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Abstract

Interpretable and Interactive Representation Learning on Geometric Data
By Yuyang Gao

In recent years, representation learning on geometric data, such as image and graph-
structured data, are experiencing rapid developments and achieving significant progress
thanks to the rapid development of Deep Neural Networks (DNNs), including Con-
volutional Neural Networks (CNNs) and Graph Neural Networks (GNNs). However,
DNNs typically offer very limited transparency, imposing significant challenges in ob-
serving and understanding when and why the models make successful/unsuccessful
predictions [61]. While we are witnessing the fast growth of research in local expla-
nation techniques in recent years, the majority of the focus is rather handling “how
to generate the explanations”, rather than understanding “whether the explanations
are accurate/reasonable”, “what if the explanations are inaccurate/unreasonable”,
and “how to adjust the model to generate more accurate/reasonable explanations”
[13, 108, 168, 88, 129, 130, 62, 183, 151].

To explore and answer the above questions, this dissertation aims to explore a new
line of research called ‘Explanation-Guided Learning’ (EGL) that intervenes the deep
learning models’ behavior through XAI techniques to jointly improve DNNs in terms
of both their explainability and generalizability. Particularly, we propose to explore
the EGL on geometric data, including image and graph-structured data, which are
currently under-explored [61] in the research community due to the complexity and
inherent challenges in geometric data explanation.

To achieve the above goals, we start by exploring the interpretability methods for
geometric data on understanding the concepts learned by the deep neural networks
(DNNs) with bio-inspired approaches and propose methods to explain the predictions
of Graph Neural Networks (GNNs) on healthcare applications. Next, we design an
interactive and general explanation supervision framework GNES for graph neural
networks to enable the “learning to explain” pipeline, such that more reasonable and
steerable explanations could be provided. Finally, we propose two generic frame-
works, namely GRADIA and RES, for robust visual explanation-guided learning by
developing novel explanation model objectives that can handle the noisy human an-
notation labels as the supervision signal with a theoretical justification of the benefit
to model generalizability.

This research spans multiple disciplines and promises to make general contribu-
tions in various domains such as deep learning, explainable AI, healthcare, computa-
tional neuroscience, and human-computer interaction by putting forth novel frame-
works that can be applied to various real-world problems where both interpretability
and task performance are crucial.
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Chapter 1

Introduction

As Deep Neural Networks (DNNs) are widely deployed in sensitive application areas,

recent years have seen an explosion of research in understanding how DNNs work

under the hood (e.g., explainable AI, or XAI) [8, 5] and more importantly, how to

improve DNNs using human knowledge [61]. In particular, representation learning

on geometric data, such as image and graph-structured data have been increasingly

grabbed attention in several research fields, including computer vision [108, 43], natu-

ral language processing [7], medical domain [33], and beyond. Such trend is attributed

to the practical implication of geometric data—many real-world data, such as social

networks [40], chemical molecules [128], and financial data [96], are represented as

image or graphs.

In recent years, representation learning on geometric data, such as image and

graph-structured data, are experiencing rapid developments and achieving significant

progress thanks to the rapid development of Deep Neural Networks (DNNs), includ-

ing Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs).

However, DNNs typically offer very limited transparency, imposing significant chal-

lenges in observing and understanding when and why the models make success-

ful/unsuccessful predictions [61, 159]. This issue motivates a surge of recent research
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on Explainable Artificial Intelligence (XAI) techniques, including gradients-based

methods, where the gradients are used to indicate the importance of different in-

put features [13, 108]; perturbation-based methods, where an additional optimization

step is typically used to find the important input that influences the model output

the most with input perturbations [168, 88, 129]; response-based methods, where the

output response signal is backpropagated as an importance score layer by layer un-

til the input space [13, 108, 130]; surrogate-based methods, where the explanation

obtained from an interpretable surrogate model that is trained to fit the original pre-

diction is used to explain the original model [62, 183, 151]; and global explanation

methods, where graph patterns are generated to maximize the predicted probability

for a certain class and use such graph patterns to explain the class [173].

Despite the recent fast progress on explanation techniques for DNNs, the majority

of the research body in XAI put focus on handling “how to generate the explanations”

while showing less attention to advanced questions like “whether the explanations are

reasonable/accurate”, “what if the explanations are unreasonable/inaccurate”, and

most importantly, “how to adjust the model to generate more reasonable/accurate

explanations in the future”. We argue that understanding how to convert insights

learned from XAI-driven techniques to steer DNNs would be the key to realizing the

DNNs to be more powerful, fair, accountable, transparent, unbiased, and trustworthy,

unraveling many real-world application areas.

Recently, a new line of research named Explanation-Guided Learning (EGL) [82,

125, 63, 140] that aims to intervene ML model’s behavior through XAI techniques

has started to emerge. In particular, the approaches jointly improve DNNs in terms

of both their explainability and generalizability by applying additional supervision

signals or prior knowledge onto the model reasoning process to direct the model

explanation derived from established XAI techniques. Despite the fact that EGL

techniques are generally still in their early stage, the majority of existing studies
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have produced encouraging results, showing that the main DNNs can generally ben-

efit from the additional explanation objective in terms of both model explainability

and generalizability to unseen data across various application domains. However,

developing EGL frameworks can be difficult for geometric data due to several chal-

lenges: 1) Difficulty in enhancing the explainability of geometric neural

network models. Due to the complex data structure and high dimensionality of

geometric data, it is difficult to directly apply conventional explainability techniques

to geometric neural network models, such as CNNs and GNNs. Thus enhancing

the explainability of geometric neural networks models can be particularly helpful

for representation learning on geometric data, especially for graph-structured data,

as non-expert humans cannot intuitively understand the relevant context within a

network, for example, when identifying groups of atoms (a sub-graph structure on

a molecular graph) that contribute to a particular property of a molecule [108]. 2)

Difficulty in refining the geometric neural networks model’s explanation.

For graph-structured data, existing GNN explanation works usually focus on either

node and edge explanation while the interplay and consistency between the explana-

tions of nodes and edges are extremely challenging to maintain and jointly adjusted;

while for image data, some important object parts or even the entire objects may

be missed by the coarsely drawn boundary from human annotators. Thus, applying

naive supervision directly to train the model can lead to falsely excluding non-trivial

features from the input space that are important to the prediction. 3) Difficulty

in jointly improving model performance and explainability with limited

explanation supervision. Due to the high cost of human annotation, it can be

impractical to assume full accessibility to the human explanation label during model

training. Thus designing an effective framework that can best leverage a partially

labeled dataset is on-demand yet challenging.

The potential of applying supervision to improve the model’s explanation in DNNs
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has been studied in many domains across different applications, such as texts [65,

119], and attributed data [150], and more. However, the research on supervising

explanations on image data—where the explanation is represented through saliency

maps—is still under-explored [61]. In part, this is due to several inherent challenges

in supervising visual explanations. Moreover, EGL on graph-structured data with

graph neural networks has not yet been explored before.

Therefore, the goal of my research explores two important problems for geometric

data, namely 1) how to enhance the explainability of geometric neural net-

works, including CNNs and GNNs, and 2) how explainability can further

benefit model’s generalizability, as shown in details in Figure 1.1. The details of

each research issue are provided in the following subsections.

1.1 Research Issues

This research aims on the exploration of designing an interpretable and interactive

learning framework for geometric neural network models as well as the applications

to the real-world tasks. As illustrated in Figure 1.1, the major research issues can be
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stated as follows:

1.1.1 Interpretable and Efficient Bio-inspired Deep Learning

via Neuronal Assemblies

Deep neural networks (DNNs) are known for extracting useful information from large

amounts of data. However, the representations learned in DNNs are typically hard to

interpret, especially for high dimensional geometric data, such as images and graphs.

One crucial issue of the classical DNN model such as multilayer perceptron (MLP) is

that neurons in the same layer of DNNs are conditionally independent of each other,

which makes co-training and emergence of higher modularity difficult. In contrast

to DNNs, biological neurons in mammalian brains display substantial dependency

patterns. Specifically, biological neural networks encode representations by so-called

neuronal assemblies: groups of neurons interconnected by strong synaptic interactions

and sharing joint semantic content. The resulting population coding is essential for

human cognitive and mnemonic processes. Here, we propose a novel Biologically En-

hanced Artificial Neuronal assembly (BEAN) [45] regularization to model neuronal

correlations and dependencies, inspired by cell assembly theory from neuroscience.

Experimental results show that BEAN enables the formation of interpretable neu-

ronal functional clusters and consequently promotes a sparse, memory/computation-

efficient network without loss of model performance. Moreover, our few-shot learning

experiments demonstrate that BEAN could also enhance the generalizability of the

model when training samples are extremely limited.
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1.1.2 Interpretation for Dynamic Attributed Graphs via Hi-

erarchical Attention

Online health communities such as the online breast cancer forum enable patients (i.e.,

users) to interact and help each other within various subforums, which are subsec-

tions of the main forum devoted to specific health topics. The changing nature of the

users’ activities in different subforums can be strong indicators of their health stages

or changes in their treatment changes. This additional patient information could al-

low health-care organizations to respond promptly and provide valuable additional

information for each patient’s specific health stage. However, modeling complex dy-

namic transitions of an individual user’s activities among different subforums over

time and learning how these correspond to his/her health stage are extremely chal-

lenging problems that cannot be addressed by existing methods. In this thesis, we first

formulate the transition of user activities as a dynamic graph with multi-attributed

nodes, then formalize the health stage inference task as a dynamic graph-to-sequence

learning problem, and hence propose novel and generic dynamic graph-to-sequence

neural networks architecture (DynGraph2Seq) to address all the challenges [44]. Our

proposed DynGraph2Seq model consists of a novel dynamic graph encoder and an

interpretable sequence decoder that learn the mapping between a sequence of time-

evolving user activity graphs and a sequence of target health stages. We go on to

propose new dynamic graph regularization and dynamic graph hierarchical attention

mechanisms to facilitate the necessary multi-level interpretability. A comprehensive

experimental analysis of its use for a health stage prediction task demonstrates both

the effectiveness and the interpretability of the proposed models.



7

1.1.3 Explanation-Guided Representation Learning on Geo-

metric Data

In recent years, convolutional neural networks (CNNs) and graph neural networks

(GNNs) and the research on their explainability are experiencing rapid developments

and achieving significant progress. Many methods are proposed to explain the pre-

dictions of CNNs and GNNs, focusing on “how to generate explanations”. However,

research questions like “whether the GNN explanations are inaccurate”, “what if the

explanations are inaccurate”, and “how to adjust the model to generate more accu-

rate explanations” have not been well explored. To address the above questions, we

aim to propose generic pipelines and frameworks to adaptively learn how to explain

GNNs and CNNs more accurately and effectively on graph-structured and image

data, respectively. Specifically, for handling GNNs on graph-structured data, we pro-

pose a novel GNN Explanation Supervision (GNES) [46] framework that can jointly

optimize both model prediction and explanation by enforcing both whole graph regu-

larization and weak supervision on model explanations. For the graph regularization,

our intention is to propose a unified explanation formulation for both node-level and

edge-level explanations by enforcing the consistency between them. For CNNs on im-

age data, we propose two EGL frameworks, namely GRADIA [48] and RES [47], that

enable explanation supervision on DNNs that can handle both positive and negative

explanation annotation labels with a novel robust explanation loss that is designed to

handle the inaccurate boundary, incomplete region, as well as inconsistent distribution

challenges in applying the noisy human annotation labels as the supervision signal.

Finally, we give the theoretical justification of the benefits of having the proposed

explanation loss to the generalizability power of the backbone DNN model.
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1.2 Contribution

The major contributions of the research presented here can be stated as follows:

Interpretable and Efficient Bio-inspired Deep Learning via Neuronal

Assemblies:

• Proposing a novel bio-inspired regularization that enhance the intrin-

sic interpretability and efficiency of deep neural networks. we propose

a Biologically Enhanced Artificial Neuronal assembly (BEAN) regularization

that promoting jointly sparse and efficient encoding of rich semantic correla-

tion among neurons, and enhancing model generalizability with few training

samples.

• Validating the interpretability and modularity. Modeling neural corre-

lations and dependencies allows us to better interpret and visualize the learned

representation in hidden layers at the neuron population level instead of the sin-

gle neuron level. Both qualitative and quantitative analyses show that BEAN

enables the formations of identifiable neuronal assembly patterns in the hidden

layers, enhancing the modularity and interpretability of the DNN representa-

tions.

• Validating the sparse and efficient encoding of rich semantic correla-

tion among neurons. We show that BEAN can promote jointly sparse and

efficient encoding of rich semantic correlation among neurons in DNNs simi-

lar to connection patterns in BNNs. Experimental results show that BEAN

not only enables the formation of neuronal functional clusters that encode rich

semantic correlation, but also allows the model to achieve state-of-the-art mem-

ory/computational efficiency without loss of model performance.

Interpretation for Dynamic Attributed Graphs via Hierarchical Atten-

tion:



9

• Defining the novel problem of inferring user health stage information

using online health forum data. We define the health stage inference prob-

lem in online health forums and formulate the user activities as transition graphs

that are capable of modeling user dynamic transitions between subforums and

their complex relationships.

• Proposing a generic framework DynGraph2Seq for inferring target

sequence from a sequence of graphs. We propose a novel deep neural

encoder-decoder framework for learning the mapping between complex dynamic

graph sequence inputs and the target output sequence.

• Proposing dynamic graph regularization and a dynamic graph hier-

archical attention mechanism for enhancing model effectiveness and

interpretability. We propose a dynamic graph regularization that enforces

the smooth learning of consecutive graphs while preserving the heterogeneity

across the graph sequence. In addition, we propose a new dynamic graph hier-

archical attention mechanism that captures both the time-level and node-level

attention, thus providing model transparency throughout the whole inference

process.

Explanation-Guided Representation Learning on Geometric Data:

• Developing generic EGL frameworks for adaptively learning how to

explain geometric neural networks such as CNNs and GNNs with

weak explanation supervision. We present new learning objectives for joint

optimization among the model prediction loss, the explanation loss, and the

explanation regularization loss on regulating the model explanation of geometric

data, including image and graph-structured data. In addition, our framework

can treat the explanation loss as an optional term and thus work effectively in

scenarios where the human annotation on explanation is limited.
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• Developing a unified graph-based explanation framework for calculat-

ing both node-level and edge-level explanation of GNNs. We proposed

a unified framework for both node-level and edge-level explanations that is suit-

able for explanation supervision and generalizable to the existing differentiable

explanation methods.

• Developing a robust model objective that can handle the noisy hu-

man annotation labels as the supervision signal for CNNs. We propose

a novel robust explanation loss that can handle the inaccurate boundary, in-

complete region, as well as inconsistent distribution challenges of image data in

applying the noisy human annotation labels as the supervision signal.

• Conducting comprehensive experiments to validate the effectiveness

of the proposed model. Extensive experiments on multiple real-world datasets

in geometric data domains, including chemical (molecular graphs) and vision

(natural images and scene graphs), demonstrate that the proposed EGL models

improved the backbone DNN model both in terms of prediction power and ex-

plainability across different application domains. In addition, qualitative anal-

yses, including case studies and user studies of the model explanation, are pro-

vided to demonstrate the effectiveness of the proposed framework.

1.3 Thesis Organization

The remainder of the research proposal is as follows. Chapter 2 describes the pro-

posed bio-inspired regularization and its applications to sparse learning, few sample

learning. Experiments results and discussions are also presented for this line of work.

Chapter 3 defines the novel problem of inferring user health stage information using

online health forum data, and describes the proposed DynGraph2Seq framework for

inferring target sequence from a sequence of graphs. The experimental results as
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well as the explainability studies on the proposed dynamic graph regularization and

dynamic graph hierarchical attention mechanism are also presented. Chapter 4 intro-

duces the proposed generic Explanation-Guided Representation Learning frameworks

for adaptively learning how to explain geometric neural networks including EGL on

CNNs and GNNs. The related works, problem formulations, the proposed frame-

works, as well as extensive experimental results on multiple real-world datasets are

presented individually for image and graph-structured data. Finally, Chapter 5 sum-

marizes the work carried out, lists the associated publications, and suggests directions

for future research.
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Chapter 2

Interpretable and Efficient

Bio-inspired Deep Learning via

Neuronal Assemblies

2.1 Introduction

Deep neural networks (DNNs) are known for extracting useful information from a

large amount of data [17]. Despite the success and popularity of DNNs in a wide

variety of fields, including computer vision [74, 56] and natural language processing

[31, 170], there are still many drawbacks and limitations of modern DNNs, including

lack of interpretability [178], the requirement of large data [68], and post selection

on complex model architecture [189, 188]. Specifically, the representations learned

in DNNs are typically hard to interpret, especially in dense (fully connected) layers.

Despite recent attempts to build intrinsically more interpretable convolutional units

[178, 123], the exploration of learned representations in the dense layer has remained

limited. In fact, dense layers are the fundamental and critical component of most

state-of-the-art DNNs, which are typically used for the late stage of the network’s
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computation, akin to the inference and decision-making processes [74, 135, 56]. Thus

improving the interpretability of the dense layer representation is crucial if we are to

fully understand and exploit the power of DNNs.

However, interpreting the representations learned in dense layers of DNNs is typ-

ically a very challenging task. One crucial issue of the classical DNN model such as

multilayer perceptron (MLP) is that neurons in the same layer of DNNs are condi-

tionally independent of each other, as dense layers in MLP are typically activated

by all-to-all feed-forward neuron activity and trained by all-to-all feedback weight

adjustment. In this comprehensively ‘vertical’ connectivity, every node is indepen-

dent and abstracted ‘out of the context’ of the other nodes. This issue limits the

analysis of the representation learned in DNNs to single-unit level, as opposed to

the higher modularity in principle afforded by neuron population coding. Moreover,

recent studies on single unit importance seem to suggest that individually selective

units may have little correlation with overall network performance [101, 192]. Specif-

ically, [101, 192] conducted unit-level ablation experiments on CNNs trained on large

scale image datasets and found that ablating any individual unit does not hurt overall

classification accuracy.

On the other hand, understanding the complex patterns of neuron correlations

in biological neural networks (BNNs) has long been a subject of intense interest for

neuroscience researchers. Circuitry blueprints in the real brain are ‘filtered’ by the

physical requirements of axonal projections and the consequent need to minimize ca-

ble while maximizing connections. One could naively expect that the non-all-to-all

limitations imposed in natural neural systems would be detrimental to their compu-

tational power. Instead, it makes them superiorly efficient and allows cell assemblies

to emerge. Neuronal assemblies or cell assemblies [57] can be described as groups

of neurons interconnected by strong synaptic interactions and sharing joint seman-

tic content. The resulting population coding is essential for human cognitive and
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mnemonic processes [19].

In this paper, we bridge such a crucial gap between DNNs and BNNs by modeling

the neuron correlations within each layer of DNNs. Leveraging biologically inspired

learning rules in neuroscience and graph theory, we propose a novel Biologically-

Enhanced Artificial Neuronal assembly (BEAN) regularization that can enforce de-

pendencies among neurons in dense layers of DNNs without substantially altering the

conventional architecture. The resultant advantages are threefold:

• Enhancing interpretability and modularity at the neuron population

level. Modeling neural correlations and dependencies allows us to better in-

terpret and visualize the learned representation in hidden layers at the neuron

population level instead of the single neuron level. Both qualitative and quanti-

tative analyses show that BEAN enables the formations of identifiable neuronal

assembly patterns in the hidden layers, enhancing the modularity and inter-

pretability of the DNN representations.

• Promoting jointly sparse and efficient encoding of rich semantic corre-

lation among neurons. Here, we show that BEAN can promote jointly sparse

and efficient encoding of rich semantic correlation among neurons in DNNs simi-

lar to connection patterns in BNNs. BEAN enables the model to parsimoniously

leverage available neurons and possible connections through modeling structural

correlation, yielding both connection-level and neuron-level sparsity in the dense

layers. Experimental results show that BEAN not only enables the formation

of neuronal functional clusters that encode rich semantic correlation, but also

allows the model to achieve state-of-the-art memory/computational efficiency

without loss of model performance.

• Improving model generalizability with few training samples. Humans

and animals can learn and generalize to new concepts with just a few trials of
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learning, while DNNs generally perform poorly on such tasks. Current few-shot

learning techniques in deep learning still rely heavily on a large amount of ad-

ditional knowledge to work well. For example, transfer-learning-based methods

typically leverage a model pre-trained with a large amount of data [161, 139],

and meta-learning-based methods require a large number of additional side tasks

[41, 137]. Here we explore BEAN with a substantially more challenging few-shot

learning from scratch task first studied by [68], where no additional knowledge

is provided aside from a few training observations. Extensive experiments show

that BEAN has a significant advantage in improving model generalizability over

conventional techniques.

2.2 Biologically-Enhanced Artificial Neuronal As-

sembly Regularization

This section describes the overall objective of Biologically-Enhanced Artificial Neu-

ronal Assembly (BEAN) regularization as well as the implementation of BEAN on

DNNs, as Layer-wise Neuron Correlation and Co-activation Divergence to model the

implicit dependencies between neurons within the same layer.

2.2.1 Layer-wise Neuron Co-activation Divergence

Due to the physical restrictions imposed by dendrites and axons [117] and for energy

efficiency, biological neural systems are “parsimonious” and can only afford to form a

limited number of connections between neurons. The neuron connectivity patterns of

BNNs are intertwined with their activation patterns based on the principle of “Cells

that fire together wire together”, which is known as cell assembly theory. It ex-

plains and relates to several characteristics and advantages of BNN architecture such

as modularity [107], efficiency, and generalizability, that are just the aspects in which
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the current DNNs are usually struggling [78]. To take advantage of the beneficial

architectural features in BNNs and overcome the existing drawbacks of DNNs, we

propose the Biologically-Enhanced Artificial Neuronal assembly (BEAN) regulariza-

tion. BEAN ensures neurons which “wire” together with a high outgoing weight

correlation also “fire” together with small divergence in terms of their activation

patterns.

An example of the artificial neuronal assembly achieved by our method can be

seen in Figure 2.1(d). The regularization is formulated as follows:

L(l)
c = 1/(SN2

l )
∑

s

∑
i

∑
j
A

(l)
i,j × d(H

(l)
s,i , H

(l)
s,j) (2.1)

where Lc is the regularization loss; the term A
(l)
i,j characterizes the wiring strength

(the higher value, the stronger connection) between two neurons i and j within layer

l; the term d(H
(l)
s,i , H

(l)
s,j) models the divergence of firing patterns (the higher value, the

more different the firing) between two neurons i and j on input sample s. Thus, by

multiplying these two functions, we penalize those neurons with strong connectivity

but high activation divergence, in line with the principles of cell assembly theory. S

is the total number of input samples while Nl is the total number of hidden neurons

in layer l.

Specifically, A
(l)
i,j defines the connectivity relation among neuron i and neuron j in

DNN, which is instantiated by our newly proposed “Layer-wise Neuron Correlation”

and will be elaborated in Sections 2.2.2 and 2.2.3. On the other hand, to model the

“co-firing” correlation, d(H
(l)
s,i , H

(l)
s,j) is defined as “Layer-wise Neuron Co-activation

Divergence” which denotes the difference in the activation patterns in lth layer be-

tween H
(l)
s,i and H

(l)
s,j of neuron i and neuron j, respectively. Here H

(l)
s,i represents the

activation of neuron i in layer l for a given input sample s. The function d(x, y)

can be a common divergence metric such as absolute difference or square difference.

In this study, we show the results for a square difference in the Experimental Study

Section; the absolute difference results follow a similar trend.
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Model Training: The general objective function of training a DNN model along

with the proposed regularization on fully connected layer l can be written as: L =

LDNN + αL
(l)
c , where LDNN represents the general deep learning model training loss

and the hyper-parameter α controls the relative strength of the regularization.

Equation 2.1 can be optimized with backpropagation [121] using the chain rule:

∂L
(l)
c

∂W (l+1)
=

∂A(l)

∂W (l+1)
D(l),

∂L
(l)
c

∂W (l)
= A(l) ∂D

(l)

∂H(l)

∂H(l)

∂W (l)
, ... (2.2)

where D(l) ∈ RS×Nl×Nl of which each element is D
(l)
s,i,j = d(H

(l)
s,i , H

(l)
s,j).

Remark 1. BEAN regularization has several strengths. First, it enforces inter-

pretable neuronal assemblies without the need to introduce sophisticated handcrafted

designs into the architecture, which is justified later in Section 3.1. In addition, mod-

eling the neuron correlations and dependencies further results in sparse and efficient

connectivity in dense layers, which substantially reduced the computation/memory

cost of the model, as shown in Section 3.2. Besides, the encoding of rich semantic

correlation among neurons may improve the generalizability of the model when insuf-

ficient data and knowledge are provided, which is demonstrated later in Section 3.3.

Finally, the Layer-wise Neuron Correlation can be efficiently computed with matrix

operations, as per Equations 2.5 and 2.7, which enables modern GPUs to boost up the

speed during model training. In practice, we observe negligible run time overhead of

the addition computation needed for BEAN regularization.

2.2.2 The First-Order Layer-wise Neuron Correlation

This section introduces the formulation of the layer-wise neuron correlation A
(l)
i,j be-

tween any pair of neurons i and j.

In the human brain, the correlation between two neurons depends on the wiring

between them [20] and hence is typically treated as a binary value in BNN studies,

with “1” indicating the presence of a connection and “0” the absence, so the corre-
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Figure 2.1: An illustration of how the proposed constraint drew inspiration from
BNNs and bipartite graphs. (a) neuron correlations in BNNs correspond to connec-
tions between dendrites, which are represented by blue lines, and axons, which are
represented by red lines. (b) and (c) analogy of figure (a) represented as connections
between layers in DNNs; although nodes i and j cannot form direct links, they can
be correlated by a given node k as a first-order correlation, or by two nodes k and m
as a second-order correlation which is also equivalent to a 4-cycle in bipartite graphs.
(d) an example of a learned neuronal assembly in neurons outgoing weight space,
with the dimensionality reduced to 2D with T-SNE [92]. Each point represents one
neuron and the neurons are colored according to their highest activated class in the
test data.

lation among a group of neurons can be represented by the corresponding adjacency

matrix. Although there is typically no direct connection between neurons within the

same layer of DNNs, it is possible to model neuron correlations based on their con-

nectivity patterns to the next layer. This resembles a common approach in network

science, where it is useful to consider the relationships between nodes based on their

common neighbors in addition to their direct connections. One classic concept widely

used to describe such a pattern is called triadic closure [53]. As shown in Figure 2.1

(b), triadic closure can be interpreted here as a property among three nodes i, j, and

k, such that if connections exist between i − k and j − k, there is also a connection

between i− j.

We take this scheme a step further to model the correlations between neurons

within the same layer by their connections to the neurons in the next layer. This can

be considered loosely analogous to the degree of similarity of the axonal connection

pattern of biological neurons in BNNs [114]. To simulate the relative strength of such
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connections in DNNs, we introduce a function f(·) that converts the actual weights

into a relative connectivity strength. Suppose matrix W (l+1) ∈ RNl×Nl+1 represents

all the weights between neurons in layers l and l + 1 in DNNs, where Nl and Nl+1

represent the numbers of neurons, respectively. The relative connectivity strength

can be estimated by the following equation1:

f(W (l+1)) = |tanh(γW (l+1))| (2.3)

where | · | represents the element-wise absolute operator; tanh(·) represents the

element-wise hyperbolic tangent function; and γ is a scalar that controls the cur-

vature of the hyperbolic tangent function. The values of f(W (l+1)) ∈ RNl×Nl+1 will all

be positive and in the range of [0, 1) with the value simulating the relative connectivity

strength of the corresponding synapse between neurons.

Although there can be positive and negative weights in DNNs, our assumption

on connection strength follows the typical way of BNN studies, which measures the

presence and absence of the connection as mentioned above. Moreover, since DNNs

require continuous values instead of discrete values to make the function differen-

tiable for optimization, we further use Equation (2.3) to convert the concept of the

presence/absence of the connections to the relative strength of the connections. More

specifically, the difference is that instead of treating connection to be either “1” (indi-

cating the presence of a connection) or “0” (indicating the absence of the connection),

we treat the output of Equation (2.3) as the strength of that connection, where high

values (i.e. close to “1”) indicate the presence of a strong connection and low values

(i.e. close to “0”) indicate weak or no connection.

Based on this, we can now give the definition for the layer-wise first-order neuron

correlation as:

Definition 1. Layer-wise first-order neuron correlation. For a given neuron i

1Similar to the ReLU activation function, our formulation introduces a non-differentiable point
at zero; we follow the conventional setting by using the sub-gradient for model optimization.
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and neuron j in layer l, the layer-wise first-order neuron correlation is given by:

A
(l)
i,j = (1/Nl+1)

∑Nl+1

k=1
f(W

(l+1)
i,k )× f(W

(l+1)
j,k ) (2.4)

The above formula can be expressed as the product of two matrices:

A(l) = (1/Nl+1)f(W
(l+1)) · f(W (l+1))T (2.5)

where · represents the matrix multiplication operator.

The layer-wise neuron correlation matrix A(l) is a symmetric square matrix that

models all the pairwise correlations of neurons with respect to their corresponding

outgoing weights in layer l. Each entry A
(l)
i,j takes a value in the range [0, 1) and

models the correlation between neuron i and neuron j in terms of the similarity of

their connectivity patterns. The higher the value, the stronger the correlation between

the two.

In this setting, two neurons i and j from layer l will be linked and correlated by an

intermediate node k from layer l+1 if and only if both edges f(W
(l+1)
i,k ) and f(W

(l+1)
j,k )

are non zero, and the relative strength can be estimated by f(W
(l+1)
i,k ) × f(W

(l+1)
j,k ),

which will be in the range [0, 1). Since there are Nl+1 neurons in layer l + 1, where

each neuron k can contribute to such connections, running over all neurons in layer

l + 1 we obtain Equation 2.4 and Equation 2.5.

2.2.3 The Second-Order Layer-wise Neuron Correlation

Although the first-order correlation is able to estimate the degree of dependency

between each pair of neurons, it may not be sufficient to strictly reflect the degree of

grouping or assembly of the neurons. Thus, here we further propose a second-order

neuron correlation based on the first-order correlation defined in Equation 2.4 and

2.5, as:
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Definition 2. Layer-wise second-order neuron correlation. For a given neuron

i and neuron j in layer l, the layer-wise second-order neuron correlation is given by:

A
(l)
i,j = (1/N2

l+1)
∑

k,m
f(W

(l+1)
i,k )× f(W

(l+1)
j,k )× f(W

(l+1)
i,m )× f(W

(l+1)
j,m ) (2.6)

The above formula can be expressed as the product of four matrices:

A(l) = (1/N2
l+1)(f(W

(l+1)) · f(W (l+1))T )⊙ (f(W (l+1)) · f(W (l+1))T ) (2.7)

where ⊙ represents the element-wise multiplication of matrices.

The second-order correlation provides a stricter criterion for relating neurons, as

it requires at least two common neighbor nodes from the layer above to have strong

connectivity, as compared to the first-order correlation that requires just one common

neighbor. Moreover, the second-order neuron correlation is closely related both to

graph theory concepts and a neuroscience-inspired learning rule:

Remark 2. Graph theory and neuroscience interpretation. Modeling the

first-order correlation between two neurons within the same layer is based on the

co-connection to a common neighbor neuron from the layer above, which is closely

related to the concepts of clustering coefficient [156] and transitivity [60] in graph

theory. On the other hand, modeling the second-order correlation between two neurons

involves two common neighbor neurons in the layer above, which is closely related to

calculating the 4-cycle pattern where all 4 possible connections in between are taken

into account, as shown in Figure 2.1 (b). This 4-cycle pattern is linked to the global

clustering coefficients of bipartite networks [118], where the set of vertices can be

decomposed into two disjoint sets such that no two vertices within the same set are

adjacent. Similarly, if we consider neurons within one layer as the nodes that belong

to one set of the bipartite network between two adjacent layers of the neural networks,

forming this 4-cycle will tend to increase the clustering coefficients of the network.

Moreover, the second-order correlation is also related to several cognitive neuroscience
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studies, such as the BIG-ADO learning rule and the principal semantic components

of language [94, 126] as well as the notion of discrete neuronal circuits [110]. Figure

2.1 (a) illustrates a scenario of the BIG-ADO learning rule in BNNs. The blue

blobs represents a connection that was formed between two neurons (i.e., a synapse),

while the dashed circle between neurons j and m represents an Axo-Dendritic Overlap

(ADO) (i.e., a potential synapse) between the two neurons. BIG-ADO posits that in

order to form a synapse, there must be a potential synapse in place, and the probability

of having a potential synapse grows with the second-order correlation. Notably, both of

the neuroscience papers cited above relate such a learning mechanism to the formation

of cell assemblies in the brain, which parallels our observation of neuronal functional

clusters among neurons in DNNs when BEAN was imposed, as shown in Figure 2.1

(c) and Figure 2.6 (b).

2.3 Experimental Study

Our description of the empirical analysis design and results is organized in the fol-

lowing fashion. In Section 3.1, we first characterize the interpretable patterns from

the learning outcomes of BEAN regularization on multiple classic image recognition

tasks. We then further analyze in Section 3.2 how BEAN could benefit the model

from learning sparse and efficient neuron connections. Finally, in Section 3.3 we study

the effect of BEAN regularization on improving the generalizability of the model on

several few-shot learning from scratch task simulations. We refer to both distinct

BEAN variations, BEAN-1 and BEAN-2, based on the two proposed layer-wise neu-

ron correlation defined by Equation 2.5, and Equation 2.7 respectively. The value for

γ (Equation 2.3) was set to 1. This paper focuses on examining the effects of the

proposed regularization rather than the differences between distinct types of neural

network architectures. Hence, we simply adopted several of the most popular neural
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network architectures for the chosen datasets and did not perform any hyperparame-

ter or system parameter tuning using the test set; in other words, we did not perform

any ”post selection” (i.e. selectively reporting the model results based on testing set

[188, 189]). All network architectures used in this paper are fully described in their

respective cited references, including the specification of their system parameters.

The regularization factor of BEAN and other baseline methods were chosen based on

the model performance on the validation set. All the experiments were conducted on

a 64-bit machine with Intel(R) Xeon(R) W-2155 CPU 3.30GHz processor and 32GB

memory and an NVIDIA TITAN Xp GPU.

2.3.1 The Interpretable Patterns of BEAN Regularization

Due to the highly complex computation among numerous layers of neurons in tra-

ditional DNNs, it is typically difficult to understand how the network learned what

it remembers and the system is more commonly treated as a black-box model [179].

Here, to ascertain the effect of BEAN regularization on the interpretability of net-

work dynamics, we analyze the differences in neuronal representation properties of

the DNNs with and without BEAN regularization. We conducted experiments on

three classic image recognition tasks on the MNIST [77], Fashion-MNIST [162] and

CIFAR-10 [73] datasets by starting with three predefined network architectures as

listed below:

1. An MLP with one hidden layer of 500 neurons with ReLU activation function

for MNIST and Fashion-MNIST datasets.

2. A LeNet-5 [77] for MNIST and Fashion-MNIST datasets.

3. ResNet18 [56] for CIFAR-10 dataset.

The Adam optimizer [69] was used with a learning rate of 0.0005 and a batch size of

100 for model training until train loss convergence was achieved; BEAN was applied
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to all the dense layers of each model.

Biological plausibility of the learned neuronal assemblies

By analyzing the neurons’ connectivity patterns based on their outgoing weights, we

discovered neuronal assemblies in dense layers where BEAN regularization was en-

forced. Specifically, for both datasets, we found that the neuronal assemblies at the

last dense layer could be best described by 10 clusters with K-means clustering [93]

validated by Silhouette analysis [120]. Silhouette analysis is a widely-used method

for interpretation and validation of consistency within clusters of data. The tech-

nique provides a succinct graphical representation of how well each object has been

classified. As shown in Figure 2.2, we visualized the K-means clustering results in

neurons’ weight space of the dense layer on both MNIST (top) and CIFAR-10 (bot-

tom) datasets. Each data point in the figure indicates one single neuron and the color

indicates its cluster assignment by the clustering algorithm. The Silhouette value is

further used to assess the quality of the clustering assignment: high Silhouette values

support the existence of clear clusters in the data points, which here correspond to

neural assembly patterns among neurons.

Both BEAN-1 and BEAN-2 could enforce neuronal assemblies for various mod-

els on several datasets, yielding Silhouette indices around 0.9, which indicates strong

clustering patterns among neurons in dense layers where BEAN regularization was ap-

plied. On the other hand, training conventional DNN models with the same architec-

tures could only yield Silhouette indices near 0.5, which indicates no clear clustering

patterns in conventional dense layers of deep neuronal networks.

Moreover, we found co-activation behavior of neurons within each neuronal as-

sembly, which is both interpretable and biologically plausible. Figure 2.3 shows the

visualization of neuron co-activation patterns found in the last dense layer of LeNet-

5+BEAN-2 model on MNIST dataset. For the samples of each specific class, only
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Figure 2.2: Neuronal assembly patterns found in neurons’ weight space of the dense
layer of different models on both MNIST (top) and CIFAR-10 (bottom) datasets,
along with clustering validation via Silhouette score on 10 clusters K-means clustering.
The dimensionality of neurons’ weight space was reduced to 2D with T-SNE for
visualization.
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Figure 2.3: Neuron co-activation patterns found in the representation of the last
dense layer of LeNet-5+BEAN-2 model on MNIST dataset. The dimensionality of
neurons’ weight space was reduced to 2D with T-SNE for visualization. Each point
represents one neuron within the last dense layer of the model and is colored based
on its activation scale. The 10 subplots show the average activation heat-maps when
each digit’s samples were fed into the model. The warmer color indicates a higher
neuron activation.
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those neurons in the specific neuron group that is associated with that digit class have

high activation while all the other neurons remain silent. This strong correlation be-

tween each unique assembly and each unique class concept allows straightforward

interpretation of the neuron populations in the dense layers. From the neuroscience

perspective, those co-activation patterns and the association between high-level con-

cepts and neuron groups may reflect similar co-firing patterns observed in biological

neural systems [107] and underscore the strong association between neuronal assembly

and concepts [146] in biological neural networks.

We also found a strong correlation between neuronal assembly and class selectivity

indices. Selectivity index was originally proposed and used in systems neuroscience

[34, 42]. Recently, machine learning researchers also studied unit class selectivity

[101, 192] as a metric for interpreting the behaviors of single units in deep neural

networks. Mathematically, it is calculated as: selectivity = (µmax − µ−max)/(µmax +

µ−max) , where µmax represents the highest class-conditional mean activity and µ−max

represents the mean activity across all other classes.

To better visualize how high-level concepts are associated with the learned neuron

assemblies, we further labeled each neuron with the class in which it achieved its high-

est class-conditional mean activity µmax in the test data. Figure 2.4 shows the results

for the last dense layer of the models trained with both datasets. We found that the

neuronal assembly could be well described based on selectivity. The strong association

between neuronal assemblies and neurons’ selectivity index further demonstrated the

biological plausibility of the learning outcomes of BEAN regularization. Moreover,

the strong neuron activation patterns towards each individual high-level concepts or

classes could in principle enable one to better understand what each individual neu-

ron has learned to represent. However, more relevant to and consistent with our

regularization, these selective activation patterns reveal how a group of neurons (i.e.

neuronal assembly) together capture the whole picture of each high-level concept,
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Figure 2.4: The strong association between neuronal assemblies and neurons’ class
selectivity index with BEAN regularization on both MNIST (left) and CIFAR-10
(right) datasets. Each point represents one neuron and the color represents the class
where the neuron achieved its highest class-conditional mean activity in the test data.

such as the ‘bird’ class in CIFAR-10 as shown in Figure 2.4.

In this subsection, we have demonstrated the promising effect of the proposed

BEAN regularization on forming the neural assembly patterns among the neurons in

the last layer of the network and their correspondence with biological neural networks.

Although the effect of BEAN regularization is not yet clear on the lower layers of the

networks, it will be interesting in the future to explore additional relations between

computational function and the architecture of earlier processing stations in biological

neural systems.

Quantitative analysis of interpretability

Experimental neuropsychologists commonly use an ablation protocol when studying

neural function, whereas parts of the brain are removed to investigate the cognitive

effects. Similar ablation studies have also been adapted for interpreting deep neural

networks, such as understanding which layers or units are critical for model perfor-

mance [50, 101, 192].

To quantitatively evaluate and compare interpretability, we performed an ablation

study at the neuron population level, each time ablating one distinct group of neurons

and recording the consequent model performance changes for each class. As shown

in Figure 2.4, we identified neuron groups via class selectivity and performed neuron

population ablation accordingly. Figure 2.5 shows the results of all 10 ablation runs for

each class in MNIST dataset. As also reported by [101], for conventional deep neural



28

Ablation of neuron group 1

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 2

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 3

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 4

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 5

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 6

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 7

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 8

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 9

1 2 3 4 5 6 7 8 910
-1

-0.5

0

neuron group 10

1 2 3 4 5 6 7 8 910
-1

-0.5

0

Vanilla LeNet-5

1 2 3 4 5 6 7 8 910
-1

-0.5

0

A
c
c
u
ra

c
y
 c

h
a
n
g
e

LeNet-5+BEAN1

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

LeNet-5+BEAN2

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910
-1

-0.5

0

1 2 3 4 5 6 7 8 910

class

-1

-0.5

0

Figure 2.5: The ablation study at the neuron population level of the last dense layer
of LeNet-5 models. Each time, one distinct group of neurons were ablated based on
their most selective class and the model performance changes for each individual class
were recorded.

nets, there is indeed no clear association between neuron’s selectivity and importance

to the overall model performance, as revealed by neuron population ablation. How-

ever, when BEAN regularization was utilized during training, such association clearly

emerged, especially for BEAN-2. This is because BEAN-2 could enforce neurons to

form stricter neuron correlations than BEAN-1 with the second-order correlation, en-

abling groups of neurons to represent more compact and disentangled concepts, such

as handwritten digits. This discovery further demonstrated the interpretability and

concept level representation in each neuronal assembly learned by applying BEAN

regularization. Such compact and interpretable structure of concept-level information

encoding could also benefit the field of disentanglement representation learning [17].

2.3.2 Learning Sparse and Efficient Networks

To evaluate the effect of BEAN regularization on learning sparse and efficient net-

works, we conducted experiments on two real-world benchmark datasets, i.e., the

MNIST [77] and Fashion-MNIST [162] datasets. We compared BEAN with several

state-of-the-art regularization methods that could enforce sparse connection of the

network, including ℓ1-norm, group sparsity based on ℓ2,1-norm [175, 6], and exclusive
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sparsity based on ℓ1,2-norm [194, 71]. Notable studies also investigated the combina-

tion of the sparsity terms listed above, such as combining group sparsity and ℓ1-norm

[127], and combining group and exclusive sparsity [169]. The combinatorial study is

outside the scope of this work, as our focus is on showing and comparing the effective-

ness of the single regularization term to the network. To keep the comparison fair and

accurate, we use the same base network architecture for all regularization methods

tested in this experiment, which is a predefined fully connected neural network with

3 hidden layers, 500 neurons per layer, and ReLU as the neuron activation function.

The regularization methods are applied to all layers of the network, except the bias

term. The regularization co-efficients are selected through a grid search varying from

10−5 to 103 based on the model performance on the validation set, as shown in Algo-

rithm 1. To obtain a more reliable and fair result, we ran a total of 20 random weight

initializations for every network architecture studied and reported the overall average

performance of all 20 results as the final model performance of each architecture.

Algorithm 1: The pseudo code for searching for the best α value in BEAN

func hyperparameter tuner(training data, validation data, alpha list =
[0.001, 0.01, 0.1, 1, 10, 100]) :

hp perf = []
% train and evaluate on all hyper-parameter settings
foreach α in alpha list :

m = train model(training data, alpha)
validation results = eval model(m, validation data)
hp perf.append(validation results)

% find the best alpha on validation set
best alpha = alpha list[max index(hp perf)]
return best alpha

To quantitatively measure the performance of various sparse regularization tech-

niques, we used three evaluation metrics, including the prediction accuracy on test

data (i.e. measured by the number of correct predictions divided by the total number

of samples in test data), the ratio of parameters used in the network (i.e. total number

of non-zero weights divided by the total number of weights in the networks after train-
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ing), and the corresponding number of floating point operations (FLOPs). A higher

accuracy means that the model can train a better network for the classification tasks.

A lower FLOP indicates that the network needs fewer computational operations per

forwarding pass, which reflects computation efficiency. Similarly, a lower parame-

ter usage indicates the network requires less memory usage, which reflects memory

efficiency.

Table 2.1: Efficient model learning experiments on MNIST and Fashion-MNIST
datasets. The FLOPs and effective parameters (i.e. number of non-zero parame-
ters) are normalized by the value of vanilla model. Performance is averaged over 20
runs. The best and second-best results are highlighted in boldface and italic font,
respectively.

Dataset Measure Vanilla ℓ1-norm Group Sparsity Exclusive Sparsity BEAN-1 BEAN-2

MNIST
accuracy 0.9812 0.9835 0.9813 0.9824 0.9842 0.9823
FLOPs 1 0.8106 0.6098 0.4248 0.2212 0.1320

parameter 1 0.2921 0.0982 0.1375 0.1496 0.0730

Fashion-MNIST
accuracy 0.8986 0.8924 0.8925 0.8930 0.8960 0.8916
FLOPs 1 0.8011 0.5384 0.5320 0.2913 0.1622

parameter 1 0.4357 0.1378 0.2257 0.2592 0.1259

The results are shown in Table 2.1. For each evaluation metric, the best and

second-best results are highlighted in boldface and italic font, respectively. As can

be seen, both BEAN-1 and BEAN-2 can achieve high memory and computational

efficiency without sacrificing network performance for the classification tasks. Specifi-

cally, BEAN-2 achieved the best memory and computational efficiency, out-performing

baseline models by 25-75% on memory efficiency and 69-84% on computational effi-

ciency on the MNIST dataset, and by 9-71% on memory efficiency and 69-80% on

computational efficiency on the Fashion-MNIST dataset. BEAN-1 also achieved a

good trade-off between model performance and efficiency, being the second-best on

computational efficiency and the best on model performance on both the MNIST and

Fashion-MNIST datasets. Comparing with BEAN-2, BEAN-1 leans more toward the

model performance side in such a trade-off. This is because the first-order correla-

tion used in BEAN-1 is less restrictive than a higher-order correlation in BEAN-2,
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as only one support neuron in the layer above is enough to build up a strong corre-

lation. Thus, in practice, using a higher-order correlation might be promising when

the objective is to learn a more efficient model.

Interestingly, BEAN regularization seemed to advance the state-of-the-art by an

even more significant margin in terms of computational efficiency. In fact, BEAN reg-

ularization reduces the number of FLOPs needed for the network by automatically

”pruning” a substantial proportion of neurons in the hidden layers (whereas a neu-

ron is considered pruned if either all incoming or all outgoing weights are zero), due

to the penalization of connections between neurons that encode divergent informa-

tion. Although group sparsity and exclusive sparsity are designed to achieve a similar

objective for obtaining neuron-level sparsity, they are less effective than BEAN reg-

ularization. This is due to the fact that BEAN takes into consideration not only the

correlations between neurons via their connection patterns but also the consistency

of those correlations with their activation patterns.

We have shown in Table 2.1 that the proposed BEAN regularization can effectively

make the connection sparser in the dense layers of the artificial neural networks. In

general, this ‘sparsifying’ effect can be beneficial for any models with at least one

dense layer in the network architecture. Most modern deep neural networks (such as

VGG [135] and ImageNet [122]) can enjoy this sparsity benefit, as the dense layers

typically contribute to the majority of the model parameters [23].

2.3.3 Towards few-shot learning from scratch with BEAN

regularization

In an attempt to test the influence of BEAN regularization on the generalizability of

DNNs in the scenarios where the training samples are extremely limited, we conducted

a few-shot learning from scratch task, i.e. without the help of any additional side tasks

and pre-trained models [68]. Notice that in the few-shot learning setting, the model
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typically requires an iterative learning process over the sample set. In other words, for

each individual few-shot learning experiment, only a few image samples per digit are

randomly selected to form the training set. The model then iteratively learns from

the selected image samples until convergence is achieved. So far, this kind of learning

task has rarely been explored due to the difficulty of the problem setup as compared

to other conventional few-shot learning tasks where additional data or knowledge

could be accessed. Currently, only [68] carried out a preliminary exploration with

their proposed Imitation Networks model. We conducted several simulations of the

few-shot learning from scratch task on the MNIST [77], Fashion-MNIST [162], and

CIFAR-10 [73] datasets. Besides Kimura’s Imitation Networks, we also compared

BEAN with other conventional regularization techniques commonly used in the deep

learning literature. Specifically, we compared dropout [141], weight decay [75], and

ℓ1-norm. Similarly to the description of Section 2.3.2, we kept the comparison fair

and accurate by using a predefined network architecture, namely LeNet-5 [77], as the

base network architecture for all regularization methods studied in this experiment.

The regularization terms were applied to all three dense layers of the base LeNet-

5 network. Once again, the hyperparameter of each regularization along with all

other system parameters were selected through a grid search and based on the best

performance on a predefined 10k validation set sampled from the original training

base and completely distinct from the training samples used in the few-shot learning

tasks and the testing set.

Table 2.2 shows model performance on several few-shot learning from scratch ex-

periments on the MNIST, Fashion-MNIST, and CIFAR-10 datasets. Performance is

averaged over 20 experiments of randomly sampled training data from the original

training base. The best and second-best results for each few-shot learning settings

are highlighted in boldface and italic font, respectively. As can be seen, the pro-

posed BEAN regularization advanced the state-of-the-art by a significant margin on
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Table 2.2: Few-shot learning from scratch experiments on the MNIST (left), Fashion-
MNIST (middle), and CIFAR-10 (right) datasets. Performance is averaged over 20
simulations of randomly sampled training data from the original training base. The
best and second-best results for each few-shot learning setting are highlighted in
boldface and italic font, respectively.

Dataset MNIST Fashion-MNIST CIFAR-10
Model 1-shot 5-shot 10-shot 20-shot 1-shot 5-shot 10-shot 20-shot 1-shot 5-shot 10-shot 20-shot
Vanilla 38.63 70.21 78.97 86.68 39.32 59.02 64.50 70.23 15.60 18.49 22.45 26.39
Dropout 40.13 72.45 82.04 89.22 40.78 60.04 65.40 71.83 15.10 18.85 22.73 26.01

Weight decay 39.51 71.76 82.87 90.15 41.31 61.98 67.25 71.88 15.47 19.17 23.74 26.77
ℓ1-norm 40.96 74.35 81.17 90.68 41.26 62.18 67.30 70.85 15.64 18.95 23.16 26.99

Imitation networks 44.10 70.40 80.00 86.70 44.80 62.10 68.00 72.50 -
BEAN-cos 54.05 80.16 86.28 92.22 42.48 65.49 68.97 74.20 18.23 21.45 24.66 28.74
BEAN-1 54.79 83.42 87.51 92.79 50.57 66.95 69.21 74.25 19.39 21.92 24.81 28.95
BEAN-2 53.75 80.76 88.08 92.97 49.94 65.98 70.21 75.06 19.28 21.28 25.04 29.23

all four few-shot learning from scratch tasks tested among all three datasets. More-

over, BEAN advanced the performance more significantly when training samples were

more limited. For instance, BEAN outperformed all comparison methods by 24-42%,

13-29%, and 24-28% on 1-shot learning tasks on the MNIST, Fashion-MNIST, and

CIFAR-10 datasets, respectively. This observation demonstrates the promising ef-

fect of BEAN regularization on improving the generalizability of the neural nets

when the training samples are extremely limited. Another interesting observation

is that BEAN-1 in general performed the best with extremely limited training sam-

ples, such as the 1-shot and 5-shot learning tasks, while BEAN-2 regularization in

general performed the best with slightly more training samples, such as the 10-shot

and 20-shot learning tasks. The reason behind this observation might be related to

the more stringent higher-order correlation, which requires more common neighbor

neurons that appear to have strong connections with both neurons. Thus, a mod-

estly increased availability of sample observations could enable BEAN-2 to form more

effective neuronal assemblies, further improving the model performance.

Furthermore, we studied an additional variant for BEAN, i.e. BEAN-cos, which

calculates the layer-wise neuron correlation via cosine similarity between the down-

stream weights of two neurons. As shown in Table 2.2, we found that BEAN-cos

can still yield good performance and beat other existing regularization methods, and
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getting competitive results as compared with BEAN-1 and BEAN-2. However, it

is inferior to BEAN-1 in 1-shot and 5-shot settings, and inferior to BEAN-2 in 10-

shot and 20-shot settings. This is because BEAN-cos is unable to handle the order

of correlation between neurons, as using cosine similarity requires us to treat the

out-going weights of a neuron as a whole (vector) to compute the pair-wise similar-

ity between neurons. Thus, doing this will lose the ability to calculate higher-order

correlation (such as the second-order correlation), and consequentially lose the good

interpretation from graph theory and neuroscience (as described in Remark 2).

To better understand why BEAN regularization could help the seemingly over-

parameterized model generalize well on a small sample set, we further analyzed the

learned hidden representation of the dense layers where BEAN regularization was

employed. We found that BEAN helped the model gain better generalization power

in two aspects: 1) by automatic sparse and structured connectivity learning and 2) by

weak parameter sharing among neurons within each neuronal assembly. Both aspects

enhanced the dense layers to promote efficient and parsimonious connections, which

consequently prevented the model from over-fitting with a small training sample size.

Figure 2.6 shows the learned parameters of the last dense layer of LeNet-5+BEAN2

on the MNIST 10-shot learning task. As shown in Figure 2.6 (b), instead of using all

possible weights in the dense layer, BEAN caused the model to parsimoniously lever-

age the weights and even the neurons, yielding a bio-plausible sparse and structured

connectivity pattern. This is because the learned neuron correlation helped the model

disentangle the co-connections between neurons from different assemblies, as shown

in Figure 2.6 (a). Additionally, BEAN enhanced parameter sharing among neurons

within each assembly, as demonstrated in Figure 2.6 (c). For instance, neurons in the

red-colored assembly all had high positive weights toward class 4, meaning that this

group of neurons was helping the model identify Digit 4. Similarly, neurons in the

green-colored assembly were trying to distinguish between Digits 9 and 7. Such au-
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Figure 2.6: Analysis and visualization of the last dense layer of LeNet-5+BEAN-2
model on the MNIST 10-shot learning from scratch task. (a) Heat-map of the learned
second-order neuron correlation matrix: neuron indices are re-ordered for best visu-
alization of neuronal assembly patterns; BEAN is able to enforce plausible assembly
patterns that act as functional clusters for the categorical learning task. (b) Visual-
ization of the parsimonious connectivity learned in the dense layer: both neuron-level
and weight-level sparsity are simultaneously promoted in the network after applying
BEAN regularization. The neurons are grouped and colored by neuronal assemblies.
(c) Visualization of the scales of neurons’ outgoing weights: the weights of the neu-
rons are colored to be consistent with the neuron group in (b).

Table 2.3: Statistic of data values test set error rate - validation set error rate on
10-shot learning on the MNIST dataset from 20 random runs. Other n-shot learning
settings follow the same trend.

Model / Metric Max 75%-rank 50%-rank Mean 25%-rank Min
Vanilla 0.06% 0.01% -0.06% -0.30% -0.74% -0.81%

BEAN-1(α = 1) -0.04% -0.20% -0.62% -0.58% -0.93% -1.13%
BEAN-2(α = 100) 0.10% -0.02% -0.42% -0.48% -0.97% -1.35%

tomatic weak parameter sharing not only helped prevent the model from over-fitting

but also enabled an intuitive interpretation of the behavior of the system as a whole

from a higher modularity level.

Parameter sensitivity study

There are two hyperparameters in the proposed BEAN regularization: 1) α, which

balances between the regularization loss and DNN training loss, and 2) γ, which

controls the curvature of the hyperbolic tangent function as shown in Equation 2.3.

As already mentioned in the first paragraph of Section 3, γ was set to 1 for all

experiments. Thus, the only parameter we need to study is α.
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Figure 2.7: Parameter sensitivity study of BEAN regularization on 10-shot learning
on the MNIST dataset. Each data point is centered by the mean value and the error
bar measures the standard deviation over 20 runs.

Figure 2.7 shows the accuracy of the model versus α on the few-shot learning

setting on the MNIST dataset. Only the results for the 10-shot learning task are

shown due to space limitations. By varying α across the range from 0.001 to 100,

the best performance is obtained when α = 1 for BEAN-1 and α = 100 for BEAN-2.

Specifically, for BEAN-1, We can see a clear trend where the model performance drops

when α is too small or too big. Furthermore, the results show that the performance

of the validation set is well aligned with the model performance on the test set,

this demonstrates the superior generalizability of the model when applying BEAN

regularization. Notably, although in Figure 2.7 we accessed the model performance

on multiple settings of α, we did not use any of the results on the test set to choose

any parameters of the model, i.e. no post-selection was performed. We believe post-

selection should be completely avoided and it can cause the test set to lose its power

to test the model’s generalizability to future unseen data.

2.4 Conclusion

In this work, we propose a novel Biologically Enhanced Artificial Neuronal assembly

(BEAN) regularization to model neuronal correlations and dependencies inspired by

cell assembly theory from neuroscience. We show that BEAN can promote jointly
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sparse and efficient encoding of rich semantic correlation among neurons in DNNs

similar to connection patterns in BNNs. Experimental results show that BEAN en-

ables the formations of interpretable neuronal functional clusters and consequently

promotes a sparse, memory/computation-efficient network without loss of model per-

formance. Moreover, our few-shot learning experiments demonstrated that BEAN

could also enhance the generalizability of the model when training samples are ex-

tremely limited. Our regularization method has demonstrated its capability in en-

hancing the modularity of the representations of neurons for image semantic meanings

such as digits, animals, and objects on image datasets. While the generality of the

approach introduced here is at this time evaluated on MNIST and CIFAR datasets,

future studies might consider additional experiments on other datasets such as texts

or graphs to demonstrate the broader effectiveness of the proposed method. Another

direction to further enhance the model might be to include separate excitatory and

inhibitory nodes, as in BNNs, which would allow implementation of specific microcir-

cuit computational motifs [9]. Furthermore, since there are other choices for defining

the affinity matrix between neurons in a certain layer based on their downstream

weights, answering the question about “what is the best way to compute affinity ma-

trix” can be an interesting direction to be more comprehensively studied in future

works.
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Chapter 3

Interpretation for Dynamic

Attributed Graphs via Hierarchical

Attention

3.1 Introduction

Online healthcare forums and communities such as the Breast Cancer Community [2],

American Cancer Society [1], and eHealth Forum [3] have greatly changed the way pa-

tients seek health-related information and have become an important part of patients’

lives. Unlike traditional approaches, where patients only receive information about

their disease from their care providers, these online forums and communities have en-

abled millions of patients to ask questions related to their diseases, interact with other

patients with similar prognoses, and provide support to each other across the world.

The communications and interactions between patients in online forums can provide

valuable information about a patient’s emotional well-being and behaviors related to

the management of their health that conventional clinical data collected from hos-

pital information systems and electronic health records (EHR) is unable to capture.
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Figure 3.1: An example of patient signature that contains cancer diagnosis and treat-
ment history.

Moreover, beyond conventional online communities and social media, online health

communities provide a unique way to analyze and infer patients’ health stages and

disease history. Figure 3.1 shows an example of a patient’s health stage information

extracted from a patient signature that contains the cancer diagnosis and treatment

history, along with the relevant dates. In all, the synergies between the information on

patients’ online communication and health status make possible a unique and wide

range of research topics on health informatics, such as patient behavior statistical

analyses [155, 37, 181], longitudinal communication network analyses [182, 180], and

patient participation prediction [124], all of which rely on both patients’ interactions

in online forums as well as their health stage records.

However, the health stage information in the online health community has some

unique challenges and characteristics. First, though some patients share their disease

history, as shown in Figure 3.1, such information is not provided or is simply missing

for many others. For instance, over 36% active users that registered within recent

2 years have not yet shared their disease history in the Breast Cancer Community

[2]. Important information about patients’ health stages can significantly facilitate

comprehensive investigations about patients’ health conditions and thus it is highly

desirable to be able to infer or predict these patients’ health stage information. Sec-

ond, different subforums under specific topics are often correlated to specific disease

stages. For example, in the online breast cancer forum, the patients who are active

in the “Chemotherapy - Before, During, and After” subforum typically look for infor-
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Figure 3.2: An example of user forum activities and the corresponding health stage
evolution. In the first two time windows, the user is mainly active in Subforum
#13 while going through chemotherapy treatment. In the third time window, the
user starts to be active in Subforum #22 at about the time when she undergoes
IDC treatment. Finally, in the last three time windows, the user becomes active in
Subforum #14 when she enters the “Radiation Therapy” health treatment stage.

mation related to their Chemotherapy treatment. Thus, users’ activities within these

subforums could serve as a strong indicator of an individual user’s current health

stage. Third, as the patients’ health conditions progress over time, they often move

from one set of subforums to others that are more related to their new health stages.

Therefore, for each patient, these transitions among subforums can lead to an inter-

connected subforum activity network that evolves over time, which could be highly

entangled with the progress of patient’s health status or disease stage, as shown in

Figure 3.2.

The ability to accurately infer users’ missing health stage information is crucial, as

this could enable health care organizations to better support patients by pinpointing

the most valuable information for each at their particular health stage [66]. To infer

the missing user health stage information, the correspondence between the users’

forum activities and their health stage history needs to be accurately identified and

modeled. Naturally, the networked and time-evolving forum activity data can be

formulated as a dynamic sequence of user activity transition graphs that change
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over time. In addition, the target user health stage history can be formulated as

a sequence prediction problem that needs to be inferred from their dynamic graph

sequence. Thus, without loss of generality, a new generic task is presented here where

the goal is to learn the mapping from a sequence of graph-structured data to a target

sequence. In this paper, we limit our scope to the domain of online health forums

and focus on health stage sequence prediction based on online health forums data.

However, capturing the high-level mapping between the evolution of the user ac-

tivity networks and the changes in the corresponding user’s health stage cannot be

easily handled by existing techniques due to the following three challenges: 1) Dif-

ficulty in modeling the forum data, which is dynamic, networked, and

multi-attributed. A user’s activities in the various subforums can change dynam-

ically over time and these activity transitions naturally bridge different subforums.

In addition, each subforum contains both unique and shared content, and identifying

how this content is shared among subforums is important. 2) Difficulty in learn-

ing the association between a sequence of user activity networks and the

corresponding sequence of health stages. The sequence of user activity net-

works contains complicated graph-structured information that dynamically evolves

over time. Developing end-to-end learning between such dynamic complex data and

a specific sequence is highly difficult. 3) Lack of interpretability of the health

stage sequence inference process. The sequence of user activity networks has a

two-level hierarchical structure, namely from the node (i.e., subforum) level to the

network level, and from the network level to the health stage level. It is thus a major

objective to incorporate this hierarchical structural information into the development

of an interpretable health stage inference process.

In this paper, we formally define the generic learning problem of health stage

sequence inference using online forum data and propose the first framework to address

the aforementioned challenges effectively. The main contributions are as follows:
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1. Defining the novel problem of inferring user health stage information

using online health forum data. We define the health stage inference prob-

lem in online health forums and formulate the user activities as transition graphs

that are capable of modeling user dynamic transitions between subforums and

their complex relationships.

2. Proposing a generic framework DynGraph2Seq for inferring target

sequence from a sequence of graphs. We propose a novel deep neural

encoder-decoder framework for learning the mapping between complex dynamic

graph sequence inputs and the target output sequence.

3. Proposing dynamic graph regularization and a dynamic graph hier-

archical attention mechanism for enhancing model effectiveness and

interpretability. We propose a dynamic graph regularization that enforces

the smooth learning of consecutive graphs while preserving the heterogeneity

across the graph sequence. In addition, we propose a new dynamic graph hier-

archical attention mechanism that captures both the time-level and node-level

attention, thus providing model transparency throughout the whole inference

process.

4. Conducting comprehensive experiments and case studies to validate

the effectiveness and interpretability of the proposed model. Exper-

iments on online health forum dataset demonstrate that our proposed models

outperform conventional sequence inference methods. In addition, our qualita-

tive analyses and case studies provide interpretable insights into the learning

results of the proposed model and its variations.
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3.2 Related work

Our model draws inspiration from the research fields of online health community anal-

ysis, dynamic graph learning, hierarchical attention mechanisms, and neural encoder-

decoder models.

3.2.1 Online Health Communities Analysis

A number of studies have focused on the analysis and utilization of online health

communities data. Popular social media such as Twitter and Facebook are good for

aggregate level pattern mining tasks such as discovering epidemic outbreaks [187]

and other adverse events [152]. However, compared to specialized health forums such

as the Breast Cancer Forum, their power is limited for discovering individual-level

health stages and health network patterns due to the privacy issues involved and data

scarcity. There have been several analyses of breast cancer forum data [155, 37, 181]

and, more recently, machine learning models have been used for longitudinal analysis

[182, 180] as well as for some binary classification tasks such as patient participation

prediction [124] and cancer type classification [66]. However, we are the first to

propose a general framework that can achieve health stage sequence inference using

online forum data.

3.2.2 Dynamic Graph Representation Learning

As an emerging topic in the graph representation learning domain, dynamic graph

learning has attracted a great deal of attention from researchers in recent years. Most

of the current research falls into the dynamic graph embedding domain. Some of the

proposed methods intuitively extend the idea from static graph embedding approaches

by adding regularization [195, 185], while others propose specific models for capturing

dynamic characteristics of the graph [147, 52, 193, 51]. There has also been some work
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on streaming graph learning [172, 39, 91], where network representations are learned

dynamically as the network evolves. However, these graph embedding techniques

typically focus on learning representations of the graphs, such as node embedding,

but in many real-world applications the aim is to learn some high-level knowledge from

the graph data, such as graph classification tasks [157, 158] and graph to sequence

tasks [163, 165]. An end-to-end learning model is thus needed to learn the mapping

between the whole sequence of graph data and the target output sequence, instead

of merely focusing on learning node representations.

3.2.3 Hierarchical Attention Mechanism

The attention mechanism first proposed by [11] was used for machine translation

tasks. Here, the attention mechanism was used to select reference words in the origi-

nal language that matched specific words in the foreign language before translation.

Luong et al. [89] extended the idea by proposing two simple and effective local atten-

tional mechanisms. Feed-forward attention [112] was proposed as a simplified model

of attention which is applicable to feed-forward neural networks. Later on, Hier-

archical Attention Networks [167] was proposed to model the natural hierarchical

structure of word-to-sentence and sentence-to-document level attention in document

classification tasks. Raffel et al. [113] further improved the attention model with a

monotonic attention constraint which assumes that the input sequence is processed

in an explicitly left-to-right manner when generating the output sequence.

Besides being widely used for machine translation, the attention mechanism has

also been introduced in the graph representation learning domain. Graph Attention

Networks [148] introduced node-to-node attention mechanism for graph embedding,

and many others followed and extended this idea [166, 4]. However, there is little to

no work that focuses specifically on studying the unique hierarchical structure that

is naturally present in dynamic graphs.
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3.2.4 Neural Encoder-Decoder Models

The neural encoder-decoder models originally designed to solve neural machine trans-

lation problems [24, 143, 11, 89] have been widely extended to model the map-

ping of general object inputs to their corresponding sequences. A major focus has

been on addressing the limitations of Seq2Seq when dealing with more complex ob-

jects, including Tree2Seq [38], Set2Seq [149], Recursive Neural Networks [138], and

TreeStructured LSTM [145]. Recent advances in graph deep learning and graph con-

volutional networks have enabled researchers to utilize various graph deep learning

models to handle challenges in the domains of machine translation and graph gener-

ation [16, 134, 83, 55]. Most recently, the graph2seq model [164, 79] was proposed as

a general-purpose encoder-decoder model for graph-to-sequence learning, where no

domain-specific information is needed. However, to the best of our knowledge, as yet

there have been no reports of work that explores dynamic graph to sequence learning,

where the natural sequential order contained in a dynamic graph and its sequences

might be advantageous for neural encoder-decoder models.

3.3 Problem Formulation

3.3.1 User Forum Activities as a Dynamic Graph

The online forum data records the path of each user’s transition from one subforum

to another, as well as their activities within each subforum. In order to capture these

complex transitions and model the relationships between subforums, we propose a

novel method to formulate the raw user subforum activities into activity transition

networks that preserve these characteristics.

An activity transition network is formulated naturally as follows. User activities

are first partitioned into a series of time windows. We then begin by formulating
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Figure 3.3: The proposed end-to-end dynamic graph-to-sequence learning (Dyn-
Graph2Seq) framework. It includes a novel dynamic graph encoder and a sequence
decoder. The proposed framework not only generates sequence outputs by captur-
ing complicated interactions of user’s activities and dynamic characteristics of the
evolving graphs over time, but also provides both time-level and subforum level in-
terpretability of the correlations between a user’s online forum activities and their
current health stages through the proposed two-level attention mechanism.

a node for each subforum, with a transition from one forum to the other deemed

to occur if the most active forum (based on visiting time or number of postings)

switches from the former to the latter, creating a directed ‘edge’ between them. Each

node (i.e., subforum) also records the user activity in the forum to build the activity

transition network. For example in Figure 3.2, the subforum transition sequence is

{30 → 13 → 6 → 29}, where 30, 13, 6, and 29 are the IDs of the subforums visited.

Thus, the transition edges for the first snapshot graph will be (30,13), (13,6), and

(6,29). The graph in each time window records all the transitions in and previous to

it.

Naturally, such time-ordered activity transition networks can be formally defined

as dynamic graphs, also known as temporal networks in the network science literature

[81], that capture the complex dynamic characteristics and time-evolving features of

graphs, as defined in the following.

Definition 3. (dynamic graph). A dynamic graph G = {G1, G2, · · · , GT} is an
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ordered sequence of t = 1, · · · , T separate graphs on the same set of |V | = N nodes,

with each snapshot graph Gt(V,Et) characterized by a weighted adjacency matrix At ∈

RN×N and a set of node features Ft ∈ RN×D for a given time window, where D

represents the total number of node features.

We can now formulate the activity transition networks as a dynamic graph, il-

lustrated in Figure 3.2. Here, the dynamic graph contains a sequence of snapshot

graphs G1, G2, · · · , G6 that characterize user activities in the online forum for a given

time period, where Gt represents the snapshot graph Gt(V,Et) for simplicity. In this

example, the time windows are shown as blue boxes. Each node v ∈ V represents a

subforum devoted to a specific topic and the edges Et capture the user’s movement

between different subforums at a given time window. In addition, each node v con-

tains a set of features Ft,v that represents the topics covered by the specific subforum.

By formulating user online forum activities as dynamic graphs, the mapping between

the evolution of the user activity graphs and the changes of the corresponding user’s

health stages will be preserved.

3.3.2 Learning Sequence from Dynamic Graph

As we can see from Figure 3.2, there is a clear mapping between the evolution of the

user activity dynamic graph and changes in the corresponding user’s health stage.

Motivated by this observation, we can formulate such problems as a general dynamic

graph to sequence problem as follows:

Given a dynamic graph G = {G1, G2, · · · , GT} as input data, the goal is to predict

the target sequence S = {s1, s2, · · · , sM}, where sm ∈ V is the mth token of the

output sequence in vocabulary V; and T and M are the input graph sequence length

and output sequence length, respectively. Formally, this problem is equivalent to

learning a translation mapping from input dynamic graph G to a sequence S as

{G1, G2, · · · , GT} → {s1, s2, · · · , sM}.
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The translation mapping problem between some source objects and target se-

quences has been widely studied, including both graph-to-sequence [164] and sequence-

to-sequence [143, 24] formulations. However, dynamic-graph-to-sequence translation

is more complex and poses several unique challenges, namely 1) Difficulty in compre-

hensively modeling the dynamic multi-attributed network-structured data, as both

complex relationships and dynamic evolving characteristics need to be captured; 2)

The temporal dependency of snapshot graphs in the dynamic graph need to be mod-

eled and constrained by the learning model; and 3) The learned translation mapping

is often obscure and hard to explain or verify. This is because the original low-level

representation (i.e. the node level at a specific time) is aggregated into the high-level

representation (i.e. the dynamic graph as a whole), making it much more difficult to

backtrack and explain the correspondence.

3.4 Dynamic Graph-To-Sequence Model

3.4.1 The DynGraph2Seq framework

In this section, we introduce our dynamic graph-to-sequence framework that includes

a novel dynamic graph encoder and a sequence decoder, as shown in Figure 3.3. To

the best of our knowledge, this is the first end-to-end dynamic graph-to-sequence

learning framework. Our DynGraph2Seq framework not only generates sequence

outputs by capturing complicated interactions between a user’s activities and the

dynamic characteristics of the evolving graphs over time, but also provides both time-

level and subforum level interpretability of the correlations between a user’s online

forum activities and that user’s current health stages through our two-level attention

mechanisms.

In order to capture the complex relationships represented in the graph input and

the dynamic changes represented by the whole sequence of the dynamic graph, we
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propose a dynamic graph encoder that consists of three main components as follows:

the first component contains a sequence of graph convolutional networks that learns

the node level embeddings ht for each graph snapshot Gt; the learned node level

embeddings are then aggregated into a graph level embedding gt by an aggregation

function; finally, a sequence encoder is used to take the learned graph level embed-

ding sequence g = {g1, g2, · · · , gT} and generate a sequence of patient health stages

that capture the entire dynamic graph characteristics. In addition, we propose a

novel dynamic graph regularization for sparse feature selection of the graph con-

volutional networks that enforces smooth feature selection for consecutive snapshot

graphs locally, while at the same time preserving the heterogeneity of the features

selected across the entire dynamic graph globally.

Since our dynamic graph encoder is capable of learning the representation of the

entire dynamic graph as a single global vector, we will be able to use a conventional

sequence decoder as the decoder for our framework to generate the desired target

sequence. Moreover, we propose a novel dynamic graph hierarchical attention mech-

anism that incorporates both node-to-graph attention and graph-to-sequence

attention in order to promote better interpretability between graph sequences and

output sequences and provide more effective aggregation function from node embed-

dings to graph embeddings. A detailed introduction to the proposed encoder and

decoder will be described in the next two subsections.

3.4.2 Dynamic Graph Encoder

The base model of our graph convolutional network for each snapshot graph is in-

spired by graph2seq [164], which was originally proposed for addressing static graph-

to-sequence learning problems. The Graph2Seq model employs an inductive node

embedding algorithm that generates bi-directional node embeddings by aggregating

information from a node local forward and backward neighborhood within k hops
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for a static graph. We extend this idea for dynamic graphs by applying such graph

convolution on each snapshot graph within dynamic graph inputs. Specifically, sup-

pose the total number of hops is k, then the hidden representation of n-th node in the

snapshot graph Gt after applying the first graph convolutional layer will be computed

as follows:

h⊢t,n = mean({σ(W ⊢(1)
t Ft,u + b

⊢(1)
t ), u ∈ N⊢(v)}) (3.1)

h⊣t,n = mean({σ(W ⊣(1)
t Ft,u + b

⊣(1)
t ), u ∈ N⊣(v)}) (3.2)

h
(1)
t,n = concat[h⊢t,n, h

⊣
t,n] (3.3)

where N⊢(v) represents the set of forward neighbor nodes of node v, whereas N⊣(v)

represents the set of backward neighbor nodes; W
⊣(1)
t , b

⊣(1)
t and W

⊢(1)
t , b

⊢(1)
t are learn-

able parameters for the first convolution layer. Ft,u is the feature vector of node u in

a snapshot graph at time step t; σ(·) represents the activation function of the network

(e.g. ReLU); the mean(·) function takes the element-wise mean of the set of vectors

in the equation; and concat[vec1, vec2] concatenates the two row vectors into a single

row vector.

Likewise, for hop k, the hidden representation of the n-th node in the snapshot

graph Gt can be computed via the hidden representations computed from layer k−1,

as follows:

h⊢t,n = mean({σ(W ⊢(k)
t h

(k−1)
t,u + b

⊢(k)
t ), u ∈ N⊢(v)}) (3.4)

h⊣t,n = mean({σ(W ⊣(k)
t h

(k−1)
t,u + b

⊣(k)
t ), u ∈ N⊣(v)}) (3.5)

h
(k)
t,n = concat[h⊢t,n, h

⊣
t,n] (3.6)

Finally, after applying k layers of convolutions, the final hidden representation of

the n-th node in the snapshot graph Gt will be output as ht,n = h
(k)
t,n .
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In order to capture the high-level representation of graphs for end-to-end graph

learning, aggregating node level embeddings to graph level embedding that conveys

the entire graph information is essential. To achieve this, we adopt the max pooling

operation proposed by [164, 157] as the base aggregation function, which feeds the

node embeddings ht,n to a fully-connected layer and then applies the max pooling

method element-wise for each snapshot graph Gt to yield a sequence of graph-level

representations gt.

To model the graph dynamic changes and long-term dependencies throughout

the M steps, we utilize Long Short Term Memory (LSTM) networks [59] as a graph

embedding sequence encoder to learn the entire dynamic graph-level embedding. The

computation of the LSTM network at time step t is defined as:

ft = σ(Wf · [ot−1, gt] + bf ) (3.7)

int = σ(Win · [ot−1, gt] + bin) (3.8)

C̃t = tanh(WC · [ot−1, gt] + bC) (3.9)

Ct = f ∗ Ct−1 + int ∗ C̃t (3.10)

outt = σ(Wout · [ot−1, gt] + bout) (3.11)

ot = outt ∗ tanh(Ct) (3.12)

where ot is the output of the LSTM network at time step t, Ct is the new cell state

for the next time step computation, and the initial cell state for the encoder is set to

all-zeros.

In the above encoder formulation, each graph convolutional network needs to

learn a set of parameters for each snapshot graph in order to capture their unique

characteristics. However, this will lead to several problems for the entire model during

training: 1) the node embeddings learned from adjacent snapshot graphsGt, Gt+1 may

yield inconsistent node embeddings even when the graph characteristics are similar,
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since there is no constraint on the parameter set; and 2) the resulting model tends

to suffer from severe over-fitting issue since too many parameters need to be learned,

especially when the total number of time steps T is large for a given dynamic graph.

Dynamic Graph Regularization for Sparse Feature Selection

To cope with the aforementioned challenges, we propose a novel temporal feature

selection regularization that characterizes feature sparsity, local feature selection con-

sistency, and global feature selection flexibility across the evolving graphs over time.

Inspired by group sparsity ℓ2,1 regularization from group lasso [175] and overlapping

group lasso [64], we propose the following dynamic graph regularization for the first

layer of graph convolutional networks:

Lreg = β
∑T−w+1

t=1
∥Ŵ (1)

[t:t+w]∥2,1 (3.13)

where w is the sliding window size; and Ŵ
(1)
[t:t+w] is the concatenated weight matrix

from the weight parameters of a group of consecutive graph convolutional networks

between time step t and t + w. Each row i of the weight matrix represents the

ith feature weights across the w time steps; β controls the relative strength of the

regularization.

Dynamic graph typically enjoys temporally consistent characteristics, since user

transition activity graphs such as the example shown in Figure 3.2 change smoothly

over time. Thus, the model can achieve temporal local consistency feature selection

by adding a sliding window to force the local model to select similar features, which

retains the flexibility of the feature selection process while still evolving gradually

with time.

The proposed regularization brings several advantages. First, it promotes the

interpretability of the model in term of node attributes, enabling us to visualize
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important features at any given time step and providing useful insights into how

the importance of features evolves through time. Second, it also serves as a good

regularizer to restrict the large number of model parameter sets, thus preventing

possible model over-fitting. Lastly, it enhances the generalization power of the model.

These results and analysis will be discussed in detail in the subsequent experimental

section.

3.4.3 Sequence Decoder with Dynamic Graph Hierarchical

Attention

Once the dynamic graph encoder takes the sequence of snapshot graphs Gt and aggre-

gates node embeddings to generate a sequence of graph-level embeddings that capture

the entire dynamic graph’s global characteristics, the LSTM layer will output the fi-

nal hidden-state of encoder CT to summarize all the graph-level embeddings. Then,

in the sequence decoding phase, we utilize a conventional sequence decoder [90] and

set the initial cell state of the decoder as CT in order to decode the target sequence

S.

However, there are two issues with this simple sequence decoder: 1) the effective-

ness of the sequence decoder depends on the length of the dynamic graph sequence

(the longer the graph sequence is, the less information the last hidden state of graph

embeddings can provide); and 2) the predicted user’s health stage sequence need to

be interpretable based on the dynamic graph sequence at both the time-level (i.e.,

which graph snapshot Gt is related) and node-level (i.e., which subforums this corre-

sponds to). For instance, as shown in Figure 3.2, our model must learn to pinpoint

which snapshot graphs in the dynamic graph sequence are strongly correlated to the

output user health stage predicted by the decoder. To take this one step deeper, the

model should also be able to provide information on which of the important nodes

(subforums) are in a given snapshot graph while the model is generating a specific
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Graph-to-Seq
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Graph
Embedding

Node-to-Graph
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Figure 3.4: The proposed dynamic graph hierarchical attention mechanism: node-to-
graph and graph-to-sequence attention. The node-to-graph attention aggregates the
node level information (i.e. node embeddings) to formulate the graph-level embed-
dings, and the graph-to-sequence attention aims to find the mapping between each
snapshot graph and each token in output sequence.

user’s health stage.

To answer these questions pertaining to model interpretability, we need to develop

a more effective way of handling information propagation and aggregation from low-

level representations (i.e. node levels at a specific time) to high-level representations

(i.e. the dynamic graph as a whole). Hence, we propose a novel dynamic graph hierar-

chical attention mechanism that includes node-to-graph and graph-to-sequence

attention that is capable of enhancing the interpretability for node embedding aggre-

gation and capture the hierarchical structure of user online forum activities over time

more effectively.

Node-to-Graph Attention

Once the node embeddings of a graph have been computed, an average or max pool-

ing operation [164, 157] is typically employed as the base aggregation function to

obtain the graph-level embedding for the current graph. Although this works well
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in their individual settings, it does not work properly in our case since not all node

embeddings contribute equally to the representation of the graph. For example, al-

though a patient may view multiple subforums within a given time period, only a few

important subforums will be correlated with the specific health stage of the patient.

Therefore, it is vital to identify these important nodes (subforums) that contribute

most to representing the embedding of the current graph. Inspired by [112], we

adopt the feed-forward attention to aggregate the node embeddings and formulate

the graph-level embeddings. Figure 3.4 shows an example of how the node-to-graph

attention is computed for a snapshot graph Gt. For a given snapshot graph at step

t, the node-to-graph attention is given as follows:

et,n = a(ht,n) (3.14)

αt,n =
exp (et,n)∑N
k=1 exp (et,k)

(3.15)

gt =
∑N

n=1
αt,nht,n (3.16)

where the function a(·) is a learnable function that depends on the node embeddings

ht,n; and gt denotes the aggregated graph-level embedding for a snapshot graph at

step t. In this formulation, the attention weights αt,n explicitly model the importance

of each node n when constructing the graph-level representation of gt. Clearly, we

can utilize the attention weight information for each node to pinpoint which nodes

(subforums) are highly related to the current health stage. We will discuss the inter-

pretability of our node-to-graph attention in detail in the experimental Section.

Graph-to-Sequence Attention

Once the graph-level embedding gt has been obtained for each snapshot graph Gt,

the whole sequence of graph embeddings g = {gi}Ti=1 is fed into the sequence decoder,

which generates the global hidden embedding c that characterizes the entire sequence
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of dynamic graph information. Following the conventional encoder-decoder setup, c

is set as the initial hidden state for the sequence decoder from which to generate the

target sequence of the health stages.

Although the hidden vector c theoretically contains all the information needed

for the decoder to generate the target sequence, the encoder’s hidden representa-

tion ot at each time step t also contains valuable information about the snapshot

graph information at that time step during the sequence encoding. To reward graphs

that are strongly correlated to the target sequence, we use the attention mecha-

nism and introduce graph-to-sequence level attention to measure the importance of

each snapshot graph with the target sequence. Specifically, as shown in Figure 3.4,

the graph-to-sequence attention takes the sequence of hidden states for each graph

o = {o1, · · · , oT} in the dynamic graph sequence as additional inputs to the decoder.

This forces the decoder to consider both the current hidden state and the attention

alignments between each word generated and for the whole sequence o. In addition,

inspired by [113], we can also add a temporal monotonic constraint to enforce the

attention alignment of snapshot graphs to ensure they are processed in an explicitly

monotonic time order when generating the output sequence.

Therefore, suppose the decoder is at time step i and the hidden state of the

previous step is represented as si−1, our graph-to-sequence attention is computed as

follows:

ei,t = a(si−1, ot) pi,t = σ(ei,t) (3.17)

qi,t = (1− pi,t−1) · qi,t−1 + αi−1,t (3.18)

αi,t = pi,tqi,t ri =
∑T

t=1
αi,tot (3.19)

where qi,0 = 0 and pi,0 = 0 for computing for the special case when t = 1; the context

vector ri is then used to compute the current hidden state in the decoder and generate
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a word in the target sequence.

3.5 Experiments

For this study, we evaluated the performance of our proposed model utilizing a real-

world online health forum, namely the breast cancer community. We conducted com-

prehensive experiments with both quantitative evaluation and qualitative analyses of

the learning results. All the experiments were conducted on a 64-bit machine with

Intel(R) Xeon(R) W-2155 CPU 3.30GHz processor, 32GB memory and an NVIDIA

TITAN Xp GPU.

3.5.1 Experimental Settings

Online Breast Cancer Community Dataset: The Breast Cancer Community [2]

is one of the largest online forums designed for patients to share information related

to breast cancer. So far, the forum has enrolled 215,671 registered members since the

forum launch and the site contains a total of 81 subforums discussing 153,338 topics.

The forum data collected for this study covers an 8 year period from the beginning of

2010 to the end of 2017. To create user subforum activity transition graph sequences,

we defined user activities as being when they posted new topics or replied to existing

topics and the time window was set as one month. After removing common words and

stop words, we extracted the 100 top frequency keywords from the forum content to

construct the feature vectors for the subforums. We randomly selected 70% of users

who provided their health stage history for training, another 10% for validation, and

the remaining 20% for testing. The predicted health stage sequences in the test data

were validated against the real health stage history extracted from the corresponding

users’ signatures, as exemplified in Figure 3.1. The vocabulary of the health stages
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used in breast cancer consists of {‘Dx’1, ‘Chemotherapy’, ‘Targeted’, ‘Hormonal’,

‘Radiation’, ‘Surgery’}.

Evaluation Metrics

We used BLEU scores [103] as the primary evaluation metric for determining the

closeness of the model predicted health stage history and the ground truth. In ad-

dition, we also tested the model with ROUGE-1 score [85], which is commonly used

for evaluating machine summarization and translation tasks.

Comparison Methods

NMT(seq2seq) The Neural Machine Translation model implemented by Luong et

al. [90] is a widely used state-of-the-art sequence-to-sequence model for machine

transition tasks. Since the NMT model can only handle simple sequence inputs, we

simplified the input data by concatenating the transition sequences of user activity

for each month together in time order. The subforum features are omitted in such

formulations. We tested the model settings both with and without the attention

mechanism.

Graph2seq The Graph2seq model [164] was recently proposed as a general-purpose

encoder-decoder model for static graph to sequence learning. Since the model cannot

handle dynamic graphs as input, we simplified the input by aggregating all the edges

that appeared in the dynamic graph together into a single static graph. Again, we

tested the model settings both with and without the attention mechanism.

Hyper-parameter Settings

For the models tested in this experiment, the Adam optimizer[69] was used with a

learning rate of 0.001 and a batch size of 50 for model training; greedy search was

1Short for Oncotype DX test, an initial diagnosis that analyzes how a cancer is likely to behave
and respond to treatment.
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Table 3.1: Performance Evaluation for Health Stage Prediction. The scores were
obtained from 20 individual runs and presented in a mean ± standard deviation (SD)
format.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

NMT(seq2seq) (w/o att) 55.5±2.38 38.4±0.91 27.1±0.90 19.2±0.87 71.6±1.04
NMT(seq2seq) (w/ att) 57.8±1.86 40.4±1.21 29.0±1.28 20.1±1.06 72.9±0.86

Graph2Seq (w/o att) 57.5±1.72 41.5±0.94 29.8±0.72 20.3±0.85 75.8±1.20
Graph2Seq (w/ att) 58.2±2.19 41.1±1.38 30.1±0.83 21.0±0.51 76.2±0.96

DynGraph2Seq (w/o reg & att) 60.9±1.53 43.7±1.00 31.5±0.63 22.1±0.48 79.3±0.80
DynGraph2Seq (w/ reg) 61.5±2.42 45.1±1.86 32.3±1.31 23.1±1.05 78.5±0.86
DynGraph2Seq (w/ att) 62.3±1.46 44.7±1.29 32.0±0.94 22.5±1.13 80.8±0.36

DynGraph2Seq (w/ reg & att) 64.1±0.84 45.4±0.31 33.1±0.41 24.1±0.70 81.0±0.69

used for all the sequence decoders, selecting the highest scoring token at each stage.

Hyper-parameters were searched and chosen based on the highest scores achieved

on the validation set. For the graph encoders used in both the Graph2Seq and

DynGraph2Seq models, the hop number k was set to 4. For the proposed dynamic

graph regularization, the window size was set to 12 and β was set to 0.0003.

3.5.2 Performance

Table 3.1 shows the model performance of the baseline and proposed models. The

scores were obtained from 20 individual runs and presented in a mean ± standard

deviation (SD) format. In general, our proposed DynGraph2Seq framework signifi-

cantly outperformed both the Seq2Seq and Graph2Seq baselines for the various model

settings and evaluation metrics. The basic DynGraph2Seq framework with both the

proposed dynamic graph regularization and the dynamic graph hierarchical atten-

tion achieved the best score on all the metrics, outperforming the baseline models

by 10% - 25% on the BLEU scores and 6% - 13% on the ROUGE scores. The base-

line Graph2Seq model also achieved good scores, but was not as competitive as our

proposed model. This was largely because Graph2Seq model failed to capture the

dynamic characteristics of user activity with only static graph inputs. The Seq2Seq
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model performed badly due to its inability to model the complex relationships be-

tween the subforums with simple sequence inputs.

Interestingly, although the full version of DynGraph2Seq (i.e. with the proposed

regularization and hierarchical attentions) largely outperformed the baselines, the

base model only achieved a marginal improvement compared to the Graph2Seq model.

This was likely due to the fact that the aforementioned challenges prevented the base

model from being fully effective for the learning task. These results further demon-

strate that the proposed dynamic graph regularization and hierarchical attention are

essential if the framework is to handle the learning tasks effectively.

3.5.3 Interpretablity Analysis

Interpretablity for dynamic graph hierarchical attention

Figure 3.5 shows an example of the learned dynamic graph hierarchical attention by

DynGraph2Seq for test data. The left part of the figure shows the graph-to-sequence

attention learned by the model, where each column is a grayscale heatmap repre-

senting the amount of attention being paid to each snapshot graph when the model

predicted a specific health stage. The darker the color, the greater the attention

being paid. We can see much attention was paid to the graphs around the months

being labeled in the figure. The graphs for each labeled months are shown on the

right. Interestingly, the graphs in the first two months attracted more attention from

the model because those were the months when the patient first became active in

the breast cancer online forum. The last two labeled snapshot graphs relate approxi-

mately to the time when the user engaged in extensive activities in a wide variety of

subforums.

However, it is still hard to understand why these particular snapshot graphs were

important and of interest to the model when predicting the user health stage sequence.

To explore this issue, we went one step deeper by examining the node-to-graph level
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Figure 3.5: An example of learned dynamic graph hierarchical attention by Dyn-
Graph2Seq. The darker the color, the greater the attention being paid.
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attention of these graphs. The red spots on the nodes shown on the right side of

Figure 3.5 represent the amount of attention being paid to each node (i.e. subforum)

when the model aggregated the node level information into the graph level represen-

tation. Again the darker the red spot, the greater the attention being paid. Now the

attention becomes even more interesting and interpretable. For example, when con-

structing the representation of the May-2012 snapshot graph, Subforums #14, #19,

and #2 received attention, with Subforum #14 being assigned the most attention.

The title of Subforum #14 is actually “Radiation Therapy - Before, During and Af-

ter”, which is strongly correlated to the health stage ‘Radiation’. This explains why

that particular graph received more graph-to-sequence attention when the model pre-

dicted ‘Radiation’. Likewise, we further discovered that Subforum #2, entitled “Not

Diagnosed but Worried”, has a strong correlation with ‘Dx’ and Subforum #19, enti-

tled “DCIS (Ductal Carcinoma In Situ)”, is a strong indicator for the model to predict

‘Surgery’. These observed correspondences confirm that the proposed dynamic graph

hierarchical attention mechanism greatly enhances the interpretability of the model.

Interpretablity for dynamic graph feature selection

Table 3.2 shows an example of the top subforum features (keywords) selected by

the proposed dynamic graph regularization for the second half of the year 2017.

The keywords in boldface were commonly selected during the year and exhibited

high correspondences with patient health stage evolution. For instance, treatment-

related keywords (e.g. ‘diagnosed’, ‘treatment’, ‘therapy’, and ‘chemo’) could be

a strong indication of whether the patient was undergoing specific examinations or

treatments. Moreover, the keywords containing temporal information, such as ‘today’,

‘year’, ‘new’, and ‘newly’, were also selected in many of the consecutive months. This

is because these keywords could provide a temporal bridge to link dynamic graph

sequences to the corresponding patient health stage sequences. Thus, the proposed
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Table 3.2: Top 15 static subforum features (keywords) selected by dynamic graph
regularization for the second half of the year 2017. The keywords in boldface are
commonly selected during the year and have high correspondences with patient health
stage evolution.

July Aug Sep Oct Nov Dec

help bone bc today help bone

sister treatment family mets support chemo

treatment therapy sisters scared new help

negative scared year news chemo mets

today mom hair diagnosed results please

bone diagnosed reconstruction support bone newly

mom family care negative mets bc

year question tumor scan please survivor

please radiation positive vs ca diagnosed

new pain lymph results pain ladies

tumor diagnosis node therapy sisters support

lymph back treatment people tamoxifen anyone

share looking back mom diagnosed today

lump new please new life share

results bc research newly show vs

dynamic graph regularization not only regularized the massive model parameters, but

also brought significant benefits to enhance the model interpretability.

3.5.4 Health Stage Sequence Analysis

Correct Health Stage Sequence Predictions

Table 3.3 shows two examples of health stage sequences that DynGraph2Seq was able

to infer correctly by capturing the dynamic evolution from the dynamic graph. In

the first example, the patient underwent four surgeries, while in the second example

the patient had two consecutive chemotherapy treatments. The baseline Graph2Seq

failed miserably in terms of capturing such duplication due to the fact that a static

transition network cannot preserve such information on the dynamic evolution of user

forum activity.
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Table 3.3: Correct Health Stage Sequence Predictions

Model Health stage sequence

Ground Truth Dx Surgery Surgery Hormonal Surgery Surgery

DynGraph2Seq Dx Surgery Surgery Hormonal Surgery Surgery

Graph2Seq Dx Surgery Chemotherapy Hormonal

Seq2Seq Dx Surgery Chemotherapy Hormonal Surgery

Ground Truth Dx Chemotherapy Chemotherapy Surgery Radiation

DynGraph2Seq Dx Chemotherapy Chemotherapy Surgery Radiation

Graph2Seq Dx Surgery Chemotherapy Radiation

Seq2Seq Dx Chemotherapy Surgery Surgery

Table 3.4: Interesting Predictions on Complicated Sequences

Model Health stage sequence

Ground Truth Dx Chemotherapy Surgery Hormonal Radiation Surgery

DynGraph2Seq Dx Chemotherapy Surgery Radiation Hormonal Surgery

Ground Truth Dx Surgery Radiation Dx Surgery Surgery Hormonal

DynGraph2Seq Dx Surgery Radiation Dx Surgery Surgery Surgery Surgery Surgery

Ground Truth
Dx Dx Chemotherapy Hormonal Chemotherapy

Hormonal Chemotherapy Chemotherapy Chemotherapy

DynGraph2Seq
Dx Surgery Chemotherapy Hormonal Dx Chemotherapy

Chemotherapy Chemotherapy Chemotherapy Chemotherapy
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Interesting Incorrect Predictions

Exact sequence matching is extremely difficult, especially when inferring long and

complicated sequences, such as the ones shown in Table 3.4. Surprisingly, even though

DynGraph2Seq failed to predict exactly correct sequences, it generated meaningful

health stage sequences that were very close to the ground truth. For instance, in

the second case, DynGraph2Seq successfully predicted the first six stages, which

involved two ‘Dx’ and three ‘Surgery’ stages. In the third case, which involved a total

of 9 health stages, DynGraph2Seq was still able to predict reasonably close health

stage sequences even for extremely long sequences. These cases further confirm that

DynGraph2Seq did indeed succeed in learning meaningful patterns for this challenging

dynamic graph sequence to sequence prediction task.

3.6 Conclusion

In this work, we formulated the task of health stage inference using online health

forum data as a dynamic graph-to-sequence learning problem and propose a novel

dynamic graph-to-sequence neural networks architecture (DynGraph2Seq) that can

handle this new type of learning problem effectively. Our DynGraph2Seq model con-

sists of a novel dynamic graph encoder and an interpretable sequence decoder to learn

the mapping between a sequence of time-evolving user activity graphs and a sequence

of target health stages. In addition, we developed a new dynamic graph regularization

and dynamic graph hierarchical attention to facilitate the multi-level interpretability.

Our comprehensive experiments and analyses for health stage prediction demonstrate

both the effectiveness and the interpretability of the proposed models.
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Chapter 4

Explanation-Guided

Representation Learning on

Geometric Data

4.1 Introduction

In recent years, representation learning on geometric data, such as image and graph-

structured data, are experiencing rapid developments and achieving significant progress

thanks to the rapid development of Deep Neural Networks (DNNs), including Con-

volutional Neural Networks (CNNs) and Graph Neural Networks (GNNs). However,

DNNs typically offer very limited transparency, imposing significant challenges in ob-

serving and understanding when and why the models make successful/unsuccessful

predictions [61].

While we are witnessing the fast growth of research in local explanation tech-

niques in recent years, the majority of the focus is rather handling “how to generate

the explanations”, rather than understanding “whether the explanations are accu-

rate/reasonable”, “what if the explanations are inaccurate/unreasonable”, and “how
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to adjust the model to generate more accurate/reasonable explanations” [13, 108,

168, 88, 129, 130, 62, 183, 151].

To explore and answer the above questions, this Chapter aims to explore a new

line of research called ‘Explanation-Guided Learning’ (EGL) that intervenes the deep

learning models’ behavior through XAI techniques to jointly improve DNNs in terms

of both their explainability and generalizability. Particularly, we propose to explore

the EGL on geometric data, including image and graph-structured data, which are

currently under-explored [61] in the research community due to the complexity and

inherent challenges in geometric data explanation. Specifically, in Section 4.2, we

introduce the proposed interactive and general explanation-guided learning framework

GNES for graph neural networks to enable the “learning to explain” pipeline, such

that more reasonable and steerable explanations could be provided. In Section 4.3,

we describe the proposed two generic EGL frameworks, namely GRADIA and RES,

for robust visual explanation-guided learning by developing novel explanation model

objectives that can handle the noisy human annotation labels as the supervision signal

with a theoretical justification of the benefit to model generalizability.

4.2 EGL on Graph-Structured Data

As Deep Neural Networks (DNNs) are widely deployed in sensitive application areas,

recent years have seen an explosion of research in understanding how DNNs work

under the hood (e.g., explainable AI, or XAI) [8, 5] and more importantly, how to

improve DNNs using human knowledge [61]. In particular, Graph Neural Networks

(GNNs) have been increasingly grabbed attention in several research fields, including

computer vision [108, 43], natural language processing [7], medical domain [33], and

beyond. Such trend is attributed to the practical implication of graphs data—many

real-world data, such as social networks [40], chemical molecules [128], and financial
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Figure 4.1: Cases for adjusting model explanation to improve Graph Neural Networks
(GNNs). Scene Graph (left three): From the left, an input image, explanation before
adjustment (1-a, inaccurate), and explanation after the adjustment (1-b, accurate).
Note that the model explanation has been shifted from puppy eyes and back, rods,
and an artificial tree to curtains, a clock, and a rug. Molecular formula (right three):
From the left, an input formula, explanation before the adjustment (2-a, inaccurate),
and explanation after the adjustment (2-b, accurate). Reactivity for this molecule is
mostly affected by benzene ring sub-components in the overall molecular structure.
2-b highlights the main benzene rings of the molecule more effectively than 2-a.

data [96], are represented as graphs.

However, similar to other DNNs’ architectures, GNNs also offer only limited

transparency, imposing significant challenges in observing when GNNs make suc-

cessful/unsuccessful predictions [61, 159]. This issue motivates a surge of recent

research on GNN explanation techniques, including gradients-based methods, where

the gradients are used to indicate the importance of different input features [13, 108];

perturbation-based methods, where an additional optimization step is typically used

to find the important input that influences the model output the most with input

perturbations [168, 88, 129]; response-based methods, where the output response sig-

nal is backpropagated as an importance score layer by layer until the input space

[13, 108, 130]; surrogate-based methods, where the explanation obtained from an

interpretable surrogate model that is trained to fit the original prediction is used

to explain the original model [62, 183, 151]; and global explanation methods, where

graph patterns are generated to maximize the predicted probability for a certain class

and use such graph patterns to explain the class [173].

Despite the recent fast progress on GNN explanation techniques, the existing re-

search body focuses on “how to generate GNN explanations” instead of “whether the
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GNN explanations are inaccurate”, “what if the explanations are inaccurate”, and

“how to adjust the model to generate more accurate explanations”. Answering the

above questions is highly beneficial to the model developers and the users of GNN

explanation techniques, but are also extremely difficult due to several challenges: 1)

Lack of an automatic learning framework for identifying and adjusting un-

reasonable explanations on GNNs. Although there are plenty of existing works

on GNN explanations, they are not able to ensure the correctness of explanations,

not able to identify the incorrect explanations, nor able to adjust the unreasonable

explanations. The technique that can enable this has not been well explored yet and

is technically challenging due to the additional involvement of another backpropaga-

tion originated from explanation error. 2) Difficulty in aligning the node and

edge explanations. Existing GNN explanation works usually focus on either node

and edge explanation while the interplay and consistency between the explanations

of nodes and edges are extremely challenging to maintain and jointly adjusted. 3)

Difficulty in jointly improving model performance and explainability with

limited explanation-guided learning. Due to the high cost for human annota-

tion, it can be impractical to assume the full accessibility to the human explanation

label during model training. Thus designing an effective framework that can best

leverage a partially labeled dataset is on-demand yet challenging.

To address the above challenges, beyond merely generating GNN explanations,

this paper focuses on a generic GNN explanation-guided learning framework for cor-

recting the unreasonable explanations and learning how to explain GNNs correctly.

Specifically, we first propose a unified explanation method for GNNs that can gen-

erate node and edge explanations with consistency regularization among them. The

generality of the proposed method over existing node-explanation methods is rigor-

ously demonstrated. Finally, we develop a learning objective that jointly optimizes

model prediction and explanation with weak supervision from human explanation
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annotations.

Specifically, the main contributions of our study are as follows:

1. Developing a generic framework for adaptively learning how to ex-

plain GNNs with weak explanation-guided learning. We present a new

learning objective for joint optimization among the model prediction loss, the

explanation loss, and the graph regularization loss on regulating the model ex-

planation. In addition, our framework can treat the explanation loss as an

optional term and thus work effectively in scenarios where the human annota-

tion on explanation is limited.

2. Developing a unified graph-based explanation framework for calcu-

lating both node-level and edge-level explanation of GNNs. We pro-

posed a unified framework for both node-level and edge-level explanations that

is suitable for explanation-guided learning and generalizable to the existing dif-

ferentiable explanation methods.

3. Proposing a model that can regularize both the node-level and edge-

level explanations to form a better graph-level explanation. We propose

to apply novel explanation regularizations (i.e., explanation consistency and

sparsity) onto the model-generated explanation to inject general graph princi-

ples and prior knowledge about the explanation that enhance the quality and

consistency among the multiple levels of explanations.

4. Conducting comprehensive experiments to validate the effectiveness

of the proposed model. Extensive experiments on five real-world datasets

in two domains, chemical (molecular graphs) and vision (scene graphs), demon-

strate that the proposed models improved the backbone GNN model both in

terms of prediction power and explainability across different application do-

mains. In addition, qualitative analyses, including case studies and user studies
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of the model explanation, are provided to demonstrate the effectiveness of the

proposed framework.

4.2.1 Related work

Our work draws inspiration from the research fields of graph neural network explana-

tions that provide the model generated explanations, and explanation-guided learning

on DNNs which enables the design of pipelines for the human-in-the-loop adjustment

on the DNNs based on their explanations.

Graph Neural Networks Explanations

Most of the existing GNN explanation methods are instance-level methods, where the

methods explain the models by identifying important input features for its prediction[174].

The first category is gradients-based methods, where the gradients are used to indi-

cate the importance of different input features. Existing methods are SA [13], Guided

BP [13], CAM [108], and GradCAM [108]. The second category is perturbation-based

methods, where an additional optimization step is typically used to find the important

input that influences the model output the most with input perturbations. Existing

methods are GNNExplainer [168], PGExplainer [88], GraphMask [129]. The third

category is the response-based method, where the output response signal is back-

propagated as an importance score layer by layer until the input space. Existing

methods in this category including LRP [13], Excitation BP [108] and GNN-LRP

[130]. The last category is surrogate-based methods, where the explanation obtained

from an interpretable surrogate model that is trained to fit the original prediction is

used to explain the original model. The surrogate methods include GraphLime [62],

RelEx [183], and PGM-Explainer [151]. Besides instance-level explanation methods,

very recently, the global explanation of the GNN model has also been explored by

XGNN [173]. Please see Yuan et. al. [174] for a survey of explainability in Graph
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Neural Networks.

Even though there are plenty of existing explanation methods for GNNs, most of

the methods above can not be applied to explanation-guided learning mechanism, as

the goal is to apply supervision on the generated explanation such that the backbone

GNNmodel itself can be fine-tuned accordingly to generate better explanations as well

as keep or even improve the model performance. To enable this fine-tuning process

over the explanation, the explanation itself needs to be differentiable to the back-

bone GNN model’s parameters. In other words, only the explanation that is directly

calculated from the computational pipeline (such as gradients-based and response-

based methods) can be used to apply this additional explanation-guided learning

to fine-tune the backbone GNN models explanation. The perturbation-based and

surrogate-based methods all require additional optimization steps to obtain the ex-

planation and thus are unable to be end-to-end trained with the explanation-guided

learning on the backbone GNNs.

explanation-guided learning on DNNs

The potential of using explanation–methods devised for understanding which sub-

parts in an instance are important for making a prediction–in improving DNNs has

been studied in many domains across different applications. In fact, explanation-

guided learning has been widely studied on image data by the computer vision com-

munity [87, 98, 111, 22, 105, 184, 32]. Linsey et al. [87] have demonstrated that the

benefit of using stronger supervisory signals by teaching networks where to attend,

which looks similar to the proposed approach. Moreover, Mitsuhara et al. [98] have

proposed a post hoc fine-tuning strategy where an end-user is asked to manually edit

the model’s explanation to interactively adjust its output. Such edited explanations

are then used as ground-truth explanations (from humans) to further fine-tune the

model. In addition, several works in the Visual Question Answering (VQA) domain



73

Figure 4.2: The proposed GNN explanation-guided learning (GNES) framework that
jointly optimized the GNN models based on 1) a prediction loss, 2) an explanation
loss on the human annotation and model explanation, and 3) a graph regularization
loss to inject high-level principles of the graph-structured explanation. Notice that
we only assume limited accessibility to the human annotation for only a small set of
samples (10% in our experiments).

have proposed to use explanation-guided learning to obtain improved explanation

on both the text data and the image data [111, 184, 105, 32]. Besides image data,

the explanation-guided learning has also been studied on other data types, such as

texts [65, 119], attributed data [150], and more. However, to our best knowledge,

explanation-guided learning on graph-structured data with graph neural networks

has not been explored before, and we are the first to propose a framework to handle

this open research problem.

4.2.2 GNES Framework

In this section, we first introduce the proposed GNES framework that boosts the

model explainability via explanation-guided learning and the novel explanation reg-



74

ularizations (i.e., explanation consistency and sparsity) that enhance the quality and

consistency among the multiple levels of explanations. We then move on to introduce

the proposed unified formulations for both node-level and edge-level explanation that

are suitable for explanation-guided learning.

Problem formulation: Let G = (X,A) denote a attributed graph with N nodes

be defined with its node attributes X ∈ RN×din and its adjacency matrix A ∈ RN×N

(weighted or binary), where din denotes the dimension of input feature. Let y be the

class label for graph G, the general goal for a GNN model is to learn the mapping

function f for each graph G to its corresponding label, f : G → y.

Following the definition of Graph Convolutional Networks (GCN) [70], a graph

convolutional layer can be defined as:

F (l) = σ(D̃− 1
2 ÃD̃− 1

2F (l−1)W (l)) (4.1)

Where F (l) denotes the activations at layer l, and F (0) = X; Ã = A + IN is the

adjacency matrix with added self connections where IN ∈ RN×N is the identity matrix;

D̃ is the degree matrix of Ã, where D̃ii =
∑

j Ãij; The trainable weight matrix for

layer l is denoted as W (l) ∈ Rd(l)×d(l+1)
; σ(·) is the element-wise nonlinear activation

function.

In addition, to deal with variable size graphs in the dataset where the number of

nodes can be different among graph samples, we adopt a similar design as in [108] to

our backbone GNN model using several layers of graph convolutional layers followed

by a global average pooling (GAP) layer over the graph nodes (e.g., atoms for the

molecular graph and objects for the scene graph).



75

The Framework

The general goal for the GNES framework is to boost the model explainability via

explanation-guided learning such that the model performance could also benefit from

assigning more importance to the right features. Specifically, for graph data, the

explanation-guided learning can be done in two main ways: 1) by applying some high-

level graph-structured rules to the explanation, and 2) by adding human annotation

samples as additional guidance. Thus, we present the learning objective of the GNES

framework to be a joint optimization among the model prediction loss, the explanation

loss, and graph regularizations on regulating the model explanation, as shown in

Figure 4.2. Concretely, we propose the objective function as:

min LPred + LAtt(⟨M,M ′⟩, ⟨E,E ′⟩)︸ ︷︷ ︸
explanation loss

+ Ω(A,M,E)︸ ︷︷ ︸
regularization

(4.2)

where M ∈ RN×1 and E ∈ RN×N denote the model generated node-level and edge-

level explanations using a given explanation method. and M ′, E ′ are the corre-

sponding ground-truth explanations marked by the human annotators. LPred is the

typically prediction loss (such as the cross-entropy loss) on the training set. The pro-

posed explanation loss LAtt measures the discrepancies between model and human

explanations on both node-level and edge-level, as:

LAtt(⟨M,M ′⟩, ⟨E,E ′⟩) = αndist(M,M ′)︸ ︷︷ ︸
node-level loss

+αedist(E,E
′)︸ ︷︷ ︸

edge-level loss

(4.3)

Where αn and αe are the scale factors for balancing node-level and edge-level loss;

the function dist(x, y) measures the mean element-wise distance between the inputs x

and y, a common choose can be absolute difference or squared difference. In practice,

we found that the absolute difference is more robust to the labeling noise from the

annotator.
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However, due to the high cost of human annotation on the explanations, obtaining

the human explanations for the whole dataset can be prohibitive in practice. To deal

with this issue, we propose to only apply the explanation loss to the samples that have

the ground-truth labels for the human explanations, and apply the high-level graph

rules to regulate the model explanation for each sample even if the human annotation

is unavailable. Specifically, we propose a novel explanation consistency regularization

term that regulates the node and edge explanation simultaneously so that the model

is more likely to generate a globally consistent and smooth explanation over nodes

and edges. Besides, we use sparsity regularization to regulate the model to only focus

on a few important nodes and edges for the explanations. Thus, we propose the

following graph regularizations to obtain more reasonable model explanations:

Ω(A,M,E) = βΩc(A,M,E)︸ ︷︷ ︸
explanation consistency

+ γΩs(M,E)︸ ︷︷ ︸
sparsity

(4.4)

Where β is the scaling factor for the explanation consistency between node and edge

explanations, γ is the scaling factor for the sparsity constraints on both node and edge

explanations. Concretely, each regularization and its desirable effects for regulating

the graph explanation is described in more detail below:

Explanation consistency regularization. The node explanation and edge

explanation are not independent, but rather highly correlated with each other. One

natural assumption about the node explanation smoothness is that the adjacent nodes

should share similar importance. However, this assumption can be too strong and

sometimes lead to over-smoothing of the node explanation and tend to yield indistin-

guishable patterns for the explanation. In addition, it ignored the connection between

the node and edge explanations, which can be a crucial factor for the explanation

model to generate a global consistent explanation.

Here, we propose to take one step further regarding the smoothness assumption
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about the explanation by considering both node and edge explanations and making

them more consistent with each other. Concretely, instead of treating all pairs of

adjacent nodes equally important when enforcing the smoothness constraint, we pro-

pose to weight them by the corresponding edge importance such that the explanation

consistency is better enforced on those nodes and edges that are deemed important.

Mathematically, the explanation consistency can be measured by:

Ωc(A,M,E) =
1

2N2

∑
i,j

Ei,jAi,j∥Mi −Mj∥2 (4.5)

The above regularization can be interpreted as follows: given a pair of nodes i and

j that is adjacent (i.e., Ai,j = 1), if the edge that connects the two nodes is important

(i.e., Ei,j is high), then the nodes it connects also tend to be consistent.

Sparsity regularization. As sparsity is a common practice for the model ex-

planation, we apply the ℓ1 norm to regulate both the node-level and the edge-level

explanations, as:

Ωs(M,E) =
1

N
∥M∥1 +

1

N2
∥E∥1 (4.6)

Overall, the benefits of applying the proposed regularization terms are threefold.

First, the regularization terms do not rely on the specific human labels on the expla-

nation, which can be very limited and hard to acquire in practice. Thus they can be

very crucial in the scenarios where the explanation labels are scarce. Second, since

the explanation for the node and edge can be highly relevant, the proposed expla-

nation consistency regularization can be critical for enforcing the model to generate

more reasonable and consistent results that better align with the human explanation.

Lastly, our overall framework is very flexible such that the regularization terms are not

affected by changing the specification of the node and edge explanation formulation

in Equation (4.7) and Equation (4.10), respectively, making the proposed framework

easily applicable to give explanation and apply explanation-guided learning on any
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downstream applications with little to no overhead.

Node Explanation Formulation for explanation-guided learning

Although the node-level explanation is the most studied topic in the instance-based

graph explanation domain, there are still several challenges to apply the node explanation-

guided learning: First, most existing methods do not apply to the explanation-guided

learning as the generated explanations are no longer differentiable to the backbone

GNN model’s parameters. Moreover, there is no unified formulation for the node-level

explanation-guided learning.

To handle those challenges, we propose the first unified node explanation formula-

tion for node-level explanation-guided learning. Concretely, we first identify that the

gradient and the response/activation can be the major information that can produce

the model-generated explanation that remains differentiable to the backbone GNN

model’s parameters so that the explanation-guided learning can be performed to af-

fect the model during training. We then propose to integrate both aspects to form

a general formulation for the node explanation. Mathematically, given the output yc

on class c, the explanation for node n at layer l can be computed as:

M (l)
n = ∥ReLU(g( ∂yc

∂F
(l)
n

) · h(F (l)
n ))∥ (4.7)

Where ∂yc

∂F
(l)
n

represents the gradient of the features of node n at layer l given class c,

and F
(l)
n denotes the node activation at layer l, g(·) and h(·) are the functions that

can be further defined to cover more complicated computation over the gradient as

well as the activation, respectively.

The formulation above is a generic framework that covers as special cases major

existing works where the gradient of the node features and the activation of the node

are used to calculate the node explanation or the node importance, as shown in the
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following theorem.

Theorem 1 (Generality of Equation (4.7)). The proposed generic node-level explana-

tion formulation in Equation (4.7) covers a broad range of important existing works on

node-level explanation as special cases with specification of h(·) and g(·), such as the

gradient-based saliency maps (GRAD), GradCAM [131, 108], Layer-wise Relevance

Propagation (LRP) [10, 13], and Excitation Backpropagation (EB) [177, 108].

Proof. The specification for the function g(·) and function h(·) for each existing meth-

ods are listed in detail below:

Simple gradient-based saliency maps (GRAD): For simple GRAD, only the func-

tion g(·) is active, and it is simply the identity function, i.e. g( ∂yc

∂F
(l)
n

) = ∂yc

∂F
(l)
n

; the

function h(·) will trivially return 1 (i.e. h(F
(l)
n ) = 1) as the activation is not used in

simple GRAD situation.

GradCAM : For the GradCAM [131, 108], since it uses both gradient information

and node activation, both functions will be non-trivial. Specifically, the function

g(·) can be defined as g( ∂yc

∂F
(l)
n

) = 1
N

∑N
n=1

∂yc

∂F
(l)
n

; and the function h(·) is the identity

function (i.e. h(F
(l)
n ) = F

(l)
n ).

Layer-wise Relevance Propagation (LRP): For LRP [10, 13], gradient information

is ignored and only the node activation is used. Concretely, the function g(·) will

trivially return 1 (i.e. g( ∂yc

∂F
(l)
n

) = 1); the function h(F
(l)
n ) = 1

dl

∑dl
k=1 ĥ(F

(l)
k,n) where

ĥ(F
(l)
k,n) can be calculated via a relevance propagation as shown below.

For notational simplicity, we first decompose a graph convolutional operator into:


F̂

(l)
k,n =

∑
m Vn,mF

(l)
k,m

F
(l+1)
k′,n = σ(

∑
k′ F̂

(l)
k,nW

(l)
k,k′),

(4.8)

where V = D̃− 1
2 ÃD̃− 1

2 is the normalized graph Laplacian; the first equation is a local

averaging of nodes, and the second equation is a fixed perceptron applied to each



80

node (analogous to one-by-one convolutions in CNNs).

To capture both activatory and inhibitory parts of the forward pass, the αβ−rule

is applied in RP, and the corresponding backward passes for these two functions can

be defined as:


ĥ(F

(l)
k,n)=

∑
m

Vn,mF
(l)
k,n∑

n Vn,mF
(l)
k,m

ĥ(F̂
(l)
k,m)

ĥ(F̂
(l)
k,n)=

∑
k′(α

F̂
(l)
k,nW

(l)+

k,k′∑
k F̂

(l)
k,nW

(l)+

k,k′
+β

F̂
(l)
k,nW

(l)−
k,k′∑

k F̂
(l)
k,nW

(l)−
k,k′

)ĥ(F
(l+1)
k′,n ),

(4.9)

where W
(l)+
k,k′ = max(0,W

(l)
k,k′), and W

(l)−
k,k′ = min(0,W

(l)
k,k′), and typically α + β = 1 in

order to uphold conservativity of relevance between layers.

Excitation Backpropagation (EB): For EB [177, 108], it follows the same setting

as in LRP, except the parameter α = 1, β = 0 in Equation (4.9), which only focus on

the activatory or excitation part of the forward pass when calculating h(F
(l)
n ).

Here we have demonstrated the broad coverage of the proposed node-level explana-

tion formulation for enabling the unified node explanation-guided learning. Other ex-

isting gradient-based methods and response-based methods can also be easily derived

and fitted into this framework by specifying the functions g(·) and h(·) respectively.

Edge Explanation Formulation for explanation-guided learning

Besides node-level explanation, the edge-level explanation can also be very crucial in

many applications to highlight the important relationships between nodes. Unfortu-

nately, most existing methods that focus on edge-level or subgraph-level explanations

such as GNNExplainer [168], PGExplainer [88], and GraphMask [129] can not be used

under the explanation-guided learning framework, as those explanations typically re-

quire additional objectives and optimization steps, making it not differentiable to

the backbone model’s parameters. Existing gradients-based methods and response-

based methods typically focused only on node-level explanation, while little to no
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work has explored the edge-level explanation. Very recently, GNN-LRP [130] ex-

plored the higher-order edge-level explanation based on LRP. However, the multiple

levels/orders of explanations on the edges are generally very hard to interpret and

align with human annotations.

To enable edge-level explanation-guided learning, we propose the first unified edge-

level explanation formulation following a similar path from node-level explanation.

Concretely, using the chain rule, we identify that the gradient of the adjacency matrix,

as well as the response/activation of the pairs of nodes that are associated with the

edges can be the major information that can produce the model generated explana-

tion that remains differentiable to the backbone GNN model’s parameters. We then

propose to integrate both aspects together to form a general formulation for the edge-

level explanation. Concretely, given the output yc on class c, the edge explanation

between node n and node m at layer l can be computed as:

E(l)
n,m = ∥ReLU(g( ∂yc

∂F (l)
· ∂F

(l)

∂An,m
) · h(F (l)

n , F (l)
m ))∥ (4.10)

Where ∂yc
∂F (l) · ∂F (l)

∂An,m
represents the gradient of the edge that connects node n and

node m at layer l given class c; F
(l)
n and F

(l)
m denote the activation of node n and

node m at layer l, respectively; again g(·) and h(·) are the two functions that can be

further defined to cover more complicated computation over the gradient as well as

the activation, respectively.

Again, the formulation above should be able to generalize to most cases where the

gradient of the edge and the activation of the pair of nodes are used to calculate the

edge explanation. Although there is not yet any existing work that falls under this

umbrella, we propose two possible specifications of the edge-level explanation from

the above formulation as shown below.

Gradient-based : This can be seen as the extension from GRAD to edge-level
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explanation. Specifically, only the gradient information is used, as g( ∂yc
∂F (l) · ∂F (l)

∂An,m
) =

∂yc
∂F (l) · ∂F (l)

∂An,m
, and the node activation information is ignored, i.e. h(F

(l)
n , F

(l)
m ) = 1.

Response-based : This can be seen as the extension from LRP to edge-level expla-

nation. In this specification, the gradient information is ignored, i.e. g(·) = 1, and

the function h(·) is defined as:

h(F (l)
n , F (l)

m ) = Vn,m

dl∑
k=1

(ĥ(F̂
(l)
k,m) + ĥ(F̂

(l)
k,n)) (4.11)

where ĥ(F̂
(l)
k,n) can be computed by Equation (4.8) and Equation (4.9).

4.2.3 Experiments

We test our GNES framework on two application domains, visual scene graphs and

molecules. We first describe the detailed settings for the experiments and then present

the quantitative studies on both model prediction as well as the explanation. In ad-

dition, we include several qualitative studies, including case studies and user studies,

to make a qualitative assessment of how the proposed model has enhanced the ex-

plainability of the GNNs.

Experimental Settings

Molecular Graphs: We study three binary classification molecular datasets1, BBBP,

BACE, and task NR-ER from TOX21 [160], where the general goal for the classifica-

tion task is identifying functional groups on organic molecules for biological molecular

properties. Each dataset contains binary classifications of small organic molecules as

determined by the experiment. The details of each dataset are listed below:

1. BBBP : The Blood-brain barrier penetration (BBBP) dataset comes from a re-

cent study [95] on the modeling and prediction of barrier permeability. As a

1Available online at: http://moleculenet.ai/datasets-1
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membrane separating circulating blood and brain extracellular fluid, the blood-

brain barrier blocks most drugs, hormones, and neurotransmitters. Thus pene-

tration of the barrier forms a long-standing issue in the development of drugs

targeting the central nervous system. This dataset includes binary labels for

2053 compounds (graphs) on their permeability properties.

2. BACE : The BACE dataset provides quantitative (IC50) and qualitative (binary

label) binding results for a set of inhibitors of human b-secretase 1 (BACE-1)

[142]. This dataset contains a collection of 1522 compounds (graphs) with their

2D structures and binary labels.

3. TOX21 : The “Toxicology in the 21st Century” (TOX21) initiative created a

public database measuring the toxicity of compounds. The original dataset

contains qualitative toxicity measurements for 8014 compounds (graphs) on 12

different tasks, here we selected the NR-ER task, which is concerned with the

activation of the estrogen receptor [97].

Following the existing works on molecule classification [160], we split the dataset into

train/validation/test with an 80/10/10 split ratio. In addition, we use the “scaf-

fold” split algorithm for BBBP and BACE, where structurally similar molecules are

partitioned in the same split. For TOX21, the random split is used.

Scene Graphs: We obtain the scene graphs from the Visual Genome dataset2

[72]. The Visual Genome dataset consists of images and a corresponding scene graph

where the nodes are objects in the scene and edges are relationships between objects.

Objects and relationships are of many types and the data is collected from free-text

responses obtained from crowd-sourced workers. Objects have an associated region

of the image, defined by a bounding box. Following the previous work by [108], we

construct two binary classification tasks: country vs. urban, and indoor vs. outdoor.

2Available online at: https://visualgenome.org/
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The data samples for the two tasks are selected based on a set of pre-defined keywords

which are used to query the Visual Genome data for matches in any attribute of an

image. Specifically, the keywords used to define each class are listed below:

• country : countryside, farm, rural, cow, crops, sheep

• urban: urban, city, downtown, building

• indoor : indoor, room, office, bedroom, bathroom

• outdoor : outdoor, nature, outside

Notice that the keywords are non-comprehensive and the generated datasets are just

for the purpose of studying the explanation on graphs. We balanced the sample size

for each class by randomly selecting 1000 samples out of the image pools from the

Keyword match. Again, we randomly split the dataset into train/validation/test with

an 80/10/10 split ratio.

To convert the visual genome data to the graph input data, we treat each object

as a unique node in the graph and the edge will be the corresponding relationship

between a pair of objects. For the node feature for each object, we use a pre-trained

InceptionV3 [144] network to extract the deep features from the image region defined

by the bounding box associated with each object. The feature dimension for all visual

genome nodes is of size d = 2048.

Evaluation Metrics: We evaluate the model in terms of performance as well

as in terms of explainability. Specifically, for model performance assessment, we use

accuracy (ACC) and Area Under the Curve (AUC) scores to measure the prediction

power of the GNNs on the prediction tasks for sense graph datasets, and only AUC

scores for molecular graph datasets as the sample size can be imbalanced. Besides,

we leverage the human-labeled explanation on the test set to quantitatively assess the

goodness of the model explanation. Specifically, for both node-level and edge-level
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explanations, we treat the human explanation as the gold standard, and compute

the distance between human and model explanation via Mean Square Error (MSE)

and Mean Absolute Error (MAE). To match with human annotation, both node-

level and edge-level explanations are normalized in the range of (0, 1] by dividing the

corresponding max values.

Comparison Methods: Since there is no existing work on explanation-guided

learning on GNNs and graph data, we demonstrate the effectiveness of our model

in the following two aspects: First, we compare the explanation obtained by the

proposed model with the explanation generated by the existing explanation methods

on the backbone GNN as baselines to assess the improvement in terms of the model

explainability. Concretely, we compare the explanation generated by GradCAM as

the gradient propagation-based explanation, and EB as the relevance propagation-

based explanation on a GNN with the same architecture as used in the proposed

framework. Next, we conduct the ablation study of the proposed GNES framework

to assess the effect of each proposed component. Specifically, we studied the following

variations of GNES:

• GNES−human
+reg : The variation where we ablate the human annotation and use

graph regularization only to regulate the model explanation.

• GNES+human
−reg The variation where we ablate the regularization and only use

the human annotation to supervise the model explanation.

• GNES+human
+reg The complete pipeline where we leverage both human annotation

as well as graph regularization to supervise the model explanation.

Implementation details. Following the previous work on the explainability

method on GNNs, we used a 3 layer GCN as our backbone GNN model. More specif-

ically, the hidden dimension size for the three graph convolutional layers are of size

512, 256, and 128, respectively, followed by a global average pooling (GAP) layer,
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Table 4.1: The performance and model generated explanation evaluation among the
proposed models and the baselines on 3 molecular graph datasets. The results are
obtained from 5 individual runs for every setting. The best results for each dataset
are highlighted with boldface font and the second bests are underlined.

Dataset Exp Method AUC Node MSE Node MAE Edge MSE Edge MAE

BBBP

EB 0.659 ± 0.011 0.572 ± 0.010 0.590 ± 0.009 0.050 ± 0.003 0.051 ± 0.002
GradCAM 0.659 ± 0.011 0.460 ± 0.008 0.545 ± 0.004 0.042 ± 0.001 0.050 ± 0.001

GNES−human
+reg 0.662 ± 0.012 0.375 ± 0.018 0.514 ± 0.008 0.029 ± 0.001 0.047 ± 0.001

GNES+human
−reg 0.665 ± 0.009 0.449 ± 0.005 0.540 ± 0.006 0.041 ± 0.001 0.049 ± 0.001

GNES+human
+reg 0.676 ± 0.007 0.358 ± 0.007 0.504 ± 0.007 0.032 ± 0.001 0.048 ± 0.001

BACE

EB 0.703 ± 0.030 0.517 ± 0.008 0.548 ± 0.003 0.033 ± 0.001 0.035 ± 0.000
GradCAM 0.703 ± 0.030 0.483 ± 0.006 0.544 ± 0.002 0.032 ± 0.000 0.036 ± 0.000

GNES−human
+reg 0.729 ± 0.009 0.427 ± 0.004 0.525 ± 0.002 0.026 ± 0.000 0.036 ± 0.000

GNES+human
−reg 0.732 ± 0.020 0.421 ± 0.004 0.522 ± 0.003 0.024 ± 0.001 0.035 ± 0.000

GNES+human
+reg 0.733 ± 0.010 0.391 ± 0.005 0.519 ± 0.003 0.023 ± 0.001 0.035 ± 0.000

TOX21

EB 0.788 ± 0.010 0.560 ± 0.028 0.622 ± 0.007 0.081 ± 0.006 0.091 ± 0.004
GradCAM 0.788 ± 0.010 0.466 ± 0.018 0.566 ± 0.005 0.071 ± 0.002 0.084 ± 0.003

GNES−human
+reg 0.789 ± 0.020 0.460 ± 0.024 0.562 ± 0.004 0.068 ± 0.004 0.081 ± 0.001

GNES+human
−reg 0.789 ± 0.008 0.393 ± 0.009 0.537 ± 0.008 0.065 ± 0.003 0.083 ± 0.001

GNES+human
+reg 0.794 ± 0.012 0.392 ± 0.008 0.523 ± 0.004 0.065 ± 0.002 0.079 ± 0.001

and a softmax classifier. Models were trained for 100 epochs using the ADAM opti-

mizer [69] with a learning rate of 0.001. The models were implemented in Keras with

Tensorflow backend [26] and the newly proposed explanation loss and regularization

loss were implemented by the custom loss function in Keras. We studied the node

and edge explanation at the last GCN layer (i.e. l = 3). The node-level explanation

for the GNES was specified following the GradCAM formulation, and the edge-level

explanation is specified following the gradient-based formulation accordingly. The

scale factors αn and αe for balancing node-level and edge-level loss in (4.3) were set

to 1 by default; and the scale factors β and γ for the regularization in Equation (4.4)

were grid researched via the AUC score on the validation set. Notice that for the

human explanation annotation, we only used 10% of the human annotation for the

training data for every dataset to simulate a more piratical situation where we only

have partial human label data available. The samples in the test set are all labeled

for evaluation purposes.



87

Performance

Table 4.1 shows the model performance and model generated explanation quality

for the three molecular datasets. The results are obtained from 5 individual runs

for every setting. The best results for each dataset are highlighted with boldface

font and the second bests are underlined. For the models with human annotation

(i.e., GNES+human
−reg and GNES+human

+reg ), we only assume 10% of the training sample

has the explanation label for the node-level and edge-level explanations while all the

remaining are treated as unlabeled samples. In general, our proposed GNES model

variations outperformed the explanations from the backbone GNN model in terms

of both prediction power as well as explainability on all 3 molecular datasets. More

specifically, the ablation study of the model variations suggested that both the human

annotation and graph regularization can have positive effects in different scenarios,

and the full GNES model (i.e., GNES+human
+reg ) achieved the best performance, out-

performing baseline GNN by 1% - 4% on AUC score. In addition, the full GNES

model also significantly enhanced the explainability of the backbone GNNs by a great

margin, both on node-level explanation (outperformed baselines by 20% - 37% and 6%

- 16% on MSE and MAE, respectively) and on edge-level explanation (outperformed

baselines by 9% - 36% and 1% - 13% on MSE and MAE, respectively). Those results

demonstrated the effectiveness of the proposed framework not only on enhancing the

model to pay correct explanation to the critical nodes and edges, but also consequently

improved the model performance and prediction power on the prediction tasks.

Next, we examine the model performance and explanation quality on the two scene

graph tasks. As shown in Table 4.2, all the setting are the same as in molecular graph

tasks, except this time we also studied the accuracy (ACC) as the sample size for each

class are balanced. We continue to see that the proposed GNES model achieved the

best performance in terms of both ACC and AUC, and largely improved the GNN

model’s explainability on both node-level and edge-level explanations. Specifically, we
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Table 4.2: The performance and model generated explanation evaluation among the
proposed models and the baselines on 2 scene graph classification tasks. The results
are obtained from 5 individual runs for every setting. The best results for each task
are highlighted with boldface font and the second bests are underlined.

Dataset Exp Method ACC AUC Node MSE Node MAE Edge MSE Edge MAE

Indoor vs. Outdoor

EB 0.922 ± 0.009 0.965 ± 0.001 0.304 ± 0.002 0.361 ± 0.001 0.013 ± 0.000 0.016 ± 0.000
GradCAM 0.922 ± 0.009 0.965 ± 0.001 0.280 ± 0.002 0.439 ± 0.006 0.010 ± 0.000 0.016 ± 0.000

GNES−human
+reg 0.927 ± 0.003 0.964 ± 0.002 0.274 ± 0.004 0.420 ± 0.007 0.010 ± 0.000 0.016 ± 0.000

GNES+human
−reg 0.925 ± 0.004 0.965 ± 0.001 0.270 ± 0.002 0.419 ± 0.005 0.010 ± 0.000 0.015 ± 0.000

GNES+human
+reg 0.930 ± 0.005 0.965 ± 0.002 0.267 ± 0.003 0.406 ± 0.005 0.009 ± 0.000 0.014 ± 0.000

Country vs. Urban

EB 0.991 ± 0.000 0.965 ± 0.003 0.271 ± 0.006 0.373 ± 0.008 0.015 ± 0.000 0.022 ± 0.000
GradCAM 0.991 ± 0.000 0.965 ± 0.003 0.257 ± 0.006 0.433 ± 0.008 0.016 ± 0.000 0.023 ± 0.000

GNES−human
+reg 0.992 ± 0.000 0.965 ± 0.004 0.243 ± 0.001 0.414 ± 0.003 0.015 ± 0.000 0.022 ± 0.001

GNES+human
−reg 0.993 ± 0.000 0.969 ± 0.004 0.217 ± 0.008 0.347 ± 0.022 0.014 ± 0.001 0.020 ± 0.001

GNES+human
+reg 0.994 ± 0.001 0.975 ± 0.005 0.212 ± 0.010 0.343 ± 0.020 0.014 ± 0.000 0.020 ± 0.001

observed a 5%-22% improvement on node-level explanation, and a 7% - 30% improve-

ment on edge-level explanation. All the above results have further demonstrated the

general effectiveness of the proposed framework across different application domains.

Qualitative Analysis of the Explanation

Case Studies: Here we provide some case studies about the model explanation for

both molecular graphs and scene graphs, as illustrated in Figure 4.3.

Molecular graphs: As shown in the bottom 3 rows of Figure 4.3, nodes and

edges for molecular graphs were marked as important if they presented unique char-

acteristics of significant reactivity or stability. For reactivity, special importance and

annotations were provided if the atoms (nodes) and bonds (edges) were included in

functional groups, highly polar bonds, and or groups with electron-donating and/or

electron-withdrawing groups. Likewise, nodes and edges involved in resonance or

conjugated systems that provide substantial electron delocalization (which are often

attributes of highly stable compounds) were also indicated with high priority. Con-

sidering the examples from the TOX21 dataset at the last row of Figure 4.3, GNES

is more accurate than Grad-CAM baseline in assessing the importance of the sulfonyl

functional group and the corresponding resonance stabilization it experiences from

the connected ring. Likewise, in the BACE example shown in the 4th row of Figure
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Figure 4.3: Selected explanation results for Scene graph dataset (top 4 rows) and
molecule datasets (bottom 3 rows). For scene graph data, the size of the circle
denotes the size of the bounding box of the object and the importance is marked
by the lightness of the circle and the yellow boundaries. For molecule graphs, the
importance is marked by the darkness of blue circles on nodes and blue lines on edges.
Darker color means more importance is given.
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Table 4.3: User study on scene graph datasets. The annotators were asked to give
an overall evaluation specifically on the quality of the graph explanation (including
both node-level and edge-level explanations). The final results were obtained by a
joint work of 3 annotators.

Dataset Exp Method # good # bad Positive rate

Indoor vs. Outdoor
EB 100 100 50.0%

GradCAM 140 60 70.0%
GNES 181 19 90.5%

Country vs. Urban
EB 96 94 50.5%

GradCAM 140 50 73.7%
GNES 165 25 85.8%

4.3, GNES has a better focus in highlighting functional groups and reducing priorities

for irrelevant regions compared to the baselines models.

Scene graphs: As shown in the top 4 rows in Figure 4.3, for scene graph data,

the size of the circle denotes the size of the bounding box of the object, and the

importance of the nodes and the edges are marked by the lightness of the circles and

lines, respectively. As can be seen, in general, the GNES model can more accurately

focus on the importance of objects (nodes) and relationships (edges) than the Grad-

CAM baselines. For example, as shown in the first row in Figure 4.3, the GNES

explanation successfully found it is important to highlight not only the giraffe itself,

but also the background (such as the fields) and the relationship between the giraffe

and the fields. In contrast, the Grad-CAM baseline, however, only focused on the

giraffe itself. Another example can be the indoor example at the 3rd row in Figure

4.3, and we can see that GNES gave more importance to the background objects and

relationships, which are more accurate explanation and decisive factor for classifying

this sample as the ”indoor” scene.

User Study Results on Scene Graphs: To further assess the quality and

interpretability of the model generated explanation, we conducted a user study on

scene graph datasets. The annotators were asked to give an overall evaluation of each
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of the model explanations, specifically focus on the quality and interpretability of

the given explanation, including both node-level and edge-level explanation, as well

as the consistency between the two as an overall explanation. The final results were

obtained by a joint work of 3 annotators. Specifically, the process is as follows: the

first annotator gives the initial assessment to all the samples considering only the

graph explanation itself; then, after the first annotator finished labeling the dataset,

the second annotator is asked to review the initial assessment and provide a list of

samples he/she disagrees with the first annotator; finally, the third annotator will

look into the list of samples where the first two have a disagreement on the label and

make a final decision for those samples.

As shown in Table 4.3, we studied the quality for the two baseline explanations and

our full framework (i.e., with both human annotation and graph regularization). As

can be seen, our user study results further demonstrated that the proposed framework

enhanced the GNN model’s explainability by a huge margin. More specifically, our

GNES model improved the quality of explanation on more than 40 (20%) samples

in the test set of Indoor vs. outdoor datasets, and similarity turned more than 25

(13%) samples’ explanation from bad to good quality. We argue that these results

may have suggested that the GNES framework can have a big impact on the domains

and applications, where the explainability of the machine learning model is crucial,

and the data can be naturally presented in graphs/networks.

4.3 EGL on Image Data

As DNNs become available in a wide range of application areas, the study on explain-

ability or explainable AI (XAI) is currently attracting considerable attention [5, 8, 54].

To open the “black box” of DNNs, many explainability techniques have been pro-

posed that try to provide the “local explanation” of the DNNs prediction for a
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Figure 4.4: An example showing the challenges present in the human annotation
labels: (a) human annotations are represented with red lines while ground-truth
boundaries are shown with black lines. (b) Error caused by “inaccurate boundaries”
are presented with black regions, (c) Error caused by “incomplete regions” are shown
with a black region, and (d) the discrepancies between the “binary” human annotation
and the “continuous” model-generated explanation maps. The explanation is queried
based on predicting the scene as ‘wild nature’.

specific instance [54], such as methods that provide the saliency maps for under-

standing which sub-parts (i.e., features) in an instance are most responsible for the

model prediction [190, 131, 100, 10, 12, 99]. While we are witnessing the fast growth

of research in local explanation techniques in recent years, the majority of focus

is rather handling “how to generate the explanations”, rather than understanding

“whether the explanations are accurate/reasonable”, “what if the explanations are

inaccurate/unreasonable”, and “how to adjust the model to generate more accu-

rate/reasonable explanations”.

Recently, techniques in explanation-guided learning, which support machine learn-

ing builders to improve their models by using supervision signals derived from expla-

nation techniques, have started to show promising effects. The effects include im-

proving both the generalizability and intrinsic interpretability of DNNs in many data

types where the human annotation labels can be assigned accurately on each feature

of the data. Such data type includes text data [65, 119] and attributed data [150].
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However, the research on supervising explanations on image data—where the expla-

nation is represented through saliency maps—is still under-explored [61]. In part,

this is due to several inherent challenges in supervising visual explanations: 1) In-

accuracy of the human explanation annotation boundary. It is difficult and

costly for humans to make a perfectly accurate boundary which could lead the model

to falsely assign positive explanation value to irrelevant features (i.e., pixels in image

data). For example, as shown by the yellow arrows in Figure 4.4 (b), the coarsely

drawn boundary falsely excluded a non-trivial region of the boundary of the wild-

flowers that could also be important to the prediction. 2) Incompleteness of the

human explanation annotation region. When labeling the explanation for image

data, people usually tend to provide only a few regions as long as they are sufficient

to convince people about the decision and do not bother to comprehensively find all

the possible regions. Such incompleteness can mislead the model to wrongly penalize

all the regions as long as they are not selected by annotators. Figure 4.4 (c) shows an

example where the human annotation clearly missed one wildflower as shown in the

black region. 3) Inconsistency of the data distribution between human an-

notation and model visual explanations.The saliency maps generated by model

explainers are continuous (e.g., Fig. 4.4 (d), heatmap) whereas human annotations

are typically binary ’e.g., red circled areas annotated from humans in Fig. 4.4 (d)

represent positive while the rest of areas are negative). Therefore, human-annotated

explanations cannot be directly used to supervise the model and its explanations

without significant efforts to fill the gap between the data domain and distributions.

To address the above challenges, beyond merely applying human annotation labels

directly as the supervision signals to train the model, this work focuses on proposing

a generic robust explanation-guided learning framework for learning to explain DNNs

under the assumptions that the human annotation labels can be inaccurate in the

boundary, incomplete in the region, as well as inconsistent with the distribution of
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the model explanation. Specifically, we propose a novel robust explanation loss that

addresses all three aforementioned challenges present in the human annotation labels

that can be noisy [27, 28]. In addition, we give a theoretical justification of the

benefits of having the proposed explanation loss to the generalizability power of the

backbone DNN model.

Specifically, the main contributions of our study are as follows:

1. Proposing generic frameworks for learning to explain DNNs with

explanation-guided learning. We propose GRADIA and RES frameworks

that enables visual explanation-guided learning on DNNs that is generalizable

to the existing differentiable explanation methods.

2. Developing a robust model objective that can handle the noisy hu-

man annotation labels as the supervision signal. We propose a novel

robust explanation loss that can handle the inaccurate boundary, incomplete

region, as well as inconsistent distribution challenges in applying the noisy hu-

man annotation labels as the supervision signal.

3. Providing a theoretical justification on the generalizability power of

the proposed framework. We formally derive a theorem that provides an

upper bound for the generalization error of applying the proposed robust ex-

planation loss when training the backbone DNN models.

4. Conducting comprehensive quantitative and qualitative experimental

analysis to validate the effectiveness of the proposed model. Extensive

experiments on two real-world image datasets, gender classification and scene

recognition, demonstrate that the proposed framework improved the backbone

DNNs both in terms of prediction power and explainability. In addition, quali-

tative analyses, including case studies and user studies of the model explanation,

are provided to demonstrate the effectiveness of the proposed framework.
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4.3.1 Related work

Our work draws inspiration from the research fields of local explainability techniques

of DNNs that provide the model-generated explanation, and explanation-guided learn-

ing on DNNs which enables the design of pipelines for the human-in-the-loop adjust-

ment on the DNNs based on their explanations to enhance both explainability and

performance of DNN models.

Local Explainability Techniques of DNNs

As DNNs become widely deployed in a wide spectrum of application areas, recent

years have seen an explosion of research in understanding how DNNs work under

the hood (e.g., explainable AI, or XAI) [8, 54, 45, 171, 61]. Due to the “black

box” nature of DNNs, most of the existing and well-received explainability methods

focus on providing a “local explanation” that aims at explaining the prediction in

understandable terms for humans for a specific instance or record [54]. One popular

direction is to compute saliency maps as the local explanation, which provide the

saliency values regarding which input features are most responsible for the prediction

of the model [190, 131, 100, 10, 99]. For example, for image input, a saliency map

is able to summarize where the model is “paying attention to” when performing a

certain image recognition task. In this direction, one set of works incorporates network

activations into their visualizations, such as Class Activation Mapping (CAM) [190]

and Grad-CAM [131]. Another set of approaches takes a backward pass and assigns a

relevance score for each layer backpropagating the effect of a decision up to the input

level, existing works such as LRP [100, 10], and DTD [99] belong to this category.

In addition, some model inspection methods such as VisualBackProp (VBP) [18]

can also provide a local explanation similar to the LRP approaches. Besides the

above techniques that are more specifically designed for interpreting image data,

there are also several existing techniques that aim at providing more model-agnostic
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explanations on different types of data, such as LIME [115] and Anchors [116]. Please

refer to the survey papers [8, 54] for a more comprehensive review of the existing

works.

Explanation-Guided Learning on DNNs

The potential of using explanation–methods devised for understanding which sub-

parts in an instance are important for making a prediction–in improving DNNs

has been studied in many domains across different applications [46]. In particular,

explanation-guided learning techniques have been widely explored on image data by

the computer vision community [87, 98, 105, 184, 32]. Existing studies have shown

the benefit of using stronger supervisory signals by teaching networks where to at-

tend [87]. Following this line of study, several explanation-guided learning frameworks

have been proposed. Mitsuhara et al. [98] proposed a post hoc fine-tuning strategy,

where an end-user is asked to manually edit the model’s explanation to interactively

adjust its output. However, the proposed framework is only applicable to a specific

type of DNN called Attention Branch Network [43]. In addition, several frameworks

designed for the Visual Question Answering (VQA) domain have been proposed,

where the goal is to obtain the improved explanation on both the text data and the

image data [184, 105, 32].

Recently, several more generic frameworks have been proposed for explanation-

guided learning on image data. One existing work proposed a conceptual framework

HAICS [133], and the authors further implement it in an image classification applica-

tion with human annotation in the form of scribble annotations as explanation-guided

learning signals. Besides image data, the explanation-guided learning has also been

studied on other data types, such as texts [65, 119, 25], attributed data [150], and

more recently on graph-structured data [46]. However, most of the existing works

typically assume the human labels are clean and accurate, while in practice they are
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Reasonable Attention Unreasonable Attention
Accuracte Prediction RA: Reasonable Accurate UA: Unreasonable Accurate
Inaccurate Prediction RIA: Reasonable Inaccurate UIA: Unreasonable Inaccurate

Figure 4.5: Reasonability Matrix at the top with the four examples in a gender
classification problem: (a) Reasonable Accurate: the attention given to an image
is reasonable while prediction is also accurate, (b) Unreasonable Accurate: a
substantial amount of attention is given to “contextual” features which make the
attention unreasonable while the prediction is accurate, (c)Reasonable Inaccurate:
despite the reasonable attention given to gender-intrinsic features, the prediction is
not accurate, and (d) Unreasonable Inaccurate: the attention is unreasonable and
the prediction not accurate.

prone to be inexact, inaccurate, and incomplete when directly used as the supervision

signal for supervising the model explanation. To our best knowledge, we are the first

to propose a robust explanation-guided learning framework that aims at handling this

open research problem.

4.3.2 GRADIA Framework

We elaborate on our framework of IAAdevised for steering the way DNNs “think”

based on human knowledge. Our framework has two novel components: (1) What to

adjust: building of the Reasonability Matrixto systemically detect predictions made

based on unreasonable/biased reasoning and adjust, and (2) How to adjust: applying

GRADIAto leverage the adjusted attention maps in improving DNNs. Our framework

is depicted in Fig. 4.6.
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What to Adjust: Reasonability Matrix

The first stage in our framework aims at identifying the instances made based on

biased reasoning. Based on the former work that demonstrates the benefit of con-

sidering model’s reasoning via model explanation methods [58, 153], Reasonability

Matrixelicits from human annotators regarding the attention accuracy : whether the

model explanation given to an instance is reasonable for classifying the instance into

a particular class. Specifically, we postulate that a human annotator can determine

the whole, or some part of, attention given to an image is either intrinsic atten-

tion–the attention directly relevant for a classification–or contextual attention–the

attention that shows “spurious correlation” between the object and a specific class

(e.g., kitchenware and female, or a baseball bat and male). To help annotators to

decide as to whether attention given to an instance is reasonable, we use the following

two-step validation.

• Q1. Intrinsic attention: Is the attention given to an image presents sufficient

details for a human annotator to classify the instance?

• Q2. Contextual attention: Using the attention given to an image, can a

human annotator recognize any contextual objects?

We consider the given attention is reasonable when a human annotator answers posi-

tive for Q1 and negative for Q2. Combining the attention accuracy with conventional

model accuracy, Reasonability Matrixleads to the four cases as follows:

• RA. Reasonable Accurate: The attention only focuses on intrinsic features

without containing contextual features while the prediction result is also accu-

rate (e.g., see Fig. 4.5 (a)).

• UA. Unreasonable Accurate: The prediction itself is accurate. But non-

trivial amount of attention is given to contextual features, presumably due to

contextual bias embedded in a training set (e.g., see Fig. 4.5 (b)).



99

Figure 4.6: Overview of our methodological framework of interactive attention align-
ment. (a) Building Reasonability Matrix, (b) adjusting attention maps of inaccurate
predictions & unreasonable instances, (c) fine-tune the model using GRADIA.

• RIA. Reasonable Inaccurate: While the attention is reasonable, the predic-

tion is inaccurate. This might be caised by the lack of data points similar to

this type in a training set (e.g., Fig. 4.5 (c) shows that attention is given to a

man’s beard but the model’s prediction is inaccurate).

• UIA. Unreasonable Inaccurate: The attention is not reasonable and the

prediction is also not accurate (e.g., see Fig. 4.5 (d)).

With the rise of the FaccT research, a broader ML community started to establish

the consensus that heavily relying on a single performance metric, such as model

accuracy, error score, or confusion matrix can be detrimental for a comprehensive

capturing of a model’s “crucial shortcomings” [102]. The capability of having the

attention accuracy in structuring the Reasonability Matrixmeans that we can use the

quality of attention as a new way to evaluate DNN’s performance. On top of the

widely used model prediction accuracy metric, our framework proposes the following

metrics as additional ways to add more rigor in evaluating DNN:

• P1. Reasonable Accurate Performance: The metric that indicates the pro-

portion of the “right answer based on the right reasoning” (i.e., RA
RA+UA+RIA+UIA

)

which is more rigorous than the commonly used model accuracy performance

(i.e., RA+UA
RA+UA+RIA+UIA

).

• P2. Attention Accuracy Performance: The metric explains the proportion

of instances with accurate attention (i.e., RA+RIA
RA+UA+RIA+UIA

). This metric can be
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a proxy that shows the quality of model attention.

How to adjust: GRADIA

Using the proposed Reasonability Matrix, our framework elicits adjusted attention

from human annotators. In this section, we introduce how GRADIAuses the adjusted

attention maps in fine-tuning DNNs. In addition to minimize the error in the original

training set, our major goal is to also minimize the losses from the three terms UA,

RIA, and UIA in the Reasonability Matrix, which directly leads to our objective:

min LTrain + LUA + LUIA + LRIA (4.12)

where LTrain denotes the model prediction loss on the original training set; LUA,

LUIA, and LRIA measure the errors on Unreasonable Accurate (UA), Unreasonable

Inaccurate (UIA), and Reasonable Inaccurate (RIA) samples in the Reasonability

Matrixof validation set, respectively.

For each term in Equation (4.12), there are two types of losses, namely prediction

loss, denoted by L(p), and attention loss, denoted by L(a). Considering that different

term (from different quadrant in Reasonability Matrix) requires different focus and

Figure 4.7: The computational pipeline of GRADIA.
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balance between prediction and attention, we further introduce the balance factors

for each term to give the model the flexibility to better weight between the attention

and prediction loss in different cases. Specifically, Equation (4.12) can be expanded

into the following one:

min LTrain + (αL(p)
UA + (1−α)L(a)

UA) + (βL(p)
UIA + (1− β)L(a)

UIA) + (γL(p)
RIA + (1− γ)L(a)

RIA)

(4.13)

where the parameters α, β, and γ ∈ [0, 1] are the tunable factors for controlling the

balance between the prediction loss and attention loss for UA, UIA, and RIA samples,

respectively.

This way, the first term LTrain can also be expanded as a special case LTrain = L(p)
Train

where the weight for L(p) is set to 1 and the weight for L(a) is set to 0, such that

the attention map labels are not required. Finally, by further expanding the first

term and rearranging the terms for prediction losses and attention losses, the final

objective of GRADIAcan be written as:

LGRADIA = L(p)
Train + αL(p)

UA + βL(p)
UIA + γL(p)

RIA︸ ︷︷ ︸
prediction loss

+(1− α)L(a)
UA + (1− β)L(a)

UIA + (1− γ)L(a)
RIA︸ ︷︷ ︸

attention loss
(4.14)

where L(p) can be calculated by applying the Cross-entropy loss on the corresponding

samples of each terms; and L(a) is the newly proposed attention loss that measure

the attention quality of the samples.

Notice that since both the original training set and the new data samples are

considered as a whole for the fine-tuning of the model (as shown by the prediction

losses inside the ‘prediction loss’ bracket in Equation (4.14)), the above fine-tuning

setup can naturally ensure the previously learned knowledge to be preserved and

does not require freezing of the model parameters. Concretely, the prediction loss in

Equation (4.14) consists of the prediction loss on the original training samples (i.e.
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L(p)
Train) as well as new samples introduced in the fine-tuning stage (i.e. L(p)

UA, L
(p)
UIA,

and L(p)
RIA); while the attention loss consists of only the new samples introduced in the

fine-tuning stage that has the human-adjusted attention labels available (i.e. L(a)
UA,

L(a)
UIA, and L(a)

RIA).

Therefore, by introducing L(a) into the fine-tuning step with GRADIA, the base

DNN model can be jointly optimized both to generate higher quality attention maps

and to make better and unbiased predictions on the original task. Our assumption

is that this attention de-biasing process will also enhance the generalizability of the

model to unseen data. As a result, GRADIAwill ultimately not only improve the

model prediction accuracy, but also yield a more interpretable model.

To quantify the attention quality of the model, we propose a general attention

loss for estimating the discrepancy between the model-generated attention maps and

the human-annotated attention labels of the selected samples from the validation set.

Concretely, the attention loss can be computed as the following:

L(a) = dist(M,M ′) (4.15)

whereM andM ′ are the model-generated attention maps and the ground truth atten-

tion maps provide by the human annotators on those samples that require attention

adjustment; the function dist(x, y) can be a common divergence metric such as abso-

lute difference or square difference. In practice, we found that absolute difference is

more robust to the labeling noise from the annotator, while square difference can be

more sensitive and yield a high loss on the border areas of the labels that could not

actually be related to the object.

To generate the model attention maps on images, several existing works have been

proposed. Response-based methods such as CAM [190] and ABN [43] typically re-

quire substantial modification on the DNN architectures that either hurt the model’s
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performance and extensibility or over-decouple the generation process of attention

and prediction. For example, to handle the performance issue, ABN proposed to add

another module called ‘attention branch’ onto the model architecture that is special-

ized for generating the attention maps. However, this incurs much more parameters

and hence more samples and time to train the model. Moreover, over-decoupling

the components for producing attention and prediction substantially decreases the

reliability that the attention is indeed the explanation for the prediction. In contrast,

gradient-based methods such as Grad-CAM [131] does not require changes of the base

model and hence is applicable to a wide range of various DNN models. Moreover,

it does not incur additional model parameters and hence can be more computation-

ally cheap. Furthermore, its attention and prediction are tightly coupled and hence

maintain a strong dependency and reliability between the prediction and its attention

map.

Therefore, we propose to build our pipeline by extending Grad-CAM which uses

the gradient of the feature maps with respect to the target class to generate the

attention maps. Mathematically, suppose the penultimate layer produces K feature

maps, Ak ∈ Ru×v where u and k are the width and height of the image of each feature

map. The attention maps MGrad-CAM ∈ Ru×v for target class c can be computed as:

MGrad-CAM = ReLU(
1

uv

∑
k

∑
i

∑
j

∂Y c

∂Aki,j
· Ak) (4.16)

where Y c denotes the output of the model for predicting class c, and
∑

i

∑
j ∂Y

c/∂Aki,j

denotes the weight of the feature map k for class c as also illustrated by Figure 4.7.

To ensure the generated and labeled attention maps are in the same scale, we further

normalize MGrad-CAM to the values between 0 and 1, as:

M =
MGrad-CAM −min(MGrad-CAM)

max(MGrad-CAM)−min(MGrad-CAM)
(4.17)
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where the function min(·) and max(·) return the element-wise min and max of the

input, respectively.

4.3.3 RES Framework

In this section, we first introduce the proposed RES framework that enables expla-

nation supervision on DNNs with both positive and negative explanation annotation

labels. We then move on to propose a novel robust explanation loss that is designed

to handle the inaccurate boundary, incomplete region, as well as inconsistent distri-

bution challenges in applying the noisy human annotation labels as the supervision

signal. Finally, we give the theoretical justification of the benefits of having the

proposed explanation loss to the generalizability power of the backbone DNN model.

Problem formulation: Let x ∈ RC×H×W be the input image data with C

channels, H as height, and W as width. Let y be the class label for input x, the

general goal for a DNN model is to learn the mapping function f for each input x to

its corresponding label, f : x→ y.

The RES Framework

The general goal for the RES framework is to boost the model explainability via

robust explanation supervision such that the model can robustly learn to assign more

importance to the right input features even given noisy human explanation annotation

labels, and consequently boost the task performance as well as the interpretability

of the backbone DNN model. Here, we present the general learning objective of the

RES framework to be a joint optimization of the model prediction loss and the robust

explanation loss. Concretely, we propose the objective function as:

min
N∑
i

LPred(f(x
(i)), y(i))︸ ︷︷ ︸

prediction loss

+LExp(⟨M (i), F (i), C(i)⟩)︸ ︷︷ ︸
robust explanation loss

(4.18)
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where M (i) ∈ RH×W denotes the model-generated explanations for ith sample using

a given explanation method; F (i) ∈ {0, 1}H×W and C(i) ∈ {0, 1}H×W denote the

corresponding binary labels for positive (i.e., F
(i)
j,k = 1 if the pixel at coordinate

(j, k) of sample image i should be assigned with high importance, and 0 otherwise)

and negative (i.e., C
(i)
j,k = 1 if the pixel at coordinate (j, k) of image i should be

assigned with low importance value, and 0 otherwise) explanation marked by the

human annotators. LPred(f(x
(i)), y(i)) is the typical prediction loss (such as the cross-

entropy loss).

Robust Explanation Supervision for Noisy Explanation Annotation labels

To address the challenges presented in the noisy human annotation labels, we propose

a robust explanation loss LExp that measures the discrepancies between model and

human explanations regarding both the positive and negative explanation and taking

into consideration the noisy nature of human annotation labels. Without loss of

generality, let us assume M̃ (i) = F̃ (i) − C̃(i) in range [−1, 1] be the ground truth ideal

explanation value for input image x(i), given the ideal positive explanation F̃ (i) ∈ [0, 1]

and negative explanation C̃(i) ∈ [0, 1]; the binary human annotation as F (i) and C(i);

and the model explanation as M (i) = g(fθ((x
(i))), where function g(·) specify the

explanation method. We have E[∥M (i) − (F (i) − C(i))∥ − ∥(F (i) − C(i)) − M̃ (i)∥] ≤

max{0,E[∥M (i)−(F (i)−C(i))∥]−E[∥(F (i)−C(i))−M̃ (i)∥]} ≤ E[max{0, ∥M (i)−(F (i)−

C(i))∥−∥(F (i)−C(i))− M̃ (i)∥}] ≤ E[∥M (i)− M̃ (i)∥] according triangle inequality. We

define α = E[∥(F (i) − F̃ (i)) − (C(i) − C̃(i))∥]. Therefore, to minimize ∥M (i) − M̃ (i)∥,

we can have a tighter surrogate loss based on the annotated labels as follows:

max{0, ∥M (i) − (F̃ (i) − C̃(i))∥ − α}

Since the ground truth F̃ and C̃ are unknown, estimating α can be difficult. In
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practice, we can assume their distributions are positively correlated with the distri-

bution of F and C, which can therefore be estimated by a slack variable α. To keep it

simple and without loss of generality, in this work, we define α as a hyper-parameter

of the framework assuming no additional knowledge about the ideal distribution.

Bridging the distribution between human labels and model explanation

maps: To bridge the continuous model explanation M (i) with binary human labels

C and F , we propose to split the above objective into two terms with bidirectional

projections, as:

min
θ,a

∑N

i
max{0, ∥[M̂ (i) − (F (i) − C(i))]∥ − α}+ d(M (i), h(F (i), C(i))) (4.19)

where d(·) is a distance function, h(·) is a mapping function that maps the binary

masks F (i) and C(i) to continuous value in range [0, 1], and M̂ (i) is a binary projection

of M (i) by a threshold a, as:

M̂ (i) =

 1 M (i) ≥ a

−1 M (i) < a
(4.20)

Basically, the above equation takes both the absolute difference (measured by the

first term) and relative distance (measured by the second term) into consideration

when comparing the continuous model explanation and the binary human explanation

masks.

Mitigating the Inaccurate Boundary via Label Imputation: To realize the

mapping function h(·) in Equation (4.20) which aims at projecting the binary human

labels into continuous value domain, an intuitive way is to define h(·) as applying

a k × k Gaussian kernel on the binary annotation labels F and C such that the

pixels that close to the boundary of the manual label will also obtain slack values to

boost the robustness and deal with the inexact and inaccurate boundary from human
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annotation.

However, a pre-defined kernel matrix might not be suitable for every data sam-

ple, and the discrepancy and inconsistency among annotators can also influence the

accuracy of such a pre-defined estimation on handling the inaccurate boundary issue.

Therefore, we further extend this idea and define a learnable imputation function

hϕ(·) with multiple learnable kernel transformations as the parameter set ϕ, such

that the kernels’ weights can be adjusted and learned to make better estimations of

the ground truth explanation values and provide better mitigation to the inaccurate

boundary problem. Specifically, the explanation loss with a learnable imputation

function is as follows:

min
θ,a,ϕ

∑N

i
max{0, ∥[M̂ (i) − (F (i) − C(i))]∥ − α}+ d(M (i), hϕ(F

(i), C(i))) (4.21)

where ϕ is the parameter set of the imputation function hϕ(·). The imputation func-

tion can be realized by applying multiple layers of convolution operations with learn-

able kernels over the raw annotation label F and C.

Handling the Incomplete Region by Selective Penalization

Finally, due to the incompleteness of human annotation labels, and to avoid falsely

penalizing the model from assigning importance to the relevant features missed by

the human labels, we propose to only selectively apply the explanation supervision

signal onto the features with either positive or negative annotation labels. Concretely,

we define the robust explanation loss LExp as follows:

min
θ,a,ϕ

∑N

i
max{0, ∥[M̂ (i) − (F (i) − C(i))] · 1(F (i) − C(i) ̸= 0)∥ − α}

+d(M (i) ·1(F (i)−C(i) ̸= 0), hϕ(F
(i), C(i))·1(F (i)−C(i) ̸= 0)) (4.22)
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where 1(·) is the indicator function, and · represents the elemental-wise multiplication

operation. This formulation also gives the model a certain degree of flexibility on

deciding the importance of unlabeled features based on data and downstream task,

thus could yield a more generalizable and reasonable explanation that enhance both

explainability as well as task performance of the model.

Optimization of Robust Explanation Loss

The indicator function for calculating M̂ (i) (as shown in Equation (4.20)) prevents

us from directly optimizing our model objective with conventional gradient descent

algorithms such as Adam [69]. Concretely, the optimization problem presented in

Equation (4.22) involves optimizing both the adaptive threshold a and the model-

generated explanation M (i) = g(fθ(x
(i))). Here, we propose to first find the optimal

threshold a given model parameter θ, and then optimize θ with a conventional gra-

dient descent algorithm by proposing a differentiable approximation to the indicator

function.

First, to find the optimal a given θ, we need to solve the following objective:

min
a

∑N

i
∥[M̂ (i) − (F (i) − C(i))] · 1(F (i) − C(i) ̸= 0)∥ (4.23)

Which is equivalent to the following by expanding M̂ (i):

min
a

∑N

i
∥[1(M (i) ≥ a)− F (i)] · F (i)∥+ ∥[1(M (i) < a)− C(i)] · C(i)∥ (4.24)

If we treat each entry of M (i) as having two inequality constraints on a, we can effi-

ciently solve the above formula in O(m logm) by our proposed algorithm by treating

this optimization problem as finding a a that satisfies the maximum number of in-

equality constraints, where m = max(|F |, |C|). The details of the proposed searching

algorithm can be found in Appendix A.4.
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To further enable gradient calculation of M (i) in Equation (4.22), we propose

a surrogate loss using the hyperbolic tangent function tanh(·) to approximate the

indicator function, as follows:

min
θ,a,ϕ

∑N

i
max{0, ∥[tanh(γ(M (i) − a))−H(i)] · 1(H(i) ̸= 0)∥−α}

+d(M (i) · 1(H(i) ̸= 0), hϕ(F
(i), C(i)) · 1(H(i) ̸= 0)) (4.25)

where H(i) = F (i) − C(i); γ controls the slop of the hyperbolic tangent function.

Moreover, when γ → ∞ , we can ensure such a approximation can be mathemati-

cally equivalent to the original indicator function in Equation (4.21) as shown in the

following lemma.

Lemma 1. Equation (4.25) is mathematically equivalent to Equation (4.22) when

γ → ∞.

Proof. Please refer to Appendix A.2 for the proof.

Theoretical Analysis of Generalizablity

We theoretically justify the generalizability power of the proposed explanation loss,

as shown in Theorem 2 below.

We consider the regularized expected loss:

L(fθ) = E [LPred(fθ(x), y) + LExp(∇fθ(x))] (4.26)

where fθ is any learnable function with parameter θ ∈ Θ. In addition, denote the

empirical loss as

L̂(fθ) =
1

N

∑N

i=1

(
LPred(fθ(x

(i)), y(i)) + LExp(∇fθ(x(i)))
)

(4.27)

where N denotes the training sample size. ∇fθ(x) denotes the gradient of fθ on input
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x, which can be used to generate any explanation. We omit the label (namely, F (i)

and C(i)) in LExp here for more compact notation. Also, we assume that LPred is

L1-Lipschitz and LExp is L2-Lipschitz continuous w.r.t its first input, respectively.

Definition 4 (δ-minimizer). A function fθ̂ is said to be a δ-minimizer of L(·) if

L(fθ̂) ≤ inf
θ∈Θ

L(fθ) + δ (4.28)

Assumption 1. Let fθ∗ be the solution to Eq. (4.26). There exists a neural network

fτ with τ ∈ Θ such that

∥fτ − fθ∗∥2 := E
[
|fτ − fθ∗|2 + |∇fτ −∇fθ∗ |2

]
≤ C2

1

∥θ∗∥2

mγ
(4.29)

where C1 is some constant, m is a constant related to the number of parameters in

f , and γ is a constant order.

Assumption 2. Given any neural network fθ from θ ∈ Θ and i.i.d sample {x(i)}Ni=1.

Given any 0 < ϵ < 1, we assume that

sup
θ∈Θ

|L(fθ)− L̂(fθ)| ≤
C2(V,m, ϵ)√

N
(4.30)

with probability at least 1− ϵ. C2 relies on set Θ, m and ϵ.

Such an inequality can be ontained using some statistical learning theories like Rademacher

complexity.

Now we provide our generalization error bound as follow:

Theorem 2 (Generalizability of Equation (4.18)). Let fθ∗ be the minimizer of L(·),

fθ̂ be a δ-minimizer of L̂, then given 0 < ϵ < 1, with probability at least 1 − ϵ over
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the choiec of x(i), we have

0 ≤ L(fθ̂)− L(fθ∗) ≤ (L1 + L2)
C1∥θ∗∥
mγ/2

+
2C2(V,m, ϵ)√

N
+ 2δ (4.31)

Proof. Please refer to Appendix A.1 for the formal proof.

Our Theorem 2 provides an upper bound for the generalization error between the

numerical optimal solution θ̂ and the theoretical optimal solution θ∗. The first term in

the bound corresponds to the approximation error given in the first assumption, the

second term corresponds to the quadrature error given in the second assumption, and

the last term corresponds to the training error. To reduce the generalization error, we

need to increase both the number of parameters and training samples. Meanwhile,

the empirical loss is needed to be solved sufficiently well.

4.3.4 Experiments

We test our RES framework on two application domains, gender classification and

scene recognition. We first describe the detailed settings for the experiments and then

present the quantitative studies on both model prediction as well as the explanation.

In addition, we include several qualitative studies, including case studies and user

studies, to make a better qualitative assessment of how the proposed model has

enhanced the explainability of the backbone DNN models.

Experimental Settings

Gender Classification Dataset: The gender classification3 is one of the widely used

tasks in the research of fairness in broader machine learning communities [186, 14, 58].

We constructed the dataset from the Microsoft COCO dataset4 [86] by extracting

3We are aware that using a binary classification in gender does not reflect on the diverse viewpoint
of gender in the real world, and we emphasize that the binary “gender classification” task here does
not represent our viewpoint on gender.

4Available online at: https://cocodataset.org/
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images that had the word “men” or “women” in their captions. We then filtered out

instances that 1) contain both words, 2) include more than two people, or 3) humans

appear in the figure is nearly not recognizable from human eyes. We collected a total

of 1,600 images that satisfied our criterion and obtained the human annotation labels

for all the image samples with our human annotation UI (please refer to Appendix

A.3 for more details). For data splitting, we only randomly sampled 100 samples out

of the 1,600 images as the training set to better simulate a more practical situation

where we only have limited assess to the human explanation labels. The rest of the

1,500 data samples were then evenly split as the validation set and test set.

Scene Recognition Dataset: We obtained the scene images from the Places365

dataset5 [191]. The original dataset contains more than 10 million images comprising

400+ unique scene categories. Following the macro-class defined by [191], we con-

structed a binary scene recognition task: nature vs. urban. The data samples for

the two classes were randomly sampled from a set of pre-defined categories under

macro-class “nature” and “urban”, respectively. Specifically, the categories we used

to sample the data are listed below:

• Nature: mountain, pond, waterfall, field wild, forest broadleaf, rainforest

• Urban: house, bridge, campus, tower, street, driveway

Notice that the categories are non-comprehensive and the generated datasets are just

for the purpose of studying the quality of model explanation. We balanced the sample

size for each category and collected a total of 1,600 images. Again, we obtained the

human annotation labels for all the samples with the human annotation UI, and split

the data randomly with sample sizes of 100/750/750 for training, validation, and

testing.

Evaluation Metrics: We evaluate the model in terms of task performance as

well as in terms of explainability. For model performance, we use the conventional

5Available online at: http://places2.csail.mit.edu/index.html



113

prediction accuracy to measure the prediction power of the backbone DNN models as

the datasets studied are well imbalanced. For explainability assessment, we leverage

the human-labeled explanation on the test set to assess the quality of the model

explanation. Specifically, we use the Intersection over Union (IoU) score [15], which

is calculated by taking the bit-wise intersection and union operations between the

ground truth explanation and the binarized model explanation to measure how well

the two explanation masks overlap. In addition, since the IoU score only assesses the

quality of positive explanation, we further compute the precision, recall, and F1-score

as additional metrics which provide a more comprehensive evaluation of the model-

generated explanation by considering the alignment of both positive and negative

explanation.

Comparison methods: We compare the performance of the RES framework

with the vanilla backbone model as the baseline as well as two existing explanation

supervision methods, GRADIA [48] and HAICS [133]. For the proposed framework,

we show two variations: RES-G and RES-L, with different implementations of the

imputation function. Concretely, we studied the following methods:

• Baseline: The conventional DNN model that is trained with only the prediction

loss.

• GRADIA [48]: The proposed framework that trains the DNN model with both

the prediction loss as well as a conventional L1 loss that directly minimizes the

distance between the continuous model explanation and the binary positive expla-

nation labels.

• HAICS [133]: A framework that trains the DNN model with both the prediction

loss as well as a conventional Binary Cross-Entropy (BCE) loss that directly mini-

mizes the distance between the continuous model explanation and the combination

of positive and negative binary explanation labels.
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• RES-G [47]: The proposed RES framework with the imputation function g(·) as

a fixed value Gaussian convolution filter.

• RES-L [47]: The proposed RES framework with the learnable imputation function

gϕ(·) via multiple layers of learnable kernels.

Implementation Details: For all the methods studied in this work, the back-

bone DNN model is based on the pre-trained ResNet50 architecture [56]. All models

were trained for 50 epochs using the ADAM optimizer [69] with a learning rate of

0.0001. To make a fair comparison on explainability, the model explanations were

all generated by the well-recognized explanation technique GradCAM [131], although

other local explanation techniques can also be applied in our framework. The gener-

ated explanation maps are normalized in the range of (0, 1] by dividing the maximum

saliency value on each sample for model training as well as visualization. When

calculating the explanation evaluation metrics, the explanation maps were further

binarized by a fixed threshold of 0.5. The hyper-parameter α of the proposed RES

framework was set to 0.001 for the gender classification task, and 0.01 for the scene

recognition task, based on grid research via prediction accuracy on the validation set.

The detailed implementation of the imputation layers for RES-L can be found in the

Appendix A.5.

Performance

Table 4.4 shows the model performance and model-generated explanation quality for

gender classification and scene recognition datasets. The results are obtained from 5

individual runs for every setting. The best results for each dataset are highlighted with

boldface font and the second bests are underlined. In general, our proposed framework

variations, i.e., RES-G and RES-L, outperformed all other comparison methods in

terms of both prediction accuracy as well as explainability on both datasets. Specifi-

cally, regarding prediction power, the RES-G with a pre-defined Gaussian transforma-
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Table 4.4: The performance and model-generated explanation evaluation among the
proposed models and the comparison methods on both gender classification and scenes
recognition tasks. The results are obtained from 5 individual runs for every setting.
The best results for each task are highlighted with boldface font and the second bests
are underlined.

Dataset Model Accuracy IoU Precision Recall F1

Gender Classification

Baseline 68.35 ± 1.00 13.68 ± 0.89 52.68 ± 0.61 56.34 ± 1.63 47.77 ± 1.14
GRADIA 70.01 ± 1.47 16.66 ± 1.10 64.07 ± 2.07 51.84 ± 3.55 53.35 ± 3.08
HAICS 69.29 ± 0.50 17.56 ± 0.79 60.06 ± 2.17 56.48 ± 2.13 54.90 ± 2.14
RES-G 71.33 ± 0.53 22.97 ± 0.44 76.47 ± 0.45 63.90 ± 3.64 63.54 ± 2.29
RES-L 70.39 ± 0.35 23.60 ± 0.36 76.32 ± 0.77 65.75 ± 1.20 65.24 ± 0.74

Scene Recognition

Baseline 93.42 ± 0.43 38.55 ± 0.22 89.67 ± 0.07 60.96 ± 0.56 68.47 ± 0.46
GRADIA 95.03 ± 0.35 39.60 ± 1.13 87.98 ± 0.19 63.47 ± 2.24 70.80 ± 1.84
HAICS 94.89 ± 0.20 41.29 ± 0.91 88.47 ± 0.53 66.23 ± 1.00 72.95 ± 0.87
RES-G 95.91 ± 0.31 45.97 ± 0.12 87.54 ± 0.30 82.88 ± 1.14 82.90 ± 0.33
RES-L 95.53 ± 0.54 44.64 ± 0.31 86.37 ± 0.08 88.01 ± 0.39 84.78 ± 0.29

tion kernel as the imputation function achieved the best performance, outperforming

the baseline DNN model by 4% and 3% on prediction accuracy on gender classifi-

cation and scene recognition datasets, respectively. In addition, the proposed RES

framework enhanced the explainability of the backbone DNNs by a significant margin

as compared with the baseline DNN model as well as other explanation supervision

methods. The proposed RES-L with learnable kernels as the imputation function

achieved the biggest improvement on model explainability in terms of both IoU and

F1 scores on both datasets, outperforming other comparison methods by 8%-72%

and 16%-36% on IoU and explanation F1 scores, respectively. The comparison meth-

ods GRADIA and HAICS also improved the model performance by leveraging the

additional human attention labels, but are generally much less effective than the pro-

posed RES framework. Those results demonstrated the effectiveness of the proposed

framework on enhancing the model explainability robustly under noisy annotation

labels, and consequently improved the model performance and prediction power on

the prediction tasks.

Next, we further studied how the DNN models can benefit from the RES frame-

work to gain a better generalization power under different training sample size sce-

narios. Specifically, we studied four training sample scenarios with training sample
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Figure 4.8: Model performance under different training sample size scenarios on gen-
der classification dataset. The data point represents the mean value over 5 runs, and
the error bar here corresponds to the standard deviation. (Left) The test prediction
accuracy comparison. (Middle) The test IoU score comparison. (Right) The test
explanation F1 score comparison.

sizes of 10, 20, 50, and 100 on the Gender Classification Dataset. As shown in Fig-

ure 4.8, we present the test prediction accuracy, IoU score, and explanation F1 score

of each method under the four training sample size scenarios. The data point repre-

sents the mean value over 5 runs, and the error bar here corresponds to the standard

deviation. We can see that the proposed RES framework outperformed all other

comparison methods by a significant margin under all scenarios studied, especially on

boosting the explainability of the backbone DNNs as reflected by IoU and explanation

F1 scores. Specifically, RES was able to improve the model prediction accuracy by 2%

- 5%, and boosted the quality of the model explanation by 60%-80% and 36%-40% in

terms of IoU and explanation F1 scores, respectively. Interestingly, we also observed

degradation in model performance when applying GRADIA and HAICS when the

sample size is extremely limited, such as in 10 and 20 training sample sizes scenarios.

This could be due to the fact that GRADIA and HAICS simply treat the raw human

annotation as clear data and thus suffer significantly from learning directly from the

noisy labels and consequently prone to over-fitting badly. In contrast, with the ro-

bust learning objective, the proposed RES framework was able to cope with the noisy

label pretty well even under a very limited sample size, and consequently boosted the

model performance in terms of prediction power as well as explainability robustly in

all scenarios studied.
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Figure 4.9: Selected explanation visualization results on gender classification dataset
(left) and scene recognition dataset (right). The model-generated explanations are
represented by the heatmaps overlaid on the original image samples, where more
importance is given to the area with a warmer color.

Qualitative Analysis of the Explanation

Case Studies: Here we provide some case studies about the model-generated expla-

nation comparison for both gender classification and scene recognition datasets, as

illustrated in Figure 4.9. Here we present the model-generated explanations as the

heatmaps overlaid on the original image samples, where more importance is given to

the area with a warmer color.

Gender Classification: As shown in the left four rows of Figure 4.9, we studied

two ‘male’ class instances (top 2 rows) and two ‘female’ class instances (bottom

2 rows). As can be seen, in general, the explanation generated by the proposed

RES models can more accurately focus on the important areas (e.g., the human face

areas) for identifying the gender of the person in the image. In contrast, both the

baseline model as well as the two comparison methods failed to generate reasonable

explanation, as the models’ ‘attention’ was distracted by some other objects presented

in the images that are irrelevant to the gender classification task. For example, as

shown in the first row on the left in Figure 4.9, where both a dog and a person

are presented in the image sample. The explanation generated by the baseline and

comparison methods assigned importance to the areas in between the dog and the
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person, therefore, it could not focus properly on the person. On the other hand,

both RES-G and RES-L learned to focus only on the person, more specifically on

the facial area. Similar patterns could also be observed in the rest three rows on the

left, demonstrating the powerful effect of the proposed RES framework on learning

to generate more accurate explanations, and consequently enhance the explainability

of the DNN models.

Scene Recognition: For the scene recognition dataset, as shown in the right

four rows in Figure 4.9, we studied two instances of ‘urban’ scene (top 2 rows) and

two instances of ‘nature’ scene (bottom 2 rows). Once again, we found that compared

with the baseline model and other comparison methods, the explanations generated by

RES models are more accurate and close to the ground truth for identifying whether

the scene is taken from the urban areas or wild nature. For instance, as shown in the

third row on the right in Figure 4.9, the explanation generated by both the baseline

and comparison methods focuses more on the water surface while RES focuses more

on the wild animal itself. Similarly, as shown in the fourth row, the explanation

generated by RES focuses more on the wildflowers than the grass-field background.

Although in those situations the prediction can be correct for all the models studied,

we argue that the model trained with the RES framework can be more robust and

have a batter generalizability power to the downstream predictive tasks by learning

to assign importance more accurately to the most distinguishable features/patterns

presented in the data samples.

Human Assessment: To evaluate the quality of explanations for the five com-

parison methods, we developed a web-based user interface (UI) where a human anno-

tator can go over all the model-generated explanations and make qualitative evalua-

tion on both datasets. We distributed the model-generated explanations from the test

set to three separate human annotators. We asked annotators to assess the perceived

quality of explanations with the five-level Likert scale. “5-Excellent” when explana-
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Model Pairs Perceived Quality (p-values)

Baseline vs. GRADIA 2.68e-03‡

Baseline vs. HAICS 2.33e-04‡‡

Baseline vs. RES-G 4.98e-37‡‡

Baseline vs. RES-L 4.96e-28‡‡

GRADIA vs. HAICS 0.4980
GRADIA vs. RES-G 2.71e-22‡‡

GRADIA vs. RES-L 1.54e-15‡‡

HAICS vs. RES-G 1.67e-19‡‡

HAICS vs. RES-L 2.96e-13‡‡

RES-G vs. RES-L 0.0824

Figure 4.10: Top: results for pairwise comparison of five conditions. †: p < 0.05, ‡:
p < 0.01, ‡‡: p < 0.001. Bottom: Distributions of human users’ perceived attention
quality ratings. 5-level Likert scale is used (5: Excellent, 4: Good, 3: Fair, 2: Bad,
1: Inferior).

tions show positive attention very clearly while don’t contain negative attention at

all, and “4-Good” when positive attention is clearly presented with negligible nega-

tive attention. “3-Fair” meant that positive attention is partially seen while negative

attention is clearly visible. “2-Bad” in case positive attention can be barely seen

while negative can be found evidently. “1-Inferior” is assigned when a human anno-

tator can only find negative attention. After performing the Shapiro-Wilk normality

test, we found participants’ ratings don’t follow a normal distribution. Therefore, we

applied Kruskal-Wallis H-test for identifying the differences between the five condi-

tions. The quality ratings of five models are significantly different, with a p-value

of 7.82e-51 (¡ 0.05). For post-hoc pairwise comparisons using Dunn’s test, all pairs

are significantly different, with the exception of GRADIA vs. HAICS and RES-G vs.

RES-L. This means that the ranking among the five conditions is that RES-G (M =

4.40, SD = 0.91) and RES-L (M = 4.35, SD = 0.89) are rated notably higher than
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Figure 4.11: The sensitivity study of hyper-parameter α in RES framework (RES-L)
on gender classification dataset. The red dashed lines represent the baseline model’s
performance.

the rest, followed by GRADIA (M = 3.92, SD = 1.24) and HAICS (M = 3.95, SD =

1.23). The least performing condition was Baseline (M = 3.79, SD = 1.25). Specific

pair-wise testing results and visual representation between conditions are shown in

Figure 4.10.

Sensitivity Analysis of Hyper-parameter

Here we further provide a sensitivity analysis of the hyper-parameter α introduced

in the proposed RES framework, as shown in Equation (4.22) which measures the

tolerance level we give to the discrepancies between human annotation labels and the

model explanation. Figure 4.11 shows the prediction accuracy, IoU, and explanation

F1-score of the RES-L model for various values of α on the gender classification

dataset. The scene recognition dataset follows a similar trend. The red dashed lines

represent the baseline model’s performance. In general, the model performance is not

too sensitive to the value of α within the range studied, as all models outperformed

the baseline model by a significant margin in terms of both prediction accuracy as well

as explainability. As we developed our models based on the accuracy of the validation

set, we indeed observed a concave curvature on test accuracy, peaking at a α value

between 0.001 and 0.1. While the specific best value of α can vary depending on the
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dataset as well as the degree of nosiness of the human annotation labels (such as the

granularity of the annotation), in general, the proposed framework can perform well

when α is relatively small (e.g., less than 0.1).

4.4 Conclusion

We observe several side-effects behind the DNNs’ powerful automation as a form of

“bias” every day. We are directly or indirectly influenced by the AI’s decisions affected

by automated racism, gender bias, lack of considering people with a neurodiverse

spectrum, insecurities on adversarial attacks, and many more. CSCW, HCI, and

broader ML communities have invested substantial effort into devising straightforward

and human-usable solutions for effectively aligning DNNs’ behavior with our norms

and expectation. However, several empirical studies revealed that steering DNNs as

we intended is highly challenging not only for domain experts but also for skilled data

scientists.

The overarching motivation behind our study here is to devise a human-usable

interaction modality that a human can directly see how DNNs think and intuitively

modify the cases when needed. To do so, this work aimed at laying the groundwork

for establishing a platform that can use EGL framework to more directly infuse their

perspectives in fine-tuning DNNs. To this end, we propose GRADIA and RES as

generic EGL frameworks for visual explanation-guided learning by developing novel

explanation model objectives that can handle the noisy human annotation labels as

the supervision signal with a theoretical justification of the benefit to model gen-

eralizability. Extensive experiments on two real-world image datasets demonstrate

the effectiveness of the proposed framework on enhancing both the reasonability of

the explanation as well as the performance of the backbone DNNs model. Although

the additional data of human explanation labels may not be easily accessible, our
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studies have demonstrated the effectiveness of the proposed framework under a quite

limited amount of training samples, which could benefit application domains where

data samples are limited and hard to acquire, yet both model performance as well as

the explainability are on-demand, such as in medical domains.

As a closing remark, we hope this work can motivate future research in EGL on

DNNs and more generally devising novel interaction modalities that can realize DNNs

that better align with a human mental model.
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Chapter 5

Conclusions and Future Works

This dissertation aims to handle two main problems for geometric data: how to en-

hance the interpretability of geometric neural networks, including CNNs and GNNs,

and how the explanations can further help improve the model in terms of general-

izability. For enhancing the interpretability of geometric DNNs, we explore three

sub-tasks, namely graph-structured multi-task representation learning for event fore-

casting, interpretable and efficient bio-inspired deep learning via neuronal assemblies,

and interpretation for dynamic attributed Graphs via hierarchical attention. To fur-

ther explore how to improve the model in terms of both interpretability and gener-

alizability, we explore two sub-tasks, namely, the explanation-guided representation

learning on image as well as graph-structured data.

To study how to enhance the interpretability of geometric data, we first explored

the bio-inspired neuronal assemblies to help making the model more intrinsically

interpretable and efficient. In this work, we propose a novel Biologically Enhanced

Artificial Neuronal assembly (BEAN) regularization to model neuronal correlations

and dependencies inspired by cell assembly theory from neuroscience. We show that

BEAN can promote jointly sparse and efficient encoding of rich semantic correlation

among neurons in DNNs similar to connection patterns in BNNs. Experimental
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results show that BEAN enables the formations of interpretable neuronal functional

clusters and consequently promotes a sparse, memory/computation-efficient network

without loss of model performance. Moreover, our few-shot learning experiments

demonstrated that BEAN could also enhance the generalizability of the model when

training samples are extremely limited. Our regularization method has demonstrated

its capability in enhancing the modularity of the representations of neurons for image

semantic meanings such as digits, animals, and objects on image datasets.

Next, we extended the knowledge we gained from general DNNs to GNNs, by

exploring the interpretability for dynamic attributed graphs on online health forum

data. Specifically, we formulated the task of health stage inference using online health

forum data as a dynamic graph-to-sequence learning problem and propose a novel

dynamic graph-to-sequence neural networks architecture (DynGraph2Seq) that can

handle this new type of learning problem effectively. Our DynGraph2Seq model con-

sists of a novel dynamic graph encoder and an interpretable sequence decoder to learn

the mapping between a sequence of time-evolving user activity graphs and a sequence

of target health stages. In addition, we developed a new dynamic graph regularization

and dynamic graph hierarchical attention to facilitate the multi-level interpretability.

Our comprehensive experiments and analyses for health stage prediction demonstrate

both the effectiveness and the interpretability of the proposed models.

To further explore how to improve the model in terms of both interpretability

and generalizability, we leveraged the explanation-guided learning techniques that

can learn to explain DNNs on geometric data, including image and graph-structured

data. For image data, we propose GRADIA and RES frameworks for visual ex-

planation supervision by developing a novel explanation model objectives that can

handle the noisy human annotation labels as the supervision signal with a theoretical

justification of the benefit to model generalizability. Extensive experiments on two

real-world image datasets demonstrate the effectiveness of the proposed framework
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on enhancing both the reasonability of the explanation as well as the performance

of the backbone CNNs model. Although the additional data of human explanation

labels may not be easily accessible, our studies have demonstrated the effectiveness

of the proposed RES framework under a quite limited amount of training samples,

which could benefit application domains where data samples are limited and hard to

acquire, yet both model performance as well as the explainability are on-demand, such

as in medical domains. For graph-structured data, we propose a GNN Explanation

Supervision (GNES) framework to adaptively learn how to explain GNNs more cor-

rectly. Specifically, our framework jointly optimizes both model prediction and model

explanation by enforcing both whole graph regularization and weak supervision on

model explanations. For the graph regularization, we propose a unified explanation

formulation for both node-level and edge-level explanations by enforcing the consis-

tency between them. The node- and edge-level explanation techniques we propose are

also generic and rigorously demonstrated to cover several existing major explainers as

special cases. Extensive experiments on five real-world datasets across two applica-

tion domains demonstrate the effectiveness of the proposed model on improving the

reasonability of the explanation while still keep or even improve the backbone GNNs

model performance.

Finally, we aim at extend the proposed techniques and jointly work with Human-

Computer-Interaction researchers to design some real-world system for supporting

the further advancement of the EGL research community. We have worked with the

Human-Computer Interaction (HCI) domain researchers from our interdisciplinary

team and developed an online interactive tool called ‘DeepFuse’ (currently under

review of CHI 2023) that enables the very first end-to-end tool for machine learning

practitioners to explore EGL training with their own datasets and machine learning

models of interest.
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5.1 Research Tasks

The major research tasks are described as follows. The current status of these tasks

is listed in Table 5.1.

5.1.1 Development of Interpretability Techniques for DNNs

• Proposal of the BEAN regularization (A1). we propose a Biologically

Enhanced Artificial Neuronal assembly (BEAN) regularization that promoting

jointly sparse and efficient encoding of rich semantic correlation among neurons,

and enhancing model generalizability with few training samples.

• Validation on the model efficiency (A2). we conducted efficiency test of the

trained model to show that BEAN enables the formation of interpretable neu-

ronal functional clusters and consequently promotes a sparse, memory/computation-

efficient network without loss of model performance.

• Validation on few-shot learning (A3). We performed few-shot learning ex-

periments and demonstrate that BEAN could also enhance the generalizability

of the model when training samples are extremely limited.

• Proposal of the DynGraph2Seq framework (A4). We defined the novel

problem of inferring user health stage information using online health forum

data and proposed a generic framework DynGraph2Seq for inferring target se-

quence from a sequence of graphs.

• Validation on the interpretability (A5). We proposed a dynamic graph

regularization that enforces the smooth learning of consecutive graphs while pre-

serving the heterogeneity across the graph sequence. In addition, we propose

a new dynamic graph hierarchical attention mechanism that captures both the
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time-level and node-level attention, thus providing model transparency through-

out the whole inference process.

5.1.2 Explanation-Guided Learning on Graphs

• Proposal of interactive Explanation-Guided Learning framework for

GNNs (B1). We present a new learning objective for joint optimization among

the model prediction loss, the explanation loss, and the graph regularization loss

on regulating the model explanation. In addition, our framework can treat the

explanation loss as an optional term and thus work effectively in scenarios where

the human annotation on explanation is limited.

• Development of unified graph-based explanation frameworks node-

and edge-level explanation (B2). We proposed a unified EGL framework

for both node-level and edge-level explanations that is suitable for explanation

supervision and generalizable to the existing differentiable explanation methods.

• Proposal of novel node- and edge-level explanation regularization

(B3). We propose to apply novel explanation regularizations (i.e., explana-

tion consistency and sparsity) onto the model-generated explanation to inject

general graph principles and prior knowledge about the explanation that en-

hance the quality and consistency among the multiple levels of explanations.

• Validation on real-world datasets (B4). Extensive experiments on five

real-world datasets in two domains, chemical (molecular graphs) and vision

(scene graphs), demonstrate that the proposed models improved the backbone

GNN model both in terms of prediction power and explainability across different

application domains. In addition, qualitative analyses, including case studies

and user studies of the model explanation, are provided to demonstrate the

effectiveness of the proposed framework.
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5.1.3 Explanation-Guided Learning on Images

• Proposal of interactive Explanation-Guided Learning framework for

CNNs (C1). We propose a novel EGL framework that leverages reasonability

matrix to (1) systematically detect biased reasoning and (2) effectively remove

it through a direct human intervention. We present GRADIA, a novel technique

that strikes the balance between prediction accuracy and attention accuracy in

fine-tuning DNNs.

• Proposal of robust Explanation-Guided Learning framework under

noisy annotation labels (C2). We propose a unified EGL framework that

enables explanation supervision on DNNs with both positive and negative ex-

planation annotation labels and is generalizable to the existing differentiable ex-

planation methods. We propose a novel robust explanation loss that can handle

the inaccurate boundary, incomplete region, as well as inconsistent distribution

challenges in applying the noisy human annotation labels as the supervision

signal.

• Validation on real-world image datasets (C3). Extensive experiments

on two real-world image datasets, gender classification and scene recognition,

demonstrate that the proposed framework improved the backbone DNNs both

in terms of prediction power and explainability.

• Validation with user studies and qualitative human evaluations (C4).

We also conducted qualitative analyses, including case studies and user studies

of the model explanation, are provided to demonstrate the effectiveness of the

proposed framework.

• Build up the interactive EGL tools for real world applications (C5).

We work with the Human-Computer Interaction (HCI) domain experts to form
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an interdisciplinary team and develop an online interactive tool called ‘Deep-

Fuse’ (currently under review of CHI 2023) that enables the very first end-to-end

tool for machine learning practitioners to explore EGL training with their own

datasets and machine learning models of interest.

Table 5.1: Research tasks and status

Task Description Status

Research Area A Development of Interpretability Techniques for DNNs
A1 Proposal of the BEAN regularization Completed
A2 Validation on the model efficiency Completed
A3 Validation on few-shot learning Completed
A4 Proposal of the DynGraph2Seq framework Completed
A5 Validation on the Interpretability Completed

Research Area B Explanation-Guided Learning on Graphs
B1 Proposal of interactive Explanation-Guided Learning framework for GNNs Completed
B2 Development of unified graph-based explanation frameworks node- and edge-level explanation Completed
B3 Proposal of novel node- and edge-level explanation regularization Completed
B4 Validation on real-world datasets Completed

Research Area C Explanation-Guided Learning on Images
C1 Proposal of interactive Explanation-Guided Learning framework for CNNs Completed
C2 Proposal of robust Explanation-Guided Learning framework under noisy annotation labels Completed
C3 Validation on real-world image datasets Completed
C4 Validation with user studies and qualitative human evaluations Completed
C5 Build up the interactive EGL tools for real world applications Completed

D Dissertation Writing and revision Completed

5.2 Publications

5.2.1 Published papers

• Yuyang Gao, Tong Steven Sun, Sungsoo Ray Hong, and Liang Zhao. Aligning

Eyes between Humans and Deep Neural Network through Interactive Attention

Alignment. Proceedings of the ACM on Human-Computer Interaction (CSCW

2022).

• Yuyang Gao, Tong Steven Sun, Guangxi Bai, Siyi Gu, Sungsoo Ray Hong,

and Liang Zhao. RES: A Robust Framework for Guiding Visual Explanation.

The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD 2022).
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• Yuyang Gao, Tong Sun, Rishab Bhatt, Dazhou Yu, Sungsoo Hong, and Liang

Zhao. GNES: Learning to Explain Graph Neural Networks. The 21st IEEE

International Conference on Data Mining (ICDM 2021).

• Yuyang Gao, Giorgio Ascoli, Liang Zhao. Schematic Memory Persistence and

Transience for Efficient and Robust Continual Learning. Neural Networks, 144

(2021) 49–60.

• Yuyang Gao, Tanmoy Chowdhury (co-first author), Lingfei Wu, Liang Zhao.

Modeling Health Stage Development of Patients with Dynamic Attributed Graphs

in Online Health Communities. IEEE Transactions on Knowledge and Data En-

gineerings (TKDE), 2021.

• Yuyang Gao, Giorgio Ascoli, Liang Zhao. BEAN: Interpretable and Efficient

Learning with Biologically-Enhanced Artificial Neuronal Assembly. Frontiers

in Neurorobotics, 2021.

• Yuyang Gao, Lingfei Wu, Houman Homayoun, and Liang Zhao. DynGraph2Seq:

Dynamic-Graph-to-Sequence Interpretable Learning for Health Stage Predic-

tion in Online Health Forums. The 19th International Conference on Data

Mining (ICDM 2019), Beijing, China, Nov 2019.

• Yuyang Gao, Liang Zhao, Lingfei Wu, Yanfang Ye, Hui Xiong, Chaowei Yang.

Incomplete Label Multi-task Deep Learning for Spatio-temporal Event Subtype

Forecasting. Thirty-third AAAI Conference on Artificial Intelligence (AAAI

2019), Hawaii, USA, Feb 2019.

• Yuyang Gao, Xiaojie Guo, Liang Zhao. Local Event Forecasting and Synthe-

sis Using Unpaired Deep Graph Translations. 2nd ACM SIGSPATIAL Interna-

tional Workshop on Analytics for Local Events and News (LENS 2018), Seattle,

Washington, USA, Nov 2018.
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• Yuyang Gao and Liang Zhao. Incomplete Label Multi-Task Ordinal Regres-

sion for Spatial Event Scale Forecasting. Thirty-Second AAAI Conference on

Artificial Intelligence (AAAI 2018), New Orleans, US, Feb 2018.

• Negar Etemadyrad, Yuyang Gao, Qingzhe Li, Xiaojie Guo, Frank Krueger,

Qixiang Lin, Deqiang Qiu, and Liang Zhao. 2022. Functional Connectivity

Prediction with Deep Learning for Graph Transformation. IEEE Transactions

on Neural Networks and Learning Systems (TNNLS).

• Liang Zhao, Yuyang Gao, Jieping Ye, Feng Chen, Fanny Ye, Chang-tien Lu,

and Naren Ramakrishnan. Spatio-temporal Event Forecasting Using Incremen-

tal Multi-source Feature Learning. ACM Transactions on Knowledge Discovery

from Data (TKDD), 2021.

• Junxiang Wang, Yuyang Gao, Andreas Zufle, Jingyuan Yang, and Liang Zhao.

Incomplete Label Uncertainty Estimation for Petition Victory Prediction with

Dynamic Features. In Proceedings of the IEEE International Conference on

Data Mining (ICDM 2018), Singapore, Nov 2018.

5.2.2 Submitted and In-preparation papers

• Yuyang Gao, Siyi Gu, Junji Jiang, Sungsoo Ray Hong, Dazhou Yu, and Liang

Zhao. Beyond XAI: A Systematic Survey for Explanation-Guided Learning.

ACM Computing Surveys (CSUR), submitted.

• Yuyang Gao, Junxiang Wang, Wei Wang, Xin Deng, Hamed Zamani, Xiaohan

Yan, Yan Guo, Ahmed Awadallah, Yanfang Ye, and Liang Zhao. Asynchronous

Semi-supervised Representation Learning for Email Heterogeneous Networks.

In-preparation.

• Tong Steven Sun, Yuyang Gao, Shubham Khaladkar, Sijia Liu, Liang Zhao,
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Young-Ho Kim, and Sungsoo Ray Hong. DeepFuse: Making Convolutional Neu-

ral Networks “Think Like Humans” through Case-based Vulnerability Detection

and Model Steering. ACM CHI Conference (CHI 2023), under review.

• Nahyun Kwon, Tong Steven Sun, Yuyang Gao, Liang Zhao, Xu Wang, Jeeeun

Kim, and Sungsoo Ray Hong. 3DPFIX: Assisting Remote Novices’ 3D Printing

Troubleshooting through Community-Minded Human-AI Collaboration Design.

In-preparation.

• Guangji Bai, Chen Ling, Yuyang Gao, and Liang Zhao. Saliency-augmented

Memory Completion for Continual Learning. Eleventh International Conference

on Learning Representations (ICLR 2023), submitted.

5.3 Future Research Directions

5.3.1 Explanation-Guided Learning on Medical Image Anal-

ysis

Besides generic image applications, Explanation-Guided Learning has also been widely

studied in the medical domain, thanks to the availability of domain-expert annota-

tion on many medical image datasets [29, 76, 154]. In general, we observed a variety

of datasets studied by existing works, including but not limited to ISIC Skin Cancer

dataset [29], Iris-Cancer dataset [84], scaphoid fracture detection dataset [76], Fundus

image dataset (IDRiD) [109], and the pneumonia detection X-ray dataset [154] for

disease identification task [196]. Similar to most EGL frameworks on generic image

data, an additional explanation loss is added to the model objective and is typically

realized by a distance loss between the ground truth annotation collected from do-

main experts and the model visual explanation. However, compared with generic

image data, several unique challenges have been identified by existing works when
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applying EGL to medical images, such as 1) difficulty in assessing the quality of the

model explanation, and 2) the scalability of the sample size of the annotation labels

of the datasets.

5.3.2 Trustworthiness and Fairness of Deep Learning Expla-

nation

Fairness, Accountability, and Transparency (FaccT) are becoming as important as–or

depending on application areas–more important than model accuracy as an evalua-

tion metric. Since it is nearly not feasible to prepare an impeccable dataset that can

equally represent every possible feature related to a model’s task, blindly pursuing a

model’s accuracy cannot exclude the chance of causing “catastrophic consequences”

in critical circumstances [61]. One of EGL’s crucial application areas is to realize the

balance between the model accuracy and FaccT by allowing human users to elicit

their perspectives on steering the model. In shaping the balance, one crucial research

direction is to understand how to maximize the case where reasonable human reason-

ing can also cause accurate prediction. There are several arguments discussing when

human reasoning can cause a beneficial or detrimental effect on model prediction.

While the debate is ongoing, we are gradually seeing more evidence where human

involvement can result in a positive effect [49, 30]. For example, Shao et al. find hu-

mans “arguing against” unreasonable explanation can benefit the model [132]. At the

end of the day, from the perspective of model accuracy and FaccT, a railroad should

not the reason for predicting a train [80], a snowboard cannot be a male class [58],

and a shopping cart should not only belong to a woman class [186].
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5.3.3 Contrastive Explanation-Guided Learning

Contrastive learning is a powerful self-supervised learning strategy that encourages

augmentations of the same input to have more similar representations compared to

augmentations of different inputs. In the field of EGL, we have started to see sev-

eral works that apply the contrastive objective to the model explanation between

similar/dissimilar samples to build up the explanation objective [176, 35, 136, 106].

The most significant advantage of leveraging the contrastive learning paradigm for

explanation guidance is that no ground truth explanation annotation labels are re-

quired for model training. However, designing an appropriate contrastive framework

for EGL can be more challenging due to the lack of a standard form of model ex-

planation under different application domains. Besides, how to define and formulate

the positive and negative explanation samples to contrast with the anchor sample’s

explanation can be challenging without knowing the ground-truth labels. Thus, we

believe the further development of the contrastive EGL framework can be one of the

core future directions in EGL, and it can lead to a significant leap in the application

of EGL to the domains where ground truth explanation labels are generally difficult

to obtain in large scale.

5.3.4 Interactive Explanation-Guided Learning pipeline on

Continual & Active Learning

EGL’s core principle is motivating ML engineers’ iterative training, such as continual

learning [125, 36] and active learning [67, 21]; helping them to figure out the vulnera-

bility through explanation and fixing the issue by providing a human-level guideline.

In supporting such an iterative training, we believe one of the promising areas is “data

iteration”, a design that can help ML engineers to fortify the dataset by adding more

examples based on detected vulnerabilities through explanation. In such a direction,
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we believe understanding the pros and cons of retraining and continual learning can

be crucial. For example, there can be a case where newly found data points can

be stacked up on an existing dataset and be used in retraining. Another case can

be to iteratively update the last model through some of the existing techniques in

continual learning [104]. In general, in the world of EGL, understanding when to

apply retraining or continual learning and what are the pros and cons of each train-

ing strategy are not well understood. Understanding which strategy can yield what

strengths and weaknesses in the scenario of data iteration would be one of the core

future applications of EGL.
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Appendix A

Explanation-Guided

Representation Learning on

Geometric Data

A.1 Proof of Theorem 2

Proof. Suppose fψ is a δ-minimizer of L with ψ ∈ Θ. From Assumption 1, we know

that there exists a neural network fτ such that

∥fτ − fθ∗∥2 := E
[
|fτ − fθ∗|2 + |∇fτ −∇fθ∗ |2

]
≤ C2

1

∥θ∗∥2

mγ
(A.1)

Then, we have

L(fψ)−L(fθ∗)≤L(fτ )− L(fθ∗) + δ

≤L1E [|fτ (x)−fθ∗(x)] +L2E [|∇fτ (x)−∇fθ∗(x)]+δ

≤(L1 + L2)
C1∥θ∗∥
mγ/2

+ δ

(A.2)
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From Assumption 2, given 0 < ϵ < 1, we have

P (|L(fθ)− L̂(fθ)| ≤
C2(V,m, ϵ)√

N
) ≥ 1− ϵ, ∀ θ ∈ Θ (A.3)

Then,

L(fθ̂)− L(fθ∗) ≤ L̂(fθ̂)− L(fθ∗) +
C2(V,m, ϵ)√

N

≤ L̂(fψ)− L(fθ∗) +
C2(V,m, ϵ)√

N
+ δ

≤ L(fψ)− L(fθ∗) +
C2(V,m, ϵ)√

N
+ δ

≤ (L1 + L2)
C1∥θ∗∥
mγ/2

+
2C2(V,m, ϵ)√

N
+ 2δ

(A.4)

A.2 Proof of Lemma 1

Proof. Since

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
(A.5)

where the last equality follows by multiplying by e−x

e−x = 1. And since: limx→∞ 1 −

e−2x = 1, and limx→∞ 1 + e−2x = 1, we have

lim
x→∞

tanh(x) = 1 (A.6)

Similarly, we also have

lim
x→−∞

tanh(x) = lim
x→−∞

e2x − 1

e2x + 1
= −1 (A.7)
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Thus we have

lim
γ→∞

tanh(γ(M (i) − a)) =

 1 M (i) > a

−1 M (i) < a
(A.8)

Thus we have the equivalency of Equation (4.25) and Equation (4.22) when γ →

∞.

A.3 Human Annotation and Evaluation UI demon-

stration

Figure A.1 (a) is the interface used to collect attention annotation on the areas people

think are relevant to the classification task. For example, for the gender dataset

annotation, users first determine whether they can identify the person’s gender in the

image, then draw the areas that help them for the gender classification. In the back-

end, the coordinates of highlighted areas are converted into a binary map, preparing

for the modeling step.

Figure A.1 (b) is the interface for human assessment on the model-generated

explanations. For each image annotation, 5 explanations were presented in random

order with 3 questions (Q1 and Q2 are true/false questions, Q3 is a 5-point Likert

scale rating question) asked for each explanation. Question 1 asks if the focus on

the explanation shows details necessary for identifying the target label (i.e., labels

in gender classification or scene recognition), and question 2 asks for the presence of

unnecessary details on the image for identifying the target. Question 3 is our main

focus of the attention quality assessment, where annotators give 1 to 5 ratings to each

model explanation.
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A.4 Efficient Adaptive Threshold Searching Algo-

rithm

Algorithm 2: Adaptive Threshold Searching Algorithm
Require: M,F,C
Ensure: solution a
1: initialize: a = 0, act = 0, v = 0, vct = 0, i = 0, j = 0
2: ge = {M [find(C > 0)]} % find the set of greater or equal to inequality constraints
3: l = {M [find(F > 0)]} % find the set of less to inequality constraints
4: ges = Sort(ge, ‘ascend’)
5: ls = Sort(l, ‘descend’)
6: for i < |ges| do
7: v = ges[i]
8: vct = i+ 1 + BinarySearch(v, ls)
9: if vct > act then
10: a = v
11: act = vct
12: end if
13: i = i+ 1
14: end for
15: for j < |ls| do
16: v = ls[i]
17: vct = j + 1 + BinarySearch(v, ges)
18: if vct > act then
19: a = v
20: act = vct
21: end if
22: j = j + 1
23: end for

A.5 Detailed Implementation of the Learnable Im-

putation Layers

For the learnable imputation function, we studied both a shallow implementation as

well as a deep implementation, as shown in detail below:

Shallow Implementation: We apply one layer of convolution operation to pro-

cess the raw human annotation label, with a 64×64 convolution kernel with a padding
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size of 16 and a stride of 32.

Deep Implementation: We apply five layers of convolution operations to process

the raw human annotation label, with 7× 7, 3× 3, 3× 3, 3× 3, and 3× 3 convolution

kernel with a padding size of 3 on the first layer and 1 for the rest layer, and a stride

2 for all layers.

We choose the Shallow implementation for the RES-L model as it achieves better

performance on the validation set. The reason why the deep version gets inferior

performance could be due to the training sample size studied in this work is too

small.
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(a)

(b)

Figure A.1: The screenshots illustrating the two UIs for human annotation and eval-
uation. (a) The interface for attention annotation where users can draw on the image
and generate a binary matrix of the focus area used for improving model explanation
quality. (b) The interface for attention quality assessment where 5 model-generated
explanations are displayed in random order. Users will answer three questions for
each explanation.
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