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Abstract

Estimates of Influenza Vaccine Effectiveness from Observational Studies

By

Meng Shi

Influenza is an infectious disease caused by influenza virus. Due to the variety of
influenza viruses, a new vaccine must be developed each season, and the influenza
vaccine effectiveness (VE) has to be re-estimated in every season. As annual influenza
vaccination is now widely recommended, randomized clinical trials for estimating VE
are no longer ethical in many populations, and observational studies based on patients
seeking care for acute respiratory illnesses (ARI) remain the only option.

In the first topic, we developed a probability model for comparing the bias of VE
estimates from two popular case-control designs: traditional case-control (TCC) de-
sign and test-negative (TN) design, under non-random vaccination. Our model allows
non-random vaccination and confounding. In addition, we consider two outcomes of
interest: symptomatic influenza (SI) and medically-attended influenza (MAI). Since
the bias of VE estimates depends on the outcome against which the vaccine is sup-
posed to protect, it is important to specify the outcome of interest when evaluating
the bias.

In a stochastic agent-based model, the disease transmission process is governed
by the behavior of each individual, and incorporates elements of random processes
into the system. In topic 2, we present a stochastic agent-based simulation program,
SimFlu, for the transmission of influenza in a stratified population, and use it to
evaluate bias and precision of estimates of VE from 4 observational study designs
(two case-control studies and two cohort studies). Besides that, we proposed several
methods to correct the bias for test negative study.

The exact timing and duration of flu season can vary. Most of the time, the
influenza activity peaks between December and February, and the duration of the
annual influenza epidemic can last as late as May. However, influenza vaccines are now
available as early as July. As a result, there may be relatively long periods between
vaccination and potential exposure, raising concerns about the possibility of waning
vaccine efficacy over a single season. In this study, we analyze data generated from
SimFlu using three different methods for the evaluation of waning vaccine efficacy in
both cohort and test negative studies.
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1.1 Epidemiology of Influenza

Influenza is an infectious disease caused by influenza viruses, it is the most frequent

cause of acute respiratory illness (ARI) requiring medical intervention because it

affects all age groups and because it can recur in any individual. Influenza viruses

belong to the family Orthomyxoviridae, which includes four genera: influenza virus

A, influenza virus B, influenza virus C and thogotovirus. Influenza A viruses and

influenza B viruses are the primary cause of influenza disease, and they are spread

from person to person by respiratory droplets and fomites (Cox and Subbarao (1999)).

Influenza pandemics are usually caused by influenza A viruses, which is the most

feared type of influenza viruses. These influenza A viruses can infect humans and

several types of animals, including wild birds, pigs, horses and whales. They are

further classified into subtypes depending on which versions of two different proteins

are present on the surface of the virus. These proteins are called hemagglutinin

(HA) and neuraminidase (NA). 17 subtypes of HA and 10 subtypes of NA has been

identified. Although many different combinations of the HA and NA proteins are

possible, viruses with only a few of the possible combinations circulate through the

human population at any given time. Currently, subtypes H1N1 and H3N2 are in

general circulation in people. The subtypes that exist within a population change

over time. For example, the H2N2 subtype, which infected people between 1957 and

1968, is no longer found in humans.

Influenza B viruses are only known to infect humans and seals, this limited host

and range is the main reason for the lack of influenza virus B-caused influenza pan-

demics in contrast with those caused by the influenza virus A, but they still cause

outbreaks of seasonal flu. Influenza viruses B are not defined with subgroups but

rather are defined by lineages and strains. Currently circulating influenza B viruses

belong to one of two lineages: B/Yamagata and B/Victoria.

Influenza virus has a rounded shape and has a layer of spikes on the outside (Figure
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1.1). There are two different kinds of spikes, each made of one type of protein, HA or

NA. The HA protein allows the virus to stick to a cell, so that it can enter into a host

cell and start the infection process. The NA protein is needed for the virus to exit

the host cell, so that the new viruses that were made inside the host cell can go on to

infect more cells. Because these proteins are present on the surface of the virus, they

are “visible”to the human immune system. Inside the layer of spikes, there are eight

single-stranded, negative-sense RNA segments that encode at least ten polypeptides,

of which eight are structural viral proteins, and two are found in infected cells. When

new viruses are made inside the host cell, all eight segments need to be assembled

into a new virus particle, so that each virus has the complete set of instructions for

making a new virus. The danger occurs when there are two different subtypes of

influenza A virus inside the same cell, and the segments become mixed to create a

new virus.

Figure 1.1: Influenza particle showing the HA and NA spikes on the outside an dRNA
segments inside.

Influenza virus is one of the most changeable viruses known. The epidemiological

success of influenza viruses is largely due to two types of antigenic variation that occur

primarily in the HA and NA antigens: antigenic drift and antigenic shift. Antigenic

drift is a gradual, continuous evolution that involves the accumulation of mutations

within the genes. This will result in a slightly difference in the HA or NA proteins.

The antibodies cannot inhibit this new strain of virus particles effectively, so the virus

spread throughout a population more easier. This is the reason why individuals may

repeatedly get influenza and influenza vaccines must be administered each year to

combat the current circulating strains of the virus. Antigenic drift occurs in both
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influenza A viruses and influenza B viruses. Antigenic shift is defined as an abrupt,

major change in the virus, resulting from the recombination of the HA and NA

proteins, which occurs only among influenza A viruses. This is typically the result of

reassortment of animal and human influenza A viruses (Figure 1.2). When the newly

created subtype can be transmitted easily from person-to-person, a pandemic could

occur (Morens and Fauci (2007)).

Figure 1.2: Reassortment of the genetic material of two different influenza subtypes
within an infected cell to produce a new virus subtype.

Influenza viruses are unique in their ability of causing both recurrent annual epi-

demics and more serious pandemics that spread rapidly and may affect all or most

age-groups. Individuals at increased risk for complications of influenza virus infec-

tion include children < 5 years of age, pregnant women, the elderly, and individuals

with chronic health conditions such as chronic heart or lung disease, asthma, and

HIV/AIDS. Children < 5 years of age have about 90 million new cases of influenza

episodes, about 20 million cases of influenza-associated acute lower respiratory in-

fections, and 1-2 million cases of influenza-associated severe acute lower respiratory

infections (Nair et al. (2011)), causing 200-300 thousand deaths annually (Rolfes MA

(n.d.)). Pregnant women have an increased risk of severe illness due to influenza

(Omer et al. (2011)). The elderly have the highest rates of influenza-associated hos-

pitalizations and deaths of any age group and account for up to 90% of influenza-

associated deaths from seasonal influenza viruses(Rolfes MA (n.d.)).
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1.2 Influenza Vaccination

Influenza vaccines are the mainstay of efforts to reduce the substantial health burden

from seasonal influenza. Vaccination against influenza began in the 1930s with large

scale availability in the U.S. beginning in 1945 when the first commercial vaccines

were approved for use. An influenza vaccine was of particular interest to the U.S.

military and civilian populations following the 1918-1919 influenza pandemic during

the late stages of World War I.

Two main types of influenza vaccine are currently available: inactivated influenza

vaccine (IIV) and live attenuated influenza vaccine (LAIV). The first IIV was mono-

valent and was protective against the influenza A (H1N1) strain. In 1940, influenza

B virus was isolated and the first bivalent vaccine was subsequently tested in healthy

adults (Hannoun (2013)). At the end of the 1970s, a new strain of influenza A (H3N2)

was identified. In 1978, the first trivalent influenza vaccine including two influenza A

strains (H1N1 and N3N2 subtypes) and one influenza B strains was created. The first

trivalent LAIV was licensed in North America in 2003. The aim of vaccination with a

LAIV is to induce a secretory and systemic immune response that more closely resem-

bles the immune response detected after natural infection (Gasparini et al. (2011)),

although the immunological mechanisms of action and correlates of protection remain

largely unclear (Sridhar et al. (2015)). LAIV was administered via drops rather than

via an injection. However, CDC’s Advisory Committee on Immunization Practices

(ACIP) voted that LAIV should not be used during the 2016-2017 flu season in U.S. in

2016. In 2009, Europe authorized a particular intradermal trivalent influenza vaccine

which act alternative routes of delivery, and licensed for adults older than 60 years

in the 2010/11 season in Europe. This vaccine was approved by the Food and Drug

Administration (FDA) on 2011 in the U.S., and has been available since 2011/12

influenza season for people older than 64 years. In 2013, the WHO recommendations

included a second influenza B strain in the vaccine composition, allowing member
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countries to make their own decision on the possibility to recommend a trivalent in-

fluenza vaccine or a quadrivalent influenza vaccine in their immunization programs.

Quadrivalent influenza vaccines contain both influenza B lineages for each season

have been available. These offer the potential to improve protection by overcoming

the drawbacks of wrongly predicting which B lineage will predominate in a given year

(Barberis et al. (2016)).

Based on the recommendation of definition of the criteria for identifying risk

groups targeted for vaccination issued by WHO, as the elderly are at high risk of

complications such as morbidity, hospitalization and mortality, vaccination is rec-

ommended for the elderly worldwide. In U.S., annual influenza vaccination is now

recommended for all persons aged 6 months or older. Studies have shown that in-

fluenza vaccine reduced children’s risk of influenza-related pediatric intensive care unit

admission by 75% during influenza seasons from 2010-2012 (Ferdinands et al. (2014)),

and that people 50 years and older who got an influenza vaccine reduced their risk of

hospitalizing resulting from influenza by 57% (Havers et al. (2016)). Influenza vac-

cination also has been shown to be associated with reduced hospitalizations among

people with diabetes by 79% (Colquhoun et al. (1997)) and chronic lung disease by

52% (Nichol et al. (1999)).

1.3 Evaluation of the Effects of Vaccines

In order to determine whether to introduce a new vaccine in a population, there are

two general considerations. The first consideration is the burden of disease that is

potentially preventable by vaccination. The second consideration is the expected per-

formance of the vaccine in practice. This can be assessed through RCTs, which allow

the estimation of vaccine efficacy, and through observational studies that evaluate

vaccine effectiveness.
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Vaccine efficacy and vaccine effectiveness, VE, are generally estimated as one

minus some measure of relative risk (RR), in the vaccinated group compared to the

unvaccinated group:

V E = 1−RR. (1.1)

1.3.1 Vaccine Efficacy

Vaccine efficacy is the percentage reduction of disease incidence in a vaccinated group

compared to an unvaccinated group under ideal circumstances.

V E = 1− ARV

ARU
(1.2)

where ARV is the attack rate, or cumulative incidence, in the vaccinated population

and ARU is the attack rate in the unvaccinated population.

Vaccine efficacy was defined and calculated by Greenwood and Yule in 1915 for

the cholera and typhoid vaccines (Greenwood and Yule (1915)). Ideal vaccine efficacy

studies are double-blind randomized controlled trails starting with a sample of sus-

ceptible individuals, where half the subjects receive vaccines and half receive placebo

(Orenstein et al. (1985)). These studies are typically undertaken for pre-licensure

vaccines, since once a vaccine has been shown to be effective and is licensed, it is un-

ethical to use placebo. Observational studies are being increasingly used to evaluate

vaccine effectiveness.

1.3.2 Vaccine Effectiveness (VE)

Vaccine effectiveness (VE) is the reduced risk of disease among vaccinated persons

attributed to vaccination under real-life conditions. In vaccine effectiveness studies,

the decision to be vaccinated is made by the individual or her/his physician.

A number of observational methodologies can be used in the assessment of vaccine
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effectiveness, including case-control studies, cohort studies, the screening method and

case-cohort studies. In cohort studies, the vaccine effectiveness is estimated by one

minus the ratio of attack rates in vaccinated group and unvaccinated group, while in

case-control studies, the relative risk is approximated by the odds ratio, comparing

the odds of vaccination in cases and controls.

There are many potential biases in all observational vaccine effectiveness studies

which we will introduce later.

1.4 Outcomes of Interest for influenza Vaccine Ef-

fectiveness Studies

A number of outcomes have been used for influenza vaccine effectiveness (VE) studies,

reflecting the morbidity and mortality caused by influenza virus infection. Selecting

appropriate VE outcomes involves a trade-off between providing information that is

of greatest interest to policy makers and identifying outcomes that can be determined

with a minimum of misclassification, or other type of bias. It is important to clearly

define the outcomes of interest when designing a study to estimate VE, since incor-

rectly determining the occurrence of the outcomes for a study subject, such as falsely

considering a diseased person to be disease-free, or falsely considering a disease-free

person to be diseased will lead to wrong VE estimates.

There are two main categories of clinical outcomes: non-specific outcomes and

laboratory-confirmed outcomes, that could be used as endpoints for influenza VE

studies. VE estimates against non-specific outcomes are generally lower, depending

on what proportion of the outcome measured is attributable to influenza. Bridges et

al. showed that among healthy adults, vaccine was 86% effective against laboratory-

confirmed influenza, but only 10% effective against influenza-like illness (ILI) in the

same population and season (Bridges et al. (2000)).
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1.4.1 Non-specific Outcomes

For any non-specific outcomes, the estimated VE is likely to be much lower than the

estimated VE against lab-confirmed influenza.

1.4.1.1 Severe Acute Respiratory Infection (SARI)

SARI, defined by the WHO Global Epidemiological Surveillance Standards for in-

fluenza, is an acute respiratory infection (ARI) with history of fever or documented

fever of ≥ 38Co, cough, onset within the last ten days, and required hospitalization.

Since the existence of SARI surveillance system and severe illnesses are much more

interest to policy maker, SARI is an attractive outcome for influenza VE studies.

However, using SARI as endpoint for observational influenza VE studies requires

a large sample size to achieve effectiveness with adequate precision, and influenza

vaccine may be used disproportionately by persons with a different risk for SARI

than unvaccinated persons, which can cause strong confounding of VE estimates in

observational studies.

1.4.1.2 All-cause pneumonia requiring hospitalization

As SARI, all-cause pneumonia requiring hospitalization is of high interest to policy

makers, and the existing surveillance system for hospitalized pneumonia cases can be

used in influenza VE studies. However, the existing surveillance systems for hospi-

talized pneumonia cases focus on children less than 5 years of age, while many of the

influenza-associated pneumonia cases occur in adults 50 years of age and older. If

influenza VE studies want to use hospitalized pneumonia as an outcome, new surveil-

lance systems need to be developed. Also, the probability of influenza to pneumonia

is low which will lead to low VE in observational VE studies.
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1.4.1.3 Influenza-like Illness (ILI)

The WHO define ILI as an ARI with measured fever of ≥ 38Co, cough, and onset

within the last seven days. There are several advantages of using ILI as outcome in

VE studies. Firstly, the case definition is easy to apply. Secondly, in one influenza

epidemic, the number of subjects with ILI is more than the number of subjects with

SARI or pneumonia, in order to detect statistically significant VE, the relative sample

size is smaller than previous two outcomes. The limitation for ILI as an endpoint

for observational influenza VE studies is ILI does not emphasis on serious outcomes.

While demonstrating VE against ILI would indicate that the vaccine can reduce the

risk of influenza-associated illness, VE against ILI is not generalizable to VE against

more serious outcomes without making assumptions that are difficult to validate.

1.4.1.4 All-cause Mortality

All-cause mortality was formerly a common endpoints in observational influenza VE

studies among older adults. Jackson et al. (2006) showed that healthy seniors are

more likely to receive influenza vaccine than seniors at higher risk for death which

will lead strong confounding in VE estimates. All-cause mortality is not recommended

as endpoint for VE studies.

1.4.1.5 Adverse Birth Outcomes

Evidence that influenza vaccination during pregnancy is safe and effective at pre-

venting influenza disease in women and their children through the first months of

life is increasing. Influenza virus infection in pregnant woman may sometimes result

in preterm birth, or cause poor birth outcome. But evidence that influenza itself

cause adverse pregnancy outcomes is inconsistent and limited in quality (Savitz et al.

(2015)). If a reduction in adverse birth outcomes wanted to be used as endpoints of

observational influenza VE studies, it must be used in caution.
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1.4.2 Laboratory-confirmed Outcomes

Reverse transcriptase polymerase chain reaction (RT-PCT) is the standard for lab-

oratory confirmation of influenza virus infection during acute illness. RT-PCR and

other commercially available molecular diagnostic tests are both highly sensitive and

highly specific for detecting influenza viruses.

Laboratory-confirmed outcomes are much more specific for influenza virus infec-

tions than outcomes based on clinical signs and symptoms only. It is generally pre-

ferred than non-specific outcomes in observational VE studies. Laboratory-confirmed

outcomes as a VE endpoint has several challenges as well. The first one is the need for

laboratory capacity, molecular assay technology and reagents. All of these activities

require well trained clinical staff to ensure standardized specimen collection, proper

processing, and testing. Improper specimen collection or handling can lead to false

negative results. In addition, using laboratory-confirmed outcomes restricted to sub-

jects who seek medical care within around seven days of illness onset. Furthermore,

study protocol should specify the symptoms, duration of illness, and all eligibility

criteria for attempting to enroll and test subjects for influenza. These criteria should

then be applied to all eligible subjects regardless of clinical testing preferences. Al-

though the available molecular diagnostic tests are high sensitive and high specific,

the diagnostic test for influenza viruses are not 100% sensitive and specific, which

will lead misclassification bias into the estimation of VE.

Laboratory-confirmed outcomes are becoming standard for VE studies in high-

resource countries, and WHO recommends the use of laboratory-confirmed outcomes

whenever possible due the benefits associated with use of outcomes specific to in-

fluenza.
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1.4.3 Symptomatic Influenza and Medically-attended Influenza

In this study, we evaluate estimates of VE based on the outcomes that the vaccine is

supposed to protect, i.e. symptomatic influenza (SI) or medically-attended influenza

(MAI).

During the influenza season, a person may become infected with an influenza

virus and develop ARI. This outcome is referred to as “influenza ARI” (FARI), where

“F” stands for flu. A person may also develop an ARI not resulting from influenza

infection. This outcome is referred to as “non-influenza ARI” (NFARI). Therefore, a

person’s influenza status can be categorized into 3 categories: no ARI, NFARI, and

FARI.

SI is the outcome of interest lead by the person’s influenza status, FARI. In ob-

servational influenza VE studies, surveillance for SI is needed in the entire study

population, and for persons ill with compatible illnesses, samples of influenza are

taken for verification. A true case of SI is a person has ARI and is infected by an

influenza virus. SI is more appropriate from the public health perspective. MAI is

defined as a truly influenza-infected person who seeks medical care because of her/his

ARI. Once a person decides to seek medical care in clinic, the health care provider

may ask the person to be tested for influenza viruses. If the person agrees then a

swab is taken and sent to a laboratory for testing.

1.5 Observational Studies to Estimates VE

Observational studies are important category of study designs, which examine con-

ditions and events that already occurred or will occur anyway. As annual influenza

vaccination is recommended for all U.S. persons ages 6 months or older, it is unethical

to conduct randomized clinical trials to estimate influenza VE. Observational studies

may be the next best method to address the estimation of influenza VE. Case-control
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studies and cohort studies are two primary types of observational studies that aid in

evaluating associations between influenza and vaccination.

1.5.1 Case-control Studies

1.5.1.1 Traditional Case-control Studies

Traditional case-control studies (TCC) were historically borne out of interest in dis-

ease etiology. Smith (Smith (1982)) argued for the conduct of case-control studies to

assess the effect on the incidence of tuberculosis of mass BCG campaigns that had

been conducted in numerous countries in Asia and Africa beginning in the 1950s.

Prior to that, case-control studies had not been widely used for evaluating vaccines.

In TCC, cases of the disease are ascertained, and information on various covariates

collected. In influenza VE studies, vaccination status is the most important factor.

Then a comparison group of individuals who did not experience the outcome of in-

terest is selected as controls. In TCC study, VE is estimated from odds ratio, which

is the ratio of the vaccinated cases to the unvaccinated cases is divided by the ratio

of vaccinated controls to unvaccinated controls:

V E = 1−OR = 1− OCases

OControls

, (1.3)

where OCases is the odds of vaccination among the cases, and OControls is the odds of

vaccination among the controls.

TCC studies can be more feasible than the follow-up of large cohorts. They are

more efficient than cohort studies, in terms of the number of study subjects required,

cost of budget, and study duration. Orenstein et al. (Orenstein et al. (1988)) argue

that TCC studies allow large amounts of resources to be directed at a small number of

cases and controls to assess vaccination status and history of disease most accurately,

decreasing errors due to misclassification.
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However, TCC studies also present some methodological issues. One is the selec-

tion of cases. In a TCC study, it is imperative that the investigator has explicitly

defined inclusion and exclusion criteria prior to the selection of cases, e.g. outcome of

interest in this study design. In addition, selecting a proper group of controls can be

one of the most demanding aspects of a TCC study. The controls should be chosen so

that the distribution of vaccination among the controls is the same as the distribution

of vaccination in the target population that gave rise to the cases. The investigator

may also consider the control group to be an at-risk population, with the potential

to develop the outcome. One common approach is to randomly select asymptomatic

and disease-free individuals from the target population. One method used in an at-

tempt to ensure comparability between cases and controls and reduces variability

and systematic differences due to background variables that are not of interest of the

investigator is matching. Each case is typically individually paired with one or more

control subjects with respect to the background variables by time. Meanwhile, a TCC

study is susceptible to various sources of bias, which we will introduce later. These

biases will affect the estimation of VE in TCC studies.

1.5.1.2 Test-negative Studies

The test-negative (TN) design is a special case of TCC design, it is increasingly used

for annual influenza VE estimation. The first TN study was published for influenza

VE estimation in Canada in 2007 (Skowronski (2005); Skowronski et al. (2007)).

Since then, this approach has been widely used within existing surveillance structures

annually in Canada. Investigators in Europe (Kissling et al. (2009, 2013); Pebody

et al. (2013); McMenamin et al. (2013)), the Unites States (Belongia et al. (2009);

Treanor et al. (2012); Centers for Disease Control and Prevention (CDC) (2013))

and Australia (Kelly et al. (2009); Fielding et al. (2012)) also began to publish VE

findings based on TN study from 2009 following a publication on the methodological
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validity of the TN study (Orenstein et al. (2007)). In TN study, the target population

for enrollment consists of all persons who seek care for a defined set of symptoms,

typically ARI; cases are those with positive tests for influenza, and controls are those

with negative tests. VE is calculated as:

V E = 1−OR = 1− Opos

Oneg

, (1.4)

where Opos is the odds of vaccination among those testing positive for influenza, and

Oneg is the odds of vaccination among those testing negative.

The TN study is predicated on the core assumption that influenza vaccine only

protects against influenza, and has no effect on other non-influenza causes of ILI

(Jackson and Nelson (2013); Foppa et al. (2013)), a core premise that has been val-

idated through randomized controlled trial data sets (De Serres et al. (2013)). It

has several advantages. Firstly, cases and controls in TN studies come from the same

communities since they have sought medical care at the same communities, which will

reduce the bias. Secondly, cases and controls seek medical care for ARI symptoms.

This reduces confounding due to differences in healthcare seeking behavior between

cases and controls. Although imperfect sensitivity and specificity of influenza test-

ing cause bias in VE estimation, in the context of RT-PCR whose sensitivity is as

low as 70% and near-perfect specificity, outcome misclassification has been shown to

have trivial impact on VE estimates derived by the TN study (Jackson and Rothman

(2015)).

The TN study need to be used in caution while it has lots of important strengths.

Validation of core assumption is inevitable. Also, since TN study only select sub-

jects who seek medical care, this may not reflect the entire community or population

accurately. VE estimates from TN studies seem to be appropriate for estimating

VE against MAI, but their performance as estimates of VE against SI has not been
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studied yet. In this dissertation, we will compare VE estimates from TCC and TN

studies with respect to their bias and precision for each of the outcomes of interest.

1.5.2 Cohort Studies

The term “cohort“ is derived from the Latin word cohors, the modern epidemiological

definition of the word now means a “group of people with defined characteristics who

are followed up to determine incidence of, or mortality from, some specific disease,

all causes of death, or some other outcome”(Morabia (2004)). Cohort studies are

also commonly used to estimate influenza VE. In a cohort study, a disease-free study

population is first identified by the vaccination status, and separated into vaccinated

or unvaccinated groups. These individuals are then followed up for a given time

period (usually until the end of the influenza season). Because vaccination status is

identified before the beginning of the study, cohort studies have a temporal framework

to assess causality and thus have the potential to provide strong scientific evidence.

The cohort study can be thought of as a source population that gives rise to the

cases, and a case-control study can also be thought of as a sample of data from a

hypothetical cohort study.

Cohort studies can be categorized into two categories based on the types of surveil-

lance: active surveillance or passive surveillance. In a cohort study with active surveil-

lance, every subject who develops ARI is identified and tested for influenza infection;

this is usually called monitored cohort study. The other type of cohort study is an

unmonitored study which is based on passive surveillance; only those who seek medi-

cal care for ARI are test. In a monitored cohort study, participants will be reminded

weekly to report ARI symptoms to the study coordinator. When a participant has

reported a symptom that can be attributed to influenza, a swab is taken and sent

to a laboratory for testing. In an unmonitored cohort study, when a participant has

decided to seek medical care for an ARI, s/he will be tested for influenza infection. In



17

both studies, a person who tests positive for influenza infection is eligible to be con-

sidered as a case. In cohort study, VE is estimated from risk ratio, which is the ratio

comparing the cumulative incidence rate of the outcome of interest among vaccinated

and unvaccinated persons,

V E = 1−RR = 1− CIv

CIu

, (1.5)

where CIv is the cumulative incidence rate in the vaccinated persons and CIu is the

cumulative incidence rate in the unvaccinated persons.

Comparing to other observational studies, the results of cohort studies are rela-

tively easy to communicate to policy maker, and due to the fact that cohort studies

can directly estimate incidence rate, these studies can be used to estimate the bur-

den of influenza in the vaccinated and unvaccinated and to estimate the number of

cases averted by vaccination provided that unvaccinated population is available for a

comparison.

Cohort studies also present important challenges in estimating influenza VE. First,

investigators need to be able to enumerate cohorts of vaccinated and unvaccinated

subjects, and identify the study outcomes in both the vaccinated and unvaccinated

cohorts. In addition, as with all other observational studies, the confounding due

to differences, such as behavior of seeking medical care, health condition, and risk

of severe disease, in vaccinated subjects compared to unvaccinated subjects must be

taken into consideration.

Meanwhile, since the overall incidence of influenza in a given season is quite low

(5% - 10%), cohort studies will have to involve a large number of subjects in order to

achieve a statistically significant effect of vaccination. The expense of a well-design

cohort study is generally high. One of the objectives of this dissertation is to compare

bias and precision between cohort and case-control studies.
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1.5.3 Main Sources of Bias in Observational Studies

In the face of a lack of random sampling and random vaccination, observational

studies designed to estimate influenza VE may be subject to numerous sources of

bias.

(a) Probabilities of non-influenza ARI may depend on vaccination sta-

tus: In TN studies, individuals with non-influenza ARI serve as controls. Therefore,

TN studies may produce biased estimates of VE unless vaccinees and non-vaccinees

are equally likely to develop non-influenza ARI. The validity of this assumption has

not yet been confirmed. De Serres et al. (De Serres et al. (2013)) used data from

randomized clinical trials to argue that this assumption is usually satisfied. However,

a randomized influenza vaccine trial (Cowling et al. (2012)) found that vaccinees had

a significantly increased risk of virologically-confirmed non-influenza infection (that

may lead to ARI) as compared to those who received the placebo.

(b) Ascertainment of cases (selection bias): A person who develops an ARI

may or may not seek medical care. In both TCC and TN studies, only persons seeking

medical care for ARI may be tested and considered cases. This subset of cases who

seek care for ARI may not be a representative sample of all cases.

(c) Confounding by propensity of seeking medical care: The likelihood of

seeking medical care may be related to (1) a person’s vaccination status, as vaccinated

individuals may be more health-conscious so that their probability of seeking care for

ARI may be different from that of unvaccinated persons, and (2) a person’s probability

of becoming a case when the outcome of interest is MAI.

(d) Other confounders: Health status, age, exposure, education, and socioeco-

nomic status, may be associated with both the likelihood of being vaccinated and the

likelihood of becoming influenza-infected, developing ARI and seeking medical care.

(e) Misclassification bias: Diagnostic tests for influenza viruses are not 100%

sensitive and specific. Vaccination status may also be misclassified.
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Several sources of bias may be present in some or all of the four observational

study designs (Table 1.1).

Table 1.1: Sources of bias and the corresponding study designs that are impacted by
each source of bias.

1.6 Objectives of this dissertation

This study is motivated by several challenges in the estimation of influenza VE. (1)

As we discuss before, influenza VE must be re-estimated every season due to the

antigenic variation of influenza virus. (2)RCTs for estimating influenza VE are no

longer ethical since annual vaccination is now widely recommended. (3) Observational

studies have been increasingly used in VE estimation, but they are prone to multiple

sources of bias. (4) In influenza VE estimation, it is significant to specify the outcome

of interest, since the bias of the VE estimates depends on the outcome, against which

the vaccine is supposed to protect.

This dissertation aims to evaluate the effects of various sources of bias and the

effect of different outcomes of interest in VE estimates in observational studies, and

to develop new study designs to produce improved estimates of influenza VE.
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Topic 1: A Comparison of the Test-Negative and the Traditional Case-

Control Study Designs for Estimation of Influenza Vaccine Effectiveness

under Nonrandom Vaccination

In the first topic, we evaluated the impact of the sources of bias in VE estimates

against two outcomes of interest in two popular case-control study designs by devel-

oping a probability model. By detailed comparison, we can help provide guidance on

choosing outcomes of interest and study designs under different circumstances.

Topic 2: Estimation of Influenza Vaccine Effectiveness Using Agent-based

Stochastic Simulation Model in Observational Studies

In the second topic, we evaluated the bias and the precision for 4 observational study

designs (two case-control study designs and two cohort study designs) using the data

generated from our agent-based stochastic simulation model. Also, we can use this

model to validate our results in Topic 1. Besides that, we proposed several methods

to correct the bias for test negative study.

Topic 3: Waning of Influenza Vaccine Effectiveness in Cohort and Test-

Negative Studies

In the third topic, since the influenza activity usually peaks between December, but

influenza vaccines are available as early as July. As a result, there can be relative

long periods between vaccination and potential exposure, raising concerns about the

probability of waning vaccine efficacy over a single season. We analyze data generated

from SIMFLU using three different methods evaluate waning vaccine efficacy in both

cohort study and test negative study.



21

Chapter 2

A Comparison of the Test-Negative

and the Traditional Case-Control

Study Designs for Estimation of

Influenza Vaccine Effectiveness

under Nonrandom Vaccination



22

2.1 Introduction

Influenza vaccine effectiveness (VE) has to be re-estimated in every season because

predominant influenza virus types, subtypes and phenotypes change from one season

to the next, necessitating a new vaccine targeting different strains in most seasons.

As annual influenza vaccination is now widely recommended, randomized clinical

trials for estimating VE are no longer ethical in many populations, and observational

studies based on patients seeking medical care for acute respiratory illnesses (ARI)

remain the only option. However, observational studies for estimating VE are prone

to multiple sources of bias.

In this chapter we present a new probability model for comparing the bias and

precision of VE estimates from two popular case-control study designs under nonran-

dom vaccination, i.e., vaccination probabilities may depend on a covariate. In both

study designs, ARI patients seeking medical care who test positive for influenza in-

fection are considered cases. In the test-negative (TN) design, ARI patients seeking

medical care who test negative for influenza infection serve as controls, while in the

traditional case-control (TCC) design, individuals who did not develop an ARI are

randomly selected from the study population to serve as controls.

The goal of this topic is to evaluate and compare the bias and precision of estimates

of VE resulting from TN and TCC studies. As we will see, the bias of VE estimates

may depend on the outcome of interest, i.e., the outcome against which the vaccine

is expected to protect. We consider two outcomes of interest, symptomatic influenza

(SI) and medically-attended influenza (MAI). In both the TN and TCC study designs,

only influenza patients seeking medical care are considered cases. Therefore, one

expects these study designs to produce estimates of VE against MAI. However, lay

persons may interpret these estimates as VE against any influenza illness, i.e., VE

against SI.

We will (a) evaluate the bias of each of the VE estimates for each of the outcomes
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by comparing the expected value of the estimate with the true VE, and (b) evaluate

the standard errors of the VE estimates. To perform these evaluations and compar-

isons, we developed a detailed stepwise probability model of the process involved in

collecting data in these studies and deriving VE estimates. The model includes a co-

variate, health status, that may be associated with the likelihood of being vaccinated,

of developing ARI, of seeking medical care against ARI. This allows us to assess the

effects of nonrandom vaccination on the bias of VE estimates.

2.2 Methodology

We first describe the real-life process involved in conducting the two types of case-

control studies and obtaining the estimates of VE. We then describe the model we

developed to mimic this process.

2.2.1 The study population

The source population for both types of case-control studies consists of all individuals

receiving most of their medical care at a single clinic or at a specific network of

clinics. Since influenza VE varies by age, we can assume that the model pertains to

a subpopulation corresponding to a single age group.

2.2.2 The study designs

When a member of the study population develops an ARI, s/he may decide to report

to a clinic for treatment. At the clinic, the health care provider may ask the person to

be tested for influenza viruses. If the person agrees then a swab is taken and sent to

a laboratory for testing. In both study designs, a person who tests positive is eligible

to be considered a case. In a TN study, an individual who tests negative is eligible

to be considered a control. In a TCC study, controls are randomly selected members
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of the study population who have not developed ARI prior to their inclusion in the

study. Usually, one or more controls are selected right after a case is identified. In

both study designs, the vaccination status of every case or control is determined from

manual or electronic records, or from oral histories.

2.2.3 Outcome of interest and true VE

In this chapter we evaluate estimates of VE when the outcome of interest is either SI

or MAI. SI is sometimes called ‘influenza illness’ or ‘influenza ARI’. Surveillance for

SI is needed in the entire study population, and for a person who develops compatible

symptoms, a throat swab is taken for testing. A person is considered a true case of

SI if s/he has an ARI and is infected by an influenza virus. For MAI, a true case

is defined as a person who is influenza-infected, develops an ARI, and seeks medical

care. In both cases, the true VE is defined as one minus the ratio of the probability

of the outcome of interest in vaccinees and non-vaccinees.

2.2.4 Estimation of VE and bias of VE estimates

We only consider estimates of VE that are not adjusted for possible confounders. In

case-control studies, VE is usually estimated as one minus the odds ratio (OR) of

being vaccinated in cases vs. controls. The bias of the estimate is defined as the

difference between the expectation of the estimated VE and the true VE.

2.2.5 The model

The model we developed for comparing the estimates from the two study designs

follows the scheme described above with a few simplifications. We assume that (a)

when a person seeks medical care for ARI then her/his probability of being tested

for influenza viruses does not depend on vaccination status, health status, or on the
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actual cause of ARI (influenza/non-influenza); (b) given a person’s symptoms and

influenza infection status, the sensitivity and specificity of the test do not depend on

the tested person’s vaccination or health status; (c) a person’s vaccination status is

determined without error; and (d) controls in a TCC study are selected at random

from all asymptomatic individuals in the study population (See section: The study

population).

Our model includes a covariate, health status, and we assume that a person’s

probabilities of being vaccinated, developing an ARI, and seeking medical care against

ARI may be associated with her/his health status. In this way, the model generates

possible confounding effects linking vaccination status with the probabilities of being

included in the study and of becoming a case or a control.

The model consists of five steps, where the value of a single variable is determined

at each step. The probability distribution of this variable may depend on the values

of the variables from the previous steps. Below we define the five steps, the associated

variables, and the probabilities determining each variable’s distribution.

Step 1: Health Status.

A person can be classified as “healthy” or “frail“. Define a binary variable X, where

X = 1 for a “healthy” person and X = 0 for a “frail“ person. Denote π = P (X = 1).

Step 2: Vaccination.

A person may be vaccinated against influenza. Define a binary variable V , where

V = 1 for a vaccinated person. The probability of being vaccinated may depend on

health status; therefore, denote αx = P (V = 1|X = x), x = 0, 1.
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Step 3: Influenza infection and ARI.

During the influenza season, a person may become infected with an influenza virus

and develop an ARI. This outcome is referred to as “influenza ARI” (FARI), where

“F“ stands for flu. A person may also develop an ARI not resulting from influenza

infection. This outcome is referred to as “non-influenza ARI” (NFARI). We therefore

define an outcome variable Y with 3 categories as follows: Y = 0 for no ARI, Y = 1

for NFARI, and Y = 2 for FARI. The distribution of Y depends on the person’s

vaccination status, V , and health status, X. We denote βvx = P (Y = 1|V = v,X =

x), v = 0, 1, x = 0, 1 and γvx = P (Y = 2|V = v,X = x) for v = 0, 1, x = 0, 1

with βvx + γvx ≤ 1 for all v, x. Here we assume the “leaky vaccine“ model, in which

the vaccine provides a reduction in the probability of influenza transmission to the

vaccinated person, rather than complete immunity(Haber et al. (1991)). Under this

model, a vaccinee has a lower probability of becoming infected than a non-vaccinee,

but is not rendered completely immune from influenza infection.

Step 4: Seeking medical care for ARI.

A person with ARI may seek medical care and, in this case, be tested for influenza

viruses. We define a binary variable M with M = 1 for a person seeking medical care

for her/his ARI. The probability of this event depends on Y (only individuals with

ARI seek medical care), and it may be different for FARI and NFARI patients. In

addition, the conditional distribution of M given Y may depend on X and V . We

therefore define δyvx = P (M = 1|Y = y, V = v,X = x), where y = 1, 2, v = 0, 1 and

x = 0, 1.

In order to reduce the number of parameters, we make two simplifying assumptions

regarding the probabilities of seeking medical care: (1) the effect of health status on

probability of seeking medical care does not depend on vaccination status or type of

ARI; (2) the effect of vaccination status on probability of seeking medical care does
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not depend on health status (but it may depend on type of ARI).

Define a “standard person” as a person with X = 0 and V = 0. For a “standard

person“, we define δSN , δSF as follows:

• δSN = P (M = 1|Y = 1, V = 0, X = 0) = δ100

• δSF = P (M = 1|Y = 2, V = 0, X = 0) = δ200

In addition, we define two multipliers:

• λ = multiplier for x = 1; λ does not depend on V and Y.

• ΨF = multiplier for v=1 only when y=2; ΨF does not depend on X.

Then, {δyvx} can be written in terms of δSN , δSF and the multipliers λ, ΨF as follows:

• δ100 = δSN , δ101 = δSN ∗ λ, δ110 = δSN , δ111 = δSN ∗ λ.

• δ200 = δSF , δ201 = δSF ∗ λ, δ210 = δSF ∗ΨF , δ211 = δSF ∗ λ ∗ΨF .

Note: The multiplier ΨF reflects the effect of severity of ARI in an influenza

infected person. We assume that vaccination may reduce severity of symptoms, hence

a vaccinated influenza patient may be less likely to seek care than an unvaccinated

patient.

Step 5: Testing for influenza infection.

Although only individuals who seek medical care for an ARI are tested for influenza

infection, it will be convenient to define a binary variable T as the (possibly unob-

served) test result for any person with an ARI. Define T = 1 (T = 0) if a person would

test positive (negative) for influenza if tested. Because of assumption (b) above, the

probability of testing positive given the person’s influenza infection status does not

depend on X, V , or M . Denote τy = P (T = 1|Y = y) for y = 1, 2. Note that τ1 is one

minus the test’s specificity and τ2 is the test’s sensitivity. In this study, we assume
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the test has 100% sensitivity and 100% specificity, i.e. P (T = 1|Y = 1) = τ1 = 0 and

P (T = 1|Y = 2) = τ2 = 1.

Figure 2.1 shows the directed acyclic graph (DAG) of the model. Recent papers

by Sullivan et al. (Sullivan et al. (2016)) and Lipsitch et al. (Lipsitch et al. (2016))

discuss the use of DAGs to explore sources of bias of VE estimates from TN studies.

A summary of the variables and parameters in our model is given in Table A.1.

X = Health status V = Vaccination Y = Outcome (type of ARI)
M = Seeking medical care T = Result of test for influenza infection

Figure 2.1: DAG of the model

2.2.6 True VE in our model

When we evaluate the true VE, we assume that vaccination is done at random, i.e.

for true VE we assume that vaccination status does not depend on health status X

(α0 = α1 = α).

The true VE against SI is:

V ETSI = 1−RRTSI where RRTSI =
P (Y = 2|V = 1)

P (Y = 2|V = 0)
.

The true VE against MAI is:

V ETMAI = 1−RRTMAI where RRTMAI =
P (Y = 2,M = 1|V = 1)

P (Y = 2,M = 1|V = 0)
.
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Using the parameters defined above, V ETSI and V ETMAI can be written as:

V ETSI = 1−RRTSI = 1− γ10(1− π) + γ11π

γ00(1− π) + γ01π
(2.1)

V ETMAI = 1−RRTMAI = 1− ΨF [γ10(1− π) + λγ11π]

γ00(1− π) + λγ01π
. (2.2)

The proofs of these results can be found in Appendix 1.

2.2.7 Estimates of VE in our model

Although the true VEs against SI and MAI may differ, most VE studies use the

same estimate regardless of the outcome of interest. Therefore, we only consider a

single VE estimate for each study design, namely 1 minus the odds ratio (OR) in

the C × V table cross-classifying the individuals included in the study, where C is a

binary indicator of case/control status with C = 1 for a case. For convenience, the

TN and TCC studies will be represented by the letters A and B, respectively. In a

TN study, the case/control variable is denoted CA, where (CA = 1) = (M = 1, T = 1)

and (CA = 0) = (M = 1, T = 0). Then the estimate of VE is: V EA = 1 − ORA,

where

ORA =
P (CA = 1, V = 1|M = 1)P (CA = 0, V = 0|M = 1)

P (CA = 1, V = 0|M = 1)P (CA = 0, V = 1|M = 1)
.

Note that all the probabilities condition on M = 1 as only individuals who seek

medical care for ARI are included in the TN study.

In a TCC study, the case/control variable is denoted CB. Cases are defined in the

same way as in the TN study, i.e., (CB = 1) = (M = 1, T = 1) = (CA = 1). Con-

trols are individuals included in a random sample drawn from all the asymptomatic

individuals in the study population. In other words, (CB = 0) is a random subset

of (Y = 0). In addition, we define a binary variable B indicating whether or not a

person is included in the TCC study, i.e., (B = 1) = (CB = 1 or CB = 0). The VE
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estimate is based on the OR in the CB ×V table when all the probabilities condition

on B = 1: V EB = 1−ORB, where

ORB =
P (CB = 1, V = 1|B = 1)P (CB = 0, V = 0|B = 1)

P (CB = 1, V = 0|B = 1)P (CB = 0, V = 1|B = 1)
.

Note that in a real-life study, the odds ratios are estimated from the relative fre-

quencies of the corresponding events, rather than from their (unknown) probabilities.

Therefore, the model-based estimates of VE defined above are actually the expected

values of the observed estimates. For convenience we will continue to refer to them

as “the VE estimates”.

Using the parameters defined above, V EA and V EB can be written as follows:

V EA = 1− ΨF [γ10α0(1− π) + λγ11α1π][β00(1− α0)(1− π) + λβ01(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][β10α0(1− π) + λβ11α1π]
, (2.3)

V EB = 1−ΨF [γ10α0(1− π) + λγ11α1π][(1− γ00 − β00)(1− α0)(1− π) + (1− γ01 − β01)(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][(1− γ10 − β10)α0(1− π) + (1− γ11 − β11)α1π]
.

(2.4)

The proofs can be found in Appendix 2.

2.2.8 Bias and standard errors of estimates

The bias of an estimate of VE is the difference between the expected value of the

estimate and the true VE.

In Appendix 3 we use approximations based on the “Delta method” for the stan-

dard errors (SEs) of odds ratios (Agresti (2013)) to derive expressions for the SEs of

both VE estimates in terms of the parameters and the corresponding sample size(s).
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For evaluating the SEs we consider the observed odds ratios, where the probabilities

are replaced by the corresponding observed relative frequencies.

2.2.9 Probability Ratios

Next, we define a few probability ratios comparing vaccinees and non-vaccinees or

healthy and frail individuals. These ratios will be helpful in the presentation of the

results (see Table A.1 for a full list of the notations used in this paper).

• ρβ = β1x

β0x
, the ratio of the probabilities of NFARI comparing a vaccinated and

an unvaccinated person of the same health status.

• ηβ = βv1

βv0
, the ratio of the probabilities of NFARI comparing a healthy and a

frail person of the same vaccination status.

• ργ = γ1x

γ0x
, the ratio of the probabilities of FARI comparing a vaccinated and an

unvaccinated person of the same health status.

• ηγ = γv1

γv0
, the ratio of the probabilities of FARI comparing a healthy and a frail

person of the same vaccination status.

The parameters λ and ΨF defined earlier are also probability ratios:

• λ = δyv1

δyv0
The ratio of the probabilities of seeking medical care comparing a

healthy and a frail person of the same vaccination status. We assume that this

ratio is the same for FARI and NFARI patients.

• ΨF = δ21x

δ20x
The ratio of the probabilities of seeking medical care comparing a

vaccinated and an unvaccinated FARI patient of the same health status.
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2.3 Results

2.3.1 Sources of Bias

Table A.2 presents the main sources of bias that can be identified from our model.

The absence of bias A is essential for the validity of the TN design, since the VE

estimate from this design is based on comparing the odds of being vaccinated in

FARI patients (cases) and NFARI patients (controls). This bias may be a result

of virus interference(Cowling et al. (2012)) (if vaccinees are more likely than non-

vaccinees to contract NFARI, then the estimated VE will be falsely high). Biases

B1 and B2 represent the effects of health status on the probabilities of NFARI and

FARI, respectively. These effects, which are sometimes called the ‘healthy vaccinee

effect ’, represent the confounding resulting from association of health status with the

probability of exposure (vaccination) and the outcome. Bias BS is a special case of

B1 ∩ B2. It results when health status affects both the probabilities of FARI and

NFARI but the risk ratios comparing a healthy and a frail person are the same for

the both types of ARIs. Bias C represents the effect of vaccination status on the

probability of seeking care in patients with SI. This effect may be due to less severe

symptoms in vaccinated persons compared to unvaccinated ones. Bias D represents

the effect of health status on the probability of seeking medical care against FARI

and NFARI. As stated earlier, we assume perfect sensitivity and specificity of the

influenza test (τ1 = 0, τ2 = 1), as it is well-known that misclassifications result in

negatively-biased estimates of effectiveness.

We first state conditions for the unbiasedness of the VE estimate based on the

TN design. The proofs of these results can be found in Appendix 4.

(1) Under random vaccination (α0 = α1), the estimate of VE when the outcome of

interest is SI is unbiased if biases A and C are absent. When the outcome of
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interest is MAI, the estimate of VE is unbiased if bias A is absent.

(2) Under non-random vaccination (α0 6= α1), the estimate of VE when the out-

come of interest is SI is unbiased if biases A, B1, B2, and C are absent. When

the outcome of interest is MAI, the estimate of VE is unbiased if biases A, B1,

and B2 are absent.

Next we explore the magnitude of the effects of various sources of bias and their

combinations. We consider three scenarios for vaccination probabilities (see Table

A.3). In Table A.4 we present the range and the maximum absolute value of the

bias of VE estimates resulting from TN and TCC studies under the three vaccination

scenarios and various combinations of sources of bias. For these results we used the

following baseline values of some of the parameters: π = 0.7, β00 = 0.2, γ00 = 0.1,

δSN = 0.2, δSF = 0.3, ργ = 0.4. π is the probability of being ‘healthy’; β00 and

γ00 are the probabilities of NFARI and FARI, respectively, for an unvaccinated ‘frail’

person; δSN and δFN are the probabilities of seeking medical care for NFARI and

FARI, respectively, for an unvaccinated ‘frail’ person; ργ is the risk ratio comparing

the probability of FARI for a vaccinated and an unvaccinated person - thus, the true

VE against SI is 1 - 0.4 = 0.6 (60%). The values of β, γ are based on table A1 in

Haber et al. 2015 (Haber et al. (2015)), and the values of δ are from the literature.

In all the tables, figures and examples, values of VE are presented as fractions, rather

than percentages.

In the calculations for tables A.4 and A.5, when a source of bias was present we

used a reasonable range for the corresponding probability ratio. When bias A was

present, ρβ was allowed to vary from 0.5 to 2.0. For biases B1, B2, and BS, we allowed

ηβ and ηγ to vary between 0.5 and 1.0, since one would not expect frail persons to

have lower probabilities of ARI, compared to healthy persons. For bias C, the ratio

ΨF could vary between 0.5 to 1.0, since one would expect vaccination to reduce the
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probability that a person with SI will seek medical care compared to a person with

ARI resulting from a different pathogen. For bias D, we let λ vary between 0.5 to

2.0.

For each combination of two or more sources of bias, we calculated the minimum,

mean, and maximum of the bias and the absolute values of the bias by allowing

the probability ratios that are not fixed to vary independently in the ranges specified

above. For example, when biases A, B1, and B2 are absent, we used ρβ = ηβ = ηγ = 1,

0.5 ≤ ΨF ≤ 1, 0.5 ≤ λ ≤ 2.

2.3.2 Summary of Results

2.3.2.1 The impact of sources of bias

Our model allows us to evaluate the impact of the sources of bias listed in Table

A.2. Each source of bias is a result of a possible effect of vaccination or health status

on the probability of FARI or NFARI or seeking care. Below we summarize our

results for each of the sources of bias. We also use numerical examples to illustrate

the magnitude and direction associated with each source of bias. Unless otherwise

specified, the true VEs against SI and MAI are 0.6 (60%). In each of these examples

we assume that only one source of bias is present.

(1) Vaccination affects the probability of NFARI (bias A)

• This bias does not depend on vaccination scenario nor on the outcome of

interest (SI or MAI).

• Estimates of VE from TN studies may suffer from severe bias.

• This effect also affects the bias of VE estimates from TCC studies, though

to a lesser extent.
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• Example: As the ratio of the probability of NFARI comparing vaccinated

and unvaccinated persons varies from 0.5 to 2.0, VE estimates from TN

studies range from 0.2 to 0.8, respectively, while VE estimates from TCC

studies range from 0.67 to 0.50, respectively (Figure 2.2).

Figure 2.2: True and estimated VEs as a function of R1 = P(NFARI if
vaccinated)/P(NFARI if unvaccinated) when only bias A is present.

(2) Health status affects the probabilities of FARI and NFARI

(biases B1, B2 - the ‘healthy vaccinee effect ’)

• The bias does not depend on the outcome of interest (SI or MAI).

• Under non-random vaccination, these effects may result in substantial bias

of VE estimates from TN or TCC studies. However, this bias is usually

less severe compared to the biases resulting from sources A, C and D.

• If the effect of health status on the probability of ARI is the same for FARI

and NFARI, i.e., bias BS is present, then the TN-based estimates of VE

are unbiased.

• Example: Suppose that the probabilities of vaccination are 0.8 and 0.4 for
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healthy and frail persons, respectively. Consider three cases regarding the

risk ratios P(ARI in a healthy person) / P(ARI in a frail person): (a) When

these risk ratios are 0.5 for NFARI and 0.8 for FARI, then the estimated

VEs from TN and TCC studies are 0.51 and 0.67, respectively. (b) When

the risk ratios are 0.8 for NFARI and 0.5 for FARI, then estimated VEs

from TN and TCC studies are 0.67 and 0.72, respectively. (c) When the

risk ratios for NFARI and FARI are equal and their common value ranges

from 0.5 to 1.0, then estimated VEs from TN studies are always unbiased

(i.e., they equal 0.6), while estimates from TCC studies range from 0.63 to

0.73. In Figures 2.3 and 2.4, we set the risk ratio for NFARI to 0.75 and

let the risk ratio for FARI vary between 0.5 to 1.0.

Figure 2.3: True and estimated VEs when only biases B1 and B2 are present.
We set the risk ratio P(NFARI if healthy)/P(NFARI if frail) = 0.75 and let
the risk ratio R2 = P(FARI if healthy)/P(FARI if frail) vary between 0.5 to 1.0.
The probabilities of vaccination are 0.4 and 0.8 for healthy and frail persons,
respectively.
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Figure 2.4: True and estimated VEs when only biases B1 and B2 are present.
We set the risk ratio P(NFARI if healthy)/P(NFARI if frail) = 0.75 and let
the risk ratio R2 = P(FARI if healthy)/P(FARI if frail) vary between 0.5 to 1.0.
The probabilities of vaccination are 0.8 and 0.4 for healthy and frail persons,
respectively.

(3) Vaccination affects the probability of seeking medical care

for FARI, but it does not affect the probability of seeking

care for NFARI (bias C)

• When this effect is present then the true VEs against SI and MAI may be

different, thus the estimates’ bias may depend on the outcome of interest.

• If all other sources of bias are absent, the bias of VE estimates does not

depend on the vaccination scenario.

• Estimates of VE from TN or TCC studies may be severely biased when

the outcome of interest is SI.

• When the outcome of interest is MAI, estimates of VE from TN studies

are unbiased, while the bias of estimates from TCC studies is usually small

and is not affected by the magnitude of the effect underlying this source

of bias.



38

• Example: Let the ratio R = P(seeking medical care against FARI if

vaccinated) / P(seeking medical care against FARI if unvaccinated) vary

from 0.5 to 1.0. Then the true VE against SI remains fixed at 0.6, while

the true VE against MAI varies with R from 0.8 to 0.6. The estimated

VEs from TN studies equal the true VE against MAI for all values of R,

while the estimated VEs from TCC studies vary from 0.82 to 0.63 (see

Figure 2.5). For example, when R=0.5 then the true VE against MAI is

0.80, and the VE estimates from TN and TCC studies are 0.80 and 0.82,

respectively. This translates into severe bias when the outcome of interest

is SI but small bias when the outcome of interest is MAI, since bases on

the true VE against MAI we got (equation 2.2), MAI is a function of R.

Figure 2.5: True and estimated VEs when only bias C is present as function of
R3 = P(seeking medical care against FARI if vaccinated)/P(seeking medical
care against FARI if unvaccinated)

(4) Health status affects the probabilities of seeking care against

FARI and NFARI (bias D)

• The bias of VE estimates does not depend on the outcome of interest (SI

or MAI).
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• In the absence of other sources of bias, VE estimates from TN studies are

unbiased regardless of the vaccination scenario.

• Under non-random vaccination, this effect may result in substantial bias

in VE estimates from TCC studies.

• Example: We assume that the probabilities of seeking care do not de-

pend on vaccination status. As the ratio of the probabilities of seeking

care comparing healthy and frail individuals varies from 0.5 to 2.0, VE

estimates from TN studies remain fixed at 0.6 (i.e., they are unbiased)

under both random and non-random vaccination. When the probabilities

of vaccination are 0.8 and 0.4 for healthy and frail persons, respectively,

the VE estimates from TCC studies vary from 0.72 to 0.53 (Figures 2.6

and 2.7).

Figure 2.6: True and estimated VEs when only bias D is present as function of
R4 = P(seeking medical care if healthy)/P(seeking medical care if frail).
Probabilities of vaccination are 0.8 and 0.4 for healthy and frail persons, respectively.

In addition, we found that in some cases the true VEs against SI and MAI are

different. Hence, the bias of VE estimates may depend on the outcome against which

the vaccine is supposed to protect. For example, if the only sources of bias are
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Figure 2.7: True and estimated VEs when only bias D is present as function of
R4 = P(seeking medical care if healthy)/P(seeking medical care if frail).
Probabilities of vaccination are 0.4 and 0.8 for healthy and frail persons, respectively.

BS, C, and D then, the VE estimate from TN studies is unbiased when considering

effectiveness against MAI. The same estimate may overestimate the true VE against

SI by 0.20 (i.e. 20%).

2.3.2.2 Comparison of the bias of VE estimates from TN and TCC stud-

ies:

• If one is concerned that vaccination may affect the probability of non-influenza

ARI, then one should prefer the TCC study design. However, TCC-based VE

estimates may still be biased in this case. For example, when the ratio of the

probability of NFARI comparing a vaccinated and an unvaccinated person is

0.5, then the bias of VE estimate from TN study is -0.4 while the bias of VE

estimate from TCC study is 0.07.

• Under non-random vaccination, effects of health status on probabilities of in-

fluenza and non-influenza ARI (the ‘healthy vaccinee effect ’) may bias VE esti-

mates from both study designs. In general, TN-based estimates perform slightly

better than TCC-based estimates when this effect is believed to be the main
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source of bias. If the effect of health status is similar for FARI and NFARI then

the TN design produces less biased estimates compared to the TCC design. For

example, suppose the probabilities of vaccination are 0.4 and 0.8 for healthy

and frail persons, respectively. When the risk ratios for NFARI and FARI are

both 0.75, then the VE estimate from TN study is unbiased, while the bias of

VE estimate from TCC study is 0.07.

• If one assumes that vaccination does not affect the probability of non-influenza

ARI but one is concerned that vaccinated influenza patients are less likely to

seek care than unvaccinated patients (because of reduced symptoms severity)

then VE estimates may suffer from severe bias in both study designs when the

outcome of interest is SI. In this case, the bias of TN-based estimates may

be somewhat smaller than that of TCC-based estimates. This source of bias

does not affect VE estimates when the outcome of interest is MAI! For example,

suppose that the ratio comparing vaccinated and unvaccinated FARI cases w.r.t.

the probability of seeking medical care is 0.5. When the outcome of interest is

SI, then the bias of a VE estimate from TN study is 0.2 and the bias of a VE

estimate from TCC study is 0.22. When the outcome of interest is MAI, then

the VE estimate from a TN study is unbiased, while the bias of a VE estimate

from a TCC study is 0.02.

• Under non-random vaccination, the TN study design is preferable to the TCC

design if one is concerned about bias resulting from possible effect of a person’s

health status on her/his probability of seeking care against ARI. For example,

suppose that the probabilities of vaccination are 0.8 and 0.4 for healthy and frail

persons, respectively. When the ratio of the probabilities of seeking medical care

comparing healthy and frail persons is 0.5, then the VE estimate from TN study

is unbiased while the bias of VE estimate is 0.12.
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2.3.2.3 Precision of VE estimates

Table A.5 presents the standard errors of VE estimates from TN and TCC studies.

From this table we conclude that:

• Non-random vaccination may reduce precision of VE estimates.

• If the probability of NFARI is associated with vaccination status, then VE

estimates from TN studies are somewhat less precise compared to VE estimates

from TCC studies, although, the differences in precision were small.

• If the probability of NFARI is not associated with vaccination status, then the

precision of VE estimates from TN and TCC studies are similar.

2.4 Discussion

We developed a new model for the evaluation of the bias and precision of influenza

estimates from case-control studies. The new model is more comprehensive than pre-

viously suggested models (De Serres et al. (2013); Orenstein et al. (2007); Ferdinands

and Shay (2012); Foppa et al. (2013); Jackson and Nelson (2013); Haber et al. (2015))

for the following reasons:

• It allows assessment of the impact of non-random vaccination.

• It incorporates a confounder (health status) which links vaccination status with

the probabilities of ARI and of seeking medical care for these ARIs.

• By including parameters corresponding to the probabilities of seeking medical

care, the model allows us to examine the effect of association of these probabil-

ities with vaccination and health status on the bias of VE estimates.

• The model allows evaluating and comparing the precision of VE estimates.
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Our calculations confirm earlier findings (Orenstein et al. (2007)) that when the

probability of non-influenza ARI depends on vaccination status, VE estimates from

test-negative studies may be severely biased. However, even when this probability is

not affected by vaccination, VE estimates from the two types of case-control stud-

ies considered in this study may suffer from substantial bias. In addition to the

well-known ‘healthy vaccinee effect ’ (probabilities of vaccination and of ARI depend

on health status), bias of VE estimates may result from heterogeneities in health-

care-seeking behaviors. Specifically, if vaccination reduces the probability that an

influenza patient seeks medical care (because her/his symptoms are less severe than

those of an unvaccinated influenza patient) then VE estimates from TN or TCC stud-

ies may grossly overestimate the true VE against SI. On the other hand, when the

outcome of interest is MAI then the biases resulting from vaccine-related reduction in

symptoms’ severity are very small. Recent papers (castilla et al.(2013); VanWormer

et al. (2014); Deiss et al. (2015)) found evidence of vaccine-associated reduction in

influenza patient’s symptoms severity. The effects of health-care-seeking behaviors

on VE estimates from studies in which only ARI patients who seek medical care may

become cases need to be further investigated.

The results of this study lead to the following conclusions:

• In general, estimates of influenza VE from case-control studies where only ARI

patients seeking medical care are tested for influenza infection may suffer from

severe bias, i.e. an absolute bias of 20% or more, especially when the outcome

of interest is SI.

• The bias of VE estimates may depend on the outcome against which the vaccine

is supposed to protect. Influenza VE estimates from TN studies are usually

presented as ‘VE against medically-attended influenza’. However, most lay

persons interpret this VE estimate in the context of the benefit of vaccination

to any vaccine recipient. Health authorities and the public should be made
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aware of this distinction.

• When the outcome of interest is SI, the TN design provides reliable estimates

(i.e., no or small bias) if the following assumptions are satisfied: (a) vaccina-

tion does not affect the probability of non-influenza ARI, (b) effects of con-

founding variables on the probabilities of influenza and non-influenza ARI are

similar, and (c) vaccination does not affect the probabilities of seeking med-

ical care for influenza ARI due to reduced severity of symptoms. When the

outcome of interest is MAI, then only assumptions (a) and (b) are necessary

for obtaining a reliable VE estimate from a TN study.

• Estimates of VE from TCC studies have small bias when the outcome of inter-

est is SI if assumptions (a) and (c) are satisfied, assumption (b) is replaced by

the stronger assumption (b*) of no presence of confounding, and the additional

assumption (d) that the probabilities of seeking medical care for ARI are not af-

fected by potential confounders is satisfied. When the outcome of interest is MAI,

then TCC-based estimates of VE have small bias under assumptions (a), (b*),

and (d).

• It is important to collect more data on health-care-seeking behaviors of ARI

patients and to study the effects of vaccination and potential confounders on

these behaviors.

In summary, the test negative design produces less biased VE estimates, compared

to the traditional case-control design provided that vaccination does not modify the

probability of non-influenza ARI. However, this very popular study design may still

produce biased estimates of influenza VE, especially when the outcome of interest

is symptomatic influenza. More reliable estimates of VE against SI can be obtained

from monitored cohort studies, where every participant reporting an ARI is tested for

influenza infection. VE estimates from these cohort studies should be compared with
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estimates from TN studies conducted in same population during the same influenza

season.

Our study has a few limitations:

• In order to focus on bias associated with the study designs, we ignored bias

resulting from misclassification of infection and vaccination status.

• Our model does not account for the dynamics of outbreaks of influenza and

other ARI-causing infections.

• We only consider unadjusted VE estimates as we tried to focus on sources of

bias rather than on how one can reduce bias using standard or novel statistical

techniques (Talbot et al. (2016)).

In the future we plan to improve the model by incorporating dynamics of the

related processes. We also plan to use stochastic simulations to assess bias and

precision of influenza VE estimates for other study designs (e.g. cohort studies) and

to propose new study designs resulting in less biased VE estimates.
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Chapter 3

Estimation of Influenza Vaccine

Effectiveness Using Agent-based

Stochastic Simulation Model in

Observational Studies
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3.1 Introduction

Together with pneumonia, influenza is the seventh leading cause of death in the U.S.

During the past three decades, the estimated number of influenza-associated deaths

ranged from 3,000 to 50,000 every year(Centers for Disease Control and Prevention

(CDC) (2010)). Among all mitigation interventions (e.g., social distancing, public

health measures, antiviral prophylaxis), vaccination provides the most efficient and

durable response (Chao et al. (2010); Talbot et al. (2013)).

Mathematical and computer simulation models are increasingly being used to

characterize the transmission dynamics of infectious diseases, to evaluate the effec-

tiveness of various intervention strategies and to guide policy decisions on disease

outbreak management. In the literature, stochastic agent-based simulation models

(Germann et al. (2006); Chao et al. (2010)) are frequently employed to make miti-

gation plans for influenza pandemics and evaluate the effectiveness of various public

health interventions. In a stochastic agent-based model, the disease transmission

process is governed by the behavior of each individual, and incorporate elements of

random processes into the system. Rules governing disease transmission dynamic are

defined at an individual level and the infection and transition of individuals from one

state to another is determined probabilistically. Hence, the models can keep track of

each individual and add up individuals in each disease state at the end of each time

step of the simulation. This helps capture heterogeneity of individual behavior and

different sources of variation, which can have important impacts in terms of overall

disease transmission dynamics. Meanwhile, the model parameters are specified in the

form of probabilities. Although the estimates vary by iteration, stochastic models

are typically run many times to obtain a central estimate value. Here, we present a

stochastic agent-based simulation program, SimFlu, for the transmission of influenza

in a stratified population.

SimFlu performs a set of simulations with fixed values of the input parameters.
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Each simulation corresponds to a single outbreak. The population is made up of

different strata that have different characteristics. On the first day of the outbreak,

a given input number of people are chosen randomly to be infected and infectious.

Every day, the program calculates the probability that each person will be infected.

These calculations depend on the transmission probabilities, number and distribution

of contacts, and the prevalence of infection in the different strata. The vaccination

coverage for each month is given as an input parameter, and a person who receives

the vaccine during a given month becomes effectively vaccinated on the first day of

the following month. The protection afforded by the vaccine depends on the vaccine

efficacy parameter. On each day, every person may develop a new episode of Acute

Respiratory Infection (ARI), it can be either ARI resulting from influenza infection

(FARI) or ARI resulting from non-influenza pathogens (NFARI). A person with FARI

or NFARI may decide to visit a clinic to seek care. The decision is made on the first

day of an episode of FARI or NFARI. In this program, we considered two covariates:

health status and health awareness. These two covariates modify input parameters

via multipliers that are specified in the input file, and these multipliers may depend

on a person’s stratum, but do not change over time. A sample input parameter file

is attached in Appendix B.2.

In this chapter, we use the simulation results from SimFlu to help evaluate the

bias and precision of estimates of vaccination effectiveness (VE) from different study

designs. In addition, we proposed several methods to correct the bias for test negative

studies.
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3.2 Methodology

3.2.1 Scenario

In this chapter, when assessing the bias of VE estimates from observational studies

using the proposed stochastic agent-based simulation model, we assume that vac-

cination is completed before the onset of the study. Under this scenario, vaccina-

tion status does not depend on time. The true VE is defined as one minus the

ratio of the cumulative incidence rates (attack rates) in vaccinees and non-vaccinees:

V E = 1−AR(V )/AR(U), where AR(V ) stands for the attack rate among vaccinees,

and AR(U) stands for the attack rate among non-vaccinees. When vaccination occur

before or during the study, vaccination status will vary by time. There is no univer-

sally accepted definition of true VE in this case. VE estimates are usually based on

hazard ratio (via a Cox regression model) or on person-time considerations.

3.2.2 Outcome of interest

In this chapter, we evaluate estimates of VE based on the outcomes against which the

vaccine is supposed to protect, i.e. symptomatic influenza (SI) or medically-attended

influenza (MAI).

In observational influenza VE studies, surveillance for SI is needed in the entire

study population, and persons with influenza-like illnesses undergo a test for the

presence of the influenza virus. A true case of SI is a person has ARI and is infected

by an influenza virus. SI is more appropriate from the public health perspective. MAI

is defined as an influenza-infected person who seeks medical care because of her/his

ARI. Once a person decide to seek medical care in clinic, the health care provider

may ask the person to be tested for influenza viruses. If the person agrees then a

swab is taken and sent to a laboratory for testing.
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3.2.3 Observational Study

In this chapter, we consider two case-control studies: traditional case-control (TCC)

study and test-negative (TN) study, and two cohort studies: active surveillance cohort

(ASC) study and passive surveillance cohort(PSC) study, which are introduced in

Chapter 1.5.

3.2.3.1 Cohort Studies

We have 2 types of cohort studies depending on the type of surveillance: active

surveillance and passive surveillance. Under active surveillance, every person who

has ARI is tested for influenza infection. It is also called active surveillance study

(ASC). If a person tests positive then s/he is considered a case of SI. In this case

s/he will not be tested again if develops another ARI later. If a person tests negative

then s/he will be tested again if develops another ARI later. Every person who either

never had an ARI or had one or more ARIs but always tested negative is considered

a non-case. VE is estimated as one minus the ratio of the cumulative incidence rates

of SI in vaccinated and unvaccinated.

The other type of cohort study is called passive surveillance study(PSC). In PSC,

a person with an ARI decides whether s/he will seek medical care. A person who

seeks care and tests positive is considered a case. Everyone else is a non-case. The

total number of vaccinated and unvaccinated persons should be the same as in the

ASC situation, and their sum should be equal to the cohort size. In both types of

cohort studies, the vaccination status of each person, even if s/he is not a case, is

known.

3.2.3.2 Case-control Studies

As introduced in Chapter 2, there are 2 types of Case-control studies: (1) the test

negative study (TN), and (2) the traditional case control study (TCC).
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3.2.4 SimFlu

SimFlu is a stochastic agent-based simulation program, it mimics the transmission

process of influenza in a closed population with several strata in one influenza season.

The program performs a set of simulations with fixed values of the input parameters,

and each simulation corresponds to a single outbreak.

On the first day the outbreak, a given input number of people are chosen ran-

domly to be initially infected and infectious. For every day in the influenza season, a

susceptible individual may become infected as a result of a contact with an infectious

person, and SimFlu calculates the probability that each susceptible person will be

infected. These calculations depend on the transmission probabilities, number and

distribution of contacts, and the prevalence of infection in the different strata. When

a susceptible individual become infected s/he first enters a latent (exposed) period.

During the latent period, the individual is not infectious (to others) and does not have

symptoms. Following the latent period, the individual becomes infectious and may

have symptoms. On the first day of an episode of symptomatic influenza, a decision is

made about whether s/he visit a clinic to seek medical care or not. Covariates, such

as the individual’s health status and the individual’s health awareness, are taken into

consideration in SimFlu, but the value of covariates do not change over time. When

the infectious period is over, the individual is no longer infectious and cannot become

infected again during the same influenza season.

In addition, the person can develop non-influenza ARI (NFARI) according to pre-

specified probabilities. On the first day of an NFARI episodes, the person may decide

to make a visit to clinic.

SimFlu takes a set of input parameters, and for each simulation, SimFlu outputs

an “outcomes file” which includes, for each member of the population, information

on vaccination status, influenza infection, NFARI, clinic visits and test results. With

all this detailed information, we will estimate VE for each of the four study designs
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introduced earlier in this Chapter. The bias of a VE estimate for a given study

design can be assessed by averaging over all simulated VEs and comparing with the

true VE. The standard errors of these estimates can also be calculated from the

simulation outcomes.

3.2.5 Covariates: Health Status and Health Awareness

In SimFlu, we defined two covariates: health status(X) and health awareness(U).

We assume that people within the population can be classified with a health status

of either “healthy” or “frail”. We define a binary variable X, where X = 1 stands for a

“healthy” person, and X = 0 stands for a “frail” person. Let π = P(X = 1), which is

the probability of “healthy” persons among the population. Health status may affect

the probabilities of being vaccinated, the transmission probabilities, the probability of

FARI/NFARI, it may also affect the vaccine efficacy and the probabilities of seeking

care for ARIs.

We also assume that people within the population can have either “high” or “low”

health awareness. We define an unobserved binary variable U , where U = 1 if a person

has “high” health awareness, and U = 0 if a person has “low” health awareness.

Health awareness may depend on health status, thus we let ωx = P(U = 1|X = x),

x = 0, 1. Health awareness may affect the probabilities of being vaccinated and the

probabilities of seeking care for ARIs. It does not directly affects the probabilities of

infections and symptoms.

The covariates health status(X) and health awareness(U) modify input parame-

ters via multipliers that are specified in the SimFlu input file. These multipliers may

depend on a person’s stratum, but do not change over time. Multipliers must be

non-negative numbers.
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3.2.6 True VE

When vaccination is done at random, which means the probability of vaccination does

not depend on any covariates, the true VE is defined as one minus RR, where RR is

the probability of the outcome of interest given vaccination divided by the probability

of the outcome of interest given no vaccination. In this chapter, we use SimFlu to

calculate the true VE against the two outcomes of interest, SI and MAI.

From the input parameters of SimFlu program, the overall vaccination coverage

can be calculated as the weighted average of the probabilities of vaccination over

all 4 combinations of X, U . With the calculated overall vaccination coverage, we

generated a new set of input parameters corresponding to random vaccination. In

this new set of parameters, all the multipliers for vaccination coverage are set to 1.0,

and the probability of vaccination is equal to the calculated overall probability. We

do not change any other parameters. Using this new modified set of parameters as

the input parameter set for SimFlu, we mimic a transmission process of influenza

under random vaccination. A person is considered as a true case of SI if he/she had

influenza infection with symptoms, and a person is considered as a true case of MAI

if he/she had a medical visit for influenza infection with symptoms.

3.2.7 VE Estimates

In ASC and PSC studies, VE is estimated as ˆV E = 1 − R̂R , where R̂R is based

on sample proportions. In TN and TCC studies, VE is estimated as 1− ÔR, where

ÔR is the estimate of the odds ratio comparing the odds of vaccination in cases and

controls.

For ASC study, since every person with ARI is tested for flu infection, so no

information for seeking medical care is obtained in this study, our VE estimate is

only suitable for SI. In ASC study, if a person tests positive then he/she is considered

a case of SI. In this case, he/she will not be tested again if develops another ARI
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later. If a person tests negative then he/she will be tested again if develops another

ARI later. Every person who either never had an ARI or had one or more ARI’s but

always tested negative is considered a non-case. VE is estimated as one minus the

ratio of the cumulative incidence rates of case in vaccinated and unvaccinated.

For PSC study, a person who had at least one ARI with medical visit and test

positive for ARI is considered a case of MAI. Everyone else is a non-case. Hence the

total number of vaccinated and unvaccinated persons should be the same as in the

ASC study, and the total number should be equal to the cohort size.

The TN study only includes persons with at least one ARI for which there was

a visit. A person who tested positive is a case, and a person who tested negative is

a control. VE is estimated as one minus the odds ratio in the table cross classifying

cases and controls by their vaccination status.

For the TCC study, cases and controls are selected via separate processes. Cases

are defined in the same way as in the TN study, i.e. everyone who had at least one

ARI with a visit is tested, and if the test result is positive then the person is a case.

If the test result is negative then the person is not included in the study. Controls

are selected at the end of the study at random among the population who did not

have any ARI during the study period. VE is estimated as 1 − ÔR, where ÔR is

the estimated odds ratio in the table cross classifying cases and controls by their

vaccination status.

3.2.8 Sources of Bias

Biases are often present in observation studies. The sources of bias that may occur

under our model are listed in Table 3.1.

Before discussing the details about the sources of bias, we defined a few parameters

and a few probability ratios comparing vaccines and non-vacciness or healthy and frail

individuals. Theses ratios will be helpful in the presentation of the results.
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• βvx, the probability of NFARI for a person of vaccination status V and health

statusX, where V = 0(unvaccinated), 1(vaccinated), andX = 0(frail), 1(healthy).

• θβ = β1x

β0x
, the ratio of the probabilities of NFARI comparing a vaccinated and

an unvaccinated person of the same health status.

• ψβ = βv1

βv0
, the ratio of the probabilities of NFARI comparing a healthy and a

frail person of the same vaccination status.

• γvx, the probability of FARI for a person of vaccination status v and health sta-

tus x, where v = 0(unvaccinated), 1(vaccinated), and x = 0(frail), 1(healthy).

• θγ = γ1x

γ0x
, the ratio of the probabilities of FARI comparing a vaccinated and an

unvaccinated person of the same health status.

• ψγ = γv1

γv0
, the ratio of the probabilities of FARI comparing a healthy and a frail

person of the same vaccination status.

• M , binary variable with M = 1 for a person seeking medical care for her/his

ARI, and M = 0 for a person does not seeking medical care for his/her ARI.

• Y , outcome variable. Y = 0 for no ARI; Y = 1 for NAFRI, and Y = 2 FARI.

• δyvu, the conditional distribution seeking for medical care given outcome Y . It

may depend on covariate health status X, and health awareness U .

• θδ2 = δ21u

δ20u
, the ratio comparing vaccinees and non-vaccinees for FARI with

respect to the probability of seeking for medical care.

• µδ1 = δ1v0

δ1v1
, the ratio comparing persons with low and high health awareness

with respect to the probability of seeking for medical care for NFARI.

• µδ2 = δ2v0

δ2v1
, the ratio comparing persons with low and high health awareness

with respect to the probability of seeking for medical care for FARI.
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In this chapter, we focused on bias A to bias D listed in Table 3.1. The source

of bias A comes from the probabilities of NFARI may depend on vaccination status,

since the validity of the assumption that vaccinees and non-vaccinees are equally likely

to develop NFARI has not yet been confirmed (Cowling et al. (2012)). We considered

two cases: for bias A1, we assume vaccination lowers the probability of NFARI, and

that θβ ranges from 0.5 to 1.0. For bias A2, we assume vaccination increases the

probability of NFARI and θβ ranges from 1.0 to 2.0.

The probabilities of influenza and non-influenza ARIs may depend on confounders,

thus covariates such as health status, age, exposure, education and socio-economic

status may be associated with both the likelihood of being vaccinated and the likeli-

hood of developing influenza and non-influenza ARIs. In source of bias B, we consider

the association between health status and the probabilities of FARI and of NFARI.

We consider three situations. For source of bias B1, we assume healthy persons have

lower probability of NFARI, and ψβ ranges from 1.0 to 2.0. For source of bias B2,

we assume healthy persons have lower probability of FARI, and ψγ ranges from 1.0

to 2.0. For source of bias BS, we assume healthy person have a lower probability of

FARI and NFARI, and health status has the same effect on the probabilities of FARI

and NFARI (ψβ = ψγ).

Several studies (castilla et al.(2013); VanWormer et al. (2014); Deiss et al. (2015))

suggest that vaccinated individuals who contract influenza may have milder symptoms

that unvaccinated influenza patients, and therefore may be less likely to seek medical

care. A person with ARI may seek medical care and, in this case, be tested for

influenza viruses. The probability of seeking medical care depends on whether this

person develop an ARI (only individuals with ARI seek medical care), and it may

be different for FARI and NFARI patients. In addition, the conditional distribution

seeking for medical care given the type of infection (FARI or NFARI) may depend on

health awareness. For source of bias C, we assume vaccination lowers the probability
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of seeking medical care in FARI patients, and for source of bias D, we assume ARI

patients with high health awareness have a higher probability of seeking medical care.

The probability representation for each source of bias are listed in Table 3.2.

Table 3.1: Sources of Bias

Label Source of Bias
A1 Vaccination lowers the probability of NFARI
A2 Vaccination increases the probability of NFARI
B1 Healthy persons have a lower probability of NFARI
B2 Healthy persons have a lower probability of FARI
BS Healthy persons have a lower probability of FARI

and NFARI. Health status has the same effect on the
probabilities of both types of ARI.

C Vaccination lowers the probability of seeking medical
care in FARI patients (because of reduced symptom severity).

D ARI patients with high health awareness have a higher
probability of seeking medical care.

E Misclassification of influenza infection status.

Table 3.2: Probability ratio corresponding to source of bias

Source of Probability
Definition Symbol Range

Bias Ratio

A1 PRA1 P (NFARI|V acc)/P (NFARI|Unvacc) θβ 0.5 - 1.0

A2 PRA2 P (NFARI|V acc)/P (NFARI|Unvacc) θβ 1.0 - 2.0

B1 PRB1 P (NFARI|Frail)/P (NFARI|Healthy) ψβ 1.0 - 2.0

B2 PRB2 P (FARI|Frail)/P (FARI|Healthy) ψγ 1.0 - 2.0

BS PRBS Common value PRB1 and PRB2 ψβ = ψγ 1.0 - 2.0

C PRC P (SMC|FARI, V acc)/P (SMC|FARI,Unvacc) θδ2 0.5 - 1.0

D PRD P (SMC|LowHA)/P (SMC|HighHA) µδ1 = µδ2 0.5 - 1.0
PR - Probability ratio, Vacc - Vaccinated, Unvacc - Unvaccinated,

FARI - Influenza ARI, NFARI - Non-influenza ARI,
HA - Health awareness, SMC - Seeking medical care

3.2.9 Calculations

To dive into the impact of different sources on the bias of VE estimates, we used

SimFlu to mimic the transmission process of influenza under different sources of bias

for 4 cases.
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We varied the joint probabilities of health status and health awareness, (X, U),

the probabilities of vaccination for given values of (x, u) (Table 3.3).

Table 3.3: Description of Cases

Cases Association between X and U Association between X and V
1 X and U are independent frail persons are more likely to be vaccinated

compared to healthy persons;
2 X and U are positively associated frail persons are more likely to be vaccinated

compared to healthy persons;
3 X and U are negatively associated frail persons are more likely to be vaccinated

compared to healthy persons;
4 X and U are independent frail persons are less likely to be vaccinated

compared to healthy persons.

Under each case, we conducted 7 sets of simulations corresponding to the 7 sources

of biases mentioned in Table 3.2. If vaccination affects the probability of NFARI,

source of bias A1 or A2 will present. If Healthy persons have a lower probability of

non-influenza ARI, source of bias B1 will present. If Healthy persons have a lower

probability of influenza ARI, source of bias B2 will present. Under the situation

that healthy persons have a lower probability of influenza and non-influenza ARI and

health status has the same effect on the probabilities of both types of ARI, source

of bias BS will present. If vaccination lowers the probability of seeking medical care

in influenza ARI patients (because of reduced symptom severity), source of bias C

will present. If ARI patients with high health awareness have a higher probability of

seeking medical care, source of bias D will present.

In each set of simulation, 1000 simulations are conducted with the same input file.

For each set of simulation, we first modified the input file for the SimFlu program.

If no source of bias was present, we set the values of all corresponding parameters

specified in Table 3.2 to 1.0. When a source of bias was present, we set one or two of

the parameters which corresponded to the source of bias to specified values in Table

3.2 and kept the values of all other parameters at 1.0. For each set of simulation, we

estimated VE for 4 study designs using the outcomes file from SimFlu, which included
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all the detailed information for each member of the population, such as vaccination

status, influenza infection, NFARI, clinic visits, test results, etc.

3.2.10 Corrections for Bias for Test Negative Study

The TN study was first used for the estimation of VE in 2005(Skowronski (2005)),

and since has been very popular in VE estimation. In this Chapter we try to assess

the bias for TN study using the probability model we proposed in Chapter 2 and we

proposed different methods to correct the bias for TN study when different sources

of bias are present. We only corrected bias A-C in this chapter, since the bias of the

VE estimate from the TN design under source of bias D is not severe. In this part,

we are using the same parameter definitions as Chapter 2, a list of parameters and

notations in Table A.1.

3.2.10.1 Correction for Bias A1 and A2

When vaccination affects the probability of NFARI, which means when bias A1 or

bias A2 is present, estimates of VE from TN studies suffer from severe bias based

on results from the probability model we proposed in Chapter 2 and the simulation

results in Table 3.4 - 3.7. In order to correct the bias when only bias A1 or bias

A2 is present, we proposed the following method based on the probability model in

Chapter 2:

When only bias A1 or bias A2 is present and all other biases are absent, we have:

ψβ = 1, ψγ = 1, θδ2 = 1, and µδ1 = µδ2 = 1. Therefore, the true VE can be written

as: V ETrue = 1− θγ, and the estimated VE is ˆV E = 1− θ̂γ

θ̂β
.

The corrected VE estimate can be written as:

ˆV EC =1− θ̂β(1− ˆV E),
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where θ̂β is estimated from data as θ̂β = n1/N1

n0/N0
, where ni is the number of persons in

TN study who has NFARI with vaccination status i, i = 0, 1, and Ni is the number of

person in the population with vaccination status i, i = 0, 1. See detailed calculation

in Appendix B.1.

3.2.10.2 Correction for Bias B1, B2 and BS

When health status affects the probabilities of FARI and NFARI, which means when

bias B1, B2 or BS is present, substantial bias may result from TN study. To correct

the bias result from bias B1, B2 or BS, we proposed three methods: (1) logistic

regression, (2) propensity score and (3) matching control to cases.

Logistic Regression

Logistic regression is typically used to calculate the adjusted odds ratios to estimate

VE, which is generally defined by:

logitPr(Y = 1|M,X,U) = α + β1 ∗M + β2 ∗X + β3 ∗ U

where Y is the outcomes status of the patients, α is the parameter for the intercept.

In this chapter, we assessed the bias using logistic regression with covariates: month

of onset of illness(M), health status(X), and health awareness(U). Also, we compared

models with different combinations of these three covariates.

Propensity Score

The propensity score is the probability of treatment assignment conditional on ob-

served baseline characteristics (covariates). In observational studies, treatment selec-

tion is often influenced by subject characteristics. As a result, baseline characteristics

of subjects to receive treatment often differ systematically from those of untreated
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subjects. Therefore, systematic differences in baseline characteristics between treated

and untreated subjects when estimating the effect of treatment on outcomes must be

taken into consideration.

The propensity score was defined by Rosenbaum and Rubin (1983) to be the

probability of treatment assignment conditional on observed baseline covariates: ei =

Pr(Zi = 1|Xi), where Z is a indicator variable for treatment,Z0 for control treatment

and Z1 for active treatment. Since the propensity score is a balancing score, so

conditioning on the propensity score, the distribution of measured baseline covariates

is similar between treated and untreated subjects. Thus, for subjects with same

propensity score, the distribution of observed baseline covariates will be the same

between the treated and untreated subjects.

In randomized experiments the true propensity score is known and is defined by

the study design. In observational studies, the true propensity score is not, in general,

known. However, it can be estimated using the data. In practice, the propensity score

is most often estimated using a logistic regression model, in which treatment status

is regressed on observed baseline characteristics.

In this chapter, we used logistic regression model to estimate the propensity score

for vaccinated group and unvaccinated group, then we used three different propensity

score methods to remove the effects of confounding when estimating the effects of

vaccination on FARI: propensity score matching, stratification of the propensity score

and inverse probability of treatment weighting using the propensity score.

Propensity score matching entails forming matched sets of treated and untreated

subjects who share a similar value of the propensity score (Rosennbaum and Rubin,

1983a, 1985). The most common implementation of propensity score matching is

one-to-one or pair matching, in which pairs of treated and untreated subjects are

formed, such that matched subjects have similar values of the propensity score. Once

a matched sample has been formed, the treatment effect can be estimated by directly
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comparing outcomes between treated and untreated subjects in the matched sample,

and the effect of treatment can also be described using the relative risk.

Stratification on the propensity score involves stratifying subjects into mutually

exclusive subsets based on their estimated propensity score. Subjects are ranked ac-

cording to their estimated propensity score. Subjects are then stratified into subsets

based on previously defined thresholds of the estimated propensity score. A common

approach is to divide subjects into five equal-size group using the quintiles of the esti-

mated propensity score. Within each propensity score stratum, treated and untreated

subjects will have roughly similar values of the propensity score. Therefore, when the

propensity score has been correctly specified, the distribution of measured baseline co-

variates will be approximately similar between treated and untreated subjects within

the same stratum.

Inverse probability of treatment weighting (IPTW) using the propensity score

uses weights based on the propensity score to create a synthetic sample in which the

distribution of measured baseline covariates is independent of treatment assignment.

IPTW was first proposed by Rosebaum (1987a) as a form of model-based direct

standardization.

Let Zi be the indicator variable denoting whether or not the ith subject was

treated, and let ei denote the propensity score for the ith subject. Weights can be

defined as wi = Zi
ei

+ 1−Zi
1−ei . A subject’s weight is equal to the inverse of the probability

of receiving the treatment that the subject actually received.

Match Cases in TN Study

In many epidemiological studies subjects are matched to make the study groups

comparable. While there are no methods that can guarantee comparability, individual

cases are often matched on important characteristics to provide assurances that the

groups are comparable. We matched the subjects with same health status in cases
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and controls to correct the bias resulting from health status.

3.2.10.3 Correction for Bias C

When vaccination affects the probability of seeking medical care for FARI, which

means when bias C is present, this may result from reduced severity of symptoms in

vaccinated influenza patients.

To correct the bias C, we assume only bias C is present, and all other biases are

absent. Then we have:

θβ = 1, ψβ = 1, ψγ = 1, and µδ1 = µδ2 = 1. So, β00 = β10 = β01 = β11, γv1 = γv0.

Therefore, the model-based estimates from TN study when only bias C is present

can be written as:

V EE = 1− θδ2 [γ10α0(1− π) + µδ1γ11α1π][β00(1− α0)(1− π) + µδ1β01(1− α1)π]

[γ00(1− α0)(1− π) + µδ1γ01(1− α1)π][β10α0(1− π) + λβ11α1π]

= 1− θδ2
[γ11α0(1− π) + γ11α1π][(1− α0)(1− π) + (1− α1)π]

[γ01(1− α0)(1− π) + γ01(1− α1)π][α0(1− π) + α1π]

= 1− θδ2
γ11

γ01

= 1− θδ2θγ

We know the true VE against SI is : V ETSI = 1 − θγ. So the bias of the VE

estimate when only bias C is present is:

bias = V EE − V ETSI

= 1− θδ2θγ − (1− θγ)

= θγ(1− θδ2)
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The corrected estimate of VE is:

V EEC = 1− 1

θδ2
(1− V EE)

In order to correct the bias result from bias C, we need to get the estimate of θδ2 ,

which is the ratio of the probabilities of seeking medical care comparing a vaccinated

and an unvaccinated FARI patient of the same health status. Since in the TN study,

we only take consideration of the patients who seek for medical care, we proposed a

method combining a small ASC study and a TN study. In this method, we try to

conduct simultaneously a TN study and an ASC study to obtain the corrected VE.

In the ASC study, we can get an estimate of θδ2 , and use this estimation to correct

our VE estimate for TN study when bias C is present.

3.3 Results

3.3.1 Bias of VE Estimate from Observational Studies

We evaluated bias of VE estimates from cohort and case-control studies in the pres-

ence of the sources of bias listed in Table 3.2 for 4 cases.

Under case 1(Table 3.4), we assume health status and health awareness are in-

dependent, and fail persons are more likely to be vaccinated compared to healthy

persons. In set 0, when no source of bias is present, the absolute values of the biases

of VE estimates from all study designs except the TCC are smaller than 0.01. When

bias A1 or bias A2 is present, the absolute values of the bias of VE estimates from

both cohort studies are all very small, while the estimates of VE from case-control

studies suffer from severe bias. Comparing the results from bias A1 with the results

from bias A2, we can conclude ASC and TCC produce smaller absolute value of bias

of VE estimates and TN produce larger absolute value of bias of VE estimates. When
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bias B1 is present, the absolute values of the biases of VE estimates from two cohort

studies are very small (< 0.01). Under the two case-control studies, the absolute

values of the biases of VE estimates from TN are substantially larger than those from

TCC. When bias B2 is present, the absolute values of the biases of VE estimates

from all 4 study designs are larger than 0.01. The absolute values of the biases of VE

estimates from TCC are substantially smaller than those from other three studies.

When bias BS is present, the absolute values of the biases of VE estimates from all 4

study designs are larger than 0.01. The absolute values of the biases of VE estimates

from TCC are substantially smaller than those from other three studies. When bias

C is present, the VE estimates against MAI are much better than the VE estimates

against SI. When bias D is present, the absolute values of the biases of VE estimates

from ASC and TN are smaller than 0.01.

Under case 2(Table 3.5), we assume health status and health awareness are pos-

itively associated, and fail persons are more likely to be vaccinated compared to

healthy persons. When bias B1 is present, the absolute values of the biases of VE

estimates from PSC are larger than those in case 1, while the absolute values of the

biases of VE estimates from TN and TCC are smaller than those in case 1. When

bias B2 is present, the absolute values of the biases of VE estimates are smaller than

those in case 1, except those from TCC. When bias BS is present, the absolute values

of the biases of VE estimates from TCC are smaller than those in case 1. When bias

C is present, the absolute values of the biases of VE estimates from cohort studies

are smaller than those in case 1, but the absolute values of the biases of VE estimates

from case-control studies are larger than those in case 1. When bias D is present,

Under case 3(Table 3.6), we assume health status and health awareness are neg-

atively associated, and fail persons are more likely to be vaccinated compared to

healthy persons. When bias B1 is present, the absolute values of the biases of VE

estimates from PSC, TN and TCC are all larger than those in case 1. When bias B2
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is present, the absolute values of the biases of VE estimates are smaller than those

in case 1, except those from TCC. When bias BS is present, only the absolute values

of the biases of VE estimates from TCC against MAI are smaller than those in case

1. When bias C is present, except from the PSC against MAI, the absolute values of

the biases of VE estimates are larger than those in case 1. When bias D is present,

the absolute values of the biases of VE estimates are larger than those in case 1.

Under case 4(Table 3.7), we assume health status and health awareness are inde-

pendent, and fail persons are less likely to be vaccinated compared to healthy persons.

When bias B1 is present, the absolute values of the biases of VE estimates from TN

and TCC studies are quite similar, while under case 1 the absolute values of the biases

of VE estimates from TN are substantially larger than those from TCC. The absolute

values of the biases of VE estimates from TCC are larger than those in case 1, while

the absolute values of the biases of VE estimates from PSC and TN are smaller than

those in case 1. When bias B2 is present, the absolute values of the biases of VE

estimates are smaller than those in case 1, except those from TCC. When bias BS is

present, only the absolute values of the biases of VE estimates from TCC are larger

than those in case 1. When bias C is present, except from PSC against MAI, the

absolute values of the biases of VE estimates are larger than those in case 1. When

bias D is present, the absolute values of the biases of VE estimates from PSC and TN

are smaller than those in case 1, but the absolute values of the biases of VE estimates

from ASC and TCC are larger than those in case 1.

Under case 1 and case 4, where health status and health awareness are inde-

pendent, the absolute values of the biases of VE estimates in TN studies are not

significantly affected by the association between health awareness and vaccination

status. Under case 2 and case 3, when health status and health awareness are in-

dependent, and frail persons are more likely to be vaccinated compared to healthy

persons, the absolute values of the bias of estimates from all 4 study designs under
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case 3 are in general larger than the ones under case 2. Under all 4 cases, when source

of bias A1 or A2 present, which is the vaccination lowers or increase the probability of

NFARI, the absolute values of the bias of estimates from TN study are severe. When

source of bias B present, which is health status affect the probability of NFARI or

FARI or both, the VE estimates suffer differ level of bias. When source of bias C,

vaccination lower the probability of seeking medical care for FARI, the VE estimates

from TN against symptomatic influenza suffer severe bias, but the VE estimates from

TN against MAI have little bias. When source of bias D present, the bias of VE

estimates from TN study are very small.

Table 3.4: Bias of VE Estimates for Case 1

Set
Source of Value of ASC PSC PSC TN TN TCC TCC

Bias Parameter(s) SI MAI SI SI MAI SI MAI
0 None All parameters = 1.0 -0.0006 -0.00929 -0.00916 0.00235 0.00248 0.01792 0.01805
1 A1 θβ = 0.5 -0.00013 -0.00433 -0.0042 -0.54641 -0.54628 0.125 0.12513

2 A2 θβ = 2.0 -0.00137 -0.00287 -0.0032 0.2839 0.28357 -0.26243 -0.26276

3 B1 ψβ = 2.0 0.00004 -0.0022 0.00075 0.06699 0.06994 -0.00704 -0.00409

4 B2 ψγ = 2.0 -0.11769 -0.11944 -0.11931 -0.10029 -0.10016 -0.03387 -0.03374
5 BS ψβ = ψγ = 2.0 -0.0531 -0.0542 -0.05228 -0.03754 0.03946 0.00252 0.00444

6 C θδ2 = 0.5 -0.00061 0.27805 -0.00305 0.28324 0.00214 0.28832 0.00722

7 D µδ1 = µδ2 = 0.5 -0.00061 -0.15219 -0.15009 0.00105 0.00315 -0.11656 -0.11446

Table 3.5: Bias of VE Estimates for Case 2

Set
Source of Value of ASC PSC PSC TN TN TCC TCC

Bias Parameter(s) SI SI MAI SI MAI SI MAI
0 None All parameters = 1.0 -0.00031 -0.00164 -0.00111 0.00539 0.00592 0.02136 0.02189
1 A1 θβ = 0.5 0.00088 -0.00442 -0.00504 -0.54836 -0.54898 0.12394 0.12332

2 A2 θβ = 2.0 -0.00161 -0.00586 -0.00326 0.2836 0.2862 -0.26255 -0.25995

3 B1 ψβ = 2.0 0.00113 -0.00472 -0.00404 0.03755 0.03823 0.0041 0.00478

4 B2 ψγ = 2.0 -0.02857 -0.02936 -0.02877 -0.00979 -0.0092 0.06203 0.06262
5 BS ψβ = ψγ = 2.0 -0.02769 -0.02575 -0.02495 0.0313 0.0321 0.04889 0.04969

6 C θδ2 = 0.5 -0.00031 0.27969 -0.00001 0.28515 0.00545 0.29199 0.01229

7 D µδ1 = µδ2 = 0.5 -0.00031 -0.1275 -0.12662 0.00395 0.00483 -0.09092 -0.09004

Table 3.6: Bias of VE Estimates for Case 3

Set
Source of Value of ASC PSC PSC TN TN TCC TCC

Bias Parameter(s) SI SI MAI SI MAI SI MAI
0 None All parameters = 1.0 -0.00187 -0.00159 -0.00074 0.00651 0.00736 0.02051 0.02136
1 A1 θβ = 0.5 -0.00183 -0.00742 -0.00599 -0.55347 -0.55204 0.11772 0.11915

2 A2 θβ = 2.0 -0.00416 -0.00658 -0.00742 0.28065 0.27981 -0.26504 -0.26588

3 B1 ψβ = 2.0 -0.00284 -0.00797 -0.00577 0.11631 0.11851 -0.03861 -0.03641

4 B2 ψγ = 2.0 -0.10932 -0.10781 -0.10821 -0.0947 -0.0951 -0.04342 -0.04382
5 BS ψβ = ψγ = 2.0 -0.1092 -0.11101 -0.10982 0.0515 0.05269 -0.10055 -0.00119

6 C θδ2 = 0.5 -0.00187 0.27909 0.00075 0.2838 0.00546 0.28771 0.00937

7 D µδ1 = µδ2 = 0.5 -0.00187 -0.17935 -0.17859 0.00546 0.00622 -0.14044 -0.13968

3.3.2 Corrections for Bias for TN Study

The results of bias after correction for Bias A - C are shown in Table 3.9 - 3.15.
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Table 3.7: Bias of VE Estimates for Case 4

Set
Source of Value of ASC PSC PSC TN TN TCC TCC

Bias Parameter(s) SI SI MAI SI MAI SI MAI
0 None All parameters = 1.0 -0.00223 -0.00319 -0.00231 0.00817 0.00905 0.03842 0.0393
1 A1 θβ = 0.5 -0.00205 -0.00229 -0.00279 -0.56248 -0.56298 0.13847 0.13797

2 A2 θβ = 2.0 -0.00307 -0.00481 -0.00444 0.2918 0.29217 -0.24458 -0.24421

3 B1 ψβ = 2.0 0.00125 -0.00038 0.00005 -0.06667 -0.06624 0.06618 0.06661

4 B2 ψγ = 2.0 0.04854 0.0496 0.04916 0.07775 0.07731 0.17393 0.17349
5 BS ψβ = ψγ = 2.0 0.04929 0.04782 0.04772 0.00603 0.00593 0.19174 0.19164

6 C θδ2 = 0.5 -0.00223 0.28921 -0.00039 0.29451 0.00491 0.30809 0.01849

7 D µδ1 = µδ2 = 0.5 -0.00223 -0.12108 -0.12055 0.00623 0.00676 -0.06453 -0.064

In all 4 cases, after the correction of bias A, the corrected VE estimates is very

close to the true VE (Table 3.9 - 3.10).

For the correction for Bias B, we compared the results from 10 different methods

listed in Table 3.8, and results are shown in Table 3.11 - 14.

Table 3.8: Methods for Bias B Correction

Methods

1 Logistic Regression with No Covariates

2 Logistic Regression with Covariate: M

3 Logistic Regression with Covariate: X

4 Logistic Regression with Covariate: M and X

5 Logistic Regression with Covariates: X and U

6 Logistic Regression with Covariates: M, X and U

7 Covariate Adjustment Using the Propensity Score Based on M, X, U

8 Stratification on the Propensity Score Based on M, X, U

9 Inverse Probability of Treatment Weighting Using the Propensity Score Based on M, X, U

10 1:1 Match X for cases and controls unadjusted VE estimate

Under Case 1, when source of bias B1 is present, method 7 and method 10 give

better estimates for VE than other methods. Method 7 tends to overestimate VE

whereas method 10 tends to underestimate VE. When source of bias B2 is present,

all methods tend to underestimate VE. The absolute values of bias from method 10

are much smaller than the ones from all other methods. Among the methods, method

10 give the best estimate of VE. When source of Bias BS is present, Method 2 gives

the closest estimate.

Under Case 2, when source of bias B1 is present, method 7 gives better estimates

for VE than other methods. While method 9 performs better than other methods

when source of bias B2 or BS present.
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Under Case 3, when source of bias B1 is present, if using method 3, 5, or 8, the

corrected bias for bias B1 is very similar. In order to get better corrected results

when bias b2 is present, we will prefer method 4 or 9. And to better correct the VE

estimates when bias BS is present, we will prefer method 2.

Under Case 4, when source of bias B1 is present, method 7 gives better estimates.

When source of bias B2 is present, method 2 performs better than other methods.

When source of bias BS is present, method 3 performs better than other methods.

Under all 4 cases, when bias B1 is the main concern, method 7 gives better

estimates for VE in general. When B2 is the main concern, method 9, in general,

gives better estimates. When BS is the main concern, method 2 or method 9 may be

an option.

For the correction for Bias C, we tried to vary the sample size of ASC study from

200 to 1000, and vary the sample size of the TN study from 2000 to 10000 to compare

the corrected VE estimate. The results for ASC and TN study for case 1 are based

on 1000 simulations and are present in Table 3.15. The true VE under case 1 is 0.438.

Under different study sizes, due to the number of persons who visit and test positive

is small, the corrected estimated VE based on the TN study also has a large SE. If

we only conduct the ASC study, we get an estimate of VE that has less bias and a

smaller SE compared to the corrected estimate from the TN study even the cohort

study size is not very large. When bias C is the main concern, ASC study can help

correct the VE estimate from TN study, but the standard error of the corrected VE

estimate is relatively large.

Table 3.9: Bias A1 Correction for TN Study for Case 1 - Case 4

Case True VE Corrected VE for Bias A1
1 0.43835 0.43832
2 0.43766 0.43749
3 0.44346 0.43885
4 0.42352 0.42260
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Table 3.10: Bias A2 Correction for TN Study for Case 1 - Case 4

Case True VE Corrected VE for Bias A2
1 0.43893 0.43938
2 0.43764 0.43641
3 0.44239 0.44005
4 0.42395 0.42083

Table 3.11: Bias B Correction for TN Study for Case 1 when True VE is 0.43835.

Method Corrected VE for Bias B1 Corrected VE for Bias B2 Corrected VE for Bias BS

1 0.50575 0.33806 0.41277

2 0.50589 0.34229 0.41544

3 0.44487 0.39950 0.39624

4 0.44597 0.40452 0.40072

5 0.44501 0.39992 0.39688

6 0.44592 0.40497 0.40123

7 0.44382 0.36720 0.36905

8 0.44751 0.33781 0.35494

9 0.44633 0.40527 0.40127

10 0.43388 0.40908 0.38416

Method 1: Logistic Regression with No Covariates
Method 2: Logistic Regression with Covariate: M
Method 3: Logistic Regression with Covariate: X
Method 4: Logistic Regression with Covariate: M and X
Method 5: Logistic Regression with Covariates: X and U
Method 6: Logistic Regression with Covariates: M, X and U
Method 7: Covariate Adjustment Using the Propensity Score Based on M, X, U
Method 8: Stratification on the Propensity Score Based on M, X, U
Method 9: Inverse Probability of Treatment Weighting Using the Propensity Score
Based on M, X, U
Method 10: 1:1 Match X for cases and controls unadjusted VE estimate

3.4 Discussion

SimFlu is a stochastic agent-based simulation model of influenza epidemics, it helps

to understand and to mimic the spread of transmission of influenza in a stratified

population. It performs a set of simulations with fixed values of parameters. Each
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Table 3.12: Bias B Correction for TN Study for Case 2 when True VE is 0.43886.

Method Corrected Bias for Bias B1 Corrected Bias for Bias B2 Corrected Bias for Bias BS

1 0.47527 0.36447 0.40453

2 0.47586 0.36817 0.33977

3 0.44185 0.39745 0.35218

4 0.44289 0.40182 0.34842

5 0.44218 0.39734 0.35198

6 0.44310 0.40162 0.34839

7 0.43717 0.36198 0.36491

8 0.45088 0.32484 0.34173

9 0.44396 0.40315 0.40039

10 0.44075 0.30005 0.39194

Method 1: Logistic Regression with No Covariates
Method 2: Logistic Regression with Covariate: M
Method 3: Logistic Regression with Covariate: X
Method 4: Logistic Regression with Covariate: M and X
Method 5: Logistic Regression with Covariates: X and U
Method 6: Logistic Regression with Covariates: M, X and U
Method 7: Covariate Adjustment Using the Propensity Score Based on M, X, U
Method 8: Stratification on the Propensity Score Based on M, X, U
Method 9: Inverse Probability of Treatment Weighting Using the Propensity Score
Based on M, X, U
Method 10: 1:1 Match X for cases and controls unadjusted VE estimate

simulation corresponds to a single outbreak. In the simulation, it explicitly represents

every individual, so the simulated epidemic can be studied in detail, even tracking

individual transmission events. With the help of detailed computer simulations, more

topics in evaluating containment and mitigation strategies can be explored in future

research. However, models created with SimFlu are stochastic, so results may vary

from run to run, and some events, especially early in an epidemic, may depend on

random choices such as the identity of the initial cases.

By incorporating stochastic simulations to assess bias and precision of influenza

VE estimates for four observational study designs, we are able to compare these study

designs in detail. In this chapter, we explored the performance of four observational

study designs in VE estimating with the impact of different sources of bias under

various confounding assumptions. Under all four cases, which means regardless the
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Table 3.13: Bias B Correction for TN Study for Case 3 when True VE is 0.44248.

Method Corrected Bias for Bias B1 Corrected Bias for Bias B2 Corrected Bias for Bias BS

1 0.55814 0.28170 0.42807

2 0.55731 0.28709 0.42932

3 0.44613 0.40623 0.40292

4 0.44682 0.41222 0.40838

5 0.44603 0.40574 0.40229

6 0.44673 0.41160 0.40762

7 0.45123 0.37857 0.38022

8 0.44567 0.37787 0.35673

9 0.44721 0.40930 0.40523

10 0.40583 0.13703 0.35242

Method 1: Logistic Regression with No Covariates
Method 2: Logistic Regression with Covariate: M
Method 3: Logistic Regression with Covariate: X
Method 4: Logistic Regression with Covariate: M and X
Method 5: Logistic Regression with Covariates: X and U
Method 6: Logistic Regression with Covariates: M, X and U
Method 7: Covariate Adjustment Using the Propensity Score Based on M, X, U
Method 8: Stratification on the Propensity Score Based on M, X, U
Method 9: Inverse Probability of Treatment Weighting Using the Propensity Score
Based on M, X, U
Method 10: 1:1 Match X for cases and controls unadjusted VE estimate

association between heath status and health awareness, and the relationship between

vaccination and health status, estimates from TCC studies performs worst among

all four observational study designs when no bias is present. When the probability

of non-influenza ARI depends on vaccination status, the two cohorts study designs

give better estimates of VE than the two case-control study designs, which con-

firms our previous findings in Chapter 2 that VE estimates from test-negative study

may be severely biased. When vaccination increases the probability of non-influenza

ARI, test-negative study tends to severely overestimate vaccination efficiency while

traditional case-control study tends to severely underestimate vaccination efficiency.

If vaccination reduces the probability that an influenza patient seeks medical care

because her/his symptoms are less severe than those of an unvaccinated influenza

patient, then only active surveillance cohort study can provide reliable VE estimates
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Table 3.14: Bias B Correction for TN Study for Case 4 when True VE is 0.42225.

Method Corrected Bias for Bias B1 Corrected Bias for Bias B2 Corrected Bias for Bias BS

1 0.35556 0.44084 0.36959

2 0.36042 0.43817 0.36732

3 0.42956 0.39776 0.39346

4 0.43251 0.39536 0.39046

5 0.42978 0.39728 0.39304

6 0.43270 0.39458 0.39004

7 0.41887 0.33960 0.33617

8 0.39412 0.33910 0.31109

9 0.43334 0.39310 0.38785

10 0.41861 0.52978 0.33756

Method 1: Logistic Regression with No Covariates
Method 2: Logistic Regression with Covariate: M
Method 3: Logistic Regression with Covariate: X
Method 4: Logistic Regression with Covariate: M and X
Method 5: Logistic Regression with Covariates: X and U
Method 6: Logistic Regression with Covariates: M, X and U
Method 7: Covariate Adjustment Using the Propensity Score Based on M, X, U
Method 8: Stratification on the Propensity Score Based on M, X, U
Method 9: Inverse Probability of Treatment Weighting Using the Propensity Score
Based on M, X, U
Method 10: 1:1 Match X for cases and controls unadjusted VE estimate

against SI. Hereby, when the outcome of interest is MAI, then the vaccine-related

reduction in symptoms’s severity will not have a serious impact on the VE estimates

from test-negative study design and traditional case-control study design. If ARI

patients with high health awareness have a higher probability of seeking medical

care, active surveillance cohort study and test-negative study can both provide VE

estimates with small absolute values of bias(< 0.01).

Compared to the probability model we proposed in Chapter 2, we incorporated

dynamics of the transmission of infectious in the SimFlu model, so it mimics the

real transmission process of influenza in a closed population. With the help of the

detailed simulation data generated by SimFlu, we get a chance to study the details of

influenza transmission and evaluate the performance of different observational studies

under various situations.
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Table 3.15: Bias C Correction for TN Study for Case 1 when True VE is 0.43835.

``````````````̀TN Size
Cohort Size

200 500 1000

2000

Number of ARI in ASC 88 220 439
Estimate of VE from ASC 0.361 0.397 0.411

SE of the VE estimate from ASC 0.452 0.333 0.199
Number of ARI and visited patients in TN 262 262 262

Corrected VE estimate from TN 0.542 0.335 0.295
SE of the corrected VE estimate from TN 0.380 0.562 0.629

5000

Number of ARI in ASC 88 221 439
Estimate of VE from ASC 0.389 0.390 0.406

SE of the VE estimate from ASC 0.469 0.348 0.204
Number of ARI and visited patients in TN 654 654 654

Corrected VE estimate from TN 0.543 0.366 0.329
SE of the corrected VE estimate from TN 0.334 0.476 0.464

10000

Number of ARI in ASC 88 220 440
Estimate of VE from ASC 0.344 0.389 0.427

SE of the VE estimate from ASC 0.529 0.346 0.171
Number of ARI and visited patients in TN 1308 1308 1308

Corrected VE estimate from TN 0.550 0.378 0.321
SE of the corrected VE estimate from TN 0.306 0.431 0.450

However, due to the stochastic processes in the SimFlu model, the data we gener-

ated may depend on random choices such as the identity of the initial cases, especially

in an early stage of an outbreak of epidemic.

In this chapter, beside health status, we incorporated another confounder, health

awareness, into the model, so the association between health status and health aware-

ness is also taken into consideration.

In this chapter, we considered 4 cases (Table 3.3). In Case 1-3, the association

between health status and vaccination is the same with one in Scenario 2 in Chapter

2, and the association between health status and vaccination is the same for Case 4

in this chapter and Scenario 3 in Chapter 2, despite the effect of health awareness.

We compared the absolute value of bias under various combinations of sources of bias

for Traditional Case-control study and Test-negative study (Table 3.1 and Table 3.2

below).
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Here are several differences in the setup of situations: 1. In this chapter, we sepa-

rated the two direction of the association between vaccination and the probability of

NFARI. A1 stands for the source of bias when vaccination lowers the probability of

NFARI, and A2 stands for the source of bias when vaccination increases the probabil-

ity of NFARI. While in Chapter 2, we considered these two situations as one source of

bias. 2. In this chapter, source of bias D is defined as ARI patients with high health

awareness have a higher probability of seeking medical care, but in Chapter 2, source

of bias D is defined as Health status affects the probability of seeking medical care

against FARI and NFARI. The results for source of bias D from this chapter and the

ones from Chapter 2 are not comparable. Thus, we do not include them in the tables

below (Table 3.16 and Table 3.17).

In general, the results are consistent, except the situation when source of bias B

present.

In addition, we investigated the situations when the associations among health

status, health awareness and vaccination status are varied. When health status

and health awareness are independent, the absolute bias of VE estimates from test-

negative study will not be affected by the association between health status and vac-

cination status. When health status and health awareness are positively associated,

the absolute bias of VE estimates from test-negative study are smaller compared to

the ones when health status and health awareness are independent, while the absolute

bias of VE estimates are larger compared to the ones when health status and health

awareness are independent when health status and health awareness are negatively

associated. When health status and health awareness are negatively associated or

when frail persons are less likely to be vaccinated compared to healthy persons, the

absolute bias of VE estimates from traditional case-control study are larger than the

ones based on the situation that health status and health awareness are independent

and frail persons are more likely to be vaccinated compared to healthy persons. If
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Table 3.16: Comparison of Absolute Value of Bias under Various Combinations of
Source of Bias from Chapter 2 Scenario 2 and Chapter 3 Case 1-3 for Traditional
Case-Control Study and Test-negative Study

the study assumptions are that healthy persons have a lower probability of FARI and

health status and health awareness are either independent or negatively associated,

then neither active surveillance cohort study nor passive surveillance cohort study

can provide accurate estimates for VE.
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Table 3.17: Comparison of Absolute Value of Bias under Various Combinations of
Source of Bias from Chapter 2 Scenario 3 and Chapter 3 Case 4 for Traditional
Case-Control Study and Test-negative Study

Meanwhile, in this chapter, we assessed the bias for test-negative study and pro-

posed different methods to correct the bias for TN study when different sources of

bias are present. When vaccination affect the the probability of non -influenza ARI,

the bias of VE estimates can be corrected using the probability model we proposed in

Chapter 2. If health status affects the probability of non-influenza ARI or influenza

ARI, we proposed three methods: (1) logistic regression, (2) propensity score and (3)

matched control to cases. Under different situation, different methods are preferred.

Additionally, we combined test-negative study with a small active surveillance cohort

study in order to correct the bias caused by vaccination lowering the probability of

seeking medical care for influenza ARI patients.

We did not find a universal solution to correct the bias introduced by different

sources of bias, however, when the main concern comes from different sources of

bias, we proposed different approaches to correct the bias. When source of bias

A1/ A2 is the main concern, the VE estimate can be corrected using the numbers

of vaccinated and unvaccinated persons in TN study who has NFARI based on the

probability we proposed in Chapter 2. When source of bias B is the main concern,

covariate adjustment using the propensity score based on seeking for medical care,
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health status and health awareness method will help correct the bias, in general. If

you have clear knowledge about the association between health status and health

awareness under your situation, methods such as matching health status for cases

and controls and logistic regression with different covariates can also help you get

better results under specific situations. When source of bias C is the main concern,

we proposed a method that combining a small ASC and a TN study. In this method,

a small ASC study is suggested to conduct simultaneously with the TN study, the

ratio of probability of seeking for medical care in FARI patients between vaccinated

patients and unvaccinated patients estimated from the ASC study can help correct

the bias from TN study.

Our study has a few limitations: (a) We assume that the tests sensitivity and

specificity do not depend on vaccination status or on the propensity of seeking medical

care. (b) We assume that vaccination status is determined without an error. (c) We

assume vaccination is complete before the onset of study, so the vaccination status

remain unchanged throughout the study and the true VE can be defined as one minus

the ratio of the cumulative incidence rates in vaccinees and non-vaccinees. (d) When

combining test-negative study and active surveillance study, although the bias VE

estimates are smaller from the combined study design comparing with the bias of the

VE the from the test-negative study design, the standard errors are large.
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Chapter 4

Waning of Influenza Vaccine

Effectiveness in Cohort and

Test-Negative Studies
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chapter

4.1 Introduction

Influenza viruses can cause pandemics, and rates of illness and death from influenza-

related complications can increase worldwide. It is a highly contagious respiratory

illness that is responsible for significant morbidity and mortality. Since 2010, influenza

has resulted in between 9 million − 45 million illnesses, between 140,000 − 810,000

hospitalizations and between 12,000 − 61,000 deaths annually. In the 2019/20 U.S. flu

season, the Centers for Disease Control and Prevention (CDC) estimates that there

are 39,000,000 − 56,000,000 flu illnesses, 410,000 − 740,000 flu hospitalizations and

24,000 − 62,000 flu deaths in the U.S.A (Centers for Disease Control and Prevention

(CDC) (2020b)). Since influenza viruses can results in serious illness, hospitalization,

and death in all age groups, the United States Advisory Committee on Immunization

Practices recommends that US residents aged >= 6 months receive annual influenza

vaccination by October of each year to allow sufficient time for development of im-

mune protection prior to onset of influenza activity (Centers for Disease Control and

Prevention (CDC) (2019)).

While seasonal influenza(flu) viruses are detected year-round in the United States,

flu virus is most commonly circulating from late fall through early spring. CDC

collects, compiles, and analyzes information on influenza activity year-round in the

United States. The exact timing and duration of flu season can vary, but in the

United State, the annual influenza activity is typically beginning in October. Most

of the time, the influenza activity peaks between December and February, and the

duration of the annual influenza epidemic can last as late as May (Centers for Disease

Control and Prevention (CDC) (2020a)).

In the 2011/12 influenza seasons various studies in Europe reported a decrease
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in influenza vaccine effectiveness (VE) against A(H3N2) over time within the season

(Kissling et al. (2013), Pebody et al. (2013), Castilla et al. (2013), Jiménez-Jorge

et al. (2013)). The I-MOVE multicenter case-control study suggested a low vaccine

effectiveness against medically attended A(H3) influenza in that season. In a pooled

analysis, the adjusted vaccine effectiveness against A (H3N2) was 46.8% and 10.5%,

respectively, among patients with illness onset less than 93 days after vaccination

and those with illness beginning 93 days or more after vaccination. Because of the

late arrival of the 2011/12 influenza season, persons presenting with influenza had

a long delay between onset of symptoms and the vaccination. The observed fall in

influenza vaccine effectiveness may be due to the intraseason waning of influenza

vaccine effectiveness (Kissling et al. (2013)).

An observational study of influenza vaccine effectiveness against laboratory-confirmed

influenza infection in primary care in the United Kingdom 2011/12 winter season

found that the 2011/12 seasonal influenza vaccine was overall poorly protective in

preventing influenza A(H3N2) infection, and the vaccine protection was moderate in

the first three months of the season, but reduced in the second three months. The ad-

justed vaccine effectiveness was 53% for individuals vaccinated less than three months

before illness onset, and 12% for those vaccinated three months or more before illness

onset (p = 0.02, test for trend). And they suggested that there was evidence of waning

protection against influenza A(H3N2) three months after vaccination (Pebody et al.

(2013)).

In the Navarre region of Spain, a test-negative study was conducted to evaluate

the influenza vaccine effectiveness in preventing laboratory-confirmed cases in the

2011/12 season. The adjusted vaccine effectiveness against influenza A (H3N2) was

61% in the first 100 days after vaccination, 39% between 100 and 119 days, and zero

after 120 days. The results suggest that on average, the seasonal influenza vaccine

had a low protective effect in preventing laboratory-confirmed influenza during that
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season, and the early estimates of the influenza VE for the first part of the season were

higher than the complete season, which suggests a decline in vaccine effectiveness over

time (Castilla et al. (2013)). This study included both outpatient and hospital cases.

If the analysis was limited to the primary care patients, the vaccine effectiveness was

maintained, i.e., no waning was found during the season. Another study in Spain

also suggested the trend toward a decrease in influenza vaccine effectiveness with

time, and the decreasing protective effect of the vaccine in the late part of the season

could be related to waning vaccine protection because no viral changes were identified

throughout the season (Jiménez-Jorge et al. (2013)).

However, the interpretation of waning immunity for all four studies was compli-

cated by the emergence of antigenic variant A (H3N2) viruses in Europe as the season

progressed.

In the United States, the data from an observational study of influenza vaccine

effectiveness that was performed during the 2008/09 influenza season was reanalyzed

to assess evidence for waning protection against influenza A(H3N2) in a community

cohort. A significant association between influenza A(H3N2) positive medically at-

tended ARI visits and increasing time since vaccination among young children and

elderly adults was identified in the 2007/08 influenza season (Belongia et al. (2015)).

In addition, data from a placebo-controlled trial was analyzed to estimate the abso-

lute and relative efficacies of inactivated influenza vaccine (IIV) and live-attenuated

influenza vaccine (LAIV). In this study, statistically significant waning was detected

for IIV (p = 0.03), but not for LAIV (p = 0. 37). Both vaccines were efficacious,

however, IIV efficacy decreased slowly over time (Petrie et al. (2016)).

Pooled data across five post-pandemic seasons were studied by Kissling et al. in

2016, and influenza type/subtype specific VE by time since vaccination for the overall

season was measured. Among the five seasons studied (2010/11 to 2014/15), there

are four season with influenza A(H3N1), four seasons with influenza A(H1N1)pdm09
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and three seasons with influenza B. Influenza seasons varied in terms of start, inten-

sity and duration, evidence of moderate waning of VE against influenza A(H3N2)

and mild waning of VE against influenza B were found, and there was no evidence

of waning of VE against influenza A(H1N1)pdm09 virus infection (Kissling et al.

(2016)). In combined data from four US influenza seasons (2011/12 to 2014/15),

decreasing influenza vaccine protection with increasing time since vaccination for in-

fluenza A(H3N2), influenza A(H1N1) pdm09, and influenza B virus infections was

also observed by Ferdinands et al. in 2017 (Ferdinands et al. (2017)).

These reports have raised concerns that vaccine induced protection against in-

fluenza illness may decline over the course of a single season. It has been reported

that antibody levels begin to decrease one month after administration of the influenza

vaccine, and this loss of immune response is more pronounced in older people (Song

et al. (2010)). If vaccine-induced protection wanes during the season, then depending

on the start and duration of the influenza season, the decline of the VE may cause

increases in overall incidence.

Alternative explanations for the observed decline in vaccine protection during

an influenza season include emergency and circulation of a drifted variant less well-

matched to the vaccine strain. The change in the viruses circulating during the season,

either due to appearance of another virus type or due to antigenic drift of circulating

viruses, can result in a loss of the match with the vaccine viruses. However, some

study results do not support this mechanism, since Castilla et al observed decreasing

in vaccine effectiveness when they evaluated the effectiveness of the vaccine against

influenza A(H3) only (Castilla et al. (2013)), and Belongia et al. suggested that they

could not assess changes in the prevalence of antigenic variant viruses during the

studied season and differential effects by age group should not be expected if virus

evolution was the only factor contributing to the changing risk of influenza over time

(Belongia et al. (2015)).
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The biologic mechanisms that may contribute to the decline in protection against

influenza illness over the course of a single season are uncertain, and the evidence for

intraseason waning of influenza vaccine protection is growing but inconsistent. The

CDC Advisory Committee on Immunization Practices (ACIP) currently recommends

that vaccine providers in the United States should begin offering vaccination by the

end of July (Centers for Disease Control and Prevention (CDC) (2020c)). As a re-

sult, the interval from vaccination to the peak of the influenza season could be as

long as 6 months for persons who are vaccinated early. The possibility of waning in-

dicates the need for further studies in different seasons and populations for healthcare

organizations to modify the current vaccine recommendations.

In this chapter, we analyze data generated from SimFlu using three different

methods to evaluate waning vaccine efficacy under both cohort and test negative

studies.

4.2 Methodology

4.2.1 Data

In order to examine waning vaccine efficacy, we present 6 cases. In cases 1-3 the pop-

ulation is homogeneous (everyone is healthy, and everyone has the same probability

of getting vaccinated). In cases 4-6 the population is heterogeneous 80% are healthy

while 20% are frail, and frail persons are more likely than healthy persons to get

vaccinated and they have higher probabilities of becoming infected in each contact.

In addition we have 3 levels of waning: (1) no waning (per-contact VE’s are 60%

every month), (2) moderate waning (per-contact VE’s are 60%, 50%, 40% in months

1, 2, 3, respectively, and (3) severe waning (per-contact VE’s are 60%, 40%, 20%,

respectively).

In case 1, the population is homogeneous and there is no waning, in case 2, the
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population is homogeneous and the waning is moderate, in case 3, the population is

homogeneous and severe waning is present. In case 4, the population is heterogeneous

and there is no waning, in case 5, the population is heterogeneous and the waning is

moderate, in case 6, the population is heterogeneous and the waning is severe. There-

fore, in our 6 cases, the population is homogeneous in cases 1-3, and is heterogeneous

in cases 4-6. There is no waning in cases 1, 4; moderate waning in cases 2, 5; severe

waning in cases 3, 6.

4.2.2 Methods

Vaccine efficacy (VE) is generally estimated by V E = 1 − RR, where RR is some

measure of relative risk in the vaccinated compared with the unvaccinated group. If

the VE wanes with time, the relative risk estimates also change with time. In this

chapter, we compared 3 approaches to estimate time-varying efficacy for cohort study

and test negative study designs.

Although cumulative incidence rate (attack rate) can be used in estimating vacci-

nation effectiveness, when evaluating VE waning, it is not a good idea to use the VE

estimate based on attack rates. If the vaccine is leaky, where vaccination is assumed

to reduce the probability of infection, the estimate may decrease over time even if the

true VE remains fixed (Smith et al. (1984), Zhang and Yu (1998)).

Durham et al. (1998) present a method for nonparametrically estimating V E(t) =

1 − HR(t) from time to event data when the protective effects of the vaccine can

change over time, where HR(t) is the ratio of hazard rates of infection, comparing

vaccinated and unvaccinated individuals, over time. To estimate HR(t) nonparamet-

rically, Durham et al. used a method based on smoothing scaled residuals from a Cox

proportional hazards model,

λ(t) = λ0(t)exp(βV ),
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where V is the binary vaccination status. If VE changes over time, based on this

approach, β has to be a function of time and VE is estimated as: ˆV E(t) = 1− ˆHR(t) =

1− eβ̂(t).

In this method, an ordinary proportional hazards model was fit using the par-

tial likelihood function, and the Schoenfeld residuals were calculated, which are the

scaled differences between the actual and expected covariate values at each event time

(Schoenfeld (1982)). These residuals were scaled and added to the coefficient from

the ordinary proportional hazards model on them, then the time-varying regression

coefficient, β(t), was estimated by smoothing the sum of the estimated proportional

hazards coefficient and the rescaled Schoenfeld residuals over time. Conceptually,

they are nonparametrically estimating the instantaneous hazard rate ratio eβ(t), thus

1− V E(t).

In addition, this method also provided a hypothesis test for departures from the

proportional hazards assumption, the null hypothesis is that the vaccine effect does

not vary with time, which is: H0 : β(t) = β for all t.

Tian et al. (2005) suggested a novel, kernel-weighted partial likelihood technique

considered by Valsecchi, Silvestri, and Sasieni (Valsecchi et al. (1996)) and Cai and

Sun (Cai and Sun (2003)) to construct a simple estimation procedure for the Cox

model with time-varying coefficients. They construct pointwise and simultaneous

confidence intervals from the regression parameters over a properly chosen time in-

terval via a simple resampling technique. At each time point, the estimate is obtained

by maximizing a smooth concave function of a p x 1 vector of parameters, where p is

the dimension of the vector of covariates. In our case, p = 1. Furthermore, they show

how to use an integrated function of the estimate for a specific regression coefficient to

examine the adequacy of the proportional hazards assumption for the corresponding

covariate.

We also performed to use multivariable logistic regression with influenza infection
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as the outcome and an interaction of vaccination status and the time between vacci-

nation and symptom onset to examine the association between influenza VE and time

since vaccination among patients with medically attended acute respiratory illness.

In a test-negative study, VE is defined as one minus the ratio of the odds of

infection in vaccinated and unvaccinated. One can fit a logistic regression model:

logit(P (Y = 1)) = β0 + β1 · V + β2 · T + β3 · V · T + β4 ·X + β5 · Z

where Y is the binary test outcome (0 = negative, 1 = positive), V is the binary

vaccination status, T is the time (in days) from vaccination to the day of testing,

X is health status, and Z is the prevalence of infection on the day of onset. Then

log(OR) = β1 + β3 · T . Hence testing the hypothesis of time independent VE is

equivalent to testing: H0 : β3 = 0.

4.3 Results

We compared the proportion of simulations where the null hypothesis of no VE waning

was rejected (p < 0.05) for each case and each method. In a cohort study, we tried

methods proposed by Durham (Durham et al. (1998)) and Tian (Tian et al. (2005))

to test the null hypothesis that the vaccine effect does not vary with time, which is:

H0 : β(t) = β for all t, under 6 cases using data simulated from SimFlu. The results

are presented in Table 4.1. Analyses were conducted using R software version 3.6.3

(R Foundation for Statistical Computing, Vienna, Austria). For a cohort study, we

did not apply the logistic regression method, since the logistic regression model uses

the time of event (infection) for the cases, but there is no “time of event” for the

non-cases.

For case 1 and case 4, there is no true VE waning. By using Durham’s method,

among 1000 simulations about 50 simulations have p-value smaller than 0.05, which
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means about 5% of simulations where the null hypothesis was rejected at 5% signif-

icance level. By using Tian’s method, when the population is homogeneous, which

is case 1, the null hypothesis was rejected at 5% significance level in about 7% of

simulations, and when the population is heterogeneous, the results are very similar

to those from Durham’s method, in about 5% of simulations the null hypothesis was

rejected at 5% significance level.

For case 2 and 5, there is moderate waning, where the per-contact VE’s are 60%,

50%, 40% in months 1, 2, 3, respectively. In Durham’s method, in about 20% to

25% of simulations, the null hypothesis was rejected at 5% significance level, and by

using Tian’s method, about 17% of simulations rejected the null hypothesis at the

5% significance level.

For case 3 and case 6, the true VE is severely waning - per-contact VE’s are

60%, 40%, 20%, respectively. By using Durham’s method, about 70% of simulations

rejected the null hypothesis at the 5% significance level, and by using Tian’s Method,

in about 45% of simulations, the null hypothesis was rejected at the 5% significance

level.

Table 4.1: Proportion of Simulations with p-value < 0.05 in Cohort Study
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Our results suggest that in a cohort study, both Durham’s Method and Tian’s

Method are able to detect the waning under different settings. And the number of

simulations with p − value < 0.05 are both increasing when the severity of waning

increases. However, Durham’s Method has higher power and smaller Type I error

than Tian’s Method.

For a TN study, in addition to Durham’s and Tian’s Methods, we also used the

method based on the multivariable logistic regression model. We used the same

number of study participants in the cohort and TN studies. Unlike cohort studies, in

the TN study we can use the time of testing negative to infection at the time (T ) in

the logistic regression model for the TN controls. In the logistic regression approach,

we tried two models, one includes prevalence and one does not use the prevalence

as an explanatory variable. The prevalence of infection on a given day is estimated

using the number of study participants who are infectious on that day. In our SimFlu

program, the latent and incubation periods coincide and last 2 days, the infectious

period is 4 days, and the test is done on the onset day of symptoms. Then a study

participant who tested positive on day t will be considered infectious on days t, t +

1, t + 2, t + 3.

The proportion of simulations that rejected the null hypothesis at a 5% significance

level in Tian’s Method are less than 2% in all six cases. This method has trouble

in detecting the waning under a test-negative study design. For Durham’s method,

when there is no true waning , in case 1 and case 4, the proportion of rejections

of the null hypothesis at 5% significant level are about 8%. With the severity of

waning increasing, the proportion of simulations rejecting the null hypothesis at the

5% significance level increased in both homogenous population and heterogeneous

population conditions. However, the increase in proportions of rejections are not as

large as they are in cohort study. For a heterogeneous population, comparing to

the case with same waning level in the homogenous population, the proportions of
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simulations that rejected the null hypothesis at 5% significance level are smaller.

For the logistic regression method, no matter with or without the pre-calculated

prevalence as covariate, the waning in six cases can be detected, but in a weak way.

When there is no waning in the population, about 3% of simulations rejected the

null hypothesis at the 5% significance level, and when moderate waning is present,

the proportion of simulations rejecting the null hypothesis at 5% significance level in

the homogeneous population is about over 10%, while in heterogeneous population,

only about 5% simulations rejected the null hypothesis at a 5% significance level.

When severe waning is present, the proportion of simulations that rejected the null

hypothesis at a 5% significance level in the homogeneous population is larger than that

in the heterogeneous population. The logistic regression model without prevalence as

a covariate, in general, showed higher power and smaller type I error than the logistic

regression with prevalence as covariate.

Table 4.2: Proportion of Simulations with p-value < 0.05 in Test-Negative Study

Durham’s method is able to detect the waning in both cohort and TN studies,

but it has higher power in cohort study than in TN study when there is waning in

the population.
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4.4 Discussion

In this Chapter, we tried different methods to detect waning under different cases

using simulated data for both cohort study and test-negative study designs. In a

cohort study, Durham’s method and Tian’s method can detect VE waning, if it exists,

while in a test-negative study, Tian’s method fails to detect the waning.

Durham’s method was previously applied to estimate time-varying efficacy of a

cholera vaccine. In contrast to cholera, influenza virus circulation is generally limited

to a well-defined winter season in temperate regions, and vaccination is required on

an annual basis, except in the tropical regions where influenza circulates throughout

the year. The relatively short influenza season limits power to estimate time-varying

vaccine efficacy. For a cohort study, Durham’s method displayed higher power than

Tian’s method. Although Tian’s method provides reasonable results in a cohort

study, this method has trouble in detecting waning in a test-negative study. For a

test-negative study, the logistic regression method detected the waning when severe

waning was present, although compared to Durham’s method, logistic regression pro-

vided less powerful results. This finding is similar to the results of Ferdinands et al.

(2017), who observed a decrease in effectiveness of influenza vaccine with increasing

time since vaccination for influenza using logistic regression model, but their results

showed a somewhat less pronounced rate of decline compared to the studies using

other methods. There is no established method for modeling the association between

VE and time since vaccination. In order to study the association, a study design

with a large cohort in which influenza VE is measured at multiple time points during

a season with data sufficiently rich to describe time-varying influenza exposure pat-

terns and allow discrimination between putative mechanisms of vaccine action would

be required. Observational studies are currently performed on an annual basis in

the United States, Europe, Canada, and elsewhere to evaluate influenza vaccine ef-

fectiveness. The most common study design is the test-negative study. However, in
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the studies evaluating the duration of influenza vaccine effectiveness using data col-

lected in a test negative study, there are several limitations. In test-negative study,

subjects are enrolled over the season, and the timing of enrollment can be associated

with the likelihood of both influenza vaccination and influenza infection. In addi-

tion, subjects testing negative for influenza virus are susceptible to misclassification

of immune status, since there is increasing probability that a test-negative subject

may have been previously infected but did not seek medical care, especially as the

season progresses. Evidence for intraseason waning of influenza vaccine protection is

growing but inconsistent. The causes of the observed pattern of deceasing vaccine

protection are complicated. Human serologic studies are consistent with a modest

rather than a sharp waning in influenza vaccine protection within a given season.

The antibodies to influenza hemagglutinin typically persisted for >=4 months for

the influenza A(H3N2) component of the vaccine (Petrie et al. (2015)). Alternative

explanations for an observed decline in vaccine protection during an influenza season

include emergence and circulation of a drifted variant less well-matched to the vac-

cine strain, as was observed in 2011-2012 Europe (O’Hagan et al. (2012), White et al.

(2010)). Meanwhile, it is possible that the observed decreasing vaccine protection pat-

tern arose from uncontrolled confounding. Delaying vaccination may cause increasing

risk of early season infection prior to vaccination, while receiving the influenza vac-

cine at the earliest opportunity each season may lead to little or no protection at the

end of the season. Therefore, the waning of vaccination need to be further studied

to help health authorities with the important task of making recommendations for

vaccination.
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Table A.1: List of parameters and other notation

Symbol Definition Values

X Health status
0 - frail
1 - healthy

V Vaccination status
0 - unvaccinated
1 - vaccinated

Y ARI and influenza infection status
0 - no ARI
1 - NFARI
2 - FARI

M Seeking medical care for ARI
0 - no
1 - yes

T Result of test for influenza infection
0 - negative
1 - positive

CA Case/control status in TND study
0 - control
1 - case

CB Case/control status in TCC study
0 - control
1 - case

B Participating in TCC study
0 - no
1 - yes

π
Probability of having better health status

0.7
(i.e. healthy persons)

αx
Probability of being vaccinated for a person of
health status x

βvx
Probability of NFARI for a person of vaccination
status v and health status x

ρβ = β1x

β0x

Ratio comparing vaccinees and non-vaccinees
0.5-2.0

w.r.t. probability of NFARI

ηβ = βv1

βvo

Ratio comparing healthy and frail persons
0.5-1.0

w.r.t. probability of NFARI

γvx
Probability of FARI for a person of vaccination status
v and health status x

ργ = γ1x

γ0x

Ratio comparing vaccinees and non-vaccinees w.r.t.
0.41

probability of FARI

ηγ = γv1

γv0

Ratio comparing healthy and frail persons w.r.t.
0.5-1.0

probability of FARI

δSN
Probability of seeking medical care for ARI for an
unvaccinated frail person with NFARI

δSF
Probability of seeking medical care for ARI for an
unvaccinated frail person with FARI

λ
multiplier for the probability of seeking medical care for

0.5-2.0
FARI or NFARI for a healthy person

ΨF
multiplier for the probability of seeking medical care for

0.5-1.0
FARI for a vaccinated person

τe
Probability that a person of illness/infection status e

τ1 = 0, τ2 = 1
tests positive for influenza infection

[1] Assumes a true VE of 60%. Thus, the probability of FARI in a vaccinee is 40%
that of a non-vaccinee.
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Table A.5: Minimum, Mean and Maximum Standard Errors of VE Estimates under
Various Combinations of Source of Bias

PPPPPPPPPPPP

Source
of Bias1

Design
Scenario2

Test-Negative Traditional Case-Control

Min Mean Max Min Mean Max

None
1 0.06 0.06 0.06 0.05 0.05 0.05
2 0.06 0.06 0.06 0.05 0.05 0.05
3 0.06 0.06 0.06 0.05 0.05 0.05

A
1 0.03 0.05 0.11 0.04 0.05 0.06
2 0.03 0.05 0.10 0.04 0.05 0.06
3 0.03 0.05 0.11 0.04 0.05 0.07

B1
1 0.05 0.05 0.06 0.05 0.05 0.05
2 0.06 0.06 0.07 0.05 0.05 0.05
3 0.04 0.05 0.06 0.05 0.05 0.05

B2
1 0.06 0.06 0.06 0.05 0.05 0.05
2 0.05 0.05 0.06 0.04 0.04 0.05
3 0.06 0.07 0.08 0.05 0.06 0.06

B1,B2
1 0.05 0.06 0.06 0.05 0.05 0.05
2 0.05 0.06 0.07 0.04 0.04 0.05
3 0.04 0.06 0.08 0.05 0.06 0.07

BS
1 0.06 0.06 0.06 0.05 0.05 0.05
2 0.06 0.06 0.06 0.04 0.05 0.04
3 0.06 0.06 0.06 0.05 0.07 0.06

C
1 0.03 0.04 0.06 0.03 0.04 0.05
2 0.03 0.04 0.06 0.03 0.04 0.05
3 0.03 0.05 0.06 0.03 0.04 0.05

D
1 0.06 0.06 0.06 0.05 0.05 0.05
2 0.06 0.06 0.06 0.04 0.05 0.06
3 0.06 0.06 0.06 0.04 0.05 0.06

C,D
1 0.03 0.04 0.06 0.03 0.04 0.05
2 0.03 0.04 0.06 0.02 0.04 0.06
3 0.03 0.05 0.06 0.02 0.04 0.06

B1,B2,C,D
1 0.03 0.04 0.06 0.03 0.04 0.05
2 0.03 0.04 0.07 0.02 0.03 0.06
3 0.02 0.05 0.08 0.02 0.04 0.09

BS,C,D
1 0.03 0.06 0.04 0.03 0.05 0.04
2 0.03 0.06 0.04 0.02 0.06 0.03
3 0.03 0.06 0.04 0.02 0.09 0.04

A,B1,B2,C,D
1 0.02 0.04 0.11 0.02 0.04 0.07
2 0.02 0.04 0.14 0.01 0.04 0.08
3 0.01 0.04 0.15 0.02 0.05 0.12

[1] Source of Bias
A Vaccination affects the probability of NFARI
B1 Health status affects the probability of NFARI
B2 Health status affects the probability of FARI

BS
Health status affects the probability of FARI and NFARI, and the risk ratios
comparing a healthy and a frail person are the same for both types of ARI.

C
Vaccination affects the probability of seeking medical care for FARI,
while it does not affect the probability of seeking medical care for NFARI.

D Health status affects the probabilities of seeking medical care against FARI and NFARI.

[2] Vaccination Scenarios
1 Random vaccination
2 Healthy person more likely than frail persons to be vaccinated
3 Healthy person less likely than frail persons to be vaccinated
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Proofs

Appendix 1: True VE’s in our model

The true VE against SI is:

V ETSI = 1−RRTSI where RRTSI =
P (Y = 2|V = 1)

P (Y = 2|V = 0)
.

Since

P (Y = y|V = v) =
∑
x

P (Y = y|V = v,X = x)P (X = x|V = v)

P (V = v) =
∑
x

P (V = v|X = x)P (X = x)

P (X = x|V = v) =
P (V = v|X = x)P (X = x)

P (V = v)
=

P (V = v|X = x)P (X = x)∑
x P (V = v|X = x)P (X = x)

we have

P (X = 0|V = 0) =
P (V = 0|X = 0)P (X = 0)∑
x P (V = 0|X = x)P (X = x)

=
(1− α0)(1− π)

(1− α0)(1− π) + (1− α1)π
= 1− π,

P (X = 0|V = 1) =
P (V = 1|X = 0)P (X = 0)∑
x P (V = 1|X = x)P (X = x)

=
α0(1− π)

α0(1− π) + α1π
= 1− π,

P (X = 1|V = 0) =
P (V = 0|X = 1)P (X = 1)∑
x P (V = 0|X = x)P (X = x)

=
(1− α1)π

(1− α0)(1− π) + (1− α1)π
= π,

P (X = 1|V = 1) =
P (V = 1|X = 1)P (X = 1)∑
x P (V = 1|X = x)P (X = x)

=
α1π

α0(1− π) + α1π
= π.
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Since, for true VE, we have: α0 = α1. We can get,

P (Y = 2|V = 1) =
∑
x

P (Y = 2|V = 1, X = x)P (X = x|V = 1)

= P (Y = 2|V = 1, X = 0)P (X = 0|V = 1) + P (Y = 2|V = 1, X = 1)P (X = 1|V = 1)

= γ10(1− π) + γ11π

P (Y = 2|V = 0) =
∑
x

P (Y = 2|V = 0, X = x)P (X = x|V = 0)

= P (Y = 2|V = 0, X = 0)P (X = 0|V = 0) + P (Y = 2|V = 0, X = 1)P (X = 1|V = 0)

= γ00(1− π) + γ01π

So that,

RRTSI =
P (Y = 2|V = 1)

P (Y = 2|V = 0)
=
γ10(1− π) + γ11π

γ00(1− π) + γ01π

Therefore,

V ETSI = 1−RRTSI = 1− γ10(1− π) + γ11π

γ00(1− π) + γ01π
Q.E.D.

The true VE against MAI is:

V ETMAI = 1−RRTMAI where RRTMAI =
P (Y = 2,M = 1|V = 1)

P (Y = 2,M = 1|V = 0)
.

Since

P (Y = 2,M = 1|V = v,X = x) = P (M = 1|Y = 2, V = v,X = x) ∗ P (Y = 2|V = v,X = x)
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P (Y = 2,M = 1|V = v) =
∑
x

P (Y = 2,M = 1|V = v,X = x)P (X = x|V = v)

we can get,

P (Y = 2,M = 1|V = 1) =
∑
x

P (Y = 2,M = 1|V = 1, X = x)P (X = x|V = 1)

= δ210γ10(1− π) + δ211γ11π

P (Y = 2,M = 1|V = 0) =
∑
x

P (Y = 2,M = 1|V = 0, X = x)P (X = x|V = 0)

= δ200γ00(1− π) + δ201γ01π

Therefore,

RRTMAI =
P (Y = 2,M = 1|V = 1)

P (Y = 2,M = 1|V = 0)

=
δ210γ10(1− π) + δ211γ11π

δ200γ00(1− π) + δ201γ01π
=
δSFΨFγ10(1− π) + δSFΨFλγ11π

δSFγ00(1− π) + δSFλγ01π

=
ΨF [γ10(1− π) + λγ11π]

γ00(1− π) + λγ01π

Hence,

V ETMAI = 1−RRTMAI = 1− ΨF [γ10(1− π) + λγ11π]

γ00(1− π) + λγ01π
. Q.E.D.
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Appendix 2: Model-based estimates of VE

The model-based estimate from TN study is:

V EA = 1−ORA, where ORA =
P (CA = 1, V = 1|M = 1)P (CA = 0, V = 0|M = 1)

P (CA = 1, V = 0|M = 1)P (CA = 0, V = 1|M = 1)
.

ORA can be written as:

ORA =
P (M = 1, T = 1, V = 1)P (M = 1, T = 0, V = 0)

P (M = 1, T = 1, V = 0)P (M = 1, T = 0, V = 1)

P (M = 1, T = 1, V = v) =
∑
x

P (M = 1, T = 1, V = v|X = x)P (X = x)

=
∑
x

P (T = 1|M = 1, V = v,X = x)P (M = 1, V = v|X = x)P (X = x)

=
∑
x

P (Y = 2|M = 1, V = v,X = x)P (M = 1|V = v,X = x)P (V = v|X = x)P (X = x)

=
∑
x

P (M = 1|Y = 2, V = v,X = x)P (Y = 2|V = v,X = x)P (V = v|X = x)P (X = x)

P (M = 1, T = 0, V = v) =
∑
x

P (M = 1, T = 0, V = v|X = x)P (X = x)

=
∑
x

P (T = 0|M = 1, V = v,X = x)P (M = 1, V = v|X = x)P (X = x)

=
∑
x

P (Y = 1|M = 1, V = v,X = x)P (M = 1|V = v,X = x)P (V = v|X = x)P (X = x)

=
∑
x

P (M = 1|Y = 1, V = v,X = x)P (Y = 1|V = v,X = x)P (V = v|X = x)P (X = x)
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So that,

P (M = 1, T = 1, V = 0) = δ200γ00(1− α0)(1− π) + δ201γ01(1− α1)π

= δSF [γ00(1− α0)(1− π) + λγ01(1− α1)π]

P (M = 1, T = 1, V = 1) = δ210γ10α0(1− π) + δ211γ11α1π

= δSFΨF [γ10α0(1− π) + λγ11α1π]

P (M = 1, T = 0, V = 0) = δ100β00(1− α0)(1− π) + δ101β01(1− α1)π

= δSN [β00(1− α0)(1− π) + λβ01(1− α1)π]

P (M = 1, T = 0, V = 1) = δ110β10α0(1− π) + δ111β11α1π

= δSN [β10α0(1− π) + λβ11α1π]

Therefore,

V EA = 1−ΨF [γ10α0(1− π) + λγ11α1π][β00(1− α0)(1− π) + λβ01(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][β10α0(1− π) + λβ11α1π]
. Q.E.D.

The model-based estimates from TCC study is:

V EB = 1−ORB, where ORB =
P (CB = 1, V = 1|B = 1)P (CB = 0, V = 0|B = 1)

P (CB = 1, V = 0|B = 1)P (CB = 0, V = 1|B = 1)
.

ORB can be written as:

ORB =
P (M = 1, T = 1, V = 1)P (Y = 0, V = 0)

P (M = 1, T = 1, V = 0)P (Y = 0, V = 1)
.
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Since,

P (Y = 0, V = v) =
∑
x

P (Y = 0, V = v|X = x)P (X = x)

=
∑
x

P (Y = 0|V = v,X = x)P (V = v|X = x)P (X = x)

and P (Y = 0|V = v,X = x) = 1− P (Y = 1|V = v,X = x)− P (Y = 2|V = v,X =

x) = 1− γvx − βvx, so we have:

P (Y = 0, V = 0) = (1− γ00 − β00)(1− α0)(1− π) + (1− γ01 − β01)(1− α1)π

P (Y = 0, V = 1) = (1− γ10 − β10)α0(1− π) + (1− γ11 − β11)α1π

Therefore,

V EB = 1−ΨF [γ10α0(1− π) + λγ11α1π][(1− γ00 − β00)(1− α0)(1− π) + (1− γ01 − β01)(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][(1− γ10 − β10)α0(1− π) + (1− γ11 − β11)α1π]
. Q.E.D.

Appendix 3: Standard Errors of the VE Estimates

For TN study, the approximate standard error of V EA is:

SE(V EA) = SE(ORA) ≈ ORA ∗ SE(log(ORA))

≈ pA11(1− pA01)

pA01(1− pA11)

√
1

NA

[ 1

PA
V 1P

A
11

+
1

(1− PA
V 1)PA

01

+
1

PA
V 1(1− PA

11)
+

1

(1− PA
V 1)(1− PA

01)

]
where NA is the number of persons who were tested for influenza (M=1), i.e., the

total sample size for the TN study. The probabilities (pAV 1, pA01, pA11) can be written

in terms of the parameters defined earlier.
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Base on what we got earlier, we know

P (M = 1, V = 1) =
∑
t

P (M = 1, V = 1, T = t)

= δ110β10α0(1− π) + δ111β11α1π + δ210γ10α0(1− π) + δ211γ11α1π

= α0(1− π)[δSNβ10 + δSFΨFγ10] + α1πλ[δSNβ11 + δSFΨFγ11]

P (M = 1, V = 0) =
∑
t

P (M = 1, V = 0, T = t)

= δ100β00(1− α0)(1− π) + δ101β01(1− α1)π + δ200γ00(1− α0)(1− π) + δ201γ01(1− α1)π

= (1− α0)(1− π)[δSNβ00 + δSFγ00] + (1− α1)πλ[δSNβ01 + δSFγ01]

Thus,

P (M = 1) =
∑
v

P (M = 1, V = v)

= (1− α0)(1− π)[δSNβ00 + δSFγ00] + (1− α1)πλ[δSNβ01 + δSFγ01]

+ α0(1− π)[δSNβ10 + δSFΨFγ10] + α1πλ[δSNβ11 + δSFΨFγ11]

= (1− π)[(1− α0)(δSNβ00 + δSFγ00) + α0(δSNβ10 + δSFΨFγ10)]

+ πλ[((1− α1))(δSNβ01 + δSFγ01) + α1(δSNβ11 + δSFΨFγ11)]

Therefore, we have

P
A
V 1 = P (V = 1|M = 1) =

P (V = 1,M = 1)

P (M = 1)

=
α0(1− π)[δSNβ10 + δSFΨF γ10] + α1πλ[δSNβ11 + δSFΨF γ11]

(1− π)[(1− α0)(δSNβ00 + δSF γ00) + α0(δSNβ10 + δSFΨF γ10)] + πλ[((1− α1))(δSNβ01 + δSF γ01) + α1(δSNβ11 + δSFΨF γ11)]
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pA01 =
P (M = 1, T = 1|V = 0)

P (M = 1|V = 0)
=
P (M = 1, T = 1, V = 0)

P (M = 1, V = 0)

=
δ200γ00(1− α0)(1− π) + δ201γ01(1− α1)π

δ100β00(1− α0)(1− π) + δ101β01(1− α1)π + δ200γ00(1− α0)(1− π) + δ201γ01(1− α1)π

=
δSF [γ00(1− α0)(1− π) + λγ01(1− α1)π]

(1− α0)(1− π)[δSNβ00 + δSFγ00] + (1− α1)πλ[δSNβ01 + δSFγ01]

PA
11 =

P (M = 1, T = 1|V = 1)

P (M = 1|V = 1)
=
P (M = 1, T = 1, V = 1)

P (M = 1, V = 1)

=
δ210γ10α0(1− π) + δ211γ11α1π

δ110β10α0(1− π) + δ111β11α1π + δ210γ10α0(1− π) + δ211γ11α1π

=
δSFΨF [γ10α0(1− π) + λγ11α1π]

α0(1− π)[δSNβ10 + δSFΨFγ10] + α1πλ[δSNβ11 + δSFΨFγ11]

In the TCC study, the approximate standard error of V EB is:

SE(V EB) = SE(ORB) ≈ ORB ∗ SE(log(ORB))

≈ pB11(1− pB10)

pB10(1− pB11)

√
1

NB
C1p

B
11

+
1

NB
C1(1− pB11)

+
1

NB
C0p

B
10

+
1

NB
C0(1− pB10)

where N b
C1 is the number of cases and N b

C0 is the number of controls. The probabilities

(pB10,pB11) can be written in terms of the parameters defined earlier:

pB10 = P (V = 1|CB = 0, B = 1) =
P (Y = 0, V = 1)

P (Y = 0)
=

P (Y = 0, V = 1)∑
v P (Y = 0, V = v)

=
(1− γ10 − β10)α0(1− π) + (1− γ11 − β11)α1π

(1− π)[(1− γ10 − β10)α0 + (1− γ00 − β00)(1− α0)] + π[(1− γ11 − β11)α1 + (1− γ01 − β01)(1− α1)]

pB11 = P (V = 1|CB = 1, B = 1) =
P (M = 1, T = 1, V = 1)

P (M = 1, T = 1)
=

P (M = 1, T = 1, V = 1)∑
v P (M = 1, T = 1, V = v)

=
δ210γ10α0(1− π) + δ211γ11α1π

δ200γ00(1− α0)(1− π) + δ201γ01(1− α1)π + δ210γ10α0(1− π) + δ211γ11α1π

=
ΨF [γ10α0(1− π) + λγ11α1π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π] + ΨF [γ10α0(1− π) + λγ11α1π]
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Appendix 4: Unbiasness under Random and Non-random Vac-

cination

Unbiasness under Random Vaccination

If the vaccination is done at random, then α0 = α1. The VE estimates can be written

as:

V EA = 1− ΨF [γ10(1− π) + λγ11π][β00(1− π) + λβ01π]

[γ00(1− π) + λγ01π][β10(1− π) + λβ11π]

V EB = 1− ΨF [γ10(1− π) + λγ11π][(1− γ00 − β00)(1− π) + (1− γ01 − β01)π]

[γ00(1− π) + λγ01π][(1− γ10 − β10)(1− π) + (1− γ11 − β11)π]

(1) If ρβ = ΨF = 1, and one of the following conditions is satisfied, then V EA =

V ETSI .

(a) λ = 1;

(b) ηγ = 1.

Proof :

Since ρβx = ΨF = 1, then β10

β00
= β11

β01
= ΨF = 1. We have:

β10 = β00 and β11 = β01.
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So,

V EA = 1− ΨF [γ10(1− π) + λγ11π][β00(1− π) + λβ01π]

[γ00(1− π) + λγ01π][β00(1− π) + λβ01π]

= 1− γ10(1− π) + λγ11π

γ00(1− π) + λγ01π

If (a) λ = 1 is satisfied, so

V EA = 1− γ10(1− π) + γ11π

γ00(1− π) + γ01π
= V ETSI .

If (b) ηγ = 1 is satisfied, then γ01 = γ00 and γ11 = γ10. Thus,

V ETSI = 1− γ10(1− π) + γ11π

γ00(1− π) + γ01π
= 1− γ11

γ01

.

Hence,

V EA = 1− γ10(1− π) + λγ11π

γ00(1− π) + λγ01π
= 1− γ11(1− π) + λγ11π

γ01(1− π) + λγ01π
= 1− γ11[(1− π) + λπ]

γ01[(1− π) + λπ]

= 1− γ11

γ01

= V ETSI Q.E.D.

(2) If ρβ = 1,then V EA = V ETMAI

Proof :

Since ρβ = 1, then β10

β00
= β11

β01
= 1.

So,

V EA = 1− ΨF [γ10(1− π) + λγ11π][β00(1− π) + λβ01π]

[γ00(1− π) + λγ01π][β00(1− π) + λβ01π]

= 1− ΨF [γ10(1− π) + λγ11π]

γ00(1− π) + λγ01π

= V ETMAI Q.E.D.
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(3) If λ = 1 and 1 − γ1x − β1x = ΨF (1 − γ0x − β0x), where x = 0, 1,then

V EB = V ETSI

Proof :

Since 1− γ1x − β1x = ΨF (1− γ0x − β0x), where x = 0, 1, and λ = 1, then

V EB = 1− ΨF [γ10(1− π) + λγ11π][(1− γ00 − β00)(1− π) + (1− γ01 − β01)π]

[γ00(1− π) + λγ01π][ΨF (1− γ00 − β00)(1− π) + ΨF (1− γ01 − β01)π]

= 1− γ10(1− π) + λγ11π

γ00(1− π) + λγ01π

= 1− γ10(1− π) + γ11π

γ00(1− π) + γ01π

= V ETSI Q.E.D.

(4) If γ1x + β1x = γ0x + β0x, where x = 0, 1,then V EB = V ETMAI

Proof :

Since γ1x + β1x = γ0x + β0x, x = 0, 1, then

1− γ1x − β1x = 1− γ0x − β0x, where x = 0, 1

So:

V EB = 1− ΨF [γ10(1− π) + λγ11π][(1− γ00 − β00)(1− π) + (1− γ01 − β01)π]

[γ00(1− π) + λγ01π][(1− γ00 − β00)(1− π) + (1− γ01 − β01)π]

= 1− ΨF [γ10(1− π) + λγ11π]

γ00(1− π) + λγ01π

= V ETMAI Q.E.D.



110

Unbiasness under Non-random Vaccination

If the vaccination is not done at random, then α0 6= α1.

(5) If ρβ = ηβ = ηγ = ΨF = 1, then V EA = V ETSI .

Proof :

Since ρβ = ηβ = ηγ = 1, then β00 = β10 = β01 = β11
∆
= β, γ01 = γ00 and γ11 = γ10.

Thus,

V ETSI = 1− γ10(1− π) + γ11π

γ00(1− π) + γ01π
= 1− γ11

γ01

.

So,

V EA = 1− ΨF [γ10α0(1− π) + λγ11α1π][β00(1− α0)(1− π) + λβ01(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][β10α0(1− π) + λβ11α1π]

= 1− [γ11α0(1− π) + λγ11α1π][(1− α0)(1− π) + λ(1− α1)π]

[γ01(1− α0)(1− π) + λγ01(1− α1)π][α0(1− π) + λα1π]

= 1− γ11[α0(1− π) + λα1π][(1− α0)(1− π) + λ(1− α1)π]

γ01[(1− α0)(1− π) + λ(1− α1)π][α0(1− π) + λα1π]

= 1− γ11

γ01

= V ETSI Q.E.D.

(6) If ρβ = 1 and ηβ = ηγ, then V EA = V ETMAI .

Proof :

Since ηβ = ηγ, so β01

β00
= β11

β10
= γ01

γ00
= γ11

γ10
. Then we have: γ11

β11
= γ10

β10

∆
= a, γ00

β00
= γ01

β01

∆
=
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b, and β10

β00
= β11

β01
= 1. Then:

V EA = 1− ΨF [γ10α0(1− π) + λγ11α1π][β00(1− α0)(1− π) + λβ01(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][β10α0(1− π) + λβ11α1π]

= 1− ΨF [aβ10α0(1− π) + aλβ11α1π][β00(1− α0)(1− π) + λβ01(1− α1)π]

[bβ00(1− α0)(1− π) + bλβ01(1− α1)π][β10α0(1− π) + λβ11α1π]

= 1−ΨF ·
a

b

and,

V ETMAI = 1− ΨF [γ10(1− π) + λγ11π]

γ00(1− π) + λγ01π
= 1− ΨF [aβ10(1− π) + aλβ11π]

bβ00(1− π) + bλβ01π

= 1−ΨF ·
a

b

So, V EA = V ETMAI .
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Appendix B

Appendix for Chapter 3

B.1 Correction for Bias A

When only bias A is present and all other biases are absent, we have: ψβ = 1, ψγ =

1, θδ2 = 1, and µδ1 = µδ2 = 1. So, βv1 = βv0, γv1 = γv0. Therefore, the true VE can

be written as: V ETrue = 1− θγ.

Based on the calculation in Chapter 2, we know that:

P (Y = 1|V = v) = βv0(1− π) + βv1π

P (Y = 2|V = v) = γv0(1− π) + γv1π

where π = P (X = 1) is the probability of “healthy” persons among the population.

Assuming the observed 2x2 table of V by Y(V = 0, 1 and Y = 1, 2) is:

Then, the conditional probabilities of Y = 1 given vaccination status can be writ-

V = 0 V = 1
Y = 1 a b
Y = 2 c d
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ten as:

P (Y = 1|V = 0) = β00(1− π) + β01π =
a

a+ c

P (Y = 1|V = 1) = β10(1− π) + β11π = θβ(β00(1− π) + β01π) =
b

b+ d

So, θβ = b(a+c)
a(b+d)

. Similarly, we can get θγ = d(a+c)
c(b+d)

.

Therefore, the model based estimates from TN study when only bias A present

can be written as:

V E = 1−
δ210

δ200
[γ10α0(1− π) + λγ11α1π][β00(1− α0)(1− π) + λβ01(1− α1)π]

[γ00(1− α0)(1− π) + λγ01(1− α1)π][β10α0(1− π) + λβ11α1π]

= 1− [γ11α0(1− π) + γ11α1π][β01(1− α0)(1− π) + β01(1− α1)π]

[γ01(1− α0)(1− π) + γ01(1− α1)π][β11α0(1− π) + β11α1π]

= 1− γ11β01

γ01β11

= 1− θγ
θβ

The estimated VE when only bias A is present is:

ˆV E = 1− θ̂γ

θ̂β
.

The corrected VE estimate can be written as:

ˆV EC =1− θ̂β(1− ˆV E),

where θ̂β is estimated from data and is estimated as θ̂β = n1/N1

n0/N0
, where ni is the

number of persons in TN study who has NFARI with vaccination status i, i = 0, 1,

and Ni is the number of person in the population with vaccination status i, i = 0, 1.
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B.2 Sample Parameter File for SimFlu
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