous research in the classical area of additive

combinatorics. An attractive feature of these developments is that applications

in theoretical computer science have motivated some of the striking research in

the area (see, for example, [45]). For a modern treatment of the subject, the

reader is referred to [44].

Among the best known concepts in additive number theory is the notion

of a Sidon set. A set A of non-negative integers is called a Sidon set if all

the sums a1 + a2, with a1 ≤ a2 and a1, a2 ∈ A, are distinct. A well-known

problem on Sidon sets is the determination of the maximum possible size F (n)

of a Sidon subset of [n] = {0, 1, . . . , n − 1}. In 1941, Erdős and Turán [17]

showed that F (n) ≤
√
n + O(n1/4). In 1944, Chowla [10] and Erdős [16],

independently of each other, observed that a result of Singer [42] implies that

F (n) ≥
√
n−O(n5/16). Consequently, it is known that F (n) = (1+o(1))

√
n. For

a wealth of related material, the reader is referred to the classical monograph

of Halberstam and Roth [21] and to a recent survey by O’Bryant [36] and the

references therein.

We investigate Sidon sets contained in random sets of integers, and obtain
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essentially tight bounds on their relative density. Our approach is based on find-

ing upper bounds for the number of Sidon sets of a given cardinality contained

in [n]. Besides being the key to our probabilistic results, our upper bounds also

address a problem of Cameron and Erdős [8].

We discuss our bounds on the number of Sidon sets and our probabilistic

results in the next two subsections.

2.1.1 A problem of Cameron and Erdős

Let Zn be the family of Sidon sets contained in [n]. Over two decades ago,

Cameron and Erdős [8] proposed the problem of estimating |Zn|. Observe that

one trivially has

2F (n) ≤ |Zn| ≤
∑

1≤i≤F (n)

(
n

i

)
= n(1/2+o(1))

√
n. (2.1)

Cameron and Erdős [8] improved the lower bound in (2.1) by showing that

lim sup
n
|Zn|2−F (n) =∞

and asked whether the upper bound could also be strengthened. Our result is

as follows.

Theorem 2.1.1 (Kohayakawa, Lee, Rödl, and Samotij [31]) There is a con-

stant c for which |Zn| ≤ 2cF (n).

Our proof method gives that the constant c in Theorem 2.1.1 may be taken

to be arbitrarily close to log2(32e) = 6.442 · · · (for large enough n). We do

not make any attempts to optimize this constant as it seems that our approach

cannot yield a sharp estimate for log2 |Zn|. It remains an interesting open

question whether log2 |Zn| = (1 + o(1))F (n).
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2.1.2 Probabilistic results

We investigate Sidon subsets of sparse, random sets of integers, that is, we

replace the ‘environment’ [n] by a sparse, random subset R of [n], and ask how

large a subset S ⊂ R can be, if we require that S should be a Sidon set.

Let us now state a weak, but less technical version of our main probabilistic

results. Let F (R) = max |S|, where the maximum is taken over all Sidon

subsets S ⊂ R. Let [n]m be a random subset of [n] of cardinality m = m(n),

with all the
(
n
m

)
subsets of [n] equiprobable. We are interested in the random

variable F ([n]m).

The usual deletion method gives that, almost surely, that is, with probability

tending to 1 as n→∞, we have F ([n]m) = (1−o(1))m if m = m(n)� n1/3. On

the other hand, the results of Schacht [40] and Conlon and Gowers [12] imply

that, if m = m(n)� n1/3, then, almost surely, we have

F ([n]m) = o(m). (2.2)

Thus F ([n]m) undergoes a sudden change of behaviour at m = n1/3+o(1). The

following abridged version of our results already gives us quite precise informa-

tion on F ([n]m) for the whole range of m.

Theorem 2.1.2 (Kohayakawa, Lee, Rödl, and Samotij [31]) Let 0 ≤ a ≤ 1 be

a fixed constant. Suppose m = m(n) = (1 + o(1))na. There exists a constant

b = b(a) such that almost surely

F ([n]m) = nb+o(1). (2.3)

Furthermore,

b(a) =


a if 0 ≤ a ≤ 1/3,

1/3 if 1/3 ≤ a ≤ 2/3,

a/2 if 2/3 ≤ a ≤ 1.

(2.4)

Thus, the function b = b(a) is piecewise linear. The graph of b = b(a) is



2.2. Main results 8

a

b

1/3 2/3 1

1/3

1/2
F ([n]m) = nb+o(1) for m = na

Figure 2.1: The graph of b = b(a)

given in Figure 2.1. The point (a, b) = (1, 1/2) in the graph is clear from the

Erdős–Turán and Chowla results [10, 16, 17] mentioned above. The behaviour

of b = b(a) in the interval 0 ≤ a ≤ 1/3 is not hard to establish. The fact that the

point (1/3, 1/3) could be an interesting point in the graph is suggested by the

results of Schacht [40] and Conlon and Gowers [12]. It is somewhat surprising

that, besides the point a = 1/3, there is a second value at which b = b(a) is

‘critical’, namely, a = 2/3. Finally, we find it rather interesting that b = b(a)

should be constant between those two critical points. We state our results in full

in Section 2.2.1. Our results in fact determine F ([n]m) up to a constant multi-

plicative factor for m ≤ n2/3−δ for any fixed δ > 0 and for m ≥ n2/3(log n)8/3.

For the missing range of m, around n2/3, our lower and upper bounds differ by

a factor of O((log n)/ log log n).

2.2 Main results

2.2.1 Statement of the main results

We prove a more detailed result than Theorem 2.1.1. Let Zn(t) be the family

of Sidon sets of cardinality t contained in [n].
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Theorem 2.2.1 Let 0 < σ < 1 be a real number. For any large enough n

and t ≥ 2s0, where s0 = (2(1− σ)−1n log n)
1/3

, we have

|Zn(t)| ≤ n3s0

(
32en

σt2

)t
. (2.5)

Theorem 2.1.1 follows from Theorem 2.2.1 by summing over all t (see Sec-

tion 2.3.2). Our next result covers values of t smaller than the ones covered in

Theorem 2.2.1.

Theorem 2.2.2 Let n and t be integers with

3 · 23n1/3 ≤ t ≤ 4(n log n)1/3. (2.6)

Then

|Zn(t)| ≤
(

6 · 23/2n

t
exp

(
− t3

3 · 27n

))t
. (2.7)

Let us now turn to our probabilistic results. Instead of working with the

uniform model [n]m of random subsets of [n], it will be more convenient to work

with the so called binomial model [n]p, in which each element of [n] is put in [n]p

with probability p, independently of all other elements. Routine methods allow

us to translate our results on [n]p below to the corresponding results on [n]m,

where p = m/n (see Section 2.2.2 for details).

We state our results on F ([n]p) split into theorems covering different ranges

of p = p(n). Our first result corresponds to the range 0 ≤ a ≤ 1/3 in Theo-

rem 2.1.2.

Theorem 2.2.3 For n−1 � p = p(n)� n−2/3, we almost surely have

F ([n]p) = (1 + o(1))np. (2.8)
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For n−1 � p ≤ 2n−2/3, we almost surely have(
1

3
+ o(1)

)
np ≤ F ([n]p) ≤ (1 + o(1))np, (2.9)

Remark 2.2.4. One may in fact prove the following result: if p = γn−2/3 for

some constant γ, then(
1− 1

12
γ3 + o(1)

)
np ≤ F ([n]p) ≤

(
1− 1

12
γ3 +

1

12
γ6 + o(1)

)
np. (2.10)

Our next result covers the range 1/3 ≤ a < 2/3 in Theorem 2.1.2.

Theorem 2.2.5 For any δ > 0, there is a positive constant c2 = c2(δ) such

that if 2n−2/3 ≤ p = p(n) ≤ n−1/3−δ, then we almost surely have

c1

(
n log(n2p3)

)1/3 ≤ F ([n]p) ≤ c2

(
n log(n2p3)

)1/3
, (2.11)

where c1 is a positive absolute constant.

We now turn to the point a = 2/3 in Theorem 2.1.2.

Theorem 2.2.6 For any 0 ≤ δ < 1/3, there is a positive constant c3 = c3(δ)

such that if 1 ≤ α = α(n) ≤ nδ and p = p(n) = α−1n−1/3(log n)2/3, then we

almost surely have

c3(n log n)1/3 ≤ F ([n]p) ≤ c4(n log n)1/3 log n

log(α + log n)
,

where c4 is an absolute constant.

We remark that Theorems 2.2.5 and 2.2.6 consider ranges that overlap (func-

tions p = p(n) of the form n−1/3−δ′ for some 0 < δ′ < 1/3 are covered by both

theorems). Finally, we consider the range 2/3 ≤ a ≤ 1 in Theorem 2.1.2.

Theorem 2.2.7 There exist positive absolute constants c5 and c6 for which the

following holds. If 1 ≤ α = α(n) ≤ (log n)2 and p = p(n) = α−1n−1/3(log n)8/3,
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then we almost surely have

c5
√
np ≤ F ([n]p) ≤ c6

√
np ·

√
α

1 + logα
.

Furthermore, if n−1/3(log n)8/3 ≤ p = p(n) ≤ 1, then, almost surely,

c5
√
np ≤ F ([n]p) ≤ c6

√
np.

2.2.2 The uniform model and the binomial model

We now discuss how to translate Theorems 2.2.3, 2.2.5–2.2.7 on [n]p in Sec-

tion 2.2.1 to the corresponding results on [n]m. Before we proceed, let us make

the following definition.

Definition 2.2.8. We shall say that an event in the probability space of the

random sets [n]p or in the probability space of the random sets [n]m holds with

overwhelming probability, abbreviated as w.o.p., if the probability of failure of

that event is O(n−C) for any constant C, that is, if the probability of failure is

‘superpolynomially’ small.

For us, the following consequence of Pittel’s inequality (see, for example, [6,

p. 35] and [23, p. 17]) will suffice for translating results on [n]p to results on

[n]m.

Lemma 2.2.9 Let 1 ≤ m = m(n) < n and p = p(n) be such that p = m/n. Let

P be an event in the probability space of the random sets [n]p. If [n]p is in P

w.o.p., then [n]m is in P ∩
(

[n]
m

)
w.o.p.

Proof Let Q be the complement of P . We shall show that, for any constant

C > 0, there exists a constant C ′ > 0, where C ′ → ∞ as C → ∞, such that

the following holds. If P
[
[n]p is in Q

]
= O(n−C), then P

[
[n]m is in Q∩

(
[n]
m

)]
=

O(n−C
′
).
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Pittel’s inequality (see [6, p. 35] and [23, p. 17]) states that

P
[
[n]m is in Q ∩

(
[n]

m

)]
= O(

√
m) · P

[
[n]p is in Q

]
. (2.12)

Since, by hypothesis, P
[
[n]p is in Q

]
= O(n−C) holds for any constant C > 0,

inequality (2.12) implies that

P
[
[n]m is in Q ∩

(
[n]

m

)]
= O(

√
m · n−C) = O(

√
n · n−C) = O(n−C+1/2),

which completes the proof of Lemma 2.2.9. �

Each of Theorems 2.2.5–2.2.7 will be proved with ‘w.o.p.’ rather than with

‘almost surely’. By Lemma 2.2.9, we can translate each such result on [n]p

to the corresponding result on [n]m, where p = m/n. For example, Theo-

rem 2.2.5 implies the following uniform version: For any δ > 0, there is a

positive constant c2 = c2(δ) such that if 2n1/3 ≤ m = m(n) ≤ n2/3−δ, then, with

overwhelming probability, we have

c1

(
n log

m3

n

)1/3

≤ F ([n]m) ≤ c2

(
n log

m3

n

)1/3

,

where c1 is a positive absolute constant.

Finally, we remark that one may use the usual deletion method to prove

that the result on [n]m corresponding to Theorem 2.2.3 holds almost surely.

2.2.3 Organization

Our results on the number of Sidon sets are proved in Section 2.3. In Section 2.4,

we consider the upper bounds in Theorems 2.2.5–2.2.7. Section 2.5 contains

some preparatory lemmas for the proof of Theorem 2.2.3 and for the proofs

of the lower bounds in Theorems 2.2.5–2.2.7. The proof of Theorem 2.2.3 is

given in Section 2.6. In Section 2.7, we give the proofs of the lower bounds in



2.3. The number of Sidon sets 13

Theorems 2.2.5–2.2.7.

For simplicity, we omit ‘floor’ and ‘ceiling’ symbols in our formulae, when

they are not essential. For the sake of clarity of the presentation, we write a/bc

instead of the less ambiguous a/(bc).

2.3 The number of Sidon sets

The proofs of Theorems 2.2.1 and 2.2.2 are based on a method introduced by

Kleitman and Winston [26] (see [2, 4, 5, 18, 28] for other applications of this

method).

2.3.1 Independent sets in dense graphs

We start with the following lemma, which gives an upper bound for the number

of independent sets in graphs that are ‘dense’ in some sense.

Lemma 2.3.1 (Kohayakawa, Lee, Rödl, and Samotij [31]) Let G be a graph

on N vertices, let q be an integer and let 0 ≤ β ≤ 1 and R be real numbers with

R ≥ e−βqN. (2.13)

Suppose the number of edges e(U) induced in G by any set U ⊂ V (G) with |U | ≥
R satisfies

e(U) ≥ β

(
|U |
2

)
. (2.14)

Then, for all integers r ≥ 0, the number of independent sets in G of cardinal-

ity q + r is at most (
N

q

)(
R

r

)
. (2.15)

Proof Fix an integer r ≥ 0. We describe a deterministic algorithm that as-

sociates to every independent set I of size q + r in G a pair (S0, A) of disjoint
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sets with S0 ⊂ I ⊂ S0 ∪ A ⊂ V (G) and with |S0| = q and |A| ≤ R. Further-

more, if, for some inputs I and I ′, the algorithm outputs (S0, A) and (S ′0, A
′)

with S0 = S ′0, then A = A′. Hence, the number of independent sets in G

with q + r elements is at most as given in (2.15), as claimed. We now proceed

to describe the algorithm.

At all times, our algorithm maintains a partition of V (G) into sets S, X,

and A (short for selected, excluded, and available). As the algorithm evolves,

S increases, X increases and A decreases. The vertices in A will be labelled

v1, . . . , v|A|, where, for every i, the vertex vi has maximum degree in

G[{vi, . . . , v|A|}] (the graph induced by {vi, . . . , v|A|} in G); we break ties ar-

bitrarily by giving preference to vertices that come earlier in some arbitrary

predefined ordering of V (G).

We start the algorithm with A = V (G) and S = X = ∅. Crucially, at all

times we maintain S ⊂ I ⊂ S∪A. The algorithm works as follows. While |S| <
q, we repeat the following. Let a = |A| and suppose A = {v1, . . . , va}, with

the vertex labelling convention described above. Let i be the smallest index

such that vi belongs to our independent set I, move v1, . . . , vi−1 from A to X

(they are not in I by the choice of i), and move vi from A to S (vi is in I).

Observe that A has already lost i members in this iteration and S has gained

one. Let U = {vi, . . . , va}. If |U | ≥ R, we further move all neighbours of vi in A

to X (since I is an independent set and vi ∈ I). Otherwise, that is, if |U | < R,

consider the first q−|S| members vi1 , . . . , viq−|S| of I ∩A and move them from A

to S (note that i < i1 < · · · < iq−|S| ≤ a and we now have |S| = q).

The procedure above defines an increasing sequence of sets S. Once we

obtain a set S with |S| = q, we let S0 = S, output (S0, A) and stop the

algorithm. Inspection shows that A depends only on S0 and not on I, that is,

if (S0, A) and (S0, A
′) are both outputs by the algorithm (for some inputs I

and I ′), then A = A′. We now use our assumption on G to show that |A| ≤ R.

We consider two cases: The first case is the case in which the body of the

while loop of the algorithm is executed with |U | < R at an iteration. The second
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case is the case in which we have |U | ≥ R during the q iterations of the while

loop. Observe that one of two cases must occur.

Consider the first case. At the iteration with |U | < R, the set A lost the

first i vertices (and possibly others) and hence at the end of this iteration we

have |A| ≤ a− i = |U | − 1 < R. Moreover, |S| becomes of cardinality q and the

algorithm stops.

Next, we consider the second case in which we have |U | ≥ R during the q

iterations of the while loop. In each iteration, consider an execution of the body

of the while loop of the algorithm when |U | ≥ R and (only) the vertex vi is moved

to S. In this execution, A loses, in total, i+d(vi, U) vertices, where d(vi, U) is the

degree of vi in the graph G[U ]. Recall that we are considering the case |U | ≥ R

and that vi has maximum degree in the graph G[U ]. Applying (2.14), we see

that d(vi, U) ≥ β(|U | − 1). Therefore, at the end of this iteration, A has

cardinality

a− (i+ d(vi, U)) ≤ a− (a− |U |+ 1 + β(|U | − 1)) ≤ |U | − β|U | ≤ (1− β)a.

In the second case, the cardinality of A decreases by a factor of 1 − β in

the q iterations of the while loop and, at the end, A has at most N(1 − β)q ≤
Ne−βq ≤ R elements. �

2.3.2 Proof of Theorem 2.2.1

We derive Theorem 2.2.1 from the following lemma.

Lemma 2.3.2 Let n, s and q be integers and let 0 < σ < 1 be a real number

such that
s2q

n
≥ 2

1− σ
log

σs

2
. (2.16)

Then, for any integer r ≥ 0, we have

|Zn(s+ q + r)| ≤ |Zn(s)|
(
n

q

)(
2n/σs

r

)
. (2.17)
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To obtain the bound for |Zn(t)| in Theorem 2.2.1, we apply Lemma 2.3.2

iteratively.

Proof of Theorem 2.2.1 Fix integers n and t, with t ≥ 2s0, where s0 is as

given in the statement of our theorem, that is, s0 = (2(1− σ)−1n log n)
1/3

. We

may clearly suppose that t ≤ F (n) = (1 + o(1))
√
n, as otherwise Zn(t) =

∅. Let K be the largest integer satisfying t2−K ≥ 2s0. We define three

sequences (sk)0≤k≤K , (qk)0≤k≤K and (rk)0≤k≤K as follows. We let q0 = s0

and r0 = t2−K − s0 − q0. Moreover, we let s1 = t2−K ≥ 2s0, q1 = q0/4

and r1 = t2−K+1 − s1 − q1. For k = 2, . . . , K, we let sk = 2sk−1 = t2−K+k−1,

qk = qk−1/4 = q04−k and rk = t2−K+k − sk − qk. We apply Lemma 2.3.2 with

parameters sk, qk and rk for k = 0, . . . , K, to obtain from (2.17) that

|Zn(t2−K+k)| = |Zn(sk + qk + rk)| ≤ |Zn(sk)|
(
n

qk

)(
2n/σsk
rk

)
(2.18)

for all k. It suffices to check (2.16) to justify these applications of Lemma 2.3.2.

Since s2
kqk ≥ s2

0q0 = 2(1−σ)−1n log n > 2(1−σ)−1n log(σsk/2) for all 0 ≤ k ≤ K,

inequality (2.16) holds for n, sk and qk. Using that sk = sk−1 + qk−1 + rk−1 =

t2−K+k−1 for k ≥ 1 and that |Zn(s0)| ≤
(
n
s0

)
, we obtain from (2.18) that

|Zn(t)| ≤
(
n

s0

) ∏
0≤k≤K

(
n

qk

) ∏
0≤k≤K

(
2n/σsk
rk

)
. (2.19)

Note that (
n

s0

)
≤
(
en

s0

)s0
≤ n2s0/3 (2.20)

and that∏
0≤k≤K

(
n

qk

)
≤ n

∑
0≤k≤K qk ≤ nq0

∑
0≤k≤K 1/4k ≤ n4q0/3 = n4s0/3. (2.21)

We now proceed to estimate the last factor of the right-hand side of (2.19).

First note that, by the choice of K, we have (r0 + s0 + q0)/2 = t2−K−1 < 2s0,
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and hence r0 < 2s0. Therefore, we have(
2n/σs0

r0

)
≤
(

2en

σs0r0

)r0
≤ nr0/3 ≤ n2s0/3 ≤ ns0 (2.22)

for all large n. We now note that

∏
1≤k≤K

(
2n/σsk
rk

)
=

∏
1≤k≤K

(
2n/σsK−k+1

rK−k+1

)
≤

∏
1≤k≤K

(
2n/σsK−k+1

rK−k+1 + qK−k+1

)
. (2.23)

To justify the inequality in (2.23) above, we check that

rK−k+1 + qK−k+1 ≤
2n

3σsK−k+1

. (2.24)

Recalling that rK−k+1+qK−k+1 = sK−k+1 = t2−k, we see that (2.24) is equivalent

to t2−k ≤
√

2n/3σ. However,

t

2k
≤ t

2
≤ 1

2
F (n) =

(
1

2
+ o(1)

)√
n ≤

√
2n

3
≤
√

2n

3σ
(2.25)

for all large enough n. We continue (2.23) by noticing that

∏
1≤k≤K

(
2n/σsK−k+1

rK−k+1 + qK−k+1

)
=

∏
1≤k≤K

(
2n/σt2−k

t2−k

)
≤

∏
1≤k≤K

(
22k+1en

σt2

)t2−k

≤
(

2en

σt2

)t∑k≥1 2−k

22t
∑
k≥1 k2−k =

(
2en

σt2

)t
24t =

(
32en

σt2

)t
. (2.26)

Inequality (2.5) now follows from (2.19), (2.20), (2.21), (2.22) and (2.26). �

It now remains to prove Lemma 2.3.2.

Proof of Lemma 2.3.2 Let S0 ⊂ [n] be an arbitrary Sidon set with |S0| = s.
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We show that the number of Sidon sets S ⊂ [n] with S0 ⊂ S and |S| = s+ q+ r

is at most
(
n
q

)(
2n/σs
r

)
, whence our lemma will follow.

Let G be the graph on V = [n] \ S0 satisfying that {a1, a2} (a1 6= a2) is an

edge in G if and only if there are b1 and b2 ∈ S0 such that a1 + b1 = a2 + b2.

Observe that if S ⊂ [n] is a Sidon set containing S0, then S\S0 is an independent

set in G. Let N = |V | = n − s, β = (1 − σ)s2/2n and R = 2n/σs. We wish

to apply Lemma 2.3.1 to G with β and R as just defined, to obtain an upper

bound for the number of independent sets of cardinality q+ r. Note that (2.13)

follows from (2.16). Now let U ⊂ V with |U | ≥ R be given. We check (2.14) as

follows.

Let J be the bipartite graph with (disjoint) vertex classes [2n] and U ,

with w ∈ [2n] adjacent to a ∈ U in J if and only if w = a + b for some b ∈ S0.

Note that a1 and a2 ∈ U have a common neighbour w ∈ [2n] if and only if there

are b1 and b2 ∈ S0 with a1 + b1 = w = a2 + b2, that is, if and only if {a1, a2} is

an edge of G.

Now note that J contains no 4-cycle: if a1, a2 ∈ U with a1 6= a2 are both

adjacent to both w and w′ ∈ [2n] with w 6= w′, then a1 + b1 = w = a2 + b2 for

some b1 and b2 ∈ S0 and a1 + b′1 = w′ = a2 + b′2 for some b′1 and b′2 ∈ S0. But

then b1 − b′1 = b2 − b′2, and hence b1 + b′2 = b′1 + b2. As b1, b′1, b2 and b′2 ∈ S0

and S0 is a Sidon set, we have {b1, b
′
2} = {b′1, b2}. Since a1 6= a2, we have b1 6= b2,

whence b1 = b′1, implying that w = a1 + b1 = a1 + b′1 = w′.

The remarks above give that e(U) =
∑

w∈[2n]

(
dJ (w)

2

)
, where dJ(w) denotes

the degree of w in J . Note that
∑

w∈[2n] dJ(w) =
∑

a∈U dJ(a) = |U ||S0| = |U |s.
Using the convexity of the function f(x) =

(
x
2

)
and Jensen’s inequality and

recalling that |U | ≥ R = 2n/σs, that is, 1 ≤ σ |U |s
2n

, we obtain

e(U) =
∑
w∈[2n]

(
dJ(w)

2

)
≥ 2n

(
|U |s/2n

2

)
=
|U |s

2

(
|U |s
2n
− 1

)

≥ 1

4
(1− σ)

s2

n
|U |2 ≥ β

(
|U |
2

)
,
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as required in (2.14). Recall that a Sidon set S ⊂ [n] containing S0 is such

that S \ S0 is an independent set in G. Therefore, our required bound for the

number of such S with |S| = s+ q + r follows from the upper bound (2.15) for

the number of independent sets of cardinality q + r in G. �

We conclude this section by deriving Theorem 2.1.1 from Theorem 2.2.1.

Proof of Theorem 2.1.1 Let σ = 32/33 in Theorem 2.2.1. Then s0 = (2(1−
σ)−1n log n)1/3 = (66n log n)1/3. For large enough n, we have

|Zn| =
∑

0≤t≤F (n)

|Zn(t)| ≤
∑

0≤t<2s0

(
n

t

)
+

∑
2s0≤t≤F (n)

n3s0

(
33en

t2

)t
. (2.27)

Note that ∑
0≤t<2s0

(
n

t

)
≤ 2s0

(
n

2s0

)
≤ n2s0 , (2.28)

and that since f(t) = (33en/t2)t is increasing on the interval
(

0,
√

33n/e
)

,

∑
2s0≤t≤F (n)

n3s0

(
33en

t2

)t
≤
√
n · n3s0(33e)

√
n(1+o(1))

≤ (33e)
√
n(1+o(1)) ≤ (33e)F (n)(1+o(1)). (2.29)

Combining (2.27) together with (2.28) and (2.29) implies that |Zn| ≤ 2cF (n) for

a suitable constant c. �

2.3.3 Proof of Theorem 2.2.2

We derive Theorem 2.2.2 from the following more general but technical estimate.

Lemma 2.3.3 Let n and t be integers. Suppose s is an integer and σ is a real

number such that, letting ω = t/s, we have

ω ≥ 4, 0 < σ < 1 and
s3

n
≥ 2

1− σ
log

σs

2
. (2.30)
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Then

|Zn(t)| ≤
(

12ωn

(tσ)1−2/ωt

)t
. (2.31)

Proof We invoke Lemma 2.3.2 with q = s. Note that, then, (2.30) im-

plies (2.16). We now let r in Lemma 2.3.2 be t− 2s and obtain that

|Zn(t)| ≤
(
n

s

)(
n

s

)(
2n/σs

t− 2s

)
. (2.32)

The right-hand side of (2.32) is

(
n

s

)2(
2n/σs

t− 2s

)
≤
(en
s

)2s
(

2en

σs(t− 2s)

)t−2s

=
(en
s

)2s (en
s

)t−2s
(

2

σ(t− 2s)

)t−2s

=
(eωn

t

)t( 2

σt(1− 2/ω)

)t(1−2/ω)

=
(
C

n

t2−2/ωσ1−2/ω

)t
,

where C = 21−2/ωeω/(1 − 2/ω)1−2/ω = 21−2/ωeω2−2/ω/(ω − 2)1−2/ω. As ω ≥ 4,

we have ω − 2 ≥ ω/2, and hence C ≤ eω41−2/ω < 12ω, completing the proof of

Lemma 2.3.3. �

Proof of Theorem 2.2.2 We shall apply Lemma 2.3.3. Let ω = 4 and s =

t/ω = t/4. Let λ = exp (t3/(3 · 26n)) and set σ = 2λ/s = 8λ/t ≤ 1/3, where

the last inequality follows from (2.6). It follows that 2/(1− σ) ≤ 3, and hence

s3

n
=

t3

43n
= 3 log λ ≥ 2

1− σ
log λ,

hence the third condition in (2.30) holds. We thus conclude that (2.31) holds.

Let us now estimate the right-hand side of (2.31).
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Note that tσ = 4sσ = 8λ, and therefore (tσ)1−2/ω = (8λ)1/2 and

12ωn

(tσ)1−2/ωt
=

12 · 4n
(8λ)1/2t

=
6 · 8n

81/2λ1/2t
=

6 · 23/2n

λ1/2t

=
6 · 23/2n

t
exp

(
− t3

3 · 27n

)
. (2.33)

Inequality (2.7) follows from (2.31) and (2.33), and Theorem 2.2.2 is proved. �

2.4 The upper bounds in Theorems 2.2.5–2.2.7

We shall apply Lemma 2.3.3 and Theorem 2.2.1 in order to prove the upper

bounds in Theorem 2.2.5 and Theorems 2.2.6–2.2.7, respectively.

2.4.1 Proof of the upper bound in Theorem 2.2.5

Let δ > 0 be given. We show that there is a constant c2 = c2(δ) such that

if 2n−2/3 ≤ p = p(n) ≤ n−1/3−δ, then w.o.p. we have

F ([n]p) ≤ c2

(
n log n2p3

)1/3
.

To this end, we apply Lemma 2.3.3. We first define several auxiliary constants

used to set t, ω and σ in Lemma 2.3.3. Choose η > 0 small enough so that

(1− 3δ)

(
1

3
+ η

)
<

1

3
. (2.34)

Choose ω ≥ 4 so that (
1

3
+ η

)(
1− 2

ω

)
>

1

3
. (2.35)

Finally, choose c = c2 so that( c
ω

)3

> 3

(
1

3
+ η

)
and c >

24ω

2(1+3η)(1−2/ω)
. (2.36)
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Now set

t = c
(
n log n2p3

)1/3
, s = t/ω, σ = 2(n2p3)1/3+η/s and ξ = 24ω/c2(1+3η)(1−2/ω).

Note that

t ≥ c(n log 8)1/3 ≥ cn1/3 and ξ < 1. (2.37)

We first check that condition (2.30) holds for large enough n. We have ω ≥ 4

by the choice of ω. Moreover, we have σ → 0 as n → ∞ because of (2.34).

Finally, from (2.36) and the fact that σ → 0, we have

s3

n
=
( c
ω

)3

log n2p3 ≥ 3

(
1

3
+ η

)
log n2p3 ≥ 2(1/3 + η)

1− σ
log n2p3 =

2

1− σ
log

σs

2
,

which completes the verification of (2.30). Hence Lemma 2.3.3 implies that

P ([n]p contains a Sidon set of size t) ≤ |Zn(t)|pt ≤
(

12ωnp

t(tσ)1−2/ω

)t
. (2.38)

Making use of the first equation of (2.37) and the fact that tσ = ωsσ =

2ω(n2p3)1/3+η, we see that the upper bound in (2.38) is at most

(
12ωnp

cn1/3(2ω)1−2/ω(n2p3)(1/3+η)(1−2/ω)

)t
≤
(

12ω

c(2ω)1−2/ω
· n2/3p

(n2p3)(1/3+η)(1−2/ω)

)t
=

(
12ω2/ω

21−2/ωc(n2p3)(1/3+η)(1−2/ω)−1/3

)t
, (2.39)

which, by (2.35) and the assumption p ≥ 2n−2/3, is at most(
12ω

21/2c(23)(1/3+η)(1−2/ω)−1/3

)t
≤
(

24ω

c2(1+3η)(1−2/ω)

)t
= ξt. (2.40)

To complete the proof, it suffices to recall (2.37).
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2.4.2 Proof of the upper bound in Theorem 2.2.6

Suppose 1 ≤ α = α(n) ≤ n1/3, and let p = p(n) = α−1n−1/3(log n)2/3. We show

that w.o.p.

F ([n]p) ≤ c4(n log n)1/3 log n

log(α + log n)
(2.41)

for some absolute constant c4. To this end, we use Theorem 2.2.1. Let σ = 3/4,

s0 = 2(n log n)1/3 and t = ωs0, where

ω = 11e
log n

log(α + log n)
, (2.42)

and note that ω ≥ 2 for sufficiently large n. Hence, by Theorem 2.2.1 and

the union bound, the probability that [n]p contains a Sidon set with at least t

elements can be bounded as follows:

P (F ([n]p) ≥ t) ≤ |Zn(t)|pt ≤ n3s0

(
44enp

t2

)t
= n3s0

(
44enp

ω2s2
0

)ωs0
≤
[(

11e

αω2

)ω
n3

]s0
, (2.43)

where the last inequality follows from

p = α−1n−1/3(log n)2/3 and s0 = 2(n log n)1/3.

For the proof of (2.41), it suffices to show that the base of the exponential

in the right-hand side of (2.43) is bounded away from 1, that is, whether(
11e

αω2

)ω
n3 < 1− ε (2.44)

for some absolute constant ε > 0. Since ω ≥ 11e for sufficiently large n, then

we have (
αω2

11e

)ω
≥ (αω)ω = exp (ω log(αω)) . (2.45)
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We claim that

2 log(αω) ≥ log(α + log n). (2.46)

Observe that since ω ≥ 2, then (2.46) is trivially satisfied if α ≥ log n. On the

other hand, if α ≤ log n, then ω ≥ (log n)/ log log n and hence

2 log(αω) ≥ 2 logω ≥ 2 log log n− 2 log log log n ≥ log(2 log n) ≥ log(α+ log n).

It follows from (2.42), (2.45) and (2.46) that(
αω2

11e

)ω
≥ exp (ω log(αω)) ≥ exp (5e log n) ≥ 2n3

and hence (2.44) holds, completing the proof of (2.41).

2.4.3 Proof of the upper bounds in Theorem 2.2.7

Suppose that β = β(n) ≥ 1 and let p = p(n) = βn−1/3(log n)2/3. Let σ = 3/4,

s0 = 2(n log n)1/3 and t = ωs0 for some ω ≥ 2. Similarly as in the proof of the

upper bound in Theorem 2.2.6, see (2.43), using Theorem 2.2.1, we estimate

P (F ([n]p) ≥ t) ≤ |Zn(t)|pt ≤
[(

11eβ

ω2

)ω
n3

]s0
. (2.47)

We split into two cases, depending on the order of magnitude of β.

(Case I) If β(n) ≤ (log n)2, then we let

α = β−1(log n)2 and ω = (11e log n)/ log(eα)

so that t = ωs0 = 22e
√
np ·
√
α/ log(eα). Note that

(
11eβ

ω2

)ω
=

(
11e(log n)2

αω2

)ω
=

(
(log(eα))2

11eα

)11e(log(eα))−1 logn

. (2.48)
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Since the function f(x) =
(

x2

11ex

)1/x

= 1
e

(
x2

11

)1/x

is bounded by

e
√

4/11/e−1 = 0.459 · · ·

on the interval [1,∞), it follows from (2.48) that (we let x = log(eα))(
11eβ

ω2

)ω
≤
(

1

2

)11e logn

≤ n−4,

which, together with (2.47), proves that w.o.p. we have

F ([n]p) ≤ t = c6
√
np ·

√
α

1 + logα
,

where c6 is an absolute constant.

(Case II) If β(n) ≥ (log n)2, then we let ω = 11e
√
β so that

t = ωs0 = 22e
√
np.

By (2.47), we have

P (F ([n]p) ≥ t) ≤
[
(11e)−11e

√
βn3
]s0
≤
[
(11e)− lognn3

]s0 ≤ e−s0 ,

which proves that w.o.p. we have

F ([n]p) ≤ t = c6
√
np,

where c6 is an absolute constant.
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2.5 Nontrivial solutions in random sets

2.5.1 Estimating the number of nontrivial solutions

A solution of the equation x1 + x2 = y1 + y2 is a quadruplet (a1, a2, b1, b2) ∈
[n]4 = [n]× [n]× [n]× [n] with a1 +a2 = b1 +b2. A solution (a1, a2, b1, b2) of x1 +

x2 = y1 + y2 is called trivial if it is of the form (a1, a2, a1, a2) or (a1, a2, a2, a1).

Otherwise, it is called a nontrivial solution. Let us define a hypergraph and a

random variable that will be important for us.

Definition 2.5.1. Let

S =
{
{a1, a2, a3, a4} : (a1, a2, a3, a4) is a nontrivial solution

of x1 + x2 = y1 + y2

}
. (2.49)

We think of S as a hypergraph on the vertex set [n]. As usual, for R ⊂ [n], we

let S[R] denote the subhypergraph of S induced on R. Let X be the random

variable
∣∣S[[n]p

]∣∣, that is, the number of hyperedges of S induced by [n]p.

In Lemma 2.5.4 below, we give an estimate for X that will be used in the

proof of Theorem 2.2.3 and in the proofs of the lower bounds in Theorems 2.2.5–

2.2.7.

To estimate X, we have to deal with the issue of ‘repeated entries’ in a

hyperedge {a1, a2, b1, b2} ∈ S. Indeed, if {a1, a2, a3, a4} ∈ S, with a1 ≤ a2 ≤
a3 ≤ a4, we may have a2 = a3, but no other equality can occur. Hence the

hypergraph S has hyperedges of size 4 and 3. Based on this, we make the

following definition.

Definition 2.5.2. For i = 3 and 4, let Si be the subhypergraph of S with all

the hyperedges of size i. Furthermore, let Xi :=
∣∣Si[[n]p

]∣∣.
We clearly have

S = S4 ∪ S3 and S4 ∩ S3 = ∅ (2.50)
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and hence

X = X4 +X3. (2.51)

In order to estimate X, we estimate X4 and X3 separately.

Lemma 2.5.3 Fix δ > 0. The following assertions hold w.o.p.

(i) If p ≥ n−3/4+δ, then X4 = n3p4(1/12 + o(1)).

(ii) If p� n−1, then X3 = O(max{n2p3, n3δ}).

We remark that the constant implicit in the big-O notation in (ii) above is

an absolute constant. The proof of Lemma 2.5.3 is based on a concentration

result due to Kim and Vu [25]. We shall introduce the Kim–Vu polynomial

concentration result in Section 2.5.2 and prove Lemma 2.5.3 in Section 2.5.3.

Assuming Lemma 2.5.3, we are ready to estimate X.

Lemma 2.5.4 Fix δ > 0 and suppose p ≥ n−3/4+δ. Then, w.o.p., X =

n3p4(1/12 + o(1)).

Proof Let X = X([n]p) be as defined in Definition 2.5.1 and recall (2.51).

From the assumption that p ≥ n−3/4+δ, we see that the estimates for X4 and X3

given in Lemma 2.5.3(i) and (ii) do hold w.o.p. Since the inequality np � 1

yields n2p3 � n3p4 and we also have n3δ � n4δ ≤ n3p4, because p ≥ n−3/4+δ, we

infer max{n2p3, n3δ} � n3p4, and hence, w.o.p., X3 � X4. It follows from (2.51)

and the estimate in Lemma 2.5.3(i) that X = n3p4(1/12+o(1)) holds w.o.p. �

It now remains to prove Lemma 2.5.3. We first introduce the main tool we

shall use in the proof of that lemma, due to Kim and Vu [25].

2.5.2 The Kim–Vu polynomial concentration result

Let H = (V,E) be a hypergraph on the vertex set V = [n]. We assume each

hyperedge e ∈ E(H) has a real weight w(e). Let [n]p be a random subset of [n]

obtained by choosing each element i ∈ [n] independently with probability p and
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let H
[
[n]p
]

be the subhypergraph of H induced on [n]p. Let Y be the sum of the

weights of all the hyperedges in H
[
[n]p
]
, that is, Y =

∑
e∈H[[n]p] w(e). Kim and

Vu obtained a concentration result for the random variable Y . We now proceed

to present their result [25] (see also Theorem 7.8.1 in Alon and Spencer [3]).

We start by introducing basic definitions and notation (we follow [3]). Let k

be the maximum cardinality of the hyperedges inH. For a set A ⊂ [n] (|A| ≤ k),

let YA be the sum of the weights of all the hyperedges in H
[
[n]p
]

containing A,

that is, YA =
∑

A⊂e∈H[[n]p] w(e). Let EA = E(YA | A ⊂ [n]p) be the expectation

of YA conditioned on the event that A should be contained in [n]p. Let Ei be

the maximum value of EA over all A ⊂ [n] with |A| = i. Note that E0 = E(Y ).

Let µ = E(Y ) and set

E ′ = max{Ei : 1 ≤ i ≤ k} and E = max{E ′, µ}. (2.52)

Theorem 2.5.5 (Kim–Vu polynomial concentration inequality) With the above

notation, we have, for every λ > 1,

P
[
|Y − µ| > ak(EE

′)1/2λk
]
< 2e2e−λnk−1,

where ak = 8k(k!)1/2.

2.5.3 Proof of Lemma 2.5.3

We prove (i) and (ii) of Lemma 2.5.3 separately.

Proof of Lemma 2.5.3(i) We need to show that, for p ≥ n−3/4+δ, where δ > 0

is fixed, we have X4 = n3p4(1/12 + o(1)) w.o.p. We first estimate the expecta-

tion µ(X4) of X4.

Suppose {i, j, k, l} ∈ S4 with 0 ≤ i < j < k < l ≤ n − 1. Note that

i+l = j+k. Let us fix 0 ≤ i ≤ n−1. If j ≥ (n+i)/2, then l = j+k−i > 2j−i ≥
n + i − i = n, which contradicts l ≤ n − 1. Hence we have i < j < (n + i)/2.

For fixed i and j, if k > n + i − j − 1, then l = j + k − i > n − 1, which
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contradicts l ≤ n − 1. Therefore we have j < k ≤ n + i − j − 1. Once i, j

and k are chosen, the value of l is determined by the condition i + l = j + k.

Consequently,

|S4| =
n−1∑
i=0

(n+i)/2∑
j=i

n+i−j−1∑
k=j

1 =
n−1∑
i=0

(n+i)/2∑
j=i

(n+ i− 2j)

∼ n3

∫ 1

0

∫ (1+x)/2

x

(1 + x− 2y)dydx ∼ 1

12
n3,

where for the first identity we ignore the floors or ceilings. Hence

µ(X4) = |S4|p4 =

(
1

12
+ o(1)

)
n3p4. (2.53)

Next we apply Theorem 2.5.5 to prove that X4 is concentrated around its ex-

pectation µ(X4). To this end, we compute the quantities Ei (1 ≤ i ≤ 4)

and E ′ and E defined in (2.52). We first estimate E1. For a ∈ [n], consider

the quantity E{a}. The number of hyperedges in S4 containing a is O(n2) and

the probability that one such hyperedge is in [n]p, conditioned on a ∈ [n]p,

is p3. We conclude that, for any a ∈ [n], we have E{a} = O(n2p3). Con-

sequently, E1 = max{EA : |A| = 1} = O(n2p3). A similar argument gives

that Ei = max{EA : |A| = i} = O(n3−ip4−i) for all 1 ≤ i < 4. There-

fore, since np � 1, we have Ei = O(n2p3) for all 1 ≤ i < 4. Also, clearly,

E4 = max{EA : |A| = 4} = 1. Thus

E ′ = max{Ei : 1 ≤ i ≤ 4} = O(max{n2p3, 1}), (2.54)

and E = max{E ′, µ(X4)} = O(max{n2p3, 1, n3p4}). Since p ≥ n−3/4+δ > n−3/4,

we have

E = O(n3p4). (2.55)

In view of (2.54) and (2.55), a simple computation implies the following:
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(Case I) If n−3/4+δ ≤ p ≤ n−2/3, then

E ′ = O(1) and E = O(n3p4). (2.56)

(Case II) If p ≥ n−2/3, then

E ′ = O(n2p3) and E = O(n3p4). (2.57)

We now estimate X4 for each case separately.

(Case I) Suppose n−3/4+δ ≤ p ≤ n−2/3. In this case, (2.56) implies that

(EE ′)1/2 = O(n3p4 · 1)1/2 = O(n3p4)1/2. (2.58)

Set λ = (n3p4)1/12. By the assumption p ≥ n−3/4+δ, we have

λ = (n3p4)1/12 ≥ nδ/3. (2.59)

Also n3p4 ≥ n4δ � 1, and hence combining (2.58) and λ = (n3p4)1/12 implies

that

(EE ′)1/2λ4 = O(n3p4)1/2(n3p4)1/3 = O(n3p4)5/6 = o(n3p4). (2.60)

Theorem 2.5.5 together with (2.59) then yields that

P
[
|X4 − µ(X4)| > a4(EE ′)1/2λ4

]
< 2e2e−λn3 ≤ 2e2e−n

δ/3

n3,

where a4 = 84(4!)1/2. Given (2.60), we have that w.o.p.

X4 = µ(X4) + o(n3p4). (2.61)
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(Case II) Suppose p ≥ n−2/3. In this case, (2.57) yields that

(EE ′)1/2 = O(n3p4n2p3)1/2 = O
( n3p4

(np)1/2

)
. (2.62)

Set λ = (np)1/12. By the assumption p ≥ n−2/3,

λ ≥
(
n1/3

)1/12
= n1/36. (2.63)

Since np� 1, combining (2.62) and λ = (np)1/12 implies that

(EE ′)1/2λ4 = O
( n3p4

(np)1/2

)
(np)1/3 = O

( n3p4

(np)1/6

)
= o(n3p4). (2.64)

Theorem 2.5.5 together with (2.63) then yields that

P
[
|X4 − µ(X4)| > a4(EE ′)1/2λ4

]
< 2e2e−λn3 ≤ 2e2e−n

1/36

n3,

where a4 = 84(4!)1/2. Given (2.64), we have that w.o.p.

X4 = µ(X4) + o(n3p4). (2.65)

In view of (2.53), it follows from (2.61) and (2.65) that, for p ≥ n−3/4+δ,

we have X4 = n3p4(1/12 + o(1)) w.o.p. This completes the proof of (i) of

Lemma 2.5.3. �

Proof of Lemma 2.5.3(ii) Fix δ > 0. We show that, w.o.p.,

X3 = O(max{n2p3, n3δ})

for p� n−1. First we estimate the expectation µ(X3) of X3. Since |S3| = O(n2),

we have

µ(X3) = O(n2p3). (2.66)

Next, we prove a concentration result for X3 applying Theorem 2.5.5. To
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this end, we estimate the quantities Ei (1 ≤ i ≤ 3). As in the proof of

Lemma 2.5.3(i), one may check that E ′ = max1≤i≤3Ei = O(max{np2, p, 1})
and hence E = max{E ′, µ(X3)} = O(max{np2, p, 1, n2p3}). By the assump-

tion np� 1, we infer

E ′ = O(max{np2, 1}) and E = O(max{n2p3, 1}). (2.67)

Based on (2.67), we consider the cases p ≥ n−2/3+δ and n−1 � p ≤ n−2/3+δ

separately.

We first suppose p ≥ n−2/3+δ. From (2.67), we have E ′ = O(max{np2, 1})
and E = O(n2p3). A proof similar to the proofs of (2.61) and (2.65) shows

that, for p ≥ n−2/3+δ, w.o.p., X3 = µ(X3) + o(n2p3). This together with (2.66)

implies that for p ≥ n−2/3+δ, w.o.p.,

X3 = O(n2p3). (2.68)

We now suppose n−1 � p ≤ n−2/3+δ. In this case, (2.67) yields that E ′ = O(1)

and E = O(n3δ) and hence, setting λ = nδ/2, we have

(EE ′)1/2λ3 = O(n(3/2)δ)n(3/2)δ = O(n3δ). (2.69)

Theorem 2.5.5 with λ = nδ/2 yields

P
[
|X3 − µ(X3)| > a3(EE ′)1/2λ3

]
< 2e2e−λn2 ≤ 2e2e−n

δ/2

n2, (2.70)

where a3 = 83(3!)1/2. Inequality (2.70) together with (2.69) implies that, for

n−1 � p ≤ n−2/3+δ, w.o.p., X3 = µ(X3) +O(n3δ). Since, under the assumption

p ≤ n−2/3+δ, we have µ(X3) = O(n2p3) = O(n3δ), we infer that, for n−1 � p ≤
n−2/3+δ, w.o.p.,

X3 = O(n3δ). (2.71)

Combining (2.68) and (2.71) completes the proof of (ii) of Lemma 2.5.3. �
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2.6 Proof of Theorem 2.2.3

2.6.1 Theorem 2.2.3 for smaller p = p(n)

We first consider the case in which n−1 � p� n−2/3.

Proof of (2.8) in Theorem 2.2.3 Suppose n−1 � p � n−2/3. We show

that (2.8) holds almost surely, using the usual deletion method. Let S, S
[
[n]p
]

and X be as in Definition 2.5.1. If we delete one vertex from each hyperedge

in S
[
[n]p
]
, the remaining vertex set is an independent set of S

[
[n]p
]
, and hence

it is a Sidon set contained in [n]p. Consequently, F ([n]p) ≥
∣∣[n]p

∣∣− ∣∣S[[n]p
]∣∣ =∣∣[n]p

∣∣−X. Since trivially F ([n]p) ≤
∣∣[n]p

∣∣, we have
∣∣[n]p

∣∣−X ≤ F ([n]p) ≤
∣∣[n]p

∣∣.
Note that the Chernoff bound gives that, for p � n−1, we almost surely have∣∣[n]p

∣∣ = np + o(np). Therefore, in order to show (2.8), it only remains to show

that X = o(np) almost surely. Recall that Xi is the number of edges of car-

dinality i in S
[
[n]p
]

(i ∈ {3, 4}), and that X = X3 + X4 (see Definition 2.5.2

and (2.51)). Equations (2.53) and (2.66), together with n−1 � p� n−2/3, imply

that E(X) = Θ(n3p4)+O(n2p3) = Θ(n3p4) = o(np). Hence Markov’s inequality

gives that we almost surely have X = o(np), and our result follows. �

2.6.2 Theorem 2.2.3 for larger p = p(n)

We now consider the wider range n−1 � p ≤ 2n−2/3.

Proof of (2.9) in Theorem 2.2.3 We have already shown that, if n−1 � p�
n−2/3, then F ([n]p) = (1 + o(1))np holds almost surely. Therefore, it suffices

to show that (2.9) holds if, for example, n−2/3/ log n ≤ p ≤ 2n−2/3. We pro-

ceed as in the proof of (2.8), given in Section 2.6.1 above. We have already

observed that |[n]p| = np(1 + o(1)) almost surely as long as p � n−1, and

therefore F ([n]p) ≤ np(1 + o(1)) almost surely in this range of p. It now suf-

fices to recall that F ([n]p) ≥ |[n]p| − X and to prove that, almost surely, we

have X ≤ (2/3+o(1))np if n−2/3/ log n ≤ p ≤ 2n−2/3. But with this assumption
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on p, Lemma 2.5.4 tells us that, w.o.p.,

X =
1

12
n3p4 + o(n3p4) =

1

12
n3p4 + o(np) ≤

(
2

3
+ o(1)

)
np, (2.72)

as required. �

2.7 The lower bounds in Theorems 2.2.5–2.2.7

Let us first state a simple monotonicity result (see, for example, [23, Lemma

1.10]) that will be used a few times in this section.

Fact 2.7.1 Let p = p(n) and q = q(n) be such that 0 ≤ p < q ≤ 1, and

let a = a(n) > 0 and b = b(n) > 0 be functions of n.

(i) If F ([n]p) ≥ a holds w.o.p., then F ([n]q) ≥ a holds w.o.p.

(ii) If F ([n]q) ≤ b holds w.o.p., then F ([n]p) ≤ b holds w.o.p.

Statements (i) and (ii) in Fact 2.7.1 are, in fact, equivalent. We state them

both explicitly just for convenience.

2.7.1 Proofs of the lower bounds in Theorems 2.2.5 and

2.2.6

The lower bounds in Theorems 2.2.5 and 2.2.6 rely on a result on independent

sets in hypergraphs. Before stating the relevant result, we introduce some defi-

nitions. A hypergraph is called simple if any two of its hyperedges share at most

one vertex. A hypergraph is r-uniform if all its hyperedges have cardinality r.

We shall use the following extension of a celebrated result due to Ajtai, Komlós,

Pintz, Spencer and Szemerédi [1], obtained by Duke, Lefmann and Rödl [14].

Lemma 2.7.1 Let H be a simple r-uniform hypergraph, r ≥ 3, with N vertices

and average degree at most tr−1 for some t. Then H has an independent set of
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size at least

c
(log t)1/(r−1)

t
N, (2.73)

where c = c(r) is a positive constant that depends only on r.

We now briefly discuss how to obtain a lower bound on F ([n]p) using Lemma

2.7.1. Let S
[
[n]p
]

be the hypergraph in Definition 2.5.1. Since an independent

set of S
[
[n]p
]

is a Sidon set contained in [n]p, independent sets in S
[
[n]p
]

give

lower bounds for F ([n]p). To apply Lemma 2.7.1, we shall obtain a simple 4-

uniform subhypergraph S∗ of S
[
[n]p
]

by deleting suitable vertices from S
[
[n]p
]
.

Lemma 2.7.1 will then tell us that S∗ has a suitably large independent set, and

this will yield our lower bound on F ([n]p). In fact, we obtain the following

result.

Lemma 2.7.2 There is an absolute constant d > 0 such that, for p ≥ 2n−2/3,

w.o.p. F ([n]p) ≥ d (n log(n2p3))
1/3

holds.

Lemma 2.7.2 easily implies the lower bounds in Theorems 2.2.5 and 2.2.6.

The proof of Lemma 2.7.2 will be given in Section 2.7.3.

2.7.2 Proof of the lower bound in Theorem 2.2.7

For larger p = p(n), it turns out that, instead of using Lemma 2.7.1, it is better

to make use of the fact that [n] contains a Sidon set of cardinality (1 + o(1))
√
n

(see Section 2.1). An immediate use of this fact gives the lower bound (1 +

o(1))p
√
n, but one can, in fact, do better. The following is a particular case of

a very general theorem of Komlós, Sulyok and Szemerédi [33].

Lemma 2.7.3 There is an absolute constant d > 0 such that, for every suffi-

ciently large m and every set of integers A with |A| = m, we have

F (A) ≥ d · F ([m]).

Since the Chernoff bound gives that, for p � 1/n, we almost surely have

|[n]p| = (1 + o(1))np, Lemma 2.7.3 together with F ([m]) ≥ (1 + o(1))
√
m gives
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the lower bound in Theorem 2.2.7. Clearly, to have this result with ‘w.o.p.’, it

suffices to assume p � (log n)/n. There is an alternative, simple proof of the

following fact:

(*) if (log n)2/n� p ≤ 1/3, then, w.o.p.,

F ([n]p) ≥
(

1

3
√

2
+ o(1)

)
√
np. (2.74)

Fact 2.7.1 then implies that, for p � (log n)2/n, we have, w.o.p., F ([n]p) ≥
(1/3
√

6 + o(1))
√
np.

Proof of (*) Let (log n)2/n� p ≤ 1/3. We shall show that (2.74) holds w.o.p.

We define a partition of [n] = {0, . . . , n − 1} into equal length intervals, and

consider a family of intervals in the partition satisfying the property that, if

we choose an arbitrary element from each interval, the set of chosen elements

forms a Sidon set. We shall choose the length of the intervals so that [n]p will

intersect each interval in a constant number of elements on average. A simple

analysis of this construction yields that (2.74) holds w.o.p. The details are as

follows.

Let I = {Ii : 0 ≤ i < dn/xe} be the partition of [n] into consecutive intervals

with x = b1/pc elements each. More precisely, let Ii = [xi, x(i + 1) − 1] ∩ [n]

for all 0 ≤ i < dn/xe. In what follows, we ignore Idn/xe−1 if this interval

has fewer than x elements. Let Ieven = {I0, I2, I4, . . . } ⊂ I be the set of all

intervals with even indices and let y = |Ieven|. Note that y ≥ (1/2)bn/xc − 1 ≥
(1/2)bnpc − 1 = (1/2 + o(1))np. By the Chowla–Erdős result [10, 16], there

exists a Sidon subset S of [y] with

|S| = (1 + o(1))
√
y =

(
1√
2

+ o(1)

)
√
np. (2.75)

We “identify” [y] and Ieven by the bijection i 7→ I2i. Let {ai : i ∈ S} be a set of

integers with ai ∈ I2i for all i ∈ S. We claim that {ai : i ∈ S} is a Sidon set.
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Suppose ai1 + ai2 = aj1 + aj2 , where i1, i2, j1 and j2 ∈ S. Observe that

ai1 + ai2 ∈ I2i1+2i2 ∪ I2i1+2i2+1 and aj1 + aj2 ∈ I2j1+2j2 ∪ I2j1+2j2+1, (2.76)

which, together with the assumption that ai1 + ai2 = aj1 + aj2 , implies that i1 +

i2 = j1+j2. Since S is a Sidon set, we have {i1, i2} = {j1, j2}, whence {ai1 , ai2} =

{aj1 , aj2}. This shows that {ai : i ∈ S} is indeed a Sidon set.

We now consider a random set [n]p. An interval I2i (i ∈ S) is said to be

occupied if I2i contains at least one element of [n]p. Let Iocc be the family

of occupied intervals. By the above claim, we have F ([n]p) ≥ |Iocc|. Let us

estimate |Iocc|. Note that each interval I2i (i ∈ S) is independently occupied

with probability

p̃ = 1− (1−p)x = 1− (1−p)b1/pc ≥ 1−e−p(1/p−1) ≥ 1−e−1+p ≥ 1−e−2/3 > 1/3,

(2.77)

where the third inequality follows from the assumption p ≤ 1/3. Thus, under

the assumption (log n)2/n � p ≤ 1/3, the Chernoff bound, (2.75) and (2.77)

give that, w.o.p.,

|Iocc| = (1 + o(1))E(|Iocc|) = (1 + o(1))|S|p̃

≥
(

1√
2

+ o(1)

)
√
np · 1

3
=

(
1

3
√

2
+ o(1)

)
√
np.

Recalling that F ([n]p) ≥ |Iocc|, statement (*) follows. �

2.7.3 Proof of Lemma 2.7.2

In Lemma 2.7.4 below, we prove Lemma 2.7.2 for a narrower range of p. We

shall then invoke monotonicity (Fact 2.7.1) to obtain Lemma 2.7.2 in full.

Lemma 2.7.4 There is an absolute constant d > 0 such that, for 2n−2/3 ≤ p�
n−2/3+1/15, we have F ([n]p) ≥ d(n log n2p3)1/3 w.o.p.
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Proof Let S
[
[n]p
]
, Si
[
[n]p
]
, X and Xi be as in Definitions 2.5.1 and 2.5.2. Re-

call that the size of an independent set of S
[
[n]p
]

gives a lower bound on F ([n]p).

We wish to apply Lemma 2.7.1. However, since S
[
[n]p
]

may be neither sim-

ple nor uniform, we consider a suitable induced subhypergraph S∗ ⊂ S
[
[n]p
]
,

as discussed just after the statement of Lemma 2.7.1. We have S
[
[n]p
]

=

S3

[
[n]p
]
∪S4

[
[n]p
]
. Let S̃4 be the set of all hyperedges in S4

[
[n]p
]

that share at

least two vertices with some other hyperedge in S4

[
[n]p
]
. If we delete one vertex

from each hyperedge of S3

[
[n]p
]
∪ S̃4, the remaining induced subhypergraph S∗

of S
[
[n]p
]

is both simple and 4-uniform. To apply Lemma 2.7.1 to S∗, we now

estimate |V (S∗)| and the average degree of S∗.
First we consider |V (S∗)|. Note that |[n]p|−X3−

∣∣S̃4

∣∣ = |[n]p|−
∣∣S3

[
[n]p
]∣∣−∣∣S̃4

∣∣ ≤ |V (S∗)| ≤ |[n]p|. We shall show the following two facts.

Fact 2.7.2 Fix δ > 0 and suppose n−1+δ � p � n−1/2. We have, w.o.p.,

X3 = o(np).

Fact 2.7.3 Fix δ > 0 and suppose n−1+δ � p � n−2/3+1/15. We have, w.o.p.,∣∣S̃4

∣∣ = o(np).

Since the Chernoff bound gives that
∣∣[n]p

∣∣ = np + o(np) w.o.p. for p �
(log n)/n, Facts 2.7.2 and 2.7.3 imply that, w.o.p., we have

|V (S∗)| = np(1 + o(1)). (2.78)

Next we consider the average degree of S∗. Owing to S∗ ⊂ S
[
[n]p
]
, (2.78)

and Lemma 2.5.4, the average degree 4|S∗|/|V (S∗)| of S∗ is such that, w.o.p.,

4|S∗|/|V (S∗)| ≤ 4X/|V (S∗)| ≤ n2p3.

We now are ready to apply Lemma 2.7.1. In view of our average degree

estimate above, we set t = (n2p3)1/3. Given (2.78), Lemma 2.7.1 implies that,
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w.o.p., the hypergraph S∗, and thus S
[
[n]p
]
, has an independent set of size

c
(log t)1/3

t
|V (S∗)| ≥ c

[
(1/3) log(n2p3)

]1/3
(n2p3)1/3

np(1 + o(1)) ≥ d
(
n log(n2p3)

)1/3
,

(2.79)

for, say, d = c/2. This completes the proof of Lemma 2.7.4. �

In order to finish the proof of Lemma 2.7.4, it remains to prove Facts 2.7.2

and 2.7.3.

Proof of Fact 2.7.2 Lemma 2.5.3(ii) tells us that, w.o.p.,

X3 = O(max{n2p3, nδ}).

From the assumption n−1+δ � p � n−1/2, we have both n2p3 � np and nδ �
np, whence, w.o.p., X3 = o(np). �

Proof of Fact 2.7.3 We give a sketch of the proof. Let P be the family of the

pairs {E1, E2} of distinct members E1 and E2 of S4

[
[n]p
]

with |E1 ∩ E2| ≥ 2.

Observe that ∣∣S̃4

∣∣ ≤ 2|P|. (2.80)

An argument similar to one in the proof of Lemma 2.5.3(ii), based on the Kim–

Vu polynomial concentration result, tells us that |P| = O(max{E
[
|P|
]
, nδ}) =

O
(

max{n4p6, nδ}
)

holds w.o.p. From the assumption n−1+δ � p� n−2/3+1/15 =

n−3/5, we have both n4p6 � np and nδ � np, and hence |P| = o(np) holds w.o.p.

Given (2.80), we have, w.o.p.,
∣∣S̃4

∣∣ = o(np). �

In order to establish Lemma 2.7.2, we need to expand the range of p in

Lemma 2.7.4 from 2n−2/3 ≤ p� n−2/3+1/15 = n−3/5 to p ≥ 2n−2/3.

Proof of Lemma 2.7.2 To complement the range of p covered by Lemma 2.7.4,

it is enough to show that, say, for p ≥ n−2/3+1/16, we have, w.o.p., F ([n]p) ≥
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d′ (n log(n2p3))
1/3

for some absolute constant d′ > 0. Lemma 2.7.4 implies that,

for p = n−2/3+1/16, we have, w.o.p.,

F ([n]p) ≥ d
[
n log(n2n−2+3/16)

]1/3
= d
[
n log(n3/16)

]1/3
= d
[
n(3/16) log n

]1/3
> d(1/16)1/3

[
n(2 log n)

]1/3
= d′

[
n log n2

]1/3
,

where d′ = d(1/16)1/3. By Fact 2.7.1, we infer that, for p ≥ n−2/3+1/16, we have,

w.o.p., F ([n]p) ≥ d′
[
n log n2

]1/3 ≥ d′
[
n log(n2p3)

]1/3
, completing the proof of

Lemma 2.7.2. �



Chapter 3

Finite Bh-sets

3.1 Introduction

Let h ≥ 2 be a fixed integer. A set S of positive integers is called a Bh-set if all

the sums a1 + a2 + · · · + ah, with a1 ≤ a2 ≤ · · · ≤ ah and ai ∈ S, are distinct.

Note that a B2-set is also called a Sidon set. A well-known problem on Bh-

sets is the determination of Fh(n), where Fh(n) denotes the maximum possible

size of Bh-sets of [n] = {1, · · · , n}. The results of Chowla, Erdős, Singer, and

Turán [10, 16, 17, 42] imply that F2(n) = (1 + o(1))
√
n. In 1962 Bose and

Chowla [7] showed that Fh(n) ≥ (1 + o(1))n1/h for h ≥ 3. On the other hand,

various improvements on constants ch = ch(h) for which Fh(n) ≤ chn
1/h were

given in [9, 11, 15, 24, 32, 34, 35, 41]. Currently, the smallest known upper

bound of ch is given by Green [19] as

c3 < 1.519, c4 < 1.627, and ch ≤ (1/2e)
(
h+ (3/2) log h+ oh(log h)

)
.

For a wealth of related material, the reader is referred to the classical monograph

of Halberstam and Roth [21] and to a recent survey by O’Bryant [36] and the

references therein.

We investigate Bh-sets contained in random sets of integers. Though our
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results can be obtained for Bh-sets with h ≥ 3, we focus on B3-sets for a simpler

explanation. We obtain upper and lower bounds on their relative density, and

gain essentially tight bounds for some range of the size of a random set. Our

approach is based on finding upper bounds for the number of B3-sets of a given

size contained in [n]. Besides being the key lemma to our probabilistic results,

our upper bounds also address a natural generalization of a problem of Cameron

and Erdős [8].

We discuss our bounds on the number of B3-sets and our probabilistic results

in the next two subsections.

3.1.1 A generalization of a problem of Cameron and Erdős

Let Zhn be the family of Bh-sets contained in [n]. An interesting question is to

estimate |Zhn |. Observe that one trivially has

2Fh(n) ≤ |Zhn | ≤
Fh(n)∑
i=1

(
n

i

)
≤ Fh(n)

(
n

Fh(n)

)
. (3.1)

From the result that (1 + o(1))n1/h ≤ Fh(n) ≤ cn1/h for a constant c only

depending on h, we have

2(1+o(1))n1/h ≤ |Zhn | ≤ nc
′n1/h

, (3.2)

where c′ is a constant only depending on h. In this paper we improve the upper

bound on |Z3
n| in (3.2) as follows:

Theorem 3.1.1 (Dellamonica, Kohayakawa, Lee, Rödl, and Samotij [13]) There

exists an absolute constant C such that |Z3
n| ≤ 2Cn

1/3
.

The proof of Theorem 3.1.1 is given in Section 3.2.1.

Remark 3.1.2. One may in fact prove the following about |Zhn | with a similar

argument:

There exists a constant ch, only depending on h, such that |Zhn | ≤ 2chn
1/h

.



3.1. Introduction 43

3.1.2 Probabilistic results

We investigate B3-sets contained in a sparse, random set of [n], that is, we

replace the ‘environment’ [n] by a sparse, random subset [n]m of [n], where [n]m

denotes a random subset of [n] of cardinality m = m(n), with all the subsets of

[n] with size m having the same probability. Then we ask how large a subset

S ⊂ [n]m can be, if we require that S should be a B3-set. The following definition

will provide a notation suitable for this problem.

Definition 3.1.3. For a set R ⊂ [n], denote by F3(R) the maximum size of a

B3-set contained in R.

We are therefore interested in the random variable F3([n]m). The deletion

methods yield that almost surely F3([n]m) = (1− o(1))m if m = m(n)� n1/5.

On the other hand, the result of Schacht [40] and Conlon and Gowers [12]

yield that almost surely F3([n]m) = o(m) if m = m(n) � n1/5. Thus F3([n]m)

undergoes a sudden change of its behavior at m = n1/5+o(1). The following

abridged version of our results gives us quite precise information on F3([n]m)

for a large range of m, and non-trivial, but loose bounds for n2/5 ≤ m ≤ n3/4—

see Figure 3.1.

Theorem 3.1.4 (Dellamonica, Kohayakawa, Lee, Rödl, and Samotij [13]) Let

0 ≤ a ≤ 1 be a fixed constant. Suppose m = m(n) = (1 + o(1))na. Then almost

surely

nb1+o(1) ≤ F3([n]m) ≤ nb2+o(1), (3.3)

where

b1(a) =


a, for 0 ≤ a < 1/5

1/5, for 1/5 ≤ a < 3/5

a/3, for 3/5 ≤ a ≤ 1

(3.4)
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Figure 3.1: The graphs of b1 = b1(a) and b2 = b2(a).

and

b2(a) =



a for 0 ≤ a ≤ 1/5

1/5 for 1/5 ≤ a ≤ 2/5

a− 1/5 for 2/5 ≤ a ≤ 9/20

1/4 for 9/20 ≤ a ≤ 3/4

a/3 for 3/4 ≤ a ≤ 1.

(3.5)

Remark 3.1.5. One may in fact show a similar result on Fh([n]m) for any

h ≥ 3.

The graphs of b1 = b1(a) and b2 = b2(a) are given in Figure 3.1. The point

(1, 1/3) in the graph is clear from the above result that (1+o(1))n1/3 ≤ F3(n) ≤
cn1/3, for some absolute constant c. The behavior of b1 = b2 in the interval

0 ≤ a ≤ 1/5 is not hard to establish. The fact that the point (1/5, 1/5) could be

an interesting point in the graph is suggested by the results of Schacht [40] and

Conlon and Gowers [12]. We determined b = b(a) for which F3([n]m) = nb+o(1),

where m = (1 + o(1))na, in the intervals 1/5 ≤ a ≤ 2/5 and 3/4 ≤ a ≤ 1. It

is somewhat surprising that b = b1 = b2 should be constant for 1/5 ≤ a ≤ 2/5.

An interesting open question is the existence and determination of b = b(a)

such that F3([n]m) = nb+o(1) for 2/5 ≤ a ≤ 3/4. We state our results in full

in Section 3.2. The upper bounds of Theorem 3.1.4 are proved in Section 3.2.2
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and the lower bounds are proved in Section 3.4.

Remark 3.1.6. In some of the proofs below it will be convenient to use the

Binomial random model [n]p, which is a random subset of [n] where each element

is selected to be in the set independently with probability p. The models [n]m

and [n]p, with p = m/n, are fairly similar: if a property holds for [n]p with

probability 1 − o(1/
√
m) then the same property holds almost surely for [n]m

(this is known as Pittel’s inequality, see [23, p. 17]).

3.2 Refined results

3.2.1 A refinement of Theorem 3.1.1

The results in this paper are obtained by estimating the number of B3-sets

of given cardinality, in other words, by bounding |Zn(t)|. Since a threshold

phenomenon occurs at t ∼ n1/5, we are particularly interested in bounding

|Zn(t)| for t ∼ n1/5. The following theorem compiles the upper bounds we

obtain here. These bounds can be used to establish Theorem 3.1.1 and prove

the upper bounds on Theorem 3.1.4.

Theorem 3.2.1 The following bounds apply to |Zn(·)|:

(i) There is an absolute constant c > 0 such that for any t ≥ n1/4(log n)2,

|Zn(t)| ≤
(
cn

t3

)t
.

(ii) For any 0 < ε < 1/5 there exists Cε > 0 such that for t = Cε(n log n)1/5,

we have |Zn(t)| ≤ nt(3/5+ε).

Part (i) is stated as Lemma 3.3.7 below and Part (ii) is Lemma 3.3.13. Let

us show how Theorem 3.2.1(i) implies Theorem 3.1.1.

Proof of Theorem 3.1.1 The total number of subsets of [n] having fewer

than n1/4(log n)2 elements is 2o(n
1/3). Therefore we can focus on B3-sets of
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size n1/4(log n)2 ≤ t < n1/3. In particular, by Theorem 3.2.1(i),

|Z3
n| ≤ 2o(n

1/3) +
n1/3∑

t=n1/4(logn)2

(
cn

t3

)t
. (3.6)

Now note that we have(
cn

t3

)t/(
cn

(t− 1)3

)t−1

=
cn

t3

(
1− 1

t

)3(t−1)

≥ cn

e3t3
.

The ratio above is at least 2 provided t3 < cn/(2e3), thus, for an appropriate

choice of the absolute constant C > 0,

(cn/2e3)1/3∑
t=1

(
cn

t3

)t
≤ 2

(
cn

cn/2e3

)(cn/2e3)1/3

= 2 ·
(
2e3
)(cn/2e3)1/3 � 2Cn

1/3

.

On the other hand,

n1/3∑
t=(cn/2e3)1/3

(
cn

t3

)t
≤

n1/3∑
t=(cn/2e3)1/3

(2e3)t ≤ n1/3(2e3)n
1/3 � 2Cn

1/3

.

Theorem 3.1.1 follows from (3.6) as we bounded the sum on the R-H-S of (3.6).

�

3.2.2 A refinement of Theorem 3.1.4

The following Theorem is a direct corollary of Theorem 3.2.1:

Theorem 3.2.2 There is an absolute constant C > 1 such that for any value

n−1/4(log n)6 < p ≤ 1, almost surely,

F3([n]p) ≤ C(pn)1/3. (3.7)

For any ε > 0 there exists Cε > 0 such that for any 3n−4/5 ≤ p ≤ 1
2
n−3/5−ε,
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almost surely,

F3([n]p) ≤ Cε(n log n)1/5. (3.8)

Moreover, the probability that the inequality above is not satisfied is o
(
2−n

1/5)
.

The following proposition allows us to use estimates on |Zn(t)| in Theo-

rem 3.2.1 to immediately establish Theorem 3.2.2.

Proposition 3.2.3 The expected number of B3-sets of cardinality t in [n]p is

pt |Zn(t)|.

In particular, P
[
F3([n]p) ≥ t

]
≤ pt |Zn(t)|. �

We are now able to give a proof of the upper bound on F3([n]m) given by

Theorem 3.1.4 (see eqs. (3.3), (3.5)).

Proof of the upper bound in Theorem 3.1.4 In this proof, we will use The-

orem 3.2.2 to establish the non-trivial upper bounds of Theorem 3.1.4, namely,

the upper bound function b2(a). We recall that Remark 3.1.6 links the Binomial

random model [n]p, appearing in Theorem 3.2.2, with the random model [n]m

which appears in Theorem 3.1.4.

• Suppose 0 ≤ a ≤ 1/5: b2(a) = a is a trivial upper bound as F3([n]m) ≤ m

with probability 1.

• Suppose 1/5 ≤ a ≤ 2/5: the upper bound b2(a) = 1/5 follows from the

second part of Theorem 3.2.2 (see eq. (3.8)). Indeed, we may fix ε > 0

arbitrarily small, and by Theorem 3.2.2, we have almost surely F3([n]p) <

n1/5+o(1) for 3n−4/5 < p < 1
2
n−3/5−ε. Consequently, almost surely F3([n]m) <

n1/5+o(1) for all m ≤ n2/5.

• Suppose 2/5 < a ≤ 9/20: for p > 1
2
n−3/5−ε, we cannot directly apply

Theorem 3.2.2 and for this reason we will employ the following strategy.

In addition to sampling [n]p, also pick randomly a map φ : [n] → [k],
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where k = 2pn3/5+ε. For each j = 1, . . . , k, let Rj = φ−1(j) ∩ [n]p. Note

that each setRj follows the distribution [n]p/k and that anyB3-set S ⊂ [n]p

induces B3-sets Sj = S ∩ Rj, j = 1, . . . , k. Since p/k = 1
2
n−3/5−ε, by

Theorem 3.2.2, the probability that a given Rj contains a B3-set Sj with

more than Cε(n log n)1/5 elements is o
(
2−n

1/5)
. Consequently, by the union

bound over j = 1, . . . , k, almost surely,

F3([n]p) ≤
k∑
j=1

F3(Rj) ≤ kCε(n log n)1/5

= pn · 2n−2/5+εCε(n log n)1/5

= pn · n−1/5+o(1).

(3.9)

In other words, almost surely, F3([n]m) ≤ mn−1/5+o(1) and therefore b2(a) =

a− 1/5 is an upper bound for this range.

• Suppose 9/20 ≤ a ≤ 3/4: since F3([n]m) is monotone with respect to m,

our upper bound b2(·) should be monotone as well. Since b2(·) satisfies

b2(9/20) = 9/20− 1/5 = 1/4 by the previous statement and, as we show

next, b2(3/4) = 1/4, this monotonicity implies that b2(a) = 1/4 in this

range.

• Suppose 3/4 ≤ a ≤ 1: the upper bound b2(a) follows immediately1 the

first part of Theorem 3.2.2 (see eq. (3.7)).

�

The lower bounds on Theorem 3.1.4 will be proved in Section 3.4.

1The probability that (3.7) holds is at least 1 − exp
{
−Ω
(
(pn)1/3

)}
and therefore Re-

mark 3.1.6 applies here.
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3.3 Proof of Theorem 3.2.1

The proof of Theorem 3.2.1 uses the following strategy. Suppose that a B3-set

S ⊂ [n] of cardinality s is given and one would like to extend it to a larger B3-set.

We will show that if S satisfies a boundedness condition (see Definition 3.3.9

below), then the number of such extensions is fairly small. Moreover, we also

prove that almost all B3-sets of cardinality s are sufficiently bounded in the

sense of Definition 3.3.9. Consequently, in order to provide an upper bound for

the number Zn(t) of B3-sets of size t in [n], for some t > s, we

(i ) estimate the number of B3-sets which are not bounded in the sense of

Definition 3.3.9 and account for at most
(
n
t−s

)
possible extensions of each

of those sets;

(ii ) for each bounded B3-set S, we estimate the number of extensions of S to

a B3-set of cardinality t.

To establish (ii ) we will describe a graph-based approach for bounding the

number of extensions of an arbitrary B3-set S. This approach will shape Defi-

nition 3.3.9 below.

If two distinct elements x, y ∈ [n] \ S satisfy

x+ a1 + a2 = y + b1 + b2, for some {a1, a2}, {b1, b2} ∈
(
S

2

)
, (3.10)

then S ∪ {x, y} is clearly not a B3-set. This simple observation motivates our

next definition.

Definition 3.3.1. The collision graph CGS has vertex set [n]\S and edges given

by all pairs of distinct elements x, y ∈ [n]\S satisfying (3.10). By construction,

any set of elements of [n] \ S which extends S to a larger B3-set must induce

an independent set in CGS.

The following lemma provides an upper bound on the number of independent

sets of graphs that have many edges in each sufficiently large vertex subset
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(see (3.12)). The proof will be given in Section 3.3.1.

Lemma 3.3.2 Let δ, β > 0, and q ∈ N be numbers satisfying

(1 + 2β)qδ > 1. (3.11)

Suppose that G = (V,E) is a graph satisfying

eG(A) ≥ β |A|2 for all A ⊂ V, |A| ≥ δ |V |. (3.12)

Then, for every m ≥ 1, there are at most(
|V |
q

)(
δ |V |
m

)
. (3.13)

independent sets in G of size q +m.

When we apply Lemma 3.3.2 to CGS we will take m = Cq, for a large

constant C, to take advantage of the upper bound (3.13). In condition (3.12),

there is a trade-off between β (larger is better) and δ (smaller is better) which

needs to be optimized.

In order to apply Lemma 3.3.2 to CGS we first need to characterize the

B3-sets S which ensure that condition (3.12) holds for CGS. The next lemma

will be a step in this direction. First, we need a definition.

Definition 3.3.3. Let C̃GS denote a multigraph version of CGS where the

multiplicity of a pair of distinct x, y ∈ [n] \ S is given by the number of pairs(
{a1, a2}, {b1, b2}

)
∈
(
S
2

)2
that satisfy (3.10).

Lemma 3.3.4 For every A ⊂ [n] \ S with |A| ≥ 16n/s2, we have

eC̃GS
(A) ≥ s4

100n
|A|2, (3.14)

where the edges are counted with multiplicity.

The proof of Lemma 3.3.4 will be given in Section 3.3.2.
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In view of Lemma 3.3.4, if the maximum multiplicity of an edge in C̃GS is

at most r then the graph CGS satisfies the conditions of Lemma 3.3.2 with β =
s4

100rn
and δ = 16/s2. Consequently, we are interested in bounding the multi-

plicity of the edges of C̃GS.

For any z ∈ Z, let

RS(z) =

∣∣∣∣{({a1, a2}, {b1, b2}
)
∈
(
S

2

)2

: z = a1 + a2 − b1 − b2

}∣∣∣∣. (3.15)

By construction, the multiplicity of a pair {x, y} in the graph C̃GS is given by

RS(x− y) = RS(y − x).

We define

R∗S = max
06=z∈Z

{
RS(z)

}
(3.16)

and show that R∗S = Θ(s) in the following proposition.

Proposition 3.3.5 A B3-set S of cardinality s satisfies s− 2 ≤ R∗S ≤ 2s− 2.

Proof Let S− be the set of all differences of two elements of S. Note that for

z ∈ S− (say, z = a1 − b1), we have RS(z) ≥ s− 2 since z = a1 + c− b1 − c for

all c ∈ S \ {a1, b1}. This shows the lower bound for R∗S.

For an arbitrary z 6= 0, let us estimate RS(z) by bounding the number of

solutions to

z = a1 + a2 − b1 − b2,
(
{a1, a2}, {b1, b2}

)
∈
(
S

2

)2

.

We start by considering solutions of first type, namely, solutions with {a1, a2}∩
{b1, b2} 6= ∅. Without loss of generality, assume that a2 = b2 = c, c 6= a1, b1.

In this case, z = a1 − b1. Given that S is a B3-set, there is at most one pair

(a1, b1) ∈ S2 which satisfies z = a1− b1. It follows that the number of solutions

of first type is at most s− 2 (the number of choices for c).

Now consider solutions of second type, namely, solutions with {a1, a2} ∩
{b1, b2} = ∅. For each fixed value of b2 ∈ S, the fact that S is a B3-set implies
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that there is at most one solution ({a1, a2}, b1) ∈
(
S
2

)
× S, b1 6= a1, a2, to the

equation a1 + a2 − b1 = z − b2. Hence the number of solutions of second type

is at most s (the number of choices for b2). The proposition follows from the

bounds on the number of solutions of the first and second types. �

The following is an immediate corollary of Lemma 3.3.4 and Proposition 3.3.5.

Indeed, Proposition 3.3.5 implies that the multiplicity of any edge of C̃GS is at

most 2s− 2 < 2s.

Corollary 3.3.6 If S is a B3-set then for every A ⊂ [n] \S with |A| ≥ 16n/s2,

we have

eCGS(A) ≥ s3

200n
|A|2.

�

We are now ready to obtain the following result for B3-sets of size t ≥ n1/4.

Lemma 3.3.7 There is an absolute constant c > 1 such that for any t ≥
n1/4(log n)2,

|Zn(t)| ≤
(
cn

t3

)t
.

Proof Since for any t satisfying
(
t
3

)
> n there is no B3-set of size t in [n], we

can assume that n1/4(log n)2 ≤ t < n1/3.

It will be convenient to first deal with the case where t can be written as

t = 2`s0, where ` ∈ N and

s0 ∈
[
10(n log n)1/4, 20(n log n)1/4

)
. (3.17)

Notice that ` = log2(t/s0) satisfies Ω(log log n) ≤ ` ≤ O(log n). We will deal

with the general case at the end of this proof.

Set si = 2is0 for i = 1, . . . , ` and note that by definition, s` = t. We will

find an upper bound for |Zn(t)| by constructing sequences of B3-sets S0 ⊂ S1 ⊂
· · · ⊂ S` with |Si| = si for all i = 0, . . . , `. More precisely, we can bound the
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number of choices of S0 by
(
n
s0

)
and then use Lemma 3.3.2 to bound the number

of extensions of Si into Si+1 for all i.

Let us now estimate the number of extensions of a B3-set Si into the larger

B3-set Si+1, for i = 0, . . . , ` − 1. By Corollary 3.3.6, the graph CGSi is such

that for all A ⊂ [n], |A| ≥ δin, δi = 16/s2
i ,

eCGSi
≥ βi |A|2, with βi =

s3
i

200n
.

Let

qi =
log n

βi
=

200

s3
i

n log n =
200

8is3
0

n log n
(3.17)

≤ s0

8i · 50
. (3.18)

and observe that

(1 + 2βi)
qiδi >

(
e

2βi
1+2βi

)qi
δi > eβiqiδi = δin > 16n/t2 > 16n1/3 > 1.

Consequently, CGSi , δi, βi, and qi satisfy the conditions of Lemma 3.3.2. Note

that Si+1\Si must be an independent set in CGSi with cardinality si+1−si = si.

Therefore, applying Lemma 3.3.2 with m = si − qi shows that the number of

extensions of Si into a B3-set Si+1 is at most(
n

qi

)(
δin

si − qi

)
≤ nqi

(
eδin

si − qi

)si−qi
= nqi

(
16en

s2
i (si − qi)

)si−qi
≤

(3.18)

≤ nqi
(

32en

s3
i

)si−qi
= nsi

(
32e

s3
i

)si−qi
.

(3.19)

Recalling that t = s0 +
∑`−1

i=0 si, it follows that

|Zn(t)| ≤ ns0+
∑`−1
i=0 si

`−1∏
i=0

(
32e

s3
i

)si−qi
= nt

`−1∏
i=0

(
32e · 8`−i

t3

)si−qi
≤ nt ·

(
t−3
)∑`−1

i=0 (si−qi) ·
(
210
)∑`−1

i=0 (`−i)si .

(3.20)
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From (3.18), it follows that
∑`−1

i=0 qi < s0/25 and thus
∑`−1

i=0(si−qi) ≥ t−1.04s0.

On the other hand,
∑`−1

i=0(`− i)si = t
∑`−1

i=0(`− i)2−(`−i) < 3t.

Notice that since t ≥ 2s0 log n, we have

(
t−3
)∑`−1

i=0 (si−qi) = t3(1.04s0−t) ≤ t3(t/ logn−t) =
(
t3/ logn−3

)t
<
(
e/t3

)t
.

Therefore,

|Zn(t)| ≤
(

230en

t3

)t
. (3.21)

To conclude the lemma, we just need to deal with the case when t cannot be

expressed as 2`s0 with s0 as in (3.17). For this, let t′ ∈ (t/4, t/2] be such

that t′ = 2`s0 with s0 as in (3.17). Then by using again Corollary 3.3.6 and

Lemma 3.3.2 we have

|Zn(t)| ≤ |Zn(t′)|
(
n

q

)(
16n/(t′)2

t− t′ − q

)
,

where q = t/ log n. Applying (3.21) to |Zn(t′)| in the bound above yields the

lemma. �

While the bound given by Proposition 3.3.5 is best possible up to a constant

multiple, one can expect RS(z) to be significantly smaller than s for z /∈ S−S.

Remark 3.3.8. With regards to RS(·), elements z ∈ S − S are considered

degenerate. This is because for such elements, RS(z) is always large due to

many trivial solutions of the form z = a+ c− b− c with a, b, c ∈ S.

In view of Remark 3.3.8 we define

RS = max
{
RS(z) : : : z ∈ Z \ S−

}
, (3.22)

recalling that S− denotes the set of all differences of two elements of S. We will

use better bounds on RS to obtain a stronger version of Corollary 3.3.6.

Definition 3.3.9. A B3-set S ⊂ [n] is r-bounded if RS < r.
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The following corollary of Lemma 3.3.4 provides a conclusion that is stronger

than Corollary 3.3.6 at the cost of requiring a better bound on RS.

Corollary 3.3.10 If S is an r-bounded B3-set then for every A ⊂ [n] \ S,

|A| ≥ 10000rn/s2, we have

eCGS(A) ≥ s4

100r2n
|A|2.

The proof of Corollary 3.3.10 will be given in Section 3.3.3. In view of

Corollary 3.3.10, we are now primarily interested in r-bounded B3-sets. This

motivates our next definition.

Definition 3.3.11. A B3-set S
] is called (s∗, r)-bad if there is no r-bounded

B3-set S
∗ ⊂ S] with |S∗| = s∗.

The following lemma provides an upper bound on the number of (s∗, r)-bad

sets of given size. The proof is given in Section 3.3.4.

Lemma 3.3.12 For every ε > 0 there exists r = r(ε) ∈ N, cε ≥ max{100, 1/ε},
and n0 = n0(ε) such that for all n ≥ n0 and s∗ = (n log n)1/5, the number of

(s∗, r)-bad sets S] ⊂ [n], with |S]| = m ≥ cεs
∗, is at most(

Cn4/5+ε

m

)m
,

where C > 0 is an absolute constant.

Using Lemma 3.3.12 we can obtain the following upper bound on |Zn(t)|
for t = C(n log n)1/5.

Lemma 3.3.13 For any 0 < ε < 1/5, there exists n0 = n0(ε), and Cε > 0 such

that for all n ≥ n0, and t = Cε · (n log n)1/5, we have

|Zn(t)| ≤ 1

2
nt(3/5+ε) + nt(2/5+ε). (3.23)

Proof Let cε ≥ max{100, 1/ε}, C > 0, r = r(ε) ∈ N, and s∗ = (n log n)1/5 as
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in Lemma 3.3.12. We take Cε satisfying

Cε � max{cε, r4, C}. (3.24)

By Lemma 3.3.12, the number of (s∗, r)-bad sets S] of cardinality t is at most(
Cn4/5+ε

t

)t
≤
(
Cn3/5+ε

Cε

)t (3.24)

≤ 1

2
nt(3/5+ε),

which accounts for the first term in the bound (3.23). All other B3-sets of Zn(t)

must contain an r-bounded set S of size s∗. Hence, we may count those sets

by starting with an r-bounded set S of size s∗ and counting the number of

extensions of S to a B3-set of size t = Cεs
∗.

To count the number of extensions, we first invoke Corollary 3.3.10, which

guarantees that CGS satisfies

eCGS(A) ≥ (s∗)4

100r2n
|A|2 for all A ⊂ [n], |A| ≥ 10000rn/(s∗)2. (3.25)

We now set
q = C

1/2
ε s∗ m = t− q − s∗

β =
(s∗)4

100r2n
δ =

10000r

(s∗)2
.

(3.26)

Note that for our choice of Cε in (3.24),

(1 + 2β)qδ ≥ eβqδ = δ · exp

{
C

1/2
ε (s∗)5

100r2n

}
= δ · exp

{
C

1/2
ε log n

100r2

}
� 1. (3.27)

Hence, δ, β, and q satisfy condition (3.11) of Lemma 3.3.2.

It follows by Lemma 3.3.2 that the number of independent sets in CGS of

cardinality q +m = t− s∗ is at most(
n

q

)(
δn

m

)
≤
(
en

q

)q(
eδn

t− q − s∗︸ ︷︷ ︸
>s∗

)m (3.26)

≤
(
en

s∗

)q(
10000ern

(s∗)3

)t−q−s∗
.
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Consequently, as there are at most
(
n
s∗

)
≤
(
en
s∗

)s∗
choices for S, the number N

of B3-sets of cardinality t which are not (s∗, r)-bad satisfies

N ≤ (10000ern)t(s∗)−s
∗−q−3(t−q−s∗) ≤

(
O(r)

)t
nt{1−(3t−2q−2s∗)/(5t)}. (3.28)

By our choice of Cε, we have

3t− 2q − 2s∗

5t
=

3

5
− 2

5
(C−1/2

ε + C−1
ε ) <

3− ε
5

.

Therefore, for n ≥ n0(ε) (with sufficiently large n0),

N ≤
(
O(r)

)t
nt(2+ε)/5 < nt(2/5+ε).

Recall that N is the number of B3-sets of cardinality t which are not (s∗, r)-bad

and that the B3-sets of cardinality t which are (s∗, r)-bad are accounted for by

the first term in (3.23). Therefore the bound (3.23) follows by the inequality

above and the lemma is proved. �

3.3.1 Proof of Lemma 3.3.2

For this proof, we will define tailored linear orders for every subset of V = V (G)

and use them to bound the number of independent sets. Roughly speaking we

first show that under such linear orders, any independent set I, |I| ≥ q + 1,

admits a unique q-prefix, which is a sequence of q distinct elements from I we

define below. We later establish an upper bound on the number of independent

sets of size q +m that have the same q-prefix.

It will be convenient to assume (without loss of generality) that V ⊂ [n].

For any V ′ ⊂ V , let max(V ′) be the vertex of maximum degree in G[V ′] of

largest value as a number in [n]. With this definition we may construct a

linear order >V ′ of V ′ as v1, v2, . . . , vm, m = |V ′|, by setting v1 = max(V ′) and

vi+1 = max
(
V ′ \ {v1, . . . , vi}

)
for 1 ≤ i < m.

Given any independent set I in G with |I| ≥ q + 1, the q-prefix of I is a
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sequence (v1, . . . , vq) constructed as follows. Let v1 denote the first element of I

in the linear order of >V1 , where V1 = V . For 1 ≤ i ≤ q let

Vi+1 = {v ∈ Vi : : : vi >Vi v, v /∈ NG(vi)} (3.29)

and let vi+1 denote the first element of I \ {v1, . . . , vi} that appears in Vi+1 in

the order >Vi+1
.

To check that the procedure above does not stop before producing the desired

sequence of length q, we prove by induction that

I \ {v1, . . . , vi} ⊂ Vi+1, for i = 1, . . . , q. (3.30)

Indeed, v1 is chosen in such a way that v1 >V1 w for all v1 6= w ∈ I, thus

I \ {v1} ⊂ V2. If (3.30) holds for i = j, 1 ≤ j < q, then for every w ∈
I \ {v1, . . . , vj} ⊂ Vj+1, w 6= vj+1, we have vj+1 >Vj+1

w and w /∈ NG(vj+1).

Hence w ∈ Vj+2 and (3.30) holds for i = j + 1.

Let us now estimate the number of independent sets I of size q + m that

admit the same q-prefix (v1, . . . , vq). By (3.30), it follows that the number of

choices for the m elements in I \ {v1, . . . , vq} is at most
(|Vq+1|

m

)
. Lemma 3.3.2

will follow once we prove that

|Vq+1| < δ |V |. (3.31)

Suppose for the sake of a contradiction that |Vq+1| ≥ δ |V |. By construction,

for every 1 ≤ i ≤ q, we have D := degG[Vi]
(vi) ≥ degG[Vi]

(w) for every w ∈
Vi+1 ⊂ Vi. Since G[Vi+1] ⊂ G[Vi], it follows that D ≥ ∆(G[Vi+1]). Since by our

assumption |Vi+1| ≥ |Vq+1| ≥ δ |V |, condition (3.12) yields

D ≥ ∆(G[Vi+1]) ≥ 2eG(Vi+1)

|Vi+1|
≥ 2β |Vi+1|.

From the definition of Vi+1 in (3.29) we have NG[Vi](vi)∩Vi+1 = ∅ and NG[Vi](vi)∪
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Vi+1 ⊂ Vi. Thus, for every 1 ≤ i ≤ q,

|Vi| ≥ |NG[Vi](vi)|+ |Vi+1| = D + |Vi+1| ≥ (1 + 2β)|Vi+1|.

Consequently, |V | = |V1| ≥ (1 + 2β)q|Vq+1| ≥ (1 + 2β)qδ |V | and therefore

(1 + 2β)qδ ≤ 1, contradicting the hypothesis of the lemma—see (3.11).

3.3.2 Proof of Lemma 3.3.4

Let A ⊂ [n] \ S, |A| ≥ 16n/s2, be an arbitrary subset. Consider the auxiliary

labeled bipartite graph Γ defined as follows. The vertex classes of Γ are A and

a disjoint copy of [3n]. The edge set of Γ is defined as

E(Γ) =
{

(x, u) ∈ A× [3n] : : : u = x+ a1 + a2 for some a1, a2 ∈ S, a1 6= a2

}
.

Note that because S is a B3-set, for fixed x, u, there is at most one solution

{a1, a2} for u = x + a1 + a2 with a1, a2 ∈ S. We will now argue that the

multiplicity of a pair {x, y} ∈
(
A
2

)
in the multigraph C̃GS, which by definition

is RS(y − x), is given by the number of two-paths connecting x to y in Γ.

Indeed, there is a bijection between pairs
(
{a1, a2}, {b1, b2}

)
∈
(
S
2

)2
satisfying

y − x = a1 + a2 − b1 − b2 and paths xuy in Γ, where

u = x+ a1 + a2 = y + b1 + b2.

Recalling the definition of RS(·) in (3.15), it follows that RS(y − x) equals the

number of two-paths connecting x to y in Γ.

Consequently, eC̃GS
(A) is the number of paths of length two in Γ containing

two vertices in the class A. By Jensen’s inequality applied to the convex function

f(α) =
(
α
2

)
= α(α− 1)/2,

eC̃GS
(A) ≥

∑
u∈[3n]

(
degΓ(u)

2

)
≥ 3n

(
e(Γ)/3n

2

)
.
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On the other hand, since |A| ≥ 16n/s2, we may assume that s ≥ 4 and

e(Γ) =
∑
x∈A

degΓ(x) = |A|
(
s

2

)
= 8n

(
1− 1

s

)
≥ 6n.

It follows that e(Γ)2/36n2 ≥ e(Γ)/6n and thus,

eC̃GS
(A) ≥ n

(
e(Γ)/3n

2

)
≥ n

(
e(Γ)2

18n2
− e(Γ)

6n

)
≥ e(Γ)2

36n
>

s4

100n
|A|2.

This concludes the proof of Lemma 3.3.4.

3.3.3 Proof of Corollary 3.3.10

Suppose that S is an r-bounded B3-set and that A ⊂ [n] \ S is an arbitrary

set with |A| ≥ 10000rn/s2. From the boundedness of S it follows that the

multiplicity of an edge {x, y} ∈ C̃GS[A] with x − y /∈ S − S is at most r. On

the other hand, edges {x, y} ∈ C̃GS[A] with x − y ∈ S − S are degenerate

(recall Remark 3.3.8) and have large multiplicity. For this reason, we define the

following auxiliary subgraph:

H =

{
{x, y} ∈

(
A

2

)
: : : x− y ∈ S − S

}
.

We now split the proof in the two cases according to whether

|H| < s3|A|2

200rn
(3.32)

holds or not.

First let us assume that (3.32) holds. In this case, by Proposition 3.3.5 and

equation (3.16), the total multiplicity of edges in C̃GS[A] that also appear in H

is at most

|H| · 2s < s4

100rn
|A|2 <

eC̃GS
(A)

2
,
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where the last inequality follows from Lemma 3.3.4. Therefore, recalling that

the multiplicity of edges of C̃GS[A] not in H is bounded by r, it follows by

Lemma 3.3.4 that

eCGS(A) ≥
eC̃GS

(A)

2r
≥ s4

200rn
|A|2,

and the corollary follows in this case.

Now we assume that (3.32) does not hold. Define T as the set of all triples

(u, {x, y}) ∈ A ×
(
A
2

)
with x − y /∈ S − S and such that there exists dis-

tinct a, b, c, d ∈ S such that x− u = a− b and y − u = c− d.

Claim 3.3.14 For any u ∈ A with degH(u) ≥ 8s there are at least degH(u)2/4

triples (u, {x, y}) ∈ T .

We now prove the claim. Fix an arbitrary element u ∈ A with degree d =

degH(u) ≥ 8s and let {v1, . . . , vd} denote the neighborhood of x in H. For

each vi, associate a pair (αi, βi) ∈ S2 that is the unique solution to vi − u =

αi − βi. For any fixed vi, 1 ≤ i ≤ d there are at least d− 4s ≥ d/2 elements vj,

with 1 ≤ j ≤ d, satisfying {αi, βi}∩{αj, βj} = ∅ (which implies that αi, βi, αj, βj

are all distinct).

We will also show that vi − vj /∈ S − S. Assuming otherwise means that

there exist γ1, γ2 ∈ S such that

αj + βi + γ1 = αi + βj + γ2.

Due to the fact that S is a B3-set, we have {αj, βi, γ1} = {αi, βj, γ2}. Since by

construction, αi 6= βi, αj 6= βj, this forces {αi, βi}∩{αj, βj} 6= ∅, a contradiction.

The number of (unordered) pairs x = vi, y = vj as above is at least 1
2
d(d −

4s) ≥ d2/4. Note that for all such pairs {x, y}, the triple (u, {x, v}) ∈ T . The

claim is now proved. �

Since we are assuming that (3.32) does not hold, the average degree of H

is at least 2 s3|A|
200rn

> 32s. In particular, there exists a subgraph H ′ ⊂ H with
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minimum degree δ(H ′) ≥ 8s and |H ′| ≥ |H|/2. Hence, due to Claim 3.3.14,

|T | ≥
∑

u∈V (H′)

dH′(u)2

4
≥ |H ′|2

|V (H ′)|
≥ |H|

2

4 |A|
>

s6|A|3

106r2n2
≥ s4

100rn
|A|2. (3.33)

We will now estimate eCGS(A) by counting for every {x, y} ∈ CGS[A], x− y /∈
S − S, how many u ∈ A form a triple (u, {x, y}) ∈ T . For every u forming a

triple (u, {x, y}) ∈ T we have x−u, y−u ∈ S−S and if we let a1, a2, b1, b2 ∈ S
be the unique values for which x − u = a1 − b1 and y − u = b2 − a2, then

x − y = a1 + a2 − b1 − b2 and a1, a2, b1, b2 are all distinct. Consequently, to

each u such that (u, {x, y}) ∈ T there is a distinct solution to (3.10).

Since x − y /∈ S − S and S is r-bounded, there can be at most r solutions

to (3.10) and thus at most this many elements u with (u, {x, y}) ∈ T . Thus

eCGS(A) ≥ |T |
r

(3.33)

≥ s4

100r2n
|A|2.

The corollary follows.

3.3.4 Proof of Lemma 3.3.12

The strategy of the proof of Lemma 3.3.12 is the following. For an ordered B3-

set S] consider the following procedure that constructs a maximal subset S ⊂ S]

which is r-bounded. Assume that S] = (x1, . . . , xm). Take S0 = ∅ and, for 1 ≤
i ≤ m, define the set Si as Si−1∪{xi} if adding xi to Si−1 does not cause the set

to lose the r-boundedness property. The set Sm is, by construction, r-bounded

and maximal.

If the set S ⊂ S] satisfies |S| ≥ s∗ then clearly S] is not (s∗, r)-bad. Hence,

counting the pairs (S, S]) with |S| < s∗ provides an upper bound for the number

of ordered (s∗, r)-bad sets.



3.3. Proof of Theorem 3.2.1 63

For any integer ` ≥ 1, define

QS,` =
∑
z /∈S−S

RS(z)`.

In the definition above the sum is over z /∈ S−S because we intend to use QS,`

to eventually bound RS (defined in eq. (3.22)) and hence we may ignore the

degenerate cases z ∈ S − S (see Remark 3.3.8).

Lemma 3.3.12 will follow from the following claim, which we will prove later.

Claim 3.3.15 If S is a B3-set, s = |S| ≤ s∗, and QS,` ≤ 2`+2
(
s
4

)
then for all

but at most 3`(s∗)4 elements x we have QS∪{x},` ≤ 2`+2
(
s+1

4

)
.

The following observation will be useful to us later.

Claim 3.3.16 Suppose that ` = ε
2

log n and r = r(ε) = e2+2/ε. If for a B3-set S

of cardinality s ≤ s∗ we have QS,` ≤ 2`+2
(
s
4

)
, then RS ≤ r.

Proof For any z /∈ S − S,

RS(z)` ≤ QS,` ≤ 2`+2

(
s

4

)
< 2`+2n ≤ e(`+2)+2`/ε.

Therefore RS(z) ≤ e2+2/ε = r. Since z /∈ S − S was arbitrary, we conclude that

RS ≤ r. �

From now on we set ` = ε
2

log n and r = r(ε) = e2+2/ε as in Claim 3.3.16.

We now obtain an upper bound on the number of ordered sets S] of size m

which are (s∗, r)-bad by sequentially constructing a pair (S, S]) with

• S ⊂ S],

• s = |S| ≤ s∗,

• QS,` ≤ 2`+2

(
s

4

)
, which, by Claim 3.3.16, implies that S is r-bounded,

• S] is a B3-set.
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Start with S = S] = ∅, which trivially satisfies all the conditions above. When-

ever an element x is added to S] we check whether the conditions above would

be satisfied with S ′ = S∪{x} in place of S. If so, we also add x to S (otherwise,

S stays the same).

By Claim 3.3.15, for all but at most n4/5+ε choices of x, if we add x to S]

then we also add x to S. Since S] must be (s∗, r)-bad, the number of times we

may add an element to S must be less than s∗. To find an upper bound on the

number of ordered sets S] of size m which produce a corresponding S ⊂ S] of

size s < s∗ we will do the following:

• Choose the s steps in which an element is added to S in
(
m
s

)
ways.

• In each of the m− s steps in which the new element x is not added to S

we extend S] by picking x among the at most n4/5+ε elements that are

not eligible to be added to S.

• In the steps in which x is added to S, there are at most n choices for x.

The total number of choices (for fixed s < s∗) is(
m

s

)(
n4/5+ε

)m−s
ns.

By summing over all choices of s < s∗ and accounting for the m! permutations

of the set S], the total number of (s∗, r)-bad sets S] of cardinality m is at most

[∗] :=
1

m!

s∗−1∑
s=0

(
m

s

)(
n4/5+ε

)m−s
ns.

Under the assumption that m ≥ cεs
∗ with cε ≥ 2, we have m ≥ 2s∗ and thus

the binomial coefficients in the sum above are strictly increasing. Moreover, the

term
(
n4/5+ε

)m−s
ns increases by n1/5−ε � 2 for a unit increment of s. Hence,
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the sum [∗] can be bounded by

[∗] ≤ 1

m!

(
m

s∗

)
(n4/5+ε)m−s

∗
ns
∗
< cm

(
n4/5+ε

m− s∗

)m−s∗(
n

s∗

)s∗
, (3.34)

where c > 0 is an absolute constant. Setting cε sufficiently large (say, cε >

1 + 1/ε) yields

(n/s∗)s
∗
< ns

∗
< ns

∗·ε(cε−1) ≤ nε(m−s
∗)

and since m − s∗ ≥ m/2, we can simplify the denominator in (3.34) thus ob-

taining

[∗] ≤ (2c)m
(
n4/5+2ε

m

)m−s∗
.

When m > n4/5+2ε and n ≥ n0 is large enough, the R-H-S of the above inequality

is < 1 and thus [∗] = 0. On the other hand, when m ≤ n4/5+2ε, we have [∗] ≤(
2c n4/5+2ε

m

)m
. In both cases, by setting C = 2c and rescaling ε, Lemma 3.3.12

follows. It only remains to prove Claim 3.3.15, which we do next.

Proof of Claim 3.3.15 Suppose that S is a B3-set, s = |S| ≤ s∗, and QS,` ≤
2`+2

(
s
4

)
. We would like to show that for most choices of x /∈ S, with S ′ = S∪{x}

a B3-set, we have QS′,` ≤ 2`+2
(
s+1

4

)
. To that end, it is enough to show that for

most choices of x,

QS′,` −QS,` ≤ 2`+2

(
s

3

)
(3.35)

since
(
s
4

)
+
(
s
3

)
=
(
s+1

4

)
. Note that

QS′,` −QS,` =
∑

z /∈S′−S′
RS′(z)` −

∑
z /∈S−S

RS(z)`

≤
∑

z /∈S′−S′

(
RS′(z)` −RS(z)`

)
,

(3.36)

since (S − S) ⊂ (S ′ − S ′).
In view of the above inequality, we are interested in expressing RS′(z) in

terms of RS(z) for z ∈ Z \ (S ′ − S ′). Indeed, denoting by TS(w) the number of
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triples {a1, a2, b1} ∈
(
S
3

)
with a1 + a2 − b1 = w, we will show that

RS′(z) = RS(z) + TS(z + x) + TS(x− z). (3.37)

By definition, the L-H-S of (3.37) counts solutions to z = a1 + a2− b1− b2 with(
{a1, a2}, {b1, b2}

)
∈
(
S′

2

)2
. We will classify those solutions into three types and

show that:

a. solutions without x, namely, with {a1, a2, b1, b2} ⊂ S are counted byRS(z);

b. solutions with x ∈ {b1, b2} are counted by TS(z + x);

c. solutions with x ∈ {a1, a2} are counted by TS(x− z);

It is clear that the solutions of the first type are counted by RS(z), therefore we

only need to count the second and third types. First we note that for z /∈ S ′−S ′

any solution to z = a1 + a2 − b1 − b2 satisfies

{a1, a2} ∩ {b1, b2} = ∅. (3.38)

In particular, a solution cannot be both of second and third type. In other

words, the above classification into types is a partition of the set of solutions

counted by RS′(z).

Let us consider solutions of second type, say b2 = x. For those we have

z + x = a1 + a2 − b1, with a1, a2, b1 ∈ S (3.39)

and there are TS(z + x) sets {a1, a2, b1} ∈
(
S
3

)
for which the equality (3.39)

holds. Note that if (3.39) is satisfied then a1 + b1 − a2 cannot equal z + x

(otherwise a2 = b1, which is not possible by (3.38)). Similarly, if (3.39) is

satisfied then a2 + b1 − a1 cannot equal z + x. Consequently, each set counted

by TS(z + x) corresponds to a unique solution of second type.

The same argument shows that if a2 = x then x − z = b1 + b2 − a1

with a1, b1, b2 ∈ S and the number of solutions {b1, b2, a1} ∈
(
S
3

)
to this equation
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is TS(x− z). Therefore the number of solutions of third type is TS(x− z) and

hence (3.37) holds.

From (3.37), we see that

RS′(z)` −RS(z)` ≤
∑
i,j

(
`

i, j

)
RS(z)`−i−jTS(z + x)iTS(x− z)j,

where the sum is over all 0 ≤ i, j ≤ ` with 1 ≤ i + j ≤ `, and
(
`
i,j

)
= `!

i!j!(`−i−j)!

is a multinomial coefficient. Since S is a B3-set, we have TS(w) ∈ {0, 1} for

all w ∈ Z, and thus

TS(z + x)iTS(x− z)j ≤ TS(z + x) + TS(x− z).

Consequently,

RS′(z)` −RS(z)` ≤
(
TS(z + x) + TS(x− z)

)
×

{ ∑
0≤i,j≤`
i+j=`

(
`

i, j

)
· 1 +

∑
0≤i,j≤`

1≤i+j≤`−1

(
`

i, j

)
RS(z)`−1

}

≤
(
TS(z + x) + TS(x− z)

)(
2` + 3`RS(z)`−1

)
.

(3.40)

Since ∑
w∈Z

TS(w) =

(
s

3

)
, (3.41)

it follows that

QS′,` −QS,`

(3.36)

≤
∑

z /∈S′−S′

(
RS′(z)` −RS(z)`

)
(3.40)

≤ 2`+1

(
s

3

)
+ 3`

∑
z /∈S′−S′

RS(z)`−1 ·
(
TS(z + x) + TS(x− z)

)
.

(3.42)
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Let IS,`(x) denote the last term on the R-H-S of (3.42) so that

QS′,` −QS,` − 2`+1

(
s

3

)
≤ IS,`(x).

We will now estimate how many x are such that S ′ = S ∪ {x} is a B3-set

and IS,`(x) > 2`+1
(
s
3

)
. Observe that for every x which does not satisfy this

inequality, (3.35) holds.

We have∑
x

IS,`(x) = 3`
∑
x

∑
z /∈S′−S′

RS(z)`−1 ·
(
TS(z + x) + TS(x− z)

)
= 3`

∑
z /∈S′−S′

RS(z)`−1
∑
x

(
TS(z + x) + TS(x− z)

)
(3.41)

≤ 3`
∑

z /∈S′−S′
RS(z)`−1 · 2

(
s

3

)
≤ 3`QS,`−1 · 2

(
s

3

)
.

(3.43)

Since QS,`−1 ≤ QS,` and, by the assumption of this claim, QS,` ≤ 2`+2
(
s
4

)
<

2`(s∗)4, ∑
x

IS,`(x) ≤ 3`(s∗)4 · 2`+1

(
s

3

)
.

Consequently, at most 3`(s∗)4 elements x satisfy IS,`(x) > 2`+1
(
s
3

)
.

On the other hand, since QS,` ≤ 2`+2
(
s
4

)
, for any x such that IS,`(x) ≤

2`+1
(
s
3

)
,

QS′,` ≤ QS,` + 2`+1

(
s

3

)
+ IS,`(x) ≤ 2`+2

(
s

4

)
+ 2 · 2`+1

(
s

3

)
= 2`+2

(
s+ 1

4

)
.

The claim follows. �
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3.4 Lower bounds of Theorem 3.1.4

The proof of the lower bound is divided into two parts. The first part (given

by Lemma 3.4.1 below) deals with the case 0 ≤ a ≤ 1/5 and yields that in

this range b1(a) = a holds. Since F3([n]m) is monotone with respect to m, for

a > 1/5 we have b1(a) ≥ b1(1/5) = 1/5.

The second part (given by Lemma 3.4.2) yields that b1(a) ≥ a/3 for all 0 ≤
a ≤ 1. Note that in the range 1/5 ≤ a ≤ 3/5, this is superseded by the bound

obtained in the first part, that is, b1(a) ≥ 1/5. Combining this two bounds we

obtain (3.4).

Lemma 3.4.1 For 1 � m ≤ o(n1/5), almost surely we have m ≥ F3([n]m) ≥
(1− o(1))m.

Let S be an arbitrary B3-set of cardinality s = o(n1/5). Note that for

any element x ∈ [n] \ (3S − 2S), the set S ′ = S ∪ {x} is a B3-set. Since

|3S − 2S| ≤
(
s
3

)(
s
2

)
≤ s5 = o(n), at least (1 − o(1))n elements x can be added

to S to form a larger B3-set. We will use this observation to prove the lemma.

Let 1� m ≤ o(n1/5) be fixed and X1, . . . , Xm be a sequence of uniform and

independent random variables over [n]. Let us construct a B3-set S from the

sequence X1, . . . , Xm as follows: start with S1 = {X1} and, for each 2 ≤ j ≤ m,

set Sj = Sj−1 ∪ {Xj} if Sj−1 ∪ {Xj} is a B3-set (Xj /∈ Sj−1), otherwise, set

Sj = Sj−1. Let S = Sm and consider the random variable |S| = |Sm|.
Note that for every 2 ≤ j ≤ m,

P
[
Sj−1 ∪ {Xj} is not a B3-set

]
= P

[
Xj ∈ 3Sj−1 − 2Sj−1

]
≤ j5

n
≤ m5

n
.

The inequality above holds regardless of the history of X1, . . . , Xj−1. Since

|S| = |Sm| = 1 +
m∑
j=2

1
[
Xj ∈ [n] \ (3Sj−1 − 2Sj−1)

]
,
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the probability that |S| ≤ m− k, with k ≥ 1, is at most(
m

k

)(m5

n

)k
≤
(em6

kn

)k
.

Since 2em6

n
= o(m), we can pick k = k(m)� 1 with 2em6

n
� k = o(m). For such

a choice of k, the probability |S| < m− k is at most 2−k = o(1).

To complete the proof, we now observe that almost surely, |{X1, . . . , Xm}| =
m. Indeed, the expected number of pairs i 6= j with Xi = Xj is

(
m
2

)
1
n

= o(1).

Given our choice of k = k(m) = o(m),

P
[
F3([n]m) ≤ m− k

]
≤ P

[
|S| ≤ m− k

∣∣ |{X1, . . . , Xm}| = m
]
,

≤ P
[
|S| ≤ m− k

]/
P
[
|{X1, . . . , Xm}| = m

]
=

o(1)

1− o(1)
= o(1).

(3.44)

Summarizing, almost surely, F3([n]m) = (1− o(1))m, and Lemma 3.4.1 follows.

Lemma 3.4.2 For any 1� m ≤ n, almost surely we have F3([n]m) = Ω(m1/3).

For this proof, it will be convenient to use the model [n]p with p = m/n

rather than [n]m (recall Remark 3.1.6). Without loss of generality we assume

that 1/p, pn, pn/3 ∈ N. Our strategy here follows that of [31]. In order to show

the existence of a Sidon set of order (pn)1/3 in a typical instance of a random

set [n]p we will use the following theorem of Bose and Chowla [10] (with the

statement adapted for our purposes).

Theorem 3.4.3 There exists m0 such that for all m ≥ m0, there exists a B3-set

X ⊂ Zm with |X| = Ω
(
m1/3

)
. �

We will apply Theorem 3.4.3 with m = pn to produce a B3-set X ⊂ Zpn
with |X| = Ω

(
(pn)1/3

)
. Then, we will show that there is a projection π : U ⊂

[n]→ Zpn such that

(a) any set S ⊂ π−1(X) with |S ∩ π−1(x)| ≤ 1 for all x ∈ X is a B3-set;



3.4. Lower bounds of Theorem 3.1.4 71

(b) almost surely there are Ω(|X|) elements x ∈ X for which [n]p∩π−1(x) 6= ∅.

Note that the first condition is purely deterministic.

Define a set S by selecting the smallest element from [n]p∩π−1(x) for each x ∈
X. Combining (a) and (b) yields that the (random) set S is a B3-set and almost

surely |S| = Ω(|X|) = Ω
(
(pn)1/3

)
. Consequently, the lower bound of this lemma

will be established after we prove (a) and (b).

In order to define the projection π and its domain U ⊂ [n] we first parti-

tion [3n] into intervals

Ij =

[
j

p
+ 1,

j + 1

p

]
, j = 0, . . . , 3pn− 1. (3.45)

Furthermore, we subdivide each of the intervals above in three equal length

intervals, namely,

Ij,k =

[
j

p
+ 1 +

k

3p
,
j

p
+
k + 1

3p

]
, j = 0, . . . , 3pn− 1 and k = 0, 1, 2. (3.46)

The domain of π is defined as

U =

pn−1⋃
j=0

Ij,0. (3.47)

Note that U ⊂ [n] since j < pn in the union above. The projection is then set

as π : x 7→ j ∈ Zpn, whenever x ∈ Ij,0.

Let us now prove (a). Let S ⊂ π−1(X) be a set satisfying the condition

on (a), namely, |S ∩ π−1(x)| ≤ 1 for all x ∈ X. This condition ensures that π|S
is a one-to-one map. Moreover, π(S) ⊂ X is a B3-set. Let {a1, a2, a3} ∈

(
S
3

)
be

arbitrary and 0 ≤ ` ≤ 3pn − 1 be such that a1 + a2 + a3 ∈ I`. We claim that

π(a1) + π(a2) + π(a3) = `mod pn. Indeed, let ji be such that ai ∈ Iji = Iji,0,
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for i = 1, 2, 3, and observe that by (3.46), ai ∈
[
ji
p

+ 1, ji
p

+ 1
3p

]
. Therefore,

a1 + a2 + a3 ∈
[
j1 + j2 + j3

p
+ 3,

j1 + j2 + j3

p
+ 3× 1

3p

]
⊂ Ij1+j2+j3 .

Hence ` = j1 +j2 +j3 and since π(ai) = ji mod pn, it follows that π(a1)+π(a2)+

π(a3) = `mod pn. Since π(S) is a B3-set and π|S is one-to-one, it follows that

no other triple {b1, b2, b3} ∈
(
S
3

)
can satisfy π(b1) +π(b2) +π(b3) = `mod pn. In

other words, no other triple {b1, b2, b3} satisfies b1 + b2 + b3 ∈ I` and hence S

must be a B3-set.

It remains to prove (b). By construction, {π−1(x) : : : x ∈ X} is a family of

pairwise disjoint intervals (of the form π−1(x) = Ijx,0, 0 ≤ jx ≤ pn − 1). For

any x ∈ X, the probability that [n]p ∩ π−1(x) = ∅ is

q = (1− p)|π−1(x)| = (1− p)1/3p ≤ e−p/3p = e−1/3 < 3/4.

It follows from the fact that the sets π−1(x), x ∈ X, are disjoint, that the number

of elements x ∈ X for which [n]p ∩ π−1(x) = ∅ is a random variable following a

Binomial distribution with parameters |X| and q < 3/4. Consequently, by the

additive form of Chernoff’s bound,

P

[∣∣{x ∈ X : : : [n]p ∩ π−1(x) = ∅
}∣∣ > q |X|+ 1

8
|X|
]
≤ exp{−c |X|},

for some absolute constant c > 0. Therefore, almost surely there are at least

(1− q − 1/8)|X| ≥ 1
8
|X| elements x ∈ X which satisfy [n]p ∩ π−1(x) 6= ∅, thus

proving (b).



Chapter 4

Infinite Sidon sets

4.1 Introduction

Let N be the set of positive integers. We study Sidon sets contained in a sparse,

random subset of N. First we introduce the random model of interest. In the

definition below, we will use the letter m to denote an arbitrary integer and pm

to be the probability associated it. We use the letter n when considering the

set of elements of S on an initial segment, that is, S[n] := S ∩ [n].

Definition 4.1.1 (Random set R and the probability spaces (Ω,S,P)

and (ΩA,SA,PA)). Fix 0 ≤ pm ≤ 1 for each m ∈ N. We generate a random

set R ⊂ N by adding m to R with probability pm, independently for each m.

We let (Ω,S,P) be the probability space of the random sets R. More generally,

for A ⊂ N, let (ΩA,SA,PA) be the probability space of the random sets R ∩ A.

In general, we shall fix absolute constants α > 0 and 0 < δ ≤ 1, and

let pm = min{1, αm−1+δ} for all positive integers m. Note that we restrict

our probabilities only to the above probabilities, ignoring the case when, say,

pm = m−1/2 logm. Covering the remaining cases would not require a new proof

technique, but it would be a bit more cumbersome.

Readers interested in the details of the construction of the spaces (Ω,S,P)
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and (ΩA,SA,PA) are encouraged to consult, for example, Halberstam and Roth

[21, Theorem 13, page 142]. Using the natural correspondence between subsets

of N and 0–1 vectors indexed by N, we may identify (Ω,S,P) with the product

of the two-point spaces (Ωm,Sm,Pm) (m ∈ N), where Ωm = {0, 1}, Sm = 2Ωm ,

and Pm({1}) = pm and Pm({0}) = 1− pm. Thus, S is the σ-algebra generated

by the sets

C(m) = {R ⊂ N : m ∈ R} (m ∈ N), (4.1)

that is, the smallest family of subsets of N that is closed under complementa-

tion, finite intersections, and countable unions that contains the sets in (4.1).

Furthermore, P(C(m)) = P(m ∈ R) = pm for all m, and this suffices to define P
on every member of S uniquely.

Similarly, (ΩA,SA,PA) may be identified with the product of the two-point

spaces (Ωm,Sm,Pm) (m ∈ A) above. In what follows, we shall often write P
instead of PA, as this will not cause any confusion.

We will study how dense Sidon sets are contained in R. We introduce the

notion of the growth of a set S ⊂ N. We say that S has lower growth at least

h(n) if S[n] ≥ h(n) for every sufficiently large n. We also say that S has upper

growth at most h(n) if S[n] ≤ h(n) for every sufficiently large n. Let R be a set

of N. We will abbreviate the fact that there exists a Sidon subset S ⊂ R with

lower growth at least h(n), by writing

lgr∃S(R) ≥ h(n).

Similarly,

ugr∀S(R) ≤ h(n)

will mean that all Sidon subsets S ⊂ R have upper growth at most h(n).

An abridged version of our results of this paper is the following.

Theorem 4.1.2 (Kohayakawa, Lee, and Rödl [30]) For every ε > 0, there

exist positive constants c1, c′1, c2 = c2(δ), c3, and c4 = c4(α) such that with

probability 1, the following holds:
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a. (1− ε)α
δ
nδ ≤ lgr∃S(R), ugr∀S(R) ≤ α

δ
nδ if 0 < δ < 1/3

b. (1− ε)(1− 18α3)3αn1/3 ≤ lgr∃S(R), ugr∀S(R) ≤ 3αn1/3

if δ = 1/3 and 0 < α ≤ 0.1

c. c′1n
1/3 ≤ lgr∃S(R), ugr∀S(R) ≤ c1

(
log[α + 1]

)1/3
n1/3

if δ = 1/3 and α ≥ 0.1

d. c′1n
1/3 ≤ lgr∃S(R), ugr∀S(R) ≤ c2(n log n)1/3 if 1/3 < δ < 2/3

e. c′1n
1/3 ≤ lgr∃S(R), ugr∀S(R) ≤ c3n

1/3(log n)4/3 if δ = 2/3

f. c′1n
1/3 ≤ lgr∃S(R), ugr∀S(R) ≤ c4n

δ/2 if 2/3 < δ ≤ 1

4.2 Main results

Theorem 4.1.2 will be proved by showing the following two lemmas – one is about

lgr∃S(R) and the other is about ugr∀S(R). The result of Theorem 4.1.2 can be

rewritten using the notation ‘lim sup’ and ‘lim inf’ because of the following:

A set S ⊂ N satisfies that

|S[n]| ≥ h(n)(1 + o(1))
(

or |S[n]| ≤ h(n)(1 + o(1))
)

for every sufficiently large n if and only if S satisfies that

lim inf
|S[n]|
h(n)

≥ 1
(

or lim sup
|S[n]|
h(n)

≤ 1
)
.

Therefore, the lower and upper bounds in Theorem 4.1.2 can be restated as

follows.

Lemma 4.2.1 There exist positive constants c1, c2 = c2(δ), c3, and c4 = c4(α)

such that with probability 1, all Sidon subsets S of a random set R satisfy the

following:



4.2. Main results 76

a. lim sup

∣∣S[n]
∣∣

nδ
≤ α

δ
if 0 < δ < 1/3

b. lim sup

∣∣S[n]
∣∣

n1/3
≤ 3α if δ = 1/3 and 0 < α ≤ 0.1

c. lim sup

∣∣S[n]
∣∣

n1/3
≤ c1

(
log[α + 1]

)1/3
if δ = 1/3 and α ≥ 0.1

d. lim sup

∣∣S[n]
∣∣

(n log n)1/3
≤ c2 if 1/3 < δ < 2/3

e. lim sup

∣∣S[n]
∣∣

n1/3(log n)4/3
≤ c3 if δ = 2/3

f. lim sup

∣∣S[n]
∣∣

nδ/2
≤ c4 if 2/3 < δ ≤ 1

Lemma 4.2.2 For every ε > 0, a random set R contains a Sidon subset S for

which the following holds with probability 1:

a. lim inf

∣∣S[n]
∣∣

nδ
≥ (1− ε)α

δ
if 0 < δ < 1/3

b. lim inf

∣∣S[n]
∣∣

n1/3
≥ (1−ε)(1−18α3)3α if δ = 1/3 and 0 < α ≤ 0.1

Remark that if either δ = 1/3, α ≥ 0.1 or δ > 1/3, then by the monotonicity,

Lemma 4.2.2 (b) implies that with probability 1, a random set R contains a

Sidon subset S such that

lim inf

∣∣S[n]
∣∣

n1/3
≥ c,

where c is an absolute constant. This yields the lower bounds of (c), (d), (e),

and (f) in Theorem 4.1.2.
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4.3 Preliminaries

4.3.1 Sidon quadruples

If a set A ⊂ N is not a Sidon set, then there exist a1, a2, a3, a4 ∈ A (necessarily

distinct but not all equal) such that a1+a4 = a2+a3. Without loss of generality,

assume that a1 < a2 ≤ a3 < a4. We call a set {a1, a2, a3, a4} a Sidon quadruple

if both a1 + a4 = a2 + a3 and a1 < a2 ≤ a3 < a4 hold. Note that the size of a

Sidon quadruple is either 3 or 4.

4.3.2 A maximum Sidon subset of a random set in [n].

We will use the following result on the maximum size of a Sidon subset of

a random set in [n] := {1, 2, · · · , n}, which was stated in Section 2.2.1. In

order to make this chapter self-contained, we recall definitions and results in

Section 2.2.1.

Let [n]p be a random subset of [n] obtained by choosing each element of

[n] independently with (uniform) probability p = p(n). Recall that F ([n]p)

denotes the maximum size of a Sidon subset of [n]p. The following theorem is a

consequence of the result in Section 2.2.1 of this dissertation or in [31].

Theorem 4.3.1 (Kohayakawa, Lee, Rödl, and Samotij [31]) Fix absolute con-

stants α > 0 and 0 < δ ≤ 1, and suppose p = αn−1+δ. There exist positive

absolute constants c1, c2, c3, c5, c6, c7, c8, and a constant c4 = c4(δ), only

depending on δ, such that the following holds with probability 1−O(1/n2).

a. F ([n]p) = αnδ
(
1 + o(1)

)
if 0 < δ < 1/3

b. c1

(
log[α + 1]

)1/3
n1/3 ≤ F ([n]p) ≤ c2

(
log[α + 1]

)1/3
n1/3

if δ = 1/3 and α ≥ 0.1

c. c3

(
n log n

)1/3 ≤ F ([n]p) ≤ c4

(
n log n

)1/3
if 1/3 < δ < 2/3

d. c5(n log n)1/3 ≤ F ([n]p) ≤ c6n
1/3(log n)4/3 if δ = 2/3
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e. c7

√
α · nδ/2 ≤ F ([n]p) ≤ c8

√
α · nδ/2 if 2/3 < δ ≤ 1

Remark that in [31], a similar statement of (b) was proved only for a bit

narrower range α ≥ 2 as follows: c1

(
logα

)1/3
n1/3 ≤ F ([n]p) ≤ c2

(
logα

)1/3
n1/3.

However, in fact, by replacing logα with log[α + 1], one can show (b) with the

same argument.

4.3.3 Borel–Cantelli lemma

We introduce the Borel–Cantelli lemma which translates a result in [n] into a

result in N.

Lemma 4.3.2 (Borel–Cantelli Lemma) Let {En}, where n ∈ N, be an infi-

nite sequence of measurable events in a probability space. If
∑∞

n=1 P[En] < ∞,

then with probability 1, only finitely many events of the En occur, that is

P
[ ∞⋂

i=1

∞⋃
n=i

En

]
= 0.

The Borel–Cantelli lemma implies the following corollary. Recall that Ω is

the probability space of infinite random sets R ⊂ N.

Corollary 4.3.3 Let {Fn} be an infinite sequence of events in Ω. If Fn holds

with probability 1 − O(1/n2), then with probability 1, a random set R satisfies

that there exists a positive integer n0 = n0(R) such that for every n ≥ n0, the

event Fn holds.

Proof Let Fn be the complement of Fn. Since P[Fn] = 1− O(1/n2), we have

that P[Fn] = O(1/n2), and hence∑
n

P[Fn] =
∑
n

O(1/n2) <∞.

The Borel–Cantelli lemma with En = Fn implies that with probability 1, only

finitely many events of the Fn occur. Hence, with probability 1, a random set
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R satisfies that there exists a positive integer n0 = n0(R) such that for every

n ≥ n0, the event Fn holds. �

4.3.4 The size of a random set R in an interval

First, we estimate the expected size of R[an+ 1, bn] where 0 < a < b.

Fact 4.3.1 Let 0 ≤ a < b and β > 0 be real numbers. We have

α

δ
(bδ − aδ)nδ −O(1) ≤ E(|R[an+ 1, bn]|) ≤ α

δ
(bδ − aδ)nδ. (4.2)

In particular, we have

[
1− (1− δ)β/2

]
αβnδ −O(1) ≤ E(|R[n+ 1, (1 + β)n]|) ≤ αβnδ. (4.3)

Proof First, we show (4.2). Since only finitely many m satisfy αm−1+δ > 1,

the probability pm = min{1, αm−1+δ} = αm−1+δ for all but finitely many m.

Thus we infer

bn∑
m=an+1

αm−1+δ −O(1) ≤ E(|R[an+ 1, bn]|) ≤
bn∑

m=an+1

αm−1+δ. (4.4)

Since both ∫ bn

an+1

αx−1+δdx ≤
bn∑

m=an+1

αm−1+δ ≤
∫ bn

an

αx−1+δdx,

and ∫ bn

an+1

αx−1+δdx =

∫ bn

an

αx−1+δdx−O(1)

hold, inequality (4.4) implies that∫ bn

an

αx−1+δdx−O(1) ≤ E(|R[an+ 1, bn]|) ≤
∫ bn

an

αx−1+δdx. (4.5)
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Since
∫ bn
an
αx−1+δdx = α(bδ − aδ)nδ/δ, inequality (4.5) implies inequality (4.2).

Next, we show that inequality (4.3) follows from (4.2). Indeed, inequal-

ity (4.2) with a = 1 and b = 1 + β implies that

α

δ

[
(1 + β)δ − 1

]
nδ −O(1) ≤ E(|R[n+ 1, (1 + β)n]|) ≤ α

δ

[
(1 + β)δ − 1

]
nδ. (4.6)

Since

(1 + β)δ = 1 + δβ +
δ(δ − 1)

2
β2 + · · ·,

we infer δβ + δ(δ−1)
2

β2 ≤ (1 + β)δ − 1 ≤ δβ, and hence

δβ
[
1− (1− δ)β/2

]
≤ (1 + β)δ − 1 ≤ δβ. (4.7)

In view of (4.7), inequality (4.6) yields (4.3). �

Next we consider the concentration of
∣∣R[an + 1, bn]

∣∣. We will apply the

following version of the Chernoff bound:

Lemma 4.3.4 (The Chernoff bound) Let Xi be independent random vari-

ables such that P[Xi = 1] = pi and P[Xi = 0] = 1 − pi, and let X =
∑n

i=1Xi.

Then

P
[
|X − E(X)| ≥ λE(X)

]
≤ 2 exp−

λ2

3
E(X) .

Based on Fact 4.3.1, the Chernoff bound above implies the following:

Lemma 4.3.5 Let 0 ≤ a < b and β > 0 be real numbers. We have that with

probability 1−O(1/n2),(
1− 1

log n

)α
δ

(bδ − aδ)nδ ≤ |R[an+ 1, bn]| ≤
(

1 +
1

log n

)α
δ

(bδ − aδ)nδ. (4.8)

In particular, we have that with probability 1−O(1/n2),(
1− 1

log n

)[
1−(1−δ)β/2

]
αβnδ ≤ |R[n+1, (1+β)n]| ≤

(
1+

1

log n

)
αβnδ. (4.9)
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4.3.5 The Kim–Vu polynomial concentration result

The Kim–Vu polynomial concentration result introduced in Section 2.5.2 is also

one of important lemmas for the infinite Sidon subsets contained in N. In order

to make this chapter self-contained, we recall it again.

Let H = (V,E) be a hypergraph with n vertices. Let R be a random subset

of V obtained by choosing each element i ∈ V independently with probability qi.

Let H[R] be the sub-hypergraph of H induced on R and set Y = |H[R]|. Kim–

Vu [25] obtained a result which, although the hyperedges are not chosen to R

independently, ensures that Y is concentrated around its mean E(Y ) similarly

as in the Chernoff bound. (See also Theorem 7.8.1 in Alon–Spencer [3]). First,

we introduce basic definitions.

Definition 4.3.6. Let k be the maximum size of hyperedges in H, and let

A ⊂ [n] be with |A| ≤ k.

• YA := |{e ∈ H[R] | A ⊂ e}|

• EA := E(YA |A ⊂ R)

• Ei := maxEA over all A ⊂ [n] with |A| = i.

• E′ := max
1≤i≤k

Ei and E∗ := max{E′,E(Y )}. (4.10)

Now we are ready to state the result by Kim–Vu [25].

Theorem 4.3.7 (Kim–Vu polynomial concentration inequality) Assume

the above notation. For every λ > 1,

P
[
|Y − E(Y )| > ak(E∗E′)1/2λk

]
< 2e2e−λnk−1,

where ak = 8kk!1/2.

Based on Theorem 4.3.7, we give a corollary which will be frequently applied.
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Let f(n) be a function satisfying that

E(Y ) ≤ f(n) and E′ ≤ f(n) · n−ε,

for some positive constant ε. We infer that (E∗E′)1/2 ≤ f(n) · n−ε/2. Setting

λ = nε/4k, the following holds:

• (E∗E′)1/2λk ≤ f(n) · n−ε/2 · nε/4 = f(n) · n−ε/4 = o(f(n)).

• e−λnk−1 ≤ n−2 for every sufficiently large n.

Hence, we obtain the following from Theorem 4.3.7:

Corollary 4.3.8 Assume the above notation, and let f(n) be a function satis-

fying that

E(Y ) ≤ f(n) and E′ ≤ f(n) · n−ε,

for some positive constant ε. Then, Y ≤ f(n)(1 + o(1)) with probability 1 −
O(1/n2).

4.4 Proof of Lemma 4.2.1

First, we prove (a) and (b) of Lemma 4.2.1. Fix 0 < δ ≤ 1/3 and 0 < α ≤ 1.

Inequality (4.8), with a = 0 and b = 1, gives that |R[n]| ≤ (1 + 1
logn

)α
δ
nδ, with

probability 1−O(1/n2), and hence, with probability 1−O(1/n2),

|R[n]|
nδ

≤
(

1 +
1

log n

)α
δ
. (4.11)

In order to obtain a result about an infinite random set, we apply Corol-

lary 4.3.3. We define an event Fn of Ω as

Fn :=
{
R ⊂ N | |R[n]|

nδ
≤
(

1 +
1

log n

)α
δ

}
.
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Note that Fn holds with probability 1 − O(1/n2). Corollary 4.3.3 implies that

with probability 1, a random set R ⊂ N satisfies that there exists a positive

integer n0 = n0(R) such that for every n ≥ n0, the event Fn holds, that is

inequality (4.11) holds. For every Sidon subset S ⊂ R, we have that for every

n ≥ n0,
|S[n]|
nδ

≤ |R[n]|
nδ

≤
(

1 +
1

log n

)α
δ
,

and hence,

lim sup
|S[n]|
nδ

≤ lim
(

1 +
1

log n

)α
δ

=
α

δ
,

which completes the proof of (a) and (b) of Lemma 4.2.1.

Next, we show (c)–(f) of Lemma 4.2.1. We give a lemma which translates

a result on an upper bound on F ([n]p) in Theorem 4.3.1 into a result on the

lim sup of |S[n]| where S is a Sidon subset of an infinite random set in N.

Lemma 4.4.1 For i ∈ N, let pi be a decreasing function of i. Let b > 0,

1/3 ≤ ν ≤ 1 and ρ ≥ 0 be constants such that F ([n]pn) ≤ bnν(log n)ρ holds with

probability 1−O(1/n2). Then the following holds with probability 1:

There exists a positive constant c = c(b), only depending on b, such that for any

Sidon subset S ⊂ R,

lim sup

∣∣S[n]
∣∣

nν(log n)ρ
≤ c.

Observe that combining Theorem 4.3.1 and Lemma 4.4.1 implies (c)–(f) of

Lemma 4.2.1.

Proof of Lemma 4.4.1 It suffices to show that there exists a positive constant

c = c(b) such that for every sufficiently large n,

∣∣S[n]
∣∣ ≤ cnν(log n)ρ. (4.12)

To this end, we will consider the following steps:

• STEP1: We estimate
∣∣S[2i+1, 2i+1]

∣∣ for every sufficiently large integer i.
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• STEP2: We estimate
∣∣S[2j]

∣∣ for every sufficiently large integer j.

• STEP3: We estimate
∣∣S[n]

∣∣ for every sufficiently large integer n.

• STEP1: First we estimate an upper bound on
∣∣S[n + 1, 2n]

∣∣. Since pi

is a decreasing function of i, each element i in [n + 1, 2n] is chosen to R with

probability pi which is at most pn. The random set [n+ 1, 2n]pn can be viewed

as R[n+ 1, 2n] ∪R∗[n+ 1, 2n], where a random set R∗ is obtained by choosing

each element i with probability qi such that pi + (1− pi)qi = pn. Therefore we

infer R[n+ 1, 2n] ⊂ [n+ 1, 2n]pn , and hence,

F (R[n+ 1, 2n]) ≤ F ([n+ 1, 2n]pn),

where F (A) denotes the maximum size of a Sidon subset of A ⊂ N. Since a

Sidon set is invariant by translation, we infer that

F (R[n+ 1, 2n]) ≤ F ([n+ 1, 2n]pn) = F ([n]pn).

Under the assumption that F ([n]pn) ≤ bnν(log n)ρ holds with probability 1 −
O(1/n2), we have that with probability 1−O(1/n2),

F (R[n+ 1, 2n]) ≤ bnν(log n)ρ. (4.13)

In order to obtain a result about an infinite random set, we apply Corol-

lary 4.3.3. We define an event Fn of Ω as

Fn :=
{
R ⊂ N | F (R[n+ 1, 2n]) ≤ bnν(log n)ρ

}
.

Note that Fn holds with probability 1 − O(1/n2). Corollary 4.3.3 implies that

with probability 1, a random set R ⊂ N satisfies that there exists an integer

n0 = n0(R) > 0 such that for every n ≥ n0,

F (R[n+ 1, 2n]) ≤ bnν(log n)ρ. (4.14)
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Fix an integer j0 such that 2j0 ≥ n0, and let S be an arbitrary Sidon subset of

R. Inequality (4.14) yields that for every i ≥ j0,

∣∣S[2i + 1, 2i+1]
∣∣ ≤ F (R[2i + 1, 2i+1]) ≤ b(2i)ν(log 2i)ρ = b(2ν)i(log 2i)ρ. (4.15)

• STEP2: We estimate an upper bound on
∣∣S[2j]

∣∣ for every sufficiently

large j. Inequality (4.15) implies that for every j > j0,

∣∣S[2j]
∣∣ =

∣∣S[2j0 ]
∣∣+

j−1∑
i=j0

∣∣S[2i + 1, 2i+1]
∣∣ ≤ ∣∣R[2j0 ]

∣∣+

j−1∑
i=j0

b(2ν)i(log 2i)ρ.

Since R[2j0 ] is finite, by taking a sufficiently large j, we have

∣∣S[2j]
∣∣ ≤ 2b

j−1∑
i=j0

(2ν)i(log 2i)ρ.

Due to the fact that (log n)ρ, with ρ ≥ 0, is a non-decreasing function of n, we

infer

∣∣S[2j]
∣∣ ≤ 2b(log 2j−1)ρ

j−1∑
i=j0

(2ν)i ≤ 2b(log 2j−1)ρ · (2ν)j0 (2ν)j−j0 − 1

2ν − 1

≤ 2b

2ν − 1
(log 2j−1)ρ(2ν)j ≤ c(log 2j−1)ρ2νj

= c(2j)ν(log 2j−1)ρ, (4.16)

where c := 8b ≥ 2b/(2ν − 1) for 1/3 ≤ ν ≤ 1.

• STEP3: We estimate an upper bound on
∣∣S[n]

∣∣ where 2j−1 < n ≤ 2j.

Inequality (4.16) implies that

∣∣S[n]
∣∣ ≤ ∣∣S[2j]

∣∣ ≤ c · (2j)ν(log 2j−1)ρ.

Since 2j < 2n holds and (log n)ρ with ρ ≥ 0 is a non-decreasing function of n,
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we infer that

∣∣S[n]
∣∣ ≤ c · (2n)ν(log n)ρ ≤ c · 2νnν(log n)ρ ≤ c′ · nν(log n)ρ,

where c′ := 2c = 16b is a constant only depending on b. This completes the

proof of (4.12). �

It remains to show Lemma 4.2.2 (a) and (b).

4.5 Proof of Lemma 4.2.2 (a) and (b)

4.5.1 Proof of Lemma 4.2.2 (a) and (b)

The proof of (a) and (b) is almost identical, and therefore, we will prove these

cases simultaneously. In case (a) we consider δ, 0 < δ < 1/3, and α arbitrary.

In case (b) we consider δ = 1/3 and α ≤ 0.1. A random set R is obtained by

choosing each element m independently with probability pm = αm−1+δ. Our

proof of (a) and (b) of Lemma 4.2.2 is based on the following key lemma.

Lemma 4.5.1 For every ε > 0, a random set R has the following property with

probability 1: There exist an integer n0 = n0(ε, R) > 0 and a Sidon set S ⊂ R

such that for every n ≥ n0, the following holds:

|S[n]|/|R[n]| ≥ 1− ε if 0 < δ < 1/3 or (4.17)

|S[n]|/|R[n]| ≥ (1− ε)(1− 18α3) if δ = 1/3. (4.18)

We shall prove Lemma 4.5.1 after the proof of (a) and (b) of Lemma 4.2.2

below.

Proof of (a) and (b) of Lemma 4.2.2 First we prove (a), which is the case

when 0 < δ < 1/3. Lemma 4.3.5 implies that |R[n]| ≥
(

1 − 1

log n

)α
δ
nδ holds

with probability 1 − O(1/n2), and hence, Corollary 4.3.3 implies that with
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probability 1, a random set R satisfies that there is an integer n1 = n1(R) > 0

such that for every n ≥ n1,

|R[n]| ≥
(

1− 1

log n

)α
δ
nδ. (4.19)

Combining (4.17) and (4.19) implies that for every n ≥ max{n0, n1},

|S[n]| ≥ (1− ε)|R[n]| ≥ (1− ε)
(

1− 1

log n

)α
δ
nδ

and hence,

lim inf
|S[n]|
nδ

≥ lim inf(1− ε)
(

1− 1

log n

)α
δ

= (1− ε)α
δ
,

which completes the proof of (a) of Lemma 4.2.2.

Next we prove (b), which is the case when δ = 1/3. Our proof of (b) is

similar to the proof of (a). Combining (4.18) and (4.19) yields that for every

n ≥ max{n0, n1},

|S[n]| ≥ (1− ε)(1− 18α3)|R[n]| ≥ (1− ε)(1− 18α3)
(

1− 1

log n

)
3αn1/3

and hence,

lim inf
|S[n]|
n1/3

≥ lim inf(1− ε)(1− 18α3)
(

1− 1

log n

)
3α = (1− ε)(1− 18α3)3α,

which completes the proof of (b) of Lemma 4.2.2. �

It still remains to prove Lemma 4.5.1. We use Corollary 4.3.3 to prove

Lemma 4.5.1. For a suitable sequence of events in Corollary 4.3.3, we introduce

a sequence of events An.

Definition 4.5.2 (Event An). For ε > 0 and 0 < β ≤ 1, let An = An(ε, β)

denote the event that R[n+1, (1+β)n] contains a Sidon subset S[n+1, (1+β)n]
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satisfying the following two properties:

(i) for any Sidon set S[n] ⊂ R[n], the set S[n] ∪ S[n+ 1, (1 + β)n] is a Sidon

set,

(ii) |S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ 1− ε if 0 < δ < 1/3 or (4.20)

|S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ (1− ε)(1− 18α3) if δ = 1/3. (4.21)

Let us remark that Lemma 4.5.1 would follow if one could prove that

P[An] = O(1/n2) (4.22)

holds for every sufficiently large n. Indeed, observe that one could construct

an infinite Sidon set S =
⋃∞
i=0 S[ni + 1, ni+1] in R by concatenating Sidon sets

S[ni + 1, ni+1] ⊂ R[ni + 1, ni+1], i ≥ 0, where ni+1 = b(1 + β)nic. Unfortu-

nately, (4.22) fails to be true without an additional condition on a set R(1+β)n.

For the additional condition we define a sequence of events Bn below. Note that

for a fixed ε > 0 we will use β with β � ε.

Definition 4.5.3 (Event Bn). For 0 < β ≤ 1, let Bn = Bn(β) be the event

that R[(1 + β)n] is well distributed, that is, for all integers k ∈ [n],

∣∣R[k + 1, k + βn]
∣∣ = (1± β) · E

(∣∣R[k + 1, k + βn]
∣∣). (4.23)

Note that it is easy to check that if R[(1 + β)n] is well distributed, then

∣∣R[n]
∣∣ = (1± 3β)E

(∣∣R[n]
∣∣) = (1± 3β)(α/δ)nδ −O(1), (4.24)

where the last identity follows from Fact 4.3.1 with a = 0 and b = 1. The

Chernoff bound easily implies the following.
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Fact 4.5.1 For every β > 0, we have P[Bn] = O(1/n2), where Bn is the com-

plement of Bn.

We shall prove the following lemma about event An in the next Section.

Lemma 4.5.4 For every ε > 0, there exists a constant β0 = β0(ε, δ) such that

for every 0 < β < β0, we have P[An|Bn] = O(1/n2).

We deduce the following from Fact 4.5.1 and Lemma 4.5.4.

Corollary 4.5.5 For every ε > 0, there exists a constant β0 = β0(ε, δ) such

that for every 0 < β < β0, we have P[An ∩Bn] = O(1/n2).

Proof Note that

P[An ∩Bn] = P[Bn ∪ An] ≤ P[Bn] + P[Bn ∩ An]

= P[Bn] + P[Bn]P[An|Bn] ≤ P[Bn] + P[An|Bn].

Consequently, Fact 4.5.1 and Lemma 4.5.4 imply that P[An ∩Bn] = O(1/n2).

�

Now we are ready to apply Corollary 4.3.3 for our proof of Lemma 4.5.1.

Proof of Lemma 4.5.1 Fix ε as an arbitrary small positive real number. Let

β be a constant satisfying

(1− 3β)/(1 + 3β)2 ≥ 1− ε (4.25)

and 0 < β < β0, where β0 is given by Corollary 4.5.5. Recall that An = An(ε, β)

and Bn = Bn(β) are the events introduced in Definitions 4.5.2 and 4.5.3. By

Corollary 4.5.5, it follows from Corollary 4.3.3 with Fn = An∩Bn that with prob-

ability 1, a random set R satisfies that there exists an integer n0 = n0(ε, R) > 0

such that for all n ≥ n0, both An and Bn simultaneously hold.

Now we generate a Sidon subset S of a random set R ⊂ N which satisfies

the condition of Lemma 4.5.1. First, we consider an infinite sequence of integers



4.5. Proof of Lemma 4.2.2 (a) and (b) 90

n0 < n1 < n2 < · · · such that ni+1 = b(1 + β)nic. Since Ani holds for every

i ≥ 0, there is a subset S[ni + 1, ni+1] ⊂ R[ni + 1, ni+1] such that

(i) for any Sidon set S[ni] ⊂ R[ni], the set S[ni] ∪ S[ni + 1, ni+1] is a Sidon

set,

(ii) |S[ni + 1, ni+1]|
|R[ni + 1, ni+1]|

≥ 1− ε if 0 < δ < 1/3 or (4.26)

|S[ni + 1, ni+1]|
|R[ni + 1, ni+1]|

≥ (1− ε)(1− 18α3) if δ = 1/3. (4.27)

Set S = ∪∞i=0S[ni + 1, ni+1] and consider it as our desired Sidon set. Note that

property (i) clearly guarantees that S is a Sidon subset of R.

It remains to show that S satisfies condition (4.17) and (4.18). First, we

consider the case where n = ni for some i. Since |R[n0]| is finite but |R[n0+1,∞]|
is infinite, it follows from inequality (4.26) and (4.27) that there exists an integer

i0 > 0 such that for all i ≥ i0, the following holds:

|S[ni]|/|R[ni]| ≥ 1− 2ε if 0 < δ < 1/3 or (4.28)

|S[ni]|/|R[ni]| ≥ (1− 2ε)(1− 18α3) if δ = 1/3. (4.29)

Now we consider the case when n is an arbitrary integer between ni and ni+1,

where i ≥ i0, and estimate the ratio |S[n]|/|R[n]|. Clearly, we have

|S[n]|
|R[n]|

≥ |S[ni]|
|R[ni+1]|

=
|S[ni]|
|R[ni]|

· |R[ni]|
|R[ni+1]|

. (4.30)

Since both R[ni] and R[ni+1] are well distributed, by inequality (4.24), we have

|R[ni]|
|R[ni+1]|

≥ (1− 3β)E(R[ni])

(1 + 3β)E(R[ni+1])
≥ (1− 3β)

(1 + 3β)

(α/δ)nδi −O(1)

(α/δ){(1 + β)ni}δ

≥ 1− 3β

(1 + 3β)2
≥ 1− ε, (4.31)
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where the second inequality follows from (4.2) and the last inequality follows

from (4.25). Combining (4.30), (4.28), (4.29), and (4.31) implies the following:

|S[n]|/|R[n]| ≥ (1− 2ε)(1− ε) > 1− 3ε if 0 < δ < 1/3 or

|S[n]|/|R[n]| ≥ (1− 3ε)(1− 18α3) if δ = 1/3.

Consequently, for all n ≥ ni0 , we have |S[n]|/|R[n]| ≥ 1− 3ε (if 0 < δ < 1/3)

or |S[n]|/|R[n]| ≥ (1− 3ε)(1− 18α3) (if δ = 1/3). By rescaling ε, this implies

condition (4.17) and (4.18), which completes the proof of Lemma 4.5.1. �

It remains to prove Lemma 4.5.4.

4.5.2 Proof of Lemma 4.5.4

We need to show that for every ε > 0 there exists a constant β0 = β0(ε, δ) > 0

such that for every 0 < β < β0, we have P[An|Bn] = 1 − O(1/n2). In other

words, under the assumption of Bn, that is, that R[(1 +β)n] is well distributed,

we need to show that with probability 1 − O(1/n2), event An holds, that is, a

random set R[n+ 1, (1 + β)n] contains a subset S[n+ 1, (1 + β)n] satisfying the

following:

(i) for any Sidon set S[n] ⊂ R[n], the set S[n] ∪ S[n+ 1, (1 + β)n] is a Sidon

set,

(ii)
|S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ 1− ε if 0 < δ < 1/3 or

|S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ (1− ε)(1− 18α3) if δ = 1/3.

In order to obtain S[n+1, (1+β)n] from R[n+1, (1+β)n], we use a deletion

method. For i = 1, 2, 3, 4, let Qi be the set of all Sidon quadruples {a, b, c, d}
in R[(1 + β)n] such that

∣∣{a, b, c, d} ∩ R[n]
∣∣ = 4 − i. Note that each Sidon
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quadruple in ∪4
i=1Qi intersects R[n+1, (1+β)n]. Hence, by deleting an element

of each Sidon quadruple in ∪4
i=1Qi from R[n + 1, (1 + β)n], we can destroy

all Sidon quadruples in ∪4
i=1Qi. Let Di (i = 1, 2, 3, 4) be a set of elements of

R[n + 1, (1 + β)n] which removal destroys all Sidon quadruples of Qi, that is,

say

Di =
{
d ∈ R[n+ 1, (1 + β)n] : {a, b, c, d} ∈ Qi, a < b ≤ c < d

}
. (4.32)

Set S[n+ 1, (1 + β)n] := R[n+ 1, (1 + β)n] \ ∪4
i=1Di, and hence

|S[n+ 1, (1 + β)n]| ≥ |R[n+ 1, (1 + β)n]| −
4∑
i=1

|Di|.

Thus we infer

|S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ 1−
∑4

i=1 |Di|
|R[n+ 1, (1 + β)n]|

. (4.33)

We now show that the set S[n+ 1, (1 + β)n] satisfies properties (i) and (ii)

above. First, observe that property (i) is ensured by the construction of S[n+

1, (1 + β)n]. In order to prove property (ii), we are going to estimate
∑4

i=1 |Di|
and |R[n+ 1, (1 + β)n]| in (4.33).

Claim 4.5.6 If event Bn(β) holds, then there exist constants c1 = c1(δ) and

c2 = c2(δ) such that the following holds with probability 1−O(1/n2):

(I) |D1| ≤ (1 + 3β)4(2/δ2)βα4 max{n4δ−1, nδ/2},

(II) |D2| ≤ c1β
1+δα4 max{n4δ−1, nδ/2},

(III) |D3| ≤ c2β
2α4 max{n4δ−1, nδ/2},

(IV) |D4| ≤ 2β3α4 max{n4δ−1, nδ/2}.

The proof of the claim above will be given in the next subsection. Note that

Claim 4.5.6 with a sufficiently small β = β(ε, δ) implies that for i = 1, 2, 3, 4,
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|Di|/
[
(2/δ2)βα4 max{n4δ−1, nδ/2}

]
can be made smaller than (1+ε/4), ε/4, ε/4,

and ε/4, respectively. Consequently, Claim 4.5.6 yields that with probability

1−O(1/n2),

4∑
i=1

|Di| ≤ (1 + ε)(2/δ2)βα4 max{n4δ−1, nδ/2}. (4.34)

Note that max{4δ−1, δ/2} < δ for 0 < δ < 1/3, and we have max{4δ−1, δ/2} =

δ = 1/3 and α ≤ 0.1 when δ = 1/3. Hence inequality (4.34) implies that the

following holds with probability 1−O(1/n2):

4∑
i=1

|Di| ≤ εβαnδ if 0 < δ < 1/3 or (4.35)

4∑
i=1

|Di| ≤ (1 + ε)18βα4n1/3 if δ = 1/3. (4.36)

On the other hand, since R[(1 + β)n] is well distributed and the first inequality

in (4.3) holds, we infer that

∣∣R[n+ 1, (1 + β)n]
∣∣ ≥ (1− β)E

(∣∣R[n+ 1, (1 + β)n]
∣∣) ≥ (1− β)2βαnδ. (4.37)

Now we are ready to prove property (ii). Combining (4.33), (4.35), (4.36),

and (4.37) yields that the following holds with probability 1−O(1/n2).

• If 0 < δ < 1/3, then

|S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ 1− εβαnδ

(1− β)2βαnδ
= 1− ε

(1− β)2
≥ 1− 2ε,

where the last inequality follows with a sufficiently small β = β(ε).
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• If δ = 1/3, then

|S[n+ 1, (1 + β)n]|
|R[n+ 1, (1 + β)n]|

≥ 1− (1 + ε)18βα4n1/3

(1− β)2βαn1/3
≥ 1− 1 + ε

(1− β)2
18α3

≥ 1− (1 + 2ε)18α3 ≥ (1− 2ε)(1− 18α3),

where the third inequality follows with a sufficiently small β = β(ε) and

the last inequality follows from α ≤ 0.1.

By rescaling ε, this implies property (ii), which completes the proof of Lemma

4.5.4.

It still remains to prove Claim 4.5.6.

4.5.3 Proof of Claim 4.5.6

We prove Claim 4.5.6 by estimating |Di| (i = 1, 2, 3, 4) separately. We start

with a definition which is related to the definition of D1 in (4.32).

Definition 4.5.7.

• D := {d | {a, b, c, d} is a Sidon quadruple, a, b, c ∈ R[n], d ∈ [n + 1, (1 +

β)n]}

• T := {{a, b, c} | {a, b, c, d} is a Sidon quadruple, a, b, c ∈ R[n], d ∈ [n +

1, (1 + β)n]}

Since more triples {a, b, c} ∈ T (a ≤ b ≤ c) can correspond to a number

d = −a+ b+ c ∈ D, we have

|D| ≤ |T |. (4.38)

Proof of (I) in Claim 4.5.6 Recall that by (4.32)

D1 := {d | {a, b, c, d} is a Sidon quadruple,

a, b, c ∈ R[n], d ∈ R[n+ 1, (1 + β)n]}. (4.39)
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Note that D1 = D ∩ R[n + 1, (1 + β)n] from Definition 4.5.7. Note that each

element in [n+ 1, (1 + β)n] is chosen for R independently with probability less

than pn := αn−1+δ, and hence we have

E(|D1|) ≤ |D|αn−1+δ
(4.38)

≤ |T |αn−1+δ. (4.40)

We will show that

|T | ≤ (1 + 3β)3(2/δ2)βα3n3δ. (4.41)

Consequently we infer E(|D1|) ≤ (1 + 3β)3(2/δ2)βα4n4δ−1. Since each element

d ∈ D ⊂ [n + 1, (1 + β)n] is chosen for D1 ⊂ R[n + 1, (1 + β)n] independently,

by the Chernoff bound, we infer that

|D1| ≤ (1 + 3β)4(2/δ2)βα4 max{n4δ−1, nδ/2}

with probability 1 − O(1/n2), which completes the proof of (I) in Claim 4.5.6.

It still remains to show (4.41).

Now we show (4.41). Let {a, b, c} ∈ T , where a ≤ b ≤ c. First we claim

that, for any given a and b, the number c is in an interval of length βn contained

in [n/2 + 1, n]. Since {a, b, c, d} (a < b ≤ c < d) is a Sidon quadruple, we have

a+ d = b+ c. In other words, the distance between a and b is the same as the

distance between c and d, that is b − a = d − c. Since d ∈ [n + 1, (1 + β)n] is

in an interval of length βn, we have that, for any given a and b, the number c

is also in an interval of length βn. In addition, if c < n/2 + 1, then b − a ≤
c− 1 < n/2 ≤ d− c, which is impossible, and hence we infer c ≥ n/2 + 1.

Since, for any given a and b, the number c is in an interval of length βn

contained in [n/2 + 1, n], we have that for any given a and b, there exists a
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non-negative integer k = n/2 + a− b such that

∣∣{c | {a, b, c} ∈ T for given a, b ∈ R[n]}
∣∣ =

∣∣R[n/2 + k + 1, n/2 + k + βn]
∣∣

(4.23)

≤ (1 + β)E(
∣∣R[n/2 + k + 1, n/2 + k + βn]

∣∣)
≤ (1 + β)E

(∣∣R[n/2 + 1, n/2 + βn]
∣∣),

where the last inequality follows from the fact that the probability pm to chose

m ∈ N to R is decreasing. Inequality (4.3) with n/2 and 2β instead of n and β

yields that

∣∣{c | {a, b, c} ∈ T for given a, b ∈ R[n]}
∣∣ ≤ (1 + β)α2β(n/2)δ ≤ (1 + β)2βαnδ.

Thus we infer

|T | ≤ |R[n]|2 · (1 + β)2βαnδ
(4.24)

≤ (1 + 3β)2[(α/δ)nδ]2 · (1 + β)2βαnδ

≤ (1 + 3β)3(2/δ2)βα3n3δ,

which implies (4.41), and hence this completes the proof of (I) in Claim 4.5.6.

�

Now we are going to estimate |D2| where D2 is defined in (4.32). We start

with the definition of the following auxiliary graphs.

Definition 4.5.8. Let R[n] ⊂ [n] be given.

• Let G = (V,E) be the graph with vertex set V = [n + 1, (1 + β)n] and

edge set

E = {{c, d} | {a, b, c, d} is a Sidon quadruple, a < b ≤ c < d,

a, b ∈ R[n], c, d ∈ [n+ 1, (1 + β)n]}. (4.42)

• Let GR = (V R, ER) be the subgraph of G induced on V R = R[n+ 1, (1 +
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β)n].

Proof of (II) in Claim 4.5.6 Recall that by (4.32)

D2 := {d | {a, b, c, d} is a Sidon quadruple, a < b ≤ c < d,

a, b ∈ R[n], c, d ∈ R[n+ 1, (1 + β)n]}.

Since several edges of ER in Definition 4.5.8 can correspond to an integer d ∈ D2,

observe that

|D2| ≤ |ER|. (4.43)

Thus, in order to show (II) in Claim 4.5.6, which estimates |D2|, it suffices to

estimate |ER|.
First we consider E(|ER|). To this end we estimate |E| in Definition 4.5.8.

For fixed a ∈ R[n], let

∆a = {b− a | 0 < b− a ≤ βn, b ∈ R[n]} and ∆ =
⋃

a∈R[n]

∆a. (4.44)

Since R[n] is well distributed, we have that for each a ∈ R[n]

|∆a| = |R[a+ 1, a+ βn]| ≤ (1 + β)E[|R[a+ 1, a+ βn]|] ≤ 2E[|R[βn]|]

≤ 2(α/δ)βδnδ = (2/δ)βδαnδ, (4.45)

where the second inequality follows from assumption β ≤ 1 and the fact that

the probability pm for choosing m to R is decreasing and the last inequality

follows from the second inequality of (4.2) with a = 0 and b = β. We infer that

|∆|
(4.44)

≤
∑
a∈R[n]

|∆a|
(4.45)

≤ |R[n]|(2/δ)βδαnδ

(4.24)

≤ 4(α/δ)nδ · (2/δ)βδαnδ ≤ (8/δ2)βδα2n2δ. (4.46)
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Consequently, we have

|E| ≤ (choice of c)(choice of d) = (βn)|∆| ≤ (8/δ2)β1+δα2n2δ+1.

Note that each edge of E is chosen to ER if the two end vertices of the edge are

chosen to R[n+ 1, (1 + β)n], which happens with probability at most p2
n. Thus

E(|ER|) ≤ |E| · p2
n ≤ (8/δ2)β1+δα2n2δ+1(αn−1+δ)2

≤ (8/δ2)β1+δα4n4δ−1. (4.47)

Next, in order to consider the concentration of |ER|, we apply Corollary 4.3.8

with H = G and H[R] = GR, where G = (V,E) and GR = (V R, ER) are

introduced in Definition 4.5.8. First, we estimate Ei which are introduced in

Definition 4.3.6.

• Estimating E1: Fix u ∈ V = [n + 1, (1 + β)n]. We consider E{u}, that

is, the expected number of edges in GR containing vertex u under the

condition that u ∈ V R = R[n + 1, (1 + β)n]. Note that the number of

edges of E containing vertex u is at most 2|∆|. Under the condition that

vertex u is in R[n+ 1, (1 + β)n], such an edge is chosen to ER if the other

end vertex of the edge is chosen to R[n+ 1, (1 +β)n], which happens with

probability at most pn. Hence we infer that

E1 := maxE{u} ≤ 2|∆|pn
(4.46)

≤ (16/δ2)βδα2n2δ · (αn−1+δ)

= (16/δ2)βδα3n3δ−1 = Oδ(β
δα3),

where the last “=” follows from δ ≤ 1/3, that is, 3δ − 1 ≤ 0 and the

notation f(n) = Oδ(g(n)) means that f(n) ≤ cδ · g(n) with some constant

cδ which only depends on δ. Under assumption β ≤ 1, we have E1 =

Oα,δ(1).

• Estimating E2: Clearly, we have E2 ≤ 1.
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Recalling the assumption 0 < δ ≤ 1/3, we set

f(n) = (8/δ2)β1+δα4 max{n4δ−1, nδ/2}.

Comparing (4.47) with the bounds on E1 and E2, we infer that

E(|ER|) ≤ f(n) and E′ := max{E1,E2} = Oα,δ(1) ≤ f(n) · n−δ/4

for every sufficiently large n. Corollary 4.3.8 with H = G and H[R] = GR

implies that with probability 1−O(1/n2),

|ER| ≤ 2f(n) = (16/δ2)β1+δα4 max{n4δ−1, nδ/2}.

Thus, by (4.43), we have that

|D2| ≤ |ER| ≤ (16/δ2)β1+δα4 max{n4δ−1, nδ/2}

holds with probability 1−O(1/n2), which completes the proof of (II) in Claim

4.5.6. �

Now we are going to estimate |D3| where D3 is defined in (4.32).

Proof of (III) in Claim 4.5.6 Since our proof of (III) is similar to the proof

of (II) above, we only give a sketch. Let HR
3 = (V R, ER

3 ) be the hypergraph

with vertex set V R = R[n+ 1, (1 + β)n] and edge set

ER
3 = {{b, c, d} | {a, b, c, d} is a Sidon quadruple, a < b ≤ c < d,

a ∈ R[n], b, c, d ∈ R[n+ 1, (1 + β)n]}.

Recall that by (4.32)

D3 := {d | {a, b, c, d} is a Sidon quadruple, a < b ≤ c < d,

a ∈ R[n], b, c, d ∈ R[n+ 1, (1 + β)n]}.
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Since several hyperedges of ER
3 can correspond to an integer d ∈ D3, observe

that

|D3| ≤ |ER
3 |. (4.48)

Hence, in order to estimate |D3|, it suffices to estimate |ER
3 |. By (4.24) and

assumption 0 < β ≤ 1, we have |R[n]| ≤ (4/δ)αnδ, and hence, one can show

the following:

E(|ER
3 |) ≤ |R[n]|(βn)2p3

n ≤ (4/δ)αnδ(βn)2(αn−1+δ)3 ≤ (4/δ)β2α4n4δ−1,

E1(|ER
3 |) ≤ |R[n]|(βn)O(1)p2

n = O
(

(4/δ)αnδ(βn)(αn−1+δ)2
)

= Oδ

(
βα3n3δ−1

)
= Oα,δ(1),

where the last “=” follows from assumption δ ≤ 1/3 and β ≤ 1,

E2(|ER
3 |) ≤ |R[n]|O(1)pn = O

(
(4/δ)αnδ(αn−1+δ)

)
= Oδ

(
α2n2δ−1

)
= Oα,δ(1),

E3(|ER
3 |) ≤ 1.

Recalling the assumption 0 < δ ≤ 1/3, we set

f(n) = (4/δ)β2α4 max{n4δ−1, nδ/2}.

By the above computation, we infer that

E(|ER
3 |) ≤ f(n) and E′ := max{E1,E2,E3} = Oα,δ(1) ≤ f(n) · n−δ/4

for every sufficiently large n. Corollary 4.3.8 implies that with probability 1 −
O(1/n2),

|ER
3 | ≤ 2f(n) = (8/δ)β2α4 max{n4δ−1, nδ/2}.

Thus, by (4.48), we have that

|D3| ≤ |ER
3 | ≤ (8/δ)β2α4 max{n4δ−1, nδ/2}

holds with probability 1−O(1/n2), which completes the proof of (III) in Claim

4.5.6. �

Finally we estimate |D4| where D4 is defined in (4.32).
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Proof of (IV) in Claim 4.5.6 Since our proof of (IV) is similar to the proof

of (II) and (III) above, we only give a sketch. Let HR
4 = (V R, ER

4 ) be the

hypergraph with vertex set V R = R[n+ 1, (1 + β)n] and edge set

ER
4 = {{a, b, c, d} ⊂ R[n+ 1, (1 + β)n] | {a, b, c, d} is a Sidon quadruple,

a < b ≤ c < d}.

Recall that by (4.32)

D4 := {d | {a, b, c, d} ⊂ R[n+1, (1+β)n] is a Sidon quadruple, a < b ≤ c < d}.

Since several hyperedges of ER
4 can correspond to an integer d ∈ D4, observe

that

|D4| ≤ |ER
4 |. (4.49)

Hence, similarly as before, in order to estimate |D4|, it suffices to estimate |ER
4 |.

One can show the following:

E(|ER
4 |) ≤ (βn)3p4

n ≤ (βn)3(αn−1+δ)4 ≤ β3α4n4δ−1,

E1(|ER
4 |) ≤ (βn)2O(1)p3

n = O
(

(βn)2(αn−1+δ)3
)

= O
(
β2α3n3δ−1

)
= Oα(1),

where the last “=” follows from assumption β ≤ 1 and δ ≤ 1/3,

E2(|ER
4 |) ≤ (βn)O(1)p2

n = O
(
βn(αn−1+δ)2

)
= O(βα2n2δ−1) = Oα(1),

E3(|ER
4 |) ≤ O(1)pn = O(αnδ−1) = Oα(1),

E4(|ER
4 |) ≤ 1.

Recalling the assumption 0 < δ ≤ 1/3, we set f(n) = β3α4 max{n4δ−1, nδ/2}.
By the above computation, we infer that

E(|ER
4 |) ≤ f(n) and E′ := max{E1,E2,E3,E4} = Oα(1) ≤ f(n) · n−δ/4

for every sufficiently large n. Corollary 4.3.8 implies that with probability 1 −
O(1/n2),

|ER
4 | ≤ 2f(n) = 2β3α4 max{n4δ−1, nδ/2}.
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Thus, by (4.49), we have that

|D4| ≤ |ER
4 | ≤ 2β3α4 max{n4δ−1, nδ/2}

holds with probability 1−O(1/n2), which completes the proof of (IV) in Claim

4.5.6. �
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ory of Jurĭı Vladimirovič Linnik. (Cited on page 2.)

[44] T. Tao and V. Vu, Additive combinatorics, Cambridge Studies in Ad-

vanced Mathematics, vol. 105, Cambridge University Press, Cambridge,

2006. (Cited on pages 2 and 5.)

[45] L. Trevisan, Guest column: additive combinatorics and theoretical computer

science, SIGACT News 40 (2009), no. 2, 50–66. (Cited on page 5.)


