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Abstract

Training Search and Ranking Models with Minimal Supervision
By Ramraj Chandradevan

Searching for relevant or useful information in large document collections or the Web is challenging,
particularly to support diverse search tasks, domains, or languages. The current State-of-the-Art methods
use a Learning to Rank approach, typically using deep Neural Networks pretrained on large ranking
datasets such as MS-MARCO. These methods have shown impressive performance without additional
training (a.k.a in a zero-shot setting), since acquiring sufficiently large domain specific training data is
often not feasible. However, as zero-shot ranking does not take advantage of the target domain information,
there is a potential for improvement, especially for specialized domains and tasks. However, to fine-
tune a large Neural Net-based ranker for a new domain requires large amounts of labeled training data.
The central challenge of this thesis is whether state-of-the-art Neural rankers can be adapted to new
domains, with minimal supervision. To solve this challenge, this thesis proposes several unsupervised
and weakly-supervised approaches to learning to rank, aiming to fill a critical gap in prior literature,
namely how to automatically train a (Neural) ranker with minimal supervision. My research focuses
on three primary research questions: (1) Can adapting query representation with domain information
improve ranking performance? (2) Can ranking models be effectively fine-tuned with minimal or no
supervision? and (3) Can ranking models be further adapted for specific downstream tasks, such as
Retrieval Augmented Generation (RAG), using weak or no supervision? To address these questions,
this thesis investigates multiple techniques, including LLM self-referencing, pseudo-labeling, synthetic
query generation, ensemble-prompting, contrastive fine-tuning, and query enrichment. These approaches
leverage diverse target information such as documents, synthetic queries, and weak labels. Lastly, this
thesis proposes a list of experiments to evaluate the proposed approaches on ranking benchmarks across
multiple domains, such as BEIR, and across multiple languages, such as MIRACL and CLEF, and across
retrieval tasks, such as CRAG, to demonstrate their effectiveness and robustness.
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1 Introduction
In rapidly advancing digital era, the seamless storage, retrieval, and manipulation of information have

become indispensable facets of human-computer interaction. As the volume of data — encompassing text,
images, videos, and audio — continues to burgeon, the necessity for expansive storage infrastructures and
sophisticated search systems has become paramount. Despite the strides made in developing efficient
information storage systems, the precise retrieval of pertinent data from digital repositories remains an
ongoing challenge. This challenge stems primarily from the intricate nature of articulating user needs or
intents within the digital realm. Searching through text collections is relatively easier than other modalities
because of its structured nature. An optimal text-based search system returns an ordered list of documents
in response to a user query, determined by a relevancy measure. However, searching for relevant or useful
information in a large document collection is challenging, particularly across diverse domains, languages,
and tasks [1].

For many decades, researchers delved into constructing a potent search system, initially focusing on
rule-based and statistical retrieval systems. The introduction of machine learning and neural networks
led to widespread adoption of feature-based learning-to-rank algorithms. More recently, the rise of
pretrained language models (PLMs) and large language models (LLMs) has significantly enhanced
semantic understanding and reasoning capabilities, especially in discerning relevant documents by efficient
search systems. This thesis centers on investigating neural search systems built on PLMs or LLMs, aiming
to elucidate how such effective rankers can be trained with minimal human intervention for different
domains and applications.

State-of-the-art neural rankers, pretrained on large datasets, such as MS-MARCO [2], have shown
impressive performance without additional training (a.k.a. zero-shot setting), since acquiring sufficiently
large domain-specific training data is often not feasible. However, as zero-shot ranking does not take
advantage of the target domain information, there is a potential for improvement, especially for specialized
domains, languages, and tasks. Fine-tuning dataset collections often differ significantly from pretrained
collections in various aspects including topics, linguistic attributes, language, structure, and format [3].
Consequently, a pretrained neural ranker lacks awareness of target domain-specific vocabularies, knowl-
edge, data distributions, and user intents. Hence, it is crucial for a pretrained neural ranker to effectively
adapt to individual domains and tasks to achieve substantial performance enhancements.

The central challenge of this thesis is whether state-of-the-art neural rankers can be adapted to new
domains, with minimal supervision. To solve this challenge, this thesis proposes several unsupervised and
weakly-supervised approaches, aiming to fill a critical gap in prior literature, namely how to automatically
train a ranker with minimal supervision. Past studies have explored training neural ranking models
with weak supervision or no supervision, yet they often fail to strike a balance between effectiveness,
robustness, scalability, computational cost, and adaptability. For instance, unsupervised domain fine-tuning
techniques, such as InPars [4], DocGen-RL [5], and Promptagator [6], rely on expensive frameworks,
and their performance gains are often inconsistent across out-of-distribution datasets. Building upon
Approximate nearest neighbor Negative Contrastive Estimation (ANCE) [7] learning, the extension
ANCE-PRF [8] approach faces performance constraints on target query representation due to context
length limitations and difficulties in generalizing across different languages. Task fine-tuning approaches
like REPLUG [9] and ARL2 [10], which aim to align a neural ranker with a downstream system such
as an LLM, often fail to fully capture task relevance and require multiple costly LLM calls to generate
task-specific training data. Hence, in light of these challenges and significant gaps in domain adaptation,
my research is centered around addressing three key research questions:
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RQ1: Can adapting query representation with domain information improve ranking performance?

RQ2: Can ranking models be effectively fine-tuned with minimal or no supervision?

RQ3: Can ranking models be further adapted for specific downstream tasks, such as Retrieval
Augmented Generation (RAG), using weak or no supervision?

To address these questions, this thesis investigates multiple techniques, including LLM self-referencing,
pseudo-labeling, synthetic query generation, ensemble-prompting, contrastive fine-tuning, and query
enrichment. These approaches leverage diverse target information such as documents, synthetic queries,
and weak labels. In summary my primary thesis contributions can be listed as:

1. Proposed unsupervised, scalable query expansion techniques to integrate domain-specific informa-
tion from target documents.

2. Introduced unsupervised, efficient ranker fine-tuning methods designed to incorporate domain-
specific information from target queries.

3. Developed weakly supervised, task-specific fine-tuning strategies that integrate domain knowledge
from target relevance labels.

The thesis begins with an overview of background literature (next chapter). Subsequent chapters
will delve into each of the research questions (RQs) raised, presenting detailed solutions supported by
experimental evidence. The thesis will conclude with a summary and discussion of limitations. Before
exploring my thesis in detail, I will present an overview of the key contributions to offer a comprehensive
understanding of my work.
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Figure 1.1: An overview and classification of my approaches discussed in this thesis.

1.1 Overview of Thesis
My thesis focuses on training search and ranking models with minimal or no supervision. I approach the
research problem through the lens of transfer learning and domain adaptation, aiming to develop models
that can be effectively applied across new domains, languages, and tasks. In real-world applications, a
wide variety of natural language tasks require search and ranking models that are scalable, robust, modular,
and cost-efficient for vertical deployment. As a result, it is essential to dedicate significant time and effort
to researching innovative methods that prioritize scalability, robustness, and cost-effectiveness.

The information retrieval community has experienced numerous innovations, including learning-to-
rank, neural ranking, and more recently, generative AI-based ranking. My thesis focuses on neural ranking
models, particularly those based on transformer architectures and large language models. The primary
research questions I presented in the Introduction highlight key areas that require further exploration:
query representation, ranker adaptation, and task fine-tuning.

First, effective query representation is crucial for understanding user needs and intent, necessitating
the adaptation of user queries in the target domain with minimal effort. Second, ranker adaptation is
essential for fine-tuning a neural ranking model to a specific domain, enabling it to extract domain-specific
information and understand data distributions from queries and documents to enhance matching signals.
Third, task fine-tuning aligns a neural ranking model with the corresponding downstream system, such as
a large language model, to improve overall system performance. Consequently, it is vital to develop novel
and effective approaches that address these three objectives in a scalable and cost-effective manner.

Each of my RQs uniquely contributes to improving neural ranker performance in domain and task
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transfer learning. Specifically, RQ1, RQ2, and RQ3 focus on adjusting query representation towards the
target domain, adapting the neural ranker to the target domain or language, and aligning the relevance task
with downstream applications, respectively. RQ1 achieves domain adaptation without requiring training,
simply modifying input representation at inference time. For a retrieval task, modifying the input query is
an effective solution for achieving domain adaptation across different datasets.

In contrast, RQ2 and RQ3 require model retraining with full weight updates to transfer knowledge to
the target domain or task. While both RQ2 and RQ3 focus on fine-tuning a neural ranker, they address
distinct problem settings. RQ2 tackles domain adaptation, where the task remains consistent across source
and target domains (such as retrieval task) but the domains themselves vary, such as across datasets or
languages. Thus, RQ2 emphasizes adapting the ranker to a target domain (e.g., specialized fields
like finance, biomedical, and healthcare, or languages like Spanish, French, and Russian) using domain-
specific query-document pairs. This line of works help the neural ranker become more corpus-aware and
develop a holistic understanding of the target domain.

In contrast, RQ3 addresses task transfer learning, where the tasks differ between the source and
target (e.g., from pretraining language modeling to classification, summarization, or question answering).
RQ3 focuses on aligning the ranker with a target downstream task or application (such as question
answering, event extraction, or retrieval-augmented generation (RAG)) using task-specific contrastive
query-document pairs. This task-specific fine-tuning enables a neural ranker, initially trained for question
answering (e.g., MS-MARCO), to be more effective for application-specific retrieval tasks.

I propose seven novel approaches, categorized according to the three previously outlined RQs, with an
overview provided in Figure 1.1. The first two approaches, NCLPRF and GenQREnsemble-RF, present
effective, efficient, and scalable techniques for query expansion and enrichment aimed at enhancing query
representation during the inference stage, without the need to retrain the neural ranking model on the
target domain. These methods fall under the category of test-time domain adaptation (TTDA), where the
input is modified based on target information during inference.

The next two approaches, DUQGen and mDUQGen, focus on effective, efficient, and scalable ranker
adaptation across various domains, languages, and retrieval tasks. They introduce a novel, cost-effective,
and sample-efficient method for generating diversified synthetic queries, thereby augmenting the training
data to fine-tune neural ranking models. These approaches fall within the traditional domain adaptation
category, where source pretrained models are fine-tuned using synthetic training data.

The final three approaches, C3, Event-aware Task Fine-tuning, and TFT-RAG, offer effective and
efficient techniques for task fine-tuning across new tasks. They introduce three distinct weakly-supervised
pseudo-labeling strategies—contrastive learning, pseudo-label filtering, and pseudo-label generation—to
enhance the quality of training labels during the fine-tuning process. These approaches are classified
under the task transfer category (transfer learning), where source pretrained models undergo task-specific
fine-tuning. Notably, TFT-RAG demonstrates that aligning a neural ranker with a downstream system
(such as an LLM) using that system as a weak annotator (or teacher) yields high-quality annotations that
significantly improve end-to-end system performance.

In summary, these seven novel approaches represent highly effective, efficient, and scalable techniques
for training search and ranking models across new domains, languages, and tasks, surpassing current
state-of-the-art methodologies. The next chapter 2, will review previous studies relevant to my research
questions to further substantiate the innovations presented in my thesis.
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2 Related Work
This Chapter provides the foundational aspects of my thesis research, outlining key works related to

transfer learning, domain adaptation, learning-to-rank, and neural ranking models. I begin by providing
a broad overview of transfer learning, discussing various classes such as traditional domain adaptation,
source-free domain adaptation, and test-time domain adaptation. The discussion then transitions to the
background of information retrieval, starting with an introduction to learning-to-rank approaches, before
progressing into the realm of neural ranking techniques. The organization of the information retrieval
literature is based on the scale of training data required: learning-to-rank models typically need smaller
datasets, while supervised neural ranking models demand more extensive data. This scale continues to
increase with weakly supervised and unsupervised neural ranking systems, which involve large-scale
pretraining and fine-tuning phases. Finally, the Chapter concludes with a discussion on large language
models (LLMs) as rankers, which necessitate massive datasets for both pretraining and fine-tuning stages.

2.1 Transfer Learning
Adapting a learning-to-rank framework to new domains, languages, or applications presents challenges
due to the differences between the source and target domains. Since this is fundamentally a learning
problem, it aligns with the broader machine learning challenge of how to adapt models to different
domains or tasks. This motivated me to explore general transfer learning and domain adaptation methods,
including test-time adaptation, data selection, fine-tuning, and pseudo-label filtering and generation, in
order to apply on specific learning-to-rank problem. Through this investigation, I introduced innovative
approaches to neural ranker adaptation, particularly in addressing domain shifts. Consequently, this
section will first cover transfer learning and domain adaptation in general, then delve into their prior works
to neural ranking specifically.

One of the most extensively researched topics in the machine learning and deep learning community is
how to adapt the machine learning models to various specialized applications, scenarios, and environments.
This challenge is commonly referred to as "transfer learning". In transfer learning, the goal is for the model
to perform well on related but different data distributions. It is formally defined as learning with minimal or
no supervision using the previously acquired knowledge. In both supervised and semi-supervised learning
settings, it is typically assumed that the training and testing data come from the same distribution [11].
However, in real-world applications, this is often not the case, and similar performance on test data is not
always guaranteed.

Pan and Yang [12] classified the surveyed transfer learning approaches into two categories: domain
and task. A domain includes a feature space and a marginal probability distribution, while a task consists
of a label space and a predictive objective function [13]. Thus, transfer learning can involve transferring
knowledge from a source domain to a target domain, from a source task to a target task, or a combination of
both. My thesis research broadly covers transfer learning methods that rely on minimal or no supervision.
Specifically, my solutions to RQ1 and RQ2 fall under domain transfer learning, while the solution to
RQ3 falls under task transfer learning.
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2.2 Domain Adaptation (DA)
Domain adaptation is commonly described as transferring the learnt knowledge from a source domain
to a target domain. It is a specific class of transfer learning where the source and target domains are
related but have different data distributions. Domain adaptation is necessary when there is a divergence or
distribution shift between the two domains. The goal of domain adaptation is to maintain or enhance the
performance on the target domain by utilizing any available information from both the source and target
domains, ultimately reducing the discrepancy between their distributions.

The main challenge in domain adaptation is minimizing the domain shift under the independent
homogeneous distribution assumption. This assumption states that while the feature and label spaces
remain consistent across domains, the data distributions differ. For instance, in a binary image classification
task between cats and dogs, the feature space consists of pixel values in both the source A and target B
domains, and the label space includes the classes "cat", "dog". Domain A might contain high-resolution
images taken by professional cameras, while Domain B consists of images captured by mobile phones
with varying resolutions and lighting conditions. Despite these data distribution differences due to the
image qualities, the independent homogeneous distribution assumption still holds because the feature and
label spaces are the same. Therefore, addressing the distribution discrepancies between domains is critical
when deploying machine learning models in real-world applications.

As deep learning and generative models continue to advance and demonstrate strong data representation
capabilities at scale, they often struggle to perform well in specialized real-world applications, such as
healthcare, finance, and medicine. To address the distribution gap in these scenarios, several approaches
have been proposed. These include, but are not limited to, learning domain-invariant features to align
source and target distributions, mapping between domains, designing ensemble methods, and building
target-discriminative models. These strategies aim to reduce the domain shift between source and target
domains.

2.3 Source-Free Domain Adaptation (SFDA)
Domain adaptation techniques have been applied across a wide range of machine learning applications,
including computer vision, speech processing, and natural language processing. While domain adaptation
typically assumes the access to both source and target data, the raw source data is often unavailable for
various reasons, such as data privacy concerns, confidentiality, copyright issues, storage and transmission
costs, and computational limitations [14]. As a result, much of the research has focused on the Source-Free
Domain Adaptation (SFDA) category, which operates under the assumption that while source data is not
available, target data is provided for the purpose of domain adaptation.

To train machine learning models effectively, it is essential to acquire new labeled examples from
a target domain. However, obtaining such labels can be expensive in many real-world applications.
Consequently, SFDA approaches have primarily aimed to eliminate the dependence on supervised labeled
data from the target domain by exploring methods such as unsupervised, weakly-supervised, and semi-
supervised learning. As a result, my thesis research has focused on developing strategies within the realm
of source-free unsupervised (RQ1 and RQ2) and weakly-supervised (RQ3) domain adaptation.

The SFDA approaches can be classified into two categories: (1) data-centric and (2) model-centric [14].
Firstly, the data-centric approaches primarily aim to reconstruct the source domain using the available
data from the target domain. Examples of these approaches include neighborhood clustering and local
structure clustering, which operate under the assumption that the intrinsic structure in both the source and
target data is represented by their neighborhood relationships [14]. As a result, target domain samples can
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be mapped to the source domain distribution by examining these neighborhood connections [14].
In addition, with the advent of recent language models, generating synthetic training data (or augment-

ing target data) has become another category of data-centric approaches. This method enhances the target
domain representation by creating additional data, helping to reduce the distribution gap between the
source and target domains. My two solutions to RQ2 fall under the data-centric approaches: DUQGen
and mDUQGen both leverages the LLM based synthetic training data generation to address the domain
and language distribution differences.

Secondly, the model-centric approaches rely on the principle of self-training. In these methods, a
model trained on the source domain is sequentially fine-tuned using its own predictions on the target
domain. This approach assumes that the source-trained model can generalize to the target domain at
certain extent due to their relatedness. Previous research in model-centric approaches has primarily
focused on techniques such as pseudo-labeling, entropy minimization, and contrastive learning.

Pseudo-labeling approaches are widely used in model-centric SFDA. In these methods, pseudo-labels
are assigned to unlabeled target domain examples, and the source-trained model is then fine-tuned
using these pseudo-labeled examples. These approaches primarily differ in how the pseudo-labels are
obtained, which can involve variations in prototype generation, pseudo-label assignment, or pseudo-label
filtering [14]. My three solutions for RQ3 fall under model-centric approaches: C3 utilizes contrastive
learning, IE-IR focuses on pseudo-label filtering, and TFT-RAG applies pseudo-label assignment.

SFDA approaches can also be classified into black-box and white-box categories [15], depending on
the availability of the source pretrained model weights. All of my solutions, except for GenQREnsemble-
RF, fall under the white-box approaches, as they involve sequentially fine-tuning the source pretrained
model. GenQREnsemble-RF, on the other hand, does not fine-tune any models but adapts the feature
representations during the inference.

2.4 Test Time Domain Adaptation (TTDA)
Test Time Domain Adaptation (TTDA) refers to the process of adapting a machine learning model to a
new domain or distribution at the time of inference, without retraining the model beforehand [16]. In
traditional domain adaptation, models are trained on labeled data from both source and target domains.
However, in TTDA, the model is trained only on the source domain, and during testing, it adapts to the
target domain using unlabeled test data.

TTDA methods typically aim to make adjustments based on the distributional differences between the
source and target domains that are observed at test time. This could involve updating model parameters,
modifying input representations, or dynamically altering predictions based on characteristics of the test
data. The goal is to improve performance on the target domain while avoiding full model retraining. My
approaches for RQ1 fall under TTDA. Both approaches, NCLPRF and GenQREnsemble-RF, involve
modifying the input representations during testing, but they operate on different feature spaces—one at
the semantic level and the other at the surface lexical level. These approaches are particularly useful in
scenarios where the target domain data is available only at inference and labeled data is limited or absent.

2.5 Learning-to-Rank Overview
Ranking has posed a significant challenge for search systems over many decades. The emergence of the
machine learning paradigm has proven effective in addressing predictive and decision-making tasks such
as classification, regression, and ranking. The ranking task, also known as "relevance ranking," involves
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predicting the most optimized order of documents for a given query based on their relevance to the query.
Learning-to-rank approaches view ranking as a learning problem, optimizing a feature-based learning
objective towards improving a performance measure. Ideally, a learning-to-rank algorithm should produce
an effective order for a set of documents in response to a query.

A variety of popular machine learning methods have been proposed for learning-to-rank algorithms,
and they have been deployed in numerous real-world applications for an extended period. The task
of relevance ranking differs from traditional classification and regression tasks in that it is focused on
optimizing the permutation order of a list of documents, whereas classification and regression aim to
optimize predictions of scores or class labels. Consequently, directly applying existing machine learning
techniques to learning-to-rank is not straightforward, requiring efforts from information retrieval (IR)
experts to adapt these techniques. Popular learning-to-rank algorithms make use of machine learning
methodologies such as logistic regression [17], Support Vector Machines (SVM) [18], Random Forest [19],
and Boosting [20]. Several surveys [21, 22, 23, 24] have been conducted to explore these approaches and
provide evidence of their effectiveness in relevance learning tasks.

2.6 Supervised Training Neural Rankers
In recent times, pretrained language models based on transformer architectures have exhibited remarkable
effectiveness in neural rankers [25, 26]. A neural ranker returns an ordered list of documents given a
query, where a relevancy is calculated based on the query and document dense embedding representations.
This section discusses the existing neural rankers trained with large-scale supervised relevance data (i.e.,
query-document pairs). Neural rankers can be categorized into two use-cases: (1) first-stage retrievers and
(2) re-rankers. Examples of neural first-stage retrievers include DPR [27], ANCE [7], ColBERT [28], and
Condenser [29], while examples of neural re-rankers include MonoBERT and DuoBERT [30]. First-stage
retrievers are optimized for faster inference and are expected to achieve higher recall rates in finding
relevant documents. Conversely, re-rankers aim for higher precision in identifying the top relevant
documents at the cost of computational overheads. Recently, multi-stage rankers, built with combining
neural first-stage retrievers followed by neural re-rankers, have shown significant performance advantages
over traditional methods like BM25 [31] and learning-to-rank frameworks.

2.6.1 Supervised Neural Dense Retrievers
Firstly, dense retrievers for neural first-stage retrieval undergo extensive pretraining and fine-tuning using
large-scale training data, resulting in competitive and often superior performance compared to traditional
baselines. These retrievers utilize pretrained language models like BERT [32] to encode both queries
and documents into dense embeddings. An efficiency-focused dual-encoder architecture is employed,
allowing for separate or a shared encoder for encoding queries and documents. The dense embeddings
of documents can be pre-computed and stored offline (referred to as an index), while for a given online
query, the query dense embedding is inferred real-time and a Maximum inner-product search (MIPS) tool,
such as FAISS [33] or ScaNN [34], is utilized for returning top-k relevant documents.

During the early stages, fine-tuning BERT-based dense retrievers on vast amount of relevance pairs,
such as MS-MARCO [2] question-answer pairs, yielded impressive in-domain performance and competi-
tive out-of-domain performance (e.g., DPR and ANCE). Subsequent architectural refinements, such as
ColBERT’s contextualized late-interaction [28] and Condensor’s conditioned LM prediction on dense
representations [29], further improved effectiveness and efficiency. Overall, prior research on dense
retrievers emphasizes their competitive edge in enhancing high recall and achieving faster efficiency.
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Recent progress in unsupervised pretraining on large amounts of data emphasizes that increasing
the size of pretraining results in improved performance. For instance, Contriever, contrastive pretrained
on extensive unsupervised data like Wikipedia and CCNet [35], followed by sequential pretraining on
supervised data like MS-MARCO, demonstrates significant performance improvements across standard
question answering benchmarks and competitive performance in the transfer learning setting. However,
challenges persist in generalizing dense retriever performances across out-of-domain datasets [1]. To
address this, orthogonal research introduces GTR [36], highlighting the potential of scaling up the
pretrained language model (dual-encoders) sizes with multi-stage training for improved generalizability
across out-of-domain retrieval datasets.

2.6.2 Supervised Neural Dense Re-rankers
Secondly, cross-encoders used in neural re-rankers, pretrained on large-scale relevance pairs, exhibit
significantly enhanced performance gains across both in-domain and out-of-domain datasets. The ef-
fectiveness of cross-encoders lies in their ability to leverage cross-interactions between contextualized
tokens from the query and document. A basic cross-encoder architecture comprises a pretrained language
model like BERT, followed by a linear layer that maps the hidden representation of the last layer’s first
token (e.g., [CLS]) to a relevance score. Concatenating a query and a candidate document into a unified
text representation with special tokens, the cross-encoder calculates a relevance score, facilitating the
sorting of top-k candidate documents for a given query. The first proposed cross-encoder, known as
MonoBERT [30], utilizes pretrained BERT and fine-tunes it using MS-MARCO training pairs. Subse-
quently, various alternative pretrained language models, such as RoBERTa [37] and ELECTRA [38] have
been explored as replacement base models, leading to further performance enhancements.

2.7 Weakly Supervised Training Neural Rankers
Fine-tuning with weak supervision enhances the retrieval performance in the absence of human labels,
relying on a provided set of real queries. Previous research has focused on selecting top-k weak positive
candidates and challenging hard negative candidates efficiently. However, a common oversight among
practitioners has been improving ad-hoc retrieval performance in isolation, neglecting downstream tasks
or systems. In actual applications, prioritizing a retriever aware of downstream systems holds greater
significance than a standalone retriever. Therefore, the key distinction among various weakly supervised
training algorithms lies in the methods used to obtain pseudo-labels for training neural rankers.

2.7.1 Relevance Pseudo Labeling with Weak Annotators
Several weak-supervision and semi-supervision approaches have been suggested to enhance the relevance
labeling quality for training neural rankers. Early methods relied on first-stage retrievers like BM25
to provide weak positive candidates for training neural rankers [39]. Later, more advanced techniques
emerged to improve the existing weak-supervision approaches. For instance, GPL [40] introduced a
pseudo labeling method where a pretrained cross-encoder offers soft labels for synthetic queries. Another
approach, BERT-PR [41], employs an ensemble technique to aggregate labels from various weak labeling
functions, aiming to enhance label quality.

Contrary to these approaches, FWL [42] introduces an out-of-the-box annotator system (Gaussian
process) as a teacher to estimate weak label quality (fidelity). The authors first fine-tune a learning-to-rank
model using weak labels and then continually fine-tune it with fidelity-weighted samples, leading to
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significant improvements over strong baselines. These prior efforts underscore the importance of selecting
high-quality positive candidates for fine-tuning neural rankers.

2.7.2 Relevance Pseudo Labeling with LLM Annotators
Recent advancements in LLMs have sparked numerous studies exploring the use of LLMs as "assessors"
and "annotators." By carefully crafting prompts, LLMs can be used to perform large-scale automatic
annotations or evaluations. Recent research has shown that LLMs, when used as annotators, can predict
relevance labels with greater accuracy than third-party human annotators [43]. This development has
enabled the effective fine-tuning of neural ranking models with reduced reliance on human judgments.

In recent years, benchmarks and evaluation methods have evolved significantly, as the standard
benchmarks, evaluation scripts, and metrics are no longer sufficient to measure the performance of
advanced LLMs. Human judgment is often needed to compare outputs from different LLMs or to
evaluate an LLM’s output against ground truth. However, due to the cost and scalability issues associated
with human evaluations, there is a growing interest in automated model-based evaluation. Powerful
LLMs like GPT-4o or LLAMA3-70B-instruct can be prompted to compare an LLM’s output against a
reference. Studies have shown that the judgments of these stronger models often closely align with human
evaluations.

2.7.3 Relevance Pseudo Labeling in RAG
Retrievers have become an essential component in RAG applications. The non-parametric nature of
RAG allows for flexibility in choosing and plugging-in various retrieval or ranking models to improve
the quality of retrieve-then-generate systems. However, even the state-of-the-art neural rankers often
struggle to improve the quality of the LLM generated responses, despite the relevant evidence being
available in external data source. These challenges stem from the misalignment between the tasks of
the ranker and the LLM. Both are trained on different data sources with distinct training objectives. The
concept of relevance for a neural ranker in a RAG setting differs from that in a traditional ad-hoc search
optimization. Therefore, fine-tuning a pretrained neural ranker to align with the LLM is essential for
better RAG performance.

Earlier research has focused on training retrievers and LLMs jointly to enhance the alignment between
the two. For instance, the Atlas [44] model was pretrained on a large corpus to handle knowledge-
intensive tasks in a few-shot learning setting. Atlas uses Contriever [45] as its retriever and the T5 [46]
sequence-to-sequence model with a fusion-in-decoder [47] modification as its LLM. Each evidence
document is encoded separately, and cross-attention is applied at the decoder to improve scalability
across multiple documents. The authors introduced four loss functions—Attention Distillation (ADist),
End-to-End Training of Multi-Document Reader and Retriever (EMDR2), Perplexity Distillation (PDist),
and Leave-One-Out Perplexity Distillation (LOOP)—to train the joint system more effectively. These loss
functions aim to provide feedback from the generator to the retriever, improving their alignment.

Recent RAG optimization efforts have shifted towards freezing the LLM and focusing on training the
retriever component, largely due to the black-box nature of many closed-source LLMs (such as OpenAI’s
GPT-4, Anthropic’s Claude, and Google’s Gemini 1.5). These approaches rely on direct and indirect
supervision from the LLMs, using annotations or attention-scores. AAR [48] is one of the early works
proposing a RAG system where retrievers function as flexible, generic plug-ins. It combines ground-truth
passages with top-k passages ranked by the LLM’s average cross-attention scores to create positive
training pairs, and follows ANCE [7] to sample negative training pairs for retriever training. The AAR,
with a fine-tuned retriever, demonstrates improved zero-shot generalization across various LLMs.
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REPLUG [9] is another recent advancement aimed at enhancing the alignment between the retriever
and generator by training the retriever with a distillation loss. During the training phase, REPLUG
calculates the retrieval likelihood scores from the retriever component alongside the language model
likelihood scores by passing each document in conjunction with the query to the LLM, which yields
average perplexity scores corresponding to the ground-truth answer tokens. The retriever is then trained
using the KL divergence loss to minimize the difference between these two score distributions (retrieval
and language model likelihoods). For inference, REPLUG performs similar individual query-document
passes to the LLM and aggregates the output probabilities from these different passes. This distillation-
based alignment better tunes the retriever to align with LLM preferences.

Building on REPLUG, a subsequent work called ARL2 [10] advances the alignment strategy for
closed-source (black-box) LLMs. This study emphasizes the alignment between these opaque LLMs
and retrievers. The authors introduce a self-guided adaptive relevance labeling technique that generates
training data to fine-tune the retriever. They utilize the LLMs to annotate evidence documents, thereby
curating high-quality training data. ARL2 demonstrates superior performance compared to REPLUG
on evaluation benchmarks, thanks to the high quality of its pseudo label annotations using direct LLM
prompting.

In a similar vein, W-RAG [49] presents a weakly supervised method for fine-tuning a neural ranker by
leveraging the ranking capabilities of LLMs to generate the training data based on the assessments of the
top-k results from BM25. However, this work does not address multi-document question-answering sys-
tems explicitly. Another related study by Ferguson et al. [50] emphasizes identifying relevant documents
based on their utility in deriving answers. The authors argue that various pathways (sets of document
sequences) can lead to an answer, and it is essential for the retriever to supply these pathways to the LLM
to facilitate effective extraction and reasoning for generating responses.

In summary, the approaches discussed above utilize weak supervision from downstream LLMs via
annotations, attention scores, or perplexity scores to train retrievers for better alignment with these models.
However, they share several common shortcomings: (1) many require passing each query-document
pair to the LLM for annotations, which is prohibitively costly; (2) most do not tailor their training
towards multi-document question answering, resulting in evaluations primarily based on single-document
benchmarks; (3) many rely on standard negative mining methods, which can introduce noise due to the
imperfect quality of positive annotations, ultimately limiting the end-to-end performance; and (4) the
generated pseudo labels do not strongly reflect the LLM preferences. I specifically address the fourth
limitation, noting that previous works often fail to accurately prompt the LLM for precise task-specific
pseudo-labels — specifically, grounded evidence documents needed for answer generation. Therefore, in
Section 5.4, I propose the TFT-RAG method, which employs a self-referencing technique to enhance the
quality of task-specific labels for fine-tuning the neural ranker.

Additionally, my TFT-RAG approach offers several advantages over the previous works. It simul-
taneously passes the query along with the top-k evidence documents to the LLM to obtain annotations,
which is more cost-effective and allows the LLM to assess the groundedness of information across all
documents. Furthermore, I introduce a prompting-based method for hard negative mining to minimize the
noise in the generation of negative training pairs. Finally, I conduct evaluations on a comprehensive RAG
benchmark, known as CRAG [51], to demonstrate the effectiveness of TFT-RAG in multi-document
question answering tasks. In Section 5.4, I will provide a detailed discussion of the motivation and
implementation.
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2.8 Unsupervised Training Neural Rankers
Despite the remarkable ranking performances demonstrated by recent pretrained language models in
zero-shot settings, they often encounter catastrophic failures in real-world deployment scenarios. The
main factor contributing to these failures is Domain-Shift [52] or Domain Divergence [53]. Domain-Shift
has been a subject of exploration for decades, including recent investigations in domain adaptation [54].
Traditionally, it is assumed that the source and target domains share samples drawn from the same
distribution. Previous studies have addressed this issue by quantifying domain divergence through various
measures, such as geometric measures, information-theoretic measures, and higher-order measures [53].
Ultimately, these measures contribute to the development of novel solutions for domain adaptation in
neural rankers.

Solutions addressing domain divergence typically fall into two categories: (1) representation learning;
and (2) data selection. Representation learning approaches primarily address UDA, with a focus on
learning domain-invariant representations [55, 56] or pretraining a zero-shot ranker. On the other hand,
data selection assumes that not all samples contribute equally to domain representation [57], highlighting
the importance of identifying effective target domain samples. Improper selection of target data during
fine-tuning has the potential to undermine the impact of source pretraining. In chapter 4, my thesis
research centers on the issue of improper representation of the target domain leading to diminished
performances in neural rankers and proposes an effective and robust solution.

2.8.1 Neural Query Expansion
The topics of query expansion and Pseudo-Relevance Feedback (PRF) for reranking have been explored
for many decades [58]. Multiple works have been formulated to use lexical and semantic PRF information
to expand the query in the past, such as Rocchio’s algorithm [58], RM3 [59], and Axiomatic matching [60].
Particularly in the challenging application of Cross-lingual Information Retrieval (CLIR) setting, there
has been prior work on selecting inter- and intra-language PRF [61] and aligning token representation
for query expansion [62]. Since the beginning of applying neural word embedding to capture semantic
nature of the terms and sentences, more works have been explored to utilize PRF and expand queries in
monolingual [63] and cross-lingual settings [64].

Lately, multiple neural rerankers were proposed by contextualizing the token and text representations
[28, 65, 66, 67] using pretrained language models (e.g. BERT [32]). Although there has been transformer-
based PRF approaches in the past that took advantage of multiple token representation [68, 69], my thesis
research in Section 3.4 of chapter 3 narrows down the scope to single text representation of query and
document for reranking.

My approach to the problem identified in Section 3.4 is inspired by ANCE-PRF [8], which is another
recent monolingual neural reranker that runs on top of ANCE [7], a dense retrieval framework. They
represent the query and document as contextualized embeddings and then apply a distance measure to
generate a relevance score for each query-document pair. They modify the query encoder by appending
multiple feedback documents following query text. However, they did not consider the nature of long
document text, which is the general use case in most CLIR problems. Typically, only one feedback
document barely fits in a query encoder along with query text. Therefore, my approach extends ANCE-
PRF to fit more than one feedback document to allow query-PRF document cross-attention without
scarifying the context available in a each long document.
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2.8.2 Synthetic IR Data Generation
The increasing power of Large Language Models (LLMs) have prompted numerous studies to focus
on utilizing LLMs for the creation of high-quality training data. Several previous works have explored
unsupervised synthetic data generation for fine-tuning ranking models, including GPL [40], InPars [4],
InPars-v2 [70], DocGen-RL [5], GenQ [1], and Promptagator [6]. These frameworks use random
document sampling or random seed queries to start their pipelines, which leaves room for improvement.

Each of the previously mentioned works utilizes distinct strategies employed alongside their data syn-
thesis processes. GPL[40], for instance, combines a T5-based [46] query generator with a pseudo-labeling
cross-encoder to enhance robust learning. InPars and InPars-v2 methods utilize GPT-3 and GPT-J query
generators along with different filtering strategies to eliminate low-quality synthetic queries. DocGen-RL
introduces an RL-driven guided approach combined with document synthesis using BLOOM [71]. GenQ,
on the other hand, fine-tunes TAS-B [72] with queries generated from an MS-MARCO fine-tuned T5-base
generator. Promptagator employs a pipeline similar to InPars, but with improved components, such as a
random million document samples, a 137B FLAN query generator, and a strong consistency filter to prune
8 million synthetic queries through a relatively complicated and expensive process. Notably, none of the
methods mentioned above take into consideration the significance of identifying domain-representative
documents or diversifying the resulting queries. Consequently, the fine-tuned performances appears to fall
short of zero-shot performances in many cases.

The quality of the generated training queries significantly affects the end retrieval performances.
Despite the utilization of strong query generators (BLOOM and GPT-3), the domain query representation
can still be improved. For instance, InPars employed a prompt containing in-context examples from
MS-MARCO training data, yet it still maintains a domain representation gap during in-context generation.
Furthermore, their query generation did not address the need for diversity among the generated training
samples. Additionally, they incorporated a complex filtering step to prune the generated queries, which
can essentially be avoided. These methods fine-tuned rankers using large-scale synthetic data, ranging
from 100k to 1M examples. In contrast, my thesis research in Section 4.3 of chapter 4 centers on the
challenge of improper data sampling and argues that judicious selection of training samples can obviate
the necessity for such large-scale generation, reducing the required amount of synthetic training data by a
factor of x1000.

2.9 LLM based Neural Rankers
Recent advancements in large language models (LLMs) have significantly enhanced tasks related to both
natural language understanding and generation. Distinction between LLMs and pretrained language
models (PLMs) or supervised neural rankers can be examined from various perspectives, including training
size, model size, and model architecture. However, for the purpose of this thesis report, I define LLMs as
language models capable of following instructions with zero-shot prompting and trained on large-scale
unsupervised corpora. While the previous sections explored using LLMs to train neural rankers (such as
synthetic data generation and knowledge distillation), this section will delve into prior approaches that
effectively utilize LLMs directly for ranking purposes. The remarkable performances achieved by these
LLMs stem from extensive pretraining on unstructured corpora. Prior works demonstrate a strong positive
correlation between model scaling and extensive pretraining with performance improvements [36]. In
addition, LLMs employing sequence-to-sequence architectures pretrained with auto-regressive objectives
offer several advantages, including zero-shot prompting, the ability to follow instructions, learn from in-
context demonstrations (examples), and handle larger input context compared to encoder-based sequence-
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prediction models like BERT.

2.9.1 LLM based Neural Dense Retrievers
Recent findings highlight the substantial performance gains achieved through scaling up pretraining data
and model size. GTR [36] highlights that the potential of scaling up the pretrained language model
sizes with multi-stage training for improved generalizability across out-of-domain retrieval datasets.
Very recently, RepLLaMA [73], a relevance task fine-tuned LLaMA [74] on MS-MARCO training
pairs, showcase state-of-the-art in-domain performance and competitive out-of-domain generalization.
Nevertheless, LLM-based neural dense retrievers such as RepLLaMA present challenges due to the
significant computational power needed for indexing large-scale corpora and the high latency observed
during query inference. These challenges impede the direct development of neural dense retrievers using
LLMs.

2.9.2 LLM based Neural Re-rankers
Because of their computational efficiency, LLMs have been widely embraced as re-ranking in comparison
to first-stage retrieval. Given the substantial existing research on generative LLMs for re-ranking, it is
convenient to categorize them into three groups based on how they rank documents: point-wise, pair-wise,
and list-wise. A point-wise ranker generates a relevance score for a query-document pair, treating it as a
classification or regression task. A pair-wise ranker distinguishes a highly relevant query-document pair
from another pair. Lastly, a list-wise ranker takes a query and a set of candidate documents, returning a
reordered list of documents based on their relevance to the query.

2.9.2.1 Point-wise LLM Re-rankers

LLMs are designed for sequence-to-sequence generative modeling, while IR practitioners have succeeded
on extracting a relevance score to re-rank a set of top documents for a given query. While a cross-encoder
employs an encoder-only architecture with bidirectional attention mechanisms, generative models come
in either decoder-only or encoder-decoder architecture trained with causal auto-regressive generative
objectives. Straightforward adaptation of generative models for point-wise neural re-ranking is not
trivial, thus prompting prior research to propose three key techniques: (1) query likelihood modeling, (2)
interpreting the underlying logits of target words as relevance probabilities, and (3) utilizing linear score
projection. Next sections will discuss the existing point-wise LLM re-rankers based on the aforementioned
distinction.

2.9.2.1.1 Query Likelihood Modeling for LLM Re-ranking

In the past, query likelihood has been extensively utilized for re-ranking, assessing the probability
of generating a query from a document as a measure of query-document relevance. UPR [75] was the
first to propose leveraging LLMs for ranking tasks based on query likelihood. In this approach, given a
document, an LLM is prompted to generate a query using this below prompt template,

Please write a question based on this passage : {d}

where d is a candidate document text. The likelihood between the generated query and the actual query
is computed as a re-ranking score. Another recent work [76] conducts a comprehensive benchmark of
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available LLMs in a zero-shot manner. The authors also emphasize that instruction fine-tuned LLMs
perform less effectively than zero-shot LLMs for re-ranking tasks.

2.9.2.1.2 Interpreting Target Word Logits for LLM Re-ranking

Query likelihood models have limitations due to the assumptions that they make. MonoT5 was
introduced as an encoder-decoder generative model designed for ranking tasks. The authors argue that
instead of training a cross-encoder with a ranking objective, a sequence-to-sequence model can be trained
with a next token prediction objective to generate a relevance label as a target word. MonoT5 was
pretrained using MS-MARCO training pairs with a specific prompt template,

Query : {q} Document : {d} Relevant :

where q and d are query and candidate document text. The model learned to generate "true" or "false"
target words based on whether the document was relevant to the query or not. During inference, the logit
corresponding to the "true" or "false" token was leveraged to re-rank the list of candidate documents.
MonoT5-3B emerged as a robust and competitive state-of-the-art neural re-ranker compared to rerankers
based on LLaMA [74] and GPT4 [77].

2.9.2.1.3 Linear Projecting into Scores for LLM Re-ranking

Generative models can also be utilized for neural re-ranking in a manner similar to encoder-only models
by harnessing the hidden representations from the decoder component. RankLLaMA adopts the same
linear score projection approach to LLaMA by inputting a concatenated form of the query and candidate
document text with special tokens. Unlike cross-encoders, which utilize the hidden representation of the
first special token, RankLLaMA utilizes the hidden representation of the last special token due to the
functionality of auto-regressive language generation. As RankLLaMA undergoes fine-tuning on MS-
MARCO, it surpasses the performance of zero-shot GPT3.5 on standard benchmarks [78]. Nevertheless,
zero-shot GPT4 (RankGPT4) remains at the forefront of state-of-the-art neural re-rankers [78].

2.9.2.2 Pair-wise LLM Re-rankers

Lately, pair-wise ranking PRP [79] is proposed to address the challenges found in both point-wise and
list-wise ranking establishing a common ground between both ranking setting. PRP only takes input as
query and a pair of documents to rank. Then progressively it compares all the candidate documents in
a pair-wise fashion. PRP achieves competitive results to zero-shot GPT4 (RankGPT4) [78] and often
surpassing.

2.9.2.3 List-wise LLM Re-rankers

LLMs demonstrate exceptional proficiency in following instructions, resulting in strong generative and
reasoning capabilities. Consequently, a natural way of re-ranking a list of candidate documents based on a
query involves prompting an LLM with instructions. RankGPT4 [78] and LRL [80] were introduced as a
straightforward yet highly effective solution to achieve state-of-the-art neural re-ranking performance
across various standard ranking benchmarks. By simply instructing GPT4 with a query and a list of
candidate document texts along with their corresponding IDs, RankGPT4 can generate an ordered list
of document IDs, with the order determined by the relevance of the candidate documents to the query.
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The benefits of this LLM prompting approach include its zero-shot applicability (i.e., no fine-tuning or
in-context demonstrations required), largely reduced number of LLM calls, and utilization of the LLM’s
reasoning ability to compare multiple documents simultaneously for relevance to a query.

Even though LLMs have been trained with next token prediction auto-regressive tasks, they excel in
ranking tasks without any additional pretraining or fine-tuning. Enormous amount of pretraining data
with vast world semantics and knowledge help to better model the relevance prediction in the ranking task.
Moreover, there has been several works follow the knowledge-distillation fine-tuning of RankGPT4 into
comparatively smaller and open-source LLMs, such as RankVicunna [81] and RankZephyr [82].

I have provided extensive related work on domain adaptation and neural ranking models in this Chapter.
The key gaps identified in these studies include inadequate feature representations and the reliance on
significant human involvement during the domain adaptation. These limitations prevent neural rankers
from efficiently adapting to diverse vertical applications across different domains, languages, and tasks.
Previous research has not adequately explored the proper representation of queries, tasks, and domains.
Furthermore, earlier methods do not capitalize on large-scale resources and often require retraining
models, which incurs higher costs and relies heavily on human annotations. Therefore, addressing the
aforementioned challenges can effective narrow down the performance gap in target adaptation across
domains, languages, and tasks.

In Chapter 3, I focus on improving query representation for effective domain adaptation without the
need for model retraining, using input modifications at inference time. Queries reflect the user needs and
intents, so enhancing the query representation across domains can significantly boost ranking performance.
Previous works have shown a gap in achieving optimal query representation using available target data,
such as pseudo-relevance feedback for query expansion. Many recent approaches still rely on retraining the
neural ranking models to improve query expansion or enrichment. To address this, I propose approaches
NCLPRF and GenQREnsemble-RF in Sections 3.4 and 3.5, which focus on test time domain adaptation
via effective pseudo-relevance feedback, closing the gap in target domain representation.

In Chapter 4, I emphasize efficient fine-tuning of neural rankers with minimal human intervention.
By leveraging LLMs, I generate target representative queries across various domains and languages to
facilitate unsupervised fine-tuning of neural ranking models. Prior approaches often suffer from overfitting
during the fine-tuning due to inadequate target representation. Additionally, they involve costly LLM calls
and resource-intensive model fine-tuning. Furthermore, adapting neural rankers for multiple languages
fails to consistently achieve robust performance comparable to supervised fine-tuning. To address these
challenges, I introduce approaches DUQGen and mDUQGen in Sections 4.3 and 4.4, which focus on
diversifying synthetic query generation across domains and languages for more effective fine-tuning of
neural rankers.

In Chapter 5, I focus on task-specific fine-tuning of neural rankers for downstream applications. Since
the concept of "task" varies across retrieval systems, ensuring appropriate task representation across
domains helps bridge the domain representation gap. Previous research on weakly supervised fine-tuning
of neural rankers and ranker alignment in RAG has not fully captured the essence of task, particularly
regarding pseudo relevance labels. Additionally, the methods used to generate these labels often fall
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short in addressing specific downstream needs, such as multi-document groundedness in RAG and event-
awareness in event extraction system. Therefore, I introduce approaches C3, IE-IR, and TFT-RAG in
Sections 5.2, 5.3, and 5.4, aimed at improving pseudo label generation, target tasks representation, and
task-specific fine-tuning of neural rankers through effective weakly supervised techniques.

In the next three chapters, I present effective solutions to address both common and specific challenges
found in the existing literature. Specifically, these chapters introduce seven novel approaches across three
RQs aimed at capturing target representation with minimal or no human supervision, addressing the
performance gap in prior work. Finally, in Chapter 6, I provide a summary of results to clearly highlight
the key contributions of my thesis research.
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3 Unsupervised Test Time Query Representation
Queries represent both the user’s information need and intent. Enhancing query representation to

improve the search experience has been a major focus in the information retrieval community. Traditional
search systems typically represent queries as bag-of-words vectors [31], while more recent neural search
systems use dense embeddings. Bag-of-words representations rely on lexical tokens matching, whereas
dense embeddings capture semantic similarities. Hybrid systems combine these approaches, first using
bag-of-words matches to retrieve high-recall candidates, and then applying semantic similarity scores
to improve precision for the top-ranked results. As a result, optimizing query representation has been a
long-standing challenge in search technology.

Adapting search and ranking systems to multiple applications presents several challenges. These
systems are used widely in various contexts, including search, recommendation, question answering,
fact-checking, and more, and span multiple domains such as web (e.g., Google and Bing), e-commerce
(e.g., Amazon and eBay), email (e.g., Gmail and Outlook), entertainment (e.g., Spotify and Netflix),
news (e.g., CNN and BBC), and finance (e.g., Bloomberg and Robinhood). This broad horizontal and
vertical deployment makes it difficult to apply a single query representation method universally due to
the varying user intents and query formats. Across these applications and domains, users seek different
types of information—such as web links, answers to questions, evidence for claims, or personalized
recommendations—and express their queries in forms like keywords, questions, claims, or interactions.
Additionally, queries can be multilingual or multimodal (including images and audio). Table 3.1 illustrates
these query variations across diverse applications. Consequently, effective techniques should adapt query
representation to the specific needs of each application and domain to enhance search quality and user
experience.

Capturing query distributions is a challenge for search and ranking models. Neural ranking models,
compared to traditional search systems, more effectively capture query distributions by training on
query-document relevance pairs specific to the target domain. Accurately modeling the query distribution
improves user query representation across different domains. In each domain, queries and documents
follow distinct data distributions. While it is often easier to capture document data distribution since target
data is usually accessible, effectively capturing query data distribution requires real user queries, such as
query logs from Amazon product searches. In a domain adaptation scenario, a ranking model trained on
a source domain using its query distribution may struggle when applied to a related but different target
domain due to shifts in query distribution. Therefore, neural ranking models need access to both user
query collections and human relevance judgments to be properly trained for the target domain.

Neural rankers need to be retrained to better capture query representations in the target domain.
These models require large-scale training data specific to the target domain to effectively learn user
and domain-specific features. Previous research has shown that pretrained language models exhibit
strong transfer learning performance across various domains and tasks. As a result, several studies have
leveraged large-scale, task-specific datasets (such as relevance tasks) to pretrain language models for
ranking purposes. One notable example is MS-MARCO [2], which contains 20 million question-answer
pairs with human relevance judgments. This dataset is often used to pretrain language models for ranking
tasks, which are then transferred in a zero-shot manner to other domains and retrieval tasks [1], such as
biomedical retrieval, news retrieval, and fact-checking. However, the performance of source pretrained
models on target domains is often limited and can sometimes fail significantly. This is primarily due to
differences in query representation and mismatches in query distribution between the source and target
domains. For instance, MS-MARCO queries are usually short questions, making it difficult for pretrained
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rankers to adapt well to other domains like biomedical or finance, or to tasks like fact-checking and
argument retrieval. As a result, the "one-size-fits-all" approach to neural rankers often proves inadequate
for different domains and datasets.

Modifying the input query is the most effective and efficient way to adapt user query representation
across domains. Various efficient methods have been employed to improve query representation, such
as query expansion, query enrichment, and query reformulation. When domain divergence occurs,
either (1) the query representation must be adjusted or (2) the neural ranking model must be retrained.
Retraining is more difficult due to the need for human-labeled data and the costs involved in updating the
model. Consequently, most previous approaches focus on modifying the input query, particularly during
inference, which falls under test-time domain adaptation. Query expansion and enrichment adjust the
query representation, but in different representation spaces, while query reformulation rewrites the input
query entirely at inference. Since query reformulation can introduce errors that may alter user intent or
the query topic, query expansion (or enrichment) is more commonly used in many applications. The next
section will therefore explore query expansion in detail.

3.1 Query Expansion (QE)
Query expansion enhances query representation by adding additional terms to improve search results.
This can be done at the token level or in the embedding space to bridge the gap between the user’s
query and relevant documents. Query expansion offers two key benefits: (1) it addresses the vocabulary
mismatch between the query and documents, and (2) it incorporates target domain information from
relevant documents into the query representation. These factors can significantly improve search quality.
In this chapter, the focus is on the second benefit—incorporating target domain information through
query expansion. By gathering relevant terms from the target domain, query expansion aids effective
domain adaptation without requiring model retraining. For this reason, query expansion has been widely
used in both research and industrial applications for many years, particularly in large-scale commercial
systems. Examples of query expansion techniques include synonym expansion, relevance feedback, and
pseudo-relevance feedback. The most common approach is pseudo-relevance feedback, which will be
detailed in the following section.

3.2 Pseudo Relevance Feedback (PRF)
Pseudo Relevance Feedback (PRF) is a type of Relevance Feedback (RF) that assumes the top-k results
from an initial search are relevant and uses them to refine the search results. Traditional relevance feedback
involves a user manually identifying relevant documents, which are then fed back into the system to
improve the query representation or search outcome. However, due to the effort required from users,
automatic approaches like PRF are typically preferred. PRF operates by making two search calls: the
first retrieves the top-k documents, which are automatically assumed to be relevant. Expansion terms are
then extracted from these documents to enhance the input query representation. The second search call
retrieves the final set of top-k documents for the expanded input query. Since the expansion terms are
drawn from the top-ranked target domain documents, they help improve the query representation, leading
to better search performance.

Many retrieval systems incorporate PRF to handle ambiguous queries. Search queries can range
from ambiguous and vague to complex or straightforward, with ambiguous queries posing the greatest
challenge. It is crucial for a search system to meet user information needs, even when their queries are
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unclear. PRF is an effective method for addressing search system failures with ambiguous queries. It
enhances search results by automatically including relevant terms related to the query context, without
requiring any user feedback. This helps significantly improve search performance, especially in the case
of ambiguous queries.

However, PRF comes with certain challenges, such as computational overhead and query topic
drift. It is important to consider these issues before integrating PRF into a search system to avoid poor
performance. First, since PRF requires two search calls and the extraction of expansion terms, this added
complexity can increase latency in real-time systems. Second, assuming that the top-k search results are
relevant can introduce noise, potentially distorting the query representation. Of these challenges, topic
drift is particularly problematic—if the top-ranked documents are irrelevant, the query expansion process
may introduce irrelevant or noisy terms, significantly degrading search quality. Several strategies can
help mitigate the risk of topic drift, such as limiting the number of feedback documents, filtering terms,
applying term weighting (e.g., TF-IDF or BM25), and using semantic models for query expansion. By
effectively addressing these concerns, PRF can be incorporated into a search system to better handle
ambiguous queries and enhance recall. In the next section, I will propose two effective PRF approaches,
focusing on incorporating target domain information through query representation.

Query Type Applications
question question-answering, duplicate question retrieval
headline news retrieval, tweet retrieval
entity-oriented query entity retrieval
argument argument retrieval
title (article) citation prediction
claim fact checking
domain-specific query bio-medical and financial domains
cross-language query cross-lingual information retrieval

Table 3.1: Examples of query types used across different retrieval applications.

3.3 Overview of Proposed Query Representation Approaches
In the following section of this chapter, I propose two approaches to effectively represent user queries in a
target domain. Specifically, I address the primary research question (RQ1): Can adapting query represen-
tation with domain information improve ranking performance? My contributions to RQ1 are twofold: (1)
NCLPRF: Learning to Enrich Query Representation with Pseudo-Relevance Feedback for Cross-lingual
Retrieval [83], published as a short paper in SIGIR 2022, and (2) GenQREnsemble-RF: Generative
Query Reformulation Using Ensemble Prompting, Document Fusion, and Relevance Feedback [84] in
Arxiv 2024. The preliminary study for GenQREnsemble-RF, namely GenQREnsemble [85], is published
in ECIR 2024. I was the lead author of the NCLPRF project and collaborated on the GenQREnsemble-RF
project, which was primarily led by Kaustubh Dhole. In the GenQREnsemble-RF project, my contribu-
tions were focused on prompt tuning and experiments related to integrating PRF into the GenQREnsemble
framework. Additionally, I conducted experiments related to ranking and PRF, while the lead author
handled experiments focused on LLMs. Next, I will compare and contrast these two approaches before
providing detailed descriptions in the following sections.
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Although both of my approaches enhance target query representation, they offer distinct advantages
depending on the use case. These differences can be understood across three key dimensions: (1) query
representation space, (2) context length limitations, and (3) the performance vs. latency trade-off. First,
both NCLPRF and GenQREnsemble-RF fall under test-time domain adaptation (TTDA), meaning they
modify the input query representation to better fit the target domain during inference, without requiring
model retraining or weight updates. However, they differ in the space where the query modification
occurs: NCLPRF modifies the query representation in the embedding space, while GenQREnsemble-RF
operates in the lexical space.

Second, NCLPRF is constrained by the context length limitations of pretrained language models (e.g.,
512 tokens for BERT), whereas GenQREnsemble-RF benefits from a larger context length (e.g., 4,000
tokens for Llama-2-7b-chat-hf).

Third, NCLPRF uses a smaller model (220M parameters), providing low latency but with limited
performance, while GenQREnsemble-RF uses a much larger model (7B parameters), achieving higher
performance but with significantly increased latency. Given these trade-offs across the three dimensions,
practitioners can select the most suitable approach based on their specific use case. Next, I will provide a
detailed discussion of my first approach: NCLPRF.

3.4 Learning to Enrich Query Representation
Incorporating pseudo-relevance feedback (PRF) into dense retrieval models to enhance query representa-
tion is typically done at the term level. To further boost retrieval effectiveness using target information,
queries can be expanded with PRF during query time. Many methods, such as RM3 [59], follow the
classic Rocchio algorithm [58], modifying queries with terms found in top-ranked documents. However,
expanding—or more accurately, enriching—query representation at the embedding level remains largely
underexplored. In this work, I focus on proposing query enrichment through embedding representation to
address this gap.

Compared to monolingual retrieval, query enrichment can be especially effective in cross-lingual
settings due to the larger representation gap between languages. Cross-lingual information retrieval (CLIR)
aims to provide access to information across different languages. While recent pretrained multilingual
language models have significantly improved various natural language tasks, including cross-lingual ad-
hoc retrieval, PRF has not been extensively explored with neural CLIR models. The additional information
provided by feedback documents in the target language can enhance query representation, aligning it
more closely with relevant documents in the embedding space. Therefore, I explore the challenges of
query enrichment in the CLIR context to propose an effective solution.

3.4.1 Problem Statement
Neural query enrichment for dense retrieval models presents several challenges. Simply expanding query
terms has proven less effective than modifying query representations using feedback documents, as seen
in approaches like ColBERT-PRF [68]. Additionally, incorporating long feedback documents poses a
significant issue when working with dense retrieval models that rely on pretrained language models with
limited context lengths (e.g., ANCE-PRF [8]). Including more than a few feedback documents can result
in information loss during the query enrichment process, and this problem is further exacerbated when the
documents themselves are long.

Neural query enrichment in CLIR faces unique challenges due to cross-language transfer. Using PRF
in CLIR is particularly difficult because it amplifies the vocabulary mismatch between the source language
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query and PRF documents written in a foreign language. While sequence embeddings in pretrained
transformer models have proven effective for monolingual retrieval [29], for CLIR, token representations
across languages can diverge further without additional fine-tuning [86, 87]. Aligning query and document
representations across languages is already complex, and enriching query representations in one language
with text from another adds an extra layer of difficulty. This raises a natural question: can query
representation also be enriched effectively for CLIR in dense retrieval? Therefore, it can be hypothesized
that enriching query representations through PRF will improve cross-lingual retrieval effectiveness.

3.4.2 NCLPRF
To address these challenges, I propose training a joint encoder for both the query and feedback documents.
Specifically, I introduce a new neural CLIR model, NCLPRF, which extends the capabilities of the
previous state-of-the-art monolingual PRF model, ANCE-PRF [8]. Unlike ANCE-PRF, which is limited
to encoding a fixed amount of feedback information, NCLPRF can encode multiple feedback documents,
helping to bridge the language gap between queries and documents. NCLPRF aggregates representations
that jointly encode the query alongside each feedback document, effectively narrowing the representation
gap. The resulting enriched query representation encapsulates the user’s information need, conditioned
by the feedback signals. While NCLPRF was originally designed for CLIR, it is flexible enough to be
applied in monolingual or multilingual retrieval scenarios as well. The model is trained using weakly
supervised cross-language queries and documents from Wikipedia, established through the wiki-links
in CLIRMatrix [88]. Performance evaluations on three CLIR test collections in Chinese, Russian, and
Persian show significant improvements over traditional and state-of-the-art neural CLIR baselines without
requiring retraining across different datasets. Next, I will provide a detailed explanation of my approach,
starting with a formal method description, followed by an overview of the experimental setup, and
concluding with a discussion of the results and analysis.

3.4.3 Proposed Work
The method adapts the Siamese architecture [89] for measuring text similarity, known as dual-encoders in
the neural IR context [25], such as ANCE [7] and DPR [27]. Two encoders generate dense contextualized
vector representations of the input query and documents separately that summarize the semantics of the
text. Figure 3.1 shows my model architecture.

3.4.3.1 Query representation

Query is encoded using a pretrained transformer multilingual language model, i.e., universal encoder.
To provide the feedback documents as additional inputs, query and each feedback document form a
paired input sequence separated by the separation token for the encoder (SEP). The resulting sequence
representation qCLS

k is the query representation contextualized on the feedback document dk. Specifically
the representation of the first token, i.e., the <s> or CLS token, from the last layer of the encoder in the
input sequence is used as the representation of the query.

The additional context from the feedback document enriches the query representation over the original
query representation qCLS created based on the short text. Such modifications to the query representation
align the original spirit of query expansion with PRF that adjusts queries with relevant terms. However,
multiple feedback documents yield multiple query representations, requiring an aggregation function
which I will discuss later in the section.
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Figure 3.1: Architecture of NCLPRF ranker. A query is represented as the aggregation of N query-
feedback document encodings. The reranking score of a candidate document is based on the similarity of
its document encoding and the query encoding.

3.4.3.2 Document Representation

Candidate documents di are encoded using the same backbone network as the query encoder without the
feedback information and denoted as di. The feedback information is only manipulating the queries as the
candidate documents already contain enough context by themselves. Similarly to the query representation,
the representation of the CLS token from the last layer of the encoder is used as the representation of
the document. The shared encoders between query and documents benefit the query encoder from the
document side when encoding the feedback documents. Furthermore, such a decoupling still admits offline
encoding of the candidate documents similar to other denser retrieval models, allowing for approximated
nearest neighbor search.

3.4.3.3 Vector Aggregation

Inside the query encoder, contextualized vectors corresponding to separate feedback documents have to be
fused together to generate a single vector for the enriched query. Specifically, given a query representation
qCLS

k conditioned on feedback document dk, I compute the aggregated vector qCLS
prf as

∑
k wkqCLS

k , where∑
k wk = 1. Vector averaging is implemented as the aggregation method either by uniform weights, BM25

weights, or reciprocal rank (RR) weights (i.e., wk = 1
rwk

where rwk
is the rank of feedback document dk

in the initial rank list). The comparison of each aggregation function is discussed in the results section.

3.4.3.4 Reranking framework

The overall reranking framework consists of query–feedback encoder with aggregation, document encoder,
and a vector similarity function f between the representations to generate a reranking score for each
candidate document given the query conditioned on the feedback documents. For simplicity, a dot product
between the vectors is used as the similarity function. The final score for candidate document di can be
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Persian Russian Chinese

Train
query-document pairs 410,128 576,940 410,322
avg query length 2 2 2
avg document length 77 144 18

Dev

queries 118 118 118
documents 486,486 4,721,064 646,305
avg query length 6 5 20
avg document length 377 208 621

Test

queries 100 62 100
documents 166,774 16,716 308,832
avg query length 4 3 17
avg document length 395 269 525

Table 3.2: Train (CLIR-Matrix), dev (HC4), test (CLEF and NTCIR) collections statistics.

expressed as the following,
f(q, di) = qCLS

prf ·
(
dCLS

)T
(3.1)

I train the model with negative log-likelihood loss in a point-wise fashion where the negative documents
for each query are randomly sampled within the positive documents in the training batch. Based on my
pilot study and given the quick prototyping and resource limitations, one negative document per query was
used during training. This concludes the details for my approach, and next I will explain my experimental
setup.

3.4.4 Experimental Setup
In this Section, I give more details about my experimental setup, especially the training, validation,
evaluation, and the datasets used for each.

3.4.4.1 Dataset

I used multiple datasets and collections for training, validation, and testing. I primarily focused on
high-resource languages in my evaluation: Persian, Russian, and Chinese. However, NCLPRF can still
be applied to medium- and low-resource languages in a zero-shot transfer fashion. The statistics of the
data are shown in Table 3.2. My datasets consist of English queries-foreign documents for three language
pairs.

3.4.4.1.1 Training
My dual-encoder based transformer architecture requires large number of query-document pairs to train.
Therefore, I used large scale bilingual query-document pairs from CLIRMatrix [88] on three language
pairs. The dataset comes with automatic relevance annotations from judgements 0 to 6, where 0 is
irrelevant and 6 is highly relevant. I selected the judgement 6 pairs for my baseline training. In addition,
I pooled judgements 5 and 4 to provide feedback documents for each queries. In a typical PRF setting,
feedback documents are selected from the initial retrieval result. However, I argue that using labeled
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relevance documents for feedback signals during training is reasonable since top-k documents are also
implicitly assumed relevant during inference.

3.4.4.1.2 Validation
To help picking the best performing model across the training steps and tune the free parameters, I used
CLIR Common Crawl Collection (HC4) [90] as the development dataset. In this dataset, the exact same
English topics are queried over 3 languages and relevant judgements are annotated for each. I used
Patapsco [91] as my initial retrieval tool to query the English topic-title (queries were machine translated
to cast for monolingual initial retrieval) for top-100 documents.

3.4.4.1.3 Testing
I reported NCLPRF performance on corresponding three languages from CLEF (Persian and Russian)
[92] and NTCIR (Chinese) [93] collections. English topic-title is machine translated to query top-100
initial documents using Patapsco. Conventionally, PRF approaches operate on the same initial retrieval.
However, I apply PRF on reranking in this study, and PRF on initial retrieval can be directly extended in
future study.

3.4.4.2 Training and Evaluation

3.4.4.2.1 Implementation
I used PyTorch and HuggingFace APIs to train and evaluate my framework. For training, all the models
trained with 160k query-document pairs with and without feedback document. XLM-R pretrained LM is
used as my base transformer. Given a short amount of time for a quick implementation, I only completed
runs on XLM-R large for Russian and XLM-R base for the other two languages. Since my goal is to
fine-tune an XLM-R to transfer knowledge between source and target languages, I shared the model
parameters between query and document encoders. The parameter sharing also promotes the query to get
closer to the document representation with the help of feedback documents. To enforce the XLM-R to
learn the cross-language relevance, I did not pass the XLM-R’s contextual output vector to a dense layer.
I used batch size of 16 to train for 20 epochs with learning rate of 5e-6. During inference time, I applied
windowing method to cover the long document text. Each documents are chunked into 80 white-space
tokens length with stride of 40 tokens. The document relevance score is determined by the maximum
score across each chunk relevance scores. XLM-R models were trained on a single RTX 6000 GPU for
200k steps.

3.4.4.2.2 Evaluation
During evaluation, I used Patapsco [91] to pool top-100 documents per query, and then reranked the
list using baselines and my models. I used nDCG@5 and nDCG@10 to measure the model reranking
performances. My baselines are rerankers without leveraging PRF (BM25 with transformer-based
reranker) and with leveraging PRF (RM3 with variable number of feedback documents 1-10, and ANCE-
PRF). In the next Section, I will showcase my NCLPRF experimental results on evaluation datasets.

3.4.5 Results and Discussion
In this Section, I provide an overview of the experimental results and conduct an analysis of how PRF
affects the re-ranking performance. First, I compare my NCLPRF approach against robust baseline
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CLEF Persian CLEF Russian NTCIR Chinese

Query Models nDCG@5 nDCG@10 nDCG@5 nDCG@10 nDCG@5 nDCG@10

MT
BM25 0.404 ( 0.0%) 0.392 (0.4%) 0.327 (–6.3%) 0.336 (–9.0%) 0.270 (12.2%) 0.278 (11.5%)
BM25 + RM3 (w/2 FD) 0.404 ( – ) 0.390 ( – ) 0.349 ( – ) 0.369 ( – ) 0.241 ( – ) 0.249 ( – )
BM25 + RM3 (Tuned) 0.423 ( 4.7%) 0.405 (3.9%) 0.358 ( 2.6%) 0.370 ( 0.1%) 0.278 (15.3%) 0.279 (11.9%)

Eng.
ANCE-PRF (XLM-R based) 0.424 ( 4.9%) 0.413 (6.0%) 0.369 ( 5.7%) 0.382 ( 3.4%) 0.281 (16.5%) 0.286 (14.9%)
NCLPRF (w/o PRF) 0.405 ( 0.3%) 0.393 (0.7%) 0.327 (–6.3%) 0.345 (–6.6%) 0.272 (12.7%) 0.277 (11.0%)
NCLPRF (w/2 FD) 0.459 (13.6%) 0.425 (9.0%) 0.374 ( 7.2%) 0.380 ( 2.9%) 0.295 (22.3%) 0.298 (19.5%)

Table 3.3: Comparison of NCLPRF against baselines. All models at the bottom half of the table rerank
the top 100 documents retrieved by BM25 (without RM3). BM25 uses machine-translated queries and
neural rerankers use the provided English queries. Percentages in parentheses are relative improvements
over the BM25 + RM3 with 2 feedback documents.

models. Following that, I delve into the impact of the number of feedback documents in PRF on query
representation.

3.4.5.1 Reranker Comparisons

The Table 3.3 shows the effectiveness of my models against the traditional baselines (BM25 + RM3) and
neural baseline (ANCE-PRF). NCLPRF w/o FD (feedback document) input, performs similarly to BM25,
implying that NCLPRF w/o FD only learns the lexical features present in the query and document text
in the reranking setting. However, when the model sees one input feedback document (the ANCE-PRF
row), it learns better query representation to find more relevant documents on top-10 reranked list. These
improvements are substantial across all three languages on both metrics relative to RM3 (w/2 FD). In
addition, when two feedback documents are inputted, NCLPRF w/2 FD further improves the scores
against ANCE-PRF, which only uses one feedback document. More than one feedback document input
provides more diverse context for the encoder to learn better query representation. This is observed by
the relative improvements on nDCG@5 (ranging 7.2% to 22.3%) and nDCG@10 (ranging from 2.9%
to 19.5%) scores against RM3 (w/2 FD). Even against a RM3 tuned with optimum number of feedback
documents, NCLPRF w/2 FD shows a large margin of robust improvement.

The early work, ANCE-PRF is designed to contextualize query based on multiple feedback documents.
Their transformer (BERT) encoder can only take maximum 512 token length, including query, feedback
document, and special tokens. This imposes a limitation on their design choice in the presence of long
document collection. It is infeasible to append more than one feedback document along with query into
their encoder. To overcome this challenge, my design allows scaling up more than one long feedback
document to contextualize the query. In comparison with ANCE-PRF, NCLPRF w/2 FD improves the
nDCG@5 scores relatively by 8.5%, 1.4%. and 5.0% on all three collections.

3.4.5.2 Variations on the number of feedback documents

With the increasing number of feedback documents (i.e., depth, k), RM3 expands the query and reweights
the candidate documents. However, semantic rerankers that leverage PRF documents aim for better
query representation and contextualization. Increasing the PRF depth captures more diverse context from
multiple top-k feedback documents and alleviates the impact of noisy signals [8] from a single feedback
document.

To measure the performances across varying PRF depth, Figure 3.2a shows the consistent improvement
to the nDCG@5 scores in NTCIR Chinese collection. But reciprocal rank weights are not improving
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(a) (b)

Figure 3.2: Different vector aggregations across PRF depths in (a) NTCIR Chinese and (b) CLEF Persian
collections.

as much compared to uniform and Lucene weights. The performance drop at k = 4 documents the
introduction of non-relevant document in the top-k list. However, reciprocal rank weights show a
monotonical improvement across PRF depth. In contrary, Figure 3.2b shows that in CLEF Persian
collection the performance improvements peaked at k = 2, and when k increases further, the nDCG@5
scores decrease surprisingly. This could be resulted from two reasons: presence of semantically dissimilar
feedback documents and suboptimal vector aggregation function. The first reason origins from the fact
that I used a neural reranker for an initial lexical-based retrieval system. A more typical practice is to use
feedback given by a neural system to a neural system (e.g. ANCE-PRF). Therefore, semantically similar
documents found in the top-k list provide feedback for a consequent semantic reranker. However, in this
study I provide feedback from a lexical system to a semantic reranker. Thus, the feedback documents do
not necessarily provide the relevant information to contextualize the query. The second reason is inherent
to my simple design choice of vector aggregation. The weights I used to aggregate the vectors are not
robust enough to underweight the semantically far feedback documents.

To overcome the problems discussed above in future, a simple solution would be to precede NCLPRF
with a dense retrieval framework, which provides more diverse context information from top-k feedback
documents. An operator to discard irrelevant documents or give negligible weights to those during
aggregation is also worth investigating. To promote this, Figure 3.2 clearly shows that regardless of
varying PRF depth and weighting schemes, NCLPRF outperforms ANCE-PRF, which only uses one long
feedback document.

3.4.5.3 Variations of Vector Aggregations

To generate a single query representation vector from multiple query-feedback document pairs, I introduce
a vector aggregation function. I experimented with three weighted average operators. Uniform and
BM25 weights follow a similar pattern and close performances since top ranked documents are likely
to have closer BM25 scores. In this weighting scheme, the models prone to semantically irrelevant
documents appear on top ranks. However, from Figure 3.2 reciprocal rank weights curve does not show
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large performance drop and establishes an evidence for potential robustness of NCLPRF to increasing
PRF depth. In the next Section, I will summarize the experimental results and address any limitations in
my approach.

3.4.6 Summary and Limitations
I presented a novel method for enriching query representation for CLIR, NCLPRF. The method uses
the feedback documents and brings the query representation close to relevant documents. My approach
is simple but effective in capturing the information from multiple long documents as compared to the
previous work. I showed that NCLPRF outperforms both statistical and Neural CLIR baselines. Thus,
NCLPRF effectively enhances the query representation not only for CLIR but also for monolingual and
multilingual retrieval across various domains and retrieval tasks. NCLPRF often has certain limitations
that might help towards the future extension or exploration.

NCLPRF has certain limitations due to suboptimal design choices that hinder its potential performance.
By adopting stronger design strategies, its performance can be improved compared to current state-of-
the-art (SOTA) retrieval models. Since NCLPRF was introduced in 2022, several elements—such as its
choice of PRF sources, aggregation methods, and training objectives—are outdated compared to more
recent SOTA techniques. For instance, leveraging lexical-based PRF sources and using a more advanced
aggregation model could help mitigate the noise from non-relevant documents in initial retrieval results.
Although NCLPRF was designed for both neural re-rankers and dense retrievers, its performance as a
dense retriever may fall short of current SOTA models due to its weaker training objective, specifically pair-
wise negative log likelihood loss. Current dense retrievers are trained using contrastive learning over large
datasets, and applying a similar training strategy to NCLPRF, while incorporating feedback documents
into the query, could improve its performance. Hence, by integrating these advanced techniques, NCLPRF
could achieve superior results compared to its counterparts. This concludes the discussion on my NCLPRF
approach.

3.5 Unsupervised Ensemble Generative Prompting to Enrich Query
Representation

Recently, the success of large language models (LLMs) [94, 95] has spurred the development of numerous
query expansion (QE) techniques. Generative abilities of LLMs have been leveraged to create new
queries [96] and generate valuable keywords to enhance users’ original queries [97]. Given the vast
amount of text these models are exposed to during pretraining, prompting has emerged as a promising
strategy for tapping into the knowledge embedded in LLMs to improve various downstream tasks [98],
particularly for QE [99, 100].

Unlike training or few-shot learning, zero-shot prompting does not require any labeled examples. The
key benefit of a zero-shot approach is its simplicity, as a standalone generative model can be prompted with
a predefined template and the original query to expand or reformulate the query. Specifically, zero-shot
query expansion (QE) can generate keywords by providing the user’s original query along with a natural
language instruction that describes the query reformulation task, such as Generate useful search
terms for the given query: "List all the pizzerias in New York".



29

3.5.1 Problem Statement
However, this zero-shot prompting approach relies heavily on the specific instructions given in the prompt,
leaving room for potential improvements. LLMs are known to exhibit significant performance differences
depending on the prompts used [101, 102] and the generation settings [103]. Many natural language
tasks have capitalized on this variation by ensembling multiple prompts or generating diverse reasoning
paths [104, 105, 106]. Whether these improvements can be applied to tasks like query expansion (QE)
remains unclear. It is therefore plausible to hypothesize that QE could benefit from prompt variation —
an ensemble of zero-shot reformulators with varied paraphrastic instructions could generate diverse query
expansions by approaching the input query from different perspectives.

3.5.2 GenQREnsemble-RF
To tackle the aforementioned challenge and build on the motivation, an ensemble-based generative
prompt query expansion approach, called GenQREnsemble-RF, is introduced. I collaborated on the
GenQREnsemble-RF project, which was primarily led by Kaustubh Dhole. In the GenQREnsemble-RF
project, my contributions were focused on prompt tuning and experiments related to integrating PRF
into the GenQREnsemble framework. Additionally, I conducted experiments related to ranking and PRF,
while the lead author handled experiments focused on LLMs. GenQREnsemble [85] introduces an
efficient method that leverages the variability (or instability) in LLM outputs, transforming it into an
asset for generating diverse query expansion terms. By incorporating pseudo-relevance feedback (PRF)
documents into the prompt, the generated expansion terms are enriched with target-specific information.
The expanded query is then used to retrieve the top-k relevant documents from the index. When the
LLM generates expansion terms without PRF, the terms tend to be more generalized to the query topic.
However, with PRF, the terms become tailored and specialized to the target domain. This domain-specific
adaptation enhances retrieval performance without requiring PRF-based fine-tuning. The following
section first introduces the GenQREnsemble approach, then details the extended GenQREnsemble-RF
approach, which integrates PRF, followed by empirical evaluations to demonstrate the effectiveness of
GenQREnsemble-RF.

Figure 3.3: The complete flow and algorithm of GenQREnsemble and GenQREnsemble-RF (dotted).

3.5.3 Proposed Work
The approach is divided into two stages: the pre-retrieval stage and the post-retrieval stage. In the
pre-retrieval stage, the query reformulation process is represented as qr = R.q0, where the reformulation
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Figure 3.4: The complete flow of GenQRFusion. GenQRFusion-RF is shown with the dotted line.

function R transforms the user’s original query q0 into a new reformulated query qr, enhancing retrieval
effectiveness for tasks such as passage or document retrieval. Additionally, a post-retrieval stage can be
employed, where the reformulator integrates feedback, such as document or passage-level information, as
supplementary context to further refine the retrieval process.

3.5.3.1 Pre-retrieval Stage

At this stage, two ensemble-based query reformulation methods, GenQREnsemble and GenQRFusion,
are introduced, both leveraging N diverse paraphrased versions of a query reformulation (QR) instruction
to improve retrieval. Initially, an LLM is employed to paraphrase the original instruction I1, creating N
distinct variations (I1 to IN ). This step is performed offline. However, each repetition of this step may
produce different sets of paraphrased instructions, and this is acceptable because the approach leverages
the LLM’s inherent stochastic nature to generate different paraphrases, resulting in diverse expansion
terms. Each paraphrased instruction is then paired with the user’s query q0 to generate instruction-specific
keywords. Optionally, these generated keywords are passed through another LLM to filter out irrelevant
terms. The key differences between these two approaches are outlined below.

1. GenQREnsemble: All generated keywords are appended to the original query, forming a refor-
mulated bag-of-words query. This query is then executed against a document index D to retrieve
relevant documents, denoted as Dr. The entire process and corresponding algorithm are depicted in
Figure 3.3.

2. GenQRFusion: Keywords generated from each instruction are appended individually, creating
N separate reformulated queries. Each of these queries is executed against the document index
D, producing N sets of relevant documents Di. These sets are then combined to generate a single
ranked list of documents Dr using methods such as score fusion (e.g., BM25 score fusion or
reciprocal rank fusion). The process is illustrated in Figure 3.4.

3.5.3.2 Post-retrieval Stage

To evaluate how incorporating additional context, such as document feedback, improves query reformula-
tion, a PRF module is sequentially integrated into the pre-retrieval stage variants: GenQREnsemble-RF
and GenQRFusion-RF. The overall search process involves two retrieval calls. The first call, in the
pre-retrieval stage, collects PRF documents using the ensemble prompting technique. The second call, in
the post-retrieval stage, incorporates these PRF documents into the query reformulation. Specifically, the
N instructions mentioned earlier are prepended with a fixed context string, “Based on the given
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context information {C},” as used in Wang et al. [97]. It was experimentally found that
prepending this string performs better than appending it at the end. Here, {C} represents a space-delimited
concatenation of feedback documents, C = d1 + . . . + dm, which are either pseudo-relevance feedback
from the initial retrieval or human feedback.

3.5.4 Experimental Setup
In this subsection, the emphasis is on evaluating the incorporation of PRF into the GenQREnsemble
approach. The version of GenQREnsemble [85] published in ECIR 2024 only introduced the ensemble
prompting method for query reformulation, and the GenQRFusion variant was not explored. Detailed
evaluations of GenQREnsemble’s effectiveness can be found in the publication [85]. In this actual work,
however, GenQRFusion is introduced and tested. The main focus is on integrating PRF into both variants.
Therefore, this thesis centers around PRF incorporation into both GenQREnsemble and GenQRFusion
approaches. The following section will cover the experiments conducted and the analysis across different
retrieval settings.

3.5.4.1 Prompts

Based on Wang et al. [97], to instruct the LLM to generate query reformulations, initially a base QR
instruction I1 is empirically chosen. This instruction is used to generate N paraphrases (N = 10). To this
aim, the ChatGPT API [107] is invoked with the paraphrase generating prompt, namely, Ip = “Generate
10 paraphrases for the following instruction:”– and the base QR instruction I1 to
obtain I2 to I10. These paraphrases, shown in Figure 3.5 serve as the instruction set for all subsequent
experiments.

# Instruction
1 Improve the search effectiveness by suggesting expansion terms for the query
2 Recommend expansion terms for the query to improve search results
3 Improve the search effectiveness by suggesting useful expansion terms for the query
4 Maximize search utility by suggesting relevant expansion phrases for the query
5 Enhance search efficiency by proposing valuable terms to expand the query
6 Elevate search performance by recommending relevant expansion phrases for the query
7 Boost the search accuracy by providing helpful expansion terms to enrich the query
8 Increase the search efficacy by offering beneficial expansion keywords for the query
9 Optimize search results by suggesting meaningful expansion terms to enhance the query
10 Enhance search outcomes by recommending beneficial expansion terms to supplement the query

Figure 3.5: The N reformulation instructions used for GenQREnsemble and GenQRFusion

3.5.4.2 Generation Models

For generating the query reformulations, two models, flan-t5-xxl and Llama-2-7b-chat-hf
are employed. FlanT5 [108] is a set of models are created by fine-tuning the text-to-text transformer
model, T5 [46] on instruction data of a variety of NL tasks. The checkpoint1 provided through Hugging-
Face’s Transformers library(HF) [109] is used. Nucleus sampling is performed with a cutoff probability
of 0.92 keeping top 200 tokens (top_k) and a repetition penalty of 1.2.

An investigation also conducted to assess the use of Llama-2-7b-chat-hf [110], an auto-
regressive language model, which is RLHF fine-tuned and optimized for dialog use cases. The LLama2

1huggingface.co/google/flan-t5-xxl

https://chat.openai.com/
https://huggingface.co/google/flan-t5-xxl
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series of models are chosen as they have shown state-of-the-art performance across multiple benchmarks.
The HF checkpoint2 is used, keeping the same generation settings as above with a repetition penalty of 2.1.
The prompt template shown in Figure 3.6 is used where the instruction variable is the concatenation
of the actual instruction and the query provided at run-time. Additional instruction of “And do not explain
yourself.” is appended to minimize the conversational jargon that the model could generate.

You are a helpful assistant who directly provides
comma separated keywords or expansion terms.
Provide as many expansion terms or keywords as possible
related to the query. And do not explain yourself.
instruction: query

Figure 3.6: The prompt used for all the Llama-2 Query reformulators.

3.5.4.3 Retrieval Evaluation and Baselines

For evaluation, standard TP19 is used: TREC 19 Passage Ranking which uses the MS-MARCO dataset [99,
111] consisting of search engine queries through IRDataset [112]’s interface.

Our work is compared against the following using the Pyterrier [113] framework. For all the post-
retrieval experiments, 5 documents are used as feedback.

1. BM25: Raw queries are used for retrieval without any reformulation.

2. BM25+RM3 [59]: BM25 retrieval with RM3 expanded queries (#feedback terms=10).

3. BM25+GenPRF [97]: BM25 retrieval with GenPRF expanded queries.

4. GenQREnsemble-RF: The corresponding PRF variant of ensemble query reformulation introduced
by Dhole and Agichtein [85] which used a FlanT5 generator.

3.5.5 Results and Discussion

With BM25 Retriever With Neural Reranking
Setting nDCG@10 nDCG@20 MAP MRR nDCG@10 nDCG@20 MAP MRR
BM25 .480 .473 .286 .642 .718 .696 .477 .881
RM3 .504 .496 .311 .595 .716 .699 .480 .858
GenPRF .576 .553 .363 .715 .722 .703 .486 .874
GenPRF [97] .628 .404 .809
GenQREnsemble-RF .585(+2%) .560(+1%) .373(+3%) .753(+5%) .729(+1%) .706(+1%) .501(+3%) .894(+2%)
GenQRFusion-RF .566 .548 .368 .725 .718 .707 .488 .882
GenPRF (Oracle) .753 .728 .501 .936 .742 .734 .545 .881
GenQREnsemble-RF (Oracle) .820α(+9%) .773(+6%) .545(+9%) .977(+4%) .756(+2%) .751(+2%) .545 .897(+2%)
GenQRFusion-RF (Oracle) .708 .672 .465 .938 .748 .731 .532 .887

Table 3.4: Comparison of PRF performance on the TP19 benchmark using queries generated from
flan-t5-xxl. With BM25 Retriever utilizes the reformulated query directly for initial retrieval,
while With Neural Reranking further re-ranks the results obtained from the BM25 first-stage retrieval.

First, Table 3.4 investigates if GenQREnsemble-RF and GenQRFusion-RF can effectively incorporate
PRF. While GenQRFusion-RF improves recall, GenQREnsemble-RF improves retrieval performance

2huggingface.co/meta-llama/Llama-2-7b-chat-hf

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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across all metrics as compared to other PRF approaches and is able to incorporate feedback from a BM25
retriever better than RM3 as well as its zero-shot counterpart. To assess if GenQREnsemble-RF and
GenPRF can at all benefit from incorporating relevant documents, an oracle testing is performed by
providing the highest relevant gold documents as context. Finding showed that GenQREnsemble-RF
is able to improve over GenQREnsemble (without feedback) showing that it is able to capture context
effectively as well as benefit from it. It can incorporate relevant feedback better than its single-instruction
counterpart GenPRF. Additionally, the improvements even under the neural setting as GenQREnsemble-
RF outperforms RM3 and GenPRF. Besides, the oracle improvements are higher with only a BM25
retriever as compared to when a neural reranker is introduced.

Furthermore, the effect of varying the number of feedback documents from 0 to 5 is also evaluated.
Resorting to an ensemble approach is highly beneficial as seen in Figure 3.7. In the BM25 setting, the
ensemble approach seems always preferable. Under the neural reranker setting too,GenQREnsemble-RF
almost always outperforms GenPRF.
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Figure 3.7: Effect of PRF with increasing feedback on TP19. BM25 is employed to directly query using
the reformulated queries.

3.5.6 Summary and Limitations
Zero-shot QR is advantageous since it does not rely on any labeled relevance judgments and allows
eliciting pretrained knowledge in the form of keywords by prompting the model with the original
query and appropriate instruction. By introducing GenQREnsemble and GenQRFusion, the experiments
validated that that zero-shot performance can be further enhanced by using multiple views of the initial
instruction, both as a unified query and through document fusion. Moreover, the experiments showed that
the PRF extension GenQREnsemble-RF can effectively incorporate relevance feedback, either automated
or from users. A final filtration step to convert messy keywords to their fluent counterparts helps increase
interpretability. The ensemble approach improves upon the state-of-the-art zero shot reformulation and
can be applied to a variety of settings, for example, to address different aspects of queries or metrics
to optimize, or to better control the generated reformulations, or for improving queries for retrieval
augmented generation.

While generative QR greatly benefits from the ensemble approach, these methods come at a cost of
potentially increased latency, but this is becoming less problematic with the increased availability of batch
inference for LLMs.

The interpretability of not only query reformulations but even of other language phenomena is often
highly subjective [114] and it could vary according to the intended application. Besides, it could be
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argued that natural language might not always be the best mode for interpretability. While natural
language expressions could communicate the precise intent, keywords could also be useful for clustering
or visualization – and hence both being useful for interpretability. This work closely adheres to the former
definition of interpretability.
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4 Unsupervised Ranker Adaptation
Pretrained neural ranking models often struggle or perform suboptimally when faced with domain

shifts. A domain shift occurs when there is a mismatch in data distribution between the training and
testing samples, particularly between the source and target domain data. A domain can be characterized
by various attributes, which fall into three main categories: query, document, and label. For instance,
query and document attributes may include topics, linguistic features, language, structure, modality,
and format [3], while label attributes may involve different relevance criteria, such as topic relevance,
paraphrasing, presence of a correct answer, or counter-argument [3]. Domain shift refers to any change in
these attributes from the source to the target domain. Due to these changes, a pretrained neural ranker
might not perform optimally across the target domain. To ensure consistent and robust performance across
different domains, it is crucial to adapt pretrained neural rankers to the target domain.

Domain-invariant feature learning is a commonly used approach for adapting neural ranking models
across target domains. These models are typically pretrained on multiple related, yet distinct, source
domain collections to learn robust and generalizable features. As a result, domain-invariant pretrained
rankers demonstrate strong zero-shot performance across target domains without requiring domain-
specific fine-tuning. This approach is particularly favored in scenarios where generalization, efficiency,
and reduced overfitting are important, especially when labeled data for the target domain is scarce. It
also provides greater flexibility and scalability for large real-world deployments. Various methods have
been employed to achieve domain-invariant feature learning in neural rankers, including adversarial
learning, feature alignment, correlation alignment, contrastive learning, domain-invariant regularization,
and large-scale training. Among these, large-scale pretraining is often the preferred method due to its
broad coverage across many target domains.

Large-scale source domain pretraining is another form of domain-invariant learning. This method
enables language models to generalize effectively across various domains and tasks. Language models
like BERT [32], RoBERTa [37], and T5 [46] are pretrained in an unsupervised manner on massive,
unstructured datasets without human-provided labels. Through this process, they acquire extensive
semantic understanding and knowledge about the world. These models can then undergo supervised task-
specific pretraining or domain-specific fine-tuning, both of which contribute to domain adaptation. For
instance, BERT is further pretrained for relevance tasks on MS-MARCO [111] question-answering data, a
variant known as MonoBERT [65]. Likewise, BERT or MonoBERT can be fine-tuned directly on specific
target domains such as finance, biomedicine, or movies. Both unsupervised language pretraining and
supervised task pretraining help these models learn domain-invariant features. However, in the context of
neural ranking domain adaptation discussed in this thesis, I refer to the "source" training as "task-specific
supervised pretraining" and the "target" training as "domain-specific supervised fine-tuning". Pretrained
neural rankers, including models like MonoBERT, MonoT5 [115], ColBERT [28], and Contriever [45],
have demonstrated impressive zero-shot performance across various domains and retrieval tasks, as shown
in the BERT [1] benchmark.

However, zero-shot neural ranking may be less effective because it does not leverage target domain
information. Fine-tuning on the target domain allows a neural ranker to learn more specialized, rather
than generic, features. By sequentially fine-tuning a pretrained neural ranker, the model can acquire
domain-specific knowledge, including document and query distributions as well as task features unique to
that domain. Key domain-representative features typically come from the target query, document, and
label representations. Therefore, it is crucial for a neural ranker to capture and utilize this information
to enhance relevance matching within the target domain. While state-of-the-art domain-invariant neural
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rankers are often the preferred choice for real-world applications, a cost-effective, minimally effortful
domain fine-tuning approach that delivers notable performance gains would be highly valuable.

Several challenges emerge when fine-tuning a neural ranking model across domains. If domain-specific
features are not properly captured, performance may be limited. The main challenges of domain fine-tuning
neural rankers include the high cost of fine-tuning and the scarcity of target domain data. Transformer-
based neural ranking models are data-intensive, requiring large-scale datasets, which increases the cost of
data collection (queries), annotation (labels), and computational resources. Moreover, domain fine-tuning
typically demands extensive human-labeled supervised data, which can be hard to acquire. Most previous
works on domain fine-tuning rely on unsupervised or weakly-supervised approaches, leveraging unlabeled
target data. Unsupervised fine-tuning is particularly common due to its scalability and reduced dependence
on noisy labels. In response to these challenges, I propose two novel unsupervised domain fine-tuning
approaches for neural rankers, which I will outline next.

4.1 Overview of Proposed Ranker Adaptation Approaches
In this chapter, I focus on investigating the effectiveness and resilience of adapting neural rankers for
different retrieval tasks and domains. This leads to the central research question (RQ2): Can ranking
models be fine-tuned effectively with minimal or no supervision? My contributions as the lead author
addressing RQ2 include DUQGen and mDUQGen, both offering solutions for unsupervised ranker
adaptation across domains and languages, respectively. DUQGen introduces an efficient method for
unsupervised domain adaptation of neural rankers by diversifying synthetic query generation, and it was
published as a main conference paper at NAACL 2024. mDUQGen presents a cost-effective approach for
language adaptation in multilingual retrieval. I aim to submit mDUQGen work to ACL 2025.

Both of my approaches share a common data augmentation framework but differ in their components
for domain versus language fine-tuning. I introduce an innovative, efficient sampling-based method
to effectively represent the target domain or language. Leveraging the generative capabilities of large
language models (LLMs), I generate high-quality queries that are representative of the target domain or
language, creating unsupervised training data. This domain- and language-specific training data allows for
effective fine-tuning of neural ranking models without increasing costs or requiring human annotations.
The main difference between DUQGen and mDUQGen lies in the components used for adapting to target
domains and languages, such as the document encoder, query generator, and neural ranker. I will delve
into the detailed implementation and specific differences in their respective sections next.

Next, I will present a motivating analysis to demonstrate the importance of performing domain
fine-tuning on top of zero-shot neural ranking models before introducing my unsupervised approaches.
This preliminary analysis evaluates the impact of supervised fine-tuning using labeled training data,
highlighting the performance gains that domain-specific fine-tuning can offer. Experimental results from
state-of-the-art neural ranking models based on LLMs, such as MonoT5-3B [115], RankLLaMA [73], and
RankGPT [78], provide an upper limit on the performance achievable through supervised fine-tuning. In
contrast, my approaches operate without supervision, using an unsupervised strategy. It will be intriguing
to see how closely my unsupervised methods can match or even surpass the performance of supervised
approaches.
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4.2 Preliminary Study on Domain Fine-tuning
Several methods have been proposed to address the challenge of unsupervised domain adaptation, par-
ticularly focusing on domain-invariance feature learning. Recent advancements in pretrained language
models have shown promise in learning robust contextual features and facilitating transfer learning
across diverse domains. The pretraining of these language models on extensive training data is a form
of domain-invariance learning since the pretraining data encompasses a wide range of topics. In the
upcoming section, I will delve into the transfer learning capabilities of state-of-the-art zero-shot language
models, particularly LLMs.

4.2.1 Benchmarking Zero-shot LLM Rankers
As outlined in the literature review section (Section 2.9), recent years have seen the emergence of multiple
approaches to utilize LLM for zero-shot ranking. These approaches do not involve domain fine-tuning
or incorporate in-context demonstrations during prompting, hence termed as zero-shot. Notably, all
three types of ranking families (point-wise, pair-wise, and list-wise) have been explored using LLM.
However, point-wise ranking methods have employed varied techniques. Therefore, in the next subsection,
I initially evaluate the zero-shot ranking performance of point-wise rankers and then proceed to compare
the zero-shot ranking across point-wise, pair-wise, and list-wise rankers.

4.2.1.1 Point-wise Zero-shot Rankers

To compare various types of point-wise neural rankers, I chose SOTA neural re-rankers from each
architectural family. My evaluation was performed using the BEIR [1] collection, which encompasses
diverse datasets across multiple domains and retrieval tasks. Specifically, I selected MonoELECTRA,
MonoT5-3B, and RankLLaMA as representatives of SOTA rankers from encoder-only, encoder-decoder,
and decoder-only architectures, respectively. These re-rankers were pretrained on MS-MARCO query-
passage pairs but have not undergone fine-tuning on the evaluation dataset, making them zero-shot neural
rankers in my analysis.

Table 4.1 clearly demonstrates that generative models outperform discriminative models in point-wise
ranking task. The effectiveness of generative language models has notably increased with larger model
sizes and multi-stage pretraining. Notably, across all 17 datasets, MonoELECTRA falls short of generative
neural rankers. Across the average of 17 BEIR datasets, the nDCG@10 score of MonoELECTRA is 9%
lower than RankLLaMA and 13% lower than MonoT5-3B. From Table 4.1, it is evident that MonoT5-3B
emerges as the superior choice due to its model size and extensive fine-tuning on the MS-MARCO dataset.
Despite being larger than MonoT5-3B, RankLLaMA (7B) lags behind by 4% in relative nDCG@10
scores. In conclusion, Table 4.1 underscores the significance of generative language models in developing
future state-of-the-art point-wise rankers.

4.2.1.2 Comparison between Point-wise and List-wise LLM Rankers

To compare point-wise and list-wise rankers, I chose SOTA zero-shot LLM based neural re-rankers.
The evaluation was conducted using the BEIR collection across various out-of-distribution datasets.
Specifically, MonoT5-3B was chosen as the SOTA point-wise ranker, while three list-wise rankers —
RankVicunna, RankGPT(gpt-3.5-turbo), and RankGPT(gpt-4)—were selected to demonstrate competitive
performance achievable with list-wise ranking. Once again, these neural re-rankers were not fine-tuned on
the domain dataset, making them zero-shot rankers in my analysis.



38

Zero-shot Models

Encoder Encoder-Decoder Decoder

#Test Queries Dataset BM25 MonoELECTRA MonoT5-3B RankLLaMA

3,452 NQ 0.329 0.540 0.579 0.545
7,405 HotpotQA 0.603 0.691 0.718 0.698

648 FiQA 0.236 0.370 0.462 0.403
6,666 FEVER 0.753 0.816 0.849 0.837

323 NFCorpus 0.325 0.280 0.373 0.350
300 SciFact 0.665 0.684 0.760 0.722
500 BioASQ 0.465 0.502 0.559 0.532

1,000 SCIDOCS 0.158 0.162 0.193 0.182
1,406 Arguana 0.315 0.233 0.316 0.334
1,535 Climate-FEVER 0.213 0.246 0.278 0.222

10,000 Quora 0.789 0.730 0.848 0.773
57 TREC-NEWS 0.398 0.445 0.473 0.484

249 Robust04 0.407 0.440 0.566 0.471
50 TREC-COVID 0.656 0.730 0.830 0.811
97 Signal1M 0.330 0.297 0.321 0.298
49 Touche 0.367 0.278 0.311 0.413

400 DBPedia 0.313 0.278 0.408 0.411
Average 0.408 0.437 0.500 0.482

Table 4.1: Comparison of zero-shot point-wise rankers measured in nDCG@10. The best scores are
highlighted in bold.
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Zero-shot Models

Point-wise List-wise

#Test Queries Dataset BM25 MonoT5-3B RankVicunna RankGPT(gpt-3.5-turbo) RankGPT(gpt-4)

3,452 NQ 0.329 0.579 0.520 - -
7,405 HotpotQA 0.603 0.718 0.721 - -

648 FiQA 0.236 0.462 0.324 - -
6,666 FEVER 0.753 0.849 0.815 - -

323 NFCorpus 0.325 0.373 0.335 0.356 0.385
300 SciFact 0.665 0.760 0.707 0.704 0.750
500 BioASQ 0.465 0.559 0.516 - -

1,000 SCIDOCS 0.158 0.193 0.178 - -
1,406 Arguana 0.315 0.316 0.290 - -
1,535 Climate-FEVER 0.213 0.278 0.267 - -

10,000 Quora 0.789 0.848 - - -
57 TREC-NEWS 0.398 0.473 0.471 0.489 0.529

249 Robust04 0.407 0.566 0.476 0.506 0.576
50 TREC-COVID 0.656 0.830 0.832 0.767 0.855
97 Signal1M 0.330 0.321 0.330 0.321 0.344
49 Touche 0.367 0.311 0.317 0.362 0.386

400 DBPedia 0.313 0.408 0.421 0.445 0.471
Average 0.408 0.505 0.486 0.494 0.537

Table 4.2: Comparison of zero-shot point-wise and list-wise rankers measured in nDCG@10. The best
scores are highlighted in bold.

With the recent advancements in LLMs, featuring longer context lengths and enhanced reasoning
abilities, list-wise ranking has become more cost-efficient and effective when compared to point-wise
rankers. Point-wise rankers assess each query-document pair individually to compute relevance scores,
while list-wise rankers evaluate a query alongside a list of documents to determine their relative ordering
of relevance. During the BERT-era, neural rankers faced limitations due to their limited context lengths.
However, with the advent of LLMs, I can process multiple documents simultaneously for re-ranking
tasks. As a result, the number of API calls to LLMs has significantly decreased during list-wise ranking
compared to point-wise ranking task.

The Table 4.2 demonstrates the significant effectiveness of a list-wise ranker compared to the SOTA
point-wise ranker. According to Table 4.2, RankGPT using gpt-4 achieves a 6% relative improvement on
average nDCG@10 scores across shared evaluation datasets. Additionally, RankGPT with gpt-3.5-turbo,
which is slightly cost-effective than gpt-4, achieves similar average nDCG@10 scores compared to
MonoT5-3B. While there has been prior work on pair-wise ranking, such as PRP [79], the authors did
not report zero-shot evaluation scores on BEIR datasets. In summary, list-wise neural re-rankers like
RankGPT(gpt-3.5-turbo) achieve state-of-the-art effectiveness with fewer API calls, leading to minimized
costs.

4.2.2 Supervised Fine-tuning of Zero-shot Rankers
Before delving into unsupervised domain fine-tuning, it is crucial to present evidence of the benefits of
domain fine-tuning in enhancing zero-shot neural ranking performance. Thus, I devised a controlled
experimental setup to quantify the performance improvements achievable through supervised fine-tuning,
leveraging human-labeled datasets where available. For the experiments, a subset of BEIR datasets,
containing more than 256 training queries, was selected. If a dataset already had a train split available,
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Encoder-only Encoder-Decoder Decoder-only

MonoELECTRA (110M) MonoT5-3B RankLLaMA (7B)

Train Source #Train Size Datasets BM25 Zero-shot Fine-tuned Zero-shot Fine-tuned Zero-shot Fine-tuned

Train Split

10000 NQ 0.329 0.540 0.325 (-40%) 0.579 0.581 (+0%) 0.545 0.579 (+6%)
10,000 HotpotQA 0.603 0.691 0.740 (+7%) 0.718 0.751 (+5%) 0.698 0.716 (+2%)
5,498 FiQA 0.236 0.370 0.421 (+14%) 0.462 0.491 (+6%) 0.403 0.420 (+4%)

10,000 FEVER 0.753 0.815 0.903 (+11%) 0.849 0.914 (+8%) 0.837 0.827 (-1%)
2,590 NFCorpus 0.325 0.280 0.350 (+25%) 0.373 0.374 (+0%) 0.350 0.327 (-7%)

809 SciFact 0.665 0.684 0.740 (+8%) 0.760 0.767 (+1%) 0.722 0.715 (-1%)

X-validation split

800 SCIDOCS 0.156 0.174 0.194 (+11%) 0.211 0.230 (+9%) 0.199 0.188 (-6%)
1,120 Arguana 0.291 0.226 0.543 (+141%) 0.290 0.411 (+42%) 0.306 0.313 (+2%)
1,200 Climate-FEVER 0.226 0.241 0.351 (+45%) 0.279 0.386 (+39%) 0.232 0.246 (+6%)
8,000 Quora 0.792 0.739 0.887 (+20%) 0.860 0.910 (+6%) 0.778 0.825 (+6%)

398 Robust04 0.395 0.428 0.449 (+5%) 0.572 0.559 (-2%) 0.475 0.430 (-9%)
640 DBPedia 0.335 0.375 0.388 (+3%) 0.411 0.426 (+4%) 0.403 0.405 (+0%)

Average 0.425 0.464 0.524 (+13%) 0.530 0.567 (+7%) 0.496 0.499 (+1%)

Table 4.3: Evaluation of supervised fine-tuning on a subset of BEIR datasets measured in nDCG@10.

then it was directly used for training; otherwise, I employed cross-validation to select a training set and a
held-out test set with a 1:4 ratio for test:train splits. The training dataset comprised unique queries paired
with corresponding positive query-document pairs in a 1:1 ratio. Utilizing a Contriever dense retriever,
I obtained the top-100 documents per training query and selected the bottom 4 documents as negative
query-document pairs. Subsequently, I evaluated the performance among point-wise rankers, namely
MonoELECTRA, MonoT5-3B, and RankLLaMA.

Table 4.3 underscores the importance of fine-tuning using high-quality training data. It shows the
nDCG@10 scores for the SOTA neural re-rankers fine-tuned with supervised training data compared to
zero-shot baselines. Supervised fine-tuning leads to significant improvements over zero-shot counterparts
across most datasets, particularly with MonoELECTRA and MonoT5-3B neural re-rankers. However,
RankLLaMA experiences a notable performance drop across 4 out of 12 datasets and some insignificant
changes post fine-tuning. I hypothesize that utilizing parameter-efficient fine-tuning (e.g., LoRA) on
RankLLaMA overly regularizes the model weights, limiting performance gains and often leading to
deterioration. Further insights into the limitations of LoRA fine-tuning should be experimented as a future
work. In summary, a medium-sized MonoT5-3B achieves the highest nDCG@10 average scores both
before and after fine-tuning, with fine-tuning notably improving the zero-shot re-ranker by 7% relatively.
This evidence strongly encourages exploration of an unsupervised domain fine-tuning approach with
minimal supervision.

Table 4.3 provides insights into the most challenging and easiest source-target pairs for transfer learning
and domain adaptation, highlighting where performance gains are promising or limited. Specifically,
when there are changes in task between the source (question answering) and target, such as in argument
retrieval (Arguana), fact-checking (Climate-FEVER), and duplicate question retrieval (Quora), these pairs
pose the greatest difficulty for transfer learning. However, fine-tuning a neural ranker (MonoELECTRA)
on supervised data significantly boosts performance, resulting in relative improvements of 141%, 45%,
and 20%, respectively. Conversely, tasks more closely aligned with pretrained question-answering, such
as news retrieval (Robust04), entity retrieval (DBPedia), and citation prediction (SCIDOCS), yield limited
improvements, with relative gains of just 5%, 3%, and 11%.

When examining domain adaptation—where the source and target share the same retrieval task but
differ in domain or collection—similar patterns emerge. Significant improvements are seen when domains
are dissimilar, as with financial data (FiQA) and biomedical data (NFCorpus), which show relative gains
of 14% and 25%. However, for question-answering collections similar to MS-MARCO, such as HotpotQA
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and NQ, performance can stagnate or even drop, with overfitting leading to a decrease of 40% in some
cases (NQ). Overall, we find that the most challenging and promising source-target pairs tend to involve
task differences, which enable more substantial improvements, whereas closely aligned task and domain
pairs see limited or even negative gains in performance.

Having established the motivation, the next two sections will delve into my effective approaches for
ranker adaptation across domains and languages.

4.3 Diversified Synthetic Query Generation for Ranker Fine-tuning
Large-scale pretraining on relevance data has demonstrated impressive transfer learning performance.
A common approach is to train pretrained language models on large-scale general ranking tasks, such
as MS-MARCO passage or document ranking [2] or Wikipedia retrieval [88], to learn task-specific
features that are often transferable across different domains and datasets. These trained rankers can
then be applied without further adaptation (in a zero-shot manner) to a variety of ranking tasks. For
instance, the BEIR [1] benchmark has shown that several zero-shot neural rankers achieve state-of-the-art
or near-state-of-the-art performance across a diverse set of retrieval tasks. However, without incorporating
target domain information, the performance of these neural rankers can be suboptimal.

4.3.1 Problem Statement
Zero-shot neural ranking may be suboptimal because it does not leverage target domain information.
When transitioning to specialized domains such as finance or scientific documents, the performance of
zero-shot ranking can be improved by incorporating domain-specific data. To effectively fine-tune a neural
ranker, a large-scale supervised dataset from the target domain is typically needed. However, obtaining
sufficiently large, high-quality training data for modern neural rankers is both costly and time-consuming.
As a result, there has been growing interest in domain adaptation methods for neural rankers, ranging from
unsupervised to weakly-supervised approaches. These unsupervised methods often utilize synthetically
generated queries, documents, or query-document pairs [4, 5, 6, 70, 75].

Unfortunately, most of the previously reported results from these synthetic training data generation
approaches have not outperformed current state-of-the-art (SOTA) zero-shot models, as evaluated on
the BEIR benchmark [1]. To the best of my knowledge, no unsupervised ranking adaptation method
has consistently improved upon large neural SOTA zero-shot rankers. In fact, these adaptation methods
often underperform compared to zero-shot models, highlighting their lack of robustness across different
domains. These performance drops and limitations reveal a significant gap in the literature, underscoring
the need for a more robust and effective approach to unsupervised domain adaptation.

Additionally, previous approaches require a large number of LLM calls and fine-tuning examples,
which significantly increases costs. For instance, prior works like InPars and Promptagator require around
1 million LLM calls to generate a sufficient number of training examples. These approaches often rely on
powerful, closed-source LLMs (such as OpenAI’s GPT-3 Curie and Google’s 137B FLAN), whose costs
rise with the number of input tokens. Furthermore, they also demand millions of training examples to
fine-tune a neural ranker, requiring extensive computational resources. The high cost and computational
demands of these methods make them difficult to adapt easily across various real-world applications.
Therefore, it can be hypothesized that diversified efficient sampling based synthetic query generation will
enhance the effectiveness of ranker adaptation.
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Figure 4.1: DUQGen: an unsupervised domain-adaptation framework for neural ranking.

4.3.2 DUQGen
To address these challenges, I introduce a new method called DUQGen, which stands for Diversified
Unsupervised Query Generation. DUQGen presents a general approach for ranking domain adaptation,
focusing on selecting a representative and diverse set of document-query pairs for training a neural ranker.
The method is based on a key insight: for synthetic training data to be effective for ranker adaptation, it
must be both representative of the target domain and sufficiently diverse. This ensures that the ranking
model adapts appropriately at the representation level, without leading to overfitting or catastrophic
forgetting (i.e., reduced performance on original tasks).

DUQGen requires only partial access to the target document collection to be searched and can enhance
any pretrained neural ranker. The method is illustrated in Figure 4.1 and introduces several innovations
compared to previous unsupervised ranking adaptation approaches: (1) representing the target document
collection as document clusters; (2) diversifying the synthetic query generation by probabilistically
sampling over these clusters; and (3) using in-context prompting of a large LLM to generate queries
from the selected documents. As shown in my experiments, these innovations consistently improve
performance over previous SOTA baselines for ranking adaptation across nearly all BEIR benchmarks,
as well as outperforming zero-shot neural rankers. Next, I will provide an in-depth explanation of my
approach, beginning with a formal description of the method, followed by a detailed overview of the
experimental setup, and concluding with a discussion of the results and analysis.

4.3.3 Proposed Work
DUQGen, shown in Figure 4.1, consists of four components – domain document selection, domain query
generation, negative pairs mining, and fine-tuning. Each of the components is explained in detail in the
following sections.
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4.3.3.1 Domain Document Selection

I propose to represent a target domain with clusters and each clusters with its sampled documents. There-
fore, in this section I describe them in three stages, namely collection document clustering, probabilistic
document sampling, and diversified document selection.

4.3.3.1.1 Collection Document Clustering

Representing a large-scale target collection of documents with limited training data is challenging.
Therefore, I propose to divide the collection into portions, and then sample documents within each portion.
A clustering approach can be used for collection representation. Moreover, diverse topical documents can
be achieved to represent the domain. Starting with a preprocessing step on a full collection of documents,
short span documents are discarded by filtering out noisy documents. Then each of the documents are
encoded by a SOTA text encoder, viz. Contriever [45]. A clustering (e.g., K-Means) technique can be
applied using the document embeddings vDi

, where K is a hyper-parameter to tune.

4.3.3.1.2 Probabilistic Document Sampling

Representing each cluster within large data collections is challenging since the resultant clusters can
often be of imbalanced sizes. Let’s take kth cluster size as ck and collection size as C, where (1 ≤ ck ≤ C).
Ideally, more number of documents can be sampled from larger size clusters in proportion to the cluster
size. If clusterk and Di represent kth cluster and its ith document, the probability of selecting Di from
clusterk is Pr(Di|clusterk) ∝ ck∀Di ∈ clusterk.

I propose to sample N number of synthetic training examples from K number of clusters, where
N ≥ K. Therefore, I design a stratified expression to determine the document sample size Nk for kth

cluster, given by

N0
k = 1 +

⌊
ck

C
(N −K)

⌋

P = N −
K∑

k=1
N0

k

Nk =

N0
k + 1 if k ∈ argsorttop−P (ck)

N0
k if k ̸∈ argsorttop−P (ck)

where N0
k and P are intermediate sample size and integer number. ⌊∗⌋ operation finds the floor integer

value.
Now that the sample size for each clusters are determined, I define my sampling approach. Let’s

take di as the similarity (e.g. cosine similarity) between document Di and its corresponding cluster
centroid. An exponential value edi is defined as the representative of how close Di is to its cluster centroid.
Therefore, Pr(Di|clusterk) becomes the normalized softmax given by:

Pr(Di|clusterk) = edi/T∑ck
j=1 edj/T

(4.1)

di = cosine(vDi
,

1
ck

ck∑
j=1

vDj
) (4.2)
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where T is the softmax temperature and vDi
is the ith document embedding. Intuitively, a document

likelihood to be selected to generate an associated query is proportional to the document similarity to its
cluster centroid.

4.3.3.1.3 Diversified Document Selection

Now Nk number of documents are sampled from each cluster clusterk and pooled to obtain the
required training size documents N . Different sample sets can be drawn from the aforementioned
sampling approach with different choices of random seed values. Therefore, to improve selection
robustness in the sampling process, a diversity measure is applied, namely Maximal Marginal Relevance
(MMR) [116]. First, the sampling process is iterated m times (m = 5) to obtain different sample sets.
Then MMR is applied on the pooled documents from m sets to select top-Nk documents for clusterk as
shown:

arg max
Di∈R\S

[
λSim1(Di, Dk)

−(1− λ) max
Dj∈S

Sim2(Di, Dj)
] (4.3)

where Dk is the document closest to the cluster centroid, λ is a trade-off weight (to be tuned) between
similarity to cluster centroid and diversity, R is the pooled documents, S is a subset of documents already
selected from R, and Sim1 and Sim2 that can be same or different, but I used the cosine similarity for
both instances.

4.3.3.2 Synthetic Query Generation

Query generation is an essential component in an unsupervised data generation pipeline for ranking
models. Queries represent a target domain w.r.t. the user’s information need and the domain-task by taking
different types, such as questions, headlines, keywords, or claims. Therefore, an LLM is used to generate
a synthetic in-domain query for each sampled document. The LLM is few-shot prompted to generate such
training queries similar to the existing work of Bonifacio et al. [4]. However, my contribution in this work
lies in showing that the in-domain few-shot examples (query-document pairs) help to achieve high-quality
of queries compared to out-of-domain generic MS-MARCO examples. On each domain, a handful (e.g.,
3) human generated queries is created for the few-shot example documents with minimal human effort,
and an example prompt is shown in Figure 4.2.

4.3.3.3 Negative Pairs Mining.

After obtaining the domain specific documents and queries, both positive and negative query-document
pairs should be generated. First, the positive query-document pairs can be easily generated by mapping
the synthetic queries with their corresponding original (seed) documents. Second, the negative query-
document pairs can be generated from hard negative mining, described in the standard practices [7, 27, 45].
The synthetic queries are parsed to any first-stage retrievers, such as BM25 [31], ColBERT [28], or
Contriever [45], to get top-x documents. Then the bottom-numneg documents from the top-x are picked
to map against the synthetic queries, where 1:numneg is the positive:negative document pair ratio.
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Figure 4.2: Prompt template with in-context examples for synthetic query generation for the SCIDOCS
dataset.

4.3.3.4 Fine-tuning with Synthetic Data.

My domain adaptation framework can be applied on any ranking models with any weights initialization.
To establish a strong competitor, the task pretrained model (on MS-MARCO) is leveraged, and sequentially
fully fine-tune with DUQGen generated synthetic data. The same hyper-parameter settings used in the
MS-MARCO pretraining stage are adapted for fair deliverable.

4.3.4 Experimental Setup
In this section, I provide details of my experimental setup to demonstrate the effectiveness of DUQGen.

4.3.4.1 Datasets and Metrics

I employed all 18 datasets from BEIR collection, ranging on diverse retrieval tasks, to assess the effective-
ness of my domain adaptation framework on standard out-of-distribution datasets. Utilizing the multi-field
index from Pyserini [117] for all datasets, I retrieved the top-100 and top-200 documents from lexical and
dense first-stage retrievers respectively. Subsequently, I restricted re-ranking to top-100 BM25 documents
and top-200 dense retriever documents. Since I evaluate my approach on both first-stage retrieval and
re-ranking, I measured both nDCG@10 and R@100.
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4.3.4.2 Ranking Models

I fine-tuned ColBERT1 [28] and MonoT5-3B2 [115], namely DUQGen-retriever and DUQGen-reranker,
to show the effectiveness in both dense retrieval and re-ranking. During evaluation, I tested two multi-
stage ranking pipelines: (1) DUQGen-reranker: a fine-tuned MonoT5-3B re-ranking BM25 top-100
and (2) DUQGen-retriever + DUQGen-reranker: a fine-tuned MonoT5-3B re-ranking a fine-tuned
ColBERT top-200 documents.

4.3.4.3 Baselines

I chose strong competitive rankers as baselines to highlight the effectiveness of my domain adapted ranker.

1. BM25: Traditional lexical sparse retrieval. I replicated the BM25 scores from scratch.

2. Zero-shot (ZS) Models: A fine-tuned ranker on MS-MARCO dataset, includes MonoT5-3B and
ColBERT.

3. InPars [4]: An unsupervised training data generation framework for ranking. Synthetic queries
are generated from randomly selected documents using few-shot prompting GPT-3 Curie model.
Language model likelihood is used as a filtering step to pick top-10k high-quality synthetic queries
before fine-tuning any ranker. Based on the reasons provided by Askari et al. [5], I do not compare
against InPars-v2.

4. DocGen-RL [5]: An RL-driven framework to generate documents from queries. Also an iterative
approach, based on expand, highlight, and generate stages, generates documents from queries to
prepare training data.

5. Promptagator++ [6]: As the SOTA methods closest to my work, I evaluate against Promptagator++.
This methods operates by randomly selecting 1 million documents from the target collection. It
utilizes 8-shot prompting with a 137 billion-parameter FLAN model [118] to create 8 queries per
document. Following consistency filtering, 1 million queries are selected to train a GTR-Base
dual-encoder and cross-encoder [36].

I directly utilized the scores reported by authors for DocGen-RL and Promptagator++. For the
remaining baselines, I employed their corresponding HuggingFace [119] models to re-run the inference.

4.3.4.4 Tools and Implementation

Various tools were employed for distinct stages in my pipeline, utilizing Contriever [45] for text encoding,
Faiss [33] for k-Means clustering, and Llama2-7B-Chat [74] for query generation, Pyserini for BM25
baseline and hard negative mining, and PyTorch for standard fine-tuning. Throughout my experiments,
documents were represented using their title along with the text. Initially, collection documents were
filtered for noise by excluding those with a character length less than 300 (can vary across datasets).
Greedy decoding with a temperature of 0.0 was employed for the LLM to generate queries.

1https://github.com/stanford-futuredata/ColBERT
2castorini/monot5-3b-msmarco-10k
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4.3.4.5 Hyper-Parameter Tuning

In my methodology section, I introduced several hyper-parameters, all of which underwent tuning to
determine the optimal values. These include the temperature T = 1 (Equation 4.1), MMR weight λ = 1.0,
number of clusters K = 1000, and training sample size N = 1000 for ColBERT and N = 1000 and 5000
for MonoT5-3B fine-tuning. I tuned the varying number of in-context examples and found the optimal
performance with 3-shot prompting (also used in InPars). Additionally, through tuning different prompt
templates, I discovered that a simple InPars-style template, displayed in Figure 4.2, consistently yields
superior retrieval performance across datasets. For the process of hard negative mining, I set the first stage
retriever hits x = 100 and the number of negatives per positive pair numneg = 4.

I fine-tuned MonoT5-3B using a batch size of 8, gradient accumulation steps of 16, learning rate
of 2e−5, AdamW optimizer with weight decay of 0.01 and warm-up ratio of 0.1, and epochs of 1. To
fine-tune ColBERT, I adapted its official pretraining hyper-parameters, including a batch size of 32, a
learning rate of 3e−6, and a maximum sequence length of 300.

The scale and quality of synthetic data depend on the training examples, N , and number of clusters,
K, which I optimize in the subsequent subsections.

4.3.4.5.1 Clustering Optimization

To represent target domain, I employed K-Means algorithm, where K denotes the number of clusters.
I identified the optimal K for each dataset through an unsupervised method, known as the Elbow
method [120]. The elbow method computes the Sum of Squared Error (SSE) for each value of K, where
SSE is calculated as the sum of cosine distances between every collection document and its closest
cluster centroid. The optimal K consistently aligns at a fixed point of 1000 across all evaluation datasets,
irrespective of variations in corpus size, domain properties, or domain-divergence from MS-MARCO.

4.3.4.5.2 Optimal Training Sample Size Discovery.

By fixing the optimum number of clusters K at 1000, I determined an optimal training sample size
N , that proved effective across all datasets. To tune for N , I utilized FiQA and NQ as dev datasets,
referencing prior work (InPars-v2) which demonstrated improved performance on FiQA and a declined
performance on NQ compared to the zero-shot scores. Table 4.5 displays nDCG@10 values for various
instances of N , with K fixed at 1000. My analysis led us to select optimum N = 1000 for ColBERT and
both N = 1000 and 5000 for MonoT5-3B fine-tuning across the datasets.

4.3.5 Results and Discussion
In this section, I present my main experimental results and delve into the key observations. I first describe
my primary findings, reported using nDCG@10 in Table 4.4 comparing between baselines and my
approach within each ranking setting. Second, I report the first-stage retrieval performances, measured
using R@100 in Table 4.6.

4.3.5.1 Re-ranking Results

In Table 4.4, it is evident that DUQGen consistently surpasses the SOTA baselines in most cases, ex-
hibiting notable improvements in performance. Specifically, DUQGen consistently and substantially
outperforms both InPars and DocGen-RL re-rankers, showcasing average relative enhancements of
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Datasets (→) covid nfc bio nq hotpot fiqa signal news robust arg touchéstack quoradbp scidocsfever climatescifact avg

Models (↓) Retriever

BM25 .656 .325 .465 .329 .603 .236 .330 .398 .407 .315 .367 .299 .789 .313 .158 .753 .213 .665 .423
Zero-shot ColBERT .706 .305 .480 .523 .590 .318 .270 .390 .392 .404 .209 .350 .853 .392 .144 .771 .184 .672 .442
DUQGen-retriever .751 .325†.497† .530† .614† .336† .271 .399 .411† .425† .234† .363† .857† .401 .155† .805† .196† .688† .459

BM25 Top-100 + Re-ranker

Zero-shot MonoT5-3B .830 .373 .559 .579 .718 .462 .321 .473 .566 .316 .311 .421 .848 .408 .193 .849 .278 .760 .515
InPars .803 - - .313 - .352 - - .510 - - - - .351 - - - - -
DocGen-RL - - - .517 .663 - - - - - - - - - - .720 - - -
DUQGen-reranker(1k) .862†∗ .382†.588† .593†∗ .748†∗ .458∗ .333 .483 .591†∗ .393† .320 .439† .895† .422†∗ .200† .890†∗ .310† .757 .537
DUQGen-reranker(5k) .836†∗ .376 .590† .588†∗ .740†∗ .465∗ .300 .449 .571∗ .427† .269 .439† .894† .421†∗ .202† .891†∗ .288† .761 .528

Dense Retriever Top-200 + Re-ranker

GTR (base) retriever .539 .308 .271 .495 .535 .349 .261 .337 .437 .511 .205 .357 .881 .347 .149 .660 .241 .600 .416
Promptagator++ .762 .370 - - .736 .494 - - - .630 .381 - - .434 .201 .866 .203 .731 .528$

DUQGen-retriever .751 .325 .497 .530 .613 .336 .270 .399 .411 .425 .234 .363 .857 .403 .154 .805 .196 .688 .459
+ DUQGen-reranker(1k) .851 .402 .594 .671 .769 .511 .275 .477 .636 .511 .331 .462 .898 .484 .203 .901 .309 .758 .558
+ DUQGen-reranker(5k) .817 .398 .602 .661 .768 .517 .253 .422 .609 .575 .262 .463 .896 .482 .202 .903 .284 .762 .549

Table 4.4: Main results comparing nDCG@10 scores between and baselines on BEIR datasets. The
best scores across each ranking setting are highlighted in bold. Avg score marked by $ calculated across
only 11 datasets. DUQGen-reranker(1k) and (5k) represent the MonoT5-3B fine-tuned with 1k and 5k
training examples correspondingly. Statistical significance reported using two-tailed paired t-test with
Bonferroni correction (p < 0.05), against Zero-shot counterparts (†) and best of InPars or DocGen-RL (∗).
Promptagator++ was fine-tuned on GTR base, thus we reported GTR scores for comparison.

N FiQA NQ

MonoT5-3B

(ZS) 0 .4617† .5792

1k .4581 .5934
5k .4646 .5880†

10k .4553 .5777

ColBERT

(ZS) 0 .3183 .5228

1k .3356† .5301
5k .3388 .5233†

10k .3306 .5171

Table 4.5: Ranking performances evaluated on nDCG@10 across the scale of training sample size N on
dev datasets. Bold and † indicate the best and second-best scores across benchmarks for each ranker.
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BM25 .498 .250 .714 .760 .740 .540 .370 .422 .375 .942 .538 .606 .973 .398 .356 .931 .436 .908 .598
Zero-shot ColBERT .473 .255 .664 .911 .747 .598 .278 .369 .311 .885 .436 .625 .989 .458 .345 .934 .447 .878 .589

DUQGen-retriever .544†.272†.691†.915 .769†.615†.291 .380†.321†.906†.474†.645†.990 .493†.356†.948†.465†.899† .610

Table 4.6: Comparison of R@100 scores across baselines and . The best scores for each dataset are
highlighted in bold. Statistical significance reported using two-tailed paired t-test with Bonferroni
correction (p < 0.05), against Zero-shot counterpart (†).
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Dense Retriever Re-ranker using BM25 Top-100

Size (→) 110M 110M 220M 3B

Ranker (→)
BM25

ColBERT MonoELECTRA MonoT5-base MonoT5-3B

Datasets (↓) Zero-shot
DUQGen-
retriever Zero-shot

DUQGen-
reranker(5k) Zero-shot

DUQGen-
reranker(5k) Zero-shot

DUQGen-
reranker(5k)

covid .656 .706 .751(+6%) .730 .761(+4%) .814 .853(+5%) .830 .836(+1%)
nfc .325 .305 .325(+6%) .280 .356(+27%) .357 .368(+3%) .373 .376(+1%)
bio .465 .480 .497(+4%) .502 .523(+4%) .531 .566(+7%) .559 .590(+6%)
nq .329 .523 .530(+1%) .540 .551(+2%) .540 .550(+2%) .579 .588(+2%)
hotpot .603 .590 .614(+4%) .691 .709(+3%) .698 .721(+3%) .718 .740(+3%)
fiqa .236 .318 .336(+5%) .370 .392(+6%) .391 .400(+2%) .462 .465(+1%)
signal .330 .270 .271(+0%) .297 .284(–4%) .316 .309(–2%) .321 .300(–6%)
news .398 .390 .399(+2%) .445 .411(–8%) .459 .470(+2%) .473 .449(-5%)
robust .407 .392 .411(+5%) .440 .479(+9%) .518 .538(+4%) .566 .571(+1%)
arg .315 .404 .425(+5%) .233 .327(+40%) .188 .383(+103%) .316 .427(+35%)
touché .367 .209 .234(+12%) .278 .261(–6%) .305 .347(+14%) .311 .269(–13%)
stack .299 .350 .363(+4%) .339 .387(+14%) .389 .405(+4%) .421 .439(+4%)
quora .789 .853 .857(+0%) .730 .873(+20%) .845 .888(+5%) .848 .894(+5%)
dbp .313 .392 .401(+2%) .278 .389(+40%) .395 .406(+3%) .408 .421(+3%)
scidocs .158 .146 .155(+6%) .162 .182(+12%) .171 .186(+9%) .193 .202(+5%)
fever .753 .771 .805(+4%) .816 .867(+6%) .826 .878(+6%) .849 .891(+5%)
climate .213 .184 .196(+7%) .246 .296(+21%) .251 .268(+7%) .278 .288(+3%)
scifact .665 .672 .688(+2%) .684 .727(+6%) .730 .746(+2%) .760 .761(+0%)

avg .423 .442 .459(+4%) .448 .487(+9%) .485 .516(+6%) .515 .528(+3%)

Table 4.7: Comparison of nDCG@10 scores across different model sizes and different ranking families.
The best scores are highlighted in bold. Blue and red colored percentage values indicate the relative
improvements in performance compared to the corresponding zero-shot baseline. Suffix (5k) refers to the
training size used to fine-tune corresponding models.
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LLM Prompt Size FiQA NQ

(Zero-shot) No LLM - .3702 .5404

LLAMA-2 7B Chat
ms-marco 7B .3736 .5371
in-domain 7B .3811 .5444

LLAMA-2 13B Chat

in-domain

13B .3912 .5370
BLOOM-3B 3B .3380 .5193

BLOOM-7B1 7.1B .3634 .5172
gpt-3.5-turbo 20B .3742 .5466

Table 4.8: nDCG@10 performances across different LLMs for query generation (K = 1, N = 5000)
with MonoELECTRA re-ranker fine-tuned on the generations

26% and 17% respectively across the evaluation datasets they share. When compared to Promptaga-
tor++, DUQGen demonstrates an average relative improvement of 4% across the shared evaluation
datasets. Remarkably, DUQGen surpasses Promptagator++ in performance, utilizing merely 1000 LLM
calls and fine-tuning with only 1000 training pairs, in contrast to Promptagator++’s requirement of gener-
ating 8 million queries using a 137B LLM and fine-tuning with 1 million training pairs. This highlights
the effectiveness of my efficient and robust approach compared to the complex, resource-intensive, and
exhaustive training methods based on reinforcement learning.

In many instances, the performance of the SOTA baselines degraded, compared to zero-shot counter-
parts. For instance, both InPars and DocGen-RL consistently demonstrate performance decreases relative
to the zero-shot MonoT5-3B, with Avg. decrements of 18% and 11% respectively across the evaluation
datasets they share (DocGen-RL also underperforms compared to zero-shot MonoT5-base, as shown in
Table 4.7). On the other hand, DUQGen consistently surpasses all zero-shot models across all BEIR
datasets, whether trained with 1,000 or 5,000 synthetic training examples.

Interestingly, training DUQGen-reranker with only 1,000 synthetic examples exhibited a slight
performance improvement compared to training with 5,000 synthetic examples on 13 out of 18 datasets,
indicating the sample efficiency of my approach. We initially set N = 5, 000 by tuning on two dev
datasets, as shown in Table 4.5, and then applied this value consistently across all 18 datasets. However,
Table 4.4 reveals that using 5,000 examples led to a slight performance decrease on three datasets—signal,
news, and touché—compared to the zero-shot model. These declines are not be statistically significant
given the small number of test queries (97, 57, and 49 queries, respectively). In contrast, when we
reduced N to 1,000 examples, DUQGen achieved consistent improvements across all 18 datasets, with
no performance drops. Thus, a promising direction for future work would be to develop a self-adaptive
method to automatically determine the effective minimum training size (N ) needed for each dataset or
task.

4.3.5.2 First-Stage Retrieval Results

In Table 4.6, similar to nDCG@10 scores, R@100 also demonstrates more substantial improvements for
larger domain-shifts (7.1%3 on TREC-COVID and 3.8%3 on Touché-2020) and limited improvements for
smaller domain-shifts (.4%3 on NQ). On average, DUQGen enhances zero-shot ColBERT by 2.1%3 on
BEIR datasets.

3denotes absolute precentage improvement.
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10k
.391 .391 .399 .396 .398 .389

(+2%) (+2%) (+3%) (+3%) (+3%) (+2%)

5k
.381 .390 .395 .392 .387

-
(+1%) (+2%) (+3%) (+2%) (+2%)

1k
.382 .385 .390 .384

- -
(+1%) (+2%) (+2%) (+1%)

500
.381 .381 .381

- - -
(+1%) (+1%) (+1%)

Number of
Training

Examples
(N)

100
.359 .371

- - - -
(-1%) (+0%)

1 100 500 1k 5k 10k
Number of Clusters (K)

Zero-shot MonoELECTRA score on FiQA is 0.370

10k
.532 .547 .542 .546 .540 .546

(-1%) (+1%) (+0%) (+1%) (+0%) (+1%)

5k
.544 .542 .544 .551 .543

-
(+0%) (+0%) (+0%) (+1%) (+0%)

1k
.546 .547 .550 .548

- -
(+1%) (+1%) (+1%) (+1%)

500
.537 .548 .548

- - -
(-0%) (+1%) (+1%)

Number of
Training

Examples
(N)

100
.539 .546

- - - -
(-0%) (+1%)

1 100 500 1k 5k 10k
Number of Clusters (K)

Zero-shot MonoELECTRA score on NQ is 0.540

Table 4.9: Fine-tuned MonoELECTRA re-ranking performances in nDCG@10 for different values of
K and N on FiQA (left) and NQ (right). (+%) and (-%) indicate integer rounded superior or inferior
performance percentage against zero-shot scores.

4.3.6 Analysis
In this section, I report my analysis of DUQGen’s performance, which includes examining the need
for clustering, confirming the choice of the query generator, and validating the quality of the generated
queries.

4.3.6.1 Effect of Clustering for Domain Adaptation

I employ clustering to represent the target domain and number of training samples to force diversity
during fine-tuning. However, I question whether clustering genuinely contributes to the process and, if so,
how it influences the overall performance. Additionally, I take the training sample size N , into account.
In Table 4.9, I illustrate the combined effect of both the K and N on MonoELECTRA top-100 BM25
re-ranking performances, measured in nDCG@10. MonoELECTRA is used in the analysis Sections
4.3.6.1 and 4.3.6.2 in order to measure the amplified performance improvements in a smaller model, as
described in the previous section.

Table 4.9 confirms my decision to select N = 5000 for MonoELECTRA. Notably, this figure
highlights that the most substantial and consistent improvements occur around the values of {K=1000,
N=5000} across both datasets. Performances without clustering (K = 1) often fall below zero-shot in
both datasets, especially NQ exhibiting the poorest performances.

4.3.6.2 Effect of Query Generators

I conducted an ablation study on query generation to assess how the quality of generated queries impacts
overall retrieval performance. Table 4.8 displays the performances of MonoELECTRA fine-tuned with
queries generated by various LLMs, including LLAMA2-Chat (7B and 13B), BLOOM (3B and 7B), and
GPT-3.5-turbo [77].

In comparison to the zero-shot re-ranking scores, LLAMA-2 7B was deemed the optimal choice for
my query generator. LLAMA-2 7B with 3-shot in-domain prompts exhibits higher improvements on
both dev datasets, surpassing gpt-3.5-turbo. While LLAMA-2 13B demonstrates superior performance to
7B on FiQA, it falls below the zero-shot performance in NQ, attributed to its large model capacity and
sensitivity to prompts [121]. BLOOM generates short queries lacking context, despite having sufficient
contextual query examples from 3-shot examples. GPT-3.5-turbo generates high-quality queries, resulting
in improved performance over zero-shot, but tends to be unstable with few-shot prompts, suggesting
potential for further prompt engineering to enhance performance on each dataset. My second main
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contribution in this approach involves using in-domain 3-shot prompts to generate queries over the
ms-marco prompt, showcasing notable improvements on LLAMA-2 7B model.

4.3.6.3 Examples of DUQGen Queries

(a)

(b)

Figure 4.3: Example queries generated by DUQGen on (a) Quora and (b) TREC-Covid datasets. Pr
denotes the Pr(Di|clusterk) where Di and clusterk refer to ith document and kth cluster.

So far, I have evaluated the effectiveness of DUQGen using quantitative measures and are now shifting
the focus to examining the actual queries produced by my method. Figure 4.3 presents ten example
queries generated from the Quora and TREC-Covid datasets, each representing distinct tasks and domains.
In Figure 4.3, the synthetic queries are sampled across different clusters with different probability scores
Pr(Di|clusterk). For instance, in Figure 4.3a, I observe that in the Quora duplicate question retrieval
task, each cluster corresponds to sub-topics of the target domain representation, such as monetary bank
transfers, religion, exams in India, energy, and programming languages. Within each cluster, diverse
queries are sampled using different probabilistic scores to aid in learning the domain representation.
Additionally, the generated queries contain sufficient context or entities to retrieve pertinent information
from its respective collection. This analysis of the generated queries further validates the effectiveness of
my approach in generating a diverse and representative set of high-quality queries.

4.3.7 Summary and Limitations
I introduced a general unsupervised domain adaptation method DUQGen, which can be used to fine-tune
any ranking model for a given target domains. DUQGen introduced significant innovations over the previ-
ously reported unsupervised domain adaptation methods. Specifically, DUQGen proposes representing
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the target domain collection with document clustering; an effective method to diversify the synthetically
generated queries, and an effective prompting strategy for using an LLM to generate more effective and
representative synthetic training data. I experimentally demonstrated that DUQGen is both scalable and
effective, as it uses only a few thousands of synthetic training examples, while consistently improves over
the SOTA zero-shot rankers, and significantly outperforms the SOTA methods for unsupervised domain
adaptation methods in most cases. I complemented the strong empirical performance of DUQGen with
an in-depth analysis of the components to quantify their contributions. Together, the presented techniques
and experimental results significantly advance neural ranking adaptation, establish a new state-of-the-art
in neural ranking, and suggest promising directions for future improvements.

DUQGen can have certain limitations. DUQGen methodology involves two pivotal steps: (1) cluster-
ing; and (2) query generation. First, Contriever is employed as the text encoder to produce embeddings for
clustering. While it is anticipated that this encoding will produce high-quality document representation
and prove to be useful in my work, I did not assess other document embeddings. Future work could
directly address the question of choosing the appropriate embedding for clustering.

Secondly, I employed the Faiss library to implement K-Means clustering. However, as the collection
size scales up over the millions, clustering becomes impractical. Consequently, Faiss resorts to sampling
the collection and then training their algorithm. This loss of information during sampling could propagate
as errors in the final retrieval scores. However, given that large collections typically contain dense clusters,
the process of sampling for clustering in such cases may pose less problem.

Akin to many previous studies [121], I often encountered a lack of robustness of LLMs and their
sensitivity to minor changes in the prompt affecting subsequent retrieval performance. Future work
could explore strategies to mitigate this robustness through techniques like calibration [121] and perform
corresponding studies to see the impact on reranking.

In the previous Section 4.3, I introduced DUQGen, an effective sampling-based method for fine-
tuning neural ranking models across different domains in English monolingual settings. Building on that
foundation, the next step is to extend domain adaptation to multiple languages. Therefore, in the following
section, I will present mDUQGen, a similarly effective sampling-based fine-tuning approach designed
specifically for neural rankers in a multilingual context.

4.4 Multilingual Synthetic Query Generation for Ranker Fine-tuning
Multilingual information retrieval (MLIR) aims to seek information from a corpus in a specific language
using queries in that same language. Multilingual pretrained language models (MPLMs), such as
mBERT [122], XLM-RoBERTa [123], and mT5 [46], have recently demonstrated superior performance in
multilingual ranking tasks [64, 124, 125]. Developing MLIR systems can create numerous opportunities
for native speakers worldwide to access information in their own languages. MPLMs have served as
the foundation for building straightforward MLIR solutions. MPLMs are pretrained in an unsupervised
manner on large-scale multilingual text corpora. Recently, these models have been fine-tuned using
large-scale relevance pairs (e.g., mMARCO [124]) across multiple languages, showcasing impressive
cross-lingual transfer capabilities.

4.4.1 Problem Statement
Recently, large language models (LLMs) have been effectively utilized to synthesize training data for
fine-tuning neural ranking models. Previous works, such as UPR [75], InPars [4], DocGen-RL [5], and
Promptagator [6], have generated synthetic training data using LLMs especially for English-only ranking
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models. These methods require a substantial number of LLM calls (100k - 1M), making them expensive,
and they employ a sophisticated consistency filtering stage to remove any low-quality data. However,
their application to multilingual retrieval and ranking has been largely unexplored.

The recently introduced SWIM-X [125] generates multilingual synthetic training data; however, it
requires a significant number of LLM calls and does not isolate the impact of multilingual language
adaptation from domain adaptation. In contrast, DUQGen [126] utilizes an effective sampling-based
approach that requires only 1,000 training examples for fine-tuning, making it more cost-effective and
consistent in improving ranking performance. This work extends DUQGen to the multilingual retrieval
setting to measure the effects of both domain adaptation and isolated language adaptation.

Training a neural MLIR model presents several challenges. The required number of training samples,
N , varies depending on the target language. High-resource languages like Spanish and Russian may
necessitate a smaller N for fine-tuning as compared to low-resource languages like Tamil and Swahili
due to their uneven distribution in language model pretraining. Additionally, the complex syntax and
semantics of the target language also impact the convergence of MLIR fine-tuning. Therefore, developing
an algorithm that enhances the performance of fine-tuned MLIR models with fewer training data is crucial.

Secondly, the translate-train paradigm used for training MLIR models has inherent limitations. This
approach translates English training queries and documents into the target language before fine-tuning
the MLIR model, which can introduce translation errors that impact the learning process. Additionally,
for low-resource languages, reliable translation systems are often unavailable or lack accuracy due to
insufficient supervised training data. However, LLMs pretrained on large multilingual corpora, including
vast amounts of unstructured text without labels from low-resource languages, can often generate high-
quality data in the target language when prompted. Therefore, it can be hypothesized that an efficient
sampling based synthetic query generation (similar to DUQGen 4.3) will enhance the effectiveness of
multilingual ranker adaptation.

4.4.2 mDUQGen
To address these aforementioned challenges, I propose mDUQGen, an extension of DUQGen to address
the multilingual retrieval problem. First clustering is used to represent the target language and diversified
sampling to capture each cluster representation. Then few-shot LLM prompting is used with target
language query-document example pairs to generate new queries for the sampled documents. The
evaluation of mDUQGen on standard multilingual retrieval collections demonstrates consistent and
substantial improvements across all languages for both first-stage retrievers and re-rankers. Next, I will
provide an in-depth explanation of my approach, beginning with a formal description of the method,
followed by a detailed overview of the experimental setup, and concluding with a discussion of the results
and analysis.

4.4.3 Proposed Work
My approach directly adapts the synthetic training data generation framework from DUQGen while
changing the strictly monolingual components to multilingual extensions.

4.4.3.1 Target Language Document Sampling

To represent the target language, the collection documents are effectively sampled. First, clustering is
applied to the collection and then diversified document sampling is used to achieve a target language
representation. Specifically, the documents in the target language collection is encoded using a multilingual
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pretrained encoder (e.g., mContriever[45]). The document collection is then applied with clustering,
especially into K clusters (e.g., using K-Means). From each cluster, documents are sampled based on
a probability distribution and diversified selection as described in the DUQGen Section 4.3.3.1. This
process yield N sampled documents from the K clusters in the collection. These N sampled documents
are highly representative of the target language and diversified to ensure the ranking model learns essential
language-specific information.

4.4.3.2 Synthetic Multilingual Query Generation

Figure 4.4: Prompt template with Hindi language examples for generating queries.

Prompting an LLM with target language example (query-document) pairs can produce high-quality
queries. Studies such as InPars and Promptagator have demonstrated that few-shot prompting an LLM
with a handful of examples (e.g., 3 to 8 etc.) can generate effective queries. Promptagator and DUQGen
emphasize that selecting few-shot examples from the target domain ensures the improved quality of the
generated queries. Similarly, for multilingual fine-tuning, the LLM is prompted with example pairs from
the target language, as shown in the Figure 4.4. An instruction-following LLM can generate a relevant
query in the target language for a given document in the same language without needing an explicit
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Datasets (→) avg ar bn es fa fi fr hi id ja ko ru sw te th zh

Models (↓) nDCG@10

BM25 .396 .481 .508 .319 .333 .551 .183 .458 .449 .369 .419 .334 .383 .494 .484 .180
mDPR .417 .499 .443 .478 .480 .472 .435 .383 .272 .439 .419 .407 .299 .356 .358 .512
BM25 + Cohere-API .547 .667 .634 .507 .484 .675 .443 .573 .505 .516 .546 .477 .543 .638 .606 .389
SWIM-X .476 .602 .571 .334 .363 .406 .643 .330 .395 .408 .433 .497 .400 .559 .563 .633

mContriever .444 .538 .501 .411 .226 .604 .327 .295 .390 .434 .475 .386 .568 .554 .525 .424
mDUQGen-retriever .479 .614 .516 .464 .377 .647 .372 .370 .406 .455 .480 .421 .580 .519 .556 .405
+ Mono-mT5-base .627 .718 .695 .546 .552 .728 .491 .575 .502 .623 .640 .593 .680 .754 .753 .550
+ mDUQGen-reranker .641 .744 .710 .562 .565 .753 .514 .579 .521 .626 .649 .621 .703 .761 .755 .555

Hybrid + mDUQGen-reranker .655 .752 .724 .583 .577 .757 .510 .625 .540 .637 .670 .633 .709 .767 .770 .566

BGE-M3 (Supervised) .664 .785 .797 .577 .576 .786 .520 .669 .621 .690 .668 .596 .647 .771 .790 .470

R@100

BM25 .785 .889 .909 .702 .731 .891 .653 .868 .904 .805 .783 .661 .701 .831 .887 .560
mDPR .789 .841 .819 .864 .898 .788 .915 .776 .573 .825 .737 .797 .616 .762 .678 .944
SWIM-X .804 .892 .878 .700 .763 .916 .758 .725 .743 .776 .768 .779 .878 .849 .929 .699
mContriever .857 .926 .931 .835 .662 .950 .817 .652 .796 .881 .861 .838 .909 .970 .931 .902
mDUQGen-retriever .871 .941 .915 .848 .799 .951 .868 .758 .791 .879 .815 .857 .912 .959 .928 .844
Hybrid .920 .965 .966 .914 .858 .970 .861 .909 .931 .928 .890 .884 .920 .958 .966 .887

BGE-M3 (Supervised) .785 .889 .909 .702 .731 .891 .653 .868 .904 .805 .783 .661 .701 .831 .887 .560

Table 4.10: Performance comparison of mDUQGen against strong and state-of-the-art baselines on
MIRACL dev datasets using nDCG@10 and R@100 metrics. The model names with (+) denote that
a first-stage retrieval top-100 results are re-ranked. Hybrid is the score fusion between BM25 and
mDUQGen-retriever.

translation.

4.4.3.3 Hard Negative Mining

To train neural ranking models, positive and corresponding negative pairs are required. Effective document
sampling and synthetic query generation produce a positive query-document pair. Additionally, effective
hard negative mining can further enhance the discriminative feature learning of neural rankers. Therefore,
hard negative pairs are then generated using the hard negative mining technique described in the DUQGen
Section 4.3.3.3. For multilingual ranking, the key difference is the use of a multilingual dense retriever
(e.g., mContriever) for generating candidate documents.

4.4.3.4 Fine-tuning

The generated training data can be used for effective end-to-end fine-tuning of any multilingual ranking
models. The multilingual rankers are initialized with zero-shot task pretrained multilingual model weights,
such as those from mMARCO pretraining. During sequential fine-tuning, the hyper-parameters are kept
unchanged.

4.4.4 Experimental Setup
In this section, I provide the detailed description of my evaluation setting.
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Datasets (→) avg ar bn es fa fi fr hi id ja ko ru sw te th zh

mDUQGen-retriever .479 .614 .516 .464 .377 .647 .372 .370 .406 .455 .480 .421 .580 .519 .556 .405

English MS-MARCO

+ Mono-mMiniLM-L6 .579 .662 .653 .498 .533 .672 .442 .542 .477 .566 .634 .546 .605 .644 .699 .518
+ Mono-mT5-base .627 .718 .695 .546 .552 .728 .491 .575 .502 .623 .640 .593 .680 .754 .753 .550
+ mDUQGen-reranker .641 .744 .710 .562 .565 .753 .514 .579 .521 .626 .649 .621 .703 .761 .755 .555

Helsinki Translate of MS-MARCO

+ Mono-mMiniLM-L6 .494 .603 .527 .451 .445 .630 .440 .409 .438 .418 .521 .514 .539 .470 .557 .448
+ Mono-mT5-base .576 .670 .633 .485 .514 .695 .472 .486 .454 .579 .562 .569 .645 .670 .717 .494
+ mDUQGen-reranker .590 .705 .673 .495 .529 .728 .470 .495 .455 .599 .579 .588 .645 .659 .740 .487

Google Translate of MS-MARCO

+ Mono-mMiniLM-L6 .536 .631 .614 .454 .486 .632 .451 .506 .445 .527 .580 .529 .546 .515 .635 .485
+ Mono-mT5-base .602 .684 .679 .496 .540 .711 .479 .540 .462 .616 .598 .581 .653 .724 .737 .526
+ mDUQGen-reranker .618 .721 .697 .507 .550 .737 .496 .552 .469 .640 .619 .608 .666 .725 .750 .537

Table 4.11: Comparison of different neural re-rankers pre-trained using different source data measured
in nDCG@10. mDUQGen-reranker is the fine-tuned Mono-mT5-base. They re-rank the top-100
documents from mDUQGen-retriever.

4.4.4.1 Datasets and Metrics

To evaluate the effectiveness of mDUQGen in the multilingual retrieval context, I utilized the MIR-
ACL [127] benchmark. I excluded the English collection, as the target language had already been
evaluated in the DUQGen work (refer to Section 4.3.5) using the BEIR [1] collection. Therefore, my
experiments focused solely on 15 question-answering datasets, encompassing both high-resource and
low-resource target languages. For indexing and evaluation, I used Pyserini [117].

I evaluated the ranking performance using both precision and recall metrics, specifically nDCG@10
and R@100 respectively.

4.4.4.2 Ranking Models

I fine-tuned the state-of-the-art multilingual neural ranking models, specifically focusing on mContriever
for first-stage retrieval and Mono-mT5-base [128] for re-ranking. These fine-tuned models are referred to
as DUQGen-retriever and DUQGen-reranker, respectively.

4.4.4.3 Baselines

I compare the performance of mDUQGen against the following baselines, encompassing both traditional
methods and state-of-the-art neural models.

1. BM25: Traditional lexical retriever.

2. mDPR [129]: mBERT encoder based dense passage retriever [27].

3. Hybrid: Combining the rank lists from BM25 and mDPR (score-fusion with 0.5 equal weights on
normalized scores).

4. Cohere-API [130]: API performs re-ranking over top-100 BM25 rank list.

5. SWIM-X: mT5-base encoder based DPR dense retriever. It was fine-tuned with 180k training
examples generated synthetically through summarize-then-ask PaLM 2 (S) [131] prompting.
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6. mContriever4: mBERT encoder based dense retriever. Initially pretrained on the CCNet [35]
multilingual corpus, followed by fine-tuned on the English MS-MARCO dataset.

7. Mono-mT5-base5 [124]: mT5-base multilingual pretrained model fine-tuned on English MS-
MARCO pairs.

8. BGE-M36 [132]: The BGE [133] family of models is fine-tuned using large and diverse datasets,
including the MIRACL train split, employing a self-distillation technique. This supervised baseline
is reported to compare my approach against an upper bound.

Official scores of mDPR, Hybrid, Cohere-API, and SWIM-X are reported directly. However, BM25,
Contriever, Mono-mT5-base, and BGE-M3 scores are reproduced either from scratch or HuggingFace
checkpoints.

4.4.4.4 Tools and Implementation

I employed Pyserini for evaluating BM25 and dense retrieval methods. I trained mContriever using
Tevatron [134]. Query generation was performed using gpt-3.5-turbo. Documents were represented by
concatenating both the title and text fields. Initial filtering of collection documents involved removing any
texts shorter than 300 characters in length.

4.4.4.5 Hyper-Parameter Tuning

Similar to the hyper-parameter tuning conducted for DUQGen in Section 4.3.4.5, I found out that the
number of clusters (K) is 1000 for all MIRACL datasets using Elbow [120] method. Consequently,
I selected the number of training size (N ) to 1000 for all datasets by tuning on two dev datasets (a
low-resource language Swahili and a high-resource language Arabic).

4.4.5 Results and Discussion
In this section, I highlight the main results from my mDUQGen experiments in Table 4.10.

4.4.5.1 First-stage Retrieval Results

Fine-tuning a dense retrieval model improves both recall and precision scores. In Table 4.10, the DUQGen-
retriever (fine-tuned mContriever) shows 8% and 2% average relative improvements over the zero-shot
counterpart in nDCG@10 and R@100, respectively. The substantial 8% improvement in nDCG@10
demonstrates the efficient sampling strategy in identifying diverse and informative target domain pairs,
enabling the mContriever to effectively identify highly relevant documents at the top of the rank list.
Additionally, the consistent improvements in nDCG@10 across 13 out of 15 datasets highlight the
robustness and generalizability of mDUQGen across different domains and languages.

4facebook/mcontriever-msmarco
5unicamp-dl/mt5-base-en-msmarco
6BAAI/bge-reranker-v2-m3
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R@100 nDCG@10 RR@100

sw ar sw ar sw ar

Zero-shot .909 .926 .568 .538 .574 .550
LLaMA2-7B .914 .934 .571 .551 .580 .560
LLaMA3-8B .926 .922 .580 .514 .596 .518
gpt-3.5-turbo .912 .941 .580 .614 .593 .635

Table 4.12: Performances of mContriever fine-tuned with generated queries (K = 1, N = 1000) using
different LLMs evaluated on dev datasets: Swahili and Arabic.

4.4.5.2 Re-ranker Results

Fine-tuning a re-ranker with synthetic training data generated using the mDUQGen framework signifi-
cantly improves the ranking performance, surpassing all previous state-of-the-art baselines. As shown
in Table 4.10, DUQGen-reranker achieves a 2% relative improvement in nDCG@10 over zero-shot
Mono-mT5-base, highlighting the effectiveness of my mDUQGen approach. When combined with
Hybrid, DUQGen-reranker delivers substantial gains, narrowing the performance gap with supervised
fine-tuning using BGE-M3 to just 1%. This small gap underscores the power of my unsupervised mDUQ-
Gen framework to nearly match the performance of supervised methods. The top-performing Hybrid +
DUQGen-reranker outperforms the state-of-the-art baselines like Cohere-API and SWIM-X by 20%
and 38% relative average improvements on nDCG@10, respectively. The superior improvements over
SWIM-X suggests that fine-tuning with fewer, carefully selected training examples is more effective than
using a large dataset (180k examples). Notably, these performance improvements are consistent across all
15 datasets, demonstrating the robustness of mDUQGen. Overall, Hybrid + DUQGen-reranker sets a
new state-of-the-art baseline for multilingual retrieval, with superior nDCG@10 scores.

Interestingly, the nDCG@10 scores in Table 4.11 indicate that sequentially fine-tuning (mDUQGen)
a large-scale English fine-tuned model avoids the need for resource-intensive large-scale multilingual
intermediate translate-train stages. Surprisingly, the zero-shot Mono-mT5-base and Mono-mMiniLM-L6
models pretrained using either Google or Helsinki translations of MS-MARCO perform worse than their
counterparts pretrained on the original English MS-MARCO. This underperformance may be attributed to
the differences in training configurations or translation errors that fall outside the focus of my work or
my hypothesis. However, all three versions of DUQGen-reranker—whether pretrained on the English
MS-MARCO or the two translated versions—demonstrate consistent 4% relative average improvements,
suggesting that mDUQGen fine-tuning effectively adapts neural rankers to both domain and language
in a single stage. Notably, using only 1000 training examples allows the re-ranker to achieve the same
performance improvement as an expensive intermediate mMARCO fine-tuning stage. This finding
indicates that a "translate-train" approach is unnecessary for intermediate sequential fine-tuning stages if
the English only fine-tuned ranker is sequentially fine-tuned with the mDUQGen framework.

4.4.6 Analysis
To further support my experimental results, I performed analyses on the choice of query generators, the
minimum training size, and a review of the generated queries.
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R@100 nDCG@10 RR@100

sw ar sw ar sw ar

Zero-shot .909 .926 .568 .538 .574 .550
1k .912 .941 .580 .614 .593 .635
5k .906 .943 .570 .597 .588 .612

10k .924 .943 .582 .607 .599 .627

Table 4.13: Performances of mContriever fine-tuned using different training sizes (N ) and evaluated on
dev datasets: Swahili and Arabic, where queries are generated using gpt-3.5-turbo and K = 1000.

4.4.6.1 Selection of Query Generation

I experimented with different LLMs for query generation across various languages. Table 4.12 compares
LLaMA2-7B, LLaMA3-8B, and gpt-3.5-turbo as query generators for synthesizing queries in target
languages to fine-tune the mContriever model. Although the use of LLaMA3-8B performs competitively
with gpt-3.5-turbo, the retrieval performance often falls below zero-shot scores, whereas gpt-3.5-turbo
consistently improves over zero-shot. Therefore, I selected gpt-3.5-turbo for query generation throughout
this work.

4.4.6.2 Minimum Training Size

Estimating an efficient training size to fine-tune a multilingual ranking model is crucial for budget-
constrained scenarios. The number of training examples needed for convergence can vary across target
languages. Table 4.13 highlights the impact of increasing training sizes on two dev datasets for fine-tuning
the mContriever model. While fine-tuning with 10k training examples occasionally outperforms zero-shot
model using 1k examples, a minimum of 1k training examples always consistently improves over the
zero-shot model. Therefore, I conducted my experiments using only 1k training examples.

4.4.7 Summary and Limitations
I proposed an extension of DUQGen, called mDUQGen, to efficiently generate synthetic training data for
fine-tuning multilingual ranking models. Unlike previous methods that used random document sampling,
mDUQGen utilizes document clustering followed by diverse sampling to generate queries across multiple
languages. My experiments demonstrate that mDUQGen not only outperforms zero-shot models but also
surpasses current state-of-the-art rankers using just 1000 training examples. Consequently, mDUQGen is
sample efficient, highly effective, and scalable across multiple languages. My comprehensive analysis
further confirms that the core idea behind the DUQGen and mDUQGen approaches is generalizable across
various retrieval tasks, domains, and languages.

The effectiveness of mDUQGen may stem from a combination of task transfer learning, domain
adaptation, and language adaptation. Initially, task transfer learning is achieved by task fine-tuning
a pretrained multilingual model (mT5) on the MS-MARCO dataset. This fine-tuned model is then
further refined on MIRACL synthetic training data to incorporate domain and language adaptation.
Currently, we lack a task-specific fine-tuning resource like mMARCO (a machine-translated version of
MS-MARCO) because task fine-tuning on machine-translated data tends to underperform compared to
English fine-tuning due to translation errors. This limitation makes it challenging to isolate and verify the
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language adaptation component amid domain and language adaptation, highlighting a potential area for
future research—specifically, conducting ablation studies to separate the effects of language and domain
adaptation. Nevertheless, it is clear that mDUQGen’s synthetic fine-tuning incorporates both domain and
language adaptation.

Additionally, the role of task transfer learning through MS-MARCO could be further examined by
directly fine-tuning a pretrained multilingual model on mDUQGen synthetic training data.

B = finetuneMSMARCO(A) (4.4)

C = finetunemDUQGen(B) (4.5)

C = finetunemDUQGen(finetuneMSMARCO(A)) (4.6)

D = finetunemDUQGen(A) (4.7)

Here, A, B, C, and D represent neural models, while MSMARCO and mDUQGen refer to training
datasets—specifically, large-scale supervised relevance pairs and synthetic unsupervised domain training
data. For instance, A, B, C, and D might correspond to mT5-base, Mono-mT5-base, mDUQGen-
rerankermsmarco, and mDUQGen-reranker, respectively. In my mDUQGen experiments, I only evaluated
Equation 4.6. However, another experiment based on Equation 4.7 could be performed by directly
fine-tuning model A using only mDUQGen synthetic training data, skipping MS-MARCO pretraining.
This would help to identify the additional task transfer learning impact that MS-MARCO provides as a
pretraining stage.

The comparison of results from Equations 4.6 and 4.7 would help to determine whether an extensive
pretraining stage is necessary in the transfer learning process. If the performance difference is minimal,
we could conclude that mDUQGen sufficiently covers domain adaptation, language adaptation, and
task transfer with just 1,000 training samples. However, a larger gap would suggest that MS-MARCO
pretraining adds valuable improvements. Therefore, conducting an additional training with Equation 4.7
is essential to improve the effectiveness of task transfer learning in our neural ranking framework.

At a high level, mDUQGen follows a similar pipeline to DUQGen, involving clustering and sampling.
As a result, the limitations discussed for DUQGen also be applied to mDUQGen. For instance, using
mContriever as a universal language encoder to generate text embeddings before clustering may provide
limited document representation quality for certain target languages, since mContriever may not be
sufficiently trained as an LLM for all target languages. A potential solution could be to use the embedding
from a more robust LLM for an improved document representation, though this would come at a higher
cost.

Secondly, the scalability challenges associated with K-Means in DUQGen are also relevant to
mDUQGen. However, as previously mentioned, the scalability can be addressed by sampling the entire
collection and training the K-Means algorithm only on those samples.

Thirdly, the LLMs have certain limitations in generating high-quality queries across different languages.
Not all LLMs excel in every language. For example, LLaMA3-8B produced high-quality queries in certain
languages, while gpt-3.5-turbo performed better in others, as indicated by the retrieval performances.
Although LLaMA3.1-8B was shown to be effective in multilingual settings across several benchmarks
in its official report, its performance on the MIRACL retrieval benchmark was still inferior to that of
gpt-3.5-turbo.

Lastly, the LLMs show inconsistencies in query generation across different target languages. Even
when prompted correctly, the LLM may produce irrelevant text, such as gibberish text, English or non-
target language output, or low-quality content. Repeated prompts or different few-shot examples do
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not always resolve this, leading to variable query generation quality and ultimately affecting retrieval
performance. While mDUQGen has managed to minimize these issues through its effective clustering
and sampling components, these concerns should be thoroughly addressed in the future research.
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5 Task-Specific Neural Ranker Training
In information retrieval, the term "relevance" refers to the extent to which a retrieved document

satisfies a user’s query. Essentially, it measures how well a document aligns with the user’s needs or
intent. Relevance is a crucial metric when evaluating the performance of retrieval and ranking models.
A ranking model performs better when highly relevant documents appear at the top of the results,
while its performance diminishes when irrelevant documents rank higher. According to the Cranfield
paradigm [135], relevance between a query and a document can be evaluated independently of other
potential candidates. Although this assumption may not always hold, it is effective for training neural
rankers to optimize relevance matching.

Neural rankers are typically trained using positive and negative pairs to learn how to match relevance
effectively. This relevance matching is achieved by contrasting a positive example with its negative
counterpart, helping the model capture essential relevance features for the task. For instance, given the
query, "What are the states heavily impacted by Hurricane Helene?," a positive document would state,
"Florida, Georgia, North Carolina, South Carolina, Tennessee, and Virginia were devastated by Hurricane
Helene on September 26-27, 2024." A negative document might say, "Northern and Northeastern states
were cleared from Hurricane Helene’s impact," which does not address the query about impacted U.S.
states. In this case, the positive document directly answers the query, while the negative document does
not. Various training objectives, like point-wise, pair-wise, list-wise, and contrastive loss, can be used
to train neural rankers, with pair-wise and contrastive loss being the most common due to their strong
discriminative learning capabilities.

Hard negative documents are more effective than random negative ones when training neural rankers.
Hard negatives push the model to learn more discriminative features compared to random negatives. For
instance, consider the query about states impacted by Hurricane Helene. A random negative document
might be something like, "Hurricane disasters typically occur at the end of summer in North America,"
which talks about the general timeline of hurricanes but provides no direct answer to the query. In contrast,
a hard negative document could be, "Northern and Northeastern states were cleared from Hurricane
Helene’s impact," which rules out specific regions but still does not directly answer the question. The
improved quality of hard negative examples forces the neural ranker to capture fine-grained relevance
distinctions, leading to better domain adaptation and enhanced performance across target domains and
retrieval tasks.

In addition to the quality of hard negatives, the representation quality of positive labels also plays a
critical role in fine-tuning neural rankers for specific tasks. In this thesis, "task" refers to the "relevance
label notion." Effectively capturing task-specific features can significantly enhance the performance of
neural rankers across different target domains. Labels for query-document pairs vary depending on
domains, languages, and tasks, particularly based on user intent or the needs of downstream systems. For
instance, a document may be topically relevant to a query without directly addressing the user’s specific
question. Consider the query, "Where is the CDC located?"—a document discussing what the CDC does
or its functions is irrelevant to the user’s intent. In contrast, a document stating, "The CDC headquarters
is in Atlanta, GA," directly answers the query, making it highly relevant. Therefore, it is essential to train
neural rankers to improve relevance representation tailored to the target domain, language, or task.

One of the recent applications of neural rankers in the context of Generative AI is Retrieval-Augmented
Generation (RAG). RAG has demonstrated better performance compared to traditional LLM-only gen-
erations that do not use a retriever. It operates on a retrieve-then-generate paradigm, where a neural
ranker first retrieves relevant documents, and then a generator (LLM) uses those documents as evidence to
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respond to user queries. This mechanism differs from traditional information retrieval, where a ranking
system provides the top-k ranked documents, and the user assesses their relevance based on their infor-
mational needs. In RAG, however, the generator replaces the role of the user, determining the relevance
of the retrieved documents for producing a grounded response. "Grounded" refers to ensuring that the
generated response is based on factual information retrieved from a document collection. By compelling
the LLM to ground its responses on the retrieved documents, RAG enhances the accuracy, reliability, and
contextual correctness of the answers. The relevance of the retrieved documents is assessed by the LLM
based on their "groundedness," which indicates whether the document contains or supports the essential
information needed to generate an accurate response. Therefore, fine-tuning a neural ranker is crucial for
optimizing end-to-end RAG response generation.

Task fine-tuning is a valuable method for adapting neural ranking models to new tasks. These models
can be integrated with downstream systems to carry out a variety of natural language tasks, including
question answering, language generation, event extraction, and fact-checking. To optimize end-to-end
performance, it is essential for the ranker to be aligned with the specific task of the downstream system,
which may involve an LLM. Consequently, task fine-tuning enhances the alignment of the neural ranker
with the intended application. However, several challenges emerge in the effective task fine-tuning of
these neural rankers.

Task fine-tuning for neural ranking models is difficult due to the scarcity of training data. Gathering
labels across different domains, languages, and tasks is both expensive and time-consuming. High-quality
relevance judgments or labels are essential for effectively aligning a ranker with the downstream system to
optimize overall performance. For instance, in low-resource areas such as finance or healthcare, third-party
annotators may struggle to deliver high-quality annotations. Consequently, human expert annotations are
often necessary, which can be costly. Additionally, in cross-lingual retrieval contexts, it is challenging to
find human experts who are fluent in both the source and target languages. In a RAG scenario, annotating
the top-k candidate documents for each query can be prohibitively costly and time-consuming. To address
the challenges of obtaining high-quality task labels, previous research has investigated unsupervised and
weakly supervised approaches.

Unsupervised fine-tuning typically does not yield high-quality task labels. Without high-quality task
labels, training neural rankers have difficulty in aligning with downstream systems. Previous research has
investigated generating synthetic queries and designating the corresponding source original documents as
positive examples, while employing hard negative mining to gather negative documents. However, the
assumptions underlying these methods often fall short. For instance, a query generated by an LLM does
not always correlate with the original document due to inconsistencies and hallucinations in LLM outputs.
Additionally, for well-known topics like COVID-19, there may be numerous relevant documents presenting
various perspectives, making it inadequate to assign just one positive document for a given query; this
limits the neural ranker’s ability to learn about multiple facets of relevance. Moreover, hard negative
mining can be problematic and may introduce noise. For example, when top-k retrieved documents are
compiled and negatives are chosen randomly, those randomly selected documents might not actually be
negative at all. Furthermore, the random documents selected from the bottom of the top-k rank are unlikely
to represent the most challenging negatives necessary for extracting the most discriminative features
during the training of the neural ranker. Given these challenges, relying on unsupervised fine-tuning may
not effectively facilitate task alignment between the ranker and the downstream system.

Consequently, a viable solution for task-specific fine-tuning is weakly-supervised fine-tuning. Weak
labeling can yield better quality pseudo labels than unsupervised methods. While any teacher model or
system can provide weak supervision, using the corresponding downstream system ensures high-quality
pseudo labels for task fine-tuning the neural ranker. This improved fine-tuning facilitates better alignment
of the neural ranker with the downstream system. In this section, I present three innovative weakly-
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supervised approaches designed to task fine-tune neural ranking models across various target domains,
languages, and tasks.

5.1 Overview of Proposed Task Fine-tuning Approaches
In this chapter, I explore how to obtain high-quality training labels for neural rankers using effective
weakly supervised methods. Thus, I present the primary research question (RQ3): Can ranking models be
further adapted for specific downstream tasks using weak or no supervision? My contributions to RQ3
include (1) C3: Continued Pretraining with Contrastive Weak Supervision for Cross-Language Ad-Hoc
Retrieval [136], (2) a project on Scalable Cross-Lingual Event Retrieval through Weakly-Supervised
Fine-Tuning of Ranking Models, and (3) Task Fine-Tuning of Neural Rankers within a RAG System.
The collaborative project C3, with Dr. Eugene Yang as the lead author, was published as a short paper at
SIGIR 2022. My specific contributions involved preparing the cross-lingual relevance pairs (estimating
data quality) and developing data loading scripts that support multiple cross-language training datasets
and objectives. The other two projects are led by me as the primary author. The second project on Event
Retrieval was completed in February 2023 but has yet to be published in a peer-reviewed venue. The
third project, which focuses on task-specific fine-tuning of a neural ranker, is a recent initiative, and the
manuscript is currently in progress. I aim to submit TFT-RAG work to ACL 2025.

In this chapter, I focus on the effective transfer of knowledge from a source task to a target task within a
weakly supervised learning framework 2.1. My methods aim to improve the quality of weakly supervised
training labels. The first study, C3, presents an intermediate weakly supervised pretraining framework
utilizing contrastive learning, providing a novel approach to transfer learning. Instead of merely acquiring
pretrained knowledge for the target domain, C3 introduces an intermediate source domain with a task
related to the target domain. By pretraining a neural ranker on this intermediate domain and subsequently
fine-tuning it on the target domain, the learning process for the neural ranker is enhanced.

The second study centers on fine-tuning a neural ranker using high-quality weak labels annotated by an
information extraction system. This approach directly improves the quality of weak labels for fine-tuning
on the target domain or task. This concept is examined in the context of event retrieval and extraction,
showcasing the effectiveness of the fine-tuned neural ranker. Finally, in the third study, I expand the
application of event extraction to encompass general knowledge-intensive question answering within the
RAG framework. Together, these two studies enhance the quality of weak training labels, allowing the
neural ranker to adapt more effectively to the target domain or task.

The first two projects deliver two significant findings: (1) weakly supervised labeling improves the
performance of fine-tuned ranking models, and (2) a downstream system can act as a high-quality weak
annotator to further enhance fine-tuning performance. Building on these insights, my third project explores
a generalized approach, examining how to utilize a generator (downstream system) to deliver effective
annotations that enhance retriever performance within a RAG framework.

5.2 Task-Specific Contrastive Fine-tuning
Recently, neural ranking models have been fine-tuned by training pretrained language models on domain-
specific data. During this domain fine-tuning process, neural ranking models learn both domain-specific
and task-specific features. The number of training examples required for fine-tuning can vary depending on
the characteristics of the target domain to achieve good performance in learning both domain knowledge
and relevance tasks. In Chapter 4, I introduced the DUQGen approach (refer to Section 4.3), which
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effectively learns domain knowledge using only 1,000 training examples. However, learning task-
specific information is more challenging, especially for smaller pretrained models like BERT [32] and
MiniLM [137]. A straightforward solution for task fine-tuning is to use large-scale unsupervised or
weakly-supervised unstructured data. Weakly-supervised data can offer better supervision (pseudo-labels)
compared to unlabeled data. However, learning task-specific information from weakly-supervised data
requires a novel technique. Therefore, the focus of this work is on developing an effective method for task
fine-tuning from large amounts of weakly-supervised data.

Compared to monolingual retrieval, task-specific fine-tuning using large-scale weakly-supervised data
can be particularly effective in cross-lingual retrieval, due to the added benefit of cross-language transfer.
In cross-lingual information retrieval (CLIR), a system returns relevant documents in a foreign language
for a query in a source language. In Chapter 4, I introduced the mDUQGen approach (refer to Section 4.4),
which efficiently learns both domain and language knowledge across different domains and languages.
However, task-specific language features are more subtle in a CLIR setting, making it more difficult to
train a neural CLIR ranker. Therefore, it is important to assess the nuanced impact of cross-language
task-specific feature learning from large-scale weakly-supervised data in CLIR. Designing a technique
that effectively fits this application can be challenging.

5.2.1 Problem Statement
Designing a framework for task-specific fine-tuning of pretrained language models for ranking in cross-
lingual information retrieval (CLIR) presents several challenges. First, acquiring domain- or language-
specific data necessary for fine-tuning a neural CLIR ranker can be difficult. As a solution, intermediate
large-scale pretraining can be beneficial, enabling the training of a zero-shot ranker capable of transfer
learning across multiple domains and languages without requiring retraining. Second, there is an abun-
dance of weakly linked data sources, such as Wikipedia articles, which can be leveraged to some extent
for warm-start training in relevance ranking.

Thirdly, using translate-train methods to train neural CLIR rankers is a costly process. Recent neural
rankers based on pretrained multilingual language models, such as mBERT [122] and XLM-R [138], have
demonstrated effectiveness for CLIR when trained on monolingual query-document pairs (e.g., Tamil-
Tamil, Chinese-Chinese, and Russian-Russian), allowing for zero-shot transfer [139, 140, 141]. Although
training models with translated MS MARCO data (translate-train) is more effective, it is significantly
more expensive [139, 142].

Fourthly, many pretrained language models do not inherently ensure that the representations of related
text pairs are similar [143]. This necessitates a task-specific fine-tuning process to adjust the represen-
tations generated by the pretrained model, bringing them closer together for related or relevant texts.
Such processes can be complicated and resource-intensive, as seen in RocketQA [144]. Consequently,
an efficient multi-stage training approach, which includes “continued pretraining” in the pipeline for
monolingual retrieval, has been proposed [145, 146]. This approach occurs before conducting task-specific
fine-tuning with retrieval objectives (as shown in Figure 5.1).

Fifthly, recent studies have indicated that extending the pretraining of a language model with auxiliary
objectives before fine-tuning it for the retrieval task can enhance retrieval effectiveness. In contrast to
monolingual retrieval, creating a suitable auxiliary task for cross-language mappings presents significant
challenges.

Lastly, by construction, the representations for texts conveying similar information in different
languages are not inherently similar, as multilingual pretrained models like mBERT and XLM-R do
not utilize parallel text during pretraining. In other contexts, integrating alignment information into the
retrieval model has proven beneficial for cross-lingual information retrieval (CLIR) [147, 148, 149]. Thus,
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Continued Language
Model Pretraining 

Task-specific Fine-
tuning for Retrieval

Pretrained Language 
Model, e.g., XLM-R

Figure 5.1: Pipeline for training a dense retrieval model. An additional pretraining phase is introduced
targeting CLIR.

it can be posited that explicitly fostering token-level similarity during the pretraining phase will improve
the effectiveness of CLIR models. Therefore, it can be hypothesized that task fine-tuning with large-scale
weakly-supervised cross-language pairs will enhance the effectiveness of CLIR ranker.

5.2.2 C3
To address the challenges mentioned earlier, this work introduces C3, a continued pretraining method
that utilizes weak supervision with document-aligned comparable corpora. This collaborative project C3,
with Dr. Eugene Yang as the lead author, was published as a short paper at SIGIR 2022. My specific
contributions involved preparing the cross-lingual relevance pairs (estimating data quality) and developing
data loading scripts that support multiple cross-language training datasets and objectives. This approach
aims to make the representations of texts with similar meanings in different languages more comparable
through contrastive learning. The continued pretraining phase adjusts an existing pretrained model before
it undergoes fine-tuning for the actual retrieval objective, as depicted in Figure 5.1. Specifically, the
similarity between pairs of texts is modeled using contrastive learning with token-level embeddings to help
the model capture token-level similarities and alignment information. The method employs Wikipedia
articles for the relevant language pairs, leveraging cross-language links found within Wikipedia to establish
connections. As these Wikipedia articles are based on weak links, this approach falls under weakly-
supervised learning. To the best of my knowledge, this is the first work of applying contrastive learning
to CLIR pretraining in this manner. The work is tested using high-resource languages that have strong
evaluation resources available. However, the ultimate goal is to adapt this weakly-supervised approach for
lower-resource languages, where traditional methods relying on parallel text may be impractical. Next,
I will present a detailed explanation of the approach, starting with a formal description of the method,
followed by a comprehensive overview of the experimental setup, and concluding with a discussion of the
results and analysis.

5.2.3 Proposed Work
This section introduces a continued pretraining approach, named C3, which uses contrastive learning
to align similar representations of text pairs across different languages. The language model learns to
establish a semantic space containing the two languages of interest with meaningful similarity by training
with this objective.

Specifically, consider a comparable corpus with linked document pairs (dS
i , dT

i ) in languages S
and T (i.e., pairs of documents in different languages containing similar information). Given a list of
such document pairs [(dS

1 , dT
1 ), (dS

2 , dT
2 ), . . . , (dS

n , dT
n )], a list of spans [sS

1 , sT
1 , sS

2 , sT
2 , . . . , sS

n , sT
n ] is

constructed by randomly sampling one span from each document.
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Let hL
i be the sequence of token representations of span sL

i where L ∈ {S, T }, its SimCLR [150]
contrastive loss is constructed as

Lco
iL = − log

exp
(
f

(
hS

i , hT
i

))
∑n

j=1
∑

k∈{S,T } 1(i ̸= j ∧ L ̸= k) exp
(
f

(
hl

i, hk
l

))
with 1(•) being the indicator function and f(h1, h2) being the similarity function between representations
h1 and h2. This contrastive loss is similar to the one proposed in coCondenser [145] but encourages the
model to learn different knowledge. Instead of sampling pairs of spans from the same document, the pair
is constructed by sampling one span from each side of the linked documents. Equation 5.2.3 promotes the
representation hS

i and hT
i to be closer while discouraging representations of spans in the same language

from being similar (since k can the same as L). This construction pushes the encoder away from clustering
text in the same language in the semantic space and pulls the text across languages with similar meanings
closer, while retaining distributional robustness by randomly matching the spans in the documents.

To promote token-level similarities, the MaxSim operator proposed in ColBERT [151] is applied as
the similarity function f(h1, h2). Specifically, the function can be written as

f(h1, h2) =
∑

i∈|h1|
max
j∈|h2|

h1i · hT
2j

where |h•| denotes the number of tokens in the corresponding span and h•k denotes the representation
of the k-th token in h•. With this similarity function, the contrastive learning loss flows into the token
representation to explicitly promote token alignment in the semantic space.

Finally, Lco
iL is combined with the masked language modeling loss Lmlm

iL and Lcdmlm
iL on span sL

i

from the transformer network and the Condenser head [143], respectively, to train the bottom half of the
network more directly. Therefore, the total loss L can be expressed as

L = 1
2n

n∑
i=1

∑
L∈{S,T }

[
Lco

iL + Lcdmlm
iL + Lmlm

iL

]

5.2.4 Experimental Setup
The experiment follows the workflow in Figure 5.1. In this specific study, English is used as the pivot
language for the queries and Chinese, Persian, French, and German as the document languages. However,
it is arguable that C3 is generalizable to other language pairs. The rest of the section discusses the
experiments’ data, models, setup, and results.

5.2.4.1 Datasets

To continue pretraining the off-the-shelf pretrained models with C3, linked Wikipedia articles on the same
topic are assembled in different languages. Specifically, CLIRMatrix [152] is leveraged as a retrieval
collection that uses the article titles as the queries to retrieve documents for 19,182 language pairs. For
each language pair, all query and document pairs with relevance score 6 are extracted, which are the
Wikipedia pages on the same topic as asserted by inter-wiki links (one query only has one document with
a score of 6 given a specific language pair). These documents are linked to construct the comparable
corpus. Document pairs in the number of 586k, 586k, 1,283k, and 1,162k are extracted for Chinese,
Persian, French, and German, respectively.
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nDCG@100 nDCG@10

Retrieval With HC4 NTCIR CLEF HC4 NTCIR CLEF
Model C3 Chinese Persian Chinese Persian German French ∆ Chinese Persian Chinese Persian German French ∆

QT + BM25 0.362 0.354 0.264 0.336 0.419 0.563 0.258 0.251 0.229 0.407 0.379 0.505

XLM-RoBERTa (base)

ColBERT
✗ 0.352 0.385 0.249 0.283 0.510 0.590 0.248 0.277 0.223 0.325 0.513 0.514
✓ *0.444 0.391 0.278 †*0.286 †0.521 0.574 +8% *0.345 0.274 0.255 0.337 †0.535 0.482 +11%

DPR
✗ 0.330 0.319 0.218 0.259 0.467 0.531 0.223 0.220 0.184 0.299 0.449 0.449
✓ *0.395 0.341 0.255 †0.266 †0.503 0.562 +10% *0.287 0.226 0.231 †0.302 †*0.523 0.491 +15%

XLM-align (base)

ColBERT
✗ 0.425 0.399 0.303 0.252 0.523 0.579 0.332 0.294 0.283 0.285 0.532 0.478
✓ †*0.483 0.400 †0.330 0.275 †0.528 0.588 +4% †*0.408 0.280 †0.316 0.321 †0.536 0.499 +6%

DPR
✗ 0.385 0.366 0.260 0.235 0.480 0.581 0.300 0.256 0.239 0.265 0.482 0.503
✓ 0.421 0.403 0.286 †0.244 †0.503 0.586 +6% 0.324 0.312 0.264 †0.279 †0.520 0.506 +8%

Table 5.1: Reranking effectivness of ColBERT and DPR models with and without our C3 pretraining. The
top shows XLM-RoBERTa-base models; the bottom shows XLM-algin-base models. Symbols indicate
statistically significant differences at p < 0.05 by a two-tailed paired t-test with Bonferroni correction for
6 tests, either with and without C3 (*) or between C3 and original BM25 results (†). ∆ shows the mean
relative improvement from C3 across the 6 collections.

For domain-specific fine-tuning, the “small” training triples provided in MSMARCO-v1, consisting of
39 million triples of query, positive, and negative passages, is used

The final retrieval models are evaluated on HC4 [90], a newly constructed evaluation collection for
CLIR, for Chinese and Persian, NTCIR [153] for Chinese, CLEF 08-09 for Persian [154, 155], and CLEF
03 [156] for French and German. HC4 consists of 50 topics for each language. NTCIR and CLEF 08-09
Persian contains 100 topics, and CLEF 03 French and German contains 60 topics. The title in English is
used as the evaluation queries.

Despite experimenting with relatively high resource language pairs, there is no language-specific
component in C3. Therefore, it is arguable that C3 is applicable to language pairs that have similar amount
of linked Wikipedia pages.

5.2.4.2 Implementation

The approach is tested with XLM-R-base [138] and XLM-align-base [157], which is a variant of XLM-R-
base pretrained with parallel text in 14 language pairs and multilingual text in 94 languages. All text in
the experiments is tokenized by Sentence BPE [138], which XLM-R uses.

The spans with a window of 180 tokens are constructed from document pairs. The model is pretrained
with C3 for 100,000 gradient update steps with an initial learning rate set to 5× 10−6 using 4 GPUs with
24GB of memory each. Gradient Cache [158] is leveraged to run with batches of 64 document pairs (16
per GPU).

Two dense retrieval models are tested, namely ColBERT [151] and DPR [159]. After pretraining,
each model is fine-tuned with the retrieval objective (either ColBERT or DPR) for 200,000 steps also
using 4 GPUs with a learning rate set to 5× 10−6 for each query-document language pair. For fine-tuning
of ColBERT, its original implementation is used, and for fine-tuning of DPR with a shared encoder for
queries and documents, Tevatron [160] is used. Both retrieval models are tested in a reranking setting,
where all models rerank the top-1000 documents retrieved by BM25 with machine translated queries. The
machine translation models for Chinese and Persian were trained using AWS Sockeye v2 Model [161] with
85M and 12M general domain parallel sentences for each language pair respectively. Google Translation
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Figure 5.2: ColBERT models with zero-shot transfer (ZS) and translate-train (TT) approaches using
XLM-RoBERTa-base on HC4 Chinese test set. The dashed line demonstrate the nDCG@100 value for
XLM-RoBERTa-large with both approaches.

is used for German and French.

5.2.5 Results and Discussion
Table 5.1 summarizes the main results of the experiments, which indicate that building dense retrieval
models using C3 yields better effectiveness. When starting from XLM-R, C3 provides an 8% relative
improvement in nDCG@100 (and 11% in nDCG@10) over directly fine-tuning a ColBERT model. The
model benefits from the warm start before training with relevance labels by pretraining with a similar
objective (MaxSim) with weakly supervised text. On the other hand, a slightly larger gain is observed
on DPR, suggesting even retrieval models that score documents with sequence representations (i.e.,
embeddings of CLS tokens) benefit from a task that promotes token-level similarity.

The improvement in the retrieval effectiveness by C3 is less substantial when starting from XLM-align
(at most 6% in nDCG@100 compared to 10%). Since XLM-align is trained with parallel text, its ability
to create relationships between text across languages is better than XLM-R, resulting in a diminishing
return from investing computation resources in pretraining. Nevertheless, C3 still provides more effective
retrieval results across languages.

Among the evaluated language pairs, English-French is particularly interesting. Applying C3 yields
negative “improvements” in some cases. As English and French have a close relationship linguistically,
it can be suspected that the original XLM-R model, which is not trained with parallel text, already
establishes an effective cross-language semantic space. Continued pretraining with C3 may simply not be
necessary in such a case. Notably, XLM-align, which initialized its parameters by XLM-R, also yields
worse retrieval results (0.590 to 0.579 in nDCG@100 and 0.514 to 0.478 in nDCG@10), which further
supports the observation.

Note that all the fine-tuned reranking models underperform BM25 on CLEF Persian collection.
After evaluating separately on topics generated in CLEF 2008 and 2009, a discovery is made that the
topic characteristics are different between the two (nDCG@100 of 0.421 on 08 and 0.250 on 09 for
BM25). Models pretrained with C3 underperform BM25 in 2008 topics, but are at least on par with
BM25 on 2009 topics. While this effect deserves further investigation, it was noted that queries for
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Contrastive Similarity
Lang. Model Ret. Model Cond. None CLS MaxSim

XLM-R
ColBERT

✗ 0.352 0.389 0.410
✓ – 0.391 0.444

DPR
✗ 0.330 0.382 0.381
✓ – 0.368 0.395

XLM-A
ColBERT

✗ 0.425 0.482 0.474
✓ – 0.457 0.483

DPR
✗ 0.385 0.406 0.406
✓ – 0.408 0.421

Table 5.2: Ablation study on different similarity function used in contrastive learning with and without
the Condenser head (Cond.). The values showed in the table is nDCG@100 on HC4 Chinese test set.

this collection were originally created in Persian and then translated into English, possibly initially by
nonnative speakers [154, 155]. Perhaps the English queries in 2009 better match the English for which the
models have been trained. Nevertheless, C3 still improves the pretrained language models in these cases.

Comparing the average relative improvements (over all six test collections) that result from applying
C3, somewhat consistent stronger relative improvements are demonstrated with nDCG@10 than with
nDCG@100. From this it can be concluded that the effects of the improved modeling are particularly
helpful nearer to the top of the ranked list, where interactive users might be expected to concentrate their
attention.

To investigate the initially raised hypothesis regarding the utility of token-level similarity, evaluation
on models in which different similarity functions were used as a basis for contrastive learning in continued
pretraining is conducted. Using the CLS token in this way is similar to the coCondenser model. Results in
Table 5.2 suggest that with the Condenser head, as implemented in the coCondenser model, pretraining
with MaxSim similarity as the contrastive learning objective produces better retrieval models. The
improvement is minimal without the Condenser head, indicating that token-level similarity benefits from
routing information directly to the bottom half of the network. Interestingly, the second-best approach
among the four combinations is CLS-based contrastive learning without using the Condenser head, which
contradicts the original proposal of coCondenser. However, any continued pretraining is rewarding.
Despite the competition among the variants, all language models with continued pretraining outperform
their original off-the-shelf version.

Finally, a natural question arises: what if translation of MS-MARCO is affordable so that translate-
train model can be used? To investigate, the Chinese translation of the MSMARCO-v1 training triples is
utilized from ColBERT-X [139], which can also be accessed via ir_datasets [112] with the dataset
key neumarco/zh1. Figure 5.2 shows that without C3, the ColBERT model improves from 0.352 to
0.421, which is still worse than zero-shot transfer models trained with C3 for CLIR, suggesting allocating
effort to C3 rather than training a translation model when computational resources are limited. When both
are affordable, the effectiveness (0.457) is on par with zero-shot transfer a ColBERT model with XLM-R-
large (0.451), which is even more expensive to train. With translate-train, ColBERT with XLM-R-large
achieves close to 0.5 in nDCG@100 but requires more computational resources to run.

1https://ir-datasets.com/neumarco.html#neumarco/zh

https://ir-datasets.com/neumarco.html#neumarco/zh
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Figure 5.3: Overview of fine-tuning an event ranker model on unsupervised and weakly-supervised
training data.

5.2.6 Summary and Limitations
A continued pretraining framework C3 is proposed on a weakly supervised corpus with a contrastive
learning objective. It was experimentally showed that the final retrieval models that are fine-tuned from
models trained with C3 are more effective than off-the-shelf multilingual models. Further analysis
suggests that translate-train can further improve retrieval models fine-tuned from C3-pretrained models.
Evaluating with larger models such as XLM-R-large can also provide insight into the robustness of the C3
approach.

The C3 approach has certain limitations regarding the quality of cross-lingual pairs and the selection
of hyper-parameters. The weakly labeled pairs are collected from CLIRMatrix, which crawls Wikipedia
and automatically connects pages with weak links through a pipeline. The quality of weakly labeled pairs
can also affect the training of a neural ranker. Depending on the stronger or weaker labeled annotations,
the neural ranker may struggle to learn discriminative relevance signals from positive and negative pairs.

Secondly, the contrastive learning benefits from larger batch sizes for optimal performance. However,
due to hardware limitations, smaller batch sizes had to be used and rely on empirical hyper-parameter
values based on similar prior experiments. This can be problematic, as the weakly-supervised algorithm
may be sensitive to these hyper-parameter choices when learning from noisy data.

Moreover, it would be interesting to extend C3 on some lower-resource languages where Wikipedia
articles are limited in such languages. Beyond that, despite being motivated by CLIR problems, C3 might
also be applied to monolingual retrieval in cases where documents appear on the same topic that may use
different writing styles.

5.3 Event-Aware Task Fine-tuning
Human activities and global events can largely be categorized as events, including everything from
organized sports and social gatherings to weather phenomena and natural disasters. Searching for events
or temporal information is a crucial and common task in both general search engines and specialized
retrieval systems [162, 163, 164, 165]. A traditional system for event retrieval and extraction typically
comprises two components: a retrieval system followed by an extraction system. The information retrieval
system identifies and returns the top-k relevant documents that contain the events related to the user’s
query. These retrieved documents may then be processed further by an information or event extraction
(IE) system, which organizes and aggregates the information for analysis or other uses. The IE system
extracts key spans, entities, and trigger words that represent the events found in the retrieved documents.
Such systems often depend on identified mentions of events within the documents to accurately match
the queried event. Therefore, to task-align a retriever against an IE system it is essential to train a
neural ranking model that understands event semantics and knowledge to locate documents with rich
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event-related information, ensuring that the extraction system can effectively identify the user’s event
search.

Numerous significant information needs pertain to events, ranging from organized human activities to
natural occurrences or disasters, and can increasingly be expressed in any language. Cross-lingual event
information retrieval [166] has gained prominence due to the necessity of collecting information from
around the globe, such as in tourism and breaking news, where documents may be written in languages
unfamiliar to the searcher. The goal of the cross-lingual event retrieval task is to enable users to specify
their events of interest in their native language while retrieving documents or passages that describe those
events in other languages. This capability allows users to express their event queries in one language
and obtain information in another, thus expanding the pool of accessible information. Consequently,
investigating task fine-tuning, particularly event-aware fine-tuning, of neural ranking models within
cross-lingual systems proves to be more effective and impactful than in a monolingual retrieval context.

5.3.1 Problem Statement
Cross-lingual event retrieval presents significant challenges, particularly when there is insufficient training
data for the specific events or target language documents needed. Obtaining this event data through
human annotation is often costly and impractical. Instead, practitioners typically depend on Information
Extraction (IE) models to automatically gather this information. However, running an IE model over a
large dataset can still be computationally demanding, rendering it impractical for extensive collections or
the wider web [167, 168] to precompute, index, and retrieve results offline for faster inference.

Recent developments in cross-lingual event retrieval [166] have enhanced effectiveness by integrating
IE components only when reranking results from a sparse retrieval model, such as BM25, using machine-
translated documents. However, these initial sparse retrieval models are not specifically designed for
cross-lingual event retrieval, leading to a suboptimal set of documents for the subsequent reranker to
process.

Substituting the sparse retrieval model in the pipeline with a cross-lingual dense retriever can enhance
overall performance [64, 169]. Nevertheless, these dense retrievers are usually trained on English or
translated MS-MARCO [64], which consists of web search queries and documents. While these models
have demonstrated greater effectiveness compared to earlier retrieval systems, they may experience a
mismatch between the training data and the event-search queries used, falling into the domain adaptation
problem. Thus, it can be hypothesized that event-aware task fine-tuning of dense retrievers, using a
downstream IE system as a weak annotator, will improve the overall effectiveness of an end-to-end IE-IR
system.

5.3.2 Event Fine-tuned IE-IR System
To address these challenges, I propose a scalable and effective method for training an event-aware dense
retrieval model using weak supervision, eliminating the need for costly IE systems when responding to
queries. This approach is designed for scenarios where an IE system, such as a variant of the Semantic
Role Labeling (SRL) model, is employed to extract relevant events. It enables the acquisition of event
attributes—serving as training data—without requiring human annotation, thus providing machine-
generated labels during training. With advancements in natural language processing, SRL can accurately
extract events from sentences [170, 171]. The generated event annotations and their associated confidence
scores are utilized to create weakly-supervised query-passage pairs that include event signals. Additionally,
the training queries are augmented with event types to aid the neural ranker in understanding complex
event semantics. Figure 5.3 illustrates the fine-tuning process.
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Figure 5.4: An example showing event extraction (IE) and query generation.

Specifically, my approach employs a curriculum learning strategy, where a ranker is progressively
fine-tuned using both unsupervised and weakly-supervised training labels. These weakly-supervised labels
are generated by annotating a small subset of the corpus with events and entities using a targeted event
extraction system. Experiments conducted on four publicly available cross-lingual collections demonstrate
that even with a limited amount of training data, sequentially fine-tuning a neural ranker significantly
enhances both recall and precision compared to state-of-the-art baselines. This method facilitates rapid
adaptation and generalization of event retrieval across new languages, domains, and corpora. Next, I will
present a detailed explanation of my approach, starting with a formal description of the method, followed
by a comprehensive overview of the experimental setup, and concluding with a discussion of the results
and analysis.

5.3.3 Proposed Work
My approach involves fine-tuning a retrieval model using in-domain training data created through
unsupervised and weakly-supervised methods. Specifically, the weakly-supervised data is generated by
an IE system, which assigns calibrated scores to the data. This section begins with a brief overview of the
IE system and the process for generating event scores, followed by an explanation of my methods for
generating queries and training data.

5.3.3.1 Information Extraction System

Event Extraction or Information Extraction (IE) systems transform unstructured text into structured data
by identifying and extracting key entities, elements, and relationships, while providing a confidence
estimate. In my approach, an IE system is utilized to annotate events and compute confidence estimates
to assess the quality of downstream annotations. The following sections will cover details about the IE
system (Spanfinder) used and its calibrated confidence scores to provide a foundational understanding of
these components.

5.3.3.1.1 Spanfinder

The IE system used in this approach is based on the Spanfinder model [170, 172], which includes a
contextualized encoder, a BiLSTM CRF tagger, and an MLP head for joint span extraction and labeling.
Starting from a virtual root node for each sentence, the Spanfinder model first extracts event trigger spans
and assigns event labels from a predefined ontology. For each identified event trigger, the model then
extracts argument spans, assigning labels such as agent or patient. To provide the downstream retrieval
model with more information about prediction confidence, the original Spanfinder model is modified
to output logits for span extraction and labeling [173]. A separate IE model is trained for each corpus
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configuration. The system is trained on human-labeled in-domain BETTER English data [174], which is
further enhanced with machine-translated and aligned "silver" data in the target language [175].

5.3.3.1.2 Confidence Calibration

Neural IE systems often tend to overestimate their confidence levels [176]. While this might not pose
an issue when individual confidence scores are used separately, it can create problems when combining
these scores, as the ranking may become skewed by the most sensitive components. To address this,
for each IE model, a distinct set of calibrators is trained for both label prediction confidence and span
extraction confidence using temperature scaling [177] on a held-out development set. During inference, the
raw scores from the IE model are adjusted by these calibrators, resulting in more accurate and calibrated
confidence scores.

5.3.3.2 Event Score Generation

In an event retrieval task, a query must include at least one identified event, with the span mentioning the
event trigger referred to as the anchor. Entities associated with this event anchor are categorized as either
agent or patient, and each event belongs to a predefined event type class.

For a sentence with labeled event anchor and type, the IE system generates two separate probability
logits: 1) span logit: the likelihood of a span in the sentence being identified as an event anchor, and
2) type logit: the likelihood of a given event anchor span being assigned a specific event type. To
produce a unified event extraction confidence score for a sentence, a joint probability of these two logits is
introduced, since they are calculated independently.

5.3.3.3 Unsupervised In-Domain Training

As an initial step in the framework, an unsupervised fine-tuning phase using the in-domain corpus is
carried out, with positive training examples generated as follows. From a randomly selected set of
document passages, a sentence is chosen from each passage based on the assumption that passages (e.g.,
paragraphs) are written coherently, meaning that all sentences within a passage are likely to share the same
topic and be related. This assumption of local coherence has been noted in prior tasks, such as language
modeling [178]. Therefore, the resulting pairs consist of selected sentences and their source passages,
which serve as positive examples of relevant query-document pairs. Although this simple query-passage
pairing may be noisy, it could assist the ranker in learning domain-specific vocabulary embeddings and
topical relevance, which will be explored experimentally. However, the method’s benefits are expected to
be limited since this unsupervised approach does not account for target events or event-specific queries
in retrieval. To address this, a novel weakly-supervised training data generation approach is introduced
to enable scalable fine-tuning for event matching and retrieval. A similar approach has been recently
used in the unsupervised pretraining of the Contriever [45] model, although my work predates and was
independently proposed from the Contriever.

5.3.3.4 Weakly-Supervised Training

I will now outline the main contribution of this approach: a scalable, weakly-supervised approach for
training event retrieval models. First, I explain the process of generating automated queries and relevance
data using the IE system to identify relevant sentences. This is followed by a generalization step, which



76

queries documents avg doc len.

CLEF Persian 100 166,774 573
NTCIR Chinese 100 308,832 354

BETTER Arabic 54 864,971 636
BETTER Persian 53 856,167 664

Table 5.3: CLEF, NTCIR, and BETTER collections statistics.

exposes the ranker to a broader set of potential queries. Together, these steps are used to fine-tune the
retrieval model.

5.3.3.4.1 Query Generation

The training queries for the weakly-supervised dataset are generated in two forms:

Q1 : a sentence containing an event.

Q2 : a concatenation of its event arguments and event type.

First, a random set of N documents is selected from the target language corpus. Each document is
divided into multiple passages, and the sentences within these passages are parsed using the IE system in
the target language, with a confidence calibrator applied to refine extractions. For each output sentence,
the system checks for the presence of an event and its calibrated score. The event score, as described in
Section 5.3.3.2, reflects the confidence in how well the event has been extracted and represents the event
request in the sentence. By applying a threshold to the event score, high-confidence event sentences are
selected as training queries for Q1.

To help the first-stage retrieval model learn event semantics, the generated queries are enhanced
with a generalized query form, Q2. This augmented query is essentially a template that combines the
event’s argument and type, where the agent or patient spans and the event type are concatenated into a
single string. For example, consider the sentence: "Dust storm hit several cities in the northern part of
Sistan-Baluchestan Province." Here, the anchor, argument, and event type are identified as "hit", "Dust
storm", and "Natural-Phenomenon-Event-or-SoA", respectively. Therefore, the generalized query Q2
becomes "Dust storm Natural-Phenomenon-Event-or-SoA", where the event anchor (e.g., "hit") is replaced
with the broader event type (e.g., "Natural-Phenomenon-Event-or-SoA").

5.3.3.4.2 Document Selection

Each weakly-labeled event query is matched with its corresponding source passage to create a positive
training pair. For each sentence, two positive pairs are generated: one using Q1 and the other using Q2.
These pairs demonstrate how events are described in the documents during training, highlighting the
model’s ability to recognize different forms of event mentions. Training with Q2 pairs, in particular, helps
the model learn how different types of events vary within documents. For each positive pair, a random
passage from the corpus, which is not the source passage, is selected as the negative passage.
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BETTER Persian BETTER Arabic CLEF Persian NTCIR Chinese

Retrieval Models R@1K nDCG RPrec R@1K nDCG RPrec R@1K nDCG RPrec R@1K nDCG RPrec

MT + BM25 0.740 0.507 0.285 0.571 0.298 0.101 0.625 0.488 0.247 0.605 0.388 0.213
MT + BM25 + RM3 0.756 0.536 0.351 0.648 0.329 0.153 0.667 0.521 0.274 0.652 0.408 0.230

ColBERT-X (ZS) 0.817 0.657 0.419 0.481 0.289 0.129 0.701 0.546 0.289 0.688 0.460 0.259
+ Unsupervised 0.834 0.683 0.479 0.580 0.370 0.180 0.740 0.583 0.311 0.717 0.476 0.275

+ Weakly Supervised 0.853 0.703∗ 0.507∗ 0.598∗ 0.375∗ 0.193∗ - - - - - -

Table 5.4: Retrieval performance of statistical and neural retrieval models for varying languages and tasks.
∗ indicates the difference between ColBERT-X (ZS) and the full model is statistically significant with
95% confidence using the paired t-test with Bonferroni correction of two tests (across collections within
the tasks).

5.3.3.5 Ranker Fine-tuning

My fine-tuning method can be applied to train any learning-to-rank model. To demonstrate its effectiveness,
the strong CLIR dense retrieval model, ColBERT-X, is fine-tuned as an event retriever using this scheme.
During inference, passage-level relevance can be aggregated into document-level relevance predictions
using the MaxP technique [179].

5.3.4 Experimental Setup
Four publicly available cross-lingual collections are used for the evaluation purpose: two general ad-hoc
CLIR retrieval collections (CLEF 2001 Persian [92] and NTCIR-8 Chinese Adhoc Retrieval Task [93]) and
two event retrieval CLIR tasks (BETTER Farsi (Persian) and Arabic collections). Table 5.3 summarizes
the statistics of the respective collections.

The IARPA BETTER (Better Extraction from Text Towards Enhanced Retrieval) program2 provides
two large collections extracted from CommonCrawl News collections in Arabic and Persian [174].
This collection has a set of event-oriented topics with graded relevance judgments provided by human
annotators. The collection is constructed for cross-lingual event retrieval with both queries and examples.

All provided queries are in English. For CLEF and NTCIR (ad-hoc retrieval tasks), the topic title is
used as the evaluation query. For BETTER collections (event retrieval tasks), the concatenation of req-text
and task-title is used as the queries.

ColBERT-X[64] source code3 is used to train and evaluate my approach in an end-to-end fashion.
The maximum query and document length is kept to 32 and 180, respectively. A zero-shot retrieval
ColBERT-X model is trained on MS-MARCO translated cross-lingual pairs for 200k iterations with a
learning rate of 3× 10−6 and a batch size of 32 per GPU. The event retrieval fine-tuning is applied on
zero-shot trained models for an additional 1000 iterations each with a batch size of 8 per GPU, where the
learning rate was decreased to 1× 10−6. Training and evaluation are conducted using four NVIDIA RTX
A6000 GPUs.

Due to the focus on the first-stage retrieval, the models are evaluated with recall-oriented measures:
Recall at 1000 (R@1K) and R-Precision (RPrec). In addition to the two, nDCG@1K is also reported to
demonstrate the improvement in the ranking. To compare with the alternative of using ColBERT-X as the
first-stage retriever, the models trained with my fine-tuning scheme are compared against BM25+RM3
with machine-translated queries, which is a strong CLIR baseline [64].

2https://www.iarpa.gov/index.php/research-programs/better
3https://github.com/hltcoe/ColBERT-X

https://www.iarpa.gov/index.php/research-programs/better
https://github.com/hltcoe/ColBERT-X
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5.3.5 Results and Discussion
Table 5.4 presents a summary of the dense retrieval performance across the four collections. As the CLEF
Persian and NTCIR Chinese datasets are limited to evaluating ad-hoc retrieval tasks, the performance
is reported for models that are fine-tuned using ZS + Unsupervised methods. The upper portion of the
table displays statistical retrieval baselines, while the lower portion features neural CLIR dense retrieval
models at various fine-tuning stages.

Each fine-tuned method is incrementally added on top of the previously trained model. When compared
to MT+BM25+RM3, the zero-shot trained ColBERT-X model demonstrates significant enhancements
across all languages, domains, and metrics, with the exception of R@1k for BETTER Arabic. This
finding reinforces the case for further fine-tuning the zero-shot ColBERT-X using the weak labels from
the Information Extraction (IE) system during the fine-tuning stages. The unsupervised fine-tuning
consistently enhances ZS ColBERT-X, particularly showing relative improvements in R@1k (from 1.7%
to 9.9%), nDCG@1k (from 1.6% to 8.1%), and RPrec (from 1.6% to 6.0%) across all languages and
domains. This suggests that unsupervised fine-tuning is beneficial for retrieval models. Additionally,
incorporating weakly-supervised training also yields consistent advantages, with relative improvements in
R@1k (from 1.8% to 1.9%), nDCG@1k (from 0.5% to 2.0%), and RPrec (from 1.3% to 2.8%) across all
languages in event retrieval. When comparing the overall performance changes between ZS ColBERT-X
and the complete model, the relative improvements are notable in nDCG (ranging from 4.6% to 8.6%)
and RPrec (from 6.4% to 8.8%), although BETTER Persian does not exhibit significant improvement in
R@1k.

In conclusion, when comparing MT+BM25+RM3 with the sequentially fine-tuned ColBERT-X, the
fine-tuned model shows a relative advantage over the traditional baseline, particularly in nDCG@1k (an
improvement of 4.6%) and RPrec (ranging from 4.0% to 15.6%). While the traditional BM25+RM3
achieves the highest R@1k in the BETTER Arabic collection, combining the ranks of MT+BM25+RM3
with the sequentially fine-tuned ColBERT-X results in an enhanced R@1k, increasing from 64.8% to
76.1%.

5.3.6 Summary and Limitations
I propose a novel weakly-supervised fine-tuning approach to train a cross-lingual event retrieval model for
a given language and domain without requiring human supervision. Specifically, I propose a method for
sequentially fine-tuning a ranker using a curriculum of training data with increasing specificity for the
event retrieval task. I introduced and evaluated a scalable and effective method for unsupervised in-domain
pretraining, followed by fine-tuning the ranker by using calibrated IE extractions to automatically generate
weakly supervised, high-quality training data. I empirically showed that my sequential fine-tuning
approach outperforms zero-shot SOTA retrieval model significantly on most metrics across languages
with only a limited amount of training data. Despite the substantial improvements achieved, further gains
may be possible incorporating small amounts of human supervision (e.g., with human-in-the-loop), and
by experimenting with multi-task fine-tuning approaches combining gains across target tasks, suggesting
promising avenues for future work.

My solution of pseudo-label filtering to enhance the fine-tuning of a neural ranker has certain limi-
tations related to the downstream Information Extraction (IE) system and the quality of the generated
training data. First, running the IE system on the top-k (k=100) documents for a large number (1000+) of
training queries is resource-intensive and expensive. Additionally, in certain applications or cross-lingual
settings, a well-trained and calibrated IE system may not be readily available or could be difficult to
acquire.
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Secondly, when annotating weak candidate documents for training queries using an IE system, it can
be challenging to gather the required number of training examples after filtering. For queries related to
popular events or topics, many retrieved candidates may be annotated with high-confidence event types
by the IE system. However, for more difficult queries, the IE system may struggle to accurately identify
events with high confidence. Since training a neural ranker requires a certain number of gradient update
steps (e.g., 1000 steps), and a sufficient number of training examples (e.g., a batch size of 32 requires
32,000 examples), it may be difficult to obtain even a single high-confidence positive document for some
queries. As a result, there is no guarantee that parsing IE annotations across a large number of queries and
documents will yield the desired number of positive training examples.

Lastly, hard negative mining is a critical step in generating training data. A poor selection of hard
negative pairs can significantly affect the training of ranking models. Errors in identifying positive
documents using an IE system may result in incorrectly classifying them as negative documents, leading
to noisy labeling that negatively impacts the training process. Acquiring stronger negative documents
could enhance the ranking performance; however, due to the limitations of downstream systems, obtaining
such high-quality hard negative labels is challenging. Consequently, it becomes difficult for my weakly-
supervised fine-tuning to achieve the performance levels of fully-supervised fine-tuning.

5.4 Task Fine-tuning Neural Ranker in a RAG System
In recent years, Large Language Models (LLMs) have gained increasing popularity for handling a wide
range of natural language tasks. However, they often struggle with knowledge-intensive and complex
reasoning tasks due to their limited internal knowledge. Retrieval Augmented Generation (RAG) [180]
has emerged as a widely explored technique to incorporate external knowledge into LLMs, enhancing
their performance on such tasks. Beyond knowledge-intensive challenges, RAG offers additional benefits,
such as reducing hallucinations, eliminating the need to retrain LLMs with updated information, and
enhancing privacy by keeping proprietary data separate from the model’s internal memory. RAG operates
on a retrieve-then-generate approach, where a retriever selects top-k relevant evidence documents, and
the LLM generates a response based on the user query and these evidence documents. This method has
demonstrated strong performance in overcoming the aforementioned challenges.

5.4.1 Problem Statement
Most state-of-the-art (SOTA) LLMs are large in size and function as black-box systems, accessible
primarily through APIs. This necessitates improvements in components like prompt design and evidence
retrieval and reranking. For Question-Answering (QA) tasks in particular, the quality of the evidence
documents plays a critical role in the LLM’s output. If irrelevant documents dominate the top-k results, it
can negatively affect the generation process, leading to more factually incorrect answers. Therefore, it is
crucial to implement a more effective ranking system to provide supportive documents that better ground
the LLM’s generated responses.

The SOTA neural ranking models are often pretrained on large-scale QA datasets, such as MS-
MARCO [2]. While these models demonstrate superior transfer-learning performances across various
domains and tasks [1, 126], they still limit the performance of RAG systems, particularly due to the
domain and task shifts. These rankers are originally trained for ad-hoc search tasks, where relevance is
based on human preferences of raw evidence documents. However, in a RAG system, where the position
of human is replaced by LLM, relevance is defined by how effectively the retrieved evidence supports the
LLM’s response generation. Task-specific fine-tuning of neural rankers is challenging due to the scarcity
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of supervised training data, which is costly and time-consuming to obtain. Although previous studies have
proposed weakly supervised and unsupervised training methods, a performance gap persists due to the
task misalignment between the ranker and the LLM.

Recently, several studies have focused on pseudo-label distillation and aligning LLMs with rankers [9,
10, 44]. These methods utilize various techniques to generate pseudo labels for fine-tuning ranking models.
For instance, they have employed different scoring functions for pseudo-labeling, including attention
scores [44], perplexity scores [9, 44], and relevance annotations [10]. While these pseudo-labeling
techniques enhance the ranking performance, they do not fully capture the task relevance from the LLM’s
perspective. Additionally, these methods require individual query-document passes through the LLM,
which is both expensive and time-consuming. Therefore, it can be hypothesized that effective and efficient
task fine-tuning a neural ranker will enhance RAG question-answering accuracy.

5.4.2 TFT-RAG
To address the previously discussed challenges and enable task-specific fine-tuning of a neural ranker, I
propose a novel approach, called Task Fine-Tuned RAG (TFT-RAG), which introduces a novel technique
called LLM self-referencing, applied during both the training and inference stages. In training, the
ground-truth answer is used to identify the evidence documents as grounded or non-grounded, assigning
positive and negative labels accordingly. During inference, the LLM is prompted to self-reference the
grounded evidence documents before generating an answer. Additionally, Chain-of-Thought (CoT) [181]
prompting ensures that the selected evidence is explained. Unlike the previous methods that require
multiple individual query-document passes to the LLM, my approach processes the question and evidence
documents in a single pass, significantly reducing the costs. I evaluated my RAG system on the CRAG [51]
benchmark and demonstrated a substantial accuracy improvement over the RAG baselines.

5.4.3 Proposed Work
My RAG framework consists of both training and inference stages. I introduce a novel self-referencing
technique in both stages, contributing independently to the two main components — the ranker and the
LLM — to enhance the overall quality of answer generation.

5.4.3.1 Training-Stage

Training a ranker to improve a QA system is more cost-effective and practically feasible than jointly
training a ranker with an LLM. Therefore, during the training stage, a pretrained zero-shot ranker R is
sequentially fine-tuned. The goal is to fine-tune the neural ranker for better alignment with the LLM,
resulting in a stronger ranker capable of providing more grounded and supportive evidence documents.
This, in turn, maximizes the quality of the LLM’s answer generation. To achieve this fine-tuning, I adopt
a weakly-supervised approach, using the downstream LLM as a teacher model to generate high-quality
task-specific labels for training the neural ranker, and this approach is illustrated in Figure 5.5.

5.4.3.1.1 Self-referencing

LLMs have become adept at identifying reference evidence documents that support and ground their
generated answer. Consequently, the performance bottleneck in a RAG system lies in the ability of a
ranker to supply high-quality, grounded evidence documents to the LLM. This motivates us to improve
the task-specific label generation process during training. In particular, using the LLM itself to annotate
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Figure 5.5: TFT-RAG: task-specific fine-tuning for neural ranking.

candidate evidence documents proves to be more effective than other pseudo-labeling methods, such
as perplexity scores, attention scores, or binary relevance annotations. Moreover, the top-k evidence
documents are collectively fed to the LLM in order to generate a grounded answer. Presenting these top-k
documents together leads to higher-quality annotations compared to feeding individual document-query
pairs, followed by prior works. I refer to this approach as "self-referencing," as it prompts the LLM to
identify the evidence documents that maximize the quality of its answer generation.

I present my novel self-referencing technique to generate positive labels for training a neural ranker.
In this approach, an LLM is prompted with a question, a ground-truth answer, and top-k evidence
documents in a format shown in Figure 5.6a, to obtain label annotations in a single pass. Additionally,
the LLM is instructed to provide an explanation for selecting the grounded evidence documents, using
CoT prompting to ensure high-confidence label annotations and enhance interpretability. The evidence
documents identified by the LLM are then marked as positive labels for fine-tuning the neural ranker.

5.4.3.1.2 Hard Negative Mining

The effectiveness of training a neural ranker heavily relies on the quality of the positive and negative
labels in the training data. A hard negative mining approach is typically preferred over random negative
pair selection due to the advantages of contrastive learning. In the hard negative mining approach, a
first-stage retrieval is performed for each training query to gather top-k candidate documents, and nneg

random documents within this set are chosen as hard negatives. However, since the grounded documents
can appear at any rank in the top-k, randomly selecting negatives introduces the risk of incorrectly labeling
grounded documents as negatives, which can adversely affect the ranker fine-tuning.

To address this potential issue, I propose using an inverse version of the self-referencing technique
to identify hard negatives. An algorithm of obtaining hard negatives is described in Algorithm 1. First,
LLM is prompted in the same manner as self-referencing but ask it to strictly identify non-grounded
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(a)

(b)

Figure 5.6: Prompt template used for self-referencing to annotate (a) positive and (b) negative grounded
documents during the training stage. Black and blue font colored portions indicate system and user prompt
messages, respectively.

documents. Figure 5.6b shows the prompt template used for hard negative referencing. And Figure 5.7
presents a sample output generated by the LLM. The identified documents are topically relevant to the user
query but may contain non-grounded, vague, unsupported, or unclear information, offering high-quality
discriminative signals for training the ranker. An explanation is also requested from the LLM to minimize
gibberish or random text in the output. However, preliminary experiments showed that asking for an
explanation when generating hard negatives had no effect on the selection of references. Additionally,
incorporating self-referencing in hard negative mining can help to reduce hallucination effects, and
this argument has been validated in my preliminary experiments. By formatting the LLM output, hard
negative candidates can be collected for a query. After the LLM identifies the potential hard negatives, a
consistency filtering verification step ensures that no positive labels are mistakenly included, excluding
any inconsistent identifiers. Finally, the top-nneg candidates from the remaining negative documents are
designated as hard negatives to improve the training of the neural ranker.
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Figure 5.7: Sample output generated by LLM during hard negative generation process

5.4.3.1.3 Ranker Fine-tuning

The task-specific fine-tuning data generated through the self-referencing approach can be used to train
any neural ranker, enhancing the accuracy of a RAG system. The positive and negative labels generated by
prompting an LLM, as outlined in previous subsections, provide the required training data. By applying
a pairwise loss, a neural ranker can be fine-tuned to more effectively distinguish between task-specific
grounded documents and non-grounded documents.

5.4.3.2 Inference-Stage

CoT prompting has proven effective for solving complex reasoning tasks. As a result, CoT is incorporated
into the training stage self-referencing technique to obtain high-quality annotations. During the inference
stage, a modified version of self-referencing, using only the user query and top-k evidence documents, can
still help guiding the LLM. Since not all top-k evidence documents will ground the generated answer, this
simpler referencing approach helps preventing the LLM from being distracted by irrelevant documents.
Additionally, the user queries can often contain factual errors (false premises), and ranking highly relevant
but incorrect documents could mislead the LLM into generating an incorrect response instead of stating
"Invalid question." To address this, an inference prompt, as illustrated in Figure 5.8, is introduced. This
prompt asks the LLM to identify and explain the supportive documents before answering the question.
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Algorithm 1 Steps to Acquire Hard Negatives
Require: Q: A question
Require: E: A set of candidate references
Require: EPos: A set of positive labels
Ensure: ENeg: A set of negative labels

1: llm_output← LLM(Q, E)
2: hard_negative_candidates← formatting(llm_output)
3: hard_negative_labels← consistency_filtering(hard_negative_candidates, EPos)
4: ENeg ← Pick top-nneg (hard_negative_labels)
5: return Q, ENeg

The Step1 is extracted from LLMJudge [182, 183] benchmark for evidence annotations. Requesting an
explanation not only enhances interpretability but also prompts the LLM to safely respond with "I don’t
know" when unsure, avoiding factually incorrect answers.

5.4.3.3 Tools and Implementation

I built my RAG system on top of the original CRAG4 codebase, which utilizes the HuggingFace API for
LLM calls and PyTorch for reranker training and inference. The LLaMA3-8B-instruct model was run
locally on a NVIDIA H100 GPU with 80GB of memory.

5.4.4 Experimental Setup
In this section, I provide detailed description of my evaluation setting, including datasets, metrics, models
chosen for ranking and generation, baselines, and parameter-tuning.

5.4.4.1 Dataset

To evaluate the effectiveness of my RAG system and validate my hypothesis on task fine-tuning, I chose
the recently introduced comprehensive RAG benchmark, CRAG [51]. CRAG introduces three distinct
tasks:

1. Task-1: Retrieval Summarization

2. Task-2: KG and Web Retrieval Augmentation

3. Task-3: End-to-end RAG

Although all three tasks share the same evaluation questions and ground-truth answers, they differ in the
limitation of external data accessibility. Task 1 relies solely on the top 5 web documents for each query,
Task 2 includes both the top 5 web documents and access to knowledge graphs, and Task 3 expands to
the top 50 web documents plus knowledge graph access. My focus was specifically on enhancing Task 1
(Retrieval Summarization) with my system. Since the benchmark did not include a separate training split,
I applied a stratified 50% split across the major categories of examples in the validation and public test
sets, totaling 2,706 examples. As a result, I utilized 1,422 examples for training and 1,284 for testing. A
random 100 questions are sampled from the training split as a validation split to tune the hyper-parameters.

4https://gitlab.aicrowd.com/aicrowd/challenges/meta-comprehensive-rag-benchmark-kdd-cup-2024
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Figure 5.8: Prompt template used for chain-of-thought answer generation (annotate-then-generate) during
the inference stage. Black and blue font colored portions indicate system and user prompt messages,
respectively.

5.4.4.2 Evidence Retrieval and Reranking Pipeline

The RAG framework includes both retrieval (with ranking) and generation stages. The CRAG benchmark
baselines follow a strict retrieve-then-generate pipeline, as shown in Figure 5.9. The process begins with a
user query, which is sent to a first-stage retriever, retrieving the top-5 web documents (5 is imposed by the
CRAG organizers). These documents are typically long, so each is divided into smaller chunks using the
BlingFire5 library text_to_sentences_and_offsets function. Although some previous works [64] suggest
using a windowing method to process long documents, I chose sentence chunking instead, as encoding
spans typically produce lower-quality embeddings compared to full sentence embeddings. However,
using sentence-wise chunking may cause some degradation in sentence representation quality due to the
disruption of the original document structure. Each document yields a variable number of chunks with
different chunk sizes. For each query, a reranker then reorders the pooled chunks (pool size also varies
across queries) based on their relevance to the query. Finally, the top-K chunks are selected as the final
output of the retrieval stage and provided as evidence to the LLM for generation.

5https://github.com/microsoft/BlingFire
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Figure 5.9: Reranking pipeline illustrating the complete retrieval, chunking, and reranking processes for
(a) the training-stage and (b) the inference-stage.

Since Task 1 has a limited set of evidence documents (top-5), document-level reranking is not suitable,
making chunk-level reranking more appropriate. Additionally, one or a few lengthy documents may
exceed the context window of smaller LLMs like LLaMA3, preventing remaining documents information
from being utilized in LLM generation. Therefore, chunk-wise reranking is the most effective approach
for CRAG Task 1.

5.4.4.2.1 Inference-Stage Reranking Pipeline

For each of the three CRAG tasks, the entire web corpus is not accessible; instead, only the top 5 (for
Task 1 and Task 2) or top 50 (for Task 3) web documents are provided per query. This constraint, shown in
Figure 5.9 (with component (b)), limits experimentation to reranking rather than retrieval. Consequently,
our main experiment focused on assessing end-to-end RAG performance by replacing the reranker after
fine-tuning it. The top-K1 chunks, post-reranking, were passed to the LLM for an annotate-then-generate
process at the inference-stage. To maximize the diversity of chunks in the limited context window of
a smaller LLM like LLaMA3 and ensure broader recall coverage, a maximum length cap, Lmax, was
applied to each chunk. This entire inference-stage reranking process introduced a few hyper-parameters
to tune: (1) maximum chunk length (Lmax) and (2) the number of top-K1 chunks chosen after inference
reranking. Table 5.5 shows the end-to-end RAG performance results after tuning these hyper-parameters
on a held-out validation set, with the optimal values found to be L = 400 and K1 = 20.

5.4.4.2.2 Training-Stage Reranking Pipeline

The training stage adapts the inference-stage pipeline to select top chunks for the self-referencing
technique. As shown in Figure 5.9 (with component (a)), for each training question and its given top 5
documents, the documents are first segmented into chunks, reranked with a pretrained neural ranker, and
the top-K2 chunks are selected for the LLM’s self-referencing stage. The pretrained neural ranker is
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Training-stage Training and Inference-stage Inference-stage

Number of Chunks (K2) Maximum Chunk Length (Lmax) Number of Chunks (K1)

30 50 80 100 150 200 400 5 10 20 40

Scorea 3.4 4.0 3.5 3.4 1.9 2.4 6.1 -4.3 -1.9 -1.7 -6.0
Accuracy 33.1 33.6 32.5 33.1 31.8 31.9 33.6 33.6 37.2 39.6 39.4
Hallucination 29.7 29.6 29.0 29.7 29.8 29.4 27.6 37.9 39.2 41.4 45.4
Missing 37.2 36.8 38.6 37.2 38.4 38.7 38.8 28.6 23.6 19.0 15.2

Table 5.5: Experimental results involve tuning chunk hyper-parameters such as the number of chunks
and their maximum lengths during training and inference stages. These experiments were conducted
on the validation data split using a RAG system incorporating a MonoELECTRA re-ranker and an
LLaMA3-8B-instruct generator.

used to identify highly relevant chunks, ensuring to obtain high-quality positive and negative reference
annotations from the LLM. Limiting the selection to the top-K2 chunks addresses the context window
constraints of smaller LLMs like LLaMA3. The same maximum chunk length, Lmax, used in inference is
applied during training. This reranking process in training data generation stage introduces an additional
hyper-parameter, the number of top-K2 chunks chosen after reranking for self-referencing. As shown in
the Table 5.5, I tuned K2 on the held-out validation set, with end-to-end RAG performance indicating an
optimal value of K2 = 50.

5.4.4.3 Automatic Model-based Evaluation

I revised the original CRAG evaluation prompt to better capture semantic matches between ground-truth
and predicted answers. CRAG provided a local evaluation script with a default prompt that used ChatGPT
(gpt-3.5-turbo) for automatic model-based evaluation. However, after fine-tuning the neural ranker and
incorporating CoT-based annotate-then-generate improvements, error analysis revealed significant issues
with the original prompt-based evaluation. For instance, answers like "$5,000,000" and "$5 million"
were incorrectly marked as ’false.’ These similar errors were due to insufficient instructions and a lack of
diverse few-shot examples, resulting in ChatGPT evaluating only near-exact string matches accurately. As
shown in Figure 5.10, I added clearer instructions and more few-shot examples of both ’true’ and ’false’
cases. This modified prompt improved the automatic model-based evaluation, leading to better overall
scores and significantly fewer errors during analysis.

5.4.4.4 Metrics

I assess the performance of my system using the standard metrics defined by CRAG: Accuracy, Hallucina-
tion, Missing, and Scorea. These metrics are described below.

Accuracy = number of correct predictions(nc)
num of total samples(N) (5.1)

Missing = number of "I don’t know" predictions(nm)
num of total samples(N) (5.2)

Hallucination = 1− Accuracy−Missing (5.3)
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scorea = Accuracy− Hallucination (5.4)

where N , nc, nm denotes total number of samples, number of correct predictions, and number of "I
don’t know" predictions. Hallucination (Equation 5.3) is derived as the number of incorrect predictions,
i.e., (N − nc − nm)/N . My results are based solely on automatic model-based evaluation scores.

5.4.4.5 Models Choices

Since RAG consists of both a ranker and a generator, various combinations of model choices can be
explored in experimentation. However, in training, only the ranker is task fine-tuned, while the generator
model weights remain frozen. By choosing to fine-tune only the neural ranker, we establish a generic
RAG framework that is compatible with both open-source and closed-source (black-box) generator
LLMs, eliminating the need to fine-tune the LLMs. For generating weak labels in the training data
collection stage, gpt-4o was used as the annotator, as prior studies have shown that models in the GPT
series beyond ChatGPT (gpt-3.5-turbo) demonstrate superior annotation performance compared to human
annotators [43].

5.4.4.5.1 Ranking Models
To explore different ranking models for a RAG pipeline, I selected MonoELECTRA [30] compared to
MonoT5-3B [115]. Although MonoELECTRA is considerably smaller in size compared to MonoT5-3B,
in the preliminary experiments their performances are both competitive and closely matched. Therefore, I
selected MonoELECTRA to show impressive performances that can be achieved by fine-tuning a smaller
neural ranker.

5.4.4.5.2 Generative Models
While CRAG primarily compares two generative models, LLaMA3-70B-instruct and GPT-4-turbo, I
opted for LLaMA3-8B-instruct and GPT-4o. The 8B version of LLaMA3 was chosen over the 70B model
due to the resource constraints, and GPT-4o was selected as it represents the latest or improved version of
GPT-4-turbo.

5.4.4.5.3 RAG Models
My approach is called TFT-RAG, which includes the task fine-tuned MonoELECTRA as a re-ranker and
self-referencing CoT Inference prompting. I also compare against TFT-RAG (w/o Inference), which
includes only the task fine-tuned MonoELECTRA to show the effectiveness of the self-referencing based
training data generation.

5.4.4.6 Baselines

I present multiple baselines to highlight the significance of task-specific fine-tuning of a neural ranker in a
RAG system and demonstrate the effectiveness of my enhancements compared to a standard RAG system.

1. LLM-only: An LLM as a generator with no retrieval system. This system only relies on LLM’s
internal memory answer zero-shot questions.

2. RAG (Reproduced): The reproduced RAG for the task-1 using the similar codebase.

3. RAG-MonoELECTRA: The default MiniLM-L6-v2 re-ranker is replaced with MonoELECTRA.
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5.4.5 Results and Discussion
The effectiveness of my TFT-RAG approach can be demonstrated through experiments that highlight
improvements in Accuracy alongside reductions in Hallucination. In the first subsection, I present the main
experimental results using an end-to-end automatic model-based evaluation. In the second subsection,
I explore the sensitivity of Hallucination in response to variations in inference-stage prompts. In both
sections, I highlight the strength of my framework in improving Accuracy while either keeping the
Hallucination rate stable or allowing a slight increase when necessary.

5.4.5.1 Automatic End-to-end Evaluation

Table 5.6 showcases the key outcomes from my neural ranker fine-tuning experiments. These experimental
results provide enough evidence to support the hypothesis of task fine-tuning a neural ranker using labels
from a downstream LLM. TFT-RAG delivers an 8% and 15% relative improvement in Accuracy compared
to the RAG-MonoELECTRA, across both gpt-4o and llama3-8b respectively, while maintaining similar
levels of hallucination as the baseline (RAG-MonoELECTRA). Notably, there is no change in hallucination
rates with llama3-8b, and only a slight improvement is observed with gpt-4o. These results suggest that
task fine-tuning a neural ranker effectively retrieves highly relevant documents to ground the LLM’s
answer generation, without introducing irrelevant content that could lead to undesired hallucination
effects.

Secondly, introducing self-referencing during the inference stage significantly enhances RAG perfor-
mance. Larger LLMs, such as gpt-4o, exhibit a strong ability to reason effectively and follow closely to
the given instructions. By applying CoT (Chain-of-Thought) instructions, these LLMs can first identify
relevant or supportive evidence documents, and then use only that information to generate the final
answer, leading to a notable impact. Table 5.6 supports this argument, showing that TFT-RAG-Inference
significantly outperforms TFT-RAG, with improvements of 24% in Accuracy and 4% in Hallucination.
Most critically, the Scorea increases by 35% compared to TFT-RAG. This observation strongly affirms
that CoT prompting, by directing the model to identify supportive evidence documents before generating
an answer, is indeed beneficial.

The llama-8b model faces certain challenges due to its relatively smaller model size. Specifically, it
tends to generate repetitive, gibberish text and struggles with reasoning during long output sequences
compared to the gpt-4o model. For this reason, the exact TFT-RAG-Inference prompt (Figure 5.8) used
for gpt-4o did not work well for llama-8b. Instead, I developed a different but similarly structured CoT
prompt for llama-8b, shown in Figure 5.12. Table 5.6 highlights that smaller models, like llama-8b, often
face difficulties in self-referencing and annotation tasks (find results marked by ∗ in the table). My results
show that llama-8b’s relevance annotations are frequently inaccurate, leading to a noticeable decline
in performance during self-referencing. Conversely, gpt-4o produces significantly better annotations,
aligning with prior research by Thomas et al. [43] and Rahmani et al. [182], which demonstrate that GPT
models can match human labelers in predicting search preferences. This suggests that due to its smaller
size (<10B) and pretrained nature, LLaMA models may not be ideal for relevance annotation tasks—a
finding that has not yet been extensively validated. This limitation encourages further research into
improving smaller models’ answer generation through CoT prompting or inference-stage self-referencing.

Aside from the primary experimental results, an intriguing observation reveals that llama3-8b, as an
LLM-only model, significantly outperforms gpt-4o, with a 60-point relative improvement in Accuracy. A
review of the predicted answers generated by llama3-8b shows that it excels at directly responding from
its internal memory when prompted with a question. In contrast, gpt-4o is more cautious and relies heavily
on in-context evidence, leading to an increase in missing ("I don’t know") responses. This difference is
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gpt-4o llama3-8b

Scorea Accuracy Hallucination Missing Scorea Accuracy Hallucination Missing

LLM-only 23.4 29.0 5.5 65.5 21.3 46.5 25.2 28.3
RAG (Reproduced) 22.0 40.0 18.0 42.0 21.7 46.0 24.3 29.8
RAG-MonoELECTRA 29.3 45.2 16.0 38.8 21.0 47.7 26.8 25.5

TFT-RAG 30.9 48.8 17.8 33.4 28.1 54.9 26.8 18.3
TFT-RAG-Inference 41.8 60.4 18.5 21.1 27.1∗ 52.2∗ 25.1∗ 22.7∗

Table 5.6: Performance comparison between TFT-RAG and baseline methods. The RAG (Reproduced)
employs MiniLM-L6-v2 as the re-ranker, while TFT-RAG incorporates fine-tuned MonoELECTRA
re-ranker. -Inference indicates the addition of self-referencing instructions to the prompt during the
inference stage. ∗ indicates a prompt variation (refer Figure 5.12) due to limitations present in llama3-8b.

largely attributed to the pretraining and instruction-tuning processes of these models, which is beyond the
scope of this paper.

Finally, llama3-8b demonstrates notable performance improvements only after fine-tuning the neural
ranker. As shown in Table 5.6, LLM-only, RAG (Reproduced) with MiniLM, and RAG-MonoELECTRA
achieve similar results, with Scorea and Accuracy hovering around 21% and 47%, respectively. This
observation is despite performance differences between MiniLM and MonoELECTRA in other standard
retrieval benchmarks like BEIR [1]. However, once MonoELECTRA undergoes task fine-tuning, perfor-
mance significantly increases by 34% in Scorea and 15% in Accuracy. This reinforces our hypothesis
again that task fine-tuning is essential to tightly align the neural ranker with the downstream LLM in a
RAG system.

My TFT-RAG-Inference demonstrates significantly stronger performance compared to the Winning
Solution for Meta KDD Cup ’24 [184]. Specifically, Xia et al. [184] reports that their approach achieves
Scorea of 28.4%, 42.7%, and 47.8% on three respective tasks. Since I only evaluated my approach on
Task-1, where the first-place solution scored 28.4%, my TFT-RAG-Inference reaches 41.8%, a relative
improvement of 47%. Even with simple fine-tuning of a neural ranker, the Scorea is 30.9%, reflecting
a 9% improvement. My best Scorea is even close to Task-2 of the winning solution (42.7%), which
leverages a knowledge graph as an external resource while my solution do not utilize a knowledge
graph. This highlights that effectively fine-tuning only the neural ranker and modifying prompts through
annotate-then-generate can substantially enhance RAG end-to-end performance with minimal costs.

5.4.5.2 Hallucination Sensitivity to Prompt Variations

Beyond just improving accuracy, another key goal is to minimize the LLM hallucinations. LLMs often
hallucinate due to various factors, but the primary causes include difficulty grounding an answer in the
contextual evidence provided, such as when faced with false premise questions, outdated or incomplete
factual knowledge, or contradictions between parametric (pretrained) and non-parametric (external)
knowledge. I primarily studied hallucinations stemming from false premises and the absence of recent
information. To counteract hallucination, the LLM is explicitly instructed to respond with "I don’t know"
rather than generating incorrect answers [51].

Firstly, false premise questions significantly contribute to model hallucinations. A false premise
arises when a question contains factual errors [51], such as asking, "What time does the sun rise in
the North during the Summer?" Here, the question assumes an incorrect fact—that the sun rises in the
North, whereas it always rises in the East—making the question itself invalid. To help an LLM identify a
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Generate Original Instructions from CRAGAnswer

Prompt Passage
✗ RG-{2,3}/4L RG-{1,2,3}/4LComponents Evaluation

Few-shot
✗ ✗ Invalid Q Dynamic Q ✗ Dynamic Q Invalid Q Dynamic Q

Examples + Invalid Q

Experiment Name P1 P2 P3 P4 P5 P6 P7 P8

Metrics

Scorea 30.9 32.0 37.2 38.6 41.8 37.1 37.9 38.0
Accuracy 48.8 57.9 59.9 60.3 60.4 58.2 58.0 57.9
Hallucination 17.8 25.9 22.7 21.7 18.5 21.0 20.2 19.9
Missing 33.4 16.1 17.4 18.1 21.1 20.8 21.8 22.3

Table 5.7: Performance comparison of various inference-stage prompt configurations. Prompts consist of
three main components: Passage Evaluation, Answer Generation, and Few-shot Examples. An ✗indicates
the absence of a specific component. RG-*/4L refers to Relevance Grading across four levels, with 2,3
and 1,2,3 denoting the selection of evidence based on those respective grades for final answer generation.
Q refers to questions.

false premise, it must rely on both its internal knowledge and any available external context or evidence.
However, this task can be challenging due to the vast amount of world knowledge an LLM must parse
to determine which facts are accurate. To mitigate hallucinations caused by false premise questions, the
model can be guided through specific instructions and few-shot examples. These prompts instruct the
model to respond with "invalid question" when it detects a false premise, or "I don’t know" when it is
unsure.

Secondly, questions requiring dynamic temporal information can lead to increased hallucinations
in LLMs. These models might attempt to respond to queries involving constantly changing data, such
as real-time, fast-changing, or slow-changing facts. However, if the provided context lacks the most
up-to-date information, the LLM may produce inaccurate responses. The CRAG [51] benchmark defines
four types of dynamic questions, which are outlined here for reference:

1. Real-time: Answers fluctuate by the second (e.g., "What’s Costco’s stock price right now?").

2. Fast-changing: Answers update no more than daily (e.g., "When is the Lakers’ game tonight?").

3. Slow-changing: Answers change annually or less frequently (e.g., "Who won last year’s Grammy?").

4. Static: Answers do not change over time, such as a person’s birth date.

Real-time and fast-changing questions often require API calls for accurate responses. For slow-changing
queries, even though the information updates over a longer period, LLMs can still struggle without recent
context. To mitigate the risk of generating incorrect answers, it is advisable to instruct the LLM to respond
with "I don’t know" when lacking recent information.

To evaluate the challenges of false premise and dynamic questions, I conducted experiments with
various inference-stage prompt modifications to assess their effect on hallucination sensitivity. The
experiments used a RAG system paired with a task fine-tuned MonoELECTRA re-ranker, and the
variations in the inference prompt are listed below:

P1: LLM using the original answer generation prompt.
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P2: LLM using a Chain-of-Thought (CoT) prompt followed by the original answer generation
prompt, as illustrated in Step 1 of Figure 5.8, where only passages rated 2 and 3 are considered for
generating the final answer.

P3: Few-shot examples of invalid questions are added to P2.

P4: Few-shot examples of dynamic questions are added to P2.

P5: A modified version of P2, where passages rated 1, 2, and 3 are used for generating the final
answer, leading to more granular evidence grounded generations.

P6: Few-shot examples of dynamic questions are added to P5.

P7: Few-shot examples of invalid questions are added to P5.

P8: Few-shot examples of both dynamic and invalid questions are added to P5.

These prompt variations, particularly in instructions and few-shot examples, were employed to explore
how hallucination sensitivity and accuracy were influenced by re-ranker choices and prompt modifications.

Table 5.7 presents the performance sensitivity of a RAG system across different inference-stage
prompt variations. Identifying the optimal prompt is crucial for mitigating hallucination rather than just
enhancing accuracy, as tracked by Scorea. Implementing the CoT prompt (e.g., RG-2,3/4L in P2) improves
Accuracy compared to the fine-tuned neural ranker-based RAG (P1), but also increases Hallucination by
45%. Including few-shot examples for invalid and dynamic questions enhances Accuracy and reduces
Hallucination rates. For instance, invalid (P3) and dynamic (P4) questions boost Accuracy by 3% and
4%, respectively, while lowering Hallucination by 14% and 20% compared to the baseline (P2) without
few-shot examples.

Additionally, using passages rated 1, 2, and 3 for generating the final answer improves Accuracy by
4% and significantly reduces Hallucination by 40% compared to only using passages rated 2 and 3. This
underscores the impact of finer-grained annotations in providing high-recall information to support more
grounded answers. Further experiments with modified CoT prompts (P5), including few-shot examples
for dynamic (P6), invalid (P7), or both types (P8) of questions, showed mixed results, with adverse effects
on both Accuracy and Hallucination.

Ultimately, while prompt optimization helps improve RAG performance, Hallucination remains highly
sensitive to prompt variations. A clear takeaway from these experiments is that finer-grade annotations
and incorporating as much relevant in-context evidence documents during inference significantly improve
Accuracy and reduce Hallucination.

In conclusion, mitigating hallucination in LLMs can be effectively achieved through proper prompt
engineering unless the model’s weights are fine-tuned. Hallucination control depends on two key factors:
(1) the effectiveness of the re-ranker in retrieving top-ranked relevant evidence, and (2) the design of
prompt instructions. As discussed in the Results 5.4.5 section, fine-tuning a neural ranker significantly
improves accuracy while keeping hallucination levels almost stable. However, during the inference stage,
altering prompts—such as using Chain-of-Thought (CoT) prompting—can lead a non-instruction-tuned
LLM to hallucinate. Despite this, by carefully selecting CoT instructions, providing clear descriptions,
and using relevant few-shot examples, I was able to minimize hallucination throughout the RAG system
optimization.
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Question Types Simple Simple w. Set Comparison Aggregation Multi Post-processing False
Condition -hop heavy Premise

# of Test Questions 754 407 249 333 315 231 108 309

Accuracy

llama3-8b RAG-MonoELECTRA 42.3 49.5 76.9 65.5 52.0 42.2 61.3 12.7
TFT-RAG 51.4 (+21%) 59.1 (+19%) 77.8 (+1%) 69.6 (+6%) 56.6 (+9%) 52.0 (+23%) 58.1 (-5%) 23.3 (+84%)

gpt-4o TFT-RAG 47.0 52.5 80.3 61.9 44.7 50.0 77.4 6.0
TFT-RAG-Inference 52.5 (+12%) 63.1 (+20%) 86.3 (+7%) 60.1 (-3%) 64.5 (+44%) 59.8 (+20%) 80.6 (+4%) 48.0 (+700%)

Hallucination

llama3-8b RAG-MonoELECTRA 31.7 29.3 15.4 20.8 25.7 34.3 22.6 24.0
TFT-RAG 30.3 (-4%) 25.8 (-12%) 17.1 (+11%) 19.0 (-9%) 25.0 (-3%) 38.2 (+11%) 22.6 (-0%) 30.7 (+28%)

gpt-4o TFT-RAG 21.6 22.7 6.8 8.3 21.1 14.7 6.5 22.7
TFT-RAG-Inference 24.3 (+13%) 22.2 (-2%) 7.7 (+13%) 6.5 (-21%) 14.5 (-31%) 19.6 (+33%) 6.5 (-0%) 27.3 (+21%)

Table 5.8: End-to-end RAG performances measured across different question types on test split. For each
row, the baseline is taken from the row immediately above, skipping one. Specifically, rows 2, 4, and 6
are considered, with the baselines being rows 1, 3, and 5, respectively. In the Accuracy sub-table, (+%)
and (-%) indicate the rounded integer relative improvement or decrease in Accuracy compared to the
baseline. In the Hallucination sub-table, (+%) and (-%) represent the rounded integer relative increase or
decrease in Hallucination compared to the baseline. Positive changes in Accuracy and negative changes
in Hallucination are highlighted in blue, while negative changes in Accuracy and positive changes in
Hallucination are highlighted in red, with blue representing better performance and red indicating worse
performance.

5.4.5.3 Analysis across Question Types

To further demonstrate the effectiveness of my approach, I conducted an analysis of end-to-end RAG
performance across different question types. By evaluating Accuracy and Hallucination for each question
type, I aimed to identify which types benefit or are challenged by the new techniques: task fine-tuning
neural ranker and annotate-then-generate. Table 5.8 displays RAG performance across question types to
illustrate the impact of these techniques.

First, task fine-tuning the neural ranker enhances Accuracy across nearly all question types when
using a smaller llama3-8b model, without significantly increasing hallucination. In particular, the task-
aligned neural ranker provides high-quality, grounded documents to the LLM, resulting in substantial
improvements for question types requiring multiple documents. For instance, “Simple with Condition”
and “Multi-hop” questions show relative gains of 19% and 23%, respectively. Simple questions requiring
only a single evidence document also experience a notable 21% improvement.

Additionally, accuracy for “False Premise” questions improves dramatically by 84%, indicating that
enough factual documents are being supplied to enable the LLM to recognize invalid questions. On the
downside, fine-tuning the neural ranker can also increase Hallucination rates for “Multi-hop,” “False
Premise,” and “Set” questions. Although some highly ranked documents may occasionally confuse the
LLM and lead to incorrect predictions, the substantial Accuracy gains generally outweigh these negative
impacts on hallucination.

Secondly, Table 5.8 highlights the effectiveness of my annotate-then-generate technique applied at the
inference-stage. Using this approach, gpt-4o demonstrates improvements across nearly all question types,
often resulting in significant performance gains. For instance, for questions requiring multiple documents,
such as "Simple with Condition," "Aggregation," and "Multi-hop," relative accuracy improvements of
20%, 44%, and 20% were observed, respectively. Notably, prompting the LLM to rate evidence documents
before answering led to a striking 700% relative Accuracy improvement for “False Premise” questions,
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enabling the model to more accurately distinguish invalid queries.
While the annotate-then-generate approach sometimes raised hallucination rates for certain question

types, it is possible that errors in the LLM’s self-assessment led to misleading evidence that occasionally
resulted in incorrect predictions. However, I also saw different other scenarios where my best model
makes incorrect predictions.

I analyzed the inaccurate predictions made by the gpt-4o-based TFT-RAG-Inference model on "Set"
and "Multi-hop" question types, as these had a notable increase in hallucination. For "Set" questions, an
example such as "In 2022-12, which teams were able to defeat the Miami Heat in head-to-head matchups?"
had the ground-truth answer "Chicago Bulls, Denver Nuggets, Detroit Pistons, Indiana Pacers, Memphis
Grizzlies, San Antonio Spurs," while TFT-RAG-Inference (gpt-4o) predicted only "Denver Nuggets."
Reviewing the top 20 reranked references revealed that no sources mentioned the full list of teams in the
ground-truth answer, indicating a performance limitation. Another example, "What teams are part of
Group C in the 2023-24 UEFA Champions League?" had the ground-truth answer "Real Madrid, Napoli,
Braga, Union Berlin," but TFT-RAG-Inference (gpt-4o) incorrectly answered with "Benfica, Inter Milan,
Red Bull Salzburg, and Real Sociedad." Again, the top 20 references lacked relevant information on the
correct teams, instead providing outdated Champions League data. This demonstrates a limitation: when
the model lacks accurate references, it may still attempt to answer the question, relying on incorrect
information.

Examining "Multi-hop" question errors reveals additional limitations in recall performance. For
instance, the question "On Langeland, what side of the road do people drive on?" has a ground-truth
answer of "right," yet TFT-RAG-Inference (gpt-4o) predicted "left." Although a reference in the top 20
mentioned that Langeland is in Denmark, none addressed the driving side, highlighting that even one
missing piece of critical information can lead to an incorrect answer. Another example, "Who starred
in the film that won the Best Picture Oscar in 2018?" has "Sally Hawkins" as the ground-truth answer,
but TFT-RAG-Inference (gpt-4o) answered "Frances McDormand." Here, none of the top 20 references
mentioned either name, underlining the importance of high recall for multi-hop questions, where all
relevant details are crucial for accuracy.

Overall, this analysis across different question types underscores that both task-specific neural
ranker fine-tuning and the annotate-then-generate techniques significantly enhance performance in multi-
document question answering and in identifying invalid (False Premise) questions.

5.4.5.4 Examples of Incorrect Predictions

Hallucination occurs when an LLM (generator) generates incorrect answers. These errors may arise from
a lack of grounded evidence, conflicting information, outdated internal or external data, or the absence
of real-time information. Figure 5.11 illustrates examples of incorrect predictions generated by my best
system. Comparing these predictions with the ground-truth answers reveals some noteworthy observations
that can build foundations for future explorations.

For instance, in Question-1, the generator’s incorrect response stems from a lack of supportive
documents. Similarly, in Question-2, the generator guessed "Alabama River" as the longest river in
Alabama. This incorrect prediction indicates an absence of supportive evidence from the top 20 reranked
references for the correct answer, Tennessee River.

Questions-3 and -4 demonstrate cases of invalid questions or predictions. In Question-3, the generator
responds with "Avengers: Endgame" when asked about Captain America’s use of a glove to stop Thanos.
Here, the generator associates Captain America’s fight with Thanos but overlook that the question’s
mention of a "glove" makes it invalid. In Question-4, although a correct answer exists, the generator
marks it as invalid due to its reliance on available information, where a simple “I don’t know” would be
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more appropriate.
Other questions in the Figure 5.11 require dynamic information access. Questions-5 and -6, for

example, involve real-time or rapidly changing information, such as current or past stock prices. Without
access to an updated corpus or real-time APIs, the generator predictions are likely to be incorrect,
increasing hallucination rates. The CRAG benchmark’s Task-2 and Task-3 specifically address these
needs by incorporating external knowledge bases and real-time APIs for such questions. Expanding my
RAG approach to cover these tasks should enhance its ability to answer dynamic questions accurately.

5.4.6 Summary and Limitations
I introduced TFT-RAG to efficiently generate high-quality weakly supervised training data for fine-tuning
a neural ranker. In contrast to previous approaches, I utilize a self-referencing technique that allows
us to directly prompt the LLM for grounded and supportive documents in a single pass, enabling us to
obtain both positive and negative training pairs. Additionally, I incorporate a CoT based self-referencing
during inference to further enhance the end-to-end performance. My experiments on a comprehensive
RAG benchmark underscore the significance of self-referencing and the effectiveness of task-specific
fine-tuning for the neural ranker. As a result, I demonstrate that the task-specific self-referencing from an
LLM can improve the alignment of retriever and generator within a RAG system.

TFT-RAG has certain limitations due to the pretrained nature of the underlying LLM, particularly its
sensitivity to prompt variations. This sensitivity can directly affect the quality of task label generation
during the self-referencing process, potentially leading to erroneous annotations, especially for low-
confidence labels. However, my approach mitigates this risk by using a two-step prompting process to
request positive and negative evidence separately, followed by inconsistency filtering. Another potential
solution involves calibrating the LLM’s confidence scores before generating high-confidence labels, which
can help improve label accuracy.
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(a)

(b)

Figure 5.10: Prompt template used for automatic model-based evaluation. (a) and (b) are combined during
evaluation (split here for space constraints). Black and blue font colored portions indicate system and user
prompt messages, respectively.



97

Figure 5.11: Example questions, ground truth answers, and incorrect gpt-4o predictions. These gpt-4o
predictions are generated by my RAG system, which includes a task fine-tuned neural ranker and the
annotate-then-generate prompting technique.
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Figure 5.12: Prompt template used for chain-of-thought answer generation (annotate-then-generate)
during the inference stage only for llama3-8b model. Black and blue font colored portions indicate system
and user prompt messages, respectively.
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6 Conclusions and Future Work
My thesis research focuses on domain adaptation problem of training neural ranking models with

minimal supervision and introduces several innovative unsupervised and weakly-supervised methods
for training state-of-the-art neural rankers in new domains. This thesis report is structured into chapters.
The first chapter serves as an introduction to the thesis topic and outlines the motivations to pursue this
research area. The second chapter provides a comprehensive review of related work, covering key areas
such as transfer learning, domain adaptation, neural ranking models, and both unsupervised and weakly
supervised techniques for training these rankers. It also explores the role of large language models (LLMs)
in ranking systems and delves into the importance of neural rankers in retrieval-augmented generation
(RAG) systems. The subsequent three chapters are primarily focused on addressing individual Research
Questions (RQs). They lay the foundations for my thesis research by providing detailed discussions on the
existing out-of-distribution issues encountered in the current domain adaptation approaches. Additionally,
those RQs propose effective, efficient, and robust solutions aimed at enhancing retrieval performance with
minimal supervision.

My approaches aim to address the challenges of transfer learning and domain adaptation across
various domains, languages, and tasks. Building effective search and ranking models across these diverse
areas presents significant challenges, and creating a unified framework that spans all three—domains,
languages, and tasks—is even more complex. In terms of adaptation difficulty, transferring knowledge
across languages and tasks yields greater performance improvements than domain adaptation, mainly due
to substantial shifts in representation attributes between source and target domains, languages, or tasks.
Within domain adaptation itself, larger attribute differences between source and target domains lead to
more notable gains compared to cases with fewer differences. When the source and target domains are
related but still distinct, such as having similar data distributions, techniques like query expansion for
domain adaptation at test time can refine query representation to enhance alignment between queries and
candidate documents.

My NCLPRF approach significantly boosts ranking performance when trained on a cross-lingual
dataset and tested on a similar cross-language collection. Additionally, the GenQREnsemble-RF approach
demonstrates that with zero-shot prompting across related domains, query expansion can be improved by
combining LLMs with PRF. When source and target domains differ substantially, fine-tuning a neural
ranker becomes essential to effectively capture characteristics of the target domain. The DUQGen
approach I propose shows that training a neural ranker with a holistic target domain representative training
data can deliver substantial performance gains.

For language differences between source and target datasets, such as in multilingual or cross-lingual
query-document pairs, fine-tuning a neural ranker is also necessary for effective language adaptation.
My mDUQGen approach demonstrates that efficient fine-tuning tailored to the target language can
greatly enhance language adaptation on neural rankers. When adapting to different tasks, such as
RAG, fact-checking, or argument retrieval, fine-tuning with high-quality task-specific labels significantly
improves ranking outcomes. For example, my TFT-RAG approach introduces a novel method for
obtaining high-quality weak labels to better train neural rankers for task alignment. In conclusion, my
extensive experiments confirm that transfer learning for tasks and languages achieves greater performance
improvements compared to domain adaptation.

Next, I will outline the notable contributions of my thesis research and summarize the findings from
my research works. Finally, I will address any limitations that need to be tackled in the future.
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6.1 Thesis Contributions
In my thesis research, I present numerous contributions to the active information retrieval and RAG
community, and those contributions will help to explore the associated domain adaptation problems in the
future. These contributions are outlined below:

1. Categorized and highlighted transfer-learning challenges associated with out-of-distribution datasets,
including query representation (in Chapter 3), ranker adaptation(in Chapter 4), and task-relevance
labeling (in Chapter 5).

2. Conducted a through survey on domain adaptation for neural rankers, up to date as of mid-2024
(detailed in Chapter 2).

3. Introduced various effective unsupervised and weakly supervised frameworks that require minimal
or no supervision and are cost-effective.

4. Delivered several innovative approaches addressing three key research questions (RQs), including
NCLPRF 3.4, GenQREnsemble-RF 3.5, DUQGen 4.3, mDUQGen 4.4, C3 5.2, IE-IR 5.3, and
TFT-RAG 5.4.

5. Published several of the above novel approaches in top-tier conferences, including NCLPRF at
SIGIR 2022 [83], DUQGen at NAACL 2024 [126], and C3 at SIGIR 2022 [136]. Additionally, I
am actively working to publish the remaining approaches as well.

6. Developed a novel self-referencing based RAG system that integrates an enhanced neural ranker
with CoT LLM prompting, offering a strong foundation for future RAG research and advancements.

7. Provided access to codes (NCLPRF1 and DUQGen2), models, publications, and demo websites
through open-source platforms.

6.2 Summary of Results
The core focus of my research is leveraging minimal or no human supervision to train neural models,
particularly through unsupervised and weakly supervised methods. Various conclusions have been drawn
from the experiments conducted on my approaches, which are outlined below.

Chapter 3 explores the challenges of query representation across domain shifts and introduces two
effective strategies: NCLPRF [83] and GenQREnsemble-RF [84]. These methods utilize pseudo-relevance
feedback (PRF) to improve query representation by integrating information from the target domain. While
both approaches rely on PRF, they differ in how they handle the query expansion in different representation
spaces and the input context length limitations of the underlying pretrained models. Despite the context
length restrictions of NCLPRF, it showed notable improvements when using only two PRF documents
across three cross-lingual evaluation datasets (Persian, Russian, and Chinese), outperforming traditional
baselines, NCLPRF without PRF, and NCLPRF with only one PRF (competitor approach) enrichment.
Interestingly, increasing the number of feedback documents beyond two can degrade performance due to
the inclusion of noisy, irrelevant information, which undermines query enrichment. However, employing
a robust vector aggregation function, such as a reciprocal rank-based weighted sum, resulted in steadily

1https://github.com/emory-irlab/NCLPRF
2https://github.com/emory-irlab/DUQGen

https://github.com/emory-irlab/NCLPRF 
https://github.com/emory-irlab/DUQGen 
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improving performance as PRF depth increases, highlighting the scalability and effectiveness of this query
expansion approach across new domains.

The second query expansion technique, GenQREnsemble-RF, offers a greater context length and
introduces two variations based on aggregation methods at the post-retrieval stage: GenQREnsemble-RF
and GenQRFusion-RF. GenQREnsemble-RF outperformed GenQRFusion-RF in integrating target domain
PRF because it employs cross-attention interactions between the query and expansion tokens earlier in the
process, shortly after the compact query reformulation stage—showing that early-fusion outperforms late-
fusion. Similar to NCLPRF, increasing the number of feedback documents led to consistent performance
improvements. An oracle test, using one highly relevant ground truth document as a PRF document,
highlighted a substantial performance boost over scenarios with noisy or non-PRF incorporated feedback.

Chapter 4 tackles the issue of ranker adaptation across out-of-distribution datasets and introduces an
effective and robust unsupervised approach known as DUQGen [126]. This approach efficiently samples
a diverse set of collection documents and generates high-quality synthetic queries to fine-tune a neural
ranker. Through comprehensive evaluation across the BEIR [1] benchmark, DUQGen demonstrated
consistent and substantial improvements over existing state-of-the-art baselines. Additionally, utilizing
few-shot demonstrations with in-domain examples resulted in the generation of high-quality domain-
representative queries compared to the usage of generic few-shot demonstrations. Among the various
LLMs employed for query generation, LLAMA-2 7B stood out for producing high-quality synthetic
queries compared to LLAMA-2 13B, BLOOM, and gpt-3.5-turbo.

Building on DUQGen from Chapter 4, I introduced a multilingual extension for unsupervised domain
adaptation, called mDUQGen. This approach follows a similar pipeline to DUQGen but replaces
the monolingual English components with multilingual ones. Evaluation on the MIRACL [127] dev
benchmark demonstrates that mDUQGen achieved near-supervised and often outperforming supervised
fine-tuning performances, with consistent and robust improvements across datasets using only 1,000
training examples. Additionally, I observed that the machine translation errors in translate-train pipelines
led to significant performance drops during the pretraining of neural re-rankers in the multilingual setting.
Interestingly, mDUQGen achieved the same relative performance improvements over the pretrained neural
ranker, regardless of whether it was pretrained using English (MS-MARCO) or translated (mMARCO)
training data. This finding suggests that the translate-train paradigm is no longer necessary, and sampling-
based fine-tuning approaches like mDUQGen can effectively produce state-of-the-art multilingual models.

Chapter 5 delves into the issue of task fine-tuning of neural rankers across out-of-distribution tasks
and retrieval applications and introduces three effective weakly supervised fine-tuning approaches, namely
C3 [136], event retrieval fine-tuning, an TFT-RAG. The studies conducted in this chapter underscore
the importance of annotating high-quality labels with minimal supervision for robust learning of neural
rankers. The first approach, C3, fine-tunes a pretrained multilingual language model with weakly-labeled
large-scale cross-lingual pairs, resulting in substantial and often significant performance improvements
across various evaluation target languages (Chinese, Persian, German, and French) for both ColBERT and
DPR neural rankers.

The second approach of using confidence scores to weakly supervise the fine-tuning of neural rankers
has also demonstrated impressive performance, highlighting the importance of high-quality training labels.
In particular, this approach introduces a two-stage approach initially suggests a warm-up fine-tuning phase
using unsupervised in-domain training examples, which aids in learning domain vocabularies leading
to enhanced performance. Subsequently, the sequential fine-tuning with weakly supervised training
examples, augmented by synthetic queries and filtered based on downstream confidence score annotations,
further improved the performance, often resulting in significant gains.

The third approach, TFT-RAG, involves task-specific fine-tuning of neural rankers using a self-
referencing technique, leading to significant improvements in RAG question-answering tasks. The
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self-referencing method employed during training stage created high-quality weakly supervised positive
and negative labels for fine-tuning the ranker. Moreover, applying self-referencing with explanations
during inference, similar to CoT prompting, resulted in notable performance gains. Ultimately, in RQ3,
this novel method was inspired by the first two approaches and is highly applicable to a wide range of
real-world tasks involving LLM-based question answering.

6.3 Limitations
The unsupervised and weakly supervised approaches presented in this thesis research have already
demonstrated significant performance improvements compared to competitive baselines. However, it is
crucial to acknowledge that there are several limitations that may be overlooked and should be considered
for future extensions.

Firstly, the limitation of context length is evident in query enrichment approaches. For instance,
NCLPRF still faces constraints due to its smaller context length, often resulting in the truncation of
longer feedback documents and loss of information towards the end of the documents. However, a
pretrained language model with larger context length can be an easy replacement. Similarly, while
GenQREnsemble-RF has a larger context length, it can accommodate a maximum of only five average-
sized passages, leading to truncation of longer documents as well. Additionally, the use of simple heuristic
functions, such as first-stage retriever weights and reciprocal rank weights, as vector aggregation functions
in NCLPRF, makes it less robust against noisy and irrelevant documents. Therefore, adopting a more
sophisticated learning-based vector aggregation approach is essential for the robust fusion of enriched
query representations.

Secondly, while DUQGen exhibits significant improvements over current state-of-the-art baselines, it
does possess several limitations. Contriever was employed as a text encoder for generating embeddings for
clustering. However, the Contriever text embedding may inadequately represent certain out-of-distribution
datasets that are far from the pretrained data. Therefore, it is crucial to first evaluate the quality of
generated embeddings or pretrain an encoder on target domain before using the corresponding encoder in
the DUQGen framework.

Furthermore, I utilized the Faiss library for K-Means clustering. However, for large collections
comprising millions of documents, the algorithm may not scale well. Nonetheless, the Faiss library
implements a sampling strategy by initially training the K-Means algorithm on a documents sample
before clustering the entire collection, which can help mitigate these scalability issues to some extent.

Additionally, LLMs are sensitive to the prompt variations [121], resulting in different outputs even
with small changes in prompt instructions, in-context documents, and demonstrations. Some existing
works provide calibration techniques [121] before using LLMs for generating sensitive content. However,
developing a robust synthetic query generation version of DUQGen is essential for better reproducibility.

The extension of DUQGen in the multilingual retrieval imposes additional limitations. The LLMs
might struggle to generate good quality of text in low-resource languages even with few-shot prompting.
The inconsistent generations of LLM can often cause to generate gibberish text or text in a different
language other than the target language.

Moreover, fine-tuning neural rankers with weak label annotations can introduce limitations due to
errors propagated from teacher model used for annotation. For instance, C3 [136] relies on weak links
derived from the Wikipedia repository, yet there may be missed or erroneous links that could adversely
affect the fine-tuning performance, particularly in low-resource language scenarios. Likewise, the cross-
lingual event retrieval system faces constraints stemming from annotations produced by the downstream
event extraction system capable of cross-lingual event extraction. However, this system can accumulate
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errors during entity recognition, relation extraction, and confidence estimation, which might carry over
to the weak labeling phase, resulting in false positives and false negatives in the training data. Overall,
weakly supervised training operates under the assumption that while the training data may not be of high
quality, it can still yield certain performance improvements.

Task-specific fine-tuning of a neural ranker in a RAG system also presents certain limitations. Incon-
sistent LLM outputs can affect the label annotation process, such as producing garbage of text, missing
grounded or non-grounded evidence annotations, or mistakenly labeling the same documents as both
positive and negative, all of which can hinder fine-tuning performance. Additionally, attempting to parse
more than 50 evidence documents in an LLM’s input context for self-referencing may be ineffective due to
context length truncation or the "lost-in-the-middle" [185] effect. Additionally, smaller LLMs (under 10B
parameters), like LLAMA3-8B-Instruct, tend to be less reliable in strictly following detailed instructions
with few-shot examples when compared to models like gpt-4o, particularly in CoT (Chain of Thought)
reasoning tasks. This is largely due to the smaller model size and its pre-training, which results in weaker
reasoning capabilities. Despite the frequent introduction of more advanced and larger LLMs, it remains
worthwhile to explore ways to adapt smaller LLMs for budget-constraint applications.

6.4 Future Work
The limitations discussed in the earlier Section indicate promising directions for future extensions of my
thesis contributions. Nevertheless, there are specific projects I wish to emphasize as particularly impactful
and significant for the advancement of the information retrieval and RAG community.

In Chapter 4, DUQGen was initially designed for optimizing ad-hoc searches, where the relevance
between a document and a query is assessed independently from other relevant documents, following the
assumptions of the Cranfield paradigm [135]. However, in contemporary RAG settings, where answers
can be derived from multiple documents, such as in multi-hop, set-based, and aggregation questions, the
fine-tuning of DUQGen for retrievers often results in limited performance. A straightforward extension
would involve generating queries that depend on multiple documents, followed by training the neural
rankers accordingly. This approach can utilize DUQGen’s clustering and sampling methods for effective
domain representation. By carefully selecting a group of similar yet distinct documents, and using
appropriate prompts with few-shot demonstrations, diverse queries can be generated (with eight types of
multi-document questions detailed in the CRAG report [51]). These complex generated queries would
enhance the training of RAG neural rankers, significantly improving end-to-end question-answering
performance.

It is widely recognized that LLMs can produce inconsistent responses to the same prompt. Repeating
the same prompt often results in varying outputs, and modifying the prompt with different paraphrased
instructions or sets of few-shot in-context examples can lead to significant differences in the generated
content, causing fluctuations in downstream performance. In Chapter 4, I introduced two novel approaches,
namely DUQGen and mDUQGen, to unsupervised domain adaptation for fine-tuning neural rankers
using LLM-generated queries. Therefore, new strategies are needed to enhance the self-consistency of
LLM-generated queries or to make the fine-tuning of neural rankers more resilient to these variations.

I have been working on a solution to address the inconsistencies in query generation by LLMs. The
core idea is to develop a neural ranker training framework that is resilient to these inconsistencies. This
involves selecting the most challenging examples from a pool of candidates. Specifically, after sampling
documents from a cluster (as in DUQGen) and generating multiple queries with varying information
needs via the LLM, a novel scoring mechanism can be introduced to identify the hardest examples for the
zero-shot neural ranker—those where the ranker already performs poorly. By focusing on these difficult
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examples and their generated queries during training, a more robust system can be built to minimize the
impact by LLM inconsistencies.

My thesis introduces seven novel approaches to address three key RQs in the context of domain
adaptation. These solutions aim to enhance various components of training a neural ranker. Chapter 3
focuses on improving the domain adaptation by modifying the query representations at test time. Chapter 4
presents methods for sequentially fine-tuning neural rankers using synthetic training data, while Chapter 5
proposes fine-tuning neural rankers with high-quality task-specific weak labels. Although these solutions
are complementary, it would be valuable to experiment with the combined end-to-end performance of
a ranking system incorporating the improvements from all three chapters. Additionally, studying the
individual impact of each component could help to identify which contributes most significantly to
performance. Ultimately, a comprehensive neural ranking system based on the combined solutions in this
thesis could make a significant impact on the information retrieval and RAG communities.

In conclusion, this thesis has explored the challenges of domain adaptation and transfer learning,
addressing three key research questions (RQs) to guide the study. I reviewed relevant work in the field,
proposed seven novel approaches under the three RQs, and highlighted my contributions, along with the
conclusions drawn from each approach. These contributions focus on enhancing query representation,
ranker adaptation, and task fine-tuning across new target domains with minimal to no supervision.

For RQ1, my methods that modify query representation at inference time, enabling effective and
efficient domain adaptation. For RQ2, I introduced holistic target domain representations to efficiently
sample and generate synthetic queries for fine-tuning neural rankers. In RQ3, my pseudo labeling
techniques—contrastive learning, pseudo label filtering, and pseudo label generation—enhanced task
fine-tuning for neural rankers.

Together, these approaches are scalable, adaptable, and applicable across various domains, languages,
and retrieval tasks. My methods set new baselines for future research in the fields of information retrieval
and retrieval-augmented generation (RAG), advancing the development of domain-adaptive neural ranking
models.
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Appendix for TFT-RAG

A.1 Reranked References for TFT-RAG Prediction
To further illustrate examples of incorrect predictions made by my best model, I included the top reranked
chunks in Figures A.1. Due to space constraints, I excluded highly irrelevant chunks and highlighted any
relevant or misleading information in yellow. For Question-2 in Figure 5.11, the reranked documents
referenced in Figure A.1a reveal multiple mentions of the Alabama River. However, none explicitly
identify it as the longest river in Alabama. There are also some mentions of the Tennessee River, but these
chunks lack descriptive details or supporting evidence to confirm it as the longest river. Consequently, the
generator relies on the available information, incorrectly assumes that the Alabama River is the longest,
and outputs it. This incorrect prediction likely results from either the absence of supportive evidence
in the entire web corpus or the failure of the retriever or reranker to include such evidence in the top-k
ranked list.

Another example of incorrect predictions is illustrated in Figure A.1b, supporting Question-3 from
Figure 5.11. While it is true that Captain America stopped Thanos with his bare hands, the question
asking whether he used a glove makes the query invalid. The reranked chunks include some references to
gloves but more frequently mention gauntlets, none of which are directly relevant to the specific event
of Captain America stopping Thanos. Notably, Reference ID 5 discusses the event of Captain America
trying to stop Thanos (the "Mad Titan") but does not clarify who possesses the gauntlet—whether it is
Captain America or Thanos—despite it being true that Thanos holds the gauntlet. This lack of clarity and
absence of additional supportive evidence leads the generator to produce an incorrect prediction, further
compounded by the invalid nature of the question itself.
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(a)

(b)

Figure A.1: An example question, ground truth answer, ranked references, and incorrect generator
predictions. Prediction includes the entire thought process of ratings, thought, and final answer.
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