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Abstract 
 

Assessment of diagnostic accuracy after biomarker combination in the same study:  
The issue of over-optimism and potential solutions  

 
 
 
 

By Zhiwei Zhao 
 
 

    In disease diagnosis, biomarker combination is an important method in disease 
diagnosis since it is usually not enough to consider only a single marker. There are a few 
studies focusing on the biomarker combination rules. In practice, it will be ideal if 
researchers have independent training and validation datasets. However, it is usually not 
the case in real word. In fact, it is well-known that using single dataset for both 
development and evaluation of a combination rule could produce over optimism problem. 
In this thesis, we are trying to address this problem. We used logistic regression to 
generate the combination rule. Then, area under the ROC curve (AUC) was used as the 
assessment method. The k-fold cross-validation was used in order to solve the over 
optimism. To reduce the bias, we proposed and introduced a two-sample jackknife bias-
reduced approach as well as bootstrap bias-reduced approach. As for inference, 
bootstrap was introduced to estimate the standard error and a double bootstrap was 
proposed to improve the estimate for bootstrap bias-reduced estimators. A prostate 
cancer data was used as an illustration of the aforementioned methods in real word 
application. 
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1 Introduction

Biomarker is a portmanteau of ”biological marker”, which refers to a subcategory

of medical signs (Strimbu and Tavel, 2010)[1]. It is the most quantifiable and objective

one among medical signs. The importance of biomarker study is increasing in the areas

of streamlining drug research, diagnostic disease, medical personalization and clinical

endpoints surrogation. The disease diagnosis with biomarkers is the topic of our spe-

cial interest. But a single biomarker is usually not su�cient enough to get a precise

diagnostic result as most biomarkers reveal complementary information. For example,

in prostate cancer we usually have more than one subtypes and for each subtype, some

biomarkers could be really informative whereas at the same time, they could be totally

non-informative for other markers (Kornberg et al, 2018)[2]. In this situation, only using

a single biomarker as diagnostic rule can misdiagnose some subtypes as no-disease if the

marker used in the study happened to be the one only informative for a specific subtype

(Chan et al, 2013; Sanda et al, 2017)[3, 4]. Thus, biomarker combination is an important

topic in medical research as it is supposed to have a better performance in diagnosis.

Several other studies which are related to atherosclerotic coronary heart disease, os-

teoarthritis (OA) and Alzheimer’s disease (AD) has also emphasized the necessity of

biomarker combinations (review Liu et al, 2005; Frolich et al, 2017 and Williams, 2009

for more details)[5, 6, 7]. Also, it has been shown that combinations of biomarkers may

lead to more sensitive screening rules of cancer detection (Etzioni et al. 2003) [8]. These

increasing applications of biomarker combinations to facilitate the diseases diagnosis

highlight the need of careful assessment of the performance of the diagnostic rules (i.e.

biomarker combinations in our study).
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Plenty of studies have been conducted about the way of biomarker combinations.

Neyman-Pearson Lemma has been used to diagnosis which led to the insights about

combination of multiple markers when the joint distribution of biomarkers is known

for disease and controls (Green and Swets, 1966; Egan, 1975; Baker, 2000)[9, 10, 11].

The nonparametric method (Baker, 2000) [11] , logistic regression and boosting (Qu

et al, 2002 and Yasui et al, 2003) [12, 13] has been used when the joint distributions

of biomarkers are unknown for disease and control groups (see Feng and Yasui, 2004

for more reviews of these methods)[14]. In addition, it has been proved that logistic

regression could produce an optimal rules for combinations when it holds(McIntosh and

Pepe, 2002)[15]. And another useful way for combination of biomarkers is defined by a

linear discriminant function which maximizes the area under the operating characteristic

(ROC) curve (Su and Liu, 1993) [16], but this method is limited to the multivariate

normally distributed biomarkers and some extra works has been done to relax this

assumption (Pepe and Thompson, 2000) [17].

There are many methods used as the assessments of diagnostic rules. The measure

of area under the ROC curve (AUC) is a widely used index of the assessment of diagnostic

accuracy. It can be interpreted as an index which measures the distance between the

distributions of scores for diseased and disease-free subjects, in a distribution-free sense

(Pepe and Thompson, 2000) [17]. Here ”score” is a combination of biomarkers which

is used in diagnosis. There are other measures of accuracy such as true-positive rate

(TPR) and false-negative rate (FPR). These are methods which depend on the setting

of implemented technology with varied optimal threshold (Dodd and Pepe, 2003) [18].

In practice, the intention of getting an accurate diagnostic rule also requires less

over-optimism issues as well as low biases. One potential and the most prominent source
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of bias among the diagnostic tests is the interpretation of the ”gold-standard” test and

diagnostic test results should be independent and blinded (Sahpiro 1999; Begg 1991;

Begg and McNeil 1998) [19, 20, 21]. Research should be especially careful when using

the same dataset to both develop and evaluate a diagnostic rule. It is well known

that over-optimism may arise if the performance is evaluated with the same derivation

data. However, these kind of discussions are more focusing on the diagnostic models

instead of a specific consideration of the statistics used for accuracy evaluation such as

AUC (Schutte et.al, 2011)[22]. Nevertheless, with the risk of over-optimism, researchers

continue using the same dataset to develop and assess the rules especially when the

sample size is limited.

In this thesis, we used AUC to evaluate the biomarker combinations and focused on

the over-optimism issues as well as the high biases when only single dataset is available.

We reviewed the existing methods for estimation and inference of AUC as an assessment

of combination rules (logistic regression was used in our special case). We introduced new

methods to solve problems of over-optimism and bias reduction, conducted simulations

to compare these methods and applied to a prostate cancer study. In simulations,

one general setup was analyzed, but a special situation was also considered. In the

illustrated case study, a study based on the research from Sanda (2017)[4] was used

with 514 observations, in which three important biomarkers were combined and the

performance was evaluated by the proposed methods mentioned in simulation study.

All simulations and analysis were conducted in R (version: 3.5.2).
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2 Methods

2.1 Notations

To describe the technical procedures, Y = (Y1, ..., Yp) is considered as predictors

(or biomarkers). The diagnostic rule then will be written as L(Y) = ↵1Y1 + · · ·+ ↵pYp

and will be called as ”score”. Here, ↵1, . . . ,↵p is the linear combination coe�cients. If

logistic regression holds, they are the coe�cients for logistic regression. Otherwise, if the

logistic regression violates, they will be the limits of estimated coe�cients under large

sample size. And the prediction rule will be invariant even if multiplying a constant to

the score function.

Particularly, in our study, we need to consider situations with cases and controls.

Thus, we define {Y
:
D1

, ..., Y
:
DnD

} and {Y
:
D̄1

, ..., Y
:
D̄nD̄

} as observed biomarker vectors for

cases and controls respectively, where Y
:
Di

= (YD,i1, . . . , YD,ip) represents the observed

biomarkers for the i-th subject in cases and Y
:
D̄i

= (YD̄,i1, . . . , YD̄,ip) represents those for

the i-th subject in controls. Furthermore, the estimated coe�cients in logistic regression

will be defined as {↵̂1, ↵̂2, ..., ↵̂p} and the estimated score function will be defined as

L̂(Y) = ↵̂1Y1 + · · ·+ ↵̂pYp.

2.2 Point Eatimation

2.2.1 Standard Approach

In diagnostic studies, when the number of biomarkers is finite, the combination

rules will be asymptotically approximate the true results if observations are infinite.

However, it is usually not true. The simplest and most common method to evaluate

the combination accuracy is using a single dataset for diagnostic rule generation as well
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as evaluation. Such an approach provides a very fast analysis as well as a very simple

operation. However, it ignores the correlation between the training dataset and testing

dataset and hence lead to over-optimism and high-biased results. We used this approach

as a reference (or standard) approach in our study and compared the performances of

other methods with it.

Specifically, we ran the logistic regression on the whole dataset and then calcu-

lated the AUC for assessment. Theoretically, AUC is the probability of scores for cases

greater than the probability of scores for controls. That is, AUC = Pr(L(Ycases) >

L(Ycontrols)), where Ycases and Ycontrols are the biomarker vectors for case and control.

In fact, the AUC can be estimated by the frequencies of scores for cases that exceed

scores for controls plus 0.5 multiplied by the frequencies of equal scores as an adjustment,

which is:

dAUC =
1

nDnD̄

nDX

i=1

nD̄X

j=1

{I[L(Y
:
Di
) > L(Y

:
D̄j

)] +
1

2
I[L(Y

:
Di
) = L(Y

:
D̄j

)]},

where nD and nD̄ are numbers of observations for cases and controls and the definition

for Y
:
Di

and Y
:
D̄j

are the same as in notation part.

2.2.2 Cross-Validation

In an ideal situation, there should exist two independent datasets so that an in-

dependent validation dataset is available to evaluate the diagnostic rule. However, in

practice, it is often not the case and hence there usually exists over-optimism issues. In

this situation, the use of cross-validation (CV) is a typical method to solve this problem

since the procedure of CV will assess the result of a statistical analysis on an indepen-

dent dataset and the use of an independent dataset during the development phase are

supposed to reduce over-optimism (Boulesteix, 2015)[23]. The general procedure for CV
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is to partition the data into subsets for training and testing and there are several ways

to do it such as leave-one-out cross validation (LOOCV), generalized cross validation

(GCV), leave-K-out cross validation (LKOCV) and k-fold cross validation (see Syed,

2011 as a review of these methods)[24].

A k-fold cross-validation method was used in our study. This method randomly

divides the data into k parts, one part will be used as the testing and the rest as the

training. K times iterations are executed, and the average of the results is the final

result. So, the estimator function will be:

dAUCCV =
1

k

kX

i=1

dAUCCV,i,

where dAUCCV,i is the cross-validation estimator using i-th sub-dataset as testing. This

kind of result from k-fold cross-validation tends to be conservative which produces neg-

ative bias estimators, but the e↵ect of bias reduction for AUC here is disputed (more

details could be referred in simulation and discussion parts).

2.2.3 Jackknife Bias Correction

Jackknife has been proposed initially for bias reduction (Quenouille, 1949) and

then been developed as a tool to estimate variance. In most situation, this jackknife

approach is used for one-sample case where only single sample is considered. But it is

less applicable in our study as we usually have two independent samples of cases and

controls. Schechtman and Wang (2004) [25] has proposed a two-sample jackknife bias-

reduced estimator, but it has a heavy calculation load. Therefore, we proposed a new

jackknife estimator based on the logic of the one-sample situation but is more reasonable

in a two-sample situation.
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Similar as the way to develop the one-sample jackknife bias-reduced estimator, this

jackknife estimator is derived based on the bias estimator from a two-sample estimating

expectation. To derive this method, we consider:

E( dAUC) ⇡ AUC0 +
↵

nD
+

�

nD̄
(1)

where ↵ and � are unknown constant which we want to estimate, and AUC0 is the

theoretical AUC under a specific combination rule.

Then, consider two estimators based on the average of delete-one estimators for

cases and controls, respectively. It means we will estimate the AUC based on delete one

sample from cases each time and iterated for the number of cases times. Then these

estimators will be the delete-one estimators for cases. And do similar things for controls

to get the delete-one estimators for controls. The expectation for these two estimators

will be:

E( gAUCD(·)) ⇡ AUC0 +
↵

nD � 1
+

�

nD̄

and

E( gAUCD̄(·)) ⇡ AUC0 +
↵

nD
+

�

nD̄ � 1

where gAUCD(·) is the average of delete-one AUC estimators for cases and gAUCD̄(·) is

that of controls. Hence, the two unknown constant could be estimated by:

↵̂ ⇡ �( dAUC � gAUCD(·))nD(nD � 1) (2)

�̂ ⇡ �( dAUC � gAUCD̄(·))nD̄(nD̄ � 1) (3)

By subtracting the bias terms in equation (1) using the estimated results from equation

(2) and (3) (i.e. subtract ↵̂
nD

and �̂
nD̄

) from the estimated dAUC, the estimator equation

is:

dAUCjack = (nD + nD̄ � 1) dAUC � (nD � 1) gAUCD(·) � (nD̄ � 1) gAUCD̄(·)
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2.2.4 Bootstrap Bias Correction

Bootstrap is a common method to estimate statistics such as mean, variance or

quantiles. Efron and Tibshirani (1993) [26] mentioned a bootstrap bias-reduced estima-

tor and its improvement, but they are hardly used in biomarker studies. The purpose

of bias-reduced bootstrap estimator is also to reduce a bias term. Then the estimator

function is,

dAUCboot = dAUC � (
1

B

BX

k=1

dAUC
?
k � dAUC)

= 2 dAUC � 1

B

BX

k=1

dAUC
?
k

where dAUC is also the standardized evaluation method, dAUC
?
k is the estimator in each

bootstrap step and B is the iteration times for bootstrap procedure.

In addition, Efron and Tibshirani (1993) [26] had also proposed an improvement

estimator based on this method. This improvement is supposed to have a better con-

vergence rate than the previous one. In other words, the number of iteration times to a

stable value for bootstrap should be smaller for the improvement than the old estimator.

Based on their concepts,

dAUCbootimprove = dAUC � (
1

B

BX

k=1

dAUC
?
k � gAUC) (4)

where gAUC is a new estimator based on the average of bootstrap distributions. In

this study, gAUC was estimated by adding a weight within logistic and AUC calculation

procedures. And the weight is calculated based on the average of observation frequencies

in each bootstrap iteration.
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2.3 Variance Estimation

In large sample study, bootstrap is a good method to estimate statistics like esti-

mating variance or mean. In our study, we will use it to estimate the variance. But

the situation is complicated since we need to think about the randomness in both the

risk score (or score function) estimator (which comes from the coe�cients estimators in

logistic regression) and the AUC estimator. Specifically, in each iteration, the dataset

from bootstrap ran a logistic regression and then AUC was calculated. The variance

then would be the variance of the estimators based on the bootstrap samples. We used

these estimated variances to construct the 95% confidence intervals for all of the meth-

ods above by re-centering the Wald CI’s for each approach. Here, re-centering means to

calculate the Wald CI based on estimators of each method.

For standard approach, this construction of confidence interval was proper since

these bootstrap variances were the estimated variance for standard estimators. In large

sample study, these variances were supposed to asymptotically approximate the vari-

ances for cross-validation estimators, jackknife bias-reduced estimators or bootstrap

bias-reduced estimators. However, in our study with relatively small sample size, using

the variances estimated based on the standardized approach was not so appropriate.

With this concern, a double-bootstrap for the bootstrap bias-reduced approach was also

discussed in our study in order to improve the inference accuracy.

The way to do that was to resample the data by bootstrap and then applied the

bootstrap bias-reduced estimator method on this resampled data. So, there would be

an outside bootstrap procedure which resampled the data and would also be an inside

bootstrap procedure which estimated the bootstrap bias-reduced estimator. Then, the
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variance was the variance of the estimators for the outside bootstrap samples. Also, we

considered the coverage probabilities of the confidence intervals in simulation study and

we will talk more about this later.

Additionally, a log-transformation of these confidence interval construction was also

considered. Log-transformation is a spontaneous method people will do for statistics lay

between 0 and 1. Here we will take the log-transformation of AUC estimators and

construct the confidence interval by considering the variance (or standard deviation) of

the log transform.

3 Simulations

3.1 Situation with only one informative biomarker

In a basic simulation, supposing independent case and control groups, each group

contained the same number of observations. Biomarkers in both case and control

groups were supposed to be multivariate normally distributed and uncorrelated. For

convenience, the identity matrix were used as the covariance matrix. In the basic

simulation study, only one biomarker in case group was considered to be informa-

tive (i.e. having a mean not equal to 0). In this case, unknown parameter mean

for this informative biomarker could be derived with µ =
p
2��1(AUC0), where ��1

was the cumulative distribution function of standard normal distribution and AUC0

was the theoretical area under the curve which was self-defined. The other biomarkers

were considered to be non-informative and having 0 means. For the bias estimator,

Bias( dAUC) = E( dAUC) � AUC0 was applied. In order to get the expectation, 1, 000

datasets were generated by simulation, for each dataset, estimated AUC 0s were calcu-
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lated using the aforementioned methods. Then, the average of the 1, 000 estimators

could approximate the expectation AUC 0s and the biases could be calculated.

In order to explore a coverage probability of the confidence intervals for each iter-

ation, we used the bootstrap method as we mentioned in the method part to estimate

the variance of each estimator and to construct the 95% Wald CI’s. Then the coverage

probability was the percentage of intervals which contained the true AUC0. Also, afore-

mentioned double bootstrap was applied to bootstrap bias-reduced estimators in order

to get more reasonable coverage probabilities.

3.2 Situation with subtypes

At the same time, a special setup was also under our interests as in real world dataset

would be more complex and biomarkers could be more complicatedly distributed. One

typical situation in real life is there are subtypes of disease and some biomarkers are

informative for a specific subtype but are non-informative for other subtypes. In this

case, the previous simulation seemed to be provided less information. In our study, to

simplify the simulation, we considered 3 subtypes of disease, with each subtype having

one informative biomarker. In other words, 3 biomarkers were simulated, but each

marker would be informative only for one subtype. Also, equal numbers of subtypes were

sampled, since with this balanced dataset, the final biomarker combination could take

the average of the combinations for each subtype due to the symmetric distribution of

markers in our simulation. Then, the mean for the informative biomarker fo each subtype

would be µ =
p
6��1(AUC0), and the covariate matrix would be a diagonal matrix with

1p
3
diagonals. Again, 1, 000 datasets were simulated, and the biases calculation as well

as the coverage probabilities construction were as the same as previous.
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3.3 Results

Table 1 and 2 shows the main results of our assessments for the basic structure

including the bias, standard deviation and coverage probability. Four basic setups were

considered, with the AUC0 be either 0.6 or 0.8 and the number of biomarker as well

as the number of observations di↵ered. We can observe the bias to standard deviation

ratios tend to be larger for standard approach and those for bias-reduction method

(jackknife and bootstrap) are much smaller. The ratios for cross-validation method is at

the middle between standard and bias-reduction methods. The estimated results from

cross-validation (either 3-fold or 10-fold) are conservative, with negative ratios exist

which represented negative biases. The standard deviation within the 1,000 iterations

for standard method is close to the standard error estimated by bootstrap method. And

comparing to the standard deviation for the standard approach, all of the rest results

have higher standard deviations and jackknife performs the worst.

The coverage probabilities are all less than expected value of 95%. The worst

coverage probabilities are from jackknife estimators with only nearly 50% ⇠ 70% con-

fidence intervals contained the true AUC0. Those two cross-validation methods also

have lower coverage probabilities with most of the setups having 70% ⇠ 80% cover-

age. Bootstrap methods have good coverage probabilities with most of them are around

90%. Log-transformation is not really helpful with respect to improving the coverage

probabilities, on the contrary, the results for log-transform are somehow poorer.

The results for improved bootstrap bias-reduced estimator is not included in these

tables as it performed similar to that of bootstrap bias-reduction and the number of

bootstrap iteration times is less considerable since it could be calculation burdensome
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if we want to include a large iteration number in our simulations.

Table 3 compares di↵erent method for calculation of coverage probabilities for boot-

strap bias-reduced estimators. We compared the probabilities calculated by recentered

confidence interval (which is based on the estimated standard error for standard ap-

proach) and those calculated by double bootstrap method. The coverage probabilities

after doing double bootstrap is closer to the true confidence level (95%) than that

of re-centered method, the estimated standard errors are higher for double bootstrap

and the log-transformation helps with improvement of coverage probabilities for double

bootstrap method. Only one setup in our simulations was applied with double boot-

strap method since the heavy calculation load of this method. But the results here are

encouraging.

Table 4 shows the results for setup with three subtypes and with one biomarker

informative for each subtype. We only included the results for AUC0 = 0.6 due to the

intensive calculation time but most of the results were pretty similar to what we have in

situation with only one informative biomarker. The bias to standard deviation ratio is

still large for standardized method. But it can also be noticed that, the ratio for 3-fold

cross-validation is poorly performed. Actually, the results for 3-fold CV are in general

the worst with respect to all the statistics we estimated but also the 3-fold results in

table 2 are not obviously performed so badly. For the rest methods, jackknife has the

highest standard deviation as well as the poorest coverage probability and standard

method has the lowest SD and the highest coverage.
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Table 3: Coverage Probabilities Comparison for Bootstrap Bias-Reduced Estimators

setups No. of Biomarkers Re-centered Method Double Bootstrap

coverage log-trans SE coverage log-trans SE
Prob Prob

AUC0 = 0.6 2 86.9% 86.0% 0.0508 92.0% 94.3% 0.0590
nD̄ = 50 3 88.4% 85.1% 0.0503 91.9% 95.5% 0.0569
nD = 50 4 89.7% 85.0% 0.4970 92.6% 95.3% 0.0556

5 87.7% 82.8% 0.0493 90.7% 95.2% 0.0557

Table 4: Results for setups with only one informative biomarker for each subtype, 3 subtypes

3 biomarkers AUC Bias/SD SD Coverage Probabilities

AUC0 = 0.6,nD = 50,nD̄ = 50

Standardized Method 0.6443 0.8735 0.0507 86.4%

Jackknife Method 0.6208 0.1304 0.1593 48.3%

Bootstrap Method 0.6205 0.3109 0.0660 84.9%

Cross Validation

3-fold 0.4962 -0.9825 0.1057 50.1%

5-fold 0.5589 -0.4616 0.0891 74.4%

10-fold 0.5761 -0.2900 0.0826 80.2%

AUC0 = 0.6,nD = 100,nD̄ = 100

Standardized Method 0.6321 0.8350 0.0373 88.8%

Jackknife Method 0.6176 0.1598 0.1099 51.5%

Bootstrap Method 0.6192 0.4393 0.0437 88.5%

Cross Validation

3-fold 0.4989 -1.2879 0.0785 38.9%

5-fold 0.5706 -0.4765 0.0617 77.5%

10-fold 0.5895 -0.1908 0.0552 83.9%
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4 Real Data Application

For illustration, we applied the various estimation and inference methods to a

prostate cancer study. The data for this illustration were taken from a cohort study in-

vestigating the e↵ect of combined T2:ERG and PCA3 on detection of aggressive prostate

cancer(Sanda et al,2017)[4]. In their study, they want to evaluate the priori primary hy-

pothesis that combined measurement of PCA3 and T2:ERG RNA in the urine after dig-

ital rectal examination would improve specificity over measurement of prostate-specific

antigen alone for detecting prostate cancer. As a result, the use of combining testing

of these two biomarkers improved the specificity twice (from 18% to 39%), with respect

to predicting aggressive prostate cancer at initial biopsy. There are 514 eligible partic-

ipants (156 cases and 358 controls) from 748 previous prospective cohort participants.

T2:ERG and PCA3 as well as pre-biopsy prostate-specific antigen (PSA) were the three

biomarkers of interest in our study, other covariates including age, family prostate can-

cer history, race and digital rectal exam (DRE) were also been considered. All of the

above methods for accuracy assessment were applied in this dataset, bootstrap method

was also used to estimate the estimated variance and to construct the 95% confidence

interval.

Table 5 shows the results for real data analysis. We can see the estimated AUC

are really close to each other comparing all the methods, but it could still be noticed

that the standard method had the slightly higher AUC. The log-transformed confidence

intervals tend to be wider. The number of bootstraps for the bootstrap bias-reduction

method is 2,000. The reason we used a larger iteration time is the results tend to be

more stable around 2,000 compared to a small iteration times such as 100.



18

Table 5: Results for real data analysis

Model with Biomarkers Only With Covariates[1]

AUC CI log-CI AUC CI log-CI

Standard 0.7588 (0.713,0.805) (0.698,0.819) 0.7580 (0.712,0.804) (0.697,0.819)

Jackknife 0.7585 (0.708,0.799) (0.693,0.814) 0.7578 (0.673,0.765) (0.658,0.780)

Bootstrap[2] 0.7580 (0.712,0.804) (0.698,0.819) 0.7578 (0.711,0.804) (0.696,0.818)

C-V

3-fold 0.7569 (0.711,0.803) (0.696,0.818) 0.7533 (0.707,0.780) (0.692,0.814)

5-fold 0.7552 (0.709,0.801) (0.695,0.816) 0.7573 (0.709,0.801) (0.694,0.816)

10-fold 0.7581 (0.712,0.804) (0.698,0.819) 0.7548 (0.711,0.803) (0.696,0.818)

1 Adjusted for covariates of family prostate cancer history, age, race and digital rectal exam.

2 Number of bootstrap iterations is 2,000.

5 Discussion

In this study, we investigated the potential over-optimism problem when using the

same dataset for both developing and evaluating the methods in biomarker studies. As

a result, the over-optimism problem did exist especially when the true area under the

curve was relatively small or most of the biomarkers were non-informative. As expected,

the k-fold cross-validation worked on solve the over-optimism problem and tended to

have conservative results. However, what is less known, as demonstrated in our study,

this method may also have considerable bias although in the other direction. The 3-

fold cross-validation, not surprisingly, performed worse especially in the setup with 3

subtypes. The reason is when doing 3-fold CV, the training dataset will be relatively

smaller and provide less information for development of combination rules. But we

should also notice that the bad performances of 3-fold were not so bad in the basic
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setups. It could be explained by the fact that in basic setups, the biomarkers are all

informative or non-informative across the disease so the information in training and

testing should be balanced no matter how to divide the data, but in the special setup

with 3 subtypes, the biomarker are not all informative across disease. Therefore, when

the data was randomly divided, the unbalanced subtypes in training and testing can lead

to bad results since the information in training and testing could be also unbalanced.

By comparing the standard deviations and standard errors for standardized method, we

can see the poor performance of the coverage probabilities was caused by the bias since

SD and SE are close to each other.

The jackknife bias-reduced estimator reduced the bias well, but it seemed to produce

high variance estimators. It is reasonable to have an increasing variance in bias-reduced

estimator as there are trade-o↵s between bias and variance when we are doing evalua-

tions. However, the trade-o↵ here for the jackknife method seemed to be extremely high

with the coverage probabilities were every poorly performed. One reasonable explain is

the jackknife turned to perform worse for estimators that are not smooth functions of

the sample data, such as median. As our estimator function of AUC here is not a smooth

function, this method could perform poorly. This issue merits further investigation as

the two-sample jackknife variance estimator of the AUC was proved to perform better

than other closed-form variance estimator (Bandos, Guo and Gur, 2017)[27]. In other

words, the jackknife methods are good tool for variance estimators for AUC, but it’s

less useful in the context of bias reduction as the variance went too large.

The bootstrap bias-reduced estimator performed well. It has less bias than the

standardized method and with lower variance trade-o↵ compared to jackknife estimators.

The improved bootstrap method is considered to have a better convergence rate, but
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the comparison of the iteration times will need a much higher calculation load, which we

have not discussed. Also, we could notice that all of the coverage probabilities seemed

not performed well, the log transformation was not helpful at all and even produced

worse results. One possible reason is the abuse of the estimated variance based only

on the standardized method. To explore this, we performed a double bootstrap in

the bootstrap bias-reduced method. The estimated standard errors increased which is

expected as the trade-o↵ between bias and standard error exist. There’s an obviously

promotion of the probabilities and the log-transformation had a better coverage which is

around 95%. However, we only conducted this method with one setup and one method.

The calculation will be burdensome if we want to explore more details about double

bootstrap, parallel calculation or other calculation method might be necessary for further

consideration.

In the more complicated setup simulation, all of the method seemed to be consistent

as the conclusion we got from the simple setups. However, other setups are also deserved

to be studied. Situations when the logistic regression is violated are desirable. One way

to do this is to performed bootstrap in the real data and kind of simulated based on it.

Again, the calculation will be burdensome, so we did not discuss it.

In the real data analysis, the results for AUC estimator are similar. It could be the

reason that we have a relatively larger sample size than what we have used in our simula-

tions. One should notice that a fluctuated estimator for bootstrap or cross-validation is

reasonable since both cross-validation and bootstrap methods have a randomized steps

which make the result unstable. Therefore, situations could be much more complex

in real world, and some more precise and complicated methods or models need to be

considered.
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