
Distribution Agreement
In presenting this thesis or dissertation as a partial fulfillment of the requirements for an
advanced degree from Emory University, I hereby grant to Emory University and its agents
the non-exclusive license to archive, make accessible, and display my thesis or dissertation
in whole or in part in all forms of media, now or hereafter known, including display on
the world wide web. I understand that I may select some access restrictions as part of
the online submission of this thesis or dissertation. I retain all ownership rights to the
copyright of the thesis or dissertation. I also retain the right to use in future works (such
as articles or books) all or part of this thesis or dissertation.

Signature:

Sérgio Luís Dias Lima Gramacho Date

Autonomic Formation of Large Scale Wireless Mesh Networks

By

Sérgio Luís Dias Lima Gramacho
Doctor of Philosophy

Computer Science and Informatics

Avani Wildani, Ph.D.
Advisor, Comittee Chair

Vaidy Sunderam, Ph.D.
Committee Member

Shun Yan Cheung, Ph.D.
Committee Member

Christian Maciocco, Intel Labs
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Autonomic Formation of Large Scale Wireless Mesh Networks

By

Sérgio Luís Dias Lima Gramacho
M.S., Emory University, 2019

M.S., Federal University of Bahia, 2014
MBA, Salvador University, 2009

B.S., Federal University of Bahia, 1992

Advisor: Avani Wildani, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2020

Abstract

Autonomic Formation of Large Scale Wireless Mesh Networks

By Sérgio Luís Dias Lima Gramacho

A Wireless Mesh Network (WMN) is an appealing network archi-
tecture for low-cost and wide geographical coverage. It serves as a
potential alternative solution to improve worldwide connectivity in
low to high-income countries. Theoretical studies predict, however,
insufficient capacity for such network architecture at larger scales.
Moreover, the inherently distributed nature of WMNs and their typ-
ical distributed network control mechanisms turned them hardened
and inflexible to adapt to specific and varying control customization
demands.
We propose the modernization of the WMN architecture by allow-
ing the general applicability of Software Defined Networking (SDN)
on the implementation of WMN control planes for increased con-
trol flexibility while also enforcing frequency diversity to promote
throughput capacity. To achieve this, we devised autonomic agents
that induce the formation of WMN topologies as a set of intercon-
nected partitions, supporting a cooperative, multi-domain SDN-
based WMN control plane able to operate at large-scales and low-
cost for increased control flexibility. Moreover, the nature of this
autonomic network based on WMN partitions also allows the en-
forcement of frequency diversity at low-cost and low-complexity for
improved throughput capacity. The partitioned topology format is
the result of the concurrent and distributed operation of our au-
tonomic agents that manipulate the formation of the WMN using
local information, without relying on any central controlling entity,
characterizing a scalable and resilient solution. Partitions hold as
invariants their maximum diameter and their maximum per node
interface degree. These two induce an additional invariant: the
maximum partition size in mesh nodes. Finally, the three properties
permit limiting control latency and workload on Software Defined
Network (SDN) control plane domains. Our agents have different
objectives such as organize, heal, optimize; thus, they cooperate
and compete to determine final WMN topologies. We show that
the competitive/cooperative behavior of these agents converge to
stable formations in bounded time even under extreme mesh node
churn conditions. The solution relies on an in-network leader elec-
tion and stochastic delays to achieve the eventual stabilization of
formed WMN topologies.

Autonomic Formation of Large Scale Wireless Mesh Networks

By

Sérgio Luís Dias Lima Gramacho
M.S., Emory University, 2019

M.S., Federal University of Bahia, 2014
MBA, Salvador University, 2009

B.S., Federal University of Bahia, 1992

Advisor: Avani Wildani, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2020

Table of Contents

1 Introduction . 1
2 Background . 6

2.1 The scaling of complex systems . 6
2.2 On the definition of WMNs. 7
2.3 Factors affecting the capacity and control of WMNs 8
2.4 Analytical capacity scaling of single frequency WMNs. 9

2.4.1 Degree manipulation through directional antennas and power control 10
2.4.2 Concentrated traffic pattern . 11

2.5 Capacity scaling under node clustering and multiple diversity mechanisms 12
2.6 Multi-channel, multi-radio WMNs (MRMC) 15
2.7 Autonomic Computing . 17
2.8 Partitioned WMNs: reduced overhead and hierarchical routing 19
2.9 Packet routing and scheduling techniques on WMNs 20
2.10 Community Wireless Networks and their application of WMNs 24

2.10.1 The nature of CWNs . 24
2.10.2 The topology structure of CWNs 26

2.11 Experimentation platforms and challenges 27

3 An experimentation platform for the evaluation of auto-
nomic agents . 35
3.1 Agent Simulator - ASim . 36

3.1.1 ASim parameters . 38
3.2 Network Simulator - NetSim . 38
3.3 Nodes’ Containers . 40
3.4 Inter-modules messaging API . 43
3.5 Time synchronization . 43

4 WMN capacity scaling under autonomic topology manipu-
lation . 44
4.1 Operational cycle of autonomic agents. 44
4.2 Autonomic behavior of agents . 45

4.2.1 Manual node agent design . 45
4.2.2 Smart node agent design . 46

4.3 Visual outcome of the behavior of agents in atomic settings 48
4.4 Scaling results . 49

4.4.1 Experimentation settings for scaling results 49
4.4.2 Capacity scaling results . 53

5 Self-Organizing WMN nodes . 57
5.1 Design of Self-Organizing WMN nodes 57
5.2 Autonomic behavior of agents . 58

5.2.1 Smart node agent design . 58
5.3 Agent information . 60
5.4 Convergence of the Smart agent . 61

5.4.1 Triggers for slow convergence. 61
5.4.2 Optimizations to improve convergence 63
5.4.3 Modeling divergence. 63

5.5 Visual outcome of Self-Organizing agents 65
5.6 Results . 67

5.6.1 Experimentation settings . 67
5.6.2 Experiments evaluating convergence 68
5.6.3 Effort to convergence . 71
5.6.4 Resulting WMN partitioning structure 73

6 Integrated Self-Organizing, Self-Healing WMN nodes . . . 78
6.1 Design principles for the integrated Self-Organizing, Self-Healing WMN

nodes . 78
6.2 Integrated autonomic behavior of agents. 79

6.2.1 Smart-based : reference design of agents 80
6.2.2 SmartOrg : Self-Organizing agent design 81
6.2.3 SmartHeal : Self-Healing agent design 82

6.3 Agent information . 83
6.4 Convergence of the Smart-based agents 85

6.4.1 New divergence scenarios . 86
6.4.2 Pseudo-orderings for convergence. 87

6.5 Visualizing the outcome of the behavior of the integrated agents 87
6.6 Results . 89

6.6.1 Experimentation settings . 89
6.6.2 Time to convergence . 90
6.6.3 Recovering global connectivity 91
6.6.4 Converging to defined properties 93
6.6.5 Effort to convergence . 94
6.6.6 Topology structure under integrated organizing and healing . . . 98

7 Explorations with SDN control planes into WMNs 100
7.1 A reference architecture for SDN-based WMNs 100
7.2 Centralized SDN-based WMN TDMA scheduler. 102
7.3 Contention aware multi-path mesh routing based on centralized control . 104
7.4 WMN contention minimization: a current-flow betweenness centrality ap-

plication . 106
7.4.1 About graph centrality . 106
7.4.2 Proposed solution . 107
7.4.3 Simulated evaluation . 109

7.4.4 Section conclusion. 115

8 Conclusion and future work . 116
8.1 Future work . 118

A Appendix . 122
A.1 Additional information about CWNs . 122

A.1.1 Village Telco . 122
A.1.2 Replicating Internet content locally: World Possible’s projects . . 123
A.1.3 The Serval Project . 124
A.1.4 Gulfi.net . 125
A.1.5 Athens Wireless Metropolitan Network 125

Bibliography . 127

List of Figures

2.1 Scaling of the rate of simulation events w.r.t. the number of nodes . . 30
2.2 Comparing solutions to our defined requirements for the evaluation of

modern wireless networks . 32
2.3 Linux kernel tasks . 34

3.1 Architectural view of the experimentation platform 36
3.2 Protocol stacks and executing environments 37
3.3 Interactive Console . 38

4.1 Generic Agent Cycle . 45
4.2 Underlying maximum possible connectivity of the random node placement 48
4.3 Evolved WMN topology partitioned by the Manual self-organizing agent 49
4.4 Evolved WMN topology partitioned by the Smart self-organizing agent 50
4.5 Capacity scaling of the Manual and Smart agents 53
4.6 Curve fit of the raw capacity scaling 54
4.7 Capacity scaling curves fitted by a polynomial function of order four . . 55
4.8 The robustness of the agents enforcing maximum degree control under

different node placement densities . 56

5.1 Underlying maximum possible connectivity in Savannah, GA 66
5.2 Self-organized WMN topology partitioned by the Smart agent 67
5.3 Convergence without optimizations for small epochs 68
5.4 Convergence with randomization for small epochs 69
5.5 Convergence combining randomization and sequencing 69
5.6 Convergence without optimizations for a large epoch 70
5.7 Convergence with randomization for a large epoch 70
5.8 Total of move events when a node changes partition memberships (e =

9s). No optimizations. 71
5.9 Total of move events when a node changes partition memberships (e =

9s). Optimization RAND. 71
5.10 Total of move events when a node changes partition memberships (e =

9s). Optimizations RAND,PORD 72
5.11 Total of safety violation events - no optimizations 72
5.12 Total of safety violation events - optimization RAND 72
5.13 Total of safety violation events - optimization RAND,PORD 73
5.14 The maximum node degree of a mesh node for the agent smart dg10 on

density 1/400 nodes/m2 (e = 9s). Optimization RAND 73
5.15 The maximum node degree of a mesh node for the agent smart dg10 on

density 1/1600 nodes/m2 (e = 9s). Optimization RAND 74

5.16 The maximum WMN partition diameter for the agent smart dg10 on den-
sity 1/400 nodes/m2 (e = 9s). Optimization RAND 74

5.17 The maximum node degree of a mesh node for the agent smart dg10 on
density 1/1600 nodes/m2 (e = 9s). Optimization RAND 75

5.18 Typical WMN partition sizes. No optimization. 75
5.19 Typical WMN partition sizes. Optimization RAND. 76
5.20 Typical WMN partition sizes. Optimization RAND,PORD. 76
5.21 Frequency of WMN partition sizes, density 1/1600 nodes/m2 76
5.22 Frequency of WMN partition sizes, density 1/400 nodes/m2 77

6.1 Underlying maximum possible connectivity in LA County, CA, US . . . 87
6.2 Topology partitioned by SmartOrg and connected by SmartHeal agents,

Long Beach, degrees 5, 6 . 88
6.3 Topology partitioned by SmartOrg and connected by SmartHeal agents,

Long Beach, degrees 5, 6 . 89
6.4 All agent configurations converge within ten epochs. The ones with live-

ness ps on SmartHeal and more restricted partitions (dg ∈ {5, 6}) incur
longer convergence time. 91

6.5 The efficiency of agent configurations to recover global connectivity, given
the % of nodes with SmartHeal agents. A distinct degree bound im-
proves connectivity. Relaxed degree bounds (dgh ∈ {10, 11}) also induce
improved connectivity results. 91

6.6 Comparing recovering global connectivity with +1 and +2 SmartHeal
agent degree limits. As hypothesized, the +1 limit outperforms +2 due to
performing a better distribution of inter-partition connections. 92

6.7 The maximum achieved node interface degree of SmartOrg and SmartHeal
agents for liveness ps, showing a single convergence trend given the same
degree bound on both agent types. Converged to dg = dgh = 5. 93

6.8 The maximum achieved node interface degree of SmartOrg and SmartHeal
agents for liveness ps, showing double convergence trends given the differ-
ent degree bounds on agent types: dg = 5, dgh = 6. 94

6.9 The maximum achieved node interface degree of SmartOrg and SmartHeal
agents, also showing convergence to the defined properties for the liveness
ss. 95

6.10 The maximum node degree of Smart-dg and SmartHeal agents for liveness
ps, showing double convergence trends given the different max degree on
agent types: dg = 10, dgh = 11. 95

6.11 The maximum partition diameter for liveness ps, showing convergence to
objectives for dg = 5, dgh = 6. 95

6.12 The maximum partition diameter for liveness ss, also showing convergence
to objectives for dg = 5, dgh = 6. 96

6.13 The maximum partition diameter for liveness ps, showing convergence to
objectives for dg = 10, dgh = 11. 96

6.14 Effort to convergence in agent moves between partitions 97
6.15 Effort to convergence of SmartOrg agents in moves between partitions 97

6.16 The effort to convergence in agent moves between partitions. Shows moves
of the SmartHeal agents . 97

6.17 Partition size distribution without the effect of SmartHeal agents (0%) 98
6.18 Partition size distribution for 30% of SmartHeal agents 98
6.19 Partition size distribution for 50% of SmartHeal agents 99

7.1 SD-WMN controller framework. 100
7.2 WMN node architectural view in the SDN paradigm. 101
7.3 Single cluster network model - betweenness centrality algorithm 110
7.4 Single cluster network model - current-flow betweenness centrality . . . 111
7.5 Two cluster network model - betweenness centrality 111
7.6 Two cluster network model - current-flow betweenness centrality 112
7.7 Three cluster network model - betweenness centrality 112
7.8 Three cluster network model - current-flow betweenness centrality . . . 113
7.9 Four clusters network model - betweenness centrality 113
7.10 Four clusters network model - current-flow betweenness centrality . . . 114
7.11 Comparing with a no-centrality (Blind) baseline 114

8.1 Autonomically created WMN topology partitioned and connected by the
SmartOrg and SmartHeal agents . 120

8.2 3D perspective of the autonomically created WMN topology from Fig. 8.1 121

List of Tables

3.1 ASim Generic Parameters. 39
3.2 ASim Display Consoles Parameters. 39
3.3 ASim Node Placement Parameters. 40
3.4 ASim Agent Models Parameters. 41
3.5 ASim Types of nodes containers and associated attributes. 42
3.6 ASim Debugging Modes. 42
3.7 ASim type of nodes’ applications. 42

6.1 The state of autonomic agents. 84

List of Definitions, Lemmas, Theorems

5.1 Lemma (Leaving partitions) . 61
5.2 Lemma (Addition of nodes on the diameter property) 62
5.3 Lemma (Addition of nodes on the node degree property) 62
5.1 Theorem (Smart-dg divergence) . 62

6.1 Definition (Valid nearby partitions) 80
6.2 Definition (Partition origin nodes) . 80
6.3 Definition (Potential neighbor node) 80
6.4 Definition (Partition diameter bound) 80
6.5 Definition (Enforcing a node degree bound) 80
6.6 Definition (Partition size liveness) . 81
6.7 Definition (Companion agents) . 82
6.8 Definition (Signal strength liveness) 82
6.1 Lemma (Agents with different interface degree) 86
6.2 Lemma (Divergence by signal strength liveness) 86
6.3 Lemma (Degree limit on SmartHeal +1) 92

1

Chapter 1 Introduction

Elements presented in this dissertation are the object of the patent application “Inter-
national PCT Application No. PCT/US2020/019722”, with the title “Systems, Devices,
and Methods for Autonomic Formation of Wireless Networks.”

Research by The Economist Intelligence Unit (EIU) [1] in 2017 observed that only 25%
of the population of medium-income and 8% of the population of low-income1 countries
are connected. From a worldwide perspective, 40% of the global population is poorly
or not connected to communication networks. Moreover, this connectivity problem also
exists in high-income and developed nations. In the United States, recent research by
Microsoft (2019) [2] contests the official broadband penetration data produced by the
FCC. While the FCC’s data indicate that only 24.7 million people in the U.S. do not
have broadband available, Microsoft claims that a whopping 162.8 million people do not
use the Internet at broadband speeds. Both studies from EIU and Microsoft determined
that the high cost for providing connectivity services is a critical factor. Communication
networks heavily rely on expensive linkage technologies for network distribution such as
fiber-optics, incurring a high cost for initial provision, a barrier for serving areas with a
lower population density, or low average income. Microsoft suggests applying alternative
architectures of wireless networks to solve the problem, achieving lower cost, reduced
complexity solutions.

The statistics above have severe impacts. Studies [3] correlated the impact of access to
broadband communication to jobs and GDP growth: low broadband availability correlates
with low GDP and a weak job market. Moreover, [2] found that the U.S. counties
with the highest unemployment rates also have the lowest use and access to broadband
communication.

Wireless Mesh Networks (WMNs) are an attractive wireless network architecture for
bridging the gap in worldwide connectivity. WMNs’ most sought-after attributes are wide
connectivity at low cost. However, despite many and distinct scientific investigations
about WMNs, we do not yet see a massive application of large-scale and purely wireless
mesh networks. Srivathsan et al. [4] claim that the scalability of a given network tech-
nology is a significant factor in its adoption and development. Previous studies about

1The terms medium-income and low-income countries are specific to the internal classification of the
report, not necessarily correlating with concepts such as developing countries.

2

WMNs [5] assume application scenarios such as community networks, smart grid, mili-
tary networks, transportation, security surveillance systems, building automation, health,
broadband home networking2. This ordered list shows community networks as the most
frequently studied application scenario.

When searching for alternatives for the limitations regarding the scaling of WMNs,
our first insights into this dissertation research stemmed from the scaling of complex
systems such as biological (any form of life), business organizations (companies), and
urban settlements (cities). Bettencourt et al. [6, 7] found a surprisingly super-linear
scaling characteristic on metrics related to social relations in cities. Arbersman et al.
[8], through an analytical model, proposed that long-distance relations promoting the
integration of people from diverse backgrounds explain cities’ super-linearity. Moreover,
Bettencourt et al. [6, 7] claim that innovations are the fuel that supports the continual
growth in cities. In the field of networking, known for its slow evolution, Software Defined
Network (SDN) is the paradigm that promoted flexibility that fuels innovation in networks
[9].

A new trend also motivated my dissertation research: the concept of distributed organi-
zations. The experiences with Open Source Software (OSS) paved the way for distributed
ownership in software development based on collective agreement and networked orga-
nization. Roughly 20+ years later, collective development principled in OSS supports a
potentially significant change in our social relations: cryptocurrencies and the blockchain
present us powerful alternatives to achieve collective agreements without the reliance on
central authorities. I argue that a distributed ownership and community-driven network
should be pursued. I am not alone with this vision. Microsoft’s Airband initiative aims
at promoting the growth of broadband use by communities and small entrepreneurs in
rural U.S. through advanced but low-cost wireless technologies. [10]. In fact, examples
of Community Wireless Networks (CWNs) exist in Europe, Africa, Asia, the U.S, heav-
ily relying on manual deployment and management, and reduced throughput capacity
when using WMNs. I envision that more scalable, programmable, and autonomic WMN
technologies can drive increased adoption by communities in need.

The goal of this dissertation research is the modernization of the WMN network archi-
tecture, assuming low-cost and low-complexity settings motivated to facilitate connectivity
in underserved regions of the world. The aim is to supporting the general applicability
of centralized control planes (such as SDNs) in a cooperative multi-domain approach to
facilitate the implementation of programmable WMNs at large scales. The method de-
vised produces a WMN architecture composed of inter-connected partitions in which each

2The work accounted for the studies about WMNs available at the IEEE Xplore repository.

3

partition becomes an SDN control domain. The SDN-based approach renders low-cost
capacity improvement from multi-path routing and rich multi-layer metrics, and provides
flexibility for innovation advent from the programmability of SDNs [11]. Another essential
characteristic is the enforcement of frequency diversity into WMNs while maintaining the
average number of per-node interfaces at the minimal range (1, 2].

At the heart of our3 approach is its uniqueness: we apply the principles of autonomic
computing, minimizing provisional and management efforts. Our autonomic agents control
the formation of WMNs using local information to enforce robustness to failures and
support unbounded topological settings in size and density.

Our first initiative was conceiving and implementing a specialized platform for the
evaluation of autonomic agents that manipulate the behavior of mesh nodes of WMNs.
Chapter 3 describes this platform, which isolates the execution of agents into a fast
prototyping environment, supporting the execution of wireless network protocols into well-
know simulation engines for precise representation, control, and repeatability. Finally, we
directed the execution of pre-existing software components into lightweight containers to
minimize the effort and risk of transposing software to simulated settings.

In a second phase described in Chapter 4, we evaluated the throughput capacity scaling
under an agent-based autonomic WMN formation and reorganization at the physical and
link network layers. The agents, conceived as internal software processes to the mesh
nodes, consume static or slow-varying information about the neighboring structure of
the WMN, feeding this data to the self-organizing functions of agents. This use of
local information is a characteristic inherent to the autonomic concept [12] that improves
scalability regarding the size of the networks. The resulting topology structure is a set of
WMN partitions of differing sizes in the number of nodes. We assumed that each partition
is an instance of a WMN of a given size, which allows the creation of capacity scaling
curves regarding the size of WMNs. To determine each partition’s capacity, the agents
operating inside the mesh nodes command random communications with other nodes in
the same partition.

In the scaling analysis in Chapter 4, we find that the property of enforcing a node
degree bound induces improved capacity scaling into WMNs. Although the mesh node
degree control has been approached by previous research through directional antennas
and transmit power control, our approach is new, relying on the partition membership
decisions of our autonomic agents. Our best agent configuration improved the initially

3In this dissertation, I use plural forms of pronouns such as we, our to refer to parts of the dissertation
research conducted with collaborators. I use singular forms such as I, my when referring to the dissertation
itself or decisions accounted to myself, the author.

4

highly sub-linear scaling from β = 0.08 to β = 0.28, although still sub-linear. This result
assumed fitting the experimental data as follows: C(n) = w ⋅ nβ, C the capacity, w a
constant representing the wireless link throughput, n the number of nodes on a partition,
and β the scaling factor. We also verify that the capacity scaling trend differs from
the one determined by previous research. On extending the capacity scaling study to
larger settings from 12 to 50 nodes, we, first, confirmed the initial negative scaling trend
previously found around β = −0.68. However, we find that the negative scaling trend
changes to positive for larger networks.

Leveraging what we learned about the effective and useful properties to the autonomic
agents, in Chapter 5, we concentrate on better defining and evaluating our autonomic
agents regarding their ability to perform self-organization in realistic concurrency settings.
Convergence is an essential outcome of a self-organizing network. A non-converging
solution stresses the network control plane due to excessive routing information updates
in the distributed routing schemes or on managing a large number of network control
events on a SDN controller.

We show that the distributed execution of our self-organizing agent model in the mesh
nodes, up to this point named Smart, can lead to stable partitioning solutions. We describe
the requirements for such convergence. The agents also achieved a reasonably balanced
partition structure and maintained the two invariants we defined for our WMN partitions:
a bounded node degree and bounded partition diameter. Moreover, our distributed agent
design resembles a consensus mechanism in the primary-backup class [13], relying on an
in-network leader election mechanism, and exploiting properties of the Degree/Diameter
Graph problem [14] to achieve both convergence and balanced partitioning outcomes.
Finally, we use stochastic delays in the execution cycle of the agents as the minimal
condition in which this agent system achieves convergence. Moreover, we also devise a
partial ordering mechanism (yet using local information) to improve the efficiency of the
convergence process regarding the number of node movements between partitions. We
confirm these results for extreme node churn conditions of > 90% of nodes activated in
a short time frame, resembling a power outage return setting.

In Chapter 6, we address the connectivity of our segmented WMN composed of over-
lapping but disconnected partitions. We devise a self-healing agent that can maintain
the invariants of our network partitioning scheme while enforcing their inter-connectivity.
This self-healing agent, named SmartHeal , competes and cooperates with our previous
self-organizing agent, now re-branded SmartOrg , to implement an integrated multi-agent
type system. Although both agents are software processes inside the mesh node, each one
manages the connectivity of a different wireless network interface. Therefore, the self-

5

healing behavior in our mesh nodes implies the existence of a second wireless interface.
To support our low cost and low complexity goals, we devised a version of the SmartHeal
agent that achieves full connectivity of large-scale WMNs with high probability requiring
only 20% of the mesh nodes running healing agents. Critical to this achievement was the
use of different node degree bounds for the SmartOrg and SmartHeal agents in the same
partition, and particularly setting the SmartHeal degree bound +1 with respect to the
SmartOrg degree bound.

Moreover, each agent is also independent regarding their execution inside the mesh
node (independent timing on their execution cycle). This asynchronous characteristic
simplifies the implementation of this agent system. Finally, in Chapter 6, we also explored
variations on the liveness of SmartHeal . We found a trade-off between the efficiency of
inter-connecting partitions and increased link reliability and capacity on wireless technolo-
gies with multiple speeds and modulations.

Beyond Chapters 3, 4, 5 and 6 described above, this dissertation has the Chapter 2
(Background) which starts by presenting information related to the definitions of WMNs,
the scaling of complex systems, and the capacity scaling of WMNs. The Background
chapter continues describing the application of Multiple Radio Multiple Channel (MRMC)
into WMNs, routing paradigms and protocols applied to the control of WMNs, and Soft-
ware Defined Networking and its application to the control of small scale WMNs. It
ends presenting the principles of autonomic computing and the characteristics of CWNs.
Chapter 7 consolidates work developed during the dissertation research regarding the ap-
plication of SDN to WMNs, such as a reference architecture for SDN-based WMNs that
supports the implementation of centralized control. Assuming the centralized control, we
proposed a SDN-based Time Division Multiple Access (TDMA) scheduler, a contention
aware multi-path WMN routing mechanism, and a contention minimization mechanism
based on the centrality of small scale WMNs such as our partitions. In Chapter 8, I con-
clude the dissertation and provide my vision for future directions related to this research.

6

Chapter 2 Background

This chapter presents research related to the two major topics of interest in this work:
the throughput capacity of WMNs and the flexibility of WMN traffic control. We comment
on related research on the perspective of our goals of large-scale, low-cost, low-complexity
WMNs. We start with definitions of WMNs and the factors affecting their capacity and
control on the sections 2.2 and 2.3. We follow presenting research regarding the analytical
capacity scaling of WMNs in minimal (Section 2.4) and advanced link diversity settings
(Section 2.5). In Section 2.7, we characterize Autonomic Computing, a principle that we
apply to our proposed solution. We continue presenting research related to the network
control (WMN routing) of WMNs in the Sections 2.8 and 2.9. In the Section 2.10,
we present the most commonly applied setting for WMNs, CWNs. Finally, we conclude
this chapter describing the challenges related to the evaluation of solutions for WMNs in
Section 2.11.

2.1 The scaling of complex systems
The study of the scaling of complex systems determines the variation of system metrics

regarding the growth of the system size. Examples are the scaling of life (from cells to
ecosystems), business organizations (companies), and municipalities (cities).

In most cases, complex systems show sub-linear scalings, such as the metabolism of
living organisms regarding their weight [15] (scaling factor β = 2/3) and the revenue or
profit of companies regarding their size in the number of employees [16]. Another case is
the sub-linear scaling (scaling exponent β ≈ 0.8) on the infrastructural metrics of cities
such as road pavement area, number of gas stations, and others [6, 7].

However, Bettencourt et al. [6, 7] found a surprisingly super-linear scaling characteris-
tic on metrics related to social relations in cities such as innovation, patents, wages, crime
regarding the city size in the number of citizens. In an attempt to explain the super-linear
scaling of cities, Arbersman et al. [8] design a model that analytically showed that the
existence of long-distance relations is a crucial factor on cities’ super-linearity. At long
distances, the increased probability of relationships between people of diverse backgrounds
foments innovation to fuel cities’ growth.

Moreover, Bettencourt et al. [6, 7] observes that cities never cease to exist, contrasting
to the well-known life-cycle of living organisms and companies that die or disappear after

7

its maturity phase characterized by slow to no growth. Continuous super-linear growth
implies the starvation of the resources that support cities. Authors proposed, based on
their data patterns of city growth, that cyclical breakthroughs promoted by innovations
explain the sustainable increase of communal organizations.

2.2 On the definition of WMNs
Infrastructure mode WMNs (Infra-WMNs) and Client mode WMNs (Client-WMNs)

are the subject of this research. In both cases, mesh nodes have fixed positions and
forward packets on behalf of other nodes. However, they differ regarding the source and
destination of data flows. A WMN in infrastructure mode has specific nodes in fixed
positions that are responsible for packet forwarding using wireless technology in a multi-
hop fashion: the infra or backbone nodes. The clients in an Infra-WMN are the second
type of node which use other network interfaces of the infra-nodes to send and receive
packets through the network [17].

Client-WMNs are ad-hoc wireless networks in which all nodes are fixed and can forward
packets on behalf of each other [17]. However, the fixed ad-hoc mesh nodes of a Client-
WMN are the source and destination of flows beside the task of packet forwarding on
behalf of other nodes.

From now on, we will use the term WMN generically to refer to the two previous forms
of multi-hop wireless network architecture.

We describe other forms of meshed wireless networks that are out of our scope to com-
plement this characterization. Generic ad-hoc networks, differently from Client-WMNs,
do not assume restrictions on the mobility of mesh nodes. The terms MANET (Mobile
Ad-Hoc Networks) or VANET (Vehicular Ad-Hoc Networks) are commonly used when
mobility is assumed for the generic mobile mesh node or the specific mesh node based on
mobile vehicles, respectively.

Hybrid-WMNs are a third form of WMN [17]. Similarly to the Infra-WMNs, they
assume two types of nodes (infra and client nodes). However, the client nodes of Hybrid-
WMNs share the same wireless communication medium used by the wireless mesh in-
frastructure to originate and consume data flows. This latter form is also out of our
scope.

8

2.3 Factors affecting the capacity and control of WMNs
Previous research showed that many factors contribute to the throughput capacity

of WMNs such as the co-channel interference, the routing protocol overhead, the half-
duplex nature of radio antennas, complexities in handling multiple frequency radio systems,
deployment architecture, and medium access control. Other examples are the topology
attributes such as denseness of nodes and the degree of nodes and how these vary with
the growth of the network, the communication pattern such as locality and the number
of hops, the network control paradigms, and routing metrics [4, 5, 17, 18].

The distributed nature of WMNs induced most control mechanisms, also known simply
as routing protocols, to use distributed paradigms. However, later in this chapter, we show
that centralized WMN control paradigms show a better exploration of WMNs’ capacity.
Moreover, drawing from the experiences with the SDN paradigm in other network settings,
we see that flexibility, adaptability advent from the centralized control are also of utmost
importance [11].

Another relevant aspect is the approach to evaluation. A large number of theoretical
studies exist on the capacity scaling of WMNs. They provide ranges on the asymptotic
capacity scaling of WMNs given assumptions made about the WMN topology attributes
and the WMN implementation solution. However, analytical models do not capture all
practical aspects of the operation of a WMN, thus serving as asymptotic bounds and
indications of techniques that can promote capacity scaling. Experimental studies, on
the other hand, restrict their evaluation of capacity to small ranges of network sizes,
limiting the inference of capacity scaling trends. Therefore, experimental capacity scaling
represents a relevant contribution given the lack of studies in this field.

We present a framework to organize and simplify the description of related research
regarding WMNs’ control mechanisms and throughput capacity. This framework assumes
a) density attributes on the WMN topology and a traffic pattern as inputs. It also
conceives two general tasks on improving WMNs capacity: the b) increase of wireless link
diversity to promote the flow parallelism potential and c) devising routing mechanisms
that can explore the existing flow parallelism potential advent from the enforced link
diversity to provide higher capacity.

The WMN topology can be densifying or extended regarding its growth pattern [18],
and show homogeneous or inhomogeneous density [19]. Densifying topologies assume an
increasing node density while scaling in size (fixed area). Extended topologies assume an
approximately constant node density in the area, implying increased area while the number
of nodes scales up [18]. The extended topologies are consistent with our goal of achieving

9

increased coverage with the increase of WMNs in size. It is also consistent with the
CWNs application scenario, which aims at broad coverage. While homogeneous topologies
present a mostly uniform density of nodes over area, inhomogeneous are characterized by
denser areas (node clusters) embedded into a general area of sparsely distributed nodes
[19, 20]. We prefer not to impose any preference regarding homogeneity. Later we will
see that our approach consists of manipulating the existing topology rather than assuming
specific characteristics on it for implementing optimizations.

The enforcement of link diversity can rely in different domains: the space domain (ex-
tended networks, directional antennas, power control), the frequency domain (Frequency
Division Multiple Access (FDMA) - multiple radios multiple channels), the time domain
(TDMA), and the code domain (Code Division Multiple Access (CDMA), Multiple-input
and multiple-output (MIMO)). Routing mechanisms can assume unified or hierarchi-
cal architectures, distributed or centralized paradigms, proactive or reactive routing, use
in-layer or cross-layer routing metrics.

We leave out theoretical studies that assumed heterogeneous WMN topologies (the
combination of wired and wireless links) and unbounded wired capacity [21] or mobile
nodes with unbounded buffer sizes [22] as they impose conditions out of the scope of this
research. While impractical and imposing an unbounded delay, the latter claims a linear
capacity scaling.

2.4 Analytical capacity scaling of single frequency WMNs
The minimum degree of link diversity that allows implementing a WMN is the single-

channel single frequency architecture in which only the space domain diversity exists (for
extended topologies). Gupta et al. [23] are the first to characterize the capacity scaling of
WMNs under this architecture. Authors use two different models of analysis: random and
arbitrary. In common, the models assume a number n of mesh nodes in fixed positions, the
per-node throughput capacity of w bits per second, and the nodes use a shared wireless
channel to send packets in a multi-hop fashion from source to destination with unlimited
demand (continual transmission).

In the Random model [23], the node placement is random, and source nodes choose
their destination pair at random. Also, the transmission range (the range of the radio
transmissions) is fixed, given the assumption of equal transmission power p. Equation 2.1
describes the asymptotic capacity scaling of the network, which has a sub-linear format.

Θ(n) = w ⋅
√

n

log n network wide capacity (2.1)

10

In the Arbitrary model [23], nodes have arbitrary positions and destination pair choices.
Also, transmission power levels are arbitrary, implying arbitrary transmission ranges for
each source node. The authors denominate the combination of arbitrary destination
nodes, transmission rates, and transmission power levels a traffic pattern. Equation 2.2
show the improved capacity scaling for the arbitrary scaling model with a scaling slope of
β = 0.5.

Θ(n) = w ⋅
√
n network wide capacity (2.2)

Gupta et al. [23] suggest that, since the individual node capacity reduces for larger
networks, network designers should consider limiting the WMN size growth to keep the ap-
plicability of WMNs in practical settings. Besides, the authors suggest using short-distance
wireless transmissions over long wireless ranges to minimize the number of transmitting
nodes under contention. This recommendation contrasts with the simplest (and most
common) metric used by routing protocols: the number of hops. This metric will enforce
the preference of short network paths, which implies choosing long-distance transmissions.

Therefore, we have here the insight that the choice of routing metrics will impact the
capacity scaling of WMNs. In section 7.3, we present a centralized routing scheme based
on the path with the least wireless contention. The idea stems from the insight here that
short-range links might provide better WMN capacity.

Also, we have additional insight into our design: keep WMNs small. We built on this
idea to assume a large scale WMN as the combination of multiple, small scale, single
frequency WMNs. Section 2.5 presents research on the analytical capacity scaling of
WMNs assuming the organization of nodes in clusters, showing impressive results regarding
capacity scaling.

2.4.1 Degree manipulation through directional antennas and power
control

An increase in the degree of spatial diversity through directional antennas and beam-
forming could improve the capacity of WMNs by allowing an increased number of concur-
rent transmissions [23]. Yi et al. [24] confirmed these expectations applying directional
antennas to the Arbitrary and Random WMN models conceived in [23]. This approach
represents one strategy of reducing the co-channel interference, allowing for more concur-
rent flows.

Assuming that α is the transmitting (tx) antenna angle and β the receiving (rx)
antenna angle, the gain for random networks is rtx = 2⋅π

α
for directional tx antennas,

11

rrx =
2⋅π
β

for directional rx antennas, and gtrx = 4⋅π2

α⋅β
for directional tx and rx antennas.

The gain for arbitrary networks is atxa =
√

2⋅π
α

and arxa =
√

2⋅π
β

for directional tx and rx
antennas respectively. These gains, however, represent only constant factors.

Li et al. [25] revisit the application of directional antennas on transmitting nodes and
present an improved gain of O(log n) for the random model. Differently from [24], this
gain is not a constant factor, therefore, contributing to an increased capacity scaling for
WMNs. This new gain relies on advanced antennas with multiple beams that can cover all
possible directions, and are selected accordingly with the desired transmission direction.
This description is known as advanced antenna beamforming.

Advanced forms of beamforming are complex and expensive solutions due to the re-
quirements on the antenna system (multiple antennas) and complex radio processing,
limiting the applicability to settings in which low-cost, low-complexity are relevant re-
quirements.

Using transmission power control to enforce spatial diversity and manipulate the degree
of network nodes, Kleinrock et al. [26] theoretically showed that a node degree of six (the
exact value is 5.89) is optimum for a multi-hop wireless network (such as a WMN).
Authors claimed that this degree is the best compromise between the length of paths
and the wireless channel spatial reuse. In the optimal degree setting, authors claimed to
achieve a network capacity proportional to

√
n, the same capacity scaling demonstrated

by Gupta et al. [23] for the arbitrary model. Royer et al. [27] validate the optimum
degree claim experimentally using a stationary network.

Our autonomic agents-based solution builds on the idea of controlling the degree of
mesh nodes. However, we rely solely on the behavior of our self-organizing, self-healing
agents at the physical and link layers to achieve a practical degree manipulation and
density control. Therefore, our degree control neither relies on directional antennas or
power control.

2.4.2 Concentrated traffic pattern
Jun et al. [28] contribute to the study of WMNs capacity scalability by adding more

practical constraints to the traffic pattern. They claim that most WMNs are used for
access to some external network such as the Internet. Such traffic pattern will rely on
a subset of WMN nodes that will behave as gateways. The gateways will concentrate
most of the traffic, a form of high-probability destination nodes. Authors show that in the
presence of such hotspot gateway nodes, the scaling of a WMN decreases to the bounds
presented in Equations 2.3 , 2.4. Also, Jun et al. validate the analytical results through
simulations.

12

O(n) = 1
n per node capacity (2.3)

O(n) = 1 network wide capacity (2.4)

Moscibroda et al. [29] corroborate some of the results from [28]. Authors pose their
analysis for the context of Wireless Sensor Networks in which many sensors (source nodes)
send data to sink nodes that perform data aggregation, for archival or further forwarding
using different network resources. Moscibroda et al. find the same best-case capacity
scaling (Equation 2.5) of O(n) = 1

n
for arbitrary positioning of nodes. Authors provide

lower bounds for the worst-case positioning of nodes (Equation 2.6). Finally, they also
provide new bounds for random positioning (Equation 2.7). We note the exponential
difference of results for arbitrary positioning between the worst and best cases (Equations
2.5 and 2.6).

O(n) = 1
n per node capacity (2.5)

Ω(n) = 1
log2 n

per node capacity (2.6)

Θ(n) = 1
log n per node capacity (2.7)

2.5 Capacity scaling under node clustering and multi-
ple diversity mechanisms

Further improvement of the WMN capacity scaling can occur using the knowledge of
nodes’ locations on an advanced packet scheduling mechanism to reduce collisions [23].
However, such an organization can be challenging due to the need for global knowledge.

Modern implementations of networks apply a centralized network control paradigm
such as SDN. Assuming this paradigm, global knowledge of the network is possible by
the network controller node, turning the appropriate packet scheduling less challenging
than in a purely distributed setting. Later we describe the challenges of implementing
the centralized network control in unbounded size WMNs, due to long and high latency
control paths.

We briefly side-step to the setting of data-center networks to describe the potential
attributed to the SDN paradigm. Google showed the potential of capacity increase using

13

the centralized paradigm in data-center networks. In this setting, the network control
was dominated by the distributed paradigm, such as the spanning-tree protocol whose
goal is avoiding loops in the switched local-area networks (LANs) of data-centers. The
spanning-tree protocol limits the traffic concurrency potential by disabling parallel links
that cause loops.

In [30], Google presents an architecture for their data-center LANs using a massive
increase in path parallelism using a Clos architecture associated with a centralized algo-
rithm for path determination. The outcomes are increased scale in the possible size of
their data-centers in the number of servers, massive throughput increase, and dramatically
reduced latency, using general network equipment (low-cost). These properties allowed
the effective use of large clusters of servers in their critical applications. In [31], Google
applies the centralized control paradigm on the wide-area connectivity of their data-centers
with the Internet, again showing benefits of the flexible choices of routes that maximize
the efficient use of WAN links.

Franceschetti et al. conceive an analytical WMN model which enforces diversity in
the time and code domains [32]. Under this new diversity settings, they show that the
random WMN model could present a similar scaling to the arbitrary model using TDMA
for packet scheduling and a pairwise coding on each path hop. The packet scheduling
algorithm should associate long and short distance transmissions in parallel. The proof
involves Percolation theory. The solution improves the scaling of the random model to:
w ⋅

√
n.

MIMO is an advanced wireless mechanism that explores signal multi-path spatial di-
versity and coding diversity to promote parallel communications over a single channel
frequency. Multiple antennas transmit different streams of data in parallel using orthogo-
nal coding, and multiple receiving antennas decode the transmitted signal streams based
on the different properties of the physical path they traversed and the orthogonal coding.

Özgür et al. [18] present an advanced and complex theoretical MIMO scheme which
they claim to achieve nearly linear scaling on dense WMNs. The scheme has also nearly
linear scaling in extended WMNs if the signal attenuation is low (free-space attenuation
or α = 2). It deteriorates to the previously known

√
n network scaling when the attenu-

ation factor increases: α ⩾ 3. However, the complexity of the scheme is a limitation for
practical utilization. It relies on a hierarchical organization for data flow and on Cooper-
ative MIMO: clusters of nodes behave as MIMO arrays for transmission and reception,
supporting parallel communications. Such collective MIMO operations demand pre and
post cooperations (relying on TDMA for parallel transmissions) of the nodes to perform
the MIMO encoding and decoding processes. The authors arrive at a scaling function in

14

the form n
h

h+1 . For a large number of hierarchical steps h, this function tends to linear
scaling.

Also, authors claim that the super-linear scaling of O(n ⋅ log n) is not attainable by an
Information theoretic prove. Therefore, they claim that the nearly linear scaling achieved
by their scheme is nearly optimum.

Ghaderi et al. [33] contests the results by [18], showing that the solution’s scaling
function has a factor inversely proportional to the number of hierarchies h. Therefore, the
linear scaling for a large h is not attainable.

We perceive from these two contributions the use of a hierarchical transmission scheme
to specialize the local and remote communications accordingly. The next two papers ex-
plore the properties of inhomogeneous topologies to define partitioning schemes and apply
hierarchical routing. Moreover, the logical clustering of nodes facilitates the definition of
local and remote communication contexts.

Inhomogeneous node density in networks is a particular characteristic commonly found
in human-built or natural systems [19]. Alfano et al. [19] assume inhomogeneous WMN
topologies with denser areas (the node clusters) embedded into a general area of sparsely
distributed nodes. They present results of 1√

n
per-node throughput when the cluster

node density is higher than a critical factor. Such results are similar to the bounds for
homogeneous networks in [23] and [32]. However, in [19], improved packet scheduling
and routing techniques proved to be a critical factor.

Liu et al. claimed a breakthrough result [20] in a three-dimensional inhomogeneous
network setting with hierarchical routing. Exploring the topology characteristics of the in-
homogeneous networks, they apply network partitioning centered around three-dimensional
clustering of nodes to form the local routing regime. They claim to achieve nearly linear
scaling enforcing spatial diversity through transmission power control and time diversity
through TDMA on the intra-group communication (local routing regime). For inter-group
(the remote routing regime), near linearity is achieved without power control due to the
sparsity of the clusters. Node distribution is based on the Shot Noise Cox Process (a
form of inhomogeneous Poisson node distribution). Authors used TDMA on an advanced
routing and scheduling scheme for link diversity increase.

The previous two references build on specific characteristics of WMN topologies to
identify node clusters. We envision imposing node groupings on any WMN topology for
generality. Also, our design builds on the node clustering principle to support centralized
control planes for the local routing regime within a node cluster. For the wide-area routing,
we assume a distributed mechanism. However, yet relying on a programmable per-cluster
controller that can implement routing consuming rich metrics.

15

2.6 Multi-channel, multi-radio WMNs (MRMC)
We turn now to the increase in frequency diversity by applying multiple-radios and

multiple channels (MRMC). A constant in the MRMC setting is the need for a routing
protocol able to explore the parallelism potential introduced. Raniwala et al. [34] present
one of the first MRMC solutions integrated with a channel-aware routing for WMNs.
Results show 8x (eight times) increase in the WMN end-to-end throughput for a two radio
two channels per WMN node setting when compared with a single radio setting. However,
experiments do not vary the WMN size in nodes neither evaluate different topologies for
the fixed size of 100 nodes. Therefore, we cannot infer the capacity scaling trends of
this solution. Furthermore, the traffic load assumes that only 20 source-destination pairs
exist in a 100 node WMN, implying that the throughput study that does not evaluate the
network throughput capacity.

The results from [34] rely on a centralized architecture for scheduling the packet flows
between nodes and channels. In an extended topology WMNs, such centralization is not
practical due to the existence on long control paths with the network growth that turns
the control communication unreliable. However, the solution applies to cases of diameter
bounded (and size bounded) WMNs.

Draves et al. [35] presents a packet scheduling for the MRMC setting. They conceive
the ETT metric (derived from the link loss rate and link bandwidth) to dynamically
evaluate the link quality. Using per link ETT, they compute a per flow path quality metric
called Weighted Cumulative ETT (WCETT). The routing protocol MR-LQSR (Multi-
Radio Link-Quality Source Routing) incorporates WCETT as its metric. Results showed
that WCETT multi-radio outperformed the ETX metric (accounts only packet loss on links
[36]) by 2x, and shortest-path (hops only, no link quality accounting) by 3.3x. Compared
to itself in a single radio setting, WCETT shows a two-fold improvement (authors used the
median throughput of each setting). The benefits of MR-LQSR were more representative
for short distance paths (see Fig. 8 - the improvement of WCETT two-radios w.r.t. itself
one-radio becomes < 40% for 5 or more hops). Again, a single topology was used in
experiments, containing the fixed amount of 23 nodes. No information on the WMN
capacity scalability was available. Experiments used 100 different node pairs for traffic
generation, however, using a single TCP flow at a time and an idle interval between flows.
Such experimentation choice minimizes contention and congestion and cannot represent
the WMN capacity even for the single WMN size used.

Differently from [34], the design of [35] is of practical application, assuming a dis-
tributed packet scheduling. However, while the former showed a 8x increase over a single

16

channel setting, the latter showed only 2x improvement. We infer that the centralized
control plane paradigm, although impractical in the specific setting described, has a sig-
nificant potential for improvement of the capacity scaling.

Ramachandran et al. [37] adds to the MRMC WMN a new dimension of the dynamic
channel assignment: a larger set of channels to choose from w.r.t radios on the nodes.
Authors also apply a modified version of the proactive protocol OLSR using the WCETT
metric from [35]. Using a larger set of channels w.r.t. to the number of radios, the
Channel Assignment Server (CAS) performs a centralized channel assignment for radios
on each node. The authors claim that their approach goes beyond reducing the WMN
self-interference because it also accounts for the interference of other external and co-
located radios using the same set of channels. Experiments show an improvement of
throughput of the proposed solution of 3x over a single-radio solution. Experiments used
a single WMN topology size of 30 nodes and only four different topologies. Results varied
up to 50% from the highest to the lowest performing topology. Also, the algorithm is
specialized to the used topologies because it starts its scheduling from the gateway node
of the topologies (a specific optimization considering that the gateway node will attract
the WMN flows). Once more, authors do not present any evaluation of the capacity
scalability.

Buddhikot et al. [38] present a new link quality metric to support WMN path selec-
tion in routing protocols. Authors claim that their metric is interference aware (iAWARE),
providing an improvement over WCETT. iAWARE captures the interference of competing
flows on the WMN. Authors applied their new iAWARE link quality metric on a reactive
routing protocol derived from AODV: AODV-MR (Advanced On-Demand Distance Vec-
tor Multi-Radio). This new protocol supports WMN nodes in the MRMC setting. No
evaluation is provided in this patent application.

Subramanian et al. [39] continue with the setting of dynamic channel selection in
WMN. They evaluate both centralized and distributed channel assignment algorithms.
The work does not inform which type, proactive or reactive, or specific routing protocol
was used. For a two-radio setting and 12 channels to choose from, they showed a 2.5x
improvement both for the centralized (not practical) and distributed channel assignment
algorithms over a single radio setting. With eight radios per node and 12 channels to
choose from, they present the highest improvement of 8x over a single radio, using a
centralized algorithm. For the distributed algorithm, the top improvement of 5x occurs
at five radios. Once more, a single sized topology of 50 nodes was used. No capacity
scaling information is provided. Beyond channel assignment, the scheduling of packets
through paths in a multi-hop setting should have been described, however, no information

17

was provided in this matter.
Sajjadi et al. [40] revisits the channel assignment problem in WMNs focused on re-

ducing the switching delay. Their approach of switching delay has only indirect correlation
with WMN capacity. Therefore, this work is less relevant to our proposal. However, Saj-
jadi et al. bring one important contribution: they turn practical in WMNs the assumption
of centralized algorithms such as channel selection by applying the SDN paradigm. Fur-
thermore, they use out-of-band SDN management and a small topology of 7 nodes which
also limit the value of their work for our objectives of capacity scaling.

In the MRMC studies, the effective utilization of multiple channels implies the use of
multiple radios per node. Such a requirement seems expensive for a large WMN setting.
A partitioned WMN approach can use MRMC differently: to isolate partitions of nodes in
the physical layer, allowing the evaluation of the WMN capacity scaling in the sub-2 per-
node radios range in average - (1, 2]. Only nodes which interconnect partitions require two
radios, constraining the increase in cost. Such an assumption seems more practical for the
CWNs scenario but demands the evaluation of its capacity scaling potential. Additionally,
the partitioned mode supports hierarchical routing architectures as applied in solutions
which showed improved scaling [18, 20]. Furthermore, hierarchical routing supports the
practical application of centralized network control to the local routing regime assuming
the enforcement of a diameter constraint in partitions.

2.7 Autonomic Computing
We introduce to the partitioning problem in WMNs the application of autonomic

computing, aiming at supporting unbounded scale WMNs. The concept of autonomic
computing, or processes that are independent agents showing a set of self-* behaviors
in a distributed system, was initially introduced by IBM [41, 42]. Given the lack of for-
mal definition, different interpretations emerged. Later, a somehow standard definition
for self-organizing (Self-Organizing (SOrg)) and self-healing (Self-Healing (SHeal)) auto-
nomic behaviors developed. SOrg implies controlling (maintaining, improving, recovering)
properties in the presence of an external process that adds/removes nodes on the auto-
nomic system. SHeal consists of existing nodes adding/removing edges on the system in
an attempt to recover to a previous condition [43]

Given the lack of standard definitions, Berns et al. [12] proposed a formal definition
for forms of autonomic computing or the self-* behaviors. First, they categorize internal
attributes controlled by autonomic agents as safety and liveness properties. A safety
property is a condition that should not be violated while a liveness property is a condition

18

that should eventually be reached. Second, Berns et al. define types of tolerance to
internal (from agents) or external (environment change or from adversaries) actions as
masking, non-masking, fail-safe, and graceful degradation. External actions relate to
changes in the environment or from external adversaries. Internal actions derive from the
agents in the autonomic system. A masking tolerance implies that the safety and liveness
properties are not affected by an action. Non-masking tolerance occurs when a set of
external actions can violate safety but not liveness properties, and eventually, the safety
properties are recovered. A fail-safe tolerance implies compromise on the liveness but not
the safety properties. Finally, graceful degradation occurs when the action affects safety
but not liveness properties, and the recovery occurs to a configuration that is a weaker
form of the desired safety properties.

Furthermore, agents rely on local information: the agent’s internal state and the state
of its direct neighbors.

Using definitions in [12], we describe self-* behaviors relevant to this work. A Self-
Stabilizing (SS) system starts in an arbitrary configuration, (e.g., no nodes existing in the
system), and recovers to a legal state (e.g., nodes have their safety properties in valid
states). The system remains in this configuration thereafter [12].

A SOrg system maintains, improves, or restores safety properties in the face of actions
related to nodes entering/leaving the system [12].

A SHeal system admits a temporary violation of their safety given actions that are
not related to nodes entering/leaving the autonomic system, to later return to safety by
adding/removing edges to the system [12].

Our SmartOrg agent model is SOrg given its operation under the addition and removal
of nodes. We claim that SmartOrg is also Self-Configuring by applying the Lemma 5 in
[12]. Furthermore, we claim that our SmartHeal agents are SHeal given their actions
adding/removing connections (edges on the WMN topology graph) between partitions.
Finally, we can call both agents and their combined operation a form of SS as they
converge to stable topology solutions.

Self-Stabilization is a possible representation of our experiments on which nodes enter
the system on every epoch until a maximum. For every epoch, a self-stabilization occurs:
nodes connect to partitions, the degree of nodes, and the diameter of partitions - safety
properties - stay below the maximum accepted value. However, SS does not require that
the configuration convergence must involve nodes entering or leaving the system, and we
cannot guarantee convergence for initial epochs. Moreover, the control of properties con-
currently to an external process of the addition of nodes is characteristic of SO. Therefore,
we assume the latter.

19

2.8 Partitioned WMNs: reduced overhead and hierar-
chical routing

Hierarchical routing architectures rely on the logical or physical partitioning of WMNs
[17]. The principles for hierarchical routing are a) nodes are aggregated in clusters;
b) cluster head nodes are elected; c) gateway nodes interconnect clusters. The intra-
cluster (local routing regime) and inter-cluster (remote routing regime) communication
can assume different routing mechanisms. Intra-cluster routing can be proactive (pre-
computed routing tables), and inter-cluster can be reactive. Such an approach minimizes
the proactive routing protocol overhead. Such overhead can be O(n2) [44, 45], but in
a hierarchical setting n is reduced to c (the number of clusters), much smaller than the
WMN size n. For long-distance flows, the path set-up has higher latency. However, this
approach does not penalize short distance flows (intra-cluster). On the limitations, the
authors of [17] cite that the complexity of maintaining the hierarchy and electing the
cluster heads can compromise the performance gains.

Our autonomic agent-based approach is a contribution to dealing with WMN parti-
tioning, especially relevant for large-scale settings. Our design also solves the aspect of
electing a cluster head, our partition origin node.

In their summary of hierarchical routing protocols, Akyildiz et al. do not conceive
the association of clustering (WMN partitioning) and using different per cluster channels
to improve scaling: physical layer segmentation. The authors’ intention seems to be to
decrease the routing protocol overhead as an indirect measure of improving the capacity of
WMNs. We build on the idea of physical layer segmentation with minimal cost increase,
assuming an average number of wireless interfaces per node in the range [1, 2).

Ying et al. [46] implements an hierarchical version of the well known OLSR [47] WMN
routing protocol: HOLSR. The goal is to improve the scalability of the routing protocol
itself by reducing the volume of messages exchanged.

We consider out of our scope the hierarchical routing solutions that apply a combi-
nation of wireless and wired interfaces (generally Access-Points with wireless and wired
interfaces) such as [48] and [49].

Li et al. [50] present an algorithm for partitioning the network control effort in the
SDN paradigm, which improves network control scalability. There are no assumptions
about the network being a WMN. However, the topologies presented suggest a meshed
and wireless topology with fixed nodes. Their goal is to segment the network in parti-
tions, each managed by a different SDN controller, to keep the controlling load within
bounds. Therefore, the authors do not evaluate improvement on the network capacity by

20

the partitioned control. The controllers are predefined (possibly specialized nodes) and
cannot be changed. It is assumed an out-of-band control network for interaction between
controllers. A Master controller executes part of the segmentation algorithm, and the
second part is delegated to the Zone controllers. Therefore, it is a centralized network
partitioning scheme. This centralization to implement the partitioning of WMN control
limits the solution to medium size WMNs.

So far, all the above approaches operate on the segmentation of the network control
plane. The benefits were lower routing protocol overhead in the distributed paradigm and
reduced latency for path determination and balancing the control workload on the SDN
paradigm. Therefore, they aim at improving specific factors of each paradigm. None
evaluated the impact of the segmentation mechanism on the capacity of the data plane.

We approach the partitioning problem in a distributed scheme in which autonomic
agents embedded into the network nodes perform the partitioning at the physical and
link layers. To partition the WMN, we do not assume any out-of-band control network,
which would be impractical in a large-scale WMN setting. We build on the principles
of autonomic computing, relying on local information to the mesh nodes: internal and
neighbors.

2.9 Packet routing and scheduling techniques on WMNs
Reducing the bandwidth demanded by WMN routing protocols increases the capacity

for application flows. Also, the routing control workload might be reduced. Developing
efficient protocols w.r.t. the load they impose to the network, the routing protocol
overhead, is one form of capacity improvement. Furthermore, optimized routing protocols
that are aware of the forms of link diversity enforced and improve flow parallelism is another
form of capacity improvement.

We will loosely use the terms routing protocols and routing mechanisms to describe the
way nodes make decisions about the forwarding of packets through the WMN. The former
comes from the classic study of distributed routing protocols, and the latter assimilate
the more recent SDN paradigm.

The implementation of WMN multi-hop forwarding protocols requires observing many
features [17]:

1. Routing metrics - many protocols assume the hop-count as a forwarding metric.
However, implementations should also consider wireless link quality-related metrics.
Such metrics include link speed, link congestion. RTT (round trip time) can be a
proxy metric for the lower layer metrics mentioned. Metrics can be related to other

21

layers and must be provided to the routing layer (cross-layer).
2. Fault tolerance to link failures (self-healing) - encompasses how quickly can a routing

mechanism identify and solve a flow path failure.
3. Load balancing - the ability to implement parallel paths in the WMN
4. Protocol scalability - how efficient will the protocol be as the WMN scales in size.

Some protocols could be appropriate only for small WMN sizes. Additionally, some
protocols might demand excessive bandwidth for their operation (protocol overhead)
as the WMN scales up in size.

Distributed routing protocols can pre-compute routing tables (proactive) or operate on-
demand (reactive). The proactive approach demands a continual exchange of information
that can be in a squared relation with the number of nodes (worst case - O(n2) [44],
[45]. However, routing decision has low latency because of the pre-computed routes.
Furthermore, the variability of application flows (different flows regarding the source,
destination, or application type) also does not affect the overhead because there exist
pre-computed routing tables on each mesh node with routes for all destinations.

On-demand distributed routing protocols (reactive) exchange information when a
router needs to forward a new flow. Therefore, protocol overhead is a function of both
application flow variability and network size. The variability indicates how frequently will
the protocol flood the WMN looking for route paths. The WMN size indicates how
many nodes might be involved in such exploration by flooding. One compromise made
on the on-demand routing is the higher latency for path setup, which can hamper WMN
performance in a short-living flow scenario.

In addition to the higher latency, Belding-Royer et al. [45] claim that reactive routing
protocols present scalability difficulties when the network has many nodes due to the
flooding process and due to the need of receiving routing error messages back in the
source nodes.

Santiváñez et al. [51] further segment the proactive class of distributed routing pro-
tocols. Proactive protocols are based on link-state or distance vector. Santiváñez et al.
focus on link-state protocols, organizing them in two classes given the approach used:
efficient dissemination and limited dissemination proactive protocols. Although both aim
at reducing the protocol overhead, the efficient dissemination protocols distribute control
messages throughout the entire network, however, using more efficient methods than the
traditional flooding. In this class we find the protocols TBRPF [52], STAR [53], OLSR
[47]. In the limited dissemination class, protocols restrict the scope of control messages
updates in space and time. Examples of limited dissemination are hierarchical link-state
[54], GSR, and FSR [55].

22

Since its introduction in [47], OLSR has become a de facto standard for WMNs routing
with many improvements proposed for it. We assume that the efficient dissemination has
proved a preferred technique for WMNs and their fixed-nodes characteristic.

Santivfiez et al. [56] provide insight on the scalability of distributed routing protocols
to network size, traffic variability, node mobility, and network load. Authors provide ana-
lytical asymptotical bounds for the scaling of a set of types of routing protocols:

a) PF - Plain Flooding, reactive;
b) DSR - Dynamic Source Routing, reactive;
c) ZRP - Zone Routing Protocol, reactive and limited dissemination proactive parts;
d) SLS - Standard Link State, proactive;
e) HierLS - Hierarchical Lisk State, proactive, efficient dissemination (OLSR is exam-

ple);
f) HSLS - Hazy Sighted Link State, proactive with limited dissemination;

We provide the bounds without the focus on mobility. We use the following notation:
λt is the traffic load in the network in bits per second, λs is the variability of flows (the
rate of new flows) in new flows per second, n is the network size. δ captures the increase
in the average route path length with the increase in network size. We provide results
ordered by the protocol overhead scalability w.r.t. network size from worst to best.

1 DSR: Ω(λs ⋅ n2 + λt ⋅ n
2 ⋅ log2 n)

2 PF: Θ(λt ⋅ n2)
3 ZRP: Θ(λs ⋅ n2)
4 SLS: Θ(n2)
5 HierLS: Θ(λt ⋅ n1.5+δ)
6 HSLS: Θ(

√
λt ⋅ n

1.5)

The results explain the popularity of link-state based protocols such as the original
OLSR and its improvements due to their better scalability. Although HSLS scales better
than HierLS, their routing decisions are sub-optimal, especially for long-distance paths
because it limits the spreading of route information in space. Therefore, better overhead
scaling might not represent better capacity scaling of the WMN. The DSR protocol does
not perform route caching. Therefore, its overhead can be lower with caching, assuming
that long-standing flows would benefit from caching of routes. Specifically, the component
dependent on the traffic load λt would improve.

23

No type of distributed routing protocol studied by Santivfiez et al. presented linear
scaling of the protocol overhead regarding the network size as expected from the SDN
paradigm. However, control overhead for routing in the SDN paradigm should have a
component dependent on the flow variability, similarly to the reactive protocols DSR and
ZRP. The difference is that in the SDN paradigm, such component is shown to be a linear
relation w.r.t the flow variability as shown by [57].

Putta et al. [58] compare through simulations the performance of classic reactive
(DSR, AODV) and proactive (OLSR) protocols, assuming node mobility. They evaluate
packet delay, packet delivery ratio, and protocol overhead. The packet delivery ratio is a
proxy for the capacity of the WMN. They varied the network size from 125 to 200 nodes
in 25 steps and the load from 10 to 60 connections in 10 steps. Unfortunately, the work
only provides results for the 200 nodes WMN size regarding different loads. Under this
mobile setting, the authors conclude that OLSR has better performance to CBR traffic
such as video and voice due to its lower route setup delay; however, imposing higher
control traffic overhead. The reactive protocols (both DSR and AODV) performed better
regarding packet delivery ratio for non-delay sensitive applications such as file transfer.
The lower overhead facilitated a packet delivery ratio of 80% for 200 nodes, while OLSR
performed below 50%.

These results seem to contradict the analysis in [56]. The explanation is that the proac-
tive protocols suffer when mobility is representative in the network (MANET, VANET).

In [59], the authors present a multi-path routing version of OLSR: MP-OLSR. Due to
the assumption of mobility, we refer to the design of the protocol and disregard results.
The following research will compare results with this protocol. Uemori et al. [60] describe
a multi-path, node-disjoint routing-ID based scheme for WMNs. The study compares the
protocol overhead with MP-OLSR. MP-OLSR presented a lower overhead.

In the SDN paradigm, data forwarding resembles an on-demand (reactive) routing
protocol because paths are computed when necessary. However, the WMN SDN also
demands the continual exchange of information to keep status control of mesh nodes by
the SDN controller. Therefore, similarly to the ZRP, the SDN based routing mechanism
has both reactive and proactive characteristics. The status control traffic (proactive
component) will be a linear function of the network size - O(n) - because it involves a
single destination for all nodes: the SDN controller. The second component of the control
traffic (reactive) is responsible for path setup. It is a function of the variability of the
applications’ flows (the rate of new flows). However, no flooding is required in a WMN
SDN. The SDN controller keeps network topology information based on the proactive
status messages received, which allows defining route paths per new flow communication

24

without network overhead. In turn, a computational overhead appears. Dely et al. [57]
suggest, through limited experiments, that the reactive component of the SDN routing
mechanism overhead is a linear function of the flow variability rate.

Dely et al. [57] are the first to present an implemented architecture to apply the SDN
paradigm to WMNs. The architecture uses a hybrid approach: the SDN control channel is
implemented in an out-of-band fashion using (1) a separate SSID on the wireless interface
of the mesh nodes and (2) the distributed routing protocol OLSR for the routing on this
control channel network. Therefore, this out-of-band control channel approach lacks the
benefits of the SDN paradigm and adds complexity to the architecture when compared to
a purely SDN network (control and data channels in the same network, in-band control).
Besides, the topology discovery is dependent on the distributed routing protocol OLSR
used in the control channel, which adds to the interdependence and complexity.

Dely et al. [57] compare the protocol overhead under varied flow dynamicity. They
vary the number of new flows in the WMN, effectively varying the OpenFlow rule creation
rate in a WMN. The control overhead of OpenFlow increases linearly with the rule
creation rate. The same experiment using the proactive protocol OLSR had a constant
routing overhead. However, the authors account for the control traffic as the control
communication in all hops in the WMN. Therefore, the same flow is accounted for many
times, given the number of hops used. This accounting of traffic is different from the
capacity scaling approach, which considers only each source-destination flow. Additionally,
authors do not evaluate the scaling of the overhead with the network size.

We understand that the flexibility provided by SDN-based WMNs is a crucial im-
provement for the WMN architecture. Our contribution to this problem setting aims at
supporting the SDN paradigm into WMNs in large-scale settings, not yet portrayed in
existing research.

2.10 Community Wireless Networks and their applica-
tion of WMNs

This section discusses aspects of CWNs: their motivation to exist; the structure of
their networks. We refer the reader to an Appendix Section A.1 with information about
specific instances of CWNs.

2.10.1 The nature of CWNs
In terms of motivations to exist, CWNs have different general goals: a platform for

experimentation by enthusiasts (a testbed: FunkFeuer, Austria; Freifunk, Berlin), a plat-

25

form for local and remote (the Internet, the public telephony system) connectivity (in
Africa, the U.S.), to fulfill the desire for social integration and social community building
(Athens, Greece). These characterizations, however, are not homogeneous; instead, they
represent primary motivations of a CWNs.

In [61], a panel of specialists and leaders of CWNs discussed the present and future
of this social organization form centered on the goal of connecting members. Panel
members also characterize fundamental differences in CWNs. In Europe, some networks
are built and operated mostly by enthusiasts interested in learning and exploring networking
technology - the hacker based CWN aiming at education. Such type is not interested in
subscription payment and serving regular users. Newcomers need to educate themselves
to be able to install and maintain their nodes. In such areas, the CWN is not crucial for
connectivity due to the existence of paid connectivity services.

In rural areas of the U.S., Nepal, and Africa, a different type of CWN exist that provide
service to users as the only viable alternative to connectivity (either because of the lack
service providers - rural U.S. - or lack of funds by users to consume available connectivity
services).

Athens Wireless Metropolitan Network (Greece) CWN represents a third case in which
the CWN was a means to support the desire for social connection and integration and
community formation: “... we exist even if the Internet does not exist ... everybody
creates services and provide services to the community” [62]. An expert in the field
of social organization, Primavera de Filippi claims [63] that WMNs have their maximal
impact on creating a social organization in communities that goes beyond the technical
education and Internet access benefits.

In the past, CWNs have not spread through the U.S., or most of the organizations that
started have died. The fundamental nature of European CWNs is of members dedicated
to the realization of the network, whereas in the U.S., funding sources were critical for
expansion [61]. Additionally, in the U.S., a turn-key solution is expected by new community
members. The complexity of setting up a CWN node was a vital barrier: “... in the U.S.
many people will have more money than time ... it will be easier to expand having the
chance to buy an expensive device than the required time to learn the technology ...” [61].
Furthermore, in the U.S., CWNs, initially free and volunteer-based, migrated to model
ISPs that behave as regular companies: hierarchical organization, leaders, and employees.
In Europe, CWNs rely extensively on member contribution, diverse technical solution, and
distributed decision making. We argue that such a distributed and networked organization
resembles more the relationships in cities based on diversity and cooperation [6–8] than
the hierarchical structure of companies [16].

26

Panel members in [61] agreed that the competition of Internet Service Providers (ISPs)
to CWNs is mostly an issue when the latter behave similarly to ISPs. The other types
of CWNs have their specific motivations to exist beyond Internet access. Furthermore,
communities are diverse in their intent. However, the classification in the three types
aforementioned reflects a perception of their general intent.

For the future, CWNs will continue to have, while having different reasons to exist, the
critical function of being a competitor to established service providers. In some instances,
the start of a CWN was followed, with a lag of years in some cases, by an expansion on
the offer of network service providers. Therefore, the creation, continued existence, and
improvement of CWNs go beyond being a testbed for enthusiasts: they are a competitive
force to service providers and a safeguard to censorship [61].

2.10.2 The topology structure of CWNs
The distributed and inherently redundant nature of WMNs, in contrast with the hierar-

chical form of other wireless networks such as cellular wireless, facilitates the construction
and operation of a network by communities. However, CWNs use the WMN architecture
as one of many connectivity mechanisms on their topology implementation. In general,
CWNs designers restrict WMNs to islands of nodes which in turn use other mechanisms
to interconnect to the CWN at large [62, 64] given the capacity and geographical scalabil-
ity limitations of standard single-channel WMNs. Other wireless link-layer methods used
in CWNs are PtP1 and PtM2. Larger CWNs apply fiber-based backbones to cope with
high-capacity, long-distance connectivity [65].

The use of PtP and PtM links imply manual configuration (the choice of which ex-
tension point to use) and specialize which type of nodes serve as extension points to the
network. In the PtP and PtM, one of the nodes (the first P side) allows extending the
network while the other is a leaf node. Furthermore, capacity benefits will not come from
the link-layer isolation provided by the PtP and PtM links. An increase in capacity requires
the use of orthogonal frequencies in the links, adding to the configuration complexity.

Given a node placement, deciding how to induce a network topology using the men-
tioned types of linkage is a hard problem. Finding a graph partitioning scheme (a set of
PtP, PtM combinations) that maximizes an objective (connectivity, capacity, redundancy -
assuming there is an objective way to determine these high-level properties) is an NP-Hard
problem (Graph Partitioning) [66, 67]. Furthermore, the problem of attributing frequen-

1Point-to-point: one node on WiFi AP mode (Infrastructure BSS) and a single remote node on WiFi
station mode.

2Point-to-multipoint: one node on WiFi AP mode and a set of remote nodes on WiFi station mode.

27

cies to minimize interference (Graph Coloring problem) is an NP-Complete problem [68].
Finally, it is essential to account for dynamicity: as nodes fail, the current design might
no longer be the best solution, requiring a new design.

The manual configuration in CWNs is, in fact, opportunistic: the network starts small
(or even minimal) and grows on-demand. As more nodes want to join, they connect to
the network at the closest point. In effect, no optimization plays a vital role in the link
design level [65].

In this research, we operate on the WMN’s multipoint link connectivity3, comprising
short-distance links (when compared to PtP and PtM). In a multipoint link setting, any
node is an extension point. An autonomic agents approach operating in a distributed
manner avoids the mentioned complexities if agent design optimizes the objectives such as
capacity and supporting centralized control. Also, such an automated approach supports
dynamicity and can dramatically reduce efforts of manual configuration.

2.11 Experimentation platforms and challenges
The modern design of communication networks blurs the line between applications

and networks. Modern networks rely on complex software on its operation, such as
in the SDN paradigm (Software-Defined switches and controllers). Another example is
the LTE standard for wireless cellular networks with its MME (Mobility Management
Entity), Packet Gateways at the network core, network functions (NF) for network packets
processing chains such as firewall processing, address translation, accounting. Moreover,
the direction for 5G wireless networks is to turn software even more prominent on its
architecture: Cloud-RAN, SDN-based back-haul networks, distributed packet gateways
based on SDN-like architectures with programmable switching data-planes and NFs as
software in commodity servers. The motivation is to increase efficiency, and flexibility to
dramatically accelerate innovation in networks, a movement modeled after the successful
evolution of large-scale applications based on cloud computing. Finally, an increased pace
of innovation in networks requires more frequent evaluation, turning strategies for the
efficient evaluation of modern networks a critical factor.

Furthermore, the reverse direction also holds: large scale applications behave as net-
works. Disaggregation induces the microservices design (e.g., Netflix [69]), which resem-
bles a network of specialized functions. This design promotes horizontal scaling, flexible
evolution (concurrent execution of different versions of software), inexpensive redundancy.
Also, NetChain [70] is a state-of-the-art, distributed consensus solution that provides a

3All nodes configured as Independent Basic Service Set (IBSS) WiFi, forming a mesh-like topology.

28

sub-RTT agreement. NetChain turns a chain of Software-Defined switches into its compu-
tation environment to implement its proposed consensus protocol. Therefore, testing and
debugging applications in these new settings is not dissimilar from emulating large-scale
networks.

Our specific focus involves studying the capacity scaling characteristics of modernized
WMNs, whose topologies are autonomically manipulated by mesh node agents. In this
setting, we focus our interest in wireless networks, and we add the new constraints of
experiment sets that must vary the size of WMNs from a small to a large number of
nodes (e.g., 2 - 1000s), on each experiment, nodes operate at their maximum possible
throughput. Moreover, topologies must support dynamic change according to the deci-
sions of agents. Aiming at WMN modernization, we assume the SDN paradigm on WMNs
design, involving the integration of pre-existing complex software into the network control
plane (SDN controller and protocol) and data plane (SDN switches, programmable data
planes). Such software applications are not available in network simulators or simple to
re-implement as simulated models [71, 72].

Existing alternatives for the experimental evaluation of modern (software infused) wire-
less networks based on real testbeds, simulation, or emulation impose tradeoffs between
the desired objectives. Following, we elaborate on these methods.

Real-time testbeds provide precise reproduction of wireless systems. Also, testbeds
admit the reuse of existing software. However, scaling testbeds to support the study
of large networks is cost-prohibitive. Also, testbeds are not flexible regarding emulating
different distances of wireless links and variations of topologies. Finally, the shared use
nature of testbeds might become an issue regarding extensive experimentation, such as
in the capacity scaling studies.

Simulations also offer a precise representation of wireless networks, supporting the
accurate study of capacity and high flexibility regarding physical distances and topologies
(ns-3 [73], others). Simulations are also inexpensive in terms of CAPEX (capital needed to
build topologies) on scaling to large network sizes. However, the reuse of existing software
is severely limited. Any software must be transformed into models in the simulation
environment, which is error-prone and cost/time demanding. Moreover, simulations tend
to consume a significant time for computation of the wireless models.

Fall et al. [74] proposed as a solution an experimentation framework based on emu-
lation: network simulators simulate wireless stacks; real software runs in virtual machines
implementing the processing capacity of nodes. We call the method in [74] real-time em-
ulation. However, the approach of the solutions in this category for modeling the wireless
environment varies from minimal (Core [75] - on-off link connectivity) to only emulating

29

the characteristics of individual links (Mininet-WiFi [72]) without accounting the interac-
tion between links such as contention and interference. In this tradeoff space, the study
of capacity is not accurate. Moreover, the split of the node’s wireless system and comput-
ing system in two different environments introduces the problem of time synchronization:
each environment has its independent timing system [76–78].

Mechanisms for time synchronization amongst networked systems exist such as Net-
work Time Protocol (NTP) [79] or other higher precision approaches [80–82]. The funda-
mental difference between those approaches and the time synchronization on emulation
is that the former assumes systems that should operate at the same clock but subject
to small clock drifts. In emulations on our settings, the simulated clock is fundamentally
different from the real-time clock, and such difference is highly variable, depending on the
resulting computational load of simulation and systems emulation.

Some network simulators such as ns-3 [73] and its real-time scheduler attempt to
support emulation by synchronizing its internal simulated time with the external computing
system’s real-time. However, such synchronization works in a single direction in practical
terms: the real-time event scheduler of the simulator does not allow events to be processed
before the corresponding real-time: no anticipated event execution. Events might be
processed with a delay concerning the real-time: possible delayed event execution. Such
delay is due to the computation complexity of network models and a large number of events
in the simulated network models required for the capacity scaling evaluation. Following
we detail our analysis of ns-3 and its real-time scheduler since we applied it our our
experiments and it is also used as part of other solutions [83–85].

In practical terms, any reasonably complex wireless topology will imply delays to pack-
ets due to model computation efforts and not inherent to the models themselves. In our
preliminary experiments using ns-3 in emulation mode (ns-3’s real-time scheduler), we
confirmed such expectation.

Such a scenario becomes critical when emulating WMN topologies because packets
can transition from real-time computing containers to the network simulator many times,
given the path length in the number of nodes in a WMN. Furthermore, the number
of simulation events in a WMN network tends to scale with the square of the number
of nodes: O(n2). The quadratic scaling occurs since every transmission in an abstract
spectrum channel in the wireless simulation models should be inspected against all other
nodes in the spectrum for reachability determination. If all nodes transmit in a given
time frame (unbounded demand), the quadratic relation appears in the time frame. In
the study of the scaling of WMNs, nodes attempt to communicate at their maximum (all
nodes, at all times, transmitting) to identify the capacity limits. Figure 2.1 shows our

30

practical confirmation of the quadratic scaling of events for WMNs.

0 25 50 75 100 125 150 175
Network Nodes

0

20000

40000

60000

80000

Ev
en

ts
/s

ec

Mean of Events Rate
Quadratic Fit of Events Rate

Figure 2.1: Scaling of the rate of simulation events w.r.t. the number of wireless nodes.
Mean values of the rate of events for three runs with seeds 10, 20, 30.

Fontes et al. [86] attempt to reduce the simulation overhead and allow the simulation
to run within the real-time constraints. Their approach consists of moving the processing
of the network data plane outside the simulation system and executing the control plane
in the simulation environment. However, if the evaluation intention goes beyond protocol
design and evaluation (as it occurs in the case of a throughput capacity scaling study),
the approach is insufficient.

Another attempts intend to increase the event processing capacity scalability imple-
menting parallelism into simulators. However, improvements will represent at most a
linear function on the number of parallel processes p of the simulator - O(p). Moreover,
in practical terms, the number of parallel processes p tend to be much smaller than the
number of nodes: p << n. Furthermore, the literature on network simulation describes
that linear scaling with parallel processing is hard to achieve. The best-known solutions for
parallelism, such as using event time lookahead, only provide scaling for specific topologies
which have significant propagation delays on the transmission medium. The lookahead-
based approach achieves very low scalability for wireless and bus topologies in which the
propagation delay is minimum, close to zero [78]. The conclusion is that parallel pro-
cessing in network simulators is not a definitive solution to avoid introducing delays when
operating in emulation mode.

Other attempts exist in the other direction: expanding the real-time (time dilation)
perceived by the emulated environments (VMs, containers). We call this method ex-

31

tended time emulation [83, 85, 87–89] attempts to reproduce - not simply synchronize
- the time perceived in the emulated computing environment by sourcing it from the
simulated environment, reducing the effort and risk on porting existing software applica-
tions to a simulated environment. The time dilation mechanism also increases the relative
computation power of the simulation system w.r.t. its nodes.

Gupta et al. [87] proposes fixed time dilation. It relies on full virtualization to isolate
the time references in the duplicated kernel stacks of the VMs. This approach also requires
anticipating a fixed time dilation factor that either will render the simulation inefficient
(conservative choice) or require an iterative approach for tuning the dilation factor. To
improve the latter, SliceTime [83] implements a dynamic adjustment of the dilation factor.
These two last examples rely on full virtualization to isolate clocks, characterizing a high
overhead for emulation of a large number of nodes.

To scale to medium-size networks, [83] assumes that a small subset of nodes requires
virtual environments, given that its time extension scales linearly with the number of VMs.
Furthermore, authors assume a precision of hundreds of microseconds to 1 millisecond,
which could yet interfere in the timing of the TCP protocol algorithms, turning SliceTime
inappropriate for LAN scenarios with RTTs in the same order of SliceTime’s time precision.
SliceTime splits time evolution into slices and makes each element wait for the others at
the end of the time slice (a barrier-like mechanism). Furthermore, no guarantees of time
convergence exist within a time slice, such as a time interpolation, taking into account
the simulated time speed. A positive aspect of SliceTime is its complete transparency to
the guest OS in the VM due to manipulating time on the hypervisor (Xen) layer. Limiting
the nodes with VMs is not a valid assumption for our setting. We need a SDN software
switch on each mesh node.

ns-3’s DCE (Direct Code Execution) [84] and the Timekeeper project [85, 88] address
the problem mentioned above of time synchronization in a network emulation setting for
large-scale wireless networks. None rely on full virtualization: Timekeeper uses lightweight
virtualization (containers), and DCE turns all application code and kernel stacks into
libraries running alongside the simulator process. We identify shortcomings as follows.

DCE uses the concept of a library-based operating system. DCE allows the use of
user-space applications and a limited set of kernel-space modules in experiments. How-
ever, all application code needs to execute as libraries, requiring code recompilation for
compatibility with DCE’s specialized loader. Also, DCE manipulates the scheduling of the
apps (execution inside the simulator), apps must restrict their interaction with the OS to
the POSIX API, and DCE implements significant modification of the library OS kernel.
The approach of running applications and kernel code as libraries, instead of enabling

32

an emulation (real software execution integrated with a simulated network stack), brings
the real software to a simulated environment: app code and kernel stack become part
of the simulation process. Such an approach also limits computation power used on the
emulation due to the incorporation of the node’s computation resources into the simula-
tion process. On the upside, DCE developers claim that a broad set of time system calls
are available for user-space apps. In [90], the authors claim that DCE has not yet been
evaluated under large-scale wireless settings and adjust DCE to explore multiple cores of
the host emulation system.

0.5 1 1.5 2 2.5 3

Emul Core

Simul ns-3

Emul DCE/ns-3

Emul SliceTime/ns-3

Mininet-WiFi

Wireless Testbeds

Score (0-3)

wireless accuracy large scale flexibility software reuse

Figure 2.2: Comparing solutions to the requirements for the evaluation of modern wireless
networks. Scores for the support of a requirement: 0-nonexistent, 1-minimal, 2-partial,
3-full.

Timekeeper limits the integration into an emulation to user-space applications. Fur-
thermore, it provides an insufficient set of time-related system calls. Therefore, one
needs, at least, to investigate each application’s usage of time-related system calls to
verify the feasibility of the intended emulation. An additional downside potential, the pro-

33

cesses of the user-space applications are not scheduled by the Linux scheduler, rather by
Timekeeper’s kernel modules. On the upside, Timekeeper allows unmodified user-space
applications if they commit to the resources provided by Timekeeper.

VT-Mininet [89] integrates time dilation (a Virtual Time) into the well known and
popular Mininet-HiFi [91, 92] emulation platform. Their approach for creating a virtual
time to the lightweight containers implemented by Mininet-HiFi builds on the principles
defined by the Timekeeper project [85, 88]. However, VT-Mininet does not support the
emulation of wireless networks. Furthermore, although improving on Timekeeper, it yet
does not expose the virtual time to all kernel functions such as the Linux tc (Traffic
Control) kernel packet scheduler used for controlling the emulated link capacities.

In summary, reusing pre-existing software requires low to no modification on the target
software, and requires a computation environment such as full or lightweight virtualization
(VMs or containers). While VMs support time isolation from real-time, they impose
prohibitively high overhead for large-scale experiments. Furthermore, time synchronization
to simulated time is challenging at large scales due to the hard isolation of hypervisors.
On the other extreme, containers share the kernel environment of systems, implying an
nonexistent standard mechanism for time isolation from real-time (especially for in-kernel
functions).

Below we provide guidelines to the design of an emulation framework involving ex-
ploring the upsides of both Timekeeper and ns-3’s DCE while solving shortcomings to
our evaluation setting. One key differentiation regards the support of the emulated time
inside the kernel task (Item 2). Figure 2.3 provides an overview of the different types of
tasks executed inside the Linux kernel and their entry/exit points.

1. Supporting kernel modules (kernel-space) and user-space applications. No modifi-
cations must be required to user-space applications and a large set of time-related
system calls must be supported.

2. The code of kernel modules can demand modification. However, a guideline for
adapting kernel code will simplify this task. The kernel must also be able to
discriminate between kernel asynchronous tasks (Hard-IRQs, Soft-IRQs, Tasklets,
Workqueues) and user-space processes in kernel synchronous execution, providing
the appropriate perception of time. See Figure 2.3;

3. Applications must use the regular Linux scheduler;
4. The isolation of the different network stacks of the emulated nodes can explore

lightweight mechanisms such as Linux network namespaces for higher scalability;
5. A common Emulated time can be injected into the Linux kernel through a new

system call. Interpolation of the emulated time on the kernel can avoid the need

34

of frequent simulated time updates, keeping the time update overhead low. A time
dilation factor (similar to the approach in TimeKeeper [85] and VT-Mininet [89])
allows virtualizing the CPU capacity and keeping-up with the required extended time
of simulation platforms;

6. Control Groups (specifically, freeze CGroups) control the computing power of the
emulated nodes. Using a single system call, the framework can freeze/unfreeze all
processes under execution in the network nodes. Improvement to the CPU CGroups
are required to enforce a maximum equivalent CPU capacity even without CPU
contention.

7. Dynamic adjustment of the time dilation factors given the actual load on the con-
tainers (similar to VT-Mininet [89]). Will reduce the maximum time extension
overhead as possible.

WQ
kTh

Task Pi

Sched

HW IH softirq

WQ
kTh

softirq
kTh

__do_sofirq

__do_sofirq

preempt
or

block

run

HW int

ret int

run

work

action

awake

__do_sofirq

preempt
or

block

process_one_
work

run

end

while (actions && budget)
run_by_priority

end

Process
Pi

ret trap

user-space

kernel-space,
individual work

kernel-space,
shared work

softirq types (by
priority): HI, TIMER,
NET_TX, NET_RX, BLOCK,
BLOCK_IOPOLL, TASKLET,

SCHED, RCU

kernel-space,
kernel threads

Figure 2.3: State machine for the Linux kernel execution, identifying the different forms
of kernel tasks inside the Linux kernel and their entry/exit points. Linux kernel version
4.4.

35

Chapter 3 An experimentation platform for
the evaluation of autonomic agents

This chapter introduces a tailored experimentation platform to support the decision-
making of autonomic agents while realistically evaluating wireless mesh networks metrics
(throughput capacity, latency, and others) under load through accurate simulation. We
named it PANE - Platform for Autonomic Networks Evaluation. PANE is composed of
independent modules to support essential requirements for autonomic agent evaluation,
which operate on communication networks.

Our motivation for the design of this platform consists of fulfilling three main re-
quirements. The first and more significant requirement was the ability to fast prototype
autonomic agent models that consumed wireless network structural information. Dif-
ferently from network simulators also relying on nanoseconds resolutions, the time scale
of events in this agent environment is of sub-seconds. Moreover, network simulators
are difficult to extend and modify, having strict software engineering design constraints
(e.g., ns-3 [73, 93]). We designed the agent simulation component of this platform from
scratch (clean-slate approach), using an interpreted programming language (Python):
ASim. ASim supports the integration of different network simulators as necessary. It
relies on standardized formatting of messages for integration with network simulators.

The second requirement was the support of dynamic behavior regarding all layers
of the network topology definition. The idea of agents that operate at the physical
and link-layer levels requires allowing them to make decisions on the network topology
during experiments dynamically. This characteristic is not common to network simulators
that typically assume an a priori design of network topologies (network nodes and their
connectivity) before the execution of experiments. The component NetSim integrates
ASim to a well known network simulation toolset.

The final requirement is the precise wireless network simulation integrated with the au-
tonomic agents’ environment. We applied the well-known ns-3 network simulator [73, 93]
to implement this requirement, integrating to it Linux Namespaces-based [94] containers
for the implementation of nodes functions based on existing software.

Figures 3.1 and 3.2 present the architectural view of the experimentation platform and
the relationship between the layers of the protocol stack and their operating environments.
This platform has approximately 16800 lines of code between Python, C/C++, and Unix

36

shell script. Documentation relies heavily on code comments, representing an addition of
40% in lines (approximately 6800).

Following, we introduce the modules of this platform.

Agent Simulator - ASim

Wireless Mesh Network Simulator - NetSim
(ns-3 based)

Node’s application
containers

(Linux namespaces based)

ASim Oracle

Nodes'
Agents

NetSim HUB - manages the NetSim API

Nodes’ wireless stack

Bridge Interface
Management Daemon
Topology Update Service
Communication App
SDN Controller *
SDN Switch

Wireless Interface to
node’s container

Simulated Wireless
Connectivity

Communication through
message queue IPC

NetSim Workers - execute the network simulation

Figure 3.1: Architectural view of the experimentation platform, presenting modules, and
their integration through message queues IPCs (inter-process communication). NetSim
uses MPI [95] for multiplying its instances and scale up its processing capacity.

3.1 Agent Simulator - ASim
ASim is a discrete event simulator written in Python using multi-threading and multi-

processing to allow for fast prototyping of agent models and independence of specific
network simulators and node container environments while coping with large-scale exper-
iments. It implements the high-level decision making of agents in the nodes: read the
environment, decide based on autonomic properties, act: send commands to the NetSim
component to enforce decisions. Also, it implements the general control of experiments:
node placement creation, epochs, the collection of the resulting data, among other func-
tions.

37

Application Processes

Wireless Channel Model

PHY Model

MAC Model Station
Manager

Net Device

Bridge Dev
Linux Tap Interface

Linux TCP/IP Stack

Application Processes

Linux NS containers
(Linux namespaces based)

Wireless Node 1

ns-3 environment

W Node N…

Application
Instances

ns-3 containers
(ns-3 based)

Linux environment

NetSim
(ns-3 based)

ns-3 TCP/IP Stack

Routing
Protocols

PHY

MAC

NET

Br

NetSim API

ASim commands

NetSim info return

Real stack Simulated stack

Figure 3.2: Protocol stacks and executing environments, showing the flexibility of the
implementation of network nodes’ functions: real software inside Linux Namespaces con-
tainers, internally simulated as ns-3 containers.

ASim has a sub module named Interactive Console (IntCons), which provides a graphi-
cal visualization of the topologies produced by the agents operating in ASim. The IntCons
module relies on the Matplotlib [96, 97] Python library for graphical visualization and sup-
ports real-time and offline visualizations. In offline mode, IntCons can reproduce an
atomic state of the WMN topology saved during a previous execution or can re-execute
a sequence of commands performed by the agents to show the WMN formation process.
ASim saves the sequence of commands sent to IntCons for its future standalone execu-
tion. Figures 4.2, 4.3, 4.4, 5.1, 5.2, 6.1, 6.2, 6.3 are examples of images produced by
IntCons. Figure 3.3 shows an experiment using SDN switches and controllers with SDN
paths displayed in the IntCons.

Both ASim and IntCons use geographical data such as the Microsoft US Buildings
Data Set [98] and the Global Administrative Areas (GADM) [99] through the GeoPandas
[100] Python library. MS US Buildings provides the location of buildings in all 50 states
of the United States used by ASim to determine realistic locations for the simulated mesh

38

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance from Greenwich (meters) ×102

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 fr
om

 th
e

Eq
ua

to
r (

m
et

er
s)

×102

2

6

ctl

191

1b5

ctl

18c-ctlctl

1b9

1b
e

ctlctl
17

ctl

ct
l-5

b

5d

385

38
c

38e

391

393

396

39a

39c

1e1

1e3

1e5
1e7

1ef

1f2

1f
4

1f
d

4

1

5

7

9

8

6

10

2

3

Figure 3.3: Interactive Console (IC) depicting a small topology of 10 nodes using Linux
containers in SDN mode. Red lines represent the path of control channel of nodes. Blue
lines represent data paths used by nodes.

nodes. GADM provides political boundaries, which in the US include Country, State,
County, and City limits. Also, ASim can produce synthetic node placements based on
random positions and controlling the node density over the experimentation area.

ASim and IntCons also rely on the NetworkX [101, 102] Python library for storing
graph data representing the neighboring relationship between agents and for performing
graph processing functions.

3.1.1 ASim parameters
The tables below present ASim parameters on their categories. When the type is

“bool”, the “Deafult” represents the action performed on the attribute.

3.2 Network Simulator - NetSim
NetSim is a layer built on top of the well known and validated ns-3 network simu-

lator [73, 93] to command the configuration of network nodes and their network stack,
which are implemented using ns-3 models. NetSim admits commands from the auto-
nomic agents, translating them into topological behaviors by the ns-3 simulated nodes
such as new network node, node creates a mesh partition, node joins a partition, node

39

ASim Generic Parameters
Syn Keyword Description Type Default
-t –max-time Experimentation time int 100

-m –mpi-size Number of MPI processes on NetSim. Minimum
2 int 2

–sysvq-base Initial SYS V queue index value int 100

–cs-m

Channel frequency attribution method: 1=Least
Nodes Rank, 2=Least Used Nearby, 3=Random,
4=Round Robin, 5=Random attribution/active
channel change

int 4

–mail-to The experiment’s completion notification e-mail str ”

–epoch-len The epoch duration in seconds and number of
epoch splits in format ’90,10’ str ’90,10’

–channel-
sets

Restricts the sub-bands of channels for a given
bandwidth. Example: ’20,1,2;40,1’ str ”

Table 3.1: ASim Generic Parameters.

ASim Display Consoles
Syn Keyword Description Type Default

-e –node-evol-
graph

Node evolution plots: 0-> do not create,
1->save plots only, 2->save plots and
display

int 0

-c –top-cons IntCons: 0-> do not create, 1->save
plots only, 2->save plots and display int 1

–ic-chm –ic-ch-mode Interactive Console convex-hull mode:
simple, convex-hull, freq-reuse, all str None

–ic-track-
groups

IntCons will track the list of groups by
their IDs (comma separated list) str None

–ic-track-
nodes’

IntCons will track the list of nodes by
their IDs (comma separated list) str None

–ic-cmds-
save

IntCons save commands to file provided
(no extension needed) str None

–ic-no-
toolbar

Disables toolbar in interactive mode of
IntCons bool store_true

–ic-cbc –ic-color-by-
channel

IntCons will use the channel number for
coloring groups bool store_true

–tc-um –top-cons-
under-mesh

IntCons draws the underlying WMN’s
max connectivity topology bool store_true

Table 3.2: ASim Display Consoles Parameters.

leaves a partition, node changes its radio frequency. NetSim is built in C++ using the
programming guidelines of ns-3.

NetSim uses MPI [95] for the parallel execution of its instances, increasing experimen-

40

ASim Node Placement Parameters
Syn Keyword Description Type Default
-s –seed Node placement randomization seed int 1230

–npr-goal
Goal for the # of nodes per NetSim
MPI rank. Limited by the nodes’ den-
sity (hence goal)

int 60

–n-max –nodes-max-
goal

Goal for the total # of nodes. Limited by
the nodes’ density (hence goal), disables
’–npr-goal’

int 0

–n-dens –nodes-
density

Node placement average density inverse
in m2/node eg. 1200, 800. Disables ’–
npr-goal’, ’–nodes-max-goal’

int 0

–sp-sizes –search-part-
sizes

Search partition of specific sizes in the
current seed and node density. Different
seeds should be tried externally (external
list provided here one by one)

str None

–spawn-
mode

Node spawning mode: ’synthetic’, ’geo’,
’geoM’, ’replay’ str synthetic

–spawn-data Location/name of node spawning data
for ’geo’ and ’replay’ modes str None

Table 3.3: ASim Node Placement Parameters.

tation scalability. Two main types of functions exist on the MPI processes of NetSim: the
NetSim-Hub and NetSim-Workers.

The NetSim-Hub is responsible for time synchronization between NetSim-Hub, NetSim-
Workers, and ASim. Also, it receives commands from ASim and either execute them di-
rectly or transfer them to NetSim-Workers. NetSim-Hub also receives informational and
status messages from NetSim-Workers and forward them to ASim.

NetSim-Workers execute the network simulation workload according to the topologies
defined by topology manipulation and network communication commands sent by the
autonomic agents on ASim. NetSim-Workers also create and control the lifecycle of
nodes’ containers, and perform bi-directional communication to containers.

3.3 Nodes’ Containers
Nodes’ containers implement a computing environment for the execution of nodes’

applications such as data generation and consumption, the real TCP/IP network stack,
mesh routing protocol, SDN controllers and SDN software switches when applying the
SDN paradigm. The platform currently supports ns-3-based containers (applications,
IP stack, routing protocol are internal models to ns-3) and Linux Namespaces-based

41

ASim Agent Models Parameters
Syn Keyword Description Type Default

-i –node-ai-
model Node agent model: ’standard’, ’smart’ choice smart

–max-degree Max node degree in a group. Used by
the ’smart’ agent int -1

–sh-max-
degree

Max node degree when bridging to a
group. Used by the self-haling agent.
Default: 0, use the same value as the
smart agent

int 0

–lvth –liveness-
threshold

Format: ’10,20,10’. Threshold in % used
by a so-agent, so-agent-leader, sh-agent
to determine a better option than the
agent’s current one.

str 10,20,10

–svo –safety-
violation-opt

Format: ’rnd,brd,sft’ or ’no’. Active op-
tions for safety violation solution of the
smart agent. Any option can be pro-
vided independently or with others. ’no’
implies no option active

str rnd

–sipct –sec-intf-pct Percentage of nodes with a second inter-
face: 10, 20, 25 ... 100 int 0

–sipol –sec-intf-
policy

The type of Self-Healing agent using the
secondary interface (ss, gp) str ss

–no-atomic –no-atomic-
env-read

Disables reading the environment atom-
ically bool store_true

Table 3.4: ASim Agent Models Parameters.

containers (existing software runs unmodified inside Linux Namespaces consuming the
Linux TCP/IP stack and routing protocols). We use the clone() Linux system call to
create namespaces that isolate processes, networking resources, hostname. We leave the
IPC mechanisms shared to implement an inter-module API, as described in Section 3.4.

The current implementation of Linux containers is restricted to small scales (a few
10ths of nodes) due to the limitation on the synchronization between simulated time inside
ns-3 and the real-time perceived by application and kernel functions on Linux containers.

The alternative of implementing applications inside NetSim allows experimentation
at larger scales without incurring in synchronization issues. However, we cannot reuse
existing software such as SDN controllers and switches.

42

ASim Nodes containers attributes
Syn Keyword Description Type Default

–container-
type

Type of NetSim containers for nodes
computing resources: 0=ns-3, 1=Lin-
uxNS

int 1

–no-sdn-
mode Disable SDN mode on nodes’ containers bool store_true

–qos-queues Queues based QoS on nodes’ SDN
switches bool store_true

–ovs Use OpenVSwitch as the SDN switch in
nodes’ containers bool store_true

–fwd SDN ctrl forwarding algorithm: HC=0,
HLRB=1, HLRB-SHC=2, CA=3 int 0

–phy-std PHY Standard for wireless interfaces:
11a (default), 11afixed6, 11n5GHz, 11ac str 11a

–phy-bw PHY bandwidth for wireless interfaces
(MHz) int 20

–force-non-
promisc

Force non-promisc wireless operation re-
gardless of the SDN mode bool store_true

Table 3.5: ASim Types of nodes containers and associated attributes.

ASim Debugging Modes
Syn Keyword Description Type Default

–shortcut
Shortcuts NetSim, making ASim operate
isolated. ASim sends response messages
to simulate NetSim’s behavior

bool store_true

-d –debug Use ns-3 debug libraries bool store_true
–use-gdb Run NetSim under GDB’ bool store_true

Table 3.6: ASim Debugging Modes.

ASim type of nodes’ applications
Syn Keyword Description Type Default

–app-type app type on ns-3 containers: UDP=0,
TCP=1 int 0

–app-udp-
no-rate-
control’

If using ns-3 containers app type UDP,
disable Rate Control (use CBR traffic) bool store_true’

–comm-dist Maximum distance to dst nodes on com-
munication int 1000

–app-off –app-disable Disable any node communication bool store_true
Table 3.7: ASim type of nodes’ applications.

43

3.4 Inter-modules messaging API
For simplicity, reliability, and general applicability, the messaging API uses string en-

coding. This design decision simplified the data exchange between platforms developed
in different languages such as C, C++, and Python. The Inter-Process Communica-
tion (IPC) mechanism used was System V Message Queues [103].

3.5 Time synchronization
The modules that compose this platform operate in tandem regarding their time evo-

lution. However, as the relevant time scales on each module differ, we implement different
tolerances for time synchronization. ASim and the NetSim-Hub use nano-seconds preci-
sion for time comparison and perform synchronization every 0.1 seconds. In other words,
after executing independently for 0.1 seconds, both ASim and the NetSim-Hub wait for
each other to confirm that they are ready to move to the next 0.1 seconds epoch. The
NetSim-Hub and NetSim-Workers use the same precision for time comparison, but they
synchronization epoch duration is 0.001 seconds.

Multiple NetSim-Workers should only be used when experiments do not allow commu-
nication between nodes at different frequencies. This setting was useful for the capacity
scaling experiments described in Chapter 4 when nodes communicated only internally to
their partitions.

In Linux Namespaces-based Nodes’ Containers, currently, there is no external time
reference. Any applications and the Linux Kernel consume real-time. When using these
containers, the NetSim modules operate with the ns-3 real-time scheduler, which limits
the simulated time advancement to the system’s real-time.

44

Chapter 4 WMN capacity scaling under au-
tonomic topology manipulation

In this chapter, we experimentally evaluate the impact of the controlled formation of
WMN topologies by autonomic agents with previous research, which assumed random
topologies. Also, we contrast our experimental results with analytical bounds on the
throughput capacity of WMNs. We use this study to select autonomic agent models that
better fit our objectives. A common characteristic expected from all our agents is the
ability to split large WMN topologies into partitions.

We start describing a generic operational cycle followed by the agents. In this chapter,
the agents’ single function is to control the connectivity of their assigned mesh nodes’
wireless interface. We follow presenting the design and behavior of the different agents
we envisioned, presenting the different topological outcomes advent from the behavior of
our agents, and, presenting the evaluation of the WMN capacity scaling obtained by the
agents’ induced topologies.

4.1 Operational cycle of autonomic agents
The general design of the agents involves cycles of operation with the following four

phases:
1. Read the environment: internal states, neighbors’ states.
2. Evaluate states: on autonomic functions, deciding to maintain, improve, recover

safety and liveness properties.
3. Act: send commands that enforce decisions.
4. Idle: wait until the next cycle (nodes use the network).
The second phase is the main differentiating element (properties and behavior), which

is specific to each agent as described in the subsection 4.2.2. The commands available
to use in the third phase are: node creates a mesh partition, node joins a partition, node
leaves a partition. Also, a possible decision is maintain membership, implying a null action.

In the results of this chapter, our agents operate in atomic information gathering mode:
when obtaining their local information, they read a consistent state of the network. This
mode is equivalent to reading information of the multiple available frequencies in parallel,
and in an infinitesimal time. Although not a realistic expectation, we apply this operation

45

b1

read env = k x b
evaluate

+
act

...

idledrift

Generic Agent Cycle

bkb2

...

Figure 4.1: Generic Agent Cycle. Specialized by different behaviors in the evaluate + act
phase.

mode to isolate the study of the capacity scaling from the study of the convergence
likelihood of our agent models. All our agent models obtain fast convergence, in up to
two epochs. They start from all mesh nodes inactive to a final state in which all nodes do
not have a better outcome than their current connectivity decision (a setting equivalent
to a Nash Equilibrium).

In Chapters 5 and 6, we evaluate the convergence likelihood of our selected agent mod-
els, enforcing their operation in concurrent mode and their frequency spectrum scanning
in their Read Environment phase a single frequency at a time.

4.2 Autonomic behavior of agents

4.2.1 Manual node agent design
The Manual agent design joins the closest partition using signal strength as a proxy

to proximity, which represents its liveness property. It holds as safety property an upper
bound on the size of a partition, limited to 80 nodes. It does not change its partition
membership after joining a partition. No review of properties occurs since the generic
agent cycle runs only once for Manual when it starts its operation. These simple and
static decisions resemble a manual configuration that is not reviewed to adapt to changed
conditions.

Manual determines the partition proximity through the perceived signal strength from
any single reachable node in the partition. Manual does not average the signal of reachable
nodes in a partition to reflect its proximity. Moreover, the partition size upper enforced by
Manual is critical to induce a partitioned topology outcome. However, this upper bound
is only applied when deciding which partition to join, not after joined a partition. In

46

atomic experimentation settings, Manual properly bounds the sizes of partitions, inducing
balanced partitioning settings. The same cannot be guaranteed for concurrent operation.

More formally: let m be a Manual agent analysing its properties. Let P be the set
of all partitions while Pm ⊆ P is the set of all nearby partitions to m; let k ∈ Pm be a
nearby partition. Let Fsig_s(k,m) be a function that returns the highest signal strength
of any reachable node i,∀i ∈ k as perceived by the node m, let FSS → Pm be a function
that sorts Pm by Fsig_s(k,m),∀k ∈ Pm into the ordered list P

′

m. If P
′

m ≠ ∅, the first
item P

′

m[0] = kb is the best partition membership option regarding proximity.
Let Fsize(k) be a function that returns the size in the number of nodes of a partition

k. Let FMPS → Pm be a function that i) eliminates partitions k ∈ Pm for which
Fsize(k) > 80.

On its second phase of the generic agent cycle,Manual executes the functions FMPS →

Pm to eliminate partitions above limit and P
′

m = FSS → Pm to determine the closest
nearby partition.

Let AM be the decision of Manual as a set of commands:

AM = {If P
′

m = ∅ ∶ {create_partition}
Otherwise ∶ {join_partition(kb)}

(4.1)

4.2.2 Smart node agent design
The Smart agent design type holds partition diameter and maximum node degree as

safety properties, and a membership to the largest nearby partition as a liveness property.
Following we provide a textual description followed by a formal definition.

The Smart agent joins the largest nearby partition for which it finds the shortest path
of hop-distance at most h to the partition origin. It is trivial to verify that the diameter
of the partition is, at most, d = 2 × h: the origin node is a member of any shortest path
from border to the origin, and the diameter unites two shortest paths from origin to the
border.

The is origin attribute is true for an instance of Smart which creates a partition, and
false otherwise.

Optionally, Smart nodes assume a node degree dg upper bound constraint to decide
on their partition membership. If no membership option is valid, Smart nodes create a
new partition. They continually review their membership decision following the generic
agent cycle described in Section 4.1.

Smart attempts to change its partition membership in every new cycle to the largest
valid neighboring partition which is, at least, sp percent larger (a threshold) than the

47

Smart’s current partition.
A valid neighboring partition has i) at least one node at communication reach of the

deciding node (hence, neighboring), ii) all nodes not violating safety properties, iii) all
nodes will not violate safety properties after the addition of the deciding node.

More formally, let m be a Smart agent node reviewing its properties. Let P be the
set of all partitions while Pm ⊆ P is the set of all nearby partitions to m; let k ∈ Pm be
a nearby partition, ok is the origin node of partition k. Let kc be the current partition of
m if is already connected, and kc ∈ Pm.

Let Fdistance_sp(i, j) be a function that returns the shortest-path distance between
two nodes. Let FDT → Pm be a function that eliminates nearby partitions k for which
Fdistance_sp(m, ok) > h,∀k ∈ Pm.

Let Fdegree(i) be a function that returns the degree of a node i; let FDG → Pm

be a function that removes partitions k ∈ Pm if there exists any node i ∈ k such that
Fdegree(i) ≥ dg,∀i ∈ k,∀k ∈ Pm.

Let Fneighbors(k, i) be a function that returns the number of future neighbors of a
node i if it joins a neighboring partition k ∈ Pm; let FNEIGH → Pm be a function that
removes partitions k ∈ Pm if Fneighbors(k,m) > dg,∀k ∈ Pm.

More formally, let Fsize(k) be a function that returns the size in number of nodes of
a partition k, let sm be the size of the current partition kc of the agent m, let FES → Pm

be a function that i) eliminates partitions k ∈ Pm for which Fsize(k) < (1 + sp) × sm,
and ii) sorts Pm by Fsize(k),∀k ∈ Pm into the ordered list P

′

m.
If P

′

m ≠ ∅, the first item P
′

m[0] = kb is the best partition membership option regarding
size. If P

′

m = ∅ and kc ∈ Pm (current partition kc checked as valid regarding safety
properties), we add back kc into P

′

m as an option (stay on current partition).
On its second phase of the generic agent cycle, Smart executes: FDT → Pm, FDG →

Pm, FNEIGH → Pm, and finally P
′

m = FES → Pm.
Let AS be the decision of Smart as a set of actions:

AS =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

If P
′

m = ∅ ∶ {create_partition}
Else if P

′

m = {kc} ∶ ∅ (a null action set)
Otherwise ∶ {leave_partition(kc),

join_partition(kb)}

(4.2)

We evaluated the capacity scaling of versions of Smart holding different values for the
safety property maximum node degree from 4 to 10, and no degree constraint.

48

4.3 Visual outcome of the behavior of agents in atomic
settings

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800
Elap. time: 450.0 Pend: 0 FPS: 0.062 Topology Evolution

Figure 4.2: Underlying maximum possible connectivity of the random node placement
from seed 5 if a single partition exists. Shows the maximum set of neighboring options of
any node when deciding partition membership. Area of ≈ 1 Km2 (1280 by 800 meters)
using the IEEE 802.11a wireless standard.

Figure 4.2 represents the maximum underlying connectivity if all nodes operate on
the same frequency in the physical layer, the same logical network (SSID, BSSID) at the
link-layer, using their nominal transmit power. Therefore, no additional connectivity can
exist.

More formally: let G(V,E, P) be a graph representing the connectivity topology of a
WMN where V is the set of nodes, E is the set of edges, P the set of positions of the
nodes in V , n is a node such that n ∈ V , fn, tn are frequency, network id of n; E is
maximal if ∀i, j ∈ V, fi = fj, ti = tj.

The choices of the self-organizing agent on the WMN nodes define the partitioned
WMN topology (Figures 4.3, 4.4). The same node placement (position of nodes) is the

49

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800
Elap. time: 360.0 Pend: 0 FPS: 0.125 Topology Evolution

Figure 4.3: Evolved WMN topology partitioned by the Manual self-organizing agent.
Same area, wireless standard and node placement of Figure 4.2. A subset of the maximum
set of edges exist.

basis for the three figures. Partitions in Figure 4.3 are not constrained in their diameter.
Partitions in Figure 4.4 are diameter constrained. More formally: let G4.2(V4.2, E4.2, P4.2),
G4.3(V4.3, E4.3, P4.3), G4.4(V4.4, E4.4, P4.4) be graphs representing the topologies of Fig-
ures 4.2, 4.3, 4.4, respectively; P4.2 = P4.3 = P4.4, E4.2 ⊇ E4.3, E4.2 ⊇ E4.4.

4.4 Scaling results
This section presents the experimental settings used in our evaluation and results for

the capacity scaling of the partitions created by our agent models.

4.4.1 Experimentation settings for scaling results
Here we provide the experimental settings used to produce the results presented in

Figures 4.5 - 4.8. The following list describes experiments and how the node placements
(positioning of nodes) were produced.

50

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800
Elap. time: 360.0 Pend: 0 FPS: 0.125 Topology Evolution

Figure 4.4: Evolved WMN topology partitioned by the Smart self-organizing agent, pro-
ducing overlapping partitions, made evident by the partitions’ convex-hull. Same area,
wireless standard and node placement of Figure 4.2.

1. Nodes have randomized positions controlled by a node placement random variable
(uniformly random) and its seed value. We used a common set of 15 seeds to all
agent models, creating 15 different node placements (each one represents a different
experimental evaluation). Also, we added to the common seeds set of each agent
model-specific seeds to guarantee that any scaling data point (a given partition size
on scaling plots) derives from, at least, 10 samples. A capacity sample derives from
the partition operation during a given epoch. Moreover, we also enforce that those
samples came from at least 3 distinct partitions.

2. We control the average node placement density over the experimentation area. Our
initial analysis uses the density of 1 node per 1260 m2. We also evaluate the agents’
robustness to different densities: 1 node per 400, 800, 1600 m2.

3. Each experiment consists of a set of 7 epochs of 90 simulated seconds each. There-
fore, an experiment resembles the formation of WMN partitions: initially, all nodes
are disconnected; at the end, all nodes as members of partitions and actively com-

51

municate. All experiments converge to stable topologies given the use of atomic
operation as described in Section 4.1.

The following list describes the communication traffic for capacity determination, fol-
lowed by a formal definition.

4. The communication traffic between nodes assumes unlimited demand. A pair
source-destination within a partition defines a flow. Each flow consists of multi-
ple messages of size 20 KB (kilobytes), limited by the flow duration of 3 sec. We
store the number of bytes received by the destination nodes, accumulating those per
partition on each epoch to derive the data points of partition’s throughput capacity
(received bytes over the total communication time on the epoch - a communication
rate).

5. Source nodes choose destinations at random controlled by a partition communica-
tion random variable. The destination is a member of the same partition as the
source node. Many intermediary (forwarding) nodes might be involved in a given
flow.

6. We used a unidirectional data flow TCP app: source sends data to a destination.
The TCP protocol will attempt to consume all available bandwidth. The ns-3 TCP
congestion control model used was TCPNewReno [104].

7. The communication volume and rate are free of routing protocol overhead (end-to-
end). We used the ns-3’s implementation of the routing protocol OLSR [47] and
its standard hop-count routing metric.

Following we provide a formal description for the communication traffic.
TT is the total communication rate in a mesh network (one partition). TN is the net

rate: the end-to-end communication rate free of routing and forwarding overhead. TN is
the metric we used on the determination of a mesh network throughput capacity. The
forwarding overhead OF and routing overhead OR are extra traffic carried on the network
necessary to implement the end-to-end traffic.

Let R be a routing protocol which sends control messages of average length r bytes,
∣R∣ be the total number of messages in a given interval t, and A be the application
used for peer-to-peer communication between a source node ns and a destination node
nd. As {ns, nd} are not necessarily neighbors, a multi-hop communication on path P =

{ns, f1, ..., f∣P ∣−2, nd} is implemented by the forwarding routers f , comprising the set
F = [P] \ {nc, ns}. Let L = {1, ..., ∣L∣} be the set of all communication flows of the
application A over a given time interval t. Let fi,u represent the forwarding node u in the
path of a flow i ∈ L. Finally, the function ω() returns the data received by a node.

We now define TT based on the application traffic transported by all nodes TA and

52

the routing overhead OR:

TA =

∣L∣

∑
i=1

[ω(nsi
) +

∣F ∣

∑
u=1

ω(fi,u) + ω(ndi
)]

OR = ∣R∣ × r

TT =
TA +OR

t

We define the net traffic TN as the source-destination data reception of flows. Given
the use of a unidirectional app, traffic reception concentrates on the destination nodes:

ω(nsi
)≪ ω(ndi

)

Therefore:

TN =
∑∣L∣
i=1[ω(nsi

) + ω(ndi
)]

t
≈

∑∣L∣
i=1[ω(ndi

)]
t

It follows that the forwarding overhead OF is:

OF =

∣L∣

∑
i=1

∣F ∣

∑
u=1

ω(fi,u)

The following list describes settings of the wireless subsystem.
8. Nodes use the IEEE 802.11a wireless standard, which supports transmission rates

from 6 to 54 Mbps. We use the well known ns-3 simulator [73] to model the wireless
stack of mesh nodes. In these experiments, we also implemented the communica-
tion applications inside ns-3. Therefore, experiments do not suffer from poor time
synchronization due to the simultaneous use of simulated time wireless stacks and
real-time applications.

9. The mesh nodes’ IEEE 802.11a physical layer operates on the 5 GHz band with
a 20 MHz bandwidth. The transmission power is 16 dBm (default). The gain of
the transmission and reception antennas is 1 dBi (also defaults). The CCA (Clear
Channel Assessment1) threshold is −99 dBm. The Energy Detection Threshold2 is
−96 dBm. The last two also default values.

1Identifies the channel as free for transmission.
2Triggers the start of packet reception.

53

10. The link-layer of the mesh nodes operates in the IBSS (Independent Basic Service
Set) mode, supporting the creation of wireless mesh networks through the multi-
point association of nodes at the link-layer.

0 10 20 30 40 50 60 70

WMN Partition Size

0

2

4

6

8

10

12

14

T
h
ro
u
gh

p
u
t
(M

b
p
s)

Smart-d07

Smart-d06

Smart-any

Manual

σ

Raw data on a linear scale (w = 3.3 Mbps)

Figure 4.5: Capacity scaling of theManual and Smart agents. Density 1/1260 nodes/m2.
Three variations of Smart: node degrees 6, 7, and no node degree constraint (any).
Transparent regions represent the standard deviation. Agents enforcing degree control
outperformed the other agents.

4.4.2 Capacity scaling results
This sub-section presents the experimental capacity scaling results achieved by the

baseline agent (Manual) and the Smart agent. For Smart, we provide individual results
for each node degree evaluated: dg = {any, 4, ..., 10}.

Figure 4.5 presents the graph of the capacity inMbps achieved by partitions of a given
size in their number of nodes. For any size, the graph presents the mean capacity (lines)
and the standard deviation (transparent areas). The curves represent scaling results of the
Manual , Smart (no node degree constraint - any), Smart with maximum node degrees 6
and 7.

Our first observation is that the capacity scaling up to the size ten is negative, which is
consistent with previous reporting [105]. However, extending the observation of the scaling
to larger network sizes than previously reported shows that the negative trend changes to
positive. With larger WMN partitions, an increase in spatial diversity takes place, allowing
different data flows to co-exist when they are spatially distant, not competing in the same
collision domain.

The second observation about Figure 4.5 concerns the region of minimum capacity:
RMC. The RMC for the node degree constrained curves occurs early at sizes ≈ 9 − 11.

54

Also, the width of RMC is of 2 − 3. The Manual agent’s curve has RMC centered at
size ≈ 18 with width of ≈ 25− 30, representing a much larger range of sizes with reduced
capacity.

Finally, we explain the format of the capacity scaling curves. The curve starts from a
single collision domain (SCD) at size 2. At this point, all nodes can sense the transmission
of all other, and they share the capacity of the SCD fairly. With the increase in the size
of partitions, phenomena such as the hidden terminal, the exposed terminal, flow in the
middle occur [106, 107], causing packet corruption and/or excessive contention which
decrease the capacity of the partitions. At the end of the minimum capacity range, the
increasing spatial area of the partitions allows for increased concurrency of flows, yielding
a recovery to the throughput capacity.

0 10 20 30 40 50 60 70

WMN Partition Size

0

2

4

6

8

10

12

14

T
h
ro
u
gh

p
u
t
(M

b
p
s)

Smart-d07: β = +0.21

Smart-d06: β = +0.21

Smart-d10: β = +0.21

Smart-d08: β = +0.21

Smart-d05: β = +0.20

Smart-d04: β = +0.20

Smart-d09: β = +0.19

Smart-any: β = +0.16

Manual: β = +0.09

Arbit. ref.: β = +0.50

Rand. ref. : β = +0.42

Linear ref.: β = +1.00

Curve fit on a linear scale (w = 3.3 Mbps)

Figure 4.6: Curve fit of the raw capacity scaling curves to the scaling model of Equation
4.3. Density 1/1260 nodes/m2. The legend presents the β scaling factor for the respective
agent configurations. Agents enforcing degree control outperform the other agents.

Figure 4.6 presents graphs of curves derived from fitting the raw capacity scaling data
to a generic scaling model (Equation 4.3). More formally, let C(n) be the throughput
capacity as a function of the WMN partition size n in the number of nodes, w a constant
representing the mesh nodes’ wireless interface link throughput, and β the scaling factor.

C(n) = w ⋅ nβ (4.3)

We apply the algorithm curve_fit which performs a non-linear least squares method
to fit a non-linear function to data [108]. The generic scaling model of Equation 4.3 is
applied in other scaling studies such as [6, 7, 15, 16].

Figure 4.6 shows that all node degree constrained versions of Smart presented a better

55

scaling factor β than the two non-constrained models Smart-any and Manual . Figure 4.6
also provides a perspective of the arbitrary and random asymptotic references from [23]
(dashed lines) under the w coefficient and size range of this study, allowing an external
comparison to those analytical studies.

We refrain from drawing any internal comparisons between the degree constrained
agent models given that the generic scaling model (Equation 4.3) is not a good represen-
tation of our data.

C(n) = a ⋅ n4
+ b ⋅ n

3
+ c ⋅ n

2
+ d ⋅ n + e (4.4)

We return to the concept of the RMC to internally compare the scaling curves, relying
on a fitting model based on a polynomial function of order four (Equation 4.4). Figure
4.7 presents the fitted curves using the polynomial model, showing a closer representation
of the capacity scaling data. Assume the width of the RMC as the difference of the two
first real roots r1, r2 of the fitted polynomials (fitted curves of Figure 4.7 are offset by
−5.0 Mbps to produce real roots). Also, assume the scaling factor γ = 100/(r2 − r1),
which turns larger values into better scaling results (similarly to the metric observed on
the exponential model).

0 10 20 30 40 50 60 70

WMN Partition Size

0

2

4

6

8

10

12

14

T
h
ro
u
gh

p
u
t
(M

b
p
s)

Smart-d05: γ = +11.72

Smart-d04: γ = +10.57

Smart-d06: γ = +9.88

Smart-d07: γ = +9.46

Smart-d08: γ = +8.22

Smart-d10: γ = +7.85

Smart-d09: γ = +7.68

Smart-any: γ = +4.65

Manual: γ = +4.36

Arbit. ref.: β = +0.50

Rand. ref. : β = +0.42

Linear ref.: β = +1.00

Curve fit on a linear scale (w = 3.3 Mbps)

Figure 4.7: Capacity scaling curves fitted by a polynomial function of order four. Agents
enforcing degree control have reduces RMC. Density 1/1260 nodes/m2.

The Smart models with maximum node degree around 5 produced the best γ. Extend-
ing this analysis to other node placement densities (Figure 4.8), we find that the models
with degree constraints closer to the range 5 − 6 more frequently produced the best γ.
This result is consistent with previous studies on the ideal node degree in a multi-hop net-
work [26], [27]. Additionally, the non-constrained version of Smart and the Manual agent
(for which a node degree constraint is not an option) present the weakest γ, supporting

56

the application of the degree control in the self-organizing models we proposed.

Smart-d04
Smart-d05

Smart-d06
Smart-d07

Smart-d08
Smart-d09

Smart-d10
Smart-any

Manual 400
 600

 800
 1000

 1200
 1400

 1600

 2 3
 4 5
 6 7
 8 9
 10 11 12

Agent model

Node
 pla

ceme
nt d

ensi
ty i

nver
se (

m2 /n
ode)

Ga
mm

a
sc

al
in

g
fa

ct
or

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Figure 4.8: The robustness of the agents enforcing maximum degree control under differ-
ent node placement densities. Scaling model: fourth order polynomial (Equation 4.4).

57

Chapter 5 Self-Organizing WMN nodes

This chapter describes the idea, design, and evaluation of self-organizing agents for
WMNs. Previous research explored existing topological properties of the network to in-
crease WMN throughput capacity [20]. Our goal is to explicitly enforce a set of invariants
to the WMN topology by its dynamic formation at the link and physical layers using auto-
nomic agents. On this agent design, we expect no preliminary network planning or manual
configuration, characterizing a self-configuring network solution [12]. Under the addition
and removal of nodes, our agent-based network formation solution must guarantee a set of
properties critical to the applicability of the SDN paradigm into WMNs: a self-organizing
design [12].

A critical question in dynamic and autonomic network formation is the convergence
to stable configurations and how the parameters of the self-configuring, self-organizing
agents affect such convergence likelihood. To evaluate the agents’ ability to converge, they
operate in concurrency mode, reading one frequency at a time on their Read Environment
phase described in Section 4.1.

In this chapter, we motivate the reasoning behind the design of our self-organizing
WMN agent and why they can support the application of SDN at large scale WMNs.
Also, we present their detailed design, discuss how they gather information, we present
conditions for convergence, and, finally, we present experimental results about the con-
vergence, effort to convergence, and resulting topology structure. I published part of the
content of this chapter in [109].

5.1 Design of Self-Organizing WMN nodes
Our self-organizing agents evolve a large node placement (a set of geographical posi-

tions) of wireless mesh nodes into partitions holding the properties of bounded diameter
and node degree. The network formation is the result of a distributed algorithm executed
by the agents in the WMN nodes (software components) which independently make deci-
sions that collectively lead to the final topology. Such decisions are based on the agent’s
design that enforces its safety and liveness properties. The organization occurs both at
the physical and link layers. The physical isolation allows using orthogonal frequencies on
different partitions. At the link-layer, the use of different network IDs (such as the BSSID
- Basic Service Set ID) creates logical isolation to provide robustness to the case of equal

58

frequency in neighboring partitions.
We call this design the Smart agent. The WMN partition diameter property bounds the

communication latency, a critical requirement for intra-group SDN-based network control
planes. The autonomic aspect is fundamental to this solution, considering that the graph
partitioning is an NP-Hard problem [66] or NP-Complete under specific assumptions [67].

The second safety property of Smart is the control of the mesh node connectivity
degree. In the SDN paradigm, this design bounds the number of events per new data
flow handled by an SDN controller of partitions. Transmissions of a node ni in a WMN
are received by all its neighbors given an inherently broadcast nature of wireless commu-
nication. In a path of distance h for an average WMN node degree dg, ev ≈ dg ⋅h events
arrive at the controller for every new flow initiated given the on-demand control nature of
SDN. Therefore, the bounded node degree limits the per-flow workload regarding network
control events.

Moreover, the combined bounding on diameter and node degree limits the number
of nodes per partition (the Degree/Diameter Graph problem [14]) regardless of any un-
derlying node placement density to support the precise workload control in WMN SDN
controllers. Finally, our self-organization design also solves the question of electing a mesh
node to act as an SDN controller. Similarly to the leader election concept in distributed
consensus protocols [110], partitions evolve from a unique origin node, a clear candidate
to act as the partition controller.

5.2 Autonomic behavior of agents

5.2.1 Smart node agent design
The Smart agent joins the largest nearby partition for which it finds the shortest path

of hop-distance at most h to the partition origin. It is trivial to verify that the diameter
of the partition is, at most, d = 2 × h: the origin node is a member of any shortest path
from border to the origin, and the diameter unites two shortest paths from origin to the
border.

The is origin attribute is true for an instance of Smart which creates a partition, and
false otherwise.

Optionally, Smart nodes assume a node degree dg upper bound constraint to decide
on their partition membership. If no membership option is valid, Smart nodes create a
new partition. They continually review their membership decision following the generic
agent cycle described in Section 5.1.

Smart attempts to change its partition in every new cycle to the largest valid neigh-

59

boring partition which is, at least, sp percent larger (a threshold) than the agent’s current
partition.

A valid neighboring partition has i) at least one node at comm. reach of the deciding
node, ii) all nodes not violating safety properties, iii) all nodes will not violate safety
properties after the addition of the deciding node.

More formally, let m be a Smart agent node reviewing its properties. Let P be the
set of all partitions while Pm ⊆ P is the set of all nearby partitions to m; let k ∈ Pm be
a nearby partition, ok is the origin node of partition k. Let kc be the current partition of
m if it is already connected, and kc ∈ Pm.

Let Fdistance_sp(i, j) be a function that returns the shortest-path distance between
two nodes. Let FDT → Pm be a function that eliminates nearby partitions k for which
Fdistance_sp(m, ok) > h,∀k ∈ Pm.

Let Fdegree(i) be a function that returns the degree of a node i; let FDG → Pm be a
function that removes partitions k ∈ Pm if there exists any node i ∈ k such that i will
be/is a neighbor to m and Fdegree(i) ≥ dg,∀i ∈ k,∀k ∈ Pm.

Let Fneighbors(k, i) be a function that returns the number of future neighbors of a
node i if it joins a neighboring partition k ∈ Pm; let FNEIGH → Pm be a function that
removes partitions k ∈ Pm if Fneighbors(k,m) > dg,∀k ∈ Pm.

More formally, let Fsize(k) be a function that returns the size in number of nodes of
a partition k, let sm be the size of the current partition kc of the agent m, let FES → Pm

be a function that i) eliminates partitions k ∈ Pm for which Fsize(k) < (1 + sp) × sm,
and ii) sorts Pm by Fsize(k),∀k ∈ Pm into the ordered list P

′

m.
If P

′

m ≠ ∅, the first item P
′

m[0] = kb is the best partition membership option regarding
size. If P

′

m = ∅ and kc ∈ Pm (current partition kc checked as valid regarding safety
properties), we add back kc into P

′

m as an option (stay on current partition).
On its second phase of the generic agent cycle, Smart executes: FDT → Pm, FDG →

Pm, FNEIGH → Pm, and finally P
′

m = FES → Pm.
Let AS be the decision of Smart as a set of actions:

AS =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

If P
′

m = ∅ ∶ {create_partition}
Else if P

′

m = {kc} ∶ ∅ (a null action set)
Otherwise ∶ {leave_partition(kc),

join_partition(kb)}

(5.1)

We evaluated the operation of versions of Smart holding different values for the safety
property maximum node degree: 5, 10, and no degree constraint.

60

5.3 Agent information
Agents base their decisions on local information (internal and neighbors), independent

of network connectivity. They read the environment (wireless scan) at the link-layer,
which also include physical layer attributes (e.g., operating frequency). If connected to a
network, nodes can obtain attributes from their routing layer (e.g., partition size in nodes
derived from the node’s routing table, or an internal state of an SDN controller propagated
to its managed SDN nodes). Nodes do not rely on synchronous communication to each
other at the time of decision making (e.g., a network layer send-receive operation) neither
information forwarding (such as in a distributed protocol). Such a design is robust to
connectivity failures, supporting self-organization in the absence of any initial input. It
resembles a form of autonomic bootstrapping similar to the concept of self-stabilization
[12].

Nodes share (broadcast) their local properties at frequent intervals as part of the
wireless link-layer control protocol; nodes read the environment (receive broadcasts) also
frequently. The broadcast interval b is much smaller than the maximum observation
interval: b≪ o, and o = b×k (k an integer constant that supports observing the number
of frequencies c in use: k ≥ c). Therefore, an observation action captures complete
shared information from neighbors with high probability. In the WiFi standard, the default
broadcast period b is 0.1 sec for the link-layer control protocol (beacon interval) [111].
Our experiments have epochs (the generic agent cycle) of e = 90 sec to accommodate
a) observation and decision making of agents integrated to the b) synchronous network
communication that determines the capacity of partitions. Precisely, a) takes place in the
initial 10% of the epoch while in the remaining 90% the agent is idle, moment reserved
for b).

Wireless standards define management packets that share internal network attributes
such as The Information Elements field on a set of management packets of the IEEE
802.11 standards [111] exemplify a data structure for attribute sharing in a real execution
setting. Through the scan of multiple frequencies, a node can listen to management
messages of other wireless nodes (on any nearby partition) to collect needed information.

In this work, the autonomic agents rely on a simulated agent platform (Section 3),
using the module ASim to obtain their information. Section 5.4 presents a detailed analysis
of the convergence of Smart under concurrent operation supported by ASim.

61

5.4 Convergence of the Smart agent
In this section, we analyze conditions for the consensus to a stable partition mem-

bership solution given the autonomic properties of the Smart agent. Convergence is an
essential outcome of the network organization; a non-converging solution stresses the net-
work control plane on routing information update in the distributed routing schemes or on
managing a large number of network control events on a SDN controller. First, we com-
ment on the behaviors of Smart and how they impact convergence. Next, we introduce
two optimization alternatives. Finally, we derive an analytical expression of divergence
indication PD given the agent properties, the agent operating cycle, node placement den-
sity, and wireless communication reach. The wireless reach, in turn, is the result of the
other parameters in the wireless system. PD holds a correlation with the convergence
time and the effort to convergence; therefore, it allows comparing the impact of different
choices of configuration sets. PD is not a probabilistic indication of divergence.

5.4.1 Triggers for slow convergence
We recall that the liveness property motivates a node to review its current settings in

favor of improved ones when comparing to the current option. Safety properties are hard
limits not to be violated, restricting the set of possible partition membership options.

Each autonomic property will lead to violations in different conditions regarding joining
or leaving a partition. The versions of Smart comprise different combinations of safety
and liveness properties, thus leading to different expectations regarding their impact to a
stable partitioning.

Solving a violation in the agent’s current partition membership requires leaving the
current partition in favor of another (perceivably valid) option. In attempting to maintain
its liveness by always choosing its best option, a node can change its partition membership,
also implying a sequence of leave, join partitions.

When leaving a partition, a node can lead other nodes to violations. The lemma that
follows describes these violations.

Lemma 5.1 (Leaving partitions). The action of leaving partitions can cause safety vio-
lations of the diameter bound property.

Proof. Assume a partition P with its origin node oP ∈ P . We define disconnected nodes
to a partition P as nodes in any segment Si of P so that oP ∉ Si (not in the segment
of the origin node). A node ni ∈ P leaving its partition can create segments in P thus
disconnecting nodes nj ∈ P if nj ∈ Si and oP ∉ Si. A disconnected node is in a safety

62

violation condition given its infinite distance to the origin node.
Moreover, ni can induce increased distance to the origin node oP ∈ P due to the

elimination of the shortest path of a node nj ∈ P to the origin. If the distance of nj to
the origin goes above the limit h, the node nj is in safety violation.

When joining partitions, the concurrent execution of the agents’ read + evaluate +
act (REA) phases could lead to decisions based on outdated information which could lead
to safety property violations. We analyze Smart’s two safety properties, partition diameter
bound, and node degree bound regarding the join event in the two lemmas that follow.

Lemma 5.2 (Addition of nodes on the diameter property). The concurrent addition of
nodes will not induce violations of the diameter bound property.

Proof. Assume the concurrent addition of two new nodes n1, n2 to a partition P . The
concurrent REA does not change the condition that n1, n2 used, say, the existence of a
node n0 ∈ P with distance to the partition origin at most h − 1. Therefore, although
both n1 and n2 were not aware of each other as future neighbors when they made their
join decision, they end up with a valid distance of h based on their connectivity to n0.

Lemma 5.3 (Addition of nodes on the node degree property). The concurrent addition
of nodes can induce violations of the maximum degree bound property.

Proof. Assume a partition P and the existence of a node n0 ∈ P with degree dg − 1
(dg ∶ the maximum node degree bound). If the nodes n1 ∉ P, n2 ∉ P concurrently
join the partition P using an outdated perception of n0’s degree below the limit, they
unintentionally induce a degree dg + 1 onto n0, causing a safety violation.

In summary, the version Smart-any of the agent: 1) only induces a violation of the
maximum distance to origin property when leaving a partition to maintain its liveness or
to solve a violation induced to it by other nodes that left its partition.

The version Smart-dg can induce violations of the maximum distance to origin property
1) when leaving a partition 1a) to maintain its liveness or 1b) to solve a safety violation.
Also, Smart-dg can induce violations of the maximum node degree property 2) when
joining a partition due to outdated information given concurrent REA.

Finally, the following theorem illustrates a divergence scenario by Smart-dg .

Theorem 5.1 (Smart-dg divergence). Smart-dg can diverge to obtain a stable partition-
ing.

63

Proof. Assume two nearby nodes n1, n2 that both can join partitions Pi, Pj. Also, assume
the interval l comprising the REA phases of the generic agent cycle. If, say, n2 starts
reading the environment after n1, there exists the chance that n2’s evaluation will not
reflect the effects of n1’s action into the environment. As a consequence, n1 and n2 could
decide to join the same partition, say, Pi, and cause a violation of the maximum node
degree safety property. This is the violation described in the Lemma 5.3. If we assume
no change to the timing of the agents’ cycles, the same concurrent REA effect could
occur later and lead both to decide on joining the other partition, say, Pj. Again, it could
lead to a safety property violation of the Lemma 5.3. Therefore, it is possible that n1,
n2 enter a continued change of partition memberships, characterizing a divergence to a
stable partitioning.

5.4.2 Optimizations to improve convergence
The key challenge to reduce convergence time is letting the agents achieve an ordering

of execution of their REA such that it minimizes the impact of concurrency on corrupting
the environment information.

A first solution for achieving such a minimal corruption ordering is the randomization
of the agent execution on the interval l of the agent cycle after detecting a safety prop-
erty violation. We named it RAND. Once detecting itself in an invalid state, the agent
introduces a random delay on the start of its next REA, attempting to induce a separation
to the REA of other nearby agents. Other problems related to concurrent operation also
applied randomized delays such as accelerating the convergence of the leader election on
the Raft consensus protocol [110] and providing fairness to the channel access mechanism
of the DCF (distributed coordination function) used in WiFi [111].

A second optimization for improving convergence consists in defining an arbitrary
ordering for solving violations amongst nodes of a partition. However, distributed agents
agreeing on a unique sequence is a complex problem [13, 70, 110, 112–115]. We apply
a relaxed ordering based on the distance of nodes from the partition origin: nodes closer
to the origin wait for their neighbors which are away from the origin and also in violation.
This simple design creates a partial ordering that resembles prioritizing nodes closer to
the border of partitions for violation solution. This optimization is named PORD.

5.4.3 Modeling divergence
Here we model a divergence indication for the case of agents applying no optimizations

for violation solution. We split the membership divergence scenario of Smart-dg in three
conditions: i) the proximity of nodes letting them to interfere on each other’s environment,

64

ii) the probability of some concurrency level on nodes’ REA phases (PC), iii) the probability
of impact given the concurrency level (PI). While i) is a function of node density and
probability distribution for nodes’ positions; the other two conditions are functions of the
timing parameters of the generic agent cycle. First, we delve into conditions ii), iii) to
derive probability expressions based on the parameters of the generic agent cycle. Later,
we combine i) to derive the divergence indicator PD.

As described in Section 5.3, let b be the agent’s broadcast interval, c the number
of frequencies to observe, k ≥ c a constant that allows reading all frequencies, and the
combined REA interval l = b× (k + 1), assuming the duration of evaluate + act as b for
simplicity. Finally, e the duration of the total agent cycle Y = {b1, b2, ..., bd}, e ≥ l, and
d = e/b = ∣Y ∣ the number of broadcast intervals d in the epoch e.

We model PI as a linear function of the level of concurrency of two agents, assuming
that all frequencies are equally likely used by any given partition. Therefore, the largest
the concurrency level, the higher the likelihood that the given partition frequency will be
read by two agents before an action, inducing corrupt environment information. Let i be
the number of concurrent broadcast intervals b of two nodes:

PI =
i ⋅ b
l
=

i ⋅ b

b ⋅ (k + 1) =
i

(k + 1) (5.2)

Assuming that the starting times of the agents’ cycles are independent, the probability
of an agent starting its cycle at any interval b is b/e. Therefore, the probability of
concurrency PC between any two nodes n1, n2 is:

PC = (be)
2

(5.3)

Combining the probabilities of concurrency PC and impact PI for any starting interval
b ∈ Y :

PC ⋅ PI , ∀b ∈ Y = PCI =
e

b
⋅ (be)

2

⋅
k+1

∑
j=1

j

k + 1 (5.4)

PCI = (be) ⋅
k+1

∑
j=1

j

k + 1 (5.5)

Replacing the summation in Equation 5.5 by the expression for an arithmetic series:

PCI = (be) ⋅
k + 2

2 (5.6)

Finally, we combine parameters of the node placement density and wireless range

65

to derive the divergence indicator PD. We recall that a divergence scenario requires at
least one node continually changing decisions over time. For that, a node ni needs to
be affected by, at least, concurrent decisions of a neighboring node, or by concurrent
decisions of neighbors of its neighbors. The former directly affects attributes of the node
ni while the latter can induce changes to neighbors (neigh(ni)) that are observed by
ni. Therefore, nodes in an area A = f(2r) of a reference node ni can directly induce
safety property violations. Given our node placement density ND, the expected value En
of nodes in a circular area A is En = ND ⋅ A that we express below:

En = π(2r)2
⋅ND = 4πr2

⋅ND (5.7)

Combining Equations 5.6 and 5.7 derives the divergence indicator PD as a function
of the parameters in the agent’s cycle, the density of nodes, and the wireless connectivity
range r:

PD = PCI ⋅ (En − 1) = (be) ⋅
k + 2

2 ⋅ (4πr2
⋅ND − 1) (5.8)

PD = (be) ⋅
k + 2

2 ⋅ (4πr2
⋅ND − 1) (5.9)

From Equation 5.9, reducing the indication PD implies a) decreasing b, k; b) decreas-
ing the number of nodes involved in En; or c) increasing the epoch e. Any of these
alternatives create undesired collateral effects; however, the optimizations described in
sub-section 5.4.2 achieves b) given its ordering approach without enforcing restrictions
in the communication range r or node density ND. Furthermore, the increase of e has
diminishing returns, given its inverse relation to PD. We comment on the validity of
Equation 5.9 when evaluating experimental results in Section 5.6.2.

5.5 Visual outcome of Self-Organizing agents
Figure 5.1 represents the maximum underlying connectivity if all nodes operate on

the same frequency in the physical layer, the same logical network (SSID, BSSID) at the
link-layer, using their nominal transmit power. Therefore, no additional connectivity can
exist. Node placement based on the U.S. buildings data set from [98].

More formally: let G(V,E, P) be a graph representing the connectivity topology of a
WMN where V is the set of nodes, E is the set of edges, P the set of positions of the
nodes in V , n is a node such that n ∈ V , fn, tn are frequency and network id of n; E is
maximal if ∀i, j ∈ V, fi = fj, ti = tj.

66

−9.0272 −9.0270 −9.0268 −9.0266 −9.0264 −9.0262 −9.0260

Distance from Greenwich (meters) ×106

3.7696

3.7698

3.7700

3.7702

3.7704

3.7706

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to
r
(m

e
te
rs
)

×106

Figure 5.1: Underlying maximum possible connectivity of 1000 nodes on a ≈ 1.44 Km2

region in Chatham county, GA (nearby Savannah, GA). Shows the maximum set of neigh-
boring options (or a single partition solution). Wireless standard IEEE 802.11a. Density
of 1/1600 node/m2.

The choices of the self-organizing agent on the WMN nodes define the partitioned
WMN topology (Figure 5.2). The same node placement is the basis of the two topolo-
gies. Partitions in Figure 5.2 are degree/diameter constrained. More formally: let
G5.1(V5.1, E5.1, P5.1), G5.2(V5.2, E5.2, P5.2) be graphs representing the topologies of Fig-
ures 5.1, 5.2, respectively; V5.1 = V5.2, P5.1 = P5.2, E5.1 ⊇ E5.2.

67

−9.0272 −9.0270 −9.0268 −9.0266 −9.0264 −9.0262 −9.0260

Distance from Greenwich (meters) ×106

3.7696

3.7698

3.7700

3.7702

3.7704

3.7706

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to
r
(m

e
te
rs
)

×106

Figure 5.2: Self-organized WMN topology partitioned by the Smart agent, producing
overlapping partitions, made evident by the partitions’ convex-hull. Same wireless standard
and node placement of Figure 5.1. Max. node degree 5, max. partition diameter 6.

5.6 Results
This section presents the experimentation settings, and results of agents convergence.

Results derive from experiments conducted using the experimentation platform described
in Chapter 3.

5.6.1 Experimentation settings
The following list describes node placements and settings of the wireless subsystem.
1. Nodes have randomized positions controlled by a node placement random variable

68

(uniformly random). We used a common set of 30 different seeds to all agent
models, creating 30 different node placements.

2. We control the average node placement density over the experimentation area as
described in Section 5.6.2.

3. Nodes use the IEEE 802.11a wireless standard. We use the well known ns-3 simulator
[73] to model the wireless stack of mesh nodes.

4. The mesh nodes’ IEEE 802.11a physical layer (5 GHz band) with a 20 MHz band-
width. The tx power is 16 dBm (default). The gain of the tx/rx antennas is 1 dBi
(also defaults). The CCA (Clear Channel Assessment1) threshold is −99 dBm. The
Energy Detection Threshold2 is −96 dBm. The last two also default values.

5. The link-layer of the mesh nodes uses the IBSS (Independent Basic Service Set)
mode, creating WMNs through multi-point association.

5.6.2 Experiments evaluating convergence

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {}

Epochs to Convergence

A
g
en
t-
D
en

si
ty

p
ai
rs

Figure 5.3: Convergence without optimizations for small epochs (e = 9s): the slowest
conv. of up to 16 epochs, and 30 for outlier cases (diverged).

We simulated the convergence of Smart enabling REA concurrency, a real scenario in
which agents can decide based on outdated information.

For the results in this section, assume b = 0.1, k = 8, r = 100 (IEEE 802.11a). The
plots show results for 12 agent-density pairs of Smart which are a combination of one de-
gree constraint in dg = {any, 10, 5} with one node density inverse in {1600, 1200, 800, 400}
m

2/nodes. Each agent-density result combines experiments using 30 different node place-
ments (NP), and each NP with a total of 400 nodes. Each experiment had a total time
of 30 epochs. At least 90% of nodes are spawned in the first epoch to represent the
extreme case of 90% node churn on the return of a power outage. The sp parameter

1Identifies the channel as free for transmission.
2Triggers the start of packet reception.

69

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {RAND}

Epochs to Convergence

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.4: Convergence with randomization for small epochs (e = 9s): improved conver-
gence up to ≈ 11 epochs.

of the partition size liveness property is 0.2 for the origin node and 0.1 for any other
node. Small values of sp induce the formation of the largest possible partitions given the
limitation imposed by the combination of the diameter and maximum node degree safety
properties. However, small values of sp might impose longer convergence in the number
of epochs. The evaluation of the appropriate ranges of values for sp will be the subject
of future work.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {RAND,PORD}

Epochs to Convergence

A
g
en
t-
D
en

si
ty

p
ai
rs

Figure 5.5: Convergence combining randomization and sequencing (e = 9s): a small
improvement over randomization, up to ≈ 8 epochs except for dg05 on node densities
1/800, 1/400 nodes/m2.

Using Figure 5.3, in which agents apply no optimizations for solving safety violations,
we confirm assumptions of the analytical model for divergence of Section 5.4: a) the
Smart-any agent has much faster convergence; b) increased density of nodes increases
the time to convergence. We add that a more constrained degree (e.g., dg = 5) increases
convergence time. Although the PD expression does not capture the aspect of degree
constraint as a parameter, the intuition of its impact is that a more constrained degree
(smaller dg value) will increase the likelihood of more nodes in violation which explains

70

the increase in the convergence time.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 90s, Opt = {}

Epochs to Convergence

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.6: Convergence without optimizations for a large epoch (e = 90s): better results
than a small epoch and the combined optimizations of Figure 5.5; however, not by a large
margin. Divergence cases found.

When comparing the slow convergence shown on Figure 5.3 to the faster convergence
of Figures 5.4 and 5.5, we verify the importance of optimizations to cope with small
epochs and highly constrained maximum degrees (e.g., dg = 5). Small epochs allow for
faster absolute convergence while the highly constrained degree improves capacity and
reduces the number of control events in an SDN setting (see discussions on Section 5.1).
Moreover, Figure 5.3 presents cases of divergence: the outlier points with convergence
time of 30 epochs did not converge until the end of the experiment.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 90s, Opt = {RAND}

Epochs to Convergence

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.7: Convergence with randomization for a large epoch (e = 90s): a small im-
provement in number of epochs over the setting of large epochs without optimization.

Finally, we confirm the positive impact on convergence (faster convergence in the
number of epochs) of increasing the epoch time. Figures 5.6 and 5.7 present the fastest
convergence in the number of epochs. However, in terms of absolute time they represent
a slower total convergence. For epochs e = 9 sec, assuming an upper bound of Ub = 9
epochs (Figure 5.5), the convergence time is C ≈ 9× 9 = 81 sec. For epochs e = 90 sec,

71

an upper bound of Ub = 6 epochs (Figure 5.7) renders a convergence time of C ≈ 90×6 =
540 sec.

Furthermore, we verify a tendency of diminishing returns on the increment of the
epoch length for the 10x experimented; this effect is captured in PD when analyzing it as
a function of the epoch: PD(e) = 1/e.

5.6.3 Effort to convergence
Figures 5.8, 5.9, 5.10 present the number of node partition membership changes during

the convergence process. Figure 5.10 shows one additional benefit of the PORD opti-
mization: a significant reduction on the number of node partition membership changes.
This reduction relieves the stress on the adaptations of upper layers (layers 2-3) to the
topological changes induced by the mesh node agents.

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {}

Count of Node Moves

A
ge
n
t-
D
en
si
ty

p
ai
rs

Figure 5.8: Total of move events when a node changes partition memberships (e = 9s).
No optimizations.

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {RAND}

Count of Node Moves

A
ge
n
t-
D
en
si
ty

p
ai
rs

Figure 5.9: Total of move events when a node changes partition memberships (e = 9s).
Optimization RAND.

Figures 5.11, 5.12, 5.13 present the number of nodes detecting safety violations during
the process to convergence. Figure 5.13 shows a significant reduction of the number of

72

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {RAND,PORD}

Count of Node Moves

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.10: Total of move events when a node changes partition memberships (e =
9s). Optimizations RAND,PORD. A significant reduction on the number of node
movements due to the partial ordering optimization (PORD).

nodes detecting safety violations, indicating a smoother evolution to a stable partition set.
Again, a contribution from PORD.

0 200 400 600 800 1,000 1,200

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {}

Count of Safety Violations

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.11: Total of safety violation events when a node identifies itself in an invalid
state regarding its autonomic properties (e = 9s). No optimizations.

0 200 400 600 800 1,000 1,200

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {RAND}

Count of Safety Violations

A
ge
n
t-
D
en

si
ty

p
a
ir
s

Figure 5.12: Total of safety violation events when a node identifies itself in an invalid
state regarding its autonomic properties (e = 9s). Optimization RAND.

73

0 200 400 600 800 1,000 1,200

dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
any-d0400
any-d0800
any-d1200
any-d1600 e = 9s, Opt = {RAND,PORD}

Count of Safety Violations

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.13: Total of safety violation events when a node identifies itself in an invalid
state regarding its autonomic properties (e = 9s). Optimization RAND,PORD.

Figures 5.14, 5.15, 5.16 provide insights on the form of violations occurred while
evolving to a stable partition set. Each figure represents the maximum value observed for
the safety property over all 30 experiments (each a different node placement) conducted
for the given configuration of: agent degree, node density.

Figures 5.14, 5.15 present the evolution of the maximum node degree in the experiment
set over time (epochs) while Figures 5.16, 5.17 present the evolution of the maximum
partition diameter in the experiment set over time (epochs). The initially erratic control
of the safety properties later converged to the defined objectives.

0 5 10 15 20 25 30
0

10

20

e = 9s, Opt = {RAND}, dens = 1/400, dg = 10

Epoch Number

M
ax

N
o
d
e
D
eg
re
e

Figure 5.14: The maximum node degree of a mesh node for the agent smart dg10 on
density 1/400 nodes/m2 (e = 9s). Optimization RAND. An ineffective control of the
maximum node degree that converges to the objective of a maximum node degree of 10.

5.6.4 Resulting WMN partitioning structure
This section analyzes the resulting partitioned WMN topology regarding the size of

the partitions, recalling that the combined node degree and partition diameter constraints

74

0 5 10 15 20 25 30
0

5

10

15

e = 9s, Opt = {RAND}, dens = 1/1600, dg = 10

Epoch Number

M
ax

N
o
d
e
D
eg
re
e

Figure 5.15: The maximum node degree of a mesh node for the agent smart dg10 on
density 1/1600 nodes/m2 (e = 9s). Optimization RAND. Again, ineffective control of
the maximum node degree initially that later converges to the objective of a maximum
node degree of 10. A reduction on the error of the maximum degree when assuming a
reduced density.

0 5 10 15 20 25 30
0

5

10

e = 9s, Opt = {RAND}, dens = 1/400, dg = 10

Epoch Number

M
ax

P
ar
ti
ti
on

D
ia
m
et
er

Figure 5.16: The maximum WMN partition diameter for the agent smart dg10 on density
1/400 nodes/m2 (e = 9s). Optimization RAND. An initially ineffective control of the
partition diameter that converges to the objective of a maximum diameter of 6. The
controlling error is higher for this higher density of 1/400 nodes/m2.

result in a bounded size for the partitions: the Degree/Diameter Graph problem [14].
The resulting partitioning structure is a relevant outcome regarding recovering the

global connectivity of the WMN, a function performed by self-healing agents in the mesh
nodes. A highly fragmented partition set with mostly small partitions (below the maximum
size possible given the degree/diameter constraint) implies the need of a larger number
of nodes with a second wireless interface to interconnect partitions. Moreover, a large
number of partitions when compared to the available set of frequencies might render
frequency diversity inefficient due to the reuse of frequencies by nearby WMN partitions.

75

0 5 10 15 20 25 30
0

2

4

6

8

e = 9s, Opt = {RAND}, dens = 1/1600, dg = 10

Epoch Number

M
a
x
P
a
rt
it
io
n
D
ia
m
et
er

Figure 5.17: The maximum node degree of a mesh node for the agent smart dg10 on
density 1/1600 nodes/m2 (e = 9s). Optimization RAND. Again, ineffective control
of the partition diameter initially that later converges to the objective of a maximum
diameter of 6.

0 50 100 150 200 250 300 350 400

any-d0400
any-d0800
any-d1200
any-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600

e = 9s, Opt = {}

Partition Size

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.18: Typical WMN partition sizes. No optimization.

Therefore, the ideal outcome a partition set with the largest possible size to minimize the
requirement of mesh nodes with a second wireless interface for inter-partition connectivity
and efficient frequency diversity.

Figures 5.18,5.19, and 5.20 confirm the bounded sizes as outcomes of the partitioning
determined by Smart-dg . For Smart-any , we verify that the undesirable outcome of a sin-
gle partition containing all 400 nodes is possible for high node densities. Moreover, smaller
degrees induce smaller maximum partition sizes. Furthermore, the different optimizations
applied did not change the outcome regarding partition sizes.

Under the highest node density of 1/400 nodes/m2, we verify the tendency of not
forming the highest possible partitions regarding size, which is an undesired outcome.

Figures 5.21 and 5.22 present the frequency of partition sizes over all 30 experimented
node placements. The bin width for the sizes was 20. Each plot shows results of two

76

0 50 100 150 200 250 300 350 400

any-d0400
any-d0800
any-d1200
any-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600

e = 9s, Opt = {RAND}

Partition Size

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.19: Typical WMN partition sizes. Optimization RAND.

0 50 100 150 200 250 300 350 400

any-d0400
any-d0800
any-d1200
any-d1600
dg10-d0400
dg10-d0800
dg10-d1200
dg10-d1600
dg05-d0400
dg05-d0800
dg05-d1200
dg05-d1600

e = 9s, Opt = {RAND,PORD}

Partition Size

A
ge
n
t-
D
en

si
ty

p
ai
rs

Figure 5.20: Typical WMN partition sizes. Optimization RAND,PORD.

versions of Smart-dg (dg05, dg10) and Smart-any . Results confirm that Smart-any can-
not enforce a bounded partition size. We find a non-partitioned topology outcome (node
density of 1/400 nodes/m2, size 400), as previously shown in Figures 5.18, 5.19, and
5.20.

0 20 40 60 80 120 160 200 240 280 320 360 400

0

200

400

600

800 e = 9s, Opt = {RAND,PORD}, density = 1/1600
819

199
95

25 30 23 16 16 11 12 7

Partition Size

F
re
q
u
en

cy
of

P
a
rt
it
io
n
S
iz
e

dg-05
dg-10
dg-any

Figure 5.21: Frequency of WMN partition sizes. Bin width 20. Optimizations
RAND,PORD, density 1/1600 nodes/m2.

77

Comparing the versions of Smart-dg (dg05, dg10), we realize that a more relaxed
degree constraint (e.g., dg = 10) resulted in fewer small partitions. We hypothesize that
this result will facilitate the global WMN connectivity by the self-healing function, given
the existence of fewer partitions.

0 20 40 60 80 120 160 200 240 280 320 360 400

0

200

400

600 e = 9s, Opt = {RAND,PORD}, density = 1/400637

190

16 6 1 2 3 2 4 1 2 1 2 4 2 3 2 3 5 5 3

Partition Size

F
re
q
u
en

cy
of

P
ar
ti
ti
on

S
iz
e

dg-05
dg-10
dg-any

Figure 5.22: Frequency of WMN partition sizes. Bin width 20. Optimizations
RAND,PORD, density 1/400 nodes/m2.

Therefore, there is a trade-off regarding the selection of max. degree for Smart-dg .
A more constrained max. degree (e.g., dg = 5) induces a lower control workload in the
SDN paradigm (less nodes, reduced number of control events per flow). However, the
topology structure with a larger number of small partitions requires a higher number of
nodes with dual wireless interfaces for recovering global connectivity.

78

Chapter 6 Integrated Self-Organizing, Self-
Healing WMN nodes

This chapter presents the design of agents that evolve a large node placement (a set
of geographical positions) of wireless mesh nodes into a topology structure based on a
set of interconnected partitions. The two main invariants of partitions are maintained,
namely the bounding on partition diameter and bounding on the nodes’ wireless interfaces
degrees. The network formation is the result of a distributed algorithm executed by the
agents in the WMN nodes, which independently make decisions that collectively lead to
the final topology. Decisions are based on the agents’ design composed of safety and
liveness properties. The following sections present design principles for integrated self-
organization and self-healing, the detailed design of our agents, and the outcomes of our
experimental evaluations. Part of the content of this chapter was accepted for publication
at NetSoft2020 [116].

6.1 Design principles for the integrated Self-Organizing,
Self-Healing WMN nodes

The network formation occurs both at the physical and link layers. The physical
isolation allows using orthogonal frequencies on different partitions. At the link-layer, the
use of different network IDs (such as the BSSID - Basic Service Set ID) creates logical
isolation to provide robustness to the case of equal frequency in neighboring partitions.

We expect no preliminary network design or manual configuration, characterizing a self-
configuring network solution [12]. Under the addition and removal of nodes, this design
must guarantee a set of properties critical to the applicability of SDN into WMNs: a self-
organizing design [12]. Under broken reachability introduced by the partitioning actions,
self-healing [12] agents must recover the global connectivity. A critical question in dynamic
and autonomic network formation is the convergence to stable topology configurations
and how the parameters of the self-organizing, self-healing agents, also self-configuring in
nature, affect such convergence likelihood while guaranteeing the set of desired properties.

Agents materialize as software processes into mesh nodes, each agent controlling one
wireless interface. It follows that two interfaces are required to run both organizing and
healing functions on a node. However, the recovery of global connectivity demands only

79

a % of the total nodes running healing functions. We evaluate different healing designs,
aiming at maximum connectivity with minimum healing agents.

We repurpose a minimum set of safety properties from Chapter 5 into a reference
design: the Smart-based behavior. The first property is the WMN partition diameter
property, which bounds the communication latency in a partition, a critical requirement for
intra-group SDN-based network control planes. The autonomic aspect is fundamental to
this solution, considering that the balanced graph partitioning is an NP-Hard problem [66]
or NP-Complete under specific assumptions [67].

The second property of Smart-based is the control of the mesh node’s wireless interface
connectivity degree. This property bounds the number of events per new data flow handled
by an SDN controller of partitions in the SDN paradigm. Transmissions of a node ni in a
WMN are received by all its neighbors, given the inherently broadcast nature of wireless
communication. In a path of distance h for an average WMN node’s interface degree dg,
ev ≈ dg ⋅ h events arrive at the controller for every new flow initiated. Therefore, the
bounded interface degree limits the per-flow workload regarding network control events.
Moreover, the degree control enforces density limitation on partitions that limits the
contention and self-interference on WMNs [26, 27].

The combined bounding on diameter and interface degree limits the number of nodes
per partition (the Degree/Diameter Graph problem [14]) regardless of any underlying
node placement density, supporting the precise workload control in WMN SDN controllers.
Finally, the self-organization design also solves the question of electing a mesh node to act
as an SDN controller. Similarly to the leader election in distributed consensus protocols
[110], partitions evolve from a unique origin node, a candidate to act as the partition
controller.

The general operation of the agents involves cycles as described in the Section 4.1. The
commands available to use in phase Act continue to be: agent creates a mesh partition,
agent joins a partition, agent leaves a partition. Also, a possible decision is maintain
membership, implying a null action. We comment on the phase Read the Environment
of the agent operating cycle in the Sections 5.3 and 6.3.

6.2 Integrated autonomic behavior of agents
The following sections present the common behavior of our autonomic agents first to

describe each agent’s specificity later.

80

6.2.1 Smart-based : reference design of agents
The Smart-based reference agent design consists in the enforcement of two safety

properties: the partition diameter bound and maximum node interface degree. Following,
we provide preliminary definitions to define the two properties later formally.

Definition 6.1 (Valid nearby partitions). Valid nearby partitions: a valid neighboring
partition has i) at least one node at communication reach of the deciding node, ii) all
nodes not violating safety properties, iii) all nodes will not violate safety properties after
the addition of the deciding node.

Definition 6.2 (Partition origin nodes). Partition origin nodes: the ‘ is origin’ attribute
is ‘true’ on a Smart-based instance which creates a partition, and ‘false’ otherwise.

Definition 6.3 (Potential neighbor node). Potential neighbor node: a node which will
be a neighbor of a deciding node ‘m’ in a neighbor partition ‘k’.

Definition 6.4 (Partition diameter bound). Autonomic proxy for the partition diameter
bound: to enforce the bound on the partition diameter using local information, a Smart-
based agent enforces a distance to the origin node of a partition.

Therefore, a nearby partition is valid to a Smart-based agent regarding the diameter
bound property if the agent’s hop-distance shortest path is at most h to the partition
origin. It is trivial to verify that the diameter of the partition is, at most, d = 2 × h: the
origin node is a member of any shortest path from border to the origin, and the diameter
unites two shortest paths from origin to the border.

More formally, let m be a Smart-based agent node reviewing its properties. Let P be
the set of all partitions while Pm ⊆ P is the set of all nearby partitions to m; let k ∈ Pm
be a nearby partition, ok is the origin node of partition k. Let kc be m’s current partition
if it is already connected, and kc ∈ Pm.

Let Fdistance_sp(i, j) be a function that returns the shortest-path distance between
two nodes. Let FDT → Pm be a function that eliminates nearby partitions k for which
Fdistance_sp(m, ok) > h,∀k ∈ Pm. In practice, a Smart-based agent applies Fdistance_sp()
using local information by adding one hop to the distance of a potential neighbor on a
different partition (adding 0 if k = kc) and assuming the shortest-path to a partition k
as the minimum distance amongst all potential neighbors in k. The origin node of any k
has h = 0.

Definition 6.5 (Enforcing a node degree bound). Enforcing a node degree bound ‘dg’:
Smart-based agents limit the set of valid nearby partitions in two steps: a) controlling

81

their degree to at most ‘dg’, b) not inducing an invalid degree above ‘dg’ to their poten-
tial/actual neighbors.

More formally, let Fdegree(i) be a function that returns the degree of an wireless
interface managed by an agent i; let FDG → Pm be a function that removes partitions
k ∈ Pm if there exists any agent i ∈ k such that i is in a potential neighbor to m and
Fdegree(i) ≥ dg,∀i ∈ k,∀k ∈ Pm.

Let Fneighbors(k, i) be a function that returns the number of future neighbors of i if
it joins a neighboring partition k ∈ Pm; Finally, let FNEIGH → Pm be a function that
removes partitions k ∈ Pm if Fneighbors(k,m) > dg,∀k ∈ Pm.

6.2.2 SmartOrg : Self-Organizing agent design
The goal of SmartOrg agents is to produce a balanced partitioning, enforcing diameter

and node degree bounds. SmartOrg agents inherit the safety properties of the Smart-based
reference, and use the partition size liveness property to induce a balanced partitioning.

Definition 6.6 (Partition size liveness). Partition size liveness: agents aim at becoming
a member of the largest valid neighboring partition, which is, at least, ‘sp’ percent larger
(a threshold) than the agent’s current partition.

More formally, let Fsize(k) be a function that returns the size in number of nodes
of a partition k, let sm be the size of the current partition kc of the deciding agent m,
let FES → Pm be a function that i) eliminates partitions k ∈ Pm for which Fsize(k) <
(1 + sp) × sm, and ii) sorts Pm by Fsize(k),∀k ∈ Pm into the ordered list P

′

m.
If P

′

m ≠ ∅, the first item P
′

m[0] = kb is the best partition membership option regarding
size. If P

′

m = ∅ and kc ∈ Pm (current partition kc checked as valid regarding safety
properties), we add back kc into P

′

m as an option (stay on current partition).
SmartOrg agents only admit other SmartOrg agents when assessing the state of their

safety properties. Therefore, SmartHeal agents do not induce degree increase or partition
diameter increase in the autonomic functions of SmartOrg . Section 6.4 provides support
for this design decision.

Finally, on the evaluation phase of its agent cycle, SOrg executes its inherited au-
tonomic functions: FDT → Pm, FDG → Pm, FNEIGH → Pm, and its specific function
P

′

m = FES → Pm.

82

Let AS be the decision of SmartOrg as a set of actions:

AS =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

If P
′

m = ∅ ∶ {create_partition}
Else if P

′

m = {kc} ∶ ∅ (a null action set)
Otherwise ∶ {leave_partition(kc),

join_partition(kb)}

(6.1)

6.2.3 SmartHeal : Self-Healing agent design
The goal of SmartHeal agents is to interconnect partitions in order to recover maxi-

mum possible global connectivity while respecting the bounds on partition diameter and
node degree. SmartHeal agents inherit the safety properties of Smart-based reference;
however, we admit different degree bounds dgh as variations for SmartHeal . SmartHeal
agents also admit two different forms of liveness: partition size and signal strength.
Moreover, SmartHeal agents have an additional safety property to induce increased con-
nectivity: different membership of companion SmartOrg agents.

Definition 6.7 (Companion agents). Companion agents’ partitions: the partition set of
agents residing at the same mesh node.

More formally, let C(m) be a function returning the set of current partitions of agents
in the deciding node m. Let FCO → Pm be a function that removes partitions k ∈ Pm if
k ∈ C(m).

Definition 6.8 (Signal strength liveness). Signal strength liveness: agents aim at be-
coming a member of the closest valid neighboring partition by finding partitions with a
potential node showing signal strength ‘st’ percent higher (a threshold) than the signal
of the closest neighbor in the agent’s current partition.

More formally, let ST (k) be a function the returns the maximum signal strength
of all potential neighbors of a partition k, let stm = ST (kc) (m’s current max signal
strength), let FST → Pm be a function that i) eliminates partitions k ∈ Pm for which
ST (k) < (1 + st) × stm, and ii) sorts Pm by ST (k),∀k ∈ Pm into the ordered list P

′

m.
SmartHeal agents only admit SmartOrg agents when accounting their diameter bound

safety property; however, SmartHeal account both other SmartHeal and any SmartOrg
agents on their node degree bound property. Therefore, SmartHeal agents never extend a
partition from another SmartHeal and respect node degree bounds. Section 6.4 provides
support for these design decisions.

83

Finally, on the eval phase of its agent cycle, SmartHeal executes its inherited auto-
nomic functions: FDT → Pm, FDG → Pm, FNEIGH → Pm, and its specific functions
FCO → Pm, P

′

m = FES → Pm or P
′

m = FST → Pm (the active liveness).
Let AS be the decision of SmartHeal as a set of actions:

AS =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

If P
′

m = ∅ ∶ ∅ (a null action set)
Else if P

′

m = {kc} ∶ ∅ (a null action set)
Otherwise ∶ {leave_partition(kc),

join_partition(kb)}

(6.2)

6.3 Agent information
We assume the same principles of Chapter 5 regarding information gathering and

sharing: the collection of local (internal and neighbors) information, sharing based on
broadcasts at a much smaller period then collection for complete information reading
with high probability. Reading information based on wireless scans that do not require
network connectivity or synchronous communication, configuring a mechanism robust
to failures, and highly scalable. Agents share the bounds on their current partition -
SmartOrg interface degree, SmartHeal interface degree, distance to the partition origin
bound - and other dynamic or agent-specific attributes - agent type, distance to the
partition origin, interface degree, partition size. Other data exist as shared attributes of
wireless standards such as link-layer network ID (SSID, BSSID in IEEE 802.11), physical
layer’s signal strength. The per-frequency scanning process provides the wireless frequency
attribute.

Table 6.1 consolidates the information that characterizes the state of an agent, ob-
tained in the phase Read Environment of the agent operational cycle described in Section
4.1. The items flagged in the “SP” column are the system parameters.

The list below provides additional information about the attributes that compose the
state of an agent. Any system parameter (SP) attribute is an initial input configured by
the designer of the autonomic WMN. They are stored and retrieved from non-volatile
memory. The other attributes are volatile.

1. SmartOrg interface degree bound: retrieved from the system parameters by agents
on the origin node, shared by the SmartOrg agent on the origin node to the other
agents in the partition. All agents on the partition re-share the per partition at-
tributes. Defines the maximum number of direct neighbors (graph degree) that the
interface controlled by a SmartOrg agent can have.

84

Agents’ State
SP Attribute Source Type

X SmartOrg interface degree
bound

Set by origin node,
re-shared by agents Per partition

X SmartHeal interface de-
gree bound

Set by origin node,
re-shared by agents Per partition

X Distance to partition origin
bound

Set by origin node,
re-shared by agents Per partition

X SmartHeal liveness Set by origin node,
re-shared by agents Per partition

Partition size in nodes Routing layer,
shared by agents Per partition

Agent type Agent shared at-
tributed Per agent

Agent distance to the par-
tition origin

Agent shared at-
tributed Per agent, dynamic

Agent interface degree Agent shared at-
tributed Per agent, dynamic

Link-layer network ID Wireless standard
attribute Per partition

Signal level strength
(RSSI)

Wireless standard
attribute

Per neighbor, dy-
namic

Wireless frequency (chan-
nel number) Scanning process Per partition

Table 6.1: The state of autonomic agents.

2. SmartHeal interface degree bound: same source and sharing as the SmartOrg inter-
face degree bound (SP), applied to limit the numbers of neighbors of the SmartHeal
agents in the partition.

3. Distance to partition origin bound: same source and sharing as the SmartOrg in-
terface degree bound (SP). Limits the maximum number of hops between an agent
(SmartOrg and SmartHeal) and the agents in the origin node.

4. SmartHeal liveness: same source and sharing as the SmartOrg interface degree
bound (SP). Defines the type of liveness used by the partition: partition size (ps)
or signal strength (ss).

5. Partition size (in the number of nodes in the partition): dynamic information ex-
tracted by the agent from the routing layer, and shared as part of its state. Agent
type: a fixed attribute of the agent and shared as part of its state. Defines the
agent as SmartOrg or SmartHeal .

6. Agent distance to the partition origin: dynamic information describing the number

85

of hops from the agent to the origin node. Attribute shared by the agent as part of
its state.

7. Agent interface degree: the agent’s perception of its number of direct neighbors.
Attribute shared as part of its state.

8. Link-layer network ID: identification of the link-layer mesh network that represents
the partition. Attribute shared by the wireless technology as part of its link-layer
information set (in IEEE 802.11 - WiFi, this is SSID, BSSID).

9. Signal strength: the signal level that a given agent perceives of each of its direct
neighbors. Information extracted from the wireless interface physical layer (wireless
radio system). In IEEE 802.11, this is known as the RSSI. No sharing.

10. Wireless frequency (or channel number): the operational frequency used by the
agent or any of its neighbors. For the neighbors, the scanning process determines
this information. The agent knows its operating frequency inside a partition by
reading information from its physical layer. No sharing.

When reading the environment, agents scan the frequency of their current partition
first to improve the efficiency of the PORD optimization, discussed on Section 6.4.2.

To obtain the experimentation results presented in this chapter, the autonomic agents
rely on a simulated agent platform (Chapter 3), using the module ASim to obtain their
information and operate under concurrent settings. Section 6.4 presents an extensive
analysis of the convergence of the integrated operation of SmartOrg and SmartHeal under
concurrent settings supported by ASim.

6.4 Convergence of the Smart-based agents
Chapter 5 describes conditions that lead agents to safety violation states either when

joining or leaving partitions under concurrent operation. Our integrated design of SOrg
and SHeal agents stem from two common safety properties, which are the same that
based the analysis Chapter 5: bounds on the partition diameter and wireless interface
degree. In Chapter 5, nodes had a single interface, thus the “node degree.” Here we
assume multiple interfaces on nodes, hence the need for a per-interface degree control.
Therefore, the conditions previously described are yet valid here. However, the integrated
operation of agents with distinct objectives brought new challenges to convergence.

In this section, we comment on new divergence scenarios on the integrated operation of
Smart-based agents and the application of optimizations on the timing of the operational
cycle of agents for improved convergence in time and effort.

86

6.4.1 New divergence scenarios
The cases described below represent conditions that occurred in experiments, later

solved and verified experimentally.
The first case stems from the hypothesis that differing degree bounds on Smar-

tOrg (dg) and SmartHeal (dgh) could improve the efficiency of connectivity recovery
by SmartHeal (details on the hypothesis and its evaluation on Section 6.6.3). In doing
so, we found the following divergence case.

Lemma 6.1 (Agents with different interface degree). Agents with different interface
degree bounds can lead to divergence.

Proof. Assume a partition p1 on its dg bound limit. Assume a disconnected SmartHeal
agent sh1 with its degree bound dgh = dg+1. Assume a SmartOrg agent so2 ∈ p1 which
is at the reach of sh1, turning p1 a nearby partition to sh1. Given the degree bounds
of sh1, it bridges to p1, inducing a degree violation in so2. When so2 leaves p1 to solve
its violation, it turns p1 out of reach of sh1, causing sh1 to be in distance violation, and
also leaving p1. Assuming that so2 had p1 as its best membership option, so2 joins p1

again after its degree reduction when sh1 left it. Therefore, so2 joins p1, configuring the
starting condition that will lead to divergence.

To solve the above divergence scenario, SmartOrg agents do not consider SmartHeal
agents to determine valid nearby partitions: they do not extend a partition from SmartHeal
agents, nor assume that SmartHeal agents induce an increase on their degree. There-
fore, SmartHeal becomes a secondary agent type that reacts to the changes induced by
SmartOrg .

Lemma 6.2 (Divergence by signal strength liveness). The signal strength liveness on the
SmartHeal agents can lead to divergence.

Proof. Assume two nearby SmartHeal agents sh1 and sh2, respectively in partitions p1

and p2. sh1 detects p2 as its best liveness given the proximity of sh2 which induces its
highest perceived signal strength. sh1 changes its membership to p2. Concurrently, sh2

evaluates p1 as its best liveness given the proximity of sh1, changing its membership to
p1. These cases represented no violation, the RAND optimization was not activated.
Therefore, the scenario repeats in next epochs.

The specific case described in Lemma 6.2 generalizes to any liveness that uses abruptly
varying information such as the signal strength. The partition size liveness has a smooth

87

variation, not triggering this condition. The chosen solution was to activate RAND any-
time an agent leaves a partition, let it be by a safety violation, liveness improvement, or
the segmentation on a partition that forces an agent out.

6.4.2 Pseudo-orderings for convergence
We maintain the two optimizations proposed in Chapter 5, which enforce convergence

(RAND) and reduce the effort to convergence regarding the number of partition changes
(PORD). RAND changes the concurrency set of an agent (neighbor agents in their REA
phases) by introducing random delays to the start of the next REA. PORD enforces a
partial ordering in which agents closer to the border of partitions act earlier to solve
violations.

6.5 Visualizing the outcome of the behavior of the in-
tegrated agents

−1.31570 −1.31568 −1.31566 −1.31564 −1.31562 −1.31560 −1.31558

Distance from Greenwich (meters) ×107

4.0092

4.0094

4.0096

4.0098

4.0100

4.0102

4.0104

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to

r
(m

e
te
rs
)

×106

(a) Long Beach, CA, U.S.

−1.31650 −1.31648 −1.31646 −1.31644 −1.31642 −1.31640 −1.31638

Distance from Greenwich (meters) ×107

4.0282

4.0284

4.0286

4.0288

4.0290

4.0292

4.0294

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to

r
(m

e
te
rs
)

×106

(b) Los Angeles, CA, U.S.

Figure 6.1: Underlying maximum possible connectivity of 1000 nodes on a ≈ 1.44 Km2

region in LA County, CA. Shows the maximum set of neighboring options (or a single
partition solution). Wireless standard IEEE 802.11a. Density of 1/1600 node/m2.

Figure 6.1 represents the maximum underlying connectivity if all nodes operate on
the same frequency in the physical layer, the same logical network (SSID, BSSID) at the
link-layer, using their nominal transmit power. Therefore, no additional connectivity can

88

exist. The node placements are based on the Microsoft U.S. buildings data set [98].

−1.31570 −1.31568 −1.31566 −1.31564 −1.31562 −1.31560 −1.31558

Distance from Greenwich (meters) ×107

4.0092

4.0094

4.0096

4.0098

4.0100

4.0102

4.0104

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to

r
(m

e
te
rs
)

×106

(a) Liveness partition size, 100% connected

−1.31570 −1.31568 −1.31566 −1.31564 −1.31562 −1.31560 −1.31558

Distance from Greenwich (meters) ×107

4.0092

4.0094

4.0096

4.0098

4.0100

4.0102

4.0104

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to

r
(m

e
te
rs
)

×106

(b) Liveness signal strength, 99.8% connected

Figure 6.2: Autonomically created WMN topology partitioned by SmartOrg and connected
by SmartHeal agents. Overlapping partitions evidenced by the partitions’ convex-hull.
Dense edges show inter-partition connectivity by SmartHeal agents on 20% of nodes.
Same wireless standard and node placement of Figure 6.1. Maximum interface degree
{5, 6}, maximum partition diameter 6. Region of Long Beach in LA County.

More formally: let G(V,E, P) be a graph representing the connectivity topology of a
WMN where V is the set of nodes, E is the set of edges, P the set of positions of the
nodes in V , n is a node such that n ∈ V , fn, tn are frequency and network id of n; E is
maximal if ∀i, j ∈ V, fi = fj, ti = tj.

The choices of the autonomic agents on the WMN nodes define the partitioned WMN
topology and inter-connections (Figures 6.2 and 6.3). The node placement of Figure 6.1a
is the same basis for the topologies obtained in the Figures in 6.2 while of the topologies
in Figures 6.3 shared the same node placement with Figure 6.1b. Partitions in Figure 6.2
and 6.3 are degree/diameter constrained.

More formally: let G6.1(V6.1, E6.1, P6.1), G6.2(V6.2, E6.2, P6.2) be graphs representing
the topologies of Figures 6.1, 6.2, respectively; V6.1 = V6.2, P6.1 = P6.2, E6.1 ⊇ E6.2.
Finally, topologies in E6.1 are maximal.

89

−1.31650 −1.31648 −1.31646 −1.31644 −1.31642 −1.31640 −1.31638

Distance from Greenwich (meters) ×107

4.0282

4.0284

4.0286

4.0288

4.0290

4.0292

4.0294

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to

r
(m

e
te
rs
)

×106

(a) Liveness partition size, 100% connected

−1.31650 −1.31648 −1.31646 −1.31644 −1.31642 −1.31640 −1.31638

Distance from Greenwich (meters) ×107

4.0282

4.0284

4.0286

4.0288

4.0290

4.0292

4.0294

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to

r
(m

e
te
rs
)

×106

(b) Liveness signal strength, 100% connected

Figure 6.3: Autonomically created WMN topology partitioned by SmartOrg and connected
by SmartHeal agents. Overlapping partitions evidenced by the partitions’ convex-hull.
Dense edges show inter-partition connectivity by SmartHeal agents on 15% of nodes.
Same wireless standard and node placement of Figure 6.1. Maximum interface degree
{10, 11}, maximum partition diameter 6. Region of Long Beach in LA County.

6.6 Results
This section presents the experimentation settings, and the results of the integrated

operations of agents. We apply the experimentation platform used in 3 to support agent
information and decision-making.

6.6.1 Experimentation settings
The following list describes node placements and settings of the wireless subsystem.
1. Nodes have positions based on the centroids of buildings from [98]. We used

a common set of 30 different regions within LA County, CA, creating 30 node
placements.

2. We control the average node placement density over the experimentation area to
enforce the node densities pointed in the results.

3. The nodes’ wireless interfaces use IEEE 802.11a physical layer (5 GHz band) with
a 20 MHz bandwidth. The tx power is 16 dBm, the gain of the tx/rx antennas is
1 dBi (all defaults). The CCA (Clear Channel Assessment1) threshold is −99 dBm.

1Identifies the channel as free for transmission.

90

The Energy Detection Threshold2 is −96 dBm. The last two also default values.
4. The link-layer of the mesh nodes uses the IBSS (Independent Basic Service Set)

mode of IEEE 802.11, creating WMNs through multi-point association of nodes at
the link-layer.

Epochs have a period of 90 seconds with 9 sec for agent decision. The plots show
results for 8 configurations of SmartOrg and SmartHeal which are a combination of
the liveness property used by SmartHeal in lv = {ss, ps} (wireless signal strength,
partition size, respectively) with the degree constraint assumed by SmartOrg in dg =

{5, 10} and SmartHeal in dgh = {5, 6, 10, 11}. A fixed node placement (NP) density of
625 nodes/km2 was assumed. Each result combines experiments using 30 different NPs
in Los Angeles County (CA) based on the location of centroids of buildings from [98],
and each NP with a total of 1000 nodes. Each experiment had a maximum time of 30
epochs. SmartOrg applied the combined RAND, PORD optimizations while SmartHeal
applied RAND. Finally, we vary the percentage of the total of nodes with two wireless
interfaces from 0% to 50% in 5% steps, executing the SmartHeal agent in the nodes with
a second interface.

At least 90% of nodes are spawned in the first epoch to represent the extreme case of
90% node churn on the return of a power outage. The sp threshold of the partition size
(ps) liveness property is 0.2 for agents in the origin node and 0.1 for agents in any other
node, while the st threshold of the signal strength (ss) liveness is 0.1 for agents on any
node. The evaluation of the appropriate ranges of values for sp, st will be the subject of
future work.

6.6.2 Time to convergence
We simulated the integrated operation of SmartOrg and SmartHeal enabling REA

concurrency, a real distributed operation scenario in which agents are subject to decision-
making using outdated information. We recall that the Smart-any agent version which
does not enforce the degree bound does not produce a balanced partitioning, not fulfilling
the liveness objective of Smart-based agents as described on Section on 5.6.

Using Figure 6.4, first we verify that the set of configurations with degree bounds in
dgh ∈ {5, 6} (*05-05, *05-06) demand more epochs to converge than the ones with dgh ∈
{10, 11}, explained by the increased competition for space in smaller partitions, causing
more violations to recover from. Also, within each of the two groups of degree enforcement
above, the liveness ps incurs slower convergence than ss. The explanation is that ps induce
agents to compete for space in larger partitions, closer to their limits, again causing more

2Triggers the start of packet reception.

91

0 5 10 15 20 25 30 35 40 45 50
4

6

8

10

% of bridging nodes

E
p
o
ch
s
to

C
on

ve
rg
en

ce

ss-05-05
ps-05-05
ss-05-06
ps-05-06
ss-10-10
ps-10-10
ss-10-11
ps-10-11

Figure 6.4: All agent configurations converge within ten epochs. The ones with liveness
ps on SmartHeal and more restricted partitions (dg ∈ {5, 6}) incur longer convergence
time.

violations that require further changes in partition membership. Finally, the configurations
with a differing degree bound between SmartOrg and SmartHeal (*05-06, *10-11) did not
impact the convergence time. However, following we will see that increasing the degree
limit by one improves SmartHeal ’s liveness: recovering global connectivity.

6.6.3 Recovering global connectivity
In this subsection, we evaluate the ability of the different SHeal agent configurations

described in Section 6.6.1 to recover the global connectivity of the partitioned WMN:
the goal of the SmartHeal agents. Figure 6.5 shows, in the Y-axis, the percentage of
nodes in the largest WMN segment compared to the total of nodes. A result of 100%
means a connected WMN outcome when any node can reach any other node. We vary
the percentage of SmartHeal agents in the X-axis to compare the efficiency of the agent
configurations regarding the recovery of global connectivity.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

% of bridging nodes

%
of

G
lo
b
al

C
on

n
ec
ti
v
it
y ss-05-05

ps-05-05
ss-05-06
ps-05-06
ss-10-10
ps-10-10
ss-10-11
ps-10-11

Figure 6.5: The efficiency of agent configurations to recover global connectivity, given
the % of nodes with SmartHeal agents. A distinct degree bound improves connectivity.
Relaxed degree bounds (dgh ∈ {10, 11}) also induce improved connectivity results.

92

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

% of bridging nodes

%
of

G
lo
b
al

C
on

n
ec
ti
v
it
y ss-05-07

ps-05-07
ss-05-06
ps-05-06
ss-10-12
ps-10-12
ss-10-11
ps-10-11

Figure 6.6: Comparing recovering global connectivity with +1 and +2 SmartHeal agent
degree limits. As hypothesized, the +1 limit outperforms +2 due to performing a better
distribution of inter-partition connections.

Figure 6.5 ascertains that i) a higher degree bound, ii) the +1 degree bound on
SmartHeal , iii) and the partition size liveness on SmartHeal induce better connectivity at
low percentage of healing agents. The higher degree bound (dg = 10, dgh ∈ {10, 11}),
for a fixed number of nodes, produces a smaller number of large partitions, requiring less
inter-partition connectivity. Chapter 5 anticipated this effect when analysing SOrg agents
in isolation. The ps liveness induces the SmartHeal agents to be members of the largest
possible partitions which also induces a smaller number of partitions to inter-connect.

The +1 degree limit on SmartHeal induces a better global choice of partition con-
nectivity without global coordination. In effect, the +1 difference on the degree limit of
SmartHeal creates a surface of partition membership that is exclusive to healing agents.
SmartOrg agents keep partitions on their size limit due to their ps liveness oriented to
membership to the biggest nearby partition, leaving the +1 surface as the available op-
tion for SmartHeal . Moreover, two nearby healing agents on a given partition p1 cannot
both bridge to a nearby partition p2 using such exclusive surface, forcing them to choose
different partition connectivity options. This design spreads the connectivity of healing
agents through different nearby partitions, without relying on global coordination.

The Lemma 6.3 below reasons about why +1, and not +2 or more, achieves better
global connectivity.

Lemma 6.3 (Degree limit on SmartHeal +1). The +1 degree limit on SmartHeal will
outperform the +2 limit.

Proof. Assume two nearby nodes n1, n2 which are members of the same partition p1.
Assume two nearby partitions p2, p3, reachable by n1, n2, operating on their organizing
degree limit. Healing agents on n1, n2 will inter-connect to different partitions, given the
+1 degree availability. If the healing degree limit was +2 or more, the outcome of both

93

healing agents on n1, n2 bridging to the same nearby partition becomes possible which
renders a worse connectivity.

Figure 6.6 compares the connectivity recovery of +1 and +2 SmartHeal agents. The
+1 configuration with the ps liveness continues to be the highest performer, outperforming
the new +2 configuration with the ps liveness (use the 5% data point for verification).

Finally, we observe that the SmartHeal configurations with liveness ss are less efficient
on connectivity recovery due to inducing worse balancing of distribution of partition sizes
(evaluated on Section 6.6.6).

This paper does not capture the possible benefits of the liveness Signal Strength (ss)
regarding the capacity increase and the resilience to interference. ss induces healing
agents to connect to closer partitions, turning wireless links less vulnerable to variations
in attenuation (such as rainy weather or obstacles passing through the link’s path), and
also forming higher-speed links in variable speed wireless such as the IEEE 802.11 family.
Moreover, in the sub-section 6.6.2, we showed that ss induces faster convergence. We
expect improved WMN capacity from the ss liveness (higher speed/reliability links) at the
cost of more healing agents to recover global connectivity.

6.6.4 Converging to defined properties

0 5 10 15 20 25 30
0

5

10

15

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 5, 5

Epoch Number

M
ax

N
o
d
e
D
eg
re
e

Figure 6.7: The maximum achieved node interface degree of SmartOrg and SmartHeal
agents for liveness ps, showing a single convergence trend given the same degree bound
on both agent types. Converged to dg = dgh = 5.

This subsection evaluates whether safety property goals are met under the integrated
and competitive operation of SmartOrg and SmartHeal . Figures present the maximum
value observed for a safety property, while operating on 30 different node placements,
for a given configuration of degree limit of SmartOrg , degree limit of SmartHeal , and

94

SmartHeal liveness. The figures also accumulate the results of any % of healing agents
from 0% to 50% in 5% steps as described in the Section 6.6.1, a total of 330 experiments
per figure.

Figures 6.7, 6.8, 6.9 and 6.10 present the evolution of the maximum node degree in
the experiment set over time (in epochs) while Figures 6.11, 6.12 and 6.13 present the
evolution of the maximum partition diameter over time (other diameter settings omitted
for space). The results show that the initially erratic control of the safety properties
later converged to the defined objectives. When having 0% of healing agents, the degree
upper bound reduces to the organizing degree bound. For any other percentage of healing
agents, the +1 healing degree bound becomes the upper bound in the results as seen on
Figures 6.8. Figures 6.8, 6.9 and 6.10 present double lines that represent these two upper
bounds. Results for dgh ∈ {10, 11} are similar, omitted in the interest of space.

0 5 10 15 20 25 30
0

5

10

15

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 5, 6

Epoch Number

M
ax

N
o
d
e
D
eg
re
e

Figure 6.8: The maximum achieved node interface degree of SmartOrg and SmartHeal
agents for liveness ps, showing double convergence trends given the different degree
bounds on agent types: dg = 5, dgh = 6.

6.6.5 Effort to convergence
Figures 6.14, 6.15, and 6.16 respectively describe the effort to convergence in agent

moves between partitions of the integrated operation of SmartOrg and SmartHeal , the
SmartOrg agents effort, and the SmartHeal agents effort.

Figure 6.14 shows a linear increase of effort (moves) with the increase of SmartHeal
agents. The increased effort stems from the increase in effort of the SmartHeal agents, as
seen in Figure 6.16. Figure 6.15 shows that SmartOrg agents do not increase their effort
with an increasing number of SmartHeal agents. The secondary nature of SmartHeal
explains the latter: SmartOrg agents disregard the effect of SmartHeal agents on their
properties, requiring SmartHeal to react to organization actions but not the opposite.

95

0 5 10 15 20 25 30
0

5

10

15

20

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 5, 6

Epoch Number

M
a
x
N
o
d
e
D
eg
re
e

Figure 6.9: The maximum achieved node interface degree of SmartOrg and SmartHeal
agents, also showing convergence to the defined properties for the liveness ss.

0 5 10 15 20 25 30
0

10

20

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 10, 11

Epoch Number

M
ax

N
o
d
e
D
eg
re
e

Figure 6.10: The maximum node degree of Smart-dg and SmartHeal agents for liveness
ps, showing double convergence trends given the different max degree on agent types:
dg = 10, dgh = 11.

0 5 10 15 20 25 30
0

5

10

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 5, 6

Epoch Number

M
ax

P
ar
t.

D
ia
m
et
er

Figure 6.11: The maximum partition diameter for liveness ps, showing convergence to
objectives for dg = 5, dgh = 6.

96

0 5 10 15 20 25 30
0

5

10

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 5, 6

Epoch Number

M
a
x
P
a
rt
.
D
ia
m
et
er

Figure 6.12: The maximum partition diameter for liveness ss, also showing convergence
to objectives for dg = 5, dgh = 6.

0 5 10 15 20 25 30
0

2

4

6

8

e = 9s, Opt = {RAND + PORD}, d−1 = 1600, dg = 10, 11

Epoch Number

M
ax

P
a
rt
.
D
ia
m
et
er

Figure 6.13: The maximum partition diameter for liveness ps, showing convergence to
objectives for dg = 10, dgh = 11.

When comparing the different agent configurations, we perceive that the more con-
straining degrees (dgh = {5, 6}) demand higher effort to convergence (Figure 6.15).
Also, the ps liveness on SmartHeal induces a trend of higher effort to both SmartOrg and
SmartHeal when compared to the ss liveness, although a small increase in effort. These
results are consistent with the findings in the time to convergence (Section 6.6.2).

97

0 5 10 15 20 25 30 35 40 45 50

1,500

2,000

2,500

% of bridging agents

C
ou

n
t
of

A
ge
n
t
M
ov
es

ss-05-05
ps-05-05
ss-05-06
ps-05-06
ss-10-10
ps-10-10
ss-10-11
ps-10-11

Figure 6.14: Effort to convergence in agent moves between partitions. Shows moves from
both SmartOrg and SmartHeal for the agent configurations described in Section 6.6.1.
A linear increase of effort with the increase of SmartHeal agents.

0 5 10 15 20 25 30 35 40 45 50

1,200

1,300

1,400

1,500

% of bridging agents

C
ou

n
t
o
f
A
ge
n
t
M
ov
es

ss-05-05
ps-05-05
ss-05-06
ps-05-06
ss-10-10
ps-10-10
ss-10-11
ps-10-11

Figure 6.15: Effort to convergence of SmartOrg agents in moves between partitions. Same
configurations of Section 6.6.1. A small decrease of effort with the increase of SmartHeal
agents.

0 5 10 15 20 25 30 35 40 45 50
0

500

1,000

% of bridging agents

C
ou

n
t
of

A
g
en
t
M
ov
es

ss-05-05
ps-05-05
ss-05-06
ps-05-06
ss-10-10
ps-10-10
ss-10-11
ps-10-11

Figure 6.16: The effort to convergence in agent moves between partitions. Shows moves
of the SmartHeal agents for the configurations described in Section 6.6.1: a linear increase
of effort with the increase of SmartHeal agents.

Finally, from Figure 6.16 we observe that SmartHeal has an average number of moves
m > 1 (50% of SmartHeal agents implies 500 agents given that experiments used 1000
nodes; also, there are at least 700 and up to 1100 moves for the 50% data point). The

98

reactive nature of SmartHeal agents, which must not be in the same partition of compan-
ion SmartOrg agents, explains this result: beyond enforcing its safety and improving its
liveness, SmartHeal reacts to decisions of the SmartOrg agents in the same mesh node.

6.6.6 Topology structure under integrated organizing and healing
This section analyzes the resulting WMN topology structure. We observe the differ-

ences in the balancing of partition sizes induced by the two livenesses options evaluated
for SmartHeal . We recall that the combined bounding on node degree and partition di-
ameter induces an upper limit on the size of the partitions: the Degree/Diameter Graph
problem [14]. Partition sizes represent the sum of organizing agents as regular members
and healing agents which implement bridges between partitions.

0 20 40 60 80 100 120

ss-05-05

ss-05-06

ss-10-10

ss-10-11

ps-05-05

ps-05-06

ps-10-10

ps-10-11

pct = 00%

Partition Size

T
u
p
le

S
H
-l
iv
en

es
s
S
O
,
S
H

d
eg
re
es

Figure 6.17: Partition size distribution without the effect of SmartHeal agents (0%). Sizes
bounded to ≈< 38 for dg = 5 and ≈< 76 for dg = 10.

0 20 40 60 80 100 120

ss-05-05

ss-05-06

ss-10-10

ss-10-11

ps-05-05

ps-05-06

ps-10-10

ps-10-11

pct = 30%

Partition Size

T
u
p
le

S
H
-l
iv
en

es
s
S
O
,
S
H

d
eg
re
es

Figure 6.18: Partition size distribution for 30% of SmartHeal agents. Liveness ss deterio-
rates the balancing with a reduced mean and the occurrence of a large number of outlier
partitions. Configurations with dgh = dg + 1 induce an increment in maximum size.

99

0 20 40 60 80 100 120

ss-05-05

ss-05-06

ss-10-10

ss-10-11

ps-05-05

ps-05-06

ps-10-10

ps-10-11

pct = 50%

Partition Size

T
u
p
le

S
H
-l
iv
en

es
s
S
O
,
S
H

d
eg
re
es

Figure 6.19: Partition size distribution for 50% of SmartHeal agents. Liveness ss continues
deteriorating balancing with a reduced mean and a large number of large outlier partitions.
Configurations with dgh = dg + 1 induce an increment in max. size.

In Chapter 5, we postulated that the resulting partitioning structure is a relevant
outcome for healing agents to recover WMN’s global connectivity. Ideally, SOrg agents
should create the minimum number of partitions of their maximum sizes given the diame-
ter/degree constraints, requiring a minimum amount of healing agents for inter-partition
connectivity. Also, too many partitions compared to the available set of frequencies might
render frequency diversity inefficient due to the reuse of frequencies by nearby WMN par-
titions.

Figures 6.17, 6.18 and 6.19 support the expectation above. In Figure 6.17, no
SmartHeal agents exist (0%), while in Figures 6.18 and 6.19 there are 30% and 50%
of SmartHeal agents w.r.t. the number of nodes, respectively. When the SmartHeal
agents apply the ss liveness, the resulting size distribution of final topologies (at conver-
gence time) show a reduction in the mean and the appearance of large outlier partitions,
characterizing a deterioration in the partition size balancing. The same does not occur
for the ps liveness (figure omitted). This trend persists for 50% of SmartHeal-ss, also
omitted in the interest of space.

The size balancing deterioration on the topologies produced when using the ss corre-
lates with the reduced efficiency of the ss liveness on recovering global connectivity, to
confirm the expectation that a better balancing on the partitions allows for more efficient
recovery of connectivity.

The current results do not evaluate the potential capacity increase in the topologies
produced by the ss liveness, as also observed in Section 6.6.3. This aspect will be the
subject of future evaluation.

100

Chapter 7 Explorations with SDN control planes
into WMNs

This chapter consolidates work developed on the implementation of a reference ar-
chitecture for SDN control planes into WMNs or applications that assumed a centralized
control plane on WMNs for implementing routing schemes or time diversity increase mech-
anisms (TDMA).

The implementations or designs presented here had their experimental evaluation lim-
ited by the issues regarding the integration of existing software into simulated networks,
as described in Section 2.11. Therefore, they represent designs or built systems that had
limited simulated evaluation.

7.1 A reference architecture for SDN-based WMNs

Figure 7.1: SD-WMN controller framework.

The SDN controller framework depicted in Figure 7.1 is a complete redesign of the

101

work in [117] specialized in the control plane of WMNs. We maintained the following
principles from the original work: in-band control; multi-specialization of nodes: any
mesh node forwards packets and can become a group controller as necessary; a topology
graph fed by the wireless adjacency information provided by the mesh nodes. The multi-
specialization fits well in our design, given that the autonomic agents in our mesh nodes
can assume this additional optimization objective: deciding their role in controlling a
group or not. The dashed boxes represent functions of future implementation.

We executed a preliminary evaluation limited to small WMN sizes due to the exper-
imentation restrictions described in Section 2.11. We plan a more detailed evaluation
using larger WMNs and exploring the resources advent from the centralized control to
apply cross-layer routing metrics to increase WMNs capacity.

The framework is currently based on the POX Openflow controller platform [118] and
supports the Openflow v1 southbound SDN protocol. It relies on a set of events provided
by the controlling platform to implement the functionality necessary to the WMNs’ control
plane. For each type of event, an event handler is responsible for dealing with the event
(see Figure 7.1 for details).

Figure 7.2: WMN node architectural view in the SDN paradigm.

Figure 7.2 describes the WMN node architecture operating in the SDN paradigm.
The in-band control relies on an induction-based algorithm as follows.
• The base case is the controller node: its SDN protocol connects to the network

(group) controller directly through its internal network (IP loopback).

102

• After the controller node’s SDN switch connects, any mesh node adjacent to the
controller node will be able to connect.

• Now we generalize stating that any node in the group adjacent to a connected node
will be able to connect to the group’s controller.

This control channel implementation benefits from the link-layer isolation enforced by
our autonomic agents: a single controller is available for connectivity by the SDN protocol
on the mesh nodes.

7.2 Centralized SDN-based WMN TDMA scheduler
We envision the enforcement of time diversity to promote increase scaling in the local

routing regime of our hierarchical WMN architecture. We conceived a TDMA-based
packet scheduling solution for WMNs anchored on an SDN control. The flow admission
control inherent to the SDN paradigm is an ideal point to schedule the use of time slots.
We also leverage on the Topology Graph of the architecture described in Section 7.1 to
build the scheduling algorithm. This combination of a centralized TDMA architecture
based on SDN is yet not explored in research on WMNs.

The solution includes four major components:
• a TDMA-based flow scheduler;
• a TDMA-aware mechanism to program mesh nodes (such as a TDMA-aware Open-

Flow protocol);
• a TDMA Medium Access Control (MAC) in the wireless interfaces of mesh nodes;
• and a TDMA timing synchronization for the WMN.
We leave the last component - synchronization - for future work, proposing a simulated

synchronization in a network simulation platform to allow the evaluation of the solution
regarding its contribution to capacity improve. Djukic et al. [119] present a TDMA
synchronization algorithm with a precision in the order of 16 microseconds which works
on multi-hop wireless networks such as WMNs.

The solution output of a TDMA flow scheduler for a WMN is a set of mesh nodes that
comprise the flow path, and, for each node, a set of TDMA time slots (or tokens) to be
used for the transmission of the flow’s packets. The scheduler can explore a combination
of a modified WMN topology graph and a modified Dijkstra algorithm to provide the
expected output. The graph’s edges should register which flows are using each TDMA
time slot, if any (time slots can be unused). The algorithm assumes the topology as a
directed graph. It must perform an additional step when analyzing each neighbor vertex
vd of the current node vs being visited (vd is a potential destination node for this stage of

103

the path in which the current vertex we denominate vs). The additional step comprises
these actions:

1. Find the set of inbound edges to vertex vd named Eid ;
2. Find the intersection of unused time slots in the edges of Eid , resulting the set Tr

which is the set of time slots in which vd can receive a packet;
3. Find the set of outbound edges to vs named Eos

;
4. Find the intersection of unused time slots in the edges of Eos

, resulting the set Tt
which is the set of time slots in which vs can transmit a packet;

5. Further intersect the set Tr with the set Tt: Ta = Tr ∩ Tt;
6. The resulting set of time slots Ta can be used in the scheduling. Time slots in
Ta are available because they are free for Tx in the source and free for Rx in the
destination;

7. The number of time slots in Ta chosen is based on the expected QoS (in bits/s)
and the speed in the edge vs → vd.

The implementation of such an algorithm should maintain the states described above
outside the graph data structure parsed by the modified Shortest Path First algorithm from
Dijkstra [120], given that the final path is only known at the end of the computation. At
the end of the algorithm, the chosen time slots should be committed to the graph in a
particular way: any set of transmitting time slots chosen at each vertex v should also be
updated in all inbound edges of the neighbors of v, reflecting the contention caused by v
on its neighbors during the selected time slots.

The design described above does not account for the absence of available time slots or
for the excess of available time slots. Those two cases are a restriction and opportunity,
respectively. In the former, the scheduling algorithm should consider removing time slots
in excess in the specific contention points. In the latter scenario, more than minimally
requested bandwidth could be attributed, assuming that such behavior leads to the for-
mer case, which was already solved. Further consideration about balancing the excess
bandwidth offered is necessary.

We consider this design of TDMA scheduler conservative because it admits zero in-
terference in a time slot. However, further optimizations can be evaluated. Long-distance
edges produce weak interfering signals. Thus their interference can be absorbed by a short
distance edge, which produces a strong Rx signal in the receiving node. The resulting
SINR level at the destination node allows decoding the Tx signal.

The OpenFlow protocol permits the use of multiple queues per switch port (a switch

104

port is associated with a single network interface). Those queues can be mapped to
TDMA time slots. Additionally, a single OpenFlow rule admits more than one action
per rule. Therefore, we could address the question of attributing more than a single
time slot per-flow rule. This mapping allows a simple implementation of the second
component described above: programming mesh nodes in a TDMA-aware fashion, using
the OpenFlow protocol.

A possibly better alternative is using a programmable data plane (SDN switch) such
as the ones supporting the P4 data plane language [121].

Further detailing should exist on how the SDN switch transfers the queue informa-
tion (in fact, the time slots to be used on packet transmission) to the TDMA MAC on
the wireless interface. This MAC layer ultimately is the one buffering packets until the
corresponding TDMA time slots are available. One approach is the addition of special
tags to the abstraction the represent the packet in the operating system. These tags are
interpreted and later removed by the TDMA MAC before transmission. Such behavior
internal to the node has minimum impact on the network or the network control.

7.3 Contention aware multi-path mesh routing based
on centralized control

We built upon the framework described in [117] and its mesh routing algorithms to
describe a Contention-aware Mesh Routing (CA-MR). [117] presents two mesh routing
(MR) algorithms: a simple hop-count MR (a) and a higher throughput / least congested
path MR (b). In (a), given a source (Src) and destination (Dst) pair, the algorithm
always selects the same path, comprising the minimum amount of hops, regardless of the
network load distribution. This solution is not aware of the WMN load and is unable
to distribute traffic. In (b), different paths can be chosen for different flows (see [9] for
the concept of flow) for the same pair Src − Dst. Therefore, the load distribution in
the WMN interferes in the path selection. However, (b) does not take into account the
contention effect in shared media wireless networks, which leads to path selections in the
same contention region, limiting the benefits of this MR.

Here we elaborate on why eliminating low-speed links and about the feasibility of an
iterative algorithm for that task. Let N be a Wireless Mesh Node (WNode), C a node’s
contention time, B the set of neighbors of a node, and j = ∣B∣ the node’s number of
associations (to its neighbors). The set of neighbors Bi of a given node Ni is reduced by
eliminating one of its associations (let this association be with the node Ne). The Ci of
this node will be computed using the reduced set of associations with the size j−1. If the

105

eliminated link NiNe was the one with the lowest speed (in a multi-speed wireless system,
links have low-speed when the perceived Signal to Interference plus Noise Ratio (SINR)
of the receiver is low) in the set of association speeds of Ni, the highest contribution
for Ci was also eliminated (assuming tie = 1/sie). Therefore, an algorithmic approach
that can perform the described mechanism will have diminishing returns with time (higher
contributions in the beginning) and fast convergence, assuming that the use of an iterative
approach.

The implementation idea for the CA-MR is to take into account the time consumed in
transmissions of a mesh node Ni, added by the time in contention due to Ni’s neighbors
transmissions. If Ni consumes a set of times tij for transmissions to its neighbors, all
its neighbors are in contention at least for this set of times. By correspondence, Ni will
be in contention during the time any of its neighbors are transmitting. Therefore, the
total contention time Ci of a given node Ni in a sampling interval ts is the sum of all its
transmission times tij and all of its neighbors’ transmission times tjp. Furthermore, for
completeness, we must add the value ticca

to account for the time Ni spent performing a
clear channel assessment (CCA). Let p denote the neighbors of each j.

Ci =∑ tij +∑ tjp + ticca
(7.1)

Although the CCA time of a wireless interface is not a commonly exposed metric by
wireless APIs, by definition, this value must be small comparing to the transmitting time
to reflect the efficiency of the wireless technology. Therefore, not accounting for the CCA
time induces small errors to our intended contention metric.

We define the amount of actual link speed asik available when traversing a directed
link NiNk as:

asik = sik ⋅
ts − Ci
ts

(7.2)

Finally, the CS-MR uses the Dijkstra Shortest-Path First [120] (SPF) algorithm for
path selection, assuming a derived measurement of the actual link speed metric as the
weight of the edges considered in Dijkstra’s SPF. The weight is:

wik =
1

1 + asik
(7.3)

The expectation is that CA-MR finds paths using regions of the WMN with lower
contention. We implemented the CA-MR into the reference SDN framework described in
the Section 7.1; however, no evaluation of its efficacy was performed due to restrictions
on experimenting in an SDN-based WMN setting as described in Section 2.11.

106

7.4 WMN contention minimization: a current-flow be-
tweenness centrality application

The contention effect is as a bottleneck to parallel communications in a WMN. The
contention is a necessary mechanism that allows for different network nodes to share the
same communication medium: the shared wireless channel. When a node is transmitting,
all its neighbors need to avoid communications: the contention time. The higher the
connectivity of a node - the node’s degree, the smaller is the percentage of time it has
for its transmissions. Additionally, assuming wireless technology using a multi modulation
physical layer to adapt to different conditions of signal strength, different link speeds
will exist. The transmission time of a packet is inversely proportional to the link speed.
Therefore, lower speed links will demand higher transmission times. Moreover, these lower
speed links will also be the ones with longer distances, which can cause contention on a
larger part of the network.

Low-speed links can be considered redundant, assuming the existence of higher speed
paths that rely on multiple hops. In the WMN, intermediary nodes forward packets
on behalf of an originating node. A mesh routing (MR) mechanism defines the packet
forwarding by mesh nodes.

The objective of the work in this section is to reduce the contention effect in WMNs
by eliminating nodes’ associations, which do not contribute significantly to the network
graph regarding graph connectivity and overall throughput. For example, we eliminate
links with slow speeds (e.g., 1 Mbps through 13.5 Mbps) that have low network structural
importance, therefore, reducing the contention introduced by them. We maintain links
with high connectivity importance metric such as an edge centrality measure.

This analysis of link importance requires a global view of the WMN topology mapped
into a graph model, which is of complex implementation on a distributed control WMN.
However, assuming a centralized WMN control architecture, such as in the SDN paradigm,
conventional network centrality algorithms can be applied.

7.4.1 About graph centrality
Network centrality is a fundamental mechanism for network analysis. The most basic

centrality metric uses vertices’ degrees to capture the ones with higher connectivity as
a proxy for its centrality [122]. The betweenness concept was introduced independently
by Anthonisse and Freeman, capturing the “degree to which a vertex is in a position of
brokerage by summing up the fractions of shortest paths between other pairs of vertices
that pass through it” [123]. In [124] a faster algorithm is introduced for computing the

107

betweenness centrality metric of a graph.
In [125], a novel approach for computing network centrality is presented, known as

Current-flow betweenness centrality. Current-flow betweenness centrality uses the way
an electric current flows in an electric circuit to model the information spreading in a
graph. This strategy contrasts with the betweenness centrality strategy, which uses the
shortest paths only. Current-flow betweenness centrality is also known as random-walk
betweenness centrality.

7.4.2 Proposed solution
We refer to Section 7.3 to motivate the importance of link elimination in WMNs

regarding exploring the overall WMN capacity. We can demonstrate the benefit of elim-
inating low SINR links, assuming the existence of the CA-MR algorithm. Section 2.6
presents other approaches for routing packets in a WMN using path quality metrics.

The intuition for intentional and discriminated link elimination is that the lower speed
links are also the ones with the highest impact on the contention time of neighboring
nodes: the lowest the speed the highest the transmission time maintaining the same (on
average) distribution of load over the links. The basic way of deciding a flow path is the
least hop count, which will tend to choose long-range links. Therefore, choosing the links
with lower speeds1. We provide a more detailed explanation in Section 7.3.

One counter-question: why not just eliminating all low-speed links in the WMN by
limiting the SINR ratio acceptable to the association between mesh nodes? This strategy
can potentially limit the network connectivity in such a way that a connected WMN
could be broken into many components, if this link elimination is not carefully considered
by a centralized algorithm, assuming the full network connectivity. Local decisions only,
therefore, are of high risk.

Low speed link elimination algorithm based on a graph centrality metric
When deciding which links should be eliminated based on the edge centrality metric,

the strategy will be to remove links with low speed and low structural importance (low
centrality). The criteria to define a low-speed link is a parameter to be used in this
solution, starting at the mean of the edge centrality of all network links as the initial
target. This initial target will be increased iteratively by a multiplying factor. The stop
condition for this iterative approach will be the resulting number of components on the
network graph. If the number of graph components increases in an iteration, the previous

1We assume a model of wireless communication with multiple speeds that are selected based on
the signal quality (SINR). Higher speeds demand higher SINR, which correlates with shorter distances.
Multi-speed wireless systems are common such as in the W-Fi, WiMax, and LTE physical layer models.

108

iteration represents the final solution. Therefore, this approach will produce a network with
less low-speed connections (graph edges) without creating any additional segmentation in
the network other than any previously existent. This solution can reduce the contention
on the WMN without additional segmentation.

The algorithm is now presented. Let:
Gin, an undirected Graph modeling the WMN topology with weighted edges. The

edge weight w is derived from the wireless link speed, using:

w =
150

link_speed (7.4)

LowSpeedT arget, the speed limit to assume a link as a low-speed one. The fol-
lowing experiments assumed the value of 150

14 , meaning that link speeds below 14 Mega
bits per second (Mbps) are considered slow speeds. The weight metric on the graph is
inversely proportional to the link speed; therefore, low-speed links will have weights higher
than LowSpeedTarget.

Gout, the transformed version of Gin after the removal of low-speed links.

109

Input: Gin, LowSpeedTarget
Output: Gout

1 xMean = 1;
2 ec = computeEdgesCentrality(Gin);
3 comp = computeNumConnectedComponents(Gin);
4 cMean = computeMeanOfEdgesCentrality(ec);
5 while 1 do
6 cTarg = cMean ⋅ xMean;
7 Gtmp = copy(Gin);
8 for edge ∈ edges(Gin) do
9 if weight(edge) > LowSpeedTarget then
10 if edgeCentrality(edge) < cTarg then
11 removeEdge(Gtmp);
12 else
13 doNext = True;
14 end
15 end
16 end
17 compAfter = computeNumConnectedComponents(Gtmp);
18 if (compAfter > comp) ∨ (¬doNext) then /* Stop Conditions */
19 break;
20 end
21 end
22 Gout = lastValid(Gtmp)

Algorithm 1: Low-speed link removal algorithm.

7.4.3 Simulated evaluation
We applied the Algorithm 1 to four different topologies produced using the the WMN

emulation framework applied in [117]. The four different topologies were randomly pro-
duced by defining the position of 30 WNodes in a 1500 m x 1500 m Euclidean space.
Ten of the WNodes were based on the standard IEEE 800.11g (link speeds from 6 to
54 Mbps) and twenty based on the standard IEEE 800.11n (link speeds from 6.5 to 150
Mbps). The emulation tool is capable of analytically estimating the connectivity and the
respective link speed of the random topology based on WNodes’ positions and Euclidean
distances. The wireless signal attenuation model was the same used in [117]. Algorithm
1 was written in Python using the NetworkX library [101], which implements centrality
algorithms based on [124] and [125].

The four different topologies experimented differ in their clustering characterization.
They are all connected; however, the first has a single node cluster (a region with a higher

110

density of nodes), the second has two clusters, the third has three clusters, and, finally,
the fourth has four clusters.

200 0 200 400 600 800 1000 1200 1400 1600
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

67

8

9

10

11

12

13

14

15
16

17

18

19

20

2122

23

24

25

26

27

28

29

30

Mean Multiplier: 2.0

(a) Before

200 0 200 400 600 800 1000 1200 1400 1600
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

67

8

9

10

11

12

13

14

15
16

17

18

19

20

2122

23

24

25

26

27

28

29

30

Mean Multiplier: 2.0

(b) After

Figure 7.3: Single cluster network model - betweenness centrality algorithm. Blue and
gray links should stay. Blue links are the backbone. Yellow links are appropriate for
elimination.

Figure 7.3 shows the original (Before) and final (After) network models for the single
cluster topology, using the betweenness centrality metric. The essential backbone of the
network is captured by this centrality metric, as it values the shortest path links only.
Although looking similar to a spanning-tree algorithm, our proposed algorithm does not
provide any guarantees of a tree-like structure for the mentioned backbone highlighted in
blue.

The links in yellow are low-speed links, which are candidates for elimination. In blue
are the links (graph edges) with high centrality that should not be eliminated, regardless
of their speeds (they are protected from elimination). For all the pictures presented here,
we present only the last valid iteration of the algorithm (the final result not creating a
segmentation). The final multiplying factor for this topology’s target mean centrality
was 2 times the mean centrality of the original network. This network originally had 133
edges, 50 edges were removed, only 1 link was a low-speed link kept out of the removal
set because of its importance in the network’s connectivity.

111

200 0 200 400 600 800 1000 1200 1400 1600
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

67

8

9

10

11

12

13

14

15
16

17

18

19

20

2122

23

24

25

26

27

28

29

30

Mean Multiplier: 3.0

(a) Before

200 0 200 400 600 800 1000 1200 1400 1600
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

67

8

9

10

11

12

13

14

15
16

17

18

19

20

2122

23

24

25

26

27

28

29

30

Mean Multiplier: 3.0

(b) After

Figure 7.4: Single cluster network model - current-flow betweenness centrality. Blue and
gray links should stay. Yellow links are good for elimination.

Figure 7.4 shows the same single cluster topology, using the Current-flow betweenness
centrality metric. In this case, 47 out of the 133 edges were eliminated, a close value
to the betweenness centrality measure (only 3 less). On the last iteration, 4 links were
protected from elimination. The final topology shows more multi-path alternatives when
compared with the final topology produced using the betweenness centrality (BC). This
result is important for a mesh routing algorithm that explores multi-path links for different
flows.

500 0 500 1000 1500 2000
500

0

500

1000

1500

2000

1

2

3

45
6

78

9

10

1112

13

14

1516

17

18

19

20

21

22

23 24

25

26

27
28

29

30

Mean Multiplier: 8.0

(a) Before

500 0 500 1000 1500 2000
500

0

500

1000

1500

2000

1

2

3

45
6

78

9

10

1112

13

14

1516

17

18

19

20

21

22

23 24

25

26

27
28

29

30

Mean Multiplier: 8.0

(b) After

Figure 7.5: Two cluster network model - betweenness centrality. Blue and gray links
should stay. Yellow links are good for elimination.

Figures 7.5 and 7.6 show the results for the two cluster topology. The final results
are similar. The difference is that the Current-flow Betweenness centrality (CFBC) metric

112

demanded fewer iterations (8 on BC and 6 on CFBC). In BC, 29 low-speed links, out of
100 total links, were removed, and on CFBC, the same amount of 29 links were removed.

500 0 500 1000 1500 2000
500

0

500

1000

1500

2000

1

2

3

45
6

78

9

10

1112

13

14

1516

17

18

19

20

21

22

23 24

25

26

27
28

29

30

Mean Multiplier: 6.0

(a) Before

500 0 500 1000 1500 2000
500

0

500

1000

1500

2000

1

2

3

45
6

78

9

10

1112

13

14

1516

17

18

19

20

21

22

23 24

25

26

27
28

29

30

Mean Multiplier: 6.0

(b) After

Figure 7.6: Two cluster network model - current-flow betweenness centrality. Blue and
gray links should stay. Yellow links are good for elimination.

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

Mean Multiplier: 2.0

(a) Before

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

Mean Multiplier: 2.0

(b) After

Figure 7.7: Three cluster network model - betweenness centrality. Blue and gray links
should stay. Yellow links are good for elimination.

Figures 7.7 and 7.8 show the results for the three cluster topology. Again, the final
results are similar. In this case, the CFBC metric demanded much more iterations (2 on
BC over 6 on CFBC). In BC, 30 low-speed links, out of 100 total links, were removed,
and on CFBC, 31 links were removed (only one more).

113

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

Mean Multiplier: 6.0

(a) Before

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

Mean Multiplier: 6.0

(b) After

Figure 7.8: Three cluster network model - current-flow betweenness centrality. Blue and
gray links should stay. Yellow links are good for elimination.

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

12

3

4

5

6

7

8

9

10

11
12

13

14

15
16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

Mean Multiplier: 5.0

(a) Before

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

12

3

4

5

6

7

8

9

10

11
12

13

14

15
16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

Mean Multiplier: 5.0

(b) After

Figure 7.9: Four clusters network model - betweenness centrality. Blue and gray links
should stay. Yellow links are good for elimination.

Figures 7.9 and 7.10 show the results for the four cluster topology. This time the
number of links eliminated diverged slightly: 23 on BC and 20 on CFBC, out of a total
of 99 links on the original network. BC demanded 4 iterations and CFBC only one
more: 5. Once more, the CFBC provides resulting topologies that allow more parallel
communications.

Comparing with a no-centrality baseline
Figure 7.11 presents a comparison of the results obtained by applying Algorithm 1

using the two different centrality metrics with the results obtained by applying a simple
algorithm (Blind) which does no use any centrality metric. The Original line shows

114

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

12

3

4

5

6

7

8

9

10

11
12

13

14

15
16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

Mean Multiplier: 4.0

(a) Before

500 0 500 1000 1500 2000
200

0

200

400

600

800

1000

1200

1400

1600

12

3

4

5

6

7

8

9

10

11
12

13

14

15
16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

Mean Multiplier: 4.0

(b) After

Figure 7.10: Four clusters network model - current-flow betweenness centrality. Blue and
gray links should stay. Yellow links are good for elimination.

the original amount of edges on the topologies before link elimination. The other lines
represent the two centrality metrics used in Algorithm 1, and Blind is this baseline. Blind
behaves as follows:

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Topologies

0

10

20

30

40

50

E
lim

in
a
te

d
 E

d
g
e
s

Blind

Betweenness

Curr-FlowBet

Figure 7.11: Comparing the centrality based algorithm with a no-centrality (Blind) base-
line.

a) Given an initial low-speed threshold LS, Blind eliminates links with speeds below
LS;

b) If no segmentation was produced in the WMN, Blind stops;
c) Otherwise, Blind reduces LS and makes a new attempt such as in a);
d) If the LS threshold becomes 0, Blind stops with no link eliminated.

The results of Blind in Figure 7.11 were obtained with LS set for the same low-

115

speed threshold of the other experiments: 14.0 Mbps. Blind serves as a baseline for
the centrality based algorithm because of its simplicity and its possibility to be used in a
distributed way (executed individually by all nodes). However, Blind’s results show that
it is ineffective in 2 out of the 4 topologies experimented, and always producing inferior
results.

7.4.4 Section conclusion
This section presented and demonstrated a mechanism for minimizing contention in

WMNs. The mechanism is based on the SDN paradigm, which allows the execution of
centralized algorithms using information representing the network model. In this setting,
we proposed an algorithm using edge centrality measurements and an iterative approach.
The algorithm is capable of identifying links with low speed and low structural importance
(low edge centrality measure), allowing the elimination of these links in the network
connectivity. We expect the resulting topology with reduced connectivity in the number
of links to present reduced contention and a higher probability for parallel communications,
which can produce higher overall throughput. No additional segmentation on the networks’
models is allowed by design. Further evaluation of this solution should be performed with
real network traffic, various topologies, and different sizes for characterization of the
algorithm’s contribution to the WMN capacity scalability.

The approach described here for contention minimization allows increased parallelism
of transmissions in the WMN, which should increase the overall WMN throughput. How-
ever, the increased parallel transmissions imply increased interfering energy during packet
reception (the N element of the Signal to Noise Ratio (SNR) or the I of the SINR). Con-
sequently, only low SINR associations should be candidates for elimination. Additionally,
the simplified prove showed in section 7.3 demonstrates that these low-speed associations
are the ones that cause a higher impact on the contention time. A thorough evaluation
should take into account this consequence, requiring evaluation beyond the analytical
approach applied here, as mentioned above.

116

Chapter 8 Conclusion and future work

This decade portrayed significant evolution in communication networks such as mas-
sive capacity data center interconnects with 100/400 Mbps single link speeds between
server racks and above Tbps of aggregated per-rack capacities [126] that support the
ever-increasing scales of cloud computing. In the wireless realm, the 4G (LTE) and 5G
wireless standards for cellular networks offered an impressive increase in per device capac-
ity, the number of connected devices, and on supporting diverse use-case scenarios [127].
Also, new paradigms for network design transition networks from inflexible architectures
to programmable control and data plane paradigms (SDN, NFV - Network Function Vir-
tualization, P4 data-plane programming language [121]). Despite these advancements,
research regarding the worldwide consumption of connectivity claims that roughly 40% of
the world population is poorly or not connected [1]. Although the lack of connectivity, in
general, is a more significant concern in the lower-income nations, even the population of
developed and wealthy democracies such as the U.S. suffer from the lack of the required
connectivity [2]. Cost is a leading factor limiting the spread of connectivity [1, 10], and
alternative network architectures using wireless communication and aiming for lower cost
appear as solution candidates [10].

We propose, as a contribution to include the unconnected, the modernization of the
WMN architecture through the automatic support of programmable control planes at
large scales and the enforcement of frequency diversity at low-cost, low-complexity set-
tings. A sought after property of the WMN architecture is its ability to provide broad
coverage, at low-cost. In WMNs, mesh nodes provided with short-range radios cooperate
in forwarding each other’s packets from source to destination supported by a network
control mechanism at the routing layer to achieve wide coverage. Two crucial limitations
restrict the applicability of WMNs at scale: inflexible and hardened control planes based
on distributed protocols and reduced capacity at large scales WMN [19, 23, 32].

We devised a method to automatically manipulate the formation of Wireless Mesh
Networks (WMNs), inducing topologies structured as a set of interconnected partitions. A
distinct characteristic of our approach is the reliance on local information, contrasting with
previous solutions that rely on centralized algorithms, and suffer from limited scalability
and weak robustness to changes in topologies, or merely failures of critical elements.
Our solution maintains WMNs extensible while supporting new control paradigms and

117

frequency diversity.
We designed a combination of self-organizing (Chapters 4 and 5) and self-healing

(Chapter 6) autonomous [12] agent models that concurrently manipulate WMN topolo-
gies in realistic, low-cost, low-complexity, and size, density unconstrained WMNs. We
materialize these agents as software components embedded into mesh nodes, each agent
responsible for controlling the connectivity decisions of one wireless interface. Our solution
requires an average number of wireless interfaces per mesh node above one. However,
for simplicity and cost-efficiency, we designed this solution such that an average number
below two interfaces per node is sufficient for proper operation. We show that with 1.2
interfaces per node, our method achieves global connectivity with high probability.

We named our agent designs SmartOrg and SmartHeal . The SmartOrg self-organizing
agents dynamically and concurrently evolve a large WMN node placement into indepen-
dent topology partitions. The agents enforce as invariants to the partitions their maximum
diameter in mesh node hops, and the maximum degree of mesh node interfaces. Also,
the induced WMN partitions are isolated at the physical - possibly different frequencies -
and link layers - different link-layer network ids.

Concurrently to the operation of the self-organizing agents, we designed the secondary
SmartHeal self-healing agents that dynamically interconnect partitions to recover broad
WMN connectivity while respecting diameter and node interface degree invariants of par-
titions.

The physical layer partitioning allows for increased parallelism of communication flows
on different partitions supported by potential frequency diversity. We elaborate on the
future enforcement of frequency diversity using self-optimizing agents on the Future Work
section that follows.

The partition invariants guaranteed by the self-organizing, self-healing agents will
bound the control latency and control workload despite the unconstrained settings (den-
sity, scale) assumed, turning practical SDN control planes on each partition as detailed
on Section 5.1. Moreover, our formation approach based on elected partition origin nodes
turns them into well-known candidates for the execution of the SDN control plane func-
tions on partitions or SDN controllers.

For our evaluations, we combined an experimental approach based on simulation with
numerical evaluation. Our experiments applied our custom-built modular experimentation
platform (Chapter 3) that supports fast prototyping of agent models and the precise simu-
lation of wireless communication based on the reuse of well-known simulation frameworks.

Using an extensive set of experiments, we showed that the distributed and concur-
rent execution of SmartOrg and SmartHeal in the mesh nodes converges to stable and

118

reasonably balanced partitioning solutions in bounded time. After convergence, we found
that the autonomic properties, or partition invariants, are maintained. We described opti-
mizations to reduce the convergence time and the agents’ effort regarding moves between
partitions. To verify robustness to failures, we evaluated our method under 100% of node
churn, representing a case of the synchronized activation of nodes on the return of a
power outage. A complete WMN system of 1000 nodes converged to a stable solution in
under seven epochs of operation, each epoch of 90 seconds. These results persisted for
varied distribution and densities of node placements.

8.1 Future work
The evaluation of large-scale wireless networks is a challenge when it comes to novel

paradigms that infuse software into networks such as Software Defined Networks. Simu-
lation has been a successful strategy to evaluate new designs for wireless networks, given
its high accuracy achieved at a low cost. However, simulators cannot easily reuse existing
software such as SDN switches and controllers integrated with simulated wireless models.
One needs to create models to represent existing software, which is inefficient and error-
prone. Emulation platforms aim at closing this gap; however, existing solutions which are
accurate do not support a large-scale of emulated software [83], or support large-scale
emulation by relaxing an accurate representation of wireless models [72]. Moreover, emu-
lation solutions lack the support for fast prototyping of agent models applied in autonomic
networks.

In Chapter 3, we showcase an emulation architecture that splits the agent design
and decision making from the implementation of network models. This design reuses
well-known network simulators for network modeling, while a separate component allows
agents to reason and command network decisions. Using the principle of containerization,
or lightweight virtual machines, one can integrate existing software into simulated network
models. However, operating system kernels demand profound adaptations to consistently
synchronize the simulated timing into processes and kernel functions consumed in con-
tainers. Solving this problem permits the realization of accurate, scalable emulations that
also support fast prototyping of the emulation of autonomic wireless networks.

We left for future evaluation determining whether we can yet improve the balancing of
our WMN structure regarding the size of partitions by changing the threshold limits (the sp
parameter) of the partition size liveness function as described in the Section 5.6.2. While
reducing this threshold might enforce better balancing, it might also induce undesirable
increases in the time to convergence.

119

How far can autonomous behavior go for the benefit of large-scale WMNs? We envision
going beyond autonomous mesh nodes, turning the partitions, themselves, into autonomic
entities. Autonomous partitions materialize as self-optimization agents on partition origin
nodes that cooperate with the other partition members for optimizing system parameters.
Examples are improving frequency diversity between partitions and adapting to the number
of available resources through the selection of per partition interface degree limits, or
per partition diameter limits. We envision maintaining the principle of relying on local
information; however, local to the perspective of the partition: internal and neighboring
partitions.

Figures 8.1 and 8.2 show a preliminary 2D and 3D perspectives of self-optimization of
frequency diversity in which each agent on the partition origin nodes coordinate changes
in the partition channel with the other partition members to minimize interference from
neighboring or overlapping partitions. The cooperative algorithm consists of partition
member nodes reporting to the self-optimizing agent on the partition origin node their
wireless interference profile in the number of external nodes on each frequency. The self-
optimizing agent determines the least busy frequency for the operation of the partition.
This interference mitigation approach has the advantage of capturing the impact of other
networks beyond the WMN we implement.

The abstraction of partitions as autonomous entities also permits the realization of
wide-area routing. We envision a solution integrating SDN-based intra-partition rout-
ing and distributed routing, assuming our partitions as nodes of the distributed routing
scheme. The flexibility of centralized algorithms into partition controllers allows detecting
distributed routing traffic on mesh nodes interconnecting partitions and forwarding them
to other interconnecting nodes. This setting characterizes a hierarchical (intra and inter
partition routing regimes) and hybrid (centralized and distributed) routing. Yap et al. [31]
is an example of integrating SDN and existing routing protocols, BGP, in their case.

We consider the alternative of cooperative, multi-domain SDN control for our parti-
tioned WMNs. In this setting, each partition represents an SDN control plane domain, and
domains cooperate in implementing a distributed routing scheme for global reachability.
The advantage here is that the flexibility of control plane programmability is maintained,
contrasting to the previous solution reusing existing routing tools based on fixed routing
rules.

A compelling use case is the application of the principles of the autonomic formation
of wireless mesh networks that we described into the setting of small cells in 5G networks.
In the small cells setting, sharing resources such as a common is imperative, given the
density of cells that present a small radius of 200 meters or less. In this setting, the

120

−9.0272 −9.0270 −9.0268 −9.0266 −9.0264 −9.0262 −9.0260

Distance from Greenwich (meters) ×106

3.7696

3.7698

3.7700

3.7702

3.7704

3.7706

D
is
ta
n
ce

fr
o
m

th
e
E
q
u
a
to
r
(m

e
te
rs
)

×106

Figure 8.1: Autonomically created WMN topology partitioned and connected by the
SmartOrg and SmartHeal agents. Overlapping partitions evidenced by the partitions’
convex-hull. Dense edges show inter-partition connectivity by SmartHeal agents on 25%
of nodes. Same wireless standard and node placement of Fig. 5.1. Maximum interface
degree {5, 6}, maximum partition diameter 6. Final connectivity of 99.6%.

scale in the number of cells increases due to their shorter radius - advent from the use of
millimeter waves - comparing to current 4G cells. We envision that such a scale of cells
might benefit from an autonomous formation of clusters of cells to become efficient and
cost-effective regarding resource sharing.

121

Dist.
from

Green
wich

(m)1e6
-9.0272

-9.0270
-9.0268

-9.0266
-9.0264

-9.0262
-9.0260

Dist. from the Equator (m)

1e6
3.7696

3.7698
3.7700

3.7702
3.7704

3.7706

C
h
a
n
n
e
l
N
u
m
b
e
r

30

35

40

45

50

55

60

65

Figure 8.2: 3D perspective of the autonomically created WMN topology from Fig. 8.1,
using the same settings. Healing connections removed for simplicity. Frequency diversity
enforced by self-optimizing agents on origin nodes (part of future work). Shows a visual
representation of achieved diversity. Each color and the channel numbers on the Channel
Number axis represent a frequency.

122

Appendix A Appendix

A.1 Additional information about CWNs
In following the sub-sections, we present CWNs examples to illustrate their reason to

exist, their topology organization, applications and traffic pattern.

A.1.1 Village Telco
In a presentation [128] at the International Summit for Community Wireless Networks,

Steve Song describes the Village Telco (VT) project in South Africa, also depicted in [64].
Song enforces the importance of providing local voice communication (a local service over
the underlying mesh network - VoIP) to increase the usefulness of the CWN. Due to
the lack of a low-cost mesh device with an analog POTS1 interface, Song’s foundation
facilitated the creation of a specialized mesh device hardware including the POTS interface
and with rugged characteristics, allowing cheap and abundant analog telephones to be used
in a mesh network (the Mesh Potato router - MP). Although Song’s foundation started
of by sponsoring groups to provide training on hacking computing devices and antennas
(such as the cantenna - an antenna on a can) to create mesh routers, they found that
the complexity of building mesh networks was a major restricting factor.

In the network topology described in [64], the VT network used single radio devices
operating on the same frequency (no frequency diversity). Special Supernodes based on
a one or more commercial routers with high-power radios performed the segmentation
of the network into WMN islands. The supernodes had up to 2 Km reach to connect
distant WMN islands. MPs would use virtual wireless interfaces operating in different L2
networks (different SSIDs and BSSIDs), however, sharing the same underlying physical
wireless interface and frequency. In effect, all WMN islands connected to the same radio
of a given Supernode share the same frequency. Such L2 segmentation adds no capacity
to the system, and different L2 networks (the local AP-based access network, the mesh
network, and the connectivity to the supernode) will interfere with each other.

Recent devices from the Village Telco project (MP2 - Mesh Potato 2 [129]) include
two WiFi radios (one for the mesh network and other for giving access to users through
an access point), an analog POTS phone line (remotely accessed through an Ethernet

1Plain Old Telephony System

123

cable), PoE (power over the Ethernet cable), an USB port (for additional devices such as
a 3G/4G modem for Internet uplink), and internal storage to support local content such
as the World Possible’s RACHEL offline that we describe in the sub section A.1.2.

The topology derived on the VT project, namely WMN islands interconnected through
bridging devices (the VT’s supernodes) is equivalent to a manual implementation of the
work performed by our Standard Agent model and its dual-objective autonomic functions:
partition and recover global connectivity. The authors of [64] claim that the network ar-
chitecture and its manual management tools allowed the creation of community sponsored
and operated networks, providing useful local services in extreme scenarios of “... infras-
tructure poverty, technical literacy poverty, and financial poverty.” However, the complex
RF aspects of mesh management to mitigate interference still demanded specialized prac-
titioners. Their proposed approach to tackle these issues was to create diagnostic tools
and instructions for manual problem-solving.

Again, we contrast these statements with this research’s approach of automated net-
work formation and manipulation in the physical layer on which the VT’s RF issues exist.

An alternative firmware for the Village Telco’s MP2 mesh device (Wildernets - [130])
added more local services in the form of Instant Messaging (IM), made viable due to the
increased MP2’s memory profile. Also, Wildernets can incrementally and automatically
distribute the available application services (analog - POTS - and digital - SIP - telephony,
DNS, DHCP, IM, Web Serving) through the added Wilderness-based mesh routers to
support more users and a distributed traffic load.

The processing capacity of the embedded devices used by Village Telco project has
dramatically been surpassed by a new generation of embedded computers such as the
Raspberry Pi (RPi), allowing the creation of more advanced applications that demand
increased processing capacity and memory. To be found in the new generation of small
computers such as RPi is the tight integration of WiFi radios into the hardware, supporting
features such as external antennas and multiple radios. In the RPi and similar devices,
the USB bus is the preferred mechanism for additional hardware, adding complexity and
vulnerability to a rugged device setting such as a wireless mesh router application.

A.1.2 Replicating Internet content locally: World Possible’s projects
Adding to the importance of providing locally available content that is independent

of an Internet uplink, the Village Telco project promotes the offline use of high-quality
educational web content available by the World Possible organization [131]. World Possi-
ble offers the products OER2Go (Open Educational Resources to Go), and the RACHEL
packaged web serving device. OER2Go is a “... collection of educational websites repack-

124

aged for download and offline use ...” aiming at the consumption of education resources
in areas which the Internet is limited, expensive, or non-existent. OER2Go includes con-
tent such as Wikipedia, Khan Academy, TED, and many more, using rich web, video,
and applications for offline consumption. RACHEL (Remote Area Community Hotspot
for Education and Learning) is a portable plug-and-play server that includes OER2Go and
has a WiFi access point to allow turnkey access to educational content.

Surprisingly, RACHEL has been used even in places in the U.S. such as prisons and
health centers, providing a closed set of educational content without Internet access.
Additional conceived use cases are on ships, or planes (real use instances not disclosed).
RACHEL can be updated using a temporary Internet connection or from update packages
on SD memory drives.

RACHEL is a single point of access meant for a small group of concurrent users (20 to
50 depending on the type of content consumed). In a WMN setting, one can immediately
envision that such content can be spread around the WMN to reduce the contention on
accessing a single point of the network and to increase the number of concurrent users
supported.

A.1.3 The Serval Project
The Serval Project [132], [133] has seen success in creating what is believed to be

the world’s first practical unlicensed spectrum mesh mobile telephony system. It builds
on top of other successful projects such as the VT’s Mesh Potato A.1.1, Asterisk (a
software-based telephony system). Beyond an arbitrary integration of other solutions,
contributes the DNA (Distributed Numbering Architecture) that allows the dynamic and
ad-hoc formation and querying of a phone numbering system (fundamental for a disaster
condition the requires unassisted system set up). As a telephony system, its traffic profile is
local and PtP like. In [134], authors describe a mechanism for automatically bootstrapping
network addresses on a Serval-based network in the face of a disaster scenario.

The project originated in an Australian University, and one of the use cases and field
demos applied the technology on the Australian outback, a remote region with few to
none infrastructure at the time. This project demonstrated a minimalistic approach in
which only mobile phones based on the Android system operated as client and servers.
Although using mobile devices, basing the communication on WiFi technology required a
non-mobile operation. Mobility is supported in between uses. No discrimination over the
mesh topology is performed which can lead to unpredictable performance issues due to
increased node density.

In [132] authors claim that Serval employs a security framework based on asymmetric

125

cryptography in which network addresses on the mesh network are public keys (no details
on how to create the associated private keys given an arbitrary public key). Such a
design decision provides privacy on the communication between any two node pairs. In
this Youtube video [135], the Serval project is explained with the intention of use in
Venezuela as a communication system alternative in the face of the centralized control of
the Venezuelan’s government. The presentation here serves the purpose of showing how
manual and lengthy a two node set up is. In [136], authors demo a MeshMS (Mesh-based
SMS) using the Serval Project. Other documented demos exist in Nigeria, New Zealand
(by the Red Cross), Boston and Washington, DC in the U.S.

A.1.4 Gulfi.net
Guifi.net in Spain is a CWN that stands out due to its size (currently +30K nodes)

and its degree of administrative organization [137] (Gulfi.net Foundation). It is the largest
CWN that have ever existed at any point in time. Originated by enthusiasts interested
in an experimentation testbed and voluntary work, it continued to have its community
nature while also proving possible to be a competitive alternative for Internet service
providing in Spain. Its unique peer-to-peer agreement for joining the network maintains
the principles of voluntarism and shared responsibility, while its service providing initiative
brings funds to support expensive to provision and maintain such as fiber-based backbones
and sophisticated management.

Concerning structure, Guilfi.net uses fiber backbones for long-distance high-capacity
connectivity, uses PtP, and PtM wireless for medium distance medium capacity connec-
tivity (the majority of its links), and, lastly, wireless mesh islands comprise short distance
connectivity [65]. Such an architecture requires automated and yet highly-demanding
network management. Besides, Gulfi.net has Internet peering agreements with large-scale
Internet providers.

Available applications initially comprised internal Internet-like services, dubbing a par-
allel Internet experience. Although still existent, the original internal applications now
co-exist with applications available on the Internet.

A.1.5 Athens Wireless Metropolitan Network
Athens Wireless is a large (more than 2500 nodes in 2010) [62] and urban network

which primary goal is not to provide Internet access, instead promote the social interaction
of its members: “... we exist even if the Internet does not exist ... everybody creates
services and provide services to the community”. This characteristic of Athens Wireless

126

in unique amongst CWNs. Members replicate Internet services internally such as portals,
websites, messaging systems, e-mail, VoIP (SIP protocol), IPTV broadcast and VOD
(Video On Demand), file services, DNS. Community members are mostly educated and
also interested in technical learning and hacking (the network as a testbed). However, the
primary motivation is to socialize and become a popular member through contribution
and engagement.

Regarding topological structure, there are islands of WMNs (using the OLSR routing
protocol) interconnected by PtP links and Border Gateway Protocol (BGP) routers. Such
an approach implements a logical (at the routing level) segmentation of routes which
constrains the mesh routing with OLSR to bounded sizes [62].

Athens Wireless is organized by an association, relying only on member funding (no
external grants). Attempts to obtain grants or Internet connectivity were not successful.
The limited Internet access relies on VPN tunnels from clients to the rare Internet gateways
[62].

127

Bibliography

[1] The Economist Intelligence Unit, “The Inclusive Internet Index: Bridging digital
divides,” Internet.org, Tech. Rep., 2017, p. 39.

[2] J. Kahan. (2019). It’s time for a new approach for mapping broadband data to bet-
ter serve Americans, [Online]. Available: https://blogs.microsoft.com/on-
the-issues/2019/04/08/its-time-for-a-new-approach-for-mapping-
broadband-data-to-better-serve-americans/ (visited on 01/12/2020).

[3] R. Katz, “Impact of broadband on the economy,” International Telecommunication
Union - ITU, Geneva, Switzerland, Tech. Rep., 2012.

[4] S. Srivathsan, N. Balakrishnan, and S. S. Iyengar, “Scalability in Wireless Mesh
Networks,” in Guide to Wireless Mesh Networks, 2009, ch. 13, pp. 325–347.

[5] S. M. Sheikh, R. Wolhuter, and H. A. Engelbrecht, “A survey of cross-layer proto-
cols for IEEE 802.11 wireless multi-hop mesh networks,” International Journal of
Communication Systems, vol. 30, no. 6, pp. 1–32, 2017.

[6] L. M. a. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, and G. B. West, “Growth,
innovation, scaling, and the pace of life in cities.,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7301–
7306, 2007.

[7] L. M. Bettencourt and G. West, “A unified theory of urban living.,” Nature,
vol. 467, no. 7318, pp. 912–913, 2010.

[8] S. Arbesman, J. M. Kleinberg, and S. H. Strogatz, “Superlinear scaling for innova-
tion in cities,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
vol. 79, no. 1, pp. 1–5, 2009.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74,
03/2008.

[10] Microsoft Inc. (2019). Microsoft Airband: An update on connecting rural Amer-
ica, [Online]. Available: https://news.microsoft.com/rural-broadband/
(visited on 01/10/2020).

https://blogs.microsoft.com/on-the-issues/2019/04/08/its-time-for-a-new-approach-for-mapping-broadband-data-to-better-serve-americans/
https://blogs.microsoft.com/on-the-issues/2019/04/08/its-time-for-a-new-approach-for-mapping-broadband-data-to-better-serve-americans/
https://blogs.microsoft.com/on-the-issues/2019/04/08/its-time-for-a-new-approach-for-mapping-broadband-data-to-better-serve-americans/
https://news.microsoft.com/rural-broadband/

128

[11] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 01/2015.

[12] A. Berns and S. Ghosh, “Dissecting self-* properties,” in SASO 2009 - 3rd IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, 2009.

[13] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-backup repli-
cation,” in Proceedings of the 28th ACM symposium on Principles of distributed
computing - PODC ’09, 2009.

[14] M. Miller, “Moore graphs and beyond: A survey of the degree/diameter problem,”
Electronic Journal of Combinatorics, vol. 20(2), 2013.

[15] G. B. West, J. H. Brown, and B. J. Enquist, “A general model for ontogenetic
growth,” Nature, vol. 413, no. 6856, pp. 628–631, 10/2001.

[16] M. I. G. Daepp, M. J. Hamilton, G. B. West, and L. M. A. Bettencourt, “The
mortality of companies,” Journal of the Royal Society Interface, vol. 12, no. 106,
2015.

[17] I. F. Akyildiz, “A survey on wireless mesh networks,” IEEE Communications Mag-
azine, vol. 43, no. 9, pp. 23–30, 2005.

[18] A. Özgür, O. Lévêque, and D. N. Tse, “Hierarchical cooperation achieves optimal
capacity scaling in Ad Hoc networks,” IEEE Transactions on Information Theory,
vol. 53, no. 10, pp. 3549–3572, 2007.

[19] G. Alfano, M. Garetto, E. Leonardi, and V. Martina, “Capacity Scaling of Wire-
less Networks With Inhomogeneous Node Density: Lower Bounds,” IEEE/ACM
Transactions on Networking, vol. 18, no. 5, pp. 1624–1636, 10/2010.

[20] Q. Liu, X. Jiang, and X. Qiu, “The Effects of Topology on Throughput Capacity
of Large Scale Wireless Networks,” Information, vol. 8, no. 1, p. 32, 2017.

[21] U. C. Kozat and L. Tassiulas, “Throughput capacity of random ad hoc networks
with infrastructure support,” International conference on Mobile computing and
networking, p. 55, 2003.

[22] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad-hoc wireless
networks,” Proceedings IEEE INFOCOM 2001. Conference on Computer Commu-
nications. Twentieth Annual Joint Conference of the IEEE Computer and Commu-
nications Society (Cat. No.01CH37213), vol. 3, pp. 1360–1369, 2001.

129

[23] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Transactions
on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[24] S. Yi, Y. Pei, and S. Kalyanaraman, “On the capacity improvement of ad hoc
wireless networks using directional antennas,” Proceedings of the 4th ACM inter-
national symposium on Mobile ad hoc networking & computing - MobiHoc ’03,
p. 108, 2003.

[25] P. Li, C. Zhang, and Y. Fang, “The capacity of wireless ad hoc networks using
directional antennas,” IEEE Transactions on Mobile Computing, vol. 10, no. 10,
pp. 1374–1387, 2011.

[26] L. Kleinrock and J. Silvester, “Optimum Transmission Radii for Packet Radio
Networks or Why Six is a Magic Number,” in Proceedings of the IEEE National
Telecommunications Conference, Birmingham, Alabama, 1978, pp. 4.3.2–4.3.5.

[27] E. Royer, P. Melliar-Smith, and L. Moser, “An analysis of the optimum node
density for ad hoc mobile networks,” ICC 2001. IEEE International Conference on
Communications. Conference Record (Cat. No.01CH37240), vol. 3, pp. 857–861,
2001.

[28] J. Jun and M. L. Sichitiu, “The Nominal Capacity of Wireless Mesh Networks,”
IEEE Wireless Communications, vol. 10, no. 5, pp. 8–14, 2003.

[29] T. Moscibroda, “The worst-case capacity of wireless sensor networks,” Proceedings
of the 6th international conference on Information processing in sensor networks -
IPSN ’07, p. 1, 2007.

[30] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G.
Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,
J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s Datacenter Network,” Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication,
pp. 183–197, 2015.

[31] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,
T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka,
M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying,
M. Kallahalla, B. Koley, A. Vahdat, M.-H. Holliman, A. Nara-Yanan, A.-J. Singh,
and M.-H. Kallahalla, “Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering,” Sigcomm, vol. 14, pp. 978–1, 2017.

130

[32] M. Franceschetti, O. Dousse, D. N. C. Tse, and P. Thiran, “Closing the Gap in
the Capacity of Wireless Networks Via Percolation Theory,” IEEE Transactions on
Information Theory, vol. 53, no. 3, pp. 1009–1018, 03/2007.

[33] J. Ghaderi, L. L. Xie, and X. Shen, “Hierarchical cooperation in Ad hoc networks:
Optimal clustering and achievable throughput,” IEEE Transactions on Information
Theory, vol. 55, no. 8, pp. 3425–3436, 2009.

[34] A. Raniwala, K. Gopalan, and T.-c. Chiueh, “Centralized channel assignment and
routing algorithms for multi-channel wireless mesh networks,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 8, no. 2, p. 50, 04/2004.

[35] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless mesh
networks,” Proceedings of the 10th annual international conference on Mobile
computing and networking - MobiCom ’04, p. 114, 2004.

[36] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path
metric for multi-hop wireless routing,” Wireless Networks, vol. 11, no. 4, pp. 419–
434, 2005.

[37] K. N. Ramachandran, E. M. Belding, K. C. Almeroth, and M. M. Buddhikot,
“Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks,”
Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Com-
puter Communications, vol. 00, no. c, pp. 1–12, 2006.

[38] M. M. Buddhikot, S. C. Miller, and A. P. Subramanian. (2013). Interference aware
routing in multi-radio wireless mesh networks, [Online]. Available: https://www.
google.com/patents/US8532023 (visited on).

[39] A. Subramanian, H. Gupta, S. Das, and Jing Cao, “Minimum Interference Channel
Assignment in Multiradio Wireless Mesh Networks,” IEEE Transactions on Mobile
Computing, vol. 7, no. 12, pp. 1459–1473, 12/2008.

[40] D. Sajjadi, M. Tanha, and J. Pan, “A comparative study of channel switching
latency for conventional and SDN-based routing in multi-hop multi-radio Wire-
less Mesh Networks,” 2016 13th IEEE Annual Consumer Communications and
Networking Conference, CCNC 2016, pp. 330–334, 2016.

[41] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer,
2003.

[42] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing era,”
IBM Systems Journal, 2003.

https://www.google.com/patents/US8532023
https://www.google.com/patents/US8532023

131

[43] A. Trehan, “Algorithms for Self-Healing Networks,” PhD thesis, University of New
Mexico, 2010.

[44] J. Yu and P. Chong, “A survey of clustering schemes for mobile ad hoc networks,”
IEEE Communications Surveys & Tutorials, vol. 7, no. 1, pp. 32–48, 2005.

[45] E. M. Belding-Royer, “Hierarchical routing in ad hoc mobile networks,” Wireless
Communications and Mobile Computing, vol. 2, no. 5, pp. 515–532, 2002.

[46] Ying Ge, L. Lamont, and L. Villasenor, “Hierarchical OLSR - a scalable proac-
tive routing protocol for heterogeneous ad hoc networks,” in WiMob’2005), IEEE
International Conference on Wireless And Mobile Computing, Networking And
Communications, 2005., vol. 3, IEEE, 2005, pp. 17–23.

[47] T. Clausen and P. Jacquet, Eds., Optimized Link State Routing Protocol (OLSR),
United States, 2003.

[48] S. Ganu, L. Raju, B. Anepu, S. Zhao, I. Seskar, and D. Raychaudhuri, “Architecture
and prototyping of an 802.11-based self-organizing hierarchical ad-hoc wireless
network (SOHAN),” in 2004 IEEE 15th International Symposium on Personal,
Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754), IEEE, 2005,
pp. 880–884.

[49] S. Zhao, I. Seskar, and D. Raychaudhuri, “Performance and scalability of self-
organizing hierarchical ad hoc wireless networks,” 2004 IEEE Wireless Commu-
nications and Networking Conference (IEEE Cat. No.04TH8733), pp. 132–137,
2004.

[50] X. Li, P. Djukic, and H. Zhang, “Zoning for hierarchical network optimization
in software defined networks,” Network Operations and Management Symposium
(NOMS), 2014 IEEE, pp. 1–8, 2014.

[51] C. a. Santiváñez, R. Ramanathan, and I. Stavrakakis, “Making link-state routing
scale for ad hoc networks,” Proceedings of the 2nd ACM international symposium
on Mobile ad hoc networking & computing - MobiHoc ’01, p. 22, 2001.

[52] D. Wu and H. J. Chao, “Efficient bandwidth allocation and call admission control
for VBR service using UPC parameters,” Proceedings - IEEE INFOCOM, vol. 3,
pp. 1044–1052, 1999.

[53] J. J. Garcia-Luna-Aceves and M. Spohn, “Source-tree routing in wireless networks,”
Proceedings. Seventh International Conference on Network Protocols, pp. 273–
282, 1999.

132

[54] R. Ramanathan and M. Steenstrup, “Hierarchically-organized, multihop mobile
wireless networks for quality-of-service support,” Mobile Networks and Applica-
tions, 1998.

[55] A. Iwata, Ching-Chuan Chiang, Guangyu Pei, M. Gerla, and Tsu-Wei Chen, “Scal-
able routing strategies for ad hoc wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 17, no. 8, pp. 1369–1379, 1999.

[56] A. Santivfiez, B. Mcdonald, I. Stavrakakis, and R. Ramanathan, “On the Scalability
of Ad Hoc Routing Protocols,” Infocom, pp. 1688–1697, 2002.

[57] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for Wireless Mesh Networks,” in
2011 Proceedings of 20th International Conference on Computer Communications
and Networks (ICCCN), IEEE, 07/2011, pp. 1–6.

[58] C. Putta and K. Prasad, “Performance of Ad Hoc Network Routing Protocols in
IEEE 802.11,” International Conference on Computer and Communication Tech-
nology (ICCCT), pp. 371–376, 2010.

[59] J. Yi, A. Adnane, S. David, and B. Parrein, “Multipath optimized link state routing
for mobile ad hoc networks,” Ad Hoc Networks, vol. 9, no. 1, pp. 28–47, 2011.

[60] T. Uemori, E. Kohno, and Y. Kakuda, “A Routing ID-based Node-disjoint Multi-
path Scheme for Ad Hoc Networks,” 9th International Conference on Ubiquitous
Intelligence and Computing and 9th International Conference on Autonomic and
Trusted Computing, pp. 621–626, 12/2012.

[61] IS4CWN, “Next Steps for Community Wireless Networks,” in IS4CWN - Interna-
tional Summit for Community Wireless Networks, 2010.

[62] Athens Wireless Metropolitan Network, “Athens Wireless Metropolitan Network,”
in IS4CWN - International Summit for Community Wireless Networks, 2010.

[63] P. D. Filippi. (2014). It’s Time to Take Mesh Networks Seriously (And Not Just
for the Reasons You Think), [Online]. Available: http://www.wired.com/2014/
01/its-time-to-take-mesh-networks-seriously-and-not-just-for-
the-reasons-you-think/ (visited on 04/12/2018).

[64] M. Adeyeye and P. Gardner-Stephen, “The Village Telco project: a reliable and
practical wireless mesh telephony infrastructure,” EURASIP Journal on Wireless
Communications and Networking, vol. 2011, no. 1, p. 78, 12/2011.

http://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think/
http://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think/
http://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think/

133

[65] D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer, “Topology patterns of a
community network: Guifi.net,” Wireless and Mobile Computing, Networking and
Communications (WiMob), 2012 IEEE 8th International Conference, pp. 612–619,
2012.

[66] C.-E. Bichot and P. Siarry, Graph Partitioning, C.-E. Bichot and P. Siarry, Eds.,
ser. ISTE. Wiley, 2013, p. 368.

[67] K. Andreev and H. Räcke, “Balanced graph partitioning,” in Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures
- SPAA ’04, New York, New York, USA: ACM Press, 2004, p. 120.

[68] M. Kubale, A. M. Society, and O. D. English, Graph Colorings, ser. Contemporary
mathematics (American Mathematical Society) v. 352. American Mathematical
Society, 2004.

[69] J. Evans. (2016). Mastering Chaos - A Netflix Guide to Microservices, [Online].
Available: https : / / www . infoq . com / presentations / netflix - chaos -
microservices (visited on 04/09/2019).

[70] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“NetChain: Scale-Free Sub-RTT Coordination,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’18), 2018.

[71] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for SDN pro-
totyping,” Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking - HotSDN ’13, p. 31, 2013.

[72] R. d. R. Fontes, M. Mahfoudi, W. Dabbous, T. Turletti, and C. Rothenberg,
“How Far Can We Go? Towards Realistic Software-Defined Wireless Networking
Experiments,” The Computer Journal, pp. 1–14, 2017.

[73] M. Lacage and T. R. Henderson, “Yet another network simulator,” in Proceeding
from the 2006 workshop on ns-2: the IP network simulator - WNS2 ’06, New York,
New York, USA: ACM Press, 2006, p. 12.

[74] K. Fall, “Network emulation in the VINT/NS simulator,” in Proceedings IEEE
International Symposium on Computers and Communications (Cat. No.PR00250),
Red Sea, Egypt, Egypt: IEEE Comput. Soc, 1999, pp. 244–250.

[75] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A Real-time
Network Emulator,” IEEE Military Communications Conference (MILCOM), pp. 1–
7, 11/2008.

https://www.infoq.com/presentations/netflix-chaos-microservices
https://www.infoq.com/presentations/netflix-chaos-microservices

134

[76] Y. Zheng, D. M. Nicol, D. Jin, and N. Tanaka, “A virtual time system for virtualization-
based network emulations and simulations,” Journal of Simulation, vol. 6, no. 3,
pp. 205–213, 08/2012.

[77] D. Jin, Y. Zheng, H. Zhu, D. M. Nicol, and L. Winterrowd, “Virtual time inte-
gration of emulation and parallel simulation,” Proceedings - 2012 ACM/IEEE/
SCS 26th Workshop on Principles of Advanced and Distributed Simulation, PADS
2012, pp. 201–210, 2012.

[78] Y. Zheng, D. Jin, and D. M. Nicol, “Impacts of application lookahead on dis-
tributed network emulation,” in Proceedings of the 2013 Winter Simulation Con-
ference - Simulation: Making Decisions in a Complex World, WSC 2013, 2013,
pp. 2996–3007.

[79] D. L. Mills, “Network Time Protocol (NTP),” 1985.

[80] IEEE Standards Committee, “Precision clock synchronization protocol for net-
worked measurement and control systems,” IEEE Std, vol. 1588, 2004.

[81] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally synchro-
nized time via datacenter networks,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ACM, 2016, pp. 454–467.

[82] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vahdat,
“Exploiting a Natural Network Effect for Scalable, Fine-grained Clock Synchro-
nization,” in 15th {USENIX} Symposium on Networked Systems Design and Im-
plementation ({NSDI} 18), Renton, WA: {USENIX} Association, 2018, pp. 81–
94.

[83] E. Weing, F. Schmidt, H. Lehn, T. Heer, and K. Wehrle, “SliceTime : A platform
for scalable and accurate network emulation,” in NSDI, 2011.

[84] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti, and W.
Dabbous, “Direct code execution,” in Proceedings of the ninth ACM conference
on Emerging networking experiments and technologies - CoNEXT ’13, New York,
New York, USA: ACM Press, 2013, pp. 217–228.

[85] J. Lamps, V. Adam, D. M. Nicol, and M. Caesar, “Conjoining Emulation and
Network Simulators on Linux Multiprocessors,” in Proceedings of the 3rd ACM
Conference on SIGSIM-Principles of Advanced Discrete Simulation - SIGSIM-PADS
’15, ser. SIGSIM PADS ’15, New York, New York, USA: ACM Press, 2015, pp. 113–
124.

135

[86] H. Fontes, T. Cardoso, and M. Ricardo, “Improving Ns-3 Emulation Performance
for Fast Prototyping of Network Protocols,” in Proceedings of the Workshop on
Ns-3, ser. WNS3 ’16, New York, NY, USA: ACM, 2016, pp. 108–115.

[87] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M. Voelker,
“To infinity and beyond: time warped network emulation,” in NSDI, 2005.

[88] J. Lamps, D. M. Nicol, and M. Caesar, “TimeKeeper: A Lightweight Virtual Time
System for Linux,” in Proceedings of the 2nd ACM SIGSIM/PADS conference on
Principles of advanced discrete simulation - SIGSIM-PADS ’14, New York, New
York, USA: ACM Press, 2014, pp. 179–186.

[89] J. Yan and D. Jin, “VT-Mininet: Virtual-time-enabled Mininet for Scalable and
Accurate Software-Define Network Emulation Categories and Subject Descriptors,”
ACM SIGCOMM Symposium on Software Defined Networking Research - SOSR,
27:1–27:7, 2015.

[90] D. P. Wiggins, L. Veytser, P. Deutsch, B.-n. Cheng, and W. Street, “Scaling NS-
3 DCE Experiments on Multi-Core Servers,” MIT Lincoln Laboratory, Lexington,
MA, Tech. Rep., 2016.

[91] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Reproducible
network experiments using container-based emulation,” in Proceedings of the 8th
international conference on Emerging networking experiments and technologies -
CoNEXT ’12, New York, New York, USA: ACM Press, 2012, p. 253.

[92] B. Heller, “REPRODUCIBLE NETWORK RESEARCH WITH HIGH-FIDELITY
EMULATION,” PhD thesis, Stanford University, 2013.

[93] N. Simulation, Modeling and Tools for Network Simulation, K. Wehrle, M. Güne?
And J. Gross, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[94] L. Foundation. (2017). Linux Namespaces, [Online]. Available: http://man7.
org/linux/man-pages/man7/namespaces.7.html (visited on 01/01/2017).

[95] Message Passing Forum, “MPI: A Message-Passing Interface Standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[96] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[97] C. Hill, “Matplotlib,” in Learning Scientific Programming with Python, Cambridge:
Cambridge University Press, 2016, pp. 280–332.

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html

136

[98] Microsoft Inc. (2018). US Building Footprints, [Online]. Available: https : / /
github.com/microsoft/USBuildingFootprints (visited on 07/01/2019).

[99] (2012). Global Administrative Areas, [Online]. Available: http://www.gadm.org/
home (visited on 01/30/2020).

[100] K. Jordahl, J. V. den Bossche, J. Wasserman, J. McBride, M. Fleischmann, J.
Gerard, J. Tratner, M. Perry, C. Farmer, G. A. Hjelle, S. Gillies, M. Cochran, M.
Bartos, L. Culbertson, N. Eubank, maxalbert, S. Rey, A. Bilogur, D. Arribas-Bel,
C. Ren, J. Wilson, M. Journois, L. J. Wolf, L. Wasser, A. D. Snow, YuichiNotoya,
F. Leblanc, Filipe, C. Holdgraf, and A. Greenhall, “Geopandas/geopandas: V0.6.2,”
version v0.6.2, 11/2019.

[101] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dy-
namics, and function using NetworkX,” in Proceedings of the 7th Python in Science
Conference (SciPy2008), 2008.

[102] M. Z. Al-Taie and S. Kadry, “Network basics,” in Advanced Information and Knowl-
edge Processing, 2017.

[103] M. J. Rochkind, Advanced UNIX Programming (2nd Edition). Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[104] M. Casoni and N. Patriciello, “Next-generation TCP for ns-3 simulator,” Simula-
tion Modelling Practice and Theory, vol. 66, pp. 81–93, 08/2016.

[105] P. Gupta, R. Gray, and P. R. Kumar, “An Experimental Scaling Law for Ad Hoc
Networks,” Tech. Rep., 2001.

[106] M. Garetto, T. Salonidis, and E. W. Knightly, Modeling per-flow throughput and
capturing starvation in CSMA multi-hop wireless networks, 2008.

[107] C. Hua and R. Zheng, “Starvation Modeling and Identification in Dense 802.11
Wireless Community Networks,” Communications Society, pp. 1696–1704, 2008.

[108] E. Jones, T. Oliphant, P. Peterson, et al. (2001). SciPy: Open source scientific
tools for Python, [Online]. Available: http : / / www . scipy . org/ (visited on
09/10/2018).

[109] S. Gramacho, F. Gramacho, and A. Wildani, “Autonomic Partitioning for the Smart
Control of Wireless Mesh Networks,” in 2019 International Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob), 10/2019,
pp. 175–182.

https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/USBuildingFootprints
http://www.gadm.org/home
http://www.gadm.org/home
http://www.scipy.org/

137

[110] D. Ongaro and J. K. Ousterhout, “In search of an understandable consensus algo-
rithm,” in USENIX Annual Technical Conference, 2014, pp. 305–319.

[111] IEEE Computer Society, IEEE Standard for Information technology - Telecommu-
nications and information exchange between systems - Local and metropolitan
area networks - Part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications. New York, NY, US: IEEE, 2012.

[112] L. Lamport, “Paxos Made Simple,” ACM SIGACT News, vol. 32, no. 4, pp. 51–58,
2001.

[113] M. Burrows, “The Chubby lock service for loosely-coupled distributed systems,”
in Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’06), 2006.

[114] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper: Wait-free Coordina-
tion for Internet-scale Systems.,” USENIX, 2010.

[115] A. Ailijiang, A. Charapko, and M. Demirbas, “Consensus in the Cloud: Paxos
Systems Demystified,” in 2016 25th International Conference on Computer Com-
munication and Networks (ICCCN), IEEE, 08/2016, pp. 1–10.

[116] S. Gramacho, F. Gramacho, and A. Wildani, “Autonomic Formation of Large-Scale
Wireless Mesh Networks,” in NetSoft 2020, Ghent, BE, 2020.

[117] I. V. Brito, S. Gramacho, I. Ferreira, M. Nazaré, L. Sampaio, and G. B. Figueiredo,
“OpenWiMesh: a Framework for Software Defined Wireless Mesh Networks,” in
Proceeedings of the 32nd SBRC, Florianópolis, SC, BR, 2014.

[118] M. et al. (2015). POX Documentation, [Online]. Available: https://noxrepo.
github.io/pox-doc/html/ (visited on 09/10/2018).

[119] P. Djukic and P. Mohapatra, “Soft-TDMAC: A software TDMA-based MAC over
commodity 802.11 hardware,” Proceedings - IEEE INFOCOM, pp. 1836–1844,
2009.

[120] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 12/1959.

[121] P. Bosshart, G. Varghese, D. Walker, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, and A. Vahdat, “P4: programming
protocol-independent packet processors,” ACM SIGCOMM Computer Communi-
cation Review, vol. 44, no. 3, pp. 87–95, 07/2014.

https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/

138

[122] M. E. J. Newman, “The mathematics of networks,” The New Palgrave Encyclo-
pedia of Economics, vol. 2, pp. 1–12, 2007.

[123] U. Brandes, “On variants of shortest-path betweenness centrality and their generic
computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008.

[124] ——, “A faster algorithm for betweenness centrality,” The Journal of Mathemat-
ical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[125] U. Brandes and D. Fleischer, “Centrality measures based on current flow,” Stacs
2005, pp. 533–544, 2005.

[126] A. Andreyev, X. Wang, and A. Eckert. (2019). Reinventing Facebook’s data center
network, [Online]. Available: https://engineering.fb.com/data-center-
engineering/f16-minipack/ (visited on 02/11/2020).

[127] N. Al-Falahy and O. Y. Alani, “Technologies for 5G Networks: Challenges and
Opportunities,” IT Professional, vol. 19, no. 1, pp. 12–20, 01/2017.

[128] Steve Song, “Village Telco,” in IS4CWN - International Summit for Community
Wireless Networks, Vienna, 2010.

[129] S. Song. (2016). MP2 AWD – ‘All Wheel Drive’ Edition, [Online]. Available:
https : / / villagetelco . org / 2016 / 11 / mp2 - awd - all - wheel - drive -
edition/ (visited on 08/16/2018).

[130] K. Williamson. (2014). Introducing Wildernets, [Online]. Available: https : / /
villagetelco.org/2014/09/introducing-wildernets/ (visited on 08/20/2018).

[131] World Possible. (2018). WORLD POSSIBLE - Connecting offline learners to the
world’s knowledge, [Online]. Available: https://worldpossible.org/ (visited
on 08/20/2018).

[132] P. Gardner-Stephen, R. Challans, J. Lakeman, A. Bettison, D. Gardner-Stephen,
and M. Lloyd, “The serval mesh: A platform for resilient communications in disaster
& crisis,” in 2013 IEEE Global Humanitarian Technology Conference (GHTC),
IEEE, 10/2013, pp. 162–166.

[133] P. Gardner-Stephen, “The Serval Project - Making Telecommunications Available
Anywhere and Anytime,” in IS4CWN - International Summit for Community Wire-
less Networks, Vienna, 2010.

[134] Gardner-Stephen, “The rational behind the serval network layer for resilient com-
munications,” Journal of Computer Science, vol. 9, no. 12, pp. 1680–1685, 12/2013.

https://engineering.fb.com/data-center-engineering/f16-minipack/
https://engineering.fb.com/data-center-engineering/f16-minipack/
https://villagetelco.org/2016/11/mp2-awd-all-wheel-drive-edition/
https://villagetelco.org/2016/11/mp2-awd-all-wheel-drive-edition/
https://villagetelco.org/2014/09/introducing-wildernets/
https://villagetelco.org/2014/09/introducing-wildernets/
https://worldpossible.org/

139

[135] VeoEscuchoOpino. (2014). Serval Project para Venezuela, [Online]. Available:
https://www.youtube.com/watch?v=TthP8IBdjao (visited on 08/16/2018).

[136] P. Gardner-Stephen. (2013). Serval Mesh 0.90 Multi-Hop MeshMS & Rhizome,
[Online]. Available: https://www.youtube.com/watch?v=u30KA7fk3v0 (visited
on 08/27/2018).

[137] R. Baig, R. Roca, F. Freitag, and L. Navarro, “Guifi.net, a crowdsourced network
infrastructure held in common,” Computer Networks, vol. 90, pp. 150–165, 2015.

https://www.youtube.com/watch?v=TthP8IBdjao
https://www.youtube.com/watch?v=u30KA7fk3v0

	Introduction
	Background
	The scaling of complex systems
	On the definition of WMNs
	Factors affecting the capacity and control of WMNs
	Analytical capacity scaling of single frequency WMNs
	Degree manipulation through directional antennas and power control
	Concentrated traffic pattern

	Capacity scaling under node clustering and multiple diversity mechanisms
	Multi-channel, multi-radio WMNs (MRMC)
	Autonomic Computing
	Partitioned WMNs: reduced overhead and hierarchical routing
	Packet routing and scheduling techniques on WMNs
	Community Wireless Networks and their application of WMNs
	The nature of CWNs
	The topology structure of CWNs

	Experimentation platforms and challenges

	An experimentation platform for the evaluation of autonomic agents
	Agent Simulator - ASim
	ASim parameters

	Network Simulator - NetSim
	Nodes' Containers
	Inter-modules messaging API
	Time synchronization

	WMN capacity scaling under autonomic topology manipulation
	Operational cycle of autonomic agents
	Autonomic behavior of agents
	Manual node agent design
	Smart node agent design

	Visual outcome of the behavior of agents in atomic settings
	Scaling results
	Experimentation settings for scaling results
	Capacity scaling results

	Self-Organizing WMN nodes
	Design of Self-Organizing WMN nodes
	Autonomic behavior of agents
	Smart node agent design

	Agent information
	Convergence of the Smart agent
	Triggers for slow convergence
	Optimizations to improve convergence
	Modeling divergence

	Visual outcome of Self-Organizing agents
	Results
	Experimentation settings
	Experiments evaluating convergence
	Effort to convergence
	Resulting WMN partitioning structure

	Integrated Self-Organizing, Self-Healing WMN nodes
	Design principles for the integrated Self-Organizing, Self-Healing WMN nodes
	Integrated autonomic behavior of agents
	Smart-based: reference design of agents
	SmartOrg: Self-Organizing agent design
	SmartHeal: Self-Healing agent design

	Agent information
	Convergence of the Smart-based agents
	New divergence scenarios
	Pseudo-orderings for convergence

	Visualizing the outcome of the behavior of the integrated agents
	Results
	Experimentation settings
	Time to convergence
	Recovering global connectivity
	Converging to defined properties
	Effort to convergence
	Topology structure under integrated organizing and healing

	Explorations with SDN control planes into WMNs
	A reference architecture for SDN-based WMNs
	Centralized SDN-based WMNTDMA scheduler
	Contention aware multi-path mesh routing based on centralized control
	WMN contention minimization: a current-flow betweenness centrality application
	About graph centrality
	Proposed solution
	Simulated evaluation
	Section conclusion

	Conclusion and future work
	Future work

	Appendix
	Additional information about CWNs
	Village Telco
	Replicating Internet content locally: World Possible's projects
	The Serval Project
	Gulfi.net
	Athens Wireless Metropolitan Network

	Bibliography

