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Abstract	

	
Estimating	Center	Effects	Using	Multiple	Methods	in	a	Pediatric	Glycemic	Control	

Study		
	

By	Samantha	Shepler		
	
	

Blood	sugar	levels	can	increase	to	unsafe	levels	following	trauma	through	
injury	or	illness	resulting	in	prevalent	hyperglycemia	in	pediatric	ICUs.	This	
condition	has	been	associated	with	many	negative	health	outcomes	including	longer	
lengths	of	stay	and	increased	mortality.	Glycemic	control	protocols	have	been	
presented	as	a	treatment	for	critical	illness	hyperglycemia.	This	multi‐center	study	
created	a	group	of	six	pediatric	ICUs	to	implement	this	type	of	protocol.	The	
protocol	consisted	of	blood	glucose	checks	every	12	hours,	if	the	initial	blood	
glucose	reading	was	>140	mg/dl	an	additional	reading	was	done	within	two	hours.	
If	the	second	reading	was	also	>140	mg/dl	then	insulin	was	delivered.	This	analysis	
aims	to	assess	the	relationship	between	the	ICUs	and	length	of	stay	and	mortality	for	
the	hyperglycemic	pediatric	ICU	patients.	Log‐normal,	gamma,	and	Cox	proportional	
hazards	models	were	proposed	to	model	length	of	stay	with	random	intercepts	to	
allow	for	variation	by	ICU.	The	gamma	regression	model	was	selected	as	the	
principle	method	for	modeling	length	of	stay	due	to	the	distribution	of	the	data	and	
easy	interpretation.	Emory	CICU,	the	single	pediatric	cardiac	ICU	in	the	study,	had	
significantly	shorter	estimated	length	of	stay	adjusting	for	pediatric	logistic	organ	
dysfunction	(PELOD)	score,	a	measure	of	baseline	severity.	Weight	and	if	the	patient	
was	an	infant	were	also	found	to	be	significantly	associated	with	length	of	stay.	
Additionally,	a	logistic	model	was	created	to	model	mortality	with	random	
intercepts	to	allow	for	variation	between	ICU.	The	results	showed	no	significant	
differences	in	odds	of	mortality	across	the	ICUs	but	showed	a	significant	association	
between	mortality	and	PELOD	score.	Our	results	suggest	there	is	a	difference	at	the	
ICU	level	that	our	data	set	is	unable	to	ascertain	which	is	driving	significantly	
different	lengths	of	stay	for	pediatric	ICU	patients.		
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	 1

	
Chapter	I:	Introduction	

	
	
Background	
	
	 Added	stress	on	the	body	due	to	severe	illness	or	injury	can	result	in	high	

blood	sugar.	This	complication	termed	hyperglycemia	has	been	shown	to	be	

associated	with	negative	health	outcomes,	including	longer	hospital	stays	and	

increased	mortality	(Preissig,	Rigby,	&	Maher,	2009).	Glycemic	control	procedures	

have	been	presented	as	an	option	to	reduce	these	outcomes	in	intensive	care	unit	

(ICU)	patients.	A	typical	protocol	for	controlling	hyperglycemia	for	critical	illness	

consists	of	repeatedly	checking	blood	glucose	levels	and	administering	insulin	if	

those	levels	exceed	a	threshold	specified	a	priori.		Since	the	protocol	is	using	insulin	

to	lower	blood	glucose	levels,	there	is	a	risk	of	lowering	the	levels	too	far,	which	

could	result	in	a	number	of	adverse	reactions	such	as	seizures	or	hypoglycemia.	

Hypoglycemia,	or	low	blood	sugar,	is	a	very	serious	condition	that	could	result	in	

death;	this	serious	side	effect	is	one	of	the	main	arguments	against	this	type	of	

protocol.		

	 Foundational	studies	implementing	glycemic	control	protocols	have	been	

principally	focused	on	adult	ICU	patients;	however,		more	recent	projects	have	now	

shown	similar	favorable	health	outcomes	(i.e.	lower	mortality	and	shorter	length	of	

stay)	in	pediatric	ICU	patients	treated	with	these	protocols	(Kandil,	Miksa,	&	

Faustino,	2013).	Even	so,	these	results	have	been	inconsistent,	with	some	studies	

indicating	significant	differences	in	mortality	and	length	of	stay	and	others	

demonstrating	no	decreases	in	negative	outcomes,	while	concurrently	citing	the	risk	
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for	hypoglycemia	as	too	large	(Agus	et	al.,	2012;	Kandil	et	al.,	2013;	Macrae	et	al.,	

2014).	Reducing	rates	of	negative	outcomes	in	ICU	patients,	especially	children,	

would	be	beneficial	for	all	parties	involved;	therefore,	it	is	imperative	to	determine	

what	is	driving	these	results.		

	 A	multi‐site	clinical	study	was	federally	funded	with	two	specific	aims:	(1)	to	

create	a	consortium	of	pediatric	ICUs	that	would	treat	eligible	patients	according	to	

the	critical	illness	hyperglycemia	(CIH)	protocol	proposed	by	Preissig	et	al.	(2009)	

and	(2)	test	the	hypothesis	that	outcomes	from	the	hospitals	with	prior	experience	

using	the	CIH	protocol	would	show	similar	patient	results	to	de	novo	hospitals.	

Problem	Statement		
	

Glycemic	protocols	may	seem	straightforward	to	implement,	but	patient	care	

in	an	ICU	can	be	extremely	complex.	Specifically,	in	a	pediatric	ICU	there	are	diverse	

groups	of	children	with	a	variety	of	conditions	at	differing	levels	of	severity.	Nurses	

and	healthcare	staff	are	responsible	for	a	vast	amount	of	medical	procedures,	on	

which	they	are	expertly	trained	and	practice	routinely.	Glycemic	control	protocols	

are	not	universally	required	in	either	adult	or	pediatric	ICUs,	and	therefore,	many	

healthcare	workers	lack	the	necessary	experience	to	implement	these	protocols,	

while	ensuring	high	quality	of	care.		

It	is	unknown	how	experience	with	the	protocol,	clinical	center,	and	

disparate	patient	populations	are	related	to	the	different	health	outcomes	of	

individuals	whom	receive	glycemic	control	treatment.	It	could	be	possible	that	

nurses	with	less	experience	with	this	type	of	treatment	have	less	optimal	results	and	
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potentially	higher	occurrences	of	hypoglycemia,	resulting	in	the	inconsistency	that	

we	have	seen	in	the	studies.		

Purpose	Statement	
	
	 Our	primary	aim	is	to	investigate	the	relationship	in	glycemic	care	between	

individual	hospitals	(i.e.	nursing	care,	nurse	experience,	and	patient	population)	as	

they	relate	to	the	adverse	outcomes,	prolonged	length	of	stay	and	patient	mortality.	

Specifically,	we	want	to	determine	if	patients	receiving	glycemic	care	from	a	

protocol‐experienced	clinic	have	statistically	shorter	ICU	lengths	of	stay	and	

decreased	risks	of	mortality	relative	to	patients	receiving	treatment	from	hospitals	

newly	instituting	a	hyperglycemia	protocol.	Secondly,	we	want	to	determine	the	

superior	statistical	method	for	modeling	the	association	between	hospital	ICUs	and	

adverse	outcomes	(i.e.	length	of	stay,	and	mortality),	while	adjusting	for	data	

obtained	from	multiple	hospital	sources.			

Significance	Statement		
	

This	research	will	provide	foresight	into	the	efficacy	of	the	CIH	protocol.	

Additionally,	this	work	aims	to	address	incongruences	in	the	literature	by	

identifying	means	of	improving	patient	care	(i.e.	glycemic	control	training	

programs)	and	reducing	drivers	for	inconsistent	results.		
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Chapter	II:	Review	of	the	Literature	
	
	

	
	 The	following	literature	review	provides	necessary	information	and	

justification	for	this	study	and	the	associated	analyses.	First,	the	review	defines	

stress	hyperglycemia	and	explains	its	physiologic	effects	to	demonstrate	the	need	

for	effective	glycemic	control	treatment.	Second,	the	review	summarizes	previous	

ICU	glycemic	control	studies	to	understand	the	protocols,	results,	and	safety	of	the	

treatments.	Third,	the	review	explores	the	use	of	length	of	stay	as	the	outcome	of	

interest,	specifically	pertaining	to	the	different	methods	of	statistical	modeling.		

Last,	the	review	investigates	the	use	of	random	effects	to	adjust	for	variation	

between	hospital	ICUs.		

Stress	Hyperglycemia		

	 Hyperglycemia	is	defined	as	a	blood	glucose	level	greater	than	7.7	mmol/l	or	

140mg/dl	(Preissig,	et	al.,	2009).		High	blood	glucose	levels	during	critical	illness	is	

called	stress	hyperglycemia	because	it	is	thought	to	be	the	body’s	response	to	a	

stressor	such	as	an	injury	or	illness	(Kandil	et	al.,	2013).	While	this	biological	

response	might	be	beneficial	throughout	the	acute	phase	of	illness	or	injury,	chronic	

high	blood	glucose	levels	has	been	linked	with	negative	health	outcomes.	Preissig	et	

al.	(2009)	showed	that	pediatric	postoperative	cardiac	patients	in	the	ICU	that	

developed	hyperglycemia	had	longer	hospital	stays	and	increased	mortality	when	

compared	to	patients	that	did	not	develop	hyperglycemia.	Furthermore,	this	study	

pointed	out	the	ubiquity	of	stress	hyperglycemia	in	pediatric	ICU	patients,	with	

incidence	rates	reaching	84%	in	this	study	and	others.	Patients	needing	vasopressor	
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infusions	(i.e.	deliverance	of	a	drug	to	constrict	blood	vessels	and	raise	blood	

pressure)	had	an	even	higher	incidence	of	hyperglycemia	(reaching	90%),	indicating	

a	population	that	might	benefit	most	from	glycemic	control	protocols.		

ICU	Glycemic	Control	Protocols	

	 Glycemic	control	protocols	have	been	implemented	as	a	possible	solution	for	

stress	hyperglycemia	in	both	adult	and	pediatric	ICU	populations.	Since	this	type	of	

treatment	is	not	yet	universal	and	still	somewhat	controversial,	medical	

associations	do	not	agree	on	blood	glucose‐level	parameters	for	determining	when	

insulin	should	be	delivered	in	critically	ill	adults	(Kandil	et	al.,	2013).	For	adults,	the	

Society	of	Critical	Care	Medicine	recommends	a	target	blood	glucose	range	of	100‐

150	mg/dl;	whereas,	the	American	Diabetes	Association	calls	for	a	target	blood	

glucose	range	of	140‐180	mg/dl.	Glycemic	control	treatment	is	even	more	

contentious	in	pediatrics,	as	there	are	no	consensus	standards	on	target	blood	

glucose	ranges	for	critically	ill	children	at	present,	resulting	in	differing	blood	

glucose	ranges	for	pediatric	glycemic	control	studies.	This	discord	is	evidenced	in	

the	following	trial	descriptions.	Vlasselaers	et	al.	(2009)	conducted	the	first	

randomized	control	trial	(RCT)	implementing	glycemic	control	in	critically	ill	

children.	This	study	set	their	target	blood	glucose	range	to	be	50‐80	mg/dl	for	

children	less	than	1	year	old,	and	70‐100	mg/dl	for	children	1	to	16	years	old.	

Conversely,	Safe	Pediatric	Euglycemia	after	Cardiac	Surgery	(SPECS)	trial,	a	RCT	

using	postoperative	children	older	than	36	months,	set	their	target	blood	glucose	

range	to	be	80‐100	mg/dl	(Agus	et	al.,	2012).	Also,	the	Control	of	Hyperglycaemia	in	

Paediatric	Intensive	Care	(CHiP)	trial,	a	RCT	using	pediatric	ICU	patients	under	the	
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age	of	16,	set	their	target	blood	glucose	range	to	be	72‐126	mg/dl	(Macrae	et	al.,	

2014).		

	 Different	protocols	make	comparing	the	pediatric	ICU	glycemic	control	

studies	increasingly	difficult.	Even	so,	it	is	apparent	that	results	across	these	studies	

have	been	inconsistent.	The	Vlasselaers	RCT	showed	promising	results	

implementing	glycemic	control	in	critically	ill	children	(Kandil	et	al.,	2013).	For	the	

children	randomized	to	the	glycemic	control	treatment,	researchers	found	a	3%	

reduction	in	mortality,	a	decrease	in	the	risk	of	secondary	infection,	and	a	shorter	

length	of	stay	overall.	The	SPECS	trial	did	not	find	any	significant	differences	

between	the	treatment	(i.e.	glycemic	control)	and	control	(i.e.	standard	of	care)	

groups	for	mortality,	healthcare	associated	infections,	or	length	of	stay	(ICU	or	

hospital)	(Agus	et	al.,	2012).	The	CHiP	trial	demonstrated	benefits	for	glycemic	

control	treatment	for	very	specific	outcomes	and	subgroups	(Macrae	et	al.,	2014).	

Compared	to	the	control	group,	the	patients	that	received	the	glycemic	control	

treatment	had	lower	rates	of	renal‐replacement	therapy.	Also,	for	those	patients	

that	had	not	undergone	cardiac	surgery,	length	of	stay	was	13.5	days	shorter	on	

average	for	the	patients	that	received	the	glycemic	control	treatment	compared	to	

the	control	group.		

	 A	significant	concern	pertaining	to	these	studies	was	the	safety	of	glycemic	

control	protocols.	Hypoglycemia	is	a	potentially	serious	side	effect	of	this	treatment,	

occurring	when	too	much	insulin	is	delivered	and	blood	glucose	levels	are	lowered	

to	unsafe	levels.	Definitions	varied	slightly	by	study,	but	the	CHiP	trial	defined	

moderate	hypoglycemia	as	a	blood	glucose	level	between	36	and	45	mg/dl	and	
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severe	hypoglycemia	as	a	blood	glucose	level	below	36	mg/dl	(Macrae	et	al.,	2014).	

The	Vlasselaers	RCT	using	the	glycemic	control	protocol	had	a	25%	incidence	of	

hypoglycemia	in	the	treatment	group	versus	1%	incidence	in	the	control	group	(p‐

value	<0.001)	(Kandil	et	al.,	2013).	Hypoglycemia	was	more	common	in	the	

treatment	group,	but	their	analysis	showed	no	significant	association	with	

hypoglycemia	and	mortality.	The	SPECS	trial	had	a	total	hypoglycemia	incidence	of	

19%,	with	a	severe	hypoglycemic	incidence	of	3%	in	the	treatment	group	compared	

to	9%	and	1%	in	the	control	group,	respectively	(p‐value	<0.001;	p‐value	=	0.030)	

(Agus	et	al.,	2012).	None	of	the	episodes	of	hypoglycemia	resulted	in	any	associated	

complications.	The	SPECS	trial	had	a	mortality	rate	of	2%	for	both	their	treatment	

and	control	groups.	The	CHiP	trial	also	found	higher	rates	of	hypoglycemia	in	the	

treatment	group	compared	to	the	control	group	(Macrae	et	al.,	2014).	The	

proportion	of	the	treatment	group	that	had	moderate	hypoglycemia	was	12.5%	

compared	to	3.1%	in	the	control	group	(p‐value	<0.001)	and	the	proportion	of	the	

treatment	group	that	had	severe	hypoglycemia	was	7.3%	compare	to	1.5%	in	the	

control	group	(p‐value	<0.001).		The	investigators	noted	that	5.9%	of	the	patients	

that	had	an	episode	of	hypoglycemia	also	had	a	seizure	the	same	day,	and	that	in	the	

subgroup	of	patients	that	had	undergone	cardiac	surgery,	hypoglycemia	was	

significantly	associated	with	mortality.	The	researchers	also	noted	that	5.1%	of	the	

patients	in	the	glycemic	control	treatment	died	within	30	days	of	entering	the	trial,	

and	that	10.5%	died	within	a	year	of	entering	the	trial.	Preissing	et	al.	(2009)	

showed	that	glycemic	control	in	a	pediatric	setting	could	be	done	without	an	

increased	risk	of	hypoglycemia.	Their	project	of	20	postoperative	cardiac	patients	
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undergoing	glycemic	control	resulted	in	no	patient	ever	having	a	hypoglycemic	

episode,	defined	as	a	blood	glucose	level	below	40	mg/dl.	While	their	sample	size	

was	small,	the	study	still	showed	promise	in	reducing	hypoglycemia	rates	during	

glycemic	protocol	treatment.			

Modeling	Length	of	Stay		

	 Length	of	stay	is	an	advantageous	outcome	of	interest	for	ICU	studies,	as	it	

can	serve	as	a	proxy	for	both	quality	of	care	and	cost	to	the	healthcare	facility	

(Straney,	Clements,	Alexander,	&	Slater,	2009).		Since	length	of	stay	data	generally	

fails	to	be	normally	distributed	with	long,	skew‐right	tails	and	the	bulk	of	the	data	

clustered	close	to	0,	a	log‐transformation	is	commonly	utilized	when	modeling	this	

characteristic	(Faddy,	Graves,	&	Pettitt,	2009).	Weibull	and	gamma	models	with	log‐

links	are	also	employed,	along	with	many	other	proposed	models	including	Cox	

proportional	hazards	(Basu,	Manning,	and	Mullahy,	2004).	The	log‐link	function	

makes	the	estimated	outcome	from	the	regression	model	equal	to	the	exponential	of	

the	corresponding	coefficients.	Basu	et	al.	(2004)	gauged	the	performance	of	these	

four	models	by	using	simulation	to	examine	prediction	bias.		The	researchers	

determined	model	estimates	highly	depend	on	the	data	to	which	they	are	being	

applied.	Specifically,	the	Cox	proportional	hazards	model	does	not	perform	well	

when	the	proportional	hazards	assumption	is	not	met;	concurrently,	the	log‐

transformed	model	does	not	perform	well	when	the	data	is	generated	using	a	

proportional	hazards	assumption.	Using	simulated	log‐normal,	gamma,	and	

Gompertz	data,	Basu	et	al.	(2004)	found	the	gamma	model	with	a	log‐link	function	

to	performed	reasonably	well	relative	to	its	counterparts	(log‐normal,	Weibull,	Cox	
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proportional	hazards);	concomitantly,	this	result	was	bolstered	when	applied	to	

actual	length	of	stay	data,	again	providing	superior	model	fit	versus	other	statistical	

methods.		

	 Another	complication	when	working	with	length	of	stay	data	is	patient	

mortality	in	the	ICU.	The	Cox	proportional	hazards	model	allows	an	option	to	

include	these	observations	as	censored	events,	but	the	other	models	lack	this	

capability	(Basu	et	al.,	2004).	One	option	to	adjust	for	patient	death	is	to	exclude	the	

patients	that	died	from	the	model	(Straney	et	al.,	2009).	This	option	is	the	most	

straightforward,	but	important	information	is	often	lost.	Alternatively,	the	SPECS	

trial	set	the	length	of	stay	for	the	patients	that	died	to	30	days,	which	still	allows	for	

the	use	of	the	data	(Agus	et	al.,	2012).		This	option	penalizes	the	length	of	stay	

estimates	for	patients	that	die,	but	because	the	selected	30	days	is	an	arbitrary	

number,	the	estimates	may	be	incorrect.		

Center	Effect		

	 A	possible	explanation	for	the	inconsistent	results	of	pediatric	glycemic	

control	protocols	could	be	due	to	differences	at	the	ICU	level.	Random	intercepts	

allow	for	the	quantification	of	variation	of	length	of	stay	at	the	ICU	level,	potentially	

discerning	where	the	quality	of	care	is	above	or	below	the	overall	hospitals’	average	

(Straney	et	al.,	2009).	Multilevel	models	require	a	sufficient	number	of	groups	and	

size	of	groups	in	order	to	give	unbiased	standard	error	estimates	(Maas	&	Hox,	

2005).	Through	simulation,	Maas	and	Hox	(2005)	found	that	standard	errors	for	the	

second‐level	(i.e.	random‐intercept)	variance	components	are	estimated	too	small	

when	the	number	of	groups	is	≤	50.	Using	1,000	simulated	dataset,	they	found	when	
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a	multi‐level	model	has	30	groups,	the	non‐coverage	rate	for	the	second‐level	

intercept	variance	was	8.9%	and	for	50	groups	was	7.4%.		The	95%	confidence	

interval	for	this	parameter	was	therefore,	not	actually	wide	enough	for	30	or	50	

groups.	The	size	of	the	groups	did	not	have	as	substantial	of	an	impact	on	this	

standard	error	as	number	of	groups,	but	coverage	rates	still	improved	as	group	size	

increased.	It	should	be	noted	that	the	estimates	for	the	regression	coefficients,	the	

standard	errors	for	the	regression	coefficients,	and	the	variance	components	were	

not	significantly	affected	by	either	the	number	of	groups	or	the	size	of	the	groups.		
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Chapter	III:	Methodology	

	

	 This	federally‐funded,	prospective	observational	study	hypothesized	that	the	

CIH	glycemic	protocol	was	simple	enough	to	implement	in	non‐protocol‐

experienced	ICUs,	and	patients	within	these	centers	would	experience	similar	

outcomes	as	those	in	protocol‐experienced	ICUs.	This	hypothesis	spurred	a	broader	

question	involving	ICU	characteristics.	Specifically,	the	aim	of	this	analysis	was	to	

investigate	the	association	between	individual	ICUs	and	the	clinical	outcomes	of	

pediatric	patients	receiving	the	CIH	glycemic	protocol	treatment.		

Study	Sites		

	 The	study	took	place	at	six	pediatric	ICUs,	of	which	two	had	previous	

experience	implementing	the	glycemic	control	protocol.	The	two	ICUs	with	

experience	were	the	Medical/Surgical	Pediatric	ICU	(Emory	PICU)	and	the	Sibley	

Cardiac	ICU	(Emory	CICU),	both	at	Children’s	Healthcare	of	Atlanta,	Egleston.		The	

other	four	ICUs	were	Riley	Hospital	for	Children	(Riley)	in	Indianapolis,	IN,	Kosair	

Children’s	Hospital	(Kosair)	in	Louisville,	KY,	Medical	Center	of	Central	Georgia	

(Macon)	in	Macon,	GA,	and	Monroe	Carell	Jr.	Children’s	Hospital	at	Vanderbilt	

(Vanderbilt)	in	Nashville,	TN.		

Study	Glycemic	Control	Protocol		

	 Physicians	ordered	the	glycemic	control	protocol	for	patients	whom	were	

deemed	high	risk	for	developing	hyperglycemia	based	on	pre‐defined	criteria.	High‐

risk	patients	were	generally	on	mechanical	ventilation,	vasopressor	infusions,	

and/or	renal	replacement	therapy.	Patients	who	received	the	glycemic	control	
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protocol	had	their	blood	glucose	levels	checked	every	12	hours	by	a	nurse.	An	

additional	check	was	done	within	two	hours	if	the	initial	reading	was	>	140	mg/dl.	If	

the	second	reading	was	also	>140	mg/dl,	the	patient	was	diagnosed	as	

hyperglycemic	and	insulin	was	delivered	until	a	target	blood	value	was	reached.	The	

target	blood	glucose	range	for	this	protocol	was	80‐140	mg/dl.		

Data			

	 This	study	utilized	a	data	registry	to	obtain	information	from	the	six	

participating	pediatric	ICUs.	Demographic	and	hospital	admission	data	were	

collected	on	all	patients	that	were	placed	on	the	glycemic	control	protocol.	This	data	

included	variables	such	as	age,	weight,	height,	admission	type,	and	surgery	type.		

Additionally,	medical	data	were	only	collected	on	all	patients	that	developed	

hyperglycemia	while	on	the	glycemic	control	protocol,	and	included	data	elements	

related	to:	adverse	health	outcomes,	insulin	delivery,	length	of	stay,	and	time	on	

mechanical	ventilation.	As	a	result	of	this	restriction,	our	analytic	sample	only	

included	those	patients	that	developed	hyperglycemia.		

	 For	this	study,	moderate	hypoglycemia	was	defined	as	a	blood	glucose	level	

between	40	and	60	mg/dl,	and	severe	hypoglycemia	was	defined	as	a	blood	glucose	

level	below	40	mg/dl.	Pediatric	logistic	organ	dysfunction	(PELOD)	scores,	a	

measure	of	baseline	severity,	were	calculated	for	all	glycemic	patients	using	

laboratory	results	regarding	the	cardiovascular,	pulmonary,	neurologic,	

hematologic,	hepatic	and	renal	functions	(Leteurtre	et	al.,	2003).		

Data	Analysis		
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	 The	data	were	managed	in	SAS	9.4	and	analyzed	in	both	SAS	9.4	(Cary,	NC)	

and	R	Project	3.0.2	(Vienna,	Austria).	Categorical	variables	were	described	using	

frequencies	and	percentages.	Chi‐square	tests	of	independence	were	used	to	

compare	the	distributions	of	categorical	variables	by	ICU,	and	an	exact	form	of	the	

Pearson	chi‐square	test	was	used	when	multiple	cell	counts	had	expected	values	

less	than	five	(Fisher’s	test).	Continuous	variables	were	described	using	means	and	

standard	deviations.	Analysis	of	variance	(ANOVA)	tests	were	used	to	compare	the	

means	of	continuous	variables	by	ICU.	If	the	residual	plots	for	the	ANOVA	model	

showed	the	normality	assumption	was	violated,	a	Kruskal‐Wallis	test	was	used	to	

compare	the	continuous	variables	across	ICU.		

	 Our	primary	outcome	of	interest	was	ICU	length	of	stay.	Mixed‐effects	

regression	models	were	used	to	examine	the	association	between	length	of	stay	and	

the	individual	ICUs.	Crude	and	PELOD‐adjusted	log‐normal	and	gamma	regression	

models	with	length	of	stay	as	the	outcome	were	constructed	with	random	intercepts	

to	allow	for	variation	between	centers.	Children	that	died	while	in	the	ICU	were	

excluded	from	these	models	to	avoid	potential	bias	in	the	length	of	stay	estimates.	

This	was	justified	as	children	who	died	soon	after	being	admitted	likely	differ	in	

presentation	as	those	whom	were	discharged	soon	after	being	admitted.	Estimated	

mean	length	of	stay	was	reported	for	each	of	the	ICUs	for	both	log‐normal	and	

gamma	modeling	methods.	The	adjusted	length	of	stay	estimates	were	calculated	

using	PELOD	centered	at	the	analytic	sample	mean.	Additionally,	crude	and	PELOD‐

adjusted	Cox	proportional	hazards	models	were	constructed,	modeling	length	of	

stay	with	shared	frailty	terms	(random	effects)	for	the	ICUs.	Unlike	the	usual	Cox	
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proportional	hazards	model,	the	event	of	interest	was	discharge	from	the	ICU	and	

the	censored	event	was	death.	Due	to	the	model	specification	the	hazard	ratios	

provided	by	the	Cox	proportional	hazards	model	are	interpreted	as	chance	that	a	

patient	from	a	specific	ICU	will	be	discharged	compared	to	the	baseline	hazard	rate	

(average	patient	in	the	study).		The	proportional	hazards	assumption	was	tested	to	

determine	the	usefulness	of	the	model	by	adding	a	time	dependent	covariate	to	the	

model	and	testing	for	significance.	Hazard	ratios	were	reported	for	each	of	the	ICUs.		

	 Based	on	the	estimates	and	the	proportional	hazards	assumption	a	model	

was	selected	to	add	additional	covariates	of	interest	to	further	examine	the	

relationship	between	length	of	stay	and	characteristics	at	the	patient	and	ICU	level.	

The	covariate	selection	for	this	multivariate	model	was	made	using	stepwise	

selection	with	bidirectional	elimination	(i.e.	after	adding	new	a	variable,	the	

variables	already	included	were	tested	again)	using	a	0.05	significance	level.	The	

potential	additional	covariates	were	if	the	patients	was	an	infant,	age,	weight,	sex,	

race,	ethnicity,	admission	type,	glycemic	protocol	experience,	and	if	the	patient	was	

treated	with	insulin.	Variance	inflation	factors	(VIF)	were	calculated	to	assess	for	

multicollinearity	between	the	selected	variables	to	ensure	their	need.	Additionally,	a	

covariance	test	was	conducted	to	verify	the	need	for	the	random	intercepts	for	ICU	

after	adjusting	for	the	additional	significant	covariates.		

	 Our	secondary	outcome	of	interest	was	death.		Logistic	regression	models	

were	used	to	examine	the	relationship	of	mortality	across	the	ICUs.	A	multivariable	

logistic	regression	model	was	constructed	including	random	effects	for	the	ICUs	and	

covariates	of	interest,	specifically	those	considered	in	the	previous	length	of	stay	
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models.	Stepwise	selection	with	bidirectional	elimination	was	employed	using	a	

significance	level	of	0.05.		A	covariance	test	was	conducted	to	determine	if	there	was	

need	for	the	random	intercept	for	ICU	after	adjusting	for	the	significant	covariates.	

Odds	ratios	were	reported	for	each	of	the	ICUs	and	the	covariates	of	interest.		
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Chapter	IV:	Results	

	

Description	of	Sample	

The	final	analytic	sample	contained	364	patients,	49	(13.5%)	from	Emory	

PICU,	50	(13.7%)	from	Emory	CICU,	28	(7.7%)	from	Macon,	159	(43.7%)	from	

Kosair,	62	(17.0%)	from	Riley,	and	16	(4.4%)	from	Vanderbilt.	The	average	age	of	

the	patients	was	8.28	(SD:	7.05)	years,	the	average	weight	was	30.81	(SD:	27.55)	

kilograms,	and	199	(54.7%)	were	male.	Age,	weight,	and	sex	did	not	significantly	

differ	between	the	ICUs	(Table	1).	The	sample	was	principally	white	(64.0%)	and	

non‐Hispanic	(49.3%).	Race	and	ethnicity	were	found	to	significantly	differ	between	

ICUs	(Table	1);	however,	ethnicity	had	a	high	rate	of	unknowns	(44.9%),	as	Kosiar	

specified	this	characteristic	for	only	3.8%	of	their	patients.	This	issue	may	explain	

the	significant	difference	found	for	ethnicity	across	ICUs.	Medical	admissions	made	

up	55.8%	of	the	sample,	with	the	most	common	type	being	general	pediatric	ICU	

(81.8%).	Surgical	admissions	comprised	44.2%	of	the	sample,	with	most	receiving	

cardiovascular	surgery	(64.0%).	Admission	type	and	surgical	type	significantly	

differed	between	the	ICUs	potentially	explained	by	the	differing	specialties	of	the	

ICUs	(Table	1).	Medical	admission	type,	cardiovascular	surgery	type	and	non‐

cardiovascular	surgical	type	did	not	significantly	differ	across	ICUs	(Table	1).	The	

PELOD	scores	and	risk‐adjusted	congenital	heart	surgery	(RACHS)	scores	

significantly	differed	by	ICU,	implicating	the	patients’	baseline	severity	of	illness	

differed	among	ICUs	(Table	1).		
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All	the	patients	in	the	analytic	sample	became	hyperglycemic,	but	due	to	

error,	31	(9.1%)	patients	did	not	receive	insulin.	The	average	length	of	stay	across	

all	hospitals	was	14	(SD:	16.18)	days.	Average	length	of	stay	significantly	differed	by	

ICU	ranging	from	4.24	(SD:	7.49)	days	at	Emory	CICU	to	20.56	(SD:	23.02)	days	at	

Vanderbilt	(Table	2).	The	number	of	patients	that	died	was	70	(19.2%),	and	

mortality	significantly	differed	by	ICU	(Table	2).	Overall,	49	(13.5%)	patients	

developed	moderate	hypoglycemia	and	13	(3.6%)	patients	developed	severe	

hypoglycemia.		The	proportion	of	patients	that	developed	moderate	hypoglycemia	

differed	significantly	across	ICUs	but	severe	hypoglycemia	did	not	(Table	2),	most	

likely	due	to	the	small	proportion	of	patients	that	developed	the	more	severe	case.		

Association	between	Length	of	Stay	and	ICU		

	 The	log‐normal	model,	the	gamma	model	with	a	log‐link	function,	and	the	

Cox	proportional	hazards	model	showed	similar	trends	in	length	of	stay	by	ICU	for	

both	the	crude	and	PELOD‐adjusted	models	(Table	3	&	Table	4).	The	proportional	

hazards	assumption	held	for	the	time‐dependent	covariate	using	site	and	the	log	

length	of	stay	(p‐value	=	0.080),	therefore	suggesting	the	log‐normal	model	would	

not	provide	the	best	fit.	The	Cox	proportional	hazards	model	showed	the	only	ICU	

where	patients	had	a	significantly	higher	chance	of	getting	discharged	was	Emory	

CICU	(Table	4).	The	patients	at	this	ICU	were	estimated	to	be	4.91	(95%	CI:	3.75	–	

6.43)	times	more	likely	to	be	discharged	compared	to	the	average	patient	in	the	

study	after	adjusting	for	PELOD.	Similar	effects	were	seen	in	the	gamma	model	but	

due	to	recommendations	stemming	from	the	literature,	gamma	regression	with	a	

log‐link	was	chosen	as	the	principal	means	of	LOS	analysis.	Furthermore,	its	
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robustness	for	skewed	data	and	ease	of	estimate	interpretation	over	the	Cox	

proportional	hazards	model	better	suit	the	aims	of	this	investigation.	Overall,	the	

data	and	the	analysis	were	most	in	line	with	the	assumptions	of	the	gamma	

distribution.	The	gamma	model	with	a	log‐link	estimated	the	overall	mean	length	of	

stay	to	be	11.74	(95%	CI:	6.56	‐	21.01)	days	after	adjusting	for	PELOD	(Table	3).	The	

only	ICU	with	a	significantly	different	length	of	stay	from	the	overall	mean	was	

Emory	CICU	(p‐value	<	0.001).	After	adjusting	for	PELOD,	the	estimated	length	of	

stay	for	Emory	CICU	was	2.99	(95%	CI:	2.19	–	4.09)	days.	This	effect	was	also	shown	

in	the	crude	model	but	only	became	more	apparent	after	adjusting	for	PELOD.	The	

final	multivariate	model	for	length	of	stay	additionally	included	weight	(p‐value	=	

0.004)	and	if	the	patient	was	an	infant	(p‐value	=	0.002)	(Table	5).	The	model	

estimated	that	for	every	kilogram	increase	in	weight,	length	of	stay	decreased	by	

0.007	(SD:	0.002)	days	or	9.418	minutes.	The	model	also	estimated	that	patients	

who	were	infants	had	a	length	of	stay	0.544	(SD:	0.176)	days	or	13.051	hours	longer	

than	patients	who	were	not	infants.		Therefore,	A	patient’s	length	of	stay	was	

estimated	to	be	longer	if	their	weight	was	lower	and	for	infants.	VIFs	for	the	three	

fixed‐effects	(PELOD,	weight,	and	if	the	patient	as	an	infant)	were	small	and	did	not	

show	signs	of	multicollinearity	(Table	5).	After	adjusting	for	the	additional	

covariates,	the	random	effects	for	ICU	were	still	significant	in	estimating	length	of	

stay	(p‐value	<0.001).		

Association	between	death	and	ICU	

	 The	final	logistic	model	for	death	included	the	random	intercept	for	ICU	and	

PELOD	(p‐value	=	<0.001).	The	model	estimated	that	for	every	one‐unit	increase	in	
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PELOD,	the	odds	of	death	increased	by	1.07	(95%	CI:	1.05	‐	1.10).	After	adjusting	for	

PELOD,	none	of	the	individual	ICUs	patients	had	odds	of	death	significantly	different	

from	the	average	(Table	5),	but	the	random	effects	were	still	significantly	important	

to	the	model	(p‐value	=0.001).		
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Chapter	V:	Discussion	

	

	 Hyperglycemia	is	a	common	issue	for	the	critically	ill	and	thus	is	highly	

prevalent	in	ICU	patients.	In	these	populations,	hyperglycemia	has	been	shown	to	be	

associated	with	negative	health	outcomes,	including	longer	hospital	stays	and	

increased	mortality.	Glycemic	control	protocols	have	been	introduced	as	a	potential	

solution.	Research	has	demonstrated	that	this	type	of	treatment	has	been	beneficial	

in	reducing	mortality	and	length	of	stay	for	adult	ICU	patients	but	results	for	

pediatric	ICU	patients	have	been	inconsistent.		

	 Our	study	intended	to	create	a	group	of	pediatric	ICUs	to	implement	the	

glycemic	control	protocol	with	the	hypothesis	that	the	treatment	was	simple	and	

intuitive	enough	that	ICUs	with	no	previous	experience	with	glycemic	control	

protocols	would	have	similar	outcomes	as	ICUs	with	previous	experience.	For	our	

primary	and	secondary	outcomes,	length	of	stay	and	mortality,	we	created	random‐

effects	models	in	order	to	allow	for	variation	between	the	ICUs	and	to	test	for	

differences.		

	 We	found	that	length	of	stay	significantly	differed	by	ICU	and	that	PELOD	

score,	weight,	and	if	the	patient	was	an	infant	were	significantly	associated	with	

length	of	stay.	It	is	intuitive	that	length	of	stay	differed	by	PELOD	scores	because	it	is	

likely	that	a	patient	that	is	in	critical	condition	would	need	more	care	than	a	less	ill	

patient.	While	weight	and	if	the	patient	were	an	infant	did	not	have	multicollinearity	

issues,	they	seem	as	if	they	measured	very	similar	characteristics,	showing	that	

smaller	children	and	infants	had	longer	lengths	of	stay.	Our	model	for	mortality	
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showed	that	PELOD	scores	were	significantly	associated	death	in	pediatric	ICU	

patients	and	after	adjusting	for	PELOD,	odds	of	death	did	not	significantly	differ	by	

ICU.	Again,	it	is	intuitive	mortality	differed	by	PELOD	scores	because	it	is	likely	that	

a	patient	that	is	in	critical	condition	is	more	likely	to	die	that	a	patient	with	a	less	

severe	illness	or	injury.		

Based	on	this	analysis	we	cannot	make	a	conclusion	on	the	original	

hypothesis,	comparing	protocol‐experienced	and	unexperienced	ICUs.	While	one	of	

the	experienced	ICUs	did	have	a	significantly	shorter	length	of	stay	than	the	average,	

the	other	experienced	ICU	did	not.	When	glycemic	control	protocol	experience	was	

added	to	the	model,	it	did	not	provide	significant	additional	information	when	

already	adjusting	for	the	individual	ICUs.	

Conclusions	

	 We	found	that	in	our	glycemic	control	study,	length	of	stay	for	pediatric	

patients	that	developed	hyperglycemia	differed	significantly	by	ICU	after	adjusting	

for	significant	covariates	(PELOD	score,	weight,	if	the	patient	was	an	infant).	

Specifically,	Emory	CICU	had	a	significantly	shorter	crude	length	of	stay	compared	

to	the	other	5	ICUs	in	the	study	and	this	significant	difference	away	from	the	mean	

became	even	more	pronounced	after	adjusting	for	PELOD	score,	which	occurred	

most	likely	because	the	average	PELOD	score	was	the	highest	at	Emory	CICU.	

	 Glycemic	control	protocols	have	been	previously	studied	in	multiple	

pediatric	ICUs	citing	inconsistent	results	(Kandil,	Miksa,	&	Faustino,	2013).		Since	

the	previous	studies	have	been	randomized,	health	outcomes	including	length	of	

stay	and	mortality	have	yet	to	be	analyzed	across	ICUs	because	randomization	
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should	remove	the	center	effect.	Even	so,	our	results	suggest	that	the	center	could	

help	explain	some	of	the	variation	in	length	of	stay.		

	 Safety	is	extremely	important	when	implementing	a	treatment	that	is	not	yet	

standard	of	care,	especially	when	working	with	pediatric	patients.	Our	study	

reported	rates	of	moderate	and	severe	hypoglycemia	that	were	comparable	to	both	

the	SPECS	and	CHiP	trials,	but	the	mortality	rate	in	our	study	may	be	of	concern.	In	

our	study	19.2%	of	the	patients	died	while	in	the	hospital,	whereas	only	2%	of	the	

patients	died	while	in	the	hospital	during	the	SPECS	trial.	The	CHiP	trial	does	not	

report	this	exact	statistic	but	their	mortality	12	months	after	trial	entry	was	10.5%.	

Both	of	these	studies	had	a	much	smaller	proportion	of	the	patients	that	died,	this	

difference	could	potentially	be	explained	by	differing	patient	populations	but	we	

were	unable	to	ascertain	specifically	why	this	outcome	occurred.		

Implications	

Since	Emory	CICU’s	length	of	stay	was	significantly	shorter	than	all	of	the	

other	participating	ICUs,	it	might	be	of	interest	to	examine	ICU	specialties	in	relation	

to	length	of	stay.	Emory	CICU	was	the	only	strictly	cardiac	ICU	in	the	study,	making	

is	impossible	to	test	if	length	of	stay	was	shorter	for	patients	in	this	type	of	unit	or	if	

the	glycemic	protocol	treatment	worked	better	for	this	subgroup	of	patients.	If	this	

relationship	is	true,	then	glycemic	control	protocols	might	be	best	suited	for	specific	

types	of	patients	and	therefore	driving	inconsistent	results.		

Strengths	and	Limitations	

We	were	able	to	identify	a	significant	difference	in	length	of	stay	between	the	

ICUs.	This	difference	was	still	present	even	after	adjusting	for	nurse’s	experience	
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with	the	glycemic	control	protocol,	admission	type,	and	patient	characteristics.	This	

shows	that	there	is	a	fundamental	difference	in	practice	and	philosophy	between	the	

ICUs	that	is	likely	causing	this	effect.	While	there	are	limitations	to	our	study	and	the	

analysis,	it	provides	a	good	basis	for	more	research.		

	 The	hospitals	in	this	study	were	not	randomly	selected	and	neither	were	the	

patients	that	received	the	glycemic	control	treatment.	Therefore,	the	results	and	

conclusions	may	not	be	generalizable	to	all	hospitals	but	to	only	those	that	

participated	in	the	study	and	to	the	patients	that	received	the	treatment.	Also,	

because	all	patients	that	became	hyperglycemic	were	intended	to	receive	the	

glycemic	control	treatment,	there	was	no	way	to	test	the	effectiveness	of	the	

treatment	because	there	is	no	control	group.	The	few	patients	that	became	

hyperglycemic,	but	mistakenly	were	not	given	insulin,	were	too	small	of	a	sample	to	

provide	useful	comparisons.	We	also	were	unable	to	compare	the	patients	that	

became	hyperglycemic	to	those	who	did	not	as	no	prospective	data	was	collected	on	

the	patients	that	did	not	become	hyperglycemic	after	admission.		

An	additional	concern	for	this	study	is	the	number	of	hospitals	and	number	

of	patients	at	each	hospital.	Our	study	only	had	six	independent	hospitals.	Random	

effects	analyses	can	be	very	sensitive	to	the	number	of	groups	present.	There	is	

concern	that	when	the	number	of	groups	is	much	smaller	than	100,	the	standard	

errors	for	the	random‐level	(i.e.	hospital)	variance	estimates	will	be	too	small.	When	

there	are	30	groups,	the	standard	errors	will	be	estimated	around	15%	too	small	

(Maas	&	Hox,	2005),	and	we	can	assume	that	with	six	groups,	the	standard	error	

estimates	will	be	even	smaller.	The	sample	size	per	group	is	less	of	a	concern	but	he	
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two	of	the	hospitals	that	have	a	sample	size	less	than	50	could	have	biased	standard	

errors	for	the	hospital‐level	variance	estimates.			

Future	Recommendations		

	 Since	the	difference	in	length	of	stay	remained	significantly	different	across	

the	ICUs,	even	after	adjusting	for	the	significant	covariates,	more	research	needs	to	

be	done	to	determine	why	this	difference	still	exists.	One	approach	would	be	to	use	

a	latent	variable	for	measuring	quality	of	care.	Quality	of	care	is	not	something	that	

can	be	ascertained	directly	from	this	dataset	but	could	be	influential	in	determining	

the	association	between	the	individual	ICUs	and	length	of	stay.		

	 It	would	also	be	interesting	to	analyze	glycemic	protocol	implementation	

over	time.	We	could	examine	the	relationship	between	experience	with	the	glycemic	

control	protocol	and	health	outcomes	but	since	comparisons	could	be	made	for	a	

single	institution,	there	would	be	no	need	to	balance	by	patient	population.		
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Tables	
	
	

Table	1:	Patient	Characteristics		

Continuous	variables:	mean(SD);	categorical	variables:	frequency(%)	

	

Table	2:	Patient	Outcomes	

	
Continuous	variables:	mean(SD);	categorical	variables:	frequency(%)	
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Table	3:	Estimated	length	of	stay	for	log‐normal	and	gamma	regression	models	

	
*Significant	effect	(p‐value	<0.05)	

	

Table	4:	Hazard	ratios	for	Cox	proportional	hazard	model		
	 Emory	PICU		 Emory	CICU	 Macon	 Kosair	 Riley	 Vanderbilt	
Crude			 0.77		

(0.65,	0.92)	
3.20		
(2.70,	3.79)*	

1.18		
(0.98,	1.42)	

0.65		
(0.56,	0.75)	

0.80		
(0.68,	0.95)	

0.66		
(0.53,	0.82)	

PELOD	adjusted		 0.76	
(0.58,	0.98)	

4.91		
(3.75,	6.43)*	

0.86		
(0.68,	1.08)	

0.68		
(0.53,	0.87)	

0.63			
(0.47,	0.86)	

0.73		
(0.73,	0.73)		

*Significant	effect	(p‐value	<0.05)	
	
	
Table	5:	Fixed	effects	for	multivariate	gamma	regression	model		
	 Coefficient		 Standard	Error		 P‐value		 VIF		
PELOD	 0.020	 0.005	 <0.001	 1.035	
Weight		 ‐0.007	 0.002	 0.004	 1.199	
Infant	(age	<	1)		 0.544		 0.176	 0.002	 1.213	

	
	
Table	6:	Odds	ratios	for	logistic	regression	model		
	 Emory	PICU		 Emory	CICU	 Macon	 Kosair	 Riley	 Vanderbilt	
PELOD	adjusted	 2.36	

(0.80,	6.97)	
0.30		
(0.09,	1.05)	

0.48		
(0.09,	2.41)	

2.46		
(0.91,	6.66)	

1.79		
(0.59,	5.47)	

0.67		
(0.17,	2.62)	

	


