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Abstract 

 

Spatial distributions and patterns of Hantavirus Pulmonary Syndrome  

in the Western United States 

By Elizabeth Ervin 

 

 

 

Hantavirus Pulmonary Syndrome (HPS) is a rare disease in the United States with a 

high mortality rate of around ~40%. Spread most commonly through deer mice, exposure 

to virus particles occurs with inhalation of aerosolized rodent feces or contact with 

infected mice. HPS has been nationally notifiable since 1995 and some 600 cases have 

since been confirmed. Though deer mice are prevalent across the North American 

continent, human cases of HPS are not consistently spread; most cases occur in the 

western United States.  

Previous studies have analyzed environmental characteristics and host behaviors, but 

neither monitoring of rodent density nor identification of common local environmental 

features appear to be enough in assessing HPS risk for humans. This study analyzes the 

distribution of human cases across four western States (Washington, Oregon, California, 

and Nevada) assessing the resulting patterns through spatial data analysis. Hot-spots of 

increased HPS occurrence were identified and a focused environmental model was built 

from remote sensing data to examine the local variables that may be influencing HPS 

cases around the Sierra Nevada Mountains.  

Conclusions from this study highlight the importance of spatial relationships 

between human cases and cases to the environment. The importance in analyzing 

Hantavirus ecological studies with the inclusion of spatial descriptive statistics in human 

disease is in developing of more sensitive and accurate models to predict areas of high 

infection risk for humans. 
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Introduction 

Hantavirus Pulmonary Syndrome (HPS) causes severe, sometimes fatal, 

respiratory distress in humans. This disease was first described in 1993 following an 

outbreak in the Four Corners region of the United States. The causative agent was 

quickly identified as a new Hantavirus (family Bunyavirdae) and named Sin Nombre 

Virus (SNV). This virus exists chronically in its natural host (the deer mouse, 

Peromyscus maniculatus), which is characteristic of other Hantavirus serotypes [1]. 

Infection in humans occurs when rodent feces containing infectious virus are aerosolized 

and inhaled [2-5]. Currently, rodent-to-human transmission is the only route of infection 

seen in North American; no person-to-person transmission has been reported [1, 4].  

 Deer mouse populations are extensive and widely distributed across North 

America including a wide range of environmental conditions and varying human 

densities (Figure 1). Hantavirus species are endemic in many different rodent populations 

found all over the world [4, 6]. At this time, over 40 Hantavirus genotypes have been 

named in the Americas, 17 of which are found in North America. However, only 6 are 

associated with rodents and currently known to cause HPS in humans [7]. Interestingly, 

despite documented presence of host and virus across the North American continent, HPS 

incidence in humans is not evenly distributed. Most HPS cases are reported in the 

western half of the United States and concentrated in the Four Corners region (Figure 2); 

the same area where SNV was first identified in 1993.  

It is important to note that HPS has been nationally notifiable disease since 1995 

[8]. As such, any confirmed diagnosis is expected to be reported to the Centers for 

Disease Control and Prevention (CDC) through electronic submission within the next 
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reporting cycle [9]. Though still a rare disease in humans, HPS has a high mortality rate: 

of the 30 cases reported to CDC in 2012, 40% were fatal [10]. Understanding this host-

virus relationship is important for predicting risk in humans.  

 

Literature review 

Since the 1993 outbreak, a large number of studies have analyzed environmental, 

host, and human characteristics that may have led to the 1993 outbreak and subsequent 

Hantavirus Pulmonary Syndrome (HPS) cases in humans. Based on these past surveys 

and studies, land cover, elevation, and distance to water are basic commonalities 

associated with increased likelihood of SNV infection in rodent populations. However, 

the link between confirmed virus presence in mice does not appear to correlate to risk in 

humans. Despite a growing consensus on similar environmental variables present in 

previous cases and outbreaks, there is a lack of explanation for the clustering of HPS 

cases in humans in the western United States. Because the relationship between host, 

virus, and humans has not been fully explained by environmental characteristics, 

alternative theories have proposed examining potential mechanisms driving the 

distribution of and meaning behind disease patterns in humans.  

 

Refugia  

 Early studies focused on particular environmental conditions potentially affecting 

rodent densities and how changes in host populations might subsequently change risk of 

Hantavirus infection in humans. One popular hypothesis focuses on the idea of refugia, or 
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places of ideal environmental conditions where deer mice populations and SNV are able 

to persist over time [4, 7, 11, 12].  

 For refugia to exist stability must be maintained among desired environmental 

characteristics or habitat area for the given population; these patches are sustained from 

year to year despite seasonal or cyclic variations across a number of factors (vegetation, 

rainfall, human altered landscapes, etc.). The environmental elements consistently linked 

to higher prevalence of SNV in rodent populations include elevation between 2000m and 

3000m [3, 7, 11, 13], diverse vegetation with an extended growing season [5, 13, 14], and 

measures of precipitation [7, 13, 15-17]. Slope, presence within drainage systems, 

distance to water, deer mouse population density, and distance from humans are previous 

identified  components [3, 7, 11, 13, 14, 16].  

Importantly, the attributes mentioned above may indicate not only consistent 

presence of deer mice populations, but also the level and frequency of SNV infection 

[17]. It has been noted with regularity that presence of deer mice alone is not indicative 

of active, acute SNV infection [2, 7, 13, 16]; some deer mouse populations are sustained 

without presence of Hantavirus. Of course, in the interest of human population health, 

identifying the refugia that contain consistent deer mice populations and active SNV 

infection is critical. 

 Nonetheless, identification of these common environmental characteristics and 

establishment of refugia have failed to explain the spatial pattern of disease occurrence in 

humans. Deer mouse populations extend across North America (Figure 1) covering a 

wide range of environmental conditions with many areas containing all or most of the 

indicated important characteristics listed above; yet, HPS incidence in humans is not 
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evenly distributed (Figure 2). Despite a growing consensus on similar environmental 

variables present in previous cases and outbreaks, the basis for clustering of human HPS 

cases in western States is not known.  

 

Temporal Influences  

In addition to understanding key environmental parameters indicative of sustained 

deer mouse populations, time is an important consideration. Time, on a scale of months, 

years, and or decades, affects a number of aspects in this complex relationship. The SNV 

dynamics within deer mice populations varies between breeding seasons, across short-

scale and long-scale weather patterns, and as a result of changes in land use practices. 

Time changes what is seen at the landscape level and therefore, may be an accompanying 

factor important in understanding the Hantavirus – host – human ecological model.  

Mouse life spans are brief in comparison to humans, and represent time on a 

smaller time scale. Thus, changes in Hantavirus prevalence vary widely over breeding 

cycles within a single year. One study tested antibody prevalence in mouse samples 

reporting prevalence differences from less than 5% to over 60% in the same areas over 

the course of a year [13]. Time, with regard to breeding seasons, may be additionally 

complicating through a delayed response in Hantavirus prevalence measured through 

population.  It is hypothesized that the breeding season one season prior is the most 

influential factor in Hantavirus prevalence [4, 5, 7].  

Another significant aspect of time may be large scale weather patterns. Seasonal 

and cyclical weather patterns like the El Niño/La Niña–Southern Oscillation (ENSO) 

have received much attention, theorized to have important influences on infection rates in 
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mice regardless of presence/absence of refugia [4, 5, 7, 11, 18]. The Trophic Cascade 

Hypothesis suggests an increase in precipitation increases moisture in the soil triggering 

more vegetation growth and amplified productivity. Thus, large scale climatic patterns 

may affect the size and density of deer mouse populations: if more food resources are 

available, rodent populations can increase [3, 4, 18].  

Intuitively, as deer mouse populations increase, susceptible hosts for Hantavirus 

infection increase and increase the probability of contact with other infected individuals 

shedding virus. Consequently, as the number of infected mice in a given area grows, the 

risk to humans intensifies [5, 7, 11].  

Despite the logic surrounding the Trophic Cascade Hypothesis and density 

dependence, the prevalence of Hantavirus infection in deer mice populations frequently 

do not show a synchronous increase as density increases or vice versa [2, 11]. Further, 

there is no correlation between high hantavirus infection prevalence in large deer mice 

populations and cases of human infection [19].  

One further aspect of time affecting deer mice populations may be changes in 

land use practices. Deer mice are described as generalist species in that they are capable 

of surviving in a variety of environments ([4]. However, changes in landscape features 

can disrupt food availability and refugia sites. Available habitat directly effects 

population size by having a finite set of resources capable of sustaining growth [20]. As 

variations in SNV infection risk in humans may depend on the spatial configuration of 

rodent populations within the human landscape [17], it is important to consider the larger 

ecological effects different land use functions can have. The resulting landscape 
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structures, both natural and human influenced, may affect virus distribution within deer 

mouse populations to a greater extent than ecological variables alone [21].   

 

Landscape and Spatial Ecology  

An alternative hypothesis explores the influence of host density and acute 

Hantavirus infections by examining deer mice populations across large regions of space. 

Using the theories of landscape and spatial ecology, local rodent populations are not seen 

as distinct entities, but as part of a larger, more widely distributed population. As such, 

rates of infection within local communities are partially dependent on the degree of 

fragmentation and connectivity between smaller populations. Island Biogeography 

Theory and Metapopulation Theory are two theories offering possible explanations of 

mice population interactions at the landscape level. These both consider the effect of 

refugia within a wider distribution of suitable habitat areas or patches.  

Island Biogeography Theory suggests there is a mainland that serves as a source 

of Hantavirus infections in new “islands” and or reinfection for mice populations in once 

established “islands”, even after local extinction of virus or deer mouse populations occur 

in a given “island” [2, 11, 22]. “Islands” can be in reference to refugia and local habitat 

but also individual deer mouse or humans as hosts for “colonization” of Hantavirus [23]. 

Reinfection is expected after periods of isolation when overall population densities are 

able to grow again to “recolonize” new mouse populations.  

 Metapopulation Theory lessens the restriction of a single mainland and says there 

may by multiple refugia or source sites and all individuals within these refugia patches 

have the ability to populate any of the other available patches [24, 25]. Like Island 
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Biogeography Theory, the ability to repopulate is determined by the level of 

fragmentation and connectivity between “islands” or patches. Both theories offer 

explanations as to why cases seemed to cluster in areas across time periods: they 

hypothesize that within an area of repeated infection, some sort of refugia or viral 

reservoir exists.  

These concepts may aid in the explanations of why cases seem to cluster in the 

same areas across time periods and add to the overall picture of Hantavirus-host 

dynamics. However, to further complicate the relationship, the degree of fragmentation or 

connectivity changes in response to environmental factors (such as those described in the 

Trophic Cascade Hypothesis), changes in land use (often from human activities), and 

changes in population densities in both humans and deer mice populations.   

 

Purpose of Study  

 Combining the aforementioned theories and studies, the Cascade Mountain Range 

and Sierra Nevada Mountains is an intriguing area for application. In preliminary 

mapping of exposure in reported human cases, a distinct pattern emerges: cases appear on 

the eastern side of these mountains with little to no cases appearing on the western slopes. 

This study aims to describe the overall spatial pattern and temporal characteristics of HPS 

cases in California, Nevada, Oregon, and Washington including the identification of 

clusters of cases considering both the time and space of case location.  

Indications to the presence and location of clustering among cases will be 

assessed using a variety of spatial and temporal analyses and software. In areas with 

evidence of clustering, statistically significant differences in variables such as landscape 
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features, environmental conditions, and human populations will be assessed comparing 

areas within a cluster to those outside. The importance in analyzing and understanding 

hantavirus ecological studies with the inclusion of spatial and temporal descriptive 

statistics is to develop more sensitive and accurate models to predict areas of high 

infection risk for humans [4, 7, 17].  

 

Methods 

Study Design  

This retrospective consecutive case series analysis uses information of confirmed 

HPS cases from the national HPS surveillance system surveyed through the Viral Special 

Pathogens Branch at the Centers for Disease Control and Prevention. Because of the 

study design, characteristics surrounding cases, space, time, and environment, were the 

sole targets of interest with no assigned control group [26]. 

 The overall objective is a descriptive spatial data analysis of the spatial and 

temporal characteristics of HPS disease in California, Nevada, Oregon, and Washington 

to associate spatial clustering with concepts of landscape ecology. Assessments were 

made using several software packages including ArcGIS 10.1 by ESRI, Cluster Seer 2.3 

by BioMedware, and GeoDA from the GeoDa Center for Geospatial Analysis and 

Computation at Arizona State University. Their use will further investigate two 

hypotheses:  
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1. Clustering of cases exists in and amongst the four study states with increased 

incidence occurring on the eastern slopes of the Cascade and Sierra Nevada 

Mountain ranges.  

2. Clustering can be explained, in part, by particular environmental characteristics 

surrounding the Sierra Nevada Mountains.  

 

Data Collection Methods 

 Patients meeting the case definition for HPS (acute febrile illness with respiratory 

involvement) and having laboratory confirmation of hantavirus infection (positive hanta 

serum ELISA, RT-PCR, or immunohistochemistry result) were registered by reporting 

States completing a standard Case Report Form including the ZIP Code, county, State of 

residence, and exposure if different from residence. Case data were supplied by the 

Hantavirus Registry managed by the Viral Special Pathogens Branch at the CDC. 

Microsoft Access and Excel were utilized to gather cases listed as having an exposure in 

California, Nevada, Washington, and Oregon. ZIP Code of exposure was the targeted 

variable of interest and every case entry was scrutinized for missing and or incorrect 

information. Whenever possible, questions were answered by referring to original Case 

Report Forms submitted by States when reporting a positive case of Hantavirus infection. 

When no further information was available from these forms, the corresponding state 

health departments were contacted to identify missing information.  

 Cases were included in the analysis based on the level of completeness and 

confidence surrounding exposure information. Most people infected with Hantavirus are 

exposed in their place of residence or some peri-domestic property nearby. Because of 
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this pattern, often a home address was listed with no explicit exposure address. In these 

cases, especially when accompanied by a statement aligning to the fact, home address 

was used as exposure information. In other cases, the address included – either home or 

exposed – was limited to the town and or county name for privacy regions. Fortunately, 

many of these areas are rural with sparse populations such that only one ZIP Code is 

assigned for the corresponding towns and or counties. The United States Postal Service’s 

(USPS) “Look Up a ZIP Code” tool and a Google search for “zip code maps” were used 

to fill in missing ZIP Code information when only a town or county name was supplied.  

 Cases were excluded when both exposure address and place of residence address 

were missing and no supplemental statement explaining possible exposure was present, 

or when individuals had multiple possibilities for exposures listed, such as frequent or 

repeated travel within in several endemic regions.  

 ZIP Code data were obtained through proxies supplied by the U.S Department of 

Commerce, United States Census Bureau. Though ZIP Codes are a trademark of the 

USPS, they are not designed as polygons which can be easily mapped, but are instead, a 

functional network system of lines and points aiding mail delivery [27]. Bridging the gap 

between USPS function and mapping utility are Zip Code Tabulation Area (ZCTA) files 

produced by the U.S. Census Bureau. Each ZCTA is an aerial representation of the USPS 

ZIP Code areas with spatially referenced information for the calculated zip code borders.  

The 2010 ZCTA Relationship file was downloaded which included ZCTA-ZIP 

Code equivalents and comprehensive demographic information collected in the 2010 

National Census. Details for every ZCTA include overall area, the area of only land, the 

area of only water, the estimated 2010 population, and the greater county FIPS (Federal 
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Information Processing Standard) code to which the ZCTA belonged. Information was 

provided for the entire United States and all were deleted except entries from California, 

Nevada, Oregon, and Washington.  

 Coding HPS cases by ZCTA represents case data at the finest level of spatial 

resolution possible. This is important because statistical power decreases as false 

detection of clusters increases with any aggregation of data and ZCTA, though not as 

spatially resolute as point data, as a good alternative, in theory [28].  However, because 

of their irregular shape and patchy distribution, analysis of ZCTA is dysfunctional given 

the input requirements for spatial data analysis. For this reason, HPS cases also were 

coded at the county level.  

 Information on counties in the ZCTA file was limited to the county FIPS code, so 

an additional database was obtained from the Census Bureau. This file included further 

county information, most importantly, county name. A Geographic Comparability File 

was chosen for its inclusion of both the county FIPS code and county name. Additionally, 

this file contained a comparison of every county name and area in 2010 to its name and 

area in 2000 with notes discussing any differences. County names were added to the 

ZCTA Relationship File in Excel adding to the overall data available for each ZCTA, and 

a separate file containing county information and number of HPS cases was created.  

 Shapefiles for use in ArcMap 10.1 were gathered from a variety of sources. 

Administrative files including ZCTA, counties, state lines, and urban areas were obtained 

from the 113th Congressional District TIGER/Line® Shapefiles created by the US 

Census Bureau. These files were created using the Geographic Coordinate System: North 

American Datum 1983. Both a Projected Coordinate System preserving distance (the 
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USA Contiguous Equidistant Conic) and area (the USA Contiguous Albers Equal Area 

Conic USGS version) were used in different analysis and applied to the TIGER 

shapefiles at different times.  

Elevation data from the United States Geological Survey (USGS) was obtained 

with 1000 meter resolution for the entire study area. Simple hydrological models were 

built using these elevation data to create maps of water flow direction, water flow 

accumulation (without consideration to human-altered landscapes), and water flow 

length. Basic watershed and ecological zone shapefiles also were obtained through 

USGS. 

Finally, data on additional environmental parameters including precipitation and 

temperatures were obtained using the United States Department of Agriculture’s (USDA) 

Geospatial Data Gateway. PRISM data, or Parameter-elevation Regressions on 

Independent Slopes Model [29], is the official climatological data for USDA and is 

created from an analytical tool incorporating point data, digital elevation models, and 

other spatial information inputs to generate estimates of climatic parameters including 

precipitation and temperature. Output from this model extrapolates information from 

measured inputs (weather stations, for instance) across a gridded layer taking into 

consideration different time scales (month, year, etc.)” [30]. The PRISM data utilized in 

this analysis included annual rainfall in California and Nevada averaged from 1981 

through 2010, along with maximum and minimum temperature averages calculated 

across the same time period.  
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Analysis 

Descriptive Analysis 

Initially, a series of descriptive analyses were performed for the study area 

including the cumulative number of counts captured through surveillance data and the 

incidence rate of cases occurring in each ZCTA, County, and State. A crude incidence 

rate per 100,000 people was calculated in Excel for each county and ZCTA using the 

2010 population estimates for that area as the estimated population at risk.  

All shapefiles including State lines, county lines, temperature data, rainfall data, 

watershed delineations, and elevation data were added to ArcGIS 10.1. A join was made 

between the ZCTA shapefile in ArcMap containing polygons with assigned ZCTA 

numbers and the ZCTA Excel file. This created an extended attribute table with added 

information on Case count, ZCTA area, population (in both ZCTA and county), county 

name, and county area.  

Chloropleth maps of cumulative case counts and crude incidence rates at both the 

county level and ZCTA level were made including the entire study area as well as for 

each individual State. Incidences, rates and counts, were mapped over several 

environmental features including elevation, ecological zones, and watershed areas, 

visually noting any areas of congruence or pattern.  

 

Spatial Data Statistics 

Further analysis involved a variety of spatial data statistical methods. Tests were 

performed using the software packages ArcGIS 10.1 by ESRI, Cluster Seer 2.3 by 
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BioMedware, and the GeoDa Center for Geospatial Analysis and Computation at Arizona 

State University. Functions within these statistical packages characterize the distribution 

and spatial relationships between areas with and without cases. Relationships were 

calculated using Global indexes of spatial autocorrelation, comparing the event 

(incidence rate or case count) in every individual spatial region to the overall study area 

average. Local indicators of spatial autocorrelation compared every spatial region to 

every one of its neighbors looking for outliers with significantly high or low event 

numbers. Finally, the Getis G*i(d) function was used to describe Hot Spot areas most 

likely to experience increased case occurrence.  

Spatial regions, as initially defined in this dataset, included ZCTAs and counties; 

however, due to complications concerning these regions and the spatial statistical 

functions, additional polygons were created in two Voronoi diagrams containing 

Thiessen Polygons. To create these maps, centroids for all ZCTAs were calculated using 

ArcMap 10.1. Then, using the Geostatistical Analysis function, polygons were created 

around every centroid such that each line in a given polygon was exactly halfway 

between that centroid and its nearest neighbor on that side. These diagrams displaying 

case incidence rate and case count were specifically produced for use in global and local 

autocorrelation testing.  

All four study states were considered in global and local autocorrelation and hot 

spot analysis measurements: California, Nevada, Washington and Oregon. 

Global Spatial Autocorrelation  

Global indices of spatial autocorrelation compared the distribution of case 

incidence rates and case counts within regions across the entire data set. Several 
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statistical tests are available to calculate global autocorrelation and one of the most 

common and well recognized is the Global Moran’s I test [31-34].  The goal of these 

global spatial autocorrelation summaries was to describe the degree to which similar 

observations, HPS cases in this study, occur in neighboring observations or regions [32]. 

This test assumes HPS occurrence is spatially independent of its neighbors, such that 

disease occurs randomly across regions and the population at risk is evenly distributed.  

Moran’s I is defined as:  
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where i and j represent the geographic units (or counties for this test),     is a weight 

determined by the distance between i and j, yi is the number of cases in that county, and N 

is the population of the same county.  

Using the software ClusterSeer, the global spatial analysis test, Moran’s I, was 

used to determine the existence of spatial correlation in both raw incidence and person-

time incidence per 100,000 people. Significance was assessed at the 0.05 level with 999 

repeated Monte Carlo Simulations. Values of the statistic range between -1 and 1 and can 

be compared as the spatial version to the Pearson correlation coefficient [33]. If the null 
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is true, no spatial autocorrelation exists and cases occur randomly, the value of I will be 

0. If the value is positive, there is evidence of positive spatial autocorrelation or 

clustering between similar values and neighboring regions [32]. Negative I values can be 

interpreted as evidence of negative spatial autocorrelation or regular, repeating patterns 

[31, 32].  

Moran’s I tests were also calculated using the software PPA from South Dakota 

State University. Results of this test differ from the single value output from ClusterSeer: 

instead of a single Moran’s I value calculated for the entire study area, this formulation 

calculates an I value at multiple distances which can be displayed visually in a Spatial 

Correlogram using Microsoft’s Excel.  

Local Spatial Autocorrelation  

 Moran’s I and other tests of global indexes of spatial autocorrelation assess 

tendencies in the study area for similar values or disease cases to cluster in certain subsets 

of the overall study area [31, 32, 35]. Because individual regions are compared to the 

global mean of the overall study area, smaller, more local clusters can be averaged away 

and missed completely in the results. Additionally, global indexes provide only 

suggestions of clustering rather than identification of actual clusters. Local indicators of 

spatial association (LISAs) were developed specifically to address these issues and are 

routinely used to define the areas or regions where increased disease incidence rates are 

most likely to occur [32, 35].  

Similarly to global indexes, there are several tests of local association; one of the 

most popular is the Local Moran’s I. This test is analogous to the global Moran’s I except 

an I statistic is calculated for every geographic region as compared to one I for the entire 
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study area [31]. Further, the sum of all calculated Local I values is proportional to the 

overall Moran’s I statistic from the global autocorrelation test [36]. The goal is 

identifying spatial outliers or specific locations where similar and dissimilar rates of HPS 

occur in comparison to neighboring spatial regions. Through this procedure, every region 

is compared to its neighbors with the expectation or null hypothesis that there is no 

difference between HPS crude incidence rate per 100,000 people in one region and the 

HPS incidence rate in its neighboring region.  

The Local Moran’s I is calculated with the following formula: 

       ̅∑   

 

   

    ̅ 

          

where i and j represent the geographic units (counties),     is a weight determined by the 

distance between i and j, Yij are the number of cases in the two regions being compared, 

and N is the population within the selected area. [32]  

Using the software GeoDa developed by Arizona State University, a Local 

Moran’s I analysis was conducted. Spatial weights were created using Queen contiguity 

such that every neighbors in every direction were compared and case incidence in nearer 

neighbors were given a higher weight. Significance was assessed at the 0.05 level with 

999 repeated Monte Carlo Simulations. Output for this test, as stated above, yields an I 

value for every county. Higher values of I indicate stronger local correlations through 

similar counts or incidence between nearby regions, though not necessarily higher count 

of incidence [32].  A LISA Cluster Map was produced displaying results of the Local test 

and the significant differences between counties. Relationships are described as High 
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HPS rate next to High HPS rate (High-High), Low HPS rate next to Low HPS rate (Low-

Low), and so on for High-Low, and Low-High.  

Hot Spot Analysis 

An additional local test was performed at the ZCTA level using the Getis Gi*(d) 

function in ArcMap 10.1 This test is useful in naming hot-spot areas or spatial regions 

with significantly higher (or lower) HPS rates as compared to their neighbors in adjacent 

regions. This is similar to the Local Moran’s I by identifying local areas different from its 

neighbors but with one important distinction: it is not related to a Global indicator of 

spatial association [36] and is determined through vector algebra. Identification of hot-

spot regions allowed a focused assessment of differences, specifically across 

environmental characteristics within a hot-spot area to surrounding spatial regions. 

 

Assessment of Environmental Differences 

 Drawing from published literature, environmental features of particular interest 

included elevation, land cover through ecological regions, temperature, and precipitation. 

Data was collected from USGS and USDA and processed in ArcMap 10.1. For several 

reasons, investigation of environmental features was restricted to California and Nevada. 

One was because of the large study area and the need to reduce computing requirements 

and increase feasibility. The other major reason was because of stability in hot-spot 

results from the Getis G*i(d) tests between these two states.  

  All data were imported into ArcMap in Raster format, expect for ecological 

regions which was recorded by polygons. Initially, all data were reimaged with color: 
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elevation values were unchanged for this visual appraisal, though maximum and 

minimum temperatures and annual precipitation were reclassified by standard deviation 

estimates. Case data of counts and incidence rate by ZCTA and Theissen polygons were 

overlain on each layer file with slight transparency to retain environmental data 

underneath. Maps of cases by elevation, maximum temperature, minimum temperature, 

precipitation, and ecological regions were created.  

 Additionally, a basic hydrology model was created for California and Nevada 

using elevation data. This was done in addition to precipitation averages as another 

measure of water availability through investigation of water flow and drainage patterns. 

Flow direction was assessed for every pixel in the raster data layer in ArcMap 10.1. The 

direction in which water would flow from this point was calculated producing a new 

image. This layer was assessed for any gaps or holes in the data, a common error in 

satellite imagery, and these spots were filled in. A new flow direction map was then 

created allowing further manipulations to evaluate areas where water should accumulate 

based solely on elevation data and the length in space water might flow from a given 

point (drainage). Cases by ZCTA and Voronoi Hot Spots were overlain to consider any 

patterns between the variables.  

 

Sierra Nevada Environmental Model 

 Further assessment of the relationship between environmental features and HPS 

cases centered on one anticipated Hot Spot area: the Sierra Nevada region. Overlaying 

ZCTA centroid point data on semi-transparent ecological regions and elevation, an oval 

shape was drawn over the Sierra Nevada Regions with peak elevation serving as the 
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center and guiding line. Centroids within this region were selected for statistical analysis 

to compare environmental and case differences from one side of the mountains to the 

other. Raster data from the four layers were extracted to the centroid and added to the 

attribute table in ArcMap, which was then exported to SAS as well as Excel for analysis 

in Matlab. 

Special consideration was given to the centroid representing Yosemite, CA: 

ZCTA 95389. In 2012, an outbreak occurred in this area ending with ten confirmed HPS 

cases. Nine of these ten people stayed in the same location (Curry Village Signature 

cabins, now closed) over the summer [37]. Though most cases recorded in the Sierra 

Nevada Region and across the greater study area report an exposure in place of residence 

or some area, Yosemite is occupied predominantly by visitors, especially during summer 

months. Additionally, nine of these ten cases represent only one exposure location. For 

these atypical characteristics, statistical models were built first including the outbreak and 

then again excluding nine of the ten cases. The tenth case was exposed in a different 

region of the park and was included in both models. Matlab and SAS were used in 

regression modeling.  

 

Results 

Descriptive Analysis 

 Of the over 600 cases of HPS that have been reported across the United States and 

recorded in this database since 1995, 144 or nearly 24% of cases have a likely exposure 

in California, Nevada, Washington, and Oregon. After investigating original Case Report 
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Forms and communications with State Public Health Departments, a final count of 124 

cases listed among 91 different ZCTAs remained in the dataset based on completeness of 

exposure information. This represents approximately 86% of all reported cases occurring 

in nearly 3% of all ZIP Codes from within the four targeted States. 

Human cases of HPS occurred at varying frequencies and percentages across 

States (Figure 3). Between the four states, 59 out of 150 counties, nearly 40%, reported at 

least one case of HPS since 1995 (Table 1). 39% of counties with HPS occurred in 

California which was also the state with the most overall reported HPS cases (44% or 

55/124 cases). Washington and Oregon contributed similarly in percentage to the overall 

number of counties with cases, ~25%. Though Nevada’s 10 counties with reported HPS 

cases made up only 11% of the overall total, this figure represents nearly 60% of all of 

Nevada’s counties – the highest percentage of counties affected when looking on a State-

by-State basis.     

 Overall HPS case percentages at the ZCTA level of resolution were a degree of 

magnitude less when compared to the county level. A total of 2962 ZCTAs exist between 

the four study states and only 3% of all ZCTAs have reported HPS cases (Table 2). 

Similarly to counties’ statistics, the vast majority of ZCTAs, nearly 60%, came from 

California and least overall contrition from Nevada, nearly 6%.    

 Chloropleth maps of case count and crude incidence were mapped in ArcGIS 10.1 

at both the county level and the more spatially resolute ZCTA level. Mapping by counties 

of both case counts and incidence rates resulted in large areas of color, indicative of HPS 

case occurrence (Figures 4, 5). Contrastingly, ZCTAs returned a more detailed, specific 

location of previous HPS cases but also highlighted an unanticipated issue – large gaps of 
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space (represented in gray) not included in any ZCTA or ZIP Code area (Figures 6a-d, 

7a-d). These areas include national parks, water bodies, other federal lands, and areas 

without human populations (and without any need of mail delivery services). Over 

concern of statistical power with so much missing information on the one hand, and over-

estimating HPS influence on the other hand [38], the alternative method using Voronoi 

Diagrams of Thiessen polygons was also coded with cases of cumulative counts and 

incidence rates (Figures 8, 9).  

 HPS cases were also mapped by ZCTA across ecological zones, watershed areas, 

and elevation (Figures 10, 11, 12). When mapping HPS cases with ecological zones, a 

notable trend can be seen running north to south between edges of different zones 

denoted by a red line drawn in Figures 10a and 10b. With the exception of the grouped 

cases in eastern Washington, many case ZCTAs including those in western Washington, 

eastern Oregon, and possibly central Nevada follow a similar pattern with cases occurring 

along edges of ecological zones. Central Nevada is difficult to assess accurately given the 

large size of ZCTAs.  

 Likewise, cases across watershed areas tend to occur along boundary areas 

(Figures 11a, 11b). Elevation may be the better explanation as watersheds depend in part 

on elevation (and gravity). Comparing watershed boundary lines to the elevation map 

(Figures 12a and 12b), the association between peak elevation regions and lines 

delineating watershed becomes apparent. This is particularly true in the Sierra Nevada 

Regions where cases by and large appear on the eastern side of watershed boundaries 

moving along the mountains’ peak elevation ridge.  
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Spatial Data Statistics  

As stated previously, in an effort to preserve statistical power and limit 

overestimation of HPS risk, Voronoi Diagrams were used in autocorrelation and cluster 

analyses. With ZCTAs being small, irregularly shaped, and sometimes separated by large 

distances of open space, the statistical tests needed for spatial data analysis at both the 

global and local level were simply not able to perform well under these conditions. 

Because the global and local statistics function best with similarly shaped neighboring 

polygons, incidence rates and case counts were initially tested at the county level. 

However, the large range of size and population densities within counties was too 

extreme and may overgeneralize Hantavirus presence. The variance between counties 

reduces reliability in autocorrelation test results and analysis was therefore conducted 

through Voronoi Maps of case count and incidence rate (Figures 11, 12).  

Global Spatial Autocorrelation 

Moran’s I test results using case count and incidence rate from Voronoi Maps 

through ClusterSeer yielded a Moran’s I = 0.112608 for case counts and Moran’s I = 

0.121650 for incidence rate.  Though the values are small, only slightly above 0, both are 

significant at the 0.05 level and both are positive evidence for spatial autocorrelation or 

clustering at the Voronoi polygon level of resolution (Table 3, 4).  

The additional Global Moran’s I test run with PPA software from South Dakota 

State University yielded a output with columns of incremental distances and an 

accompanying Moran’s I value estimate for every increasing distance level. This 

information was exported into Microsoft’s Excel creating two Spatial Correlograms 

visually representing the statistic and displaying distances where autocorrelation is 
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maximized (Figure 13, 14). Though the single value resulting from ClusterSeer’s analysis 

showed only a hundredth of a decimal difference between case counts and incidence 

rates, the maximized distance displayed in the Correlograms was approximately double 

for incidence rates as compared to cumulative counts. The slope of the line is smoother as 

well. This is not surprising given that incidence rates per 100,000 people are a technique 

used to make differing units or events more comparable.  

Local Spatial Autocorrelation  
 

 The LISA test in GeoDa yielded two maps for each test of local autocorrelation: a 

LISA Cluster Map and an accompanying Significance Map (Figures 15-18). Comparing 

Cluster Maps against each, similar numbers and locations of relationships deemed High-

High were generated. The largest discrepancies between case counts and incidence rates 

were in the distributions of polygons assessed to have a Low-High relationship in 

comparison to their neighbors. Overall assessment of cluster locations was comparable 

with some differences occurring across Washington and Oregon. 

The Significance Maps displays statistical significance of each polygon. 

Considering significant clustering of case counts, 208 polygons had significantly 

different relationships at the 0.05 level compared to their neighbors and 112 polygons 

were significant at the 0.01 level. Likewise, the incidence rate Significant Map returned 

122 polygons significant at the 95% level and 90 significant at the 99% confidence level. 

Importantly, these Significance Maps are useful in showing statistical significance but not 

in determining clusters of locally high or low values.  



25 

 

Hot Spot Analysis 

 Application of the Getis Gi*(d) Local Hot Spot assessment in ArcMap 10.1 

yielded some surprising results. While hot spot regions in California and Nevada were 

similar between application of case counts and incidence rates, results in Washington and 

Oregon varied significantly. Figures 19 and 20 display the initial output from 

ArcMap10.1. After correcting for the multiple comparisons and restricting significance to 

only those polygons with a z-score > 3.71 Figures 21 and 22 were created. The contrast 

between case count and case incidence rate is more apparent in these images.  

 When only considering counts, a significant hot spot area is identified in Eastern 

Washington; however, in the map considering case incidence rate, the hot spot disappears 

completely and instead, an area in Oregon is identified. Smaller differences between 

these two images fall in eastern California and central Nevada. With only bearing in mind 

case counts, the Getis statistic generated two distinct hot spot regions – one mostly in 

east-central California, slightly spilling over into Nevada and another oblong-shaped 

cluster in central Nevada. When looking at incidence rates per 100,000 people, however, 

the two areas were combined into one large region.  

 

Environmental Differences  

 Displaying cases, either through ZCTA or significant Getis’ hot spots, across the 

different environmental landscapes generated from raster data produced several 

interesting figures. In many cases, the environmental features encompassed by cases 

within the two classifications (ZCTAs vs. Hot Spots) were different; and other times, the 

characteristics were similar. Elevation and cases, for instance, either within ZCTAs or 
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Voronoi polygons, displayed previous HPS cases falling predominately on areas of 

higher elevation (Figures 23). 

 Mapping of precipitation averages and cases, on the other hand, presented a very 

different situation: Instead of most cases falling in similar parameter ranges (like 

elevation), the Voronoi hot spot spread across the Sierra Nevada Mountains with half of 

the hot-spot region in an area receiving high precipitation and the other half in an area 

with very little annual precipitation (Figure 24). Patterns across Ecological Zones are also 

less distinct with displaying the hot-spot of Voronoi polygons in comparison to ZCTAs 

(Figure 25).  

 Maximum temperature averages, similarly to precipitation, varied across the 

Sierra Nevada Mountains, such that the hot-spot identified through the Getis G*i(d) 

contains both extremes captured in the maximum temperature averages. Minimum 

temperature averages in comparison to the case classifications, alternatively were more 

similar to patterns seen with elevation. Cases, either in ZCTAs or the hot-spots appear 

mostly in the lower extremes of minimum temperature averages. Comparing the two 

temperature images together, cooler temperatures in both seem to contain most of the 

HPS cases for these states (Figures 26, 27).   

 Finally, displaying flow length created within the hydrology model together with 

elevation, created a striking 3-D image presenting water pathways amongst mountain 

passages down through coastal drainage sites. Cases were inserted on to the image and an 

interesting pattern between ZCTA cases appeared in the mid-Sierra Nevada range 

moving south and curving towards the coast. These cases seem to be following both the 
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eastern edge of the mountains and an extensive drainage channel (Figure 28). Additional 

images resulting from the hydrology model are included (Figures 29a-d).   

 

Sierra Nevada Modeling Results  

The study area in which modeling was attempted contained 213 centroid points 

calculated from ZCTA polygons. Dividing this region in half yielded 112 points coded as 

being on the “west” side of the Sierra Nevada Range and 102 coded as East (Figure 30). 

In trying to determine statistical differences between mountain sides and cases counts, 

results were insignificant until addressing the issue with the 2012 outbreak. Removing 

nine cases can be justified as these cases were both uncharacteristic and not 

representative of usual HPS occurrence. Additionally, they signify a single exposure site 

– it was human behaviors and not environmental characteristics that stimulated this 

outbreak.  

A stepwise linear regression model was selected with total case counts as the 

dependent variable and environmental characteristics as the independent variables: 

minimum temperature, maximum temperature, precipitation, elevation, flow 

accumulation, and orientation in the mountains (East or West). The final model chosen: 

 

Total case count = -7.1508 + 0.112(Max. Temp.) + 0.001(Elevation)  

      + 2.904(Orientation) – 0.085(Min. Temp * Orientation) 

 

 Precipitation and flow accumulation fell out of the model. Full results including 

p-values and test statistics are displayed in Table 5.   
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Discussion 

The significant results of the autocorrelation tests testify against the assumption 

that populations at risk are evenly distributed. From spatial data analysis including all 

four study States, Washington, Oregon, California, and Nevada, statistical tests for 

autocorrelation and clusters were significant at both global and local levels. This 

indicates that cases or incidence at similar values occur next to other in space. In other 

words, the distribution of HPS is not random, and some factor or series of factors may 

explain distributions. Further, physical locations of likely clusters and hot-spots in actual 

space were identified. This is useful for promoting focused research and directed public 

health activities.     

Additionally, case distributions through either ZCTA or cases within significant 

hot-spot regions, occurred with repeated patterns across environmental variables. Cases 

by ZCTA arise most frequently at the intersection or edges of ecological zones and along 

watershed boundaries. Higher elevation, cooler temperatures, and drier climates were 

also seen as consistent factors for cases in California and Nevada.  

Statistical modeling across the Sierra Nevada Mountain range explains case 

variation in the area as a function mostly dependent on a ZCTA’s orientation East or 

West of mountain peaks. Precipitation was expected to be a strong contributor in 

explaining HPS cases and location, but was not significant in this model. The most likely 

explanation is that the effects of precipitation are expressed through orientation and are 

therefore, not significant as a separate independent variable. This model is not predictive 

of HPS cases, but is instead comparing environmental differences between ZCTA 

centroids and the environmental data collected at that point. Overall, the model explains 
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most of the variance seen in cases given the variables included and that significant 

differences exist between the Eastern and Western Sierras. 

Assessment of spatial patterns in this study was accomplished through use of 

Voronoi diagrams. Thiessen polygons encompass ZCTA centroids with the intent of 

compromise between broad data aggregation at the county level and the more spatially 

resolute information contained by ZCTA but with large gaps of missing information. 

Because the global and local statistics preform best with similarly shaped neighboring 

polygons, incidence rates and case counts were not able to be tested through ZCTAs 

despite being the most precise point of case data.  

Counties, likewise, were unreliable because of the wide range of size and 

population densities within counties, which may overgeneralize Hantavirus presence. 

Some counties encompass a vast amount of land: Nye County in Nevada, for example, is 

immense with an estimated square mile area near the area of Connecticut, Delaware, New 

Jersey, and Rhode Island combined. Yet, population is estimated at only 44,000 people. 

This can be compared to Los Angeles County which is nearly a fourth in size of Nye 

County but has a population over 220 times larger. For this extreme variance, use of 

Thiessen polygons within the Voronoi Diagram was deemed reasonable.  

Unanticipated differences between measures of case counts and case incidence 

rates in the autocorrelation and hot-spot results must be considered. Despite that 

incidence rate is popular method of analysis in epidemiological studies, HPS is a rare 

disease most often occurring in areas with low population. Otherwise known as a 

problem of “small numbers”, adding one case to a zip code dramatically changes disease 

rate.  
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To give an example of how small numbers can affect output, consider first, that 

the most common number of cases per ZIP Code is 0. Then looking only at ZIP Codes 

with a case, the most common number of cases is 1. In the instance of Hot Spot analysis 

results, regions in Washington and Oregon deemed significant varied dramatically 

between analyses of cumulative counts vs. incidence rates. The hot-spot area identified in 

Oregon with incidence rates was clustered around a single case in twenty years of 

surveillance. This is compared to Washington where most of the ZIPs identified 

contained one or more cases. Though these ZIP Codes may in fact be in an area endemic 

for SNV in deer mouse populations, acknowledging it as true hot spot area might be not 

be reflective of human risk.  

 Another possibility affecting interpretations of case incidence rate is the use of 

Voronoi diagrams given how they were created.  Though every Voronoi polygon was 

centered on an actual ZIP Code or ZCTA, the population within these administrative 

areas may or may not be included in the Voronoi polygons and may not be reflective of 

actual population distributions. However, this is unlikely to be a great issue as ZIP Codes 

are created by the USPS in response to populations, with greater densities containing 

more ZIP Codes. Therefore, the new polygons are likely to include the population from 

which incidence rates were calculated. 

  

Since the 1993 outbreak in the four corners region of the United States, when 

SNV was first isolated, a large number of studies have analyzed environmental and host 

characteristics. However, information on human behaviors and responses is limited. The 

Trophic Cascade Hypothesis theorizes increased precipitation in climatic events such as 
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ENSO will lead to increased productivity, increasing food availability, and a subsequent 

increase in deer mouse populations. Thus far, the theory seems to connect increased 

productivity to increased deer mouse densities but does not explain well the spatial 

distribution of reported human cases. This might be attributable to lack of access to 

human case data or assessment on too short of a time scale, and warrants further 

investigation.   

Likewise, referencing theories of Island Biogeography and Metapopulations may 

be of particular use given the similarities of environmental characteristics seen in the 

comparisons of cases by ZCTA and various environmental data layers. Connectivity 

between suitable habitat patches, understanding the existence and use of corridors for 

deer mice would aid prediction of SNV presence.  

It’s been shown in previous studies the effect of land use management strategies 

and how different practices affect either the distribution of deer mice populations, or risk 

to humans, or some combination of the two. The actual density of deer mice specific to a 

local area may be less important than the overall environmental regions. This is because 

the probability of acute infection presence in deer mice is heavily influenced by deer 

mouse population density patterns within a region considering connective pathways 

through which SNV could travel [2].  

Take for example, that cases occur most frequently on the eastern side of the 

Sierra Nevada mountain range, as seen in Figures 24-27, and demonstrated through the 

environmental model. Yes, environmental characteristics are more uniformly similar on 

one side of the mountain compared to the other, but perhaps SNV activity is greater on 

the east because connectivity to infected refugia is greater and not that it is drier, or 
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cooler, etc. Perhaps there is less fragmentation as there are less people on the Eastern 

slopes and SNV is able to persist with more consistently given greater connectivity 

between patches or “islands”. 

 Given the significance that populations at risk are not evenly distributed, further 

research is needed comparing differences between identified hot-spot regions and nearby 

ZIP Codes not included in the hot-spots. Assessing differences, but then creating policies 

to mitigate risk are the key next steps.   

 

Limitations 

A number of limitations presented throughout the research process. A consistent 

issue was in dealing with HPS as a rare disease. Because so few cases have been recorded 

across the entire United States in nearly 20 years of surveillance, analysis must be 

considered carefully. Reports of confirmed HPS cases in a given State to CDC are most 

commonly an intermittent event with one or two cases every few years. Additionally, the 

unbalance of reported cases across the country is another consideration when, for 

example, extrapolating significant results from one area in the West to a State in the East. 

Several States in the Eastern and Southeastern United States have never reported a case 

of HPS, as compared to the Four Corners regions with 90 confirmed cases in New 

Mexico alone.  

Another statistical concern given the rarity of this disease is in the issue of “small 

numbers”. Because HPS occurs infrequently in most populations, adding a single case 

incidence to a ZIP Code, for instance, dramatically changes disease rate. In this sample of 

cases, most ZCTAs with a recorded HPS cases had a cumulative case count of 1… in 20 
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years of surveillance. Further, populations reported in the 2010 Census recorded at every 

ZCTA vary greatly. As incidence rates are significantly changed with any additional case, 

the resulting maps may reflect some combination of true risk for these populations and an 

inflated risk that is difficult to differentiate. Additionally, it is possible that some cases 

have been missed completely and never diagnosed or included in the HPS Registry.   

Surveillance on positive HPS cases is active across the country; however, certain 

case information details (name, home address, age, occupation, etc.) are not required on 

Case Report Forms and are therefore, not consistently reported between States out of 

privacy concerns. In this study, ZIP codes where chosen to represent data at the most 

resolute level of information, but full addresses were rarely included in reported data, 

again, for privacy reasons. Often, only the town or county is included, but as stated 

earlier, this was less of a problem than initially imagined as cases occurred in rural, less 

densely populated settings and were often assigned only one ZCTA code. Despite being 

able to assign a ZCTA to all included cases, detail variations in what is reported from 

States makes comparisons between States more difficult given the extra time, efforts, and 

energy needed to adjust case information across States.   

Further, use of ZCTA codes as the primary region of interest adds another 

potential concern. ZIP codes as defined by the United States Postal Service are created as 

a tool for the Postal Service to aid in the delivery of mail and other post. Just as 

populations and city centers change over time, so do ZIP codes. ZCTAs, on the other 

hand, are created by the Census Bureau in 10 year increments: first in 2000 and again in 

2010, and are therefore relatively static. To create a ZCTA, the most frequently occurring 

ZIP Code in an area is chosen to represent that area. This excludes some very small ZIP 
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Codes completely or renames them such that some addresses end up with a different 

ZCTA code from their ZIP Code. Additionally, if a ZIP Code was never considered most 

frequently occurring in a given area when creating ZCTAs, the ZIP Code is simply 

removed [27]. 

ZCTA codes widely vary in size across the study area with the smallest zip code 

measuring 9,145 square feet (located in King County, WA) and the largest: 

13,462,551,550 square feet (in Malheur County, OR). Population density, likewise, varies 

dramatically; per 10,000 square feet: the smallest density near 0 as compared to the 

highest located in San Francisco County with a ZCTA population density near 197 

people/10,000 ft2. Because explicit addresses could not be obtained for the vast majority 

of cases, analysis was restricted to the ZCTA code – exploration could not be done at any 

finer resolution. This leads to the potential for ecological fallacies as associations seen at 

the zip code level are extrapolated to the individual (human) level which may or may not 

be accurate [32].  

Similarly, using ZIP Codes of exposure, modeled through ZCTAs, instead of 

individual cases as points, makes analysis results subject to the Modifiable Areal Unit 

Problem (MUAP). This is a problem when associations between variables or events 

change when the scope or scale in consideration changes. In this study, ZIP Codes were 

the variable of interest. For MUAP not to be an issue, results of the analysis would have 

to yield the same results and patterns regardless of whether point data of cases was used 

in analysis or ZIP Code regions. Given that ZIP Codes and population density within ZIP 

Codes vary widely in size and patterns appear different between ZCTAs and Counties, 

this is a legitimate concern.  
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Regression modeling of the Sierra Nevada Mountain regions was a useful first 

attempt at modeling environmental differences between nearby, similar regions. 

However, data was severely limited and may not reflect variance in features accurately. 

Environmental data was extrapolated to the ZCTA centroid for analysis and was true for 

that point, but all values surrounding this centroid were ignored. Ideally, information 

could be extracted at the ZCTA polygon level to calculate basic descriptive statistics: 

maximum, minimum, mean, median. Because HPS is rare and is dependent somewhat on 

human behavior (cleaning, dusting, etc.), even with better environmental data, predicting 

risk is questionable.  

There are several broad issues outside this study further complicating results and 

interpretations. The first of which, is recognizing that this study focused on human cases 

alone. Without information on mice populations in the study regions over time, stronger 

correlations between SNV, humans, and the environment are impossible to make. Though 

clusters of disease in humans may exist as hot-spot areas and there may be significant 

environmental differences between areas included within a hot spot as compared to 

neighboring regions not in a hot spot, the mechanism or series of necessary inputs cannot 

be fully described with inclusion of deer mouse characteristics.  

All information on mice populations – increases or decreases in an area’s 

population, degree of connectivity (Island and Metapopulation Theory) between mice 

populations, increases or decreases in Hantavirus prevalence – is missing and seriously 

limits understanding the complex relationship between mice, virus, and humans. 

Trapping mice populations and testing Hantavirus prevalence should ideally be done 

multiple times over many years. Additionally, testing should occur at the same time each 
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year because mice life spans are short and antibody prevalence in mouse samples vary 

considerably in small time spans, from less than 5% to over 60% in the same areas over 

the course of a year [13]. A lack of funding and time are severe restrictions in the 

collection of these data as well as space.  

  

Recommendations 

HPS causes severe, sometimes fatal, respiratory distress in humans. This study, 

describing the spatial patterns of human disease, together with literature describing 

behaviors and influencers on deer mouse populations, is important in predicting future 

disease risk for human populations. While examining environmental features is important 

in realizing large-scale ecological patterns affecting deer mouse populations, it is not 

enough to establish risk for humans. The human behavior component of this relationship 

is rarely defined, at least rarely recorded with other case information in the HPS registry. 

Gathering information on the activities that may have led to exposure might yield further 

insights into human risk prediction, important to Public Health organizations (though 

admittedly, more difficult to obtain) 

Additionally, strengthening communication and research efforts between public 

health officials, scientists, and land owners is important. As established, deer mouse 

populations span most the North American continent. Land included in this area is owned 

by multiple sources including Federal governments, U.S. State governments, and private 

citizens. Citation of diagnosed cases may be mandated as notifiable by the Federal 

government and CDC, but management of land practices is left up to this myriad of 

supervisors. Given the connectivity of landscapes despite administrative boundaries, it is 
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important for neighboring land managers to engage in communication increasing 

awareness of any trends or observations of changes to deer mouse populations or HPS 

occurrence in humans.  

Of course, actually creating techniques to implement this sort of management is 

easier in theory then in practice and more data would be needed on all rodent populations 

in a chosen landscape. Scale is important as discussed through Island Biogeography and 

Metapopulations, and choosing the appropriate scale would be an additional hardship. 

Finally, limitations relate back to people and the complications imposed by different laws 

and practices at the local, regional, state, and federal level. 

Time is likely to have an important role in the Hantavirus-Deer Mouse-Human 

model but was not able to be incorporated into this analysis. Because HPS is such a rare 

disease, comparing incidence or counts by year is difficult, but analyzing the documented 

first day of symptoms recorded in the HPS registry and extrapolating back to an 

estimated time of exposure could yield important information on seasonality of HPS 

disease in humans. It should be noted, however, that this might reflect human behavior 

rather than changes in Hantavirus prevalence or infectivity in mouse populations. This 

also would need to be considered in future research.  

Another interesting application of this study for further investigation comes from 

Figure 28. It is quite apparent that cases appear to follow water flow length (drainage) 

starting in the in upper eastern Sierra Nevada Mountains coming south and then curving 

to the coast. Though data on water cover in California was not included in this study, it 

appears this drainage system created from elevation data follows a real river system: The 

Owens River which drains to Owens Valley. Further, this system  is the source for the 
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Los Angeles Aqueduct that starts near the source of Owens River and flows the same 

path down the Eastern Sierra’s edge curving west towards the coast. Perhaps this area 

offers increased connectivity to deer mice populations enabling transmission of SNV 

between populations. Or perhaps, given the intensity of human activities on the 

landscape, deer mice have been able to flourish due to their ability to adapt as generalist 

species. It would be worth investigating deer mice populations and the prevalence of 

SNV along this drainage systems and aqueduct.  

 All results, except for the focused analysis of the Sierra Nevada Mountains 

included the 2012 Yosemite outbreak. One potential next step would be conducting the 

entire spatial data analysis again, but without inclusion of the 2012 Yosemite outbreak. 

Likely, significant outliers through the LISA test and hot-spot regions from the Getis 

G*i(d) would be smaller and may reflect distribution patterns of cases by ZCTAs.   

 Despite the concerns listed about, this study was able to describe spatial patterns 

in human disease that can be added to the body of knowledge surrounding deer mouse 

populations and key environmental variables. It is at the intersection between human case 

occurrence and deer mouse ecology where better risk prediction can occur.  

 

Conclusions 

 The relationships among and between Hantavirus infection and their host, 

P.maniculatus together with environmental conditions and human interactions are 

complex and difficult to predict. Various approaches were used to illustrate spatial 

relationships between human HPS cases to ZIP Codes and atop environmental 

differences. Significant results suggest clustering of cases occurs in and around specific 
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environmental features, with the Sierra Nevada Mountains as an example.  While 

understanding the necessary environmental characteristics present in previous cases and 

outbreaks from Washington, Oregon, California, and Nevada, examining the role of 

ecological islands, patches, fragmentation, together with human interactions are equally 

important in understanding Hantavirus infection dynamics. Only then can the ultimate 

goal be accomplished: development of more sensitive and accurate models predicting 

areas of high HPS risk for humans.  
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Tables and Figures 

Figure 1: Deer mouse habitat in North America  

 

 

Figure 2: Diagnosed HPS cases in the United States mapped by states of 

exposure  
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Figure 3: Percentage of HPS occurrence by State over Study Area 

 

 

Table 1: Frequency and Percentage Statistics at the COUNTY level 

State HPS 

Count 

Number of 

HPS 

Counties 

Total 

Counties 

HPS Counties / 

State Counties 

(Percent) 

HPS 

Counties/ 

Total 

(Percent) 

Washington 35 17 39 43.58974359 26 

Oregon 16 12 36 33.33333333 24 

California 55 20 58 34.48275862 38.6666667 

Nevada 18 10 17 58.82352941 11.3333333 

TOTAL 124 59 150 39.33333333 1 

 

  

Table 2: Frequency and Percentage Statistics at ZCTA level 

State HPS 

Count 

Number of 

ZCTAs 

reporting HPS 

Total 

ZCTAs 

Percent of positive 

ZCTA within 

States 

Percent of 

positive ZCTA to 

Total 

Washington 35 32 598 5.351170569 20.1890614 

Oregon 16 14 419 3.341288783 14.1458474 

California 55 30 1769 1.695873375 59.72316 

Nevada 18 15 176 8.522727273 5.9419311 

TOTAL 124 91 2962 3.072248481 1 
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Figure 4: HPS cases within Counties 
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Figure 5: HPS Crude Incidence by County 
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Figure 6: HPS Case Count by ZCTA 
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Figure 6a – Washington Cases by ZCTA 
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Figure 6b. – Oregon Cases by ZCTA 
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Figure 6c. - California Cases by ZCTA 
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Figure 6d. – Nevada Cases by ZCTA 
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Figure 7: HPS Crude Incidence by ZCTA 
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Figure 7a – Washington Crude Incidence by County 
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Figure 7b – Oregon Crude Incidence by County 
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Figure 7c – California Crude Incidence by County 
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Figure 7d – Nevada Crude Incidence Rate by County 
 

 
 

 



54 

 

Figure 8: Voronoi Map of ZCTA Centroids and Case Counts 
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Figure 9: Voronoi Map of ZCTA Centroids and Incidence Rate 
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Figure 10a: HPS Cases in ZCTA across USGS Ecological Zones 

 
  

Pattern 
between 
zone edges 
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Figure 10b: HPS Incidence Rate in ZCTA across USGS Ecological Zones 
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Figure 11a: HPS Cases in ZCTAs within Watershed Areas 
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Figure 11b: HPS Incidence Rate in ZCTA within Watershed Areas 
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Figure 12a: HPS Cases in ZCTAs across Elevation 
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Figure 12b: HPS Incidence Rate in ZCTAs across Elevation 
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Table 3: Global Moran’s I for Case Counts 
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Table 4: Global Moran’s I for Incidence Rate 
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Figure 13: Global Autocorrelation Spatial Correlogram for case counts 

 
 

 

 

 

 

 

 

 

 

Figure 14: Global Autocorrelation Spatial Correlogram for Incidence 
Rate 
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Figure 15: Local Clustering of Case Counts 
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Figure 16: Significant Clustering of Case Counts 
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Figure 17: Local Clustering of Incidence Rate 
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Figure 18: Significant local clustering of Case Incidence Rate  
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Figure 19: Hot Spot Analysis of Case Counts 
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Figure 20: Hot Spot Analysis of Case Incidence Rates 

 
 
  



71 

 

Figure 21: Significant z-scores in Hot Spot Analysis of Case Counts 
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Figure 22: Significant z-scores in Hot Spot Analysis of Case Incidence 
Rates 
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Figure 23: Elevation 

Elevation with Cases by Getis’ Hot Spots (z-scores>3.71) in Voronoi Polygons

 

Elevation with Cases by ZCTA
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Figure 24: Ecological Zones 

Ecological Zones with Cases by Getis’ Hot Spot using Voronoi polygons 

 

Ecological Zones with Cases by ZCTA 
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Figure 25: Annual Precipitation 

Annual Precipitation with Voronoi Hot Spots (z-score>3.71)  

 

Annual Precipitation with Cases
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Figure 26: Maximum Temperature Averages 1981-2010 

Maximum Temperature Averages with Voronoi Hot Spots (z-scores>3.71)

 

Maximum Temperature Averages with Cases
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Figure 27: Minimum Temperature Averages 1981-2010 

Minimum Temperature Averages with Voronoi Hot Spots (z-scores>3.71)  

 

Minimum Temperature Averages with Cases
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Figure 28: Elevation/Flow Length/Cases in Hot Spots and ZCTA 
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Figures 29 a-d: Hydrology Model Building 

a. Step 1: Flow Direction with gaps filled in 

 

b. Step 2: Flow Accumulation 
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c. Step 3: Flow Length 

 

d. Step 4: Flow Length with Elevation  
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Figure 30: Sierra Nevada Study Area 

 

 
 

 

 

 

Table 5: Sierra Nevada Regression Analysis 

 

                    Estimate      Std. Error            t-Stat       p-Value     

    (Intercept)           -7.1508 1.9598 -3.6487 0.00033363 

    Min. Temp         -0.032443 0.022301 -1.4548 0.14724 

    Max. Temp        0.11198 0.026415 4.2391 3.38E-05 

    Elevation             0.00094764 0.00026749 3.5427 0.00048942 

    Orientation                   2.9042 0.88401 3.2853 0.0011964 

    Min. Temp.* 
         Orientation 

    -0.085116 0.024234 -3.5123 0.00054541 
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Figure 31: California Aqueducts  

 

California Dept. of Water Resources: 

http://www.water.ca.gov/pubs/surfacewater/local_water_projects_informational_maps/05

0809local2.jpg 

  

http://www.water.ca.gov/pubs/surfacewater/local_water_projects_informational_maps/050809local2.jpg
http://www.water.ca.gov/pubs/surfacewater/local_water_projects_informational_maps/050809local2.jpg
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