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Abstract 

Dual-Database Improvement of Metagenomic Viral Read Classification:  

A Respiratory Virus Case Study 

By Charlie Decker 

The COVID-19 pandemic has underscored the necessity for precise identification of viral 

pathogens to inform clinical and public health responses effectively, especially with respiratory 

viruses with overlapping clinical presentations. Metagenomics, a powerful tool for the genetic 

profiling of complex microbial communities, has emerged as a promising solution. Utilizing 

high-throughput sequencing, metagenomics enables the unbiased identification of pathogens 

in clinical samples, offering a broad-spectrum diagnostic approach that transcends the 

capabilities of targeted PCR tests. This study introduces a metagenomic pipeline designed to 

enhance the detection and classification of viral samples, employing a combination of Kraken 

for initial viral read classification and BLASTN for subsequent validation. 

This project’s objectives were twofold: first to develop and test the dual database approach, 

and second to assess the efficacy of this pipeline in identifying known respiratory viruses in 

samples previously tested negative for COVID-19 using BinaxNOW antigen tests. 

The results revealed that the pipeline successfully identified the presence of various respiratory 

viruses in the samples, including parainfluenza viruses 2 and 3, rhinoviruses A and C, and 

influenza B, showcasing its superior performance over traditional diagnostic methods. Notably, 

the pipeline reduced false classifications, a critical advantage in the clinical setting where 

accurate pathogen identification directly influences treatment decisions and infection control 

measures. 
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Introduction 

Introduction to Metagenomics and mNGS 

Metagenomics encompasses the comprehensive analysis of genetic material extracted from 

environmental samples such as soil, water, and air but also from human specimens, including 

blood, tissue, and swabs. This field diverges from conventional genetic studies, which 

concentrate on singular organisms or specific gene sequences. Instead, metagenomics assesses 

the entirety of genomic content within a sample, capturing the collective genetic signature, 

facilitating the unguided exploration and characterization of microorganisms, providing a 

panoramic view of microbial diversity.  

The advent of Metagenomic Next Generation Sequencing (mNGS) has significantly advanced 

this field. While Next Generation Sequencing (NGS) refers to a suite of high-throughput 

techniques capable of sequencing DNA and RNA much more quickly and cheaply than the 

traditional Sanger sequencing, mNGS specifically applies these NGS technologies to 

metagenomic samples. This enables the simultaneous analysis of billions of DNA fragments 

from multiple organisms within a single sample without the need for prior knowledge about their 

genetic makeup (Slatko et al.). The transition from targeting specific genes or fragments to an 

untargeted, comprehensive analysis of all nucleic acids present underscores the leap from NGS 

to mNGS. This approach not only highlights mNGS's high-throughput capabilities but also its 

utility in exploring microbial diversity at an unprecedented scale. 

Central to the success of NGS and mNGS are the development of sequencing technologies such 

as Illumina and Nanopore Sequencing. Illumina Sequencing technology, renowned for its 

sequencing-by-synthesis (SBS) method that offers unmatched accuracy and speed, works by 

tracking the addition of labeled nucleotides as the DNA chain is copied in a massively parallel 

fashion (Slatko et al.). Nanopore sequencing, on the other hand, allows for real-time sequencing 

of long DNA molecules by detecting changes in electrical conductivity as nucleotides pass 

through a protein nanopore, offering advantages in speed and flexibility. This technology 

supports a broad spectrum of applications, from genomic to epigenomic analyses, across various 

organisms. The depth and breadth of analysis possible these sequencing tools underscores their 

significance in fields ranging from medicine to agriculture (Slatko et al.). 
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Classification tools like BLAST and Kraken are essential in the metagenomic toolkit 

(CCB.jhu.edu). BLAST (Basic Local Alignment Search Tool) is a program that compares 

primary biological sequence information such as DNA and RNA. The BLAST database is 

populated with data from a variety of sources, mostly research studies and projects that involve 

sequencing of DNA or proteins that are then uploaded by the study’s authors. BLAST uses a 

heuristic algorithm that enables researchers to identify potential genetic matches and 

evolutionary relationships via sequence homology (Metagenomics.wiki). Kraken further 

complements this by leveraging exact alignment of k-mers to assign taxonomic labels to 

metagenomic DNA sequences with remarkable speed and accuracy. A k-mer refers to all of a 

sequence’s subsequences of length k, serving as a fundamental unit in sequence analysis for 

efficient and accurate classification. The Kraken database is made up of known k-mers (k = 31 

by default) and is used by mapping sequence k-mers to the lowest common ancestor (LCA) of all 

genomes known to contain a given k-mer. This achieves classification speeds significantly faster 

than previous methods, and over 200 times faster than BLAST. Together, BLAST and Kraken 

embody the progress in bioinformatics tools designed to manage and interpret the expansive data 

produced by mNGS, facilitating a deeper understanding and broader application of microbial 

genomics in various fields. (Wood and Salzberg; CCB.jhu.edu). 

Challenges of mNGS 

The implementation of mNGS in clinical and research settings faces significant challenges. One 

primary issue is in read classification, which is highly sensitive and varies greatly with the 

pipeline used, emphasizing the need for precision in our tools (Wood et al.). While Kraken's 

speed and accuracy in assigning taxonomic labels to metagenomic sequences are commendable, 

its propensity for lower specificity underlines a critical challenge. This limitation is particularly 

significant in clinical and diagnostic settings, where the precise identification of pathogens is 

paramount. Another challenge is the large memory consumption of tools like Kraken and 

BLAST, especially given the massive data inputs required for metagenomic sequencing (Wood 

et al.). Additionally, the complexity of handling vast datasets produced by technologies like 

Illumina poses significant bioinformatics challenges (Lema et al.). 

The accuracy and sensitivity of pathogen classification are critical, yet achieving high levels in 

both areas is challenging due to factors like genetic diversity and incomplete databases which 
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can lead to misclassification (Gupta et al.). While mNGS holds immense potential for advancing 

our understanding of viral communities, addressing these technical and biological complexities 

will require ongoing refinement of existing methodologies.   

mNGS in COVID-19 Research 

The COVID-19 pandemic has posed an unprecedented challenge to global public health systems, 

highlighting the crucial role of rapid and accurate diagnostic tools in pandemic management. The 

reliance on PCR and antigen tests for SARS-CoV-2, while critical, have their limitations, 

particularly in detecting other viral pathogens in individuals who test negative for COVID-19. 

This singular focus on SARS-CoV-2 may miss co-infections or alternative viral pathogens, 

contributing to a significant gap in our understanding of respiratory infections during the 

pandemic. At-home antigen tests, which many people use to quickly check for COVID-19 

infection at home, underscore a significant challenge: individuals who test negative for COVID-

19 at home may not seek further testing for other viral pathogens, potentially overlooking 

alternative causes of their symptoms. 

Metagenomic Next Generation Sequencing (mNGS) offers a promising solution to this 

challenge. Unlike traditional diagnostic methods that target specific pathogens, mNGS provides 

a comprehensive overview of all genetic material in a sample, enabling the detection of a wide 

array of pathogens (Priya et. al.). This capability makes mNGS particularly useful in cases where 

patients exhibit symptoms of viral infections but test negative for COVID-19, especially when 

using at-home antigen tests. By leveraging the comprehensive sequencing capabilities of mNGS, 

we can gain a better understanding of the illnesses present in these individuals, even if they 

choose not to seek further testing after a negative at-home test result. Additionally, the study of 

COVID-negative swabs using mNGS has revealed the presence of SARS-CoV-2 in a significant 

percentage of cases initially diagnosed as negative by rtPCR, emphasizing the technology's 

potential to enhance our response to the pandemic by identifying missed cases of COVID-19 as 

well as alternative viral pathogens (Alteri et. al.). 

mNGS may be able to significantly improve our understanding and management of respiratory 

infections during the COVID-19 pandemic. By identifying alternative viral pathogens in 

COVID-negative samples, we can improve patient care and inform public health strategies 
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(Waggoner et. al.). As we continue to navigate this global health crisis, broad-spectrum pathogen 

detection methods like mNGS will be crucial in expanding our diagnostic capacity and 

enhancing our response to respiratory diseases. 

Using a Dual-Database Approach 

We posit that the integration of a dual-database approach, which initially employs Kraken for 

viral read identification and classification and subsequently confirms with BLASTN, will 

substantially enhance the accuracy of viral read classification. We also anticipate that this 

increased precision will be particularly evident when assessing real-world datasets. 

Our first aim focuses on the development and optimization of the metagenomic pipeline, directly 

building upon the computational methodology established by Dr. Andrei Bombin. His approach 

utilized an advanced pipeline for processing sequencing reads to ensure accurate pathogen 

identification through mNGS. (Piantadosi et al.) Sequencing reads underwent comprehensive 

quality control measures, then were run through KrakenUniq. Subsequently, reads flagged as 

potential human pathogenic viruses were further scrutinized using blastn. 

We aim to implement a taxonomical approach for comparing the two outputs, aiming to classify 

the read as the lowest common ancestor of the two. We also aim to use multiple top results from 

both Kraken and Blast to identify the most specific common ancestor shared among them. A 

pivotal component of this aim will be to critically assess the pipeline's proficiency in data 

handling and processing, especially when juxtaposed against the current lab methodology that 

singularly relies on Kraken.  

Our second aim revolves around assessing and furthering the enhancement of this pipeline. We 

plan to generate simulated reads, encompassing both known viral and non-viral sequences, and 

run these simulated datasets through our pipeline to gauge rates of false identification, measure 

accuracy, and test sensitivity. With this, we can conduct a comparative analysis with standalone 

Kraken classifications for a robust identification of improvements and addressing any emergent 

discrepancies. Based on these trials, we can add additional optimization.  

Lastly, our third aim seeks to apply our metagenomic pipeline to tangible, real-world biological 

data. The core of this aim is to analyze COVID-19 metagenomic sequencing datasets with our 
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refined pipeline, with a focus on discerning non-COVID sequences on COVID-negative Binax 

swabs. 
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Methods 

Pipeline Construction 

Computational Environment 

The pipeline is executed on an c5n.9xl AWS EC2 instance, ensuring scalable computing 

resources. Required libraries and dependencies include BBMap, Trimmomatic, fastp, 

KrakenUniq, BLAST+, seqtk, and the ete3 Python library. The metagenomic pipeline developed 

for this study is available on GitHub at 

https://github.com/valiantseal/metagen/tree/main/metagenClass/v1.5, providing open access to 

the code and documentation necessary for replication and further development. 

Sample Preparation and Quality Control 

The pipeline begins with raw sequencing data in compressed FASTQ format, derived from 

paired-end sequencing. prepInput.sh generates a unique directory for each sample and employs 

BBMap's clumpify.sh (Version 39.06) to deduplicate the data. Following deduplication, 

Trimmomatic (Version 0.39) is utilized for quality trimming and adapter removal using 

parameters such as a 4-base wide sliding window requiring a minimum average quality of 15, 

and leading and trailing base removal if below a quality of 3. The trimmed reads are then saved 

as paired-end FASTQ files for further processing. 

Sequencing Data Processing 

Upon preprocessing, filterMerge.sh is called, which uses fastp (Version 0.23.2) for additional 

quality control and merging of overlapping reads. fastp filters based on quality, length, and 

adapter content, merging reads with an overlap into a single sequence to simplify the dataset and 

enhance the reliability of the match to the reference. Parameters include a quality threshold of 

Q20 for base filtering and a minimum length of 50 bases for read acceptance. Post-merging, 

FqToFa.sh converts the quality-controlled FASTQ files to FASTA format, crucial for the 

compatibility with downstream bioinformatics tools, using Seqtk. 

KrakenUniq Classification 

https://github.com/valiantseal/metagen/tree/main/metagenClass/v1.5
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krakenUniq.sh employs KrakenUniq (Version 0.5.8), which compares sequences against a viral 

database. KrakenUniq outputs both the classified reads and a comprehensive report, providing an 

overview of the taxonomic distribution within the sample. The subsequent sortKraken.R script is 

executed in parallel, extracting the taxonomic IDs for each read. If a taxonomic ID is a 

BioProject ID (i.e. not in the NCBI database), it is replaced with its NCBI parent ID. The 

getSampKrakReads.sh further refines the selection, isolating only the viral reads as identified 

and classified by Kraken. 

BLASTN Homology 

The runBlastNt.sh script conducts a BLAST search of the viral reads using the blastn program 

from the NCBI BLAST+ suite (Version 2.12.0) against a nucleotide collection database, with 

parameters set to optimize for viral sequences, such as an E-value cutoff of 1e-5 and a word size 

of 11. This homology search is parallelized with blastNtV4Par.sh for enhanced performance, 

ensuring each subset of the dataset is processed simultaneously to expedite the analysis. The 

results include many metrics, including taxonomy IDs (staxids), subject titles (stitle), E-value 

(evalue), and bit score (bitscore) for the top 10 matches of each read. Following BLAST, 

blastFiltTopSamp.R filters the results to retain only the top 3 unique, non-synthetic matches for 

each read, thus ensuring the highest confidence in taxonomic assignment. 

Post-Processing 

The final step involves tax.py, a Python script that integrates the data from both KrakenUniq and 

BLAST, determining the lowest common ancestor (LCA) to create a consensus classification. 

For each read, the six Kraken IDs from the forward and reverse sequences are compared with the 

six BLAST IDs from the forward and reverse sequences. The script utilizes the NCBI taxonomy 

database to align IDs to a standardized taxonomy, ensuring consistent classification levels. For 

each set of taxonomic IDs, the function calculates the LCA by finding the most recent common 

ancestor in the taxonomic hierarchy that encompasses all IDs. The final LCA is then outputted, 

providing a consensus taxonomic classification for each read. 

Overall, the pipeline was enhanced via the incorporation of additional quality control steps, 

establishing a consensus classification between Kraken and BLAST for viral read identification, 
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and the introduction of an assessment module. Prior to these contributions, the pipeline primarily 

utilized Kraken for sorting non-viral reads and focused on viruses of interest, with subsequent 

BLAST analysis for viral reads. 

Pipeline Assessment 
 

Pre-Pipeline 

Initially, the preprep.sh script prepares a dataset for pipeline testing by simulating reads from 

diverse viral genomes. Using InSilicoSeq (version 2.0.1), we generated 3,000 reads for each of 

30 different viruses, spanning 10 viral groups, employing the MiSeq error model to mimic real 

sequencing errors accurately. The selected viruses represent a broad spectrum of viral pathogens 

to ensure comprehensive testing of the pipeline's identification capabilities. These include: 

Orthomyxoviridae: Influenza A (Alphainfluenzavirus influenzae), Influenza B 

(Betainfluenzavirus influenzae), Influenza D (Deltainfluenzavirus influenzae); 

Paramyxoviridae: Measles (Morbillivirus hominis), Mumps (Orthorubulavirus hominis), 

Human Parainfluenza Virus (Respirovirus laryngotracheitidis); 

Caliciviridae & Enterovirus: Norovirus (Norwalk virus), Sapporo-like virus (Sapporo virus), 

Poliovirus (Enterovirus C); 

Herpesviridae: Herpes Simplex Virus 1 (Simplexvirus humanalpha1 HSV-1), Herpes Simplex 

Virus 2 (Simplexvirus humanalpha2 HSV-2), Chickenpox/Shingles (Varicellovirus 

humanalpha3 VZV); 

Retroviridae: HIV-1 (Human Immunodeficiency Virus Type 1), HIV-2 (Human 

Immunodeficiency Virus Type 2), HTLV-1 (Primate T-lymphotropic virus 1); 

Papillomaviridae: Human Papillomavirus Type 18 (Alphapapillomavirus 7), Human 

Papillomavirus Type 16 (Alphapapillomavirus 9), Human Papillomavirus Type 6 

(Alphapapillomavirus 10); 

Orthoflavivirus: Dengue Virus (Orthoflavivirus denguei), Zika Virus (Orthoflavivirus 

zikaense), West Nile Virus (Orthoflavivirus nilense); 

Alphavirus: Chikungunya Fever Virus (Chikungunya virus), Eastern Equine Encephalitis Virus 
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(Eastern equine encephalitis virus), Ross River Fever Virus (Ross river virus); 

Coronaviridae: COVID-19 Virus (Severe acute respiratory syndrome-related coronavirus 

SARS-CoV-2), MERS Virus (Middle East Respiratory Syndrome Coronavirus MERS-CoV), 

Human Coronavirus HKU1 (Human coronavirus HKU1); 

Reoviridae: Rotavirus (Rotavirus A), Colorado Tick Fever Virus (Colorado tick fever 

coltivirus), Rotavirus C (Rotavirus C). 

The FASTAs for these viruses were sourced using the efetch utility from NCBI's database, then 

processed into simulated reads with InSilicoSeq to create a realistic and diverse dataset for 

pipeline testing. 

Post-Pipeline 

Taxanalysis.py compares the pipeline-generated identifications against the reference library. The 

analysis involves comparing the taxonomic IDs at the species and family levels between the 

pipeline's classifications and Kraken with the reference labels. The script defines a Positive 

Identification (PID) when the pipeline's classification matches the reference label at the 

corresponding taxonomic level, indicating accurate classification. Conversely, a Negative 

Identification (NID) denotes a mismatch at the same taxonomic level, reflecting a 

misclassification. 

Binax Swab Analysis 
 

Sample Collection 

BinaxNOW COVID-19 Ag Card rapid antigen tests were collected from individuals with upper 

respiratory symptoms as part of an ongoing study by the Emory University Rapid Acceleration 

of Diagnostics (RADx) team. Test cartridges that were negative for SARS-CoV-2 were included 

in this study. 

Sequencing 

The collected swabs underwent RNA extraction (Qiagen) followed by library preparation with 

random hexamer cDNA synthesis (NEB) and Nextera library construction (Illumina). The 
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samples were then sequenced using the Illumina platform with 150bp paired-end reads, a method 

chosen for its high-throughput capability and accuracy.  

During the sequencing run on February 9th, 2024, it was observed that the yield of nucleic acid 

sequences was insufficient for comprehensive analysis, falling significantly below the expected 

threshold for reliable metagenomic classification. To address this issue and ensure the integrity 

and accuracy of our pathogen identification process, a decision was made to conduct a duplicate 

sequencing run on March 1st, 2024. 

Additionally, during the sequencing runs on June 6th, 2023, and August 4th, 2023, an unforeseen 

procedural oversight occurred with the use of carrier RNA (cRNA) in the RNA extraction 

process. Typically, extraction kits recommend the addition of carrier RNA, comprising 

molecules of poly-A, to improve the binding efficiency of RNA to the extraction column, 

thereby enhancing yield. Although this is beneficial in many contexts, for metagenomic 

sequencing projects like ours, it introduces a significant volume of non-target RNA, leading to 

the generation of unwanted sequence data. cRNA was then depleted for subsequent runs before 

sequencing.  

Pipeline Processing 

Raw fastq sequences were processed through the previously described mNGS pipeline. This 

involved quality control measures, deduplication, adapter trimming, merging of overlapping 

reads, and conversion to FASTA format for compatibility with downstream bioinformatics tools. 

The sequences were then subject to viral read identification and classification using KrakenUniq 

and homology searches via BLASTN against a nucleotide collection database. The final 

consensus classification, based on the lowest common ancestor (LCA) method, integrated data 

from both KrakenUniq and BLAST to ensure accurate taxonomic assignment. 

Classification Validation 

Initially, for each sample where a virus was detected, a reference-based assembly was attempted 

using viral-ngs (Version 2.1.19.0-rc119). This involved using a corresponding reference genome 

of the identified virus to construct a consensus genome assembly. Assemblies deemed to be of 

suboptimal quality—exhibiting low unambiguous length and insufficient depth—prompted a 
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subsequent homology search using MegaBLAST, which aimed to identify a more homologous 

reference genome that could potentially yield a higher quality assembly. The homologous 

reference genomes identified through MegaBLAST were then employed to reassemble the viral 

genomes.  
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Results 

Pipeline Assessment Using Synthetic Data 

Our assessment of the newly developed metagenomic pipeline reveals its conservative nature in 

pathogen identification, as demonstrated by its performance on a set of synthetic viral reads. The 

pipeline was evaluated for its ability to correctly identify viral pathogens at both the species and 

family levels, comparing its performance against the standalone use of Kraken.  

We tested this pipeline on a diverse set of 30 viruses across 10 different groups, generating 3,000 

reads for each virus. We assessed the Positive Identification (PID) rates, which correspond to 

classifications accurately matched at the species and family levels, as well as the Negative 

Identification (NID) rates, denoting misclassifications at these same levels. These identification 

rates reflect classifications that are directly comparable to the reference library at or below the 

species and family taxonomic levels. Classifications that occur at higher taxonomic ranks than 

these are not included in the PID or NID counts but still contribute to the overall assessment of 

the pipeline's conservative nature in pathogen identification. Unclassified reads are included in 

neither PID or NID, but are represented by their omission from the 3000 total reads generated for 

each virus. 

Notably, the pipeline demonstrated a lower rate of negative identifications across the board, with 

zero negative IDs at the species level, indicating a reduced likelihood of false classifications. 

This is a critical feature for clinical and research settings, where falsely identifying a pathogen 

that isn’t there could have significant implications. 

Furthermore, the pipeline showed higher specificity at the species and family levels compared to 

Kraken alone (with the exceptions of Dengue and Chikungunya viruses). For example, for the 

3000 simulated reads of influenza A (Alphainfluenzavirus influenzae): 2919 of the reads were 

identified as influenza A or a subspecies of influenza A by Kraken, while the pipeline found 

2950. The same goes for the family level, as Kraken was able to determine that 2919 of the reads 

belonged to the family Orthomyxoviridae, while the pipeline found 2950 reads to be classified as 

such. This enhancement underscores the pipeline's ability to classify viral sequences more 

specifically and conservatively than using only one tool. 



13 
 

 
 

In addition, our pipeline was tested with 30,000 reads from non-viral samples. These were 

generated from 10 different genomes of various eukaryotic, prokaryotic, and fungal reference 

genomes. It accurately identified all these samples as non-viral, demonstrating its reliability and 

discernment in distinguishing between viral and non-viral genetic material. 

The computational efficiency of the pipeline is underscored by the real-time processing metrics, 

with the majority of scripts, such as 'prepInput', 'filterMerge', and 'FqtoFa', demonstrating rapid 

processing. Notably, 'runBlastNt' requires the most significant processing time, which is 

reflective of its exhaustive comparison against nucleotide databases. However, this step is 

integral for the accuracy and specificity of the pipeline, justifying the increased time investment. 

'sortKraken' and 'tax' scripts also exhibit longer processing times, which may be attributed to the 

complex computational tasks they perform, such as sorting large data outputs and executing 

taxonomic classification algorithms. 

Binax Swab Analysis 
 

Pipeline Viral Identification 

All Binax swab sequencing data was run through the pipeline, in addition to being tested for 

COVID (all negative), Flu A (all negative), and Flu B via PCR, as demonstrated in Table 3. 

Samples sequenced on February 9th were found to have insufficient read quality and were thus 

re-sequenced on March 1st. Detected viruses include parainfluenza viruses 2 and 3, rhinoviruses 

A and C, influenza B, and mastadenovirus. In addition to these human pathogens, multiple 

bacteriophage (pahexavirus, Staphylococcus phage, and Escherichia phage) were detected in 

many of the samples. Pahexavirus phage was present in every sample, suggesting reagent 

contamination, while other phage as well as mosaic viruses were found in various samples, 

suggesting the presence of other microbes. Other human viral pathogens were also detected, but 

in substantially lower quantities (less than 50 positive reads total), including dengue virus and 

Marburg virus, which we posit have no clinical significance.  
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Classification Validation 

With many of the samples classified as having viral material, we moved to validate these 

pathogens using reference-based genome assembly. Reference genomes were procured from 

RefSeq, though the low quality of initial assemblies from these genomes necessitated the use of 

MegaBLAST to find higher homology references. These data are presented in Table 4. Coverage 

plots, separated by virus, are also provided (Figures 4-9).  

PCR, Positive RPM, and RNA 

The presence of COVID-19 and Influenza A are consistently the same for both PCR and the 

pipeline – neither tool detected either virus, which lends more confidence to the pipeline’s 

abilities. With Influenza B, three samples tested positive via PCR: 7224J, 7125O, and 7137A. 

Samples 7224J and 7125O both tested positive for Influenza B by the pipeline, but for 7137A, 

the first round of sequencing, which was repeated due to low quality reads, tested negative; the 

subsequent sequencing round tested positive. This highlights the need for good quality 

sequencing, but also reinforces the efficacy of the pipeline, as it was able to pick up on the 

presence of influenza B in all the quality samples. 

The PCRs raise an additional question, which is whether the number of positives per million 

reads (Positive RPM) correlates negatively to the PCR Ct. With such a small number of samples, 

this is difficult to determine. We see that the sample with the lowest Ct (10.7), 7224J, has the 

highest positive RPM (1742); the second lowest Ct (22.8), sample 7125O, has the second highest 

positive RPM (mean 879); and the highest Ct (33), sample 7137A, has the lowest positive RPM 

(0 for one sequencing run and 5 for the other). This would seem to suggest that the pipeline does 

in fact have a dose-dependent response based on the amount of viral material present in the 

sample, as we would expect.  

The final question we wish to address with these data is the effect of carrier RNA depletion on 

data quality. We find that there was a higher RPM in the depleted samples compared to the 

undepleted samples, though this difference was not statistically significant (paired t-test p = 0.06) 

(Figure 10). However, the first round of sequencing of sample 7137A yielded no significant viral 

classification, while the second round did, as previously mentioned, and is corroborated by the 
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positive Influenza B PCR. This lends some credibility to the idea that a lack of carrier RNA 

depletion could affect the results of this pipeline.  

Reference-Based Assemblies 

The reference-based genome assemblies served to corroborate the identifications of respiratory 

viruses by the pipeline. For most samples, these assemblies seem to properly line up to their 

references, with depths greater than 15 (for at least one of the sequencing runs) and unambiguous 

lengths that are comparable to the reference genome. For samples 7224J and 7137A, however, 

we have low confidence in the classification by the pipeline. This lines up with the low positive 

RPM, however, as both samples were found by the pipeline to have their respective viruses in 

very low quantities. Future directions for this pipeline will involve investigating the exact cutoff 

values for positive RPMs for determining whether a virus is of clinical significance.  



16 
 

 
 

Discussion 

Pipeline Assessment 

Our newly developed metagenomic pipeline emphasizes a precise and conservative approach in 

pathogen identification, as evidenced by its performance on a diverse selection of viral sequences 

(Figure 2). The pipeline demonstrated a high level of specificity in correctly identifying viral 

pathogens at the species and family taxonomic levels. Notably, it consistently delivered zero 

negative identifications (NIDs) across all viral groups, underscoring its high selectivity and 

diminished likelihood of false classifications (Table 1). Such a feature is particularly crucial in 

clinical and epidemiological contexts, where the accurate detection of pathogens is paramount. 

There was an absence of significant differences in the PID rates across various viral groups when 

utilizing the pipeline. This consistency in PID rates suggests a uniform performance of the 

pipeline, regardless of viral diversity, which is indicative of its robust and adaptable nature. 

However, we did observe variances in the standard deviation within these groups. The 

fluctuations in standard deviation may point to intrinsic properties of the viral genomes or 

indicate varying degrees of genetic similarity within the taxonomic categories assessed.  

Binax Swab Analysis 
 

Pipeline Viral Identification 

The development and application of a metagenomic pipeline for pathogen identification in 

COVID-negative Binax swabs has unveiled the presence of several respiratory viruses, including 

parainfluenza viruses 2 and 3, rhinoviruses A and C, influenza B, and mastadenovirus (Figure 3). 

This discovery underscores the complexity of respiratory viral infections and their potential 

overlap in clinical presentations with COVID-19, raising important considerations for clinical 

diagnosis, epidemiology, and public health.  

The symptoms caused by parainfluenza viruses, rhinoviruses, influenza B, and mastadenovirus 

share commonalities with those of COVID-19, including fever, cough, and difficulty breathing. 

Parainfluenza viruses are known to cause upper and lower respiratory illnesses, including croup, 
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bronchitis, and pneumonia, particularly in children (Centers for Disease Control and Prevention, 

2022; Kristina Herndon, 2023). Rhinoviruses are the most frequent cause of the common cold, 

presenting symptoms such as cough, sneezing, runny nose, and sore throat (Centers for Disease 

Control and Prevention, 2023). Influenza B can lead to cough, fatigue, fever, and muscle aches, 

among other symptoms, typically milder than those caused by influenza A but still significant for 

public health (Groth, 2023). 

The correct identification of respiratory viruses, including those similar in symptomatology to 

COVID-19, is critical for effective treatment, infection control, and public health planning. The 

seasonal prevalence of viruses like rhinoviruses, which peak during fall and spring, often 

overlaps with flu season, complicating the differentiation from COVID-19, a virus with year-

round transmission (Centers for Disease Control and Prevention, 2023). The shift in transmission 

dynamics of these pathogens, potentially influenced by COVID-19 mitigation strategies such as 

mask-wearing and social distancing, underscores the complexity of managing respiratory 

diseases in the current era (Kim et al., 2020). Furthermore, the occurrence of co-infections with 

SARS-CoV-2 indicates the necessity of a comprehensive diagnostic approach, emphasizing the 

importance of broad surveillance and accurate pathogen identification to prevent misallocation of 

healthcare resources and to ensure the appropriateness of public health responses (Kim et al., 

2020). 

Given the overlapping symptomatology and potential for co-infection, it is imperative to 

advocate for the inclusion of a broad spectrum of respiratory pathogens in routine diagnostic 

screenings. The use of metagenomic next-generation sequencing (mNGS) pipelines, like the one 

developed in this project, can facilitate the simultaneous detection of multiple pathogens, 

offering a powerful tool for improving diagnostic accuracy and informing public health 

interventions. 
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Figures 

Virus Kraken 
Species 
PID 

Kraken 
Species NID 

Kraken 
Family PID 

Pipeline 
Species PID 

Pipeline 
Species NID 

Pipeline 
Family PID 

Alphainfluenzavirus influenzae (Orthomyxoviridae) 
TaxID: 2955291 (Accession AF144300.1) 

2919 0 2919 2950 0 2950 

Betainfluenzavirus influenzae (Orthomyxoviridae) 
TaxID: 2955465 (Accession AF101982.1) 

2923 0 2923 2952 0 2952 

Deltainfluenzavirus influenzae (Orthomyxoviridae) 
TaxID: 2955744 (Accession JQ922305.1) 

2914 0 2914 2940 0 2940 

Morbillivirus hominis (Paramyxoviridae) 
TaxID: 3052345 (Accession NC_001498.1) 

2939 0 2942 2960 0 2960 

Orthorubulavirus hominis (Paramyxoviridae) 
TaxID: 3052556 (Accession AB543336.1) 

2928 0 2928 2950 0 2950 

Respirovirus laryngotracheitidis (Paramyxoviridae) 
TaxID: 3049952 (Accession NC_003461) 

2893 0 2902 2950 0 2950 

Norwalk virus (Caliciviridae & Enterovirus) 
TaxID: 11983 (Accession FJ692500.1) 

2916 0 2916 2948 0 2948 

Sapporo virus (Caliciviridae & Enterovirus) 
TaxID: 95342 (Accession AF182760.1) 

2933 0 2933 2968 0 2968 

Enterovirus C (Caliciviridae & Enterovirus) 
TaxID: 138950 (Accession V01149.1) 

750 0 2929 2956 0 2956 

Simplexvirus humanalpha1 (HSV-1) (Herpesviridae) 
TaxID: 3050292 (Accession NC_001806.2) 

2832 1 2935 2926 0 2926 

Simplexvirus humanalpha2 (HSV-2) (Herpesviridae) 
TaxID: 3050293 (Accession NC_001798.2) 

2237 1 2909 2936 0 2936 

Varicellovirus humanalpha3 (Herpesviridae) 
TaxID: 3050294 (Accession X04370.1) 

2923 0 2923 2940 0 2940 

HIV-1 (Retroviridae) 
TaxID: 11676 (Accession NC_001802.1) 

2776 0 2907 2918 0 2918 

HIV-2 (Retroviridae) 
TaxID: 11709 (Accession NC_001722.1) 

2822 0 2901 2956 0 2956 

Primate T-lymphotropic virus 1 (Retroviridae) 
TaxID: 194440 (Accession AF033817.1) 

2910 0 2915 2946 0 2946 

Alphapapillomavirus 10 (Papillomaviridae) 
TaxID: 333754 (Accession NC_001355) 

2936 0 2941 2954 0 2954 

Alphapapillomavirus 9 (Papillomaviridae) 
TaxID: 337041 (Accession NC_001526.4) 

2903 0 2906 2938 0 2938 

Alphapapillomavirus 7 (Papillomaviridae) 
TaxID: 337042 (Accession NC_001357) 

2912 0 2932 2956 0 2956 

Orthoflavivirus nilense (Orthoflavivirus) 
TaxID: 3048448 (Accession NC_009942.1) 

2881 0 2925 2952 0 2952 

Orthoflavivirus zikaense (Orthoflavivirus) 
TaxID: 3048459 (Accession NC_035889.1) 

2926 0 2931 2956 0 2956 

Orthoflavivirus dengue (Orthoflavivirus) 
TaxID: 3052464 (Accession NC_002640) 

2936 0 2937 2608 0 2608 

Chikungunya virus (Alphavirus) 
TaxID: 37124 (Accession NC_004162.2) 

2914 0 2950 2412 0 2950 

Eastern equine encephalitis virus (Alphavirus) 
TaxID: 11021 (Accession NC_003899.1) 

2904 1 2927 2948 0 2948 

Ross river virus (Alphavirus) 
TaxID: 11029 (Accession NC_075016.1) 

2918 0 2928 2958 0 2958 

Human coronavirus HKU1 (Coronaviridae) 
TaxID: 290028 (Accession NC_006577.2) 

2881 0 2915 2948 0 2948 

SARS-CoV-2 (Coronaviridae) 
TaxID: 694009 (Accession NC_045512) 

2563 0 2602 2817 0 2838 

MERS-CoV (Coronaviridae) 
TaxID: 1335626 (Accession NC_019843.3) 

2802 1 2919 2952 0 2952 

Rotavirus A (Reoviridae) 
TaxID: 28875 (Accession NC_011500) 

2916 0 2916 2954 0 2954 

Rotavirus C (Reoviridae) 2841 0 2841 2950 0 2950 
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TaxID: 36427 (Accession NC_007543) 
Colorado tick fever coltivirus (Reoviridae) 
TaxID: 2748762 (Accession NC_004181) 

2890 0 2912 2938 0 2938 

Table 1: Comparative Analysis of Pathogen Identification by Kraken and the Enhanced 

Metagenomic Pipeline. This table presents a summary of species and family-level pathogen 

identification rates (PIDs) and negative identification rates (NIDs) for selected viruses, 

demonstrating the performance of the original Kraken tool versus our enhanced metagenomic 

pipeline. 
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Script Real Time (s) per Million Reads 

prepInput 42.1 
filterMerge 3.1 
FqtoFa 0.6 
krakenUniq 2.5 
sortKraken 57.9 
getSampKrakReads 0.6 
splitReads 0.6 
runBlastNt 2380.1 
blastFiltTopSamp 26.4 
tax 59.8 

Table 2: Computational Performance of Metagenomic Pipeline Components. Runtime 

Efficiency of Pipeline Scripts. The table details the real-time processing duration required for 

each script within the metagenomic pipeline per million reads.  
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Collaborator 

ID Piantadosi Lab ID 

Sequencing 

Date 

Flu A 

PCR 

Ct 

Flu B 

PCR 

Ct 

cRNA 

Depleted? Reads Viruses Detected 

 
 

 

Viral RPM 

ADH6697 EHC_C19_7126P 6/6/2023 U U N 3,965,391 NA  

 EHC_C19_7126P_L3 3/1/2024 U U Y 2,344,551 NA  

ADH6701 EHC_C19_7127Q 6/6/2023 U U N 2,891,815 NA  

 EHC_C19_7127Q_L3 3/1/2024 U U Y 1,097,083 NA  

AEP6533 EHC_C19_7117G 6/6/2023 U U N 2,666,880 NA  

 EHC_C19_7117G_L3 2/9/2024 U U Y 175,727 NA  

 EHC_C19_7117G_L3 3/1/2024 U U Y 856,240 NA  

AEP6674 EHC_C19_7119I 6/6/2023 U U N 4,582,782 Rhinovirus A 420 

 EHC_C19_7119I_L3 2/9/2024 U U Y 239,277 Rhinovirus A 7180 

AEP6681 EHC_C19_7123M 6/6/2023 U U N 2,908,135 NA  

 EHC_C19_7123M_L3 2/9/2024 U U Y 56,420 NA  

 EHC_C19_7123M_L3 3/1/2024 U U Y 240,003 NA  

AEP6755 EHC_C19_7144H 6/6/2023 U U N 3,692,204 NA  

 EHC_C19_7144H_L3 3/1/2024 U U Y 1,663,254 NA  

AEP6758 EHC_C19_7219E 8/4/2023 U U N 1,534,221 NA  

AEP6807 EHC_C19_7234T 8/4/2023 U U N 1,041,928 NA  

AEU6718 EHC_C19_7132V 6/6/2023 U U N 1,933,722 NA  

 EHC_C19_7132V_L3 3/1/2024 U U Y 3,408,615 NA  

AEU6744 EHC_C19_7140D 6/6/2023 U U N 3,495,102 NA  

 EHC_C19_7140D_L3 3/1/2024 U U Y 1,494,282 NA  

AEU6746 EHC_C19_7141E 6/6/2023 U U N 2,007,292 NA  

 EHC_C19_7141E_L3 3/1/2024 U U Y 5,451,728 NA  

AGN6535 EHC_C19_7115E 6/6/2023 U U N 4,851,208 Parainfluenza 2 815 

 EHC_C19_7115E_L3 2/9/2024 U U Y 316,658 Parainfluenza 2 41347 

 EHC_C19_7115E_L3 3/1/2024 U U Y 595,889 Parainfluenza 2 3052 

AGN6545 EHC_C19_7116F 6/6/2023 U U N 8,331,344 NA  

 EHC_C19_7116F_L3 2/9/2024 U U Y 287,376 NA  

AGN6545 EHC_C19_7116F_L3 3/1/2024 U U Y 1,442,794 NA  

AGN6685 EHC_C19_7118H 6/6/2023 U U N 2,120,434 Parainfluenza 3 9048 

 EHC_C19_7118H_L3 2/9/2024 U U Y 58,149 Parainfluenza 3 35426 

 EHC_C19_7118H_L3 3/1/2024 U U Y 254,364 Parainfluenza 3 1902 

AGN6688 EHC_C19_7120J 6/6/2023 U U N 3,894,710 NA  

 EHC_C19_7120J_L3 2/9/2024 U U Y 1,618,020 NA  

 EHC_C19_7120J_L3 3/1/2024 U U Y 4,329,258 NA  

AGN6692 EHC_C19_7121K 6/6/2023 U U N 3,901,096 NA  

 EHC_C19_7121K_L3 2/9/2024 U U Y 73,787 NA  

 EHC_C19_7121K_L3 3/1/2024 U U Y 524,436 NA  

AGN6693 EHC_C19_7131U 6/6/2023 U U N 3,086,900 NA  

 EHC_C19_7131U_L3 3/1/2024 U U Y 3,553,983 NA  

AGN6695 EHC_C19_7124N 6/6/2023 U U N 3,036,288 Rhinovirus A 1216 
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 EHC_C19_7124N_L3 2/9/2024 U U Y 318,457 Rhinovirus A 102717 

 EHC_C19_7124N_L3 3/1/2024 U U Y 3,331,452 Rhinovirus A 28294 

AGN6696 EHC_C19_7125O 6/6/2023 U 22.8 N 3,271,646 Influenza B 129 

 EHC_C19_7125O_L3 2/9/2024 U 22.8 Y 81,147 Influenza B 2378 

 EHC_C19_7125O_L3 3/1/2024 U 22.8 Y 363,421 Influenza B 131 

AGN6698 EHC_C19_7128R 6/6/2023 U U N 3,198,244 NA  

 EHC_C19_7128R_L3 3/1/2024 U U Y 3,126,522 NA  

AGN6699 EHC_C19_7129S 6/6/2023 U U N 3,813,462 Rhinovirus A 481 

 EHC_C19_7129S_L3 3/1/2024 U U Y 4,349,347 Rhinovirus A 393 

AGN6702 EHC_C19_7130T 6/6/2023 U U N 2,077,262 Rhinovirus A 819 

 EHC_C19_7130T_L3 3/1/2024 U U Y 13,844,494 Rhinovirus A 4952 

AGN6717 EHC_C19_7133W 6/6/2023 U U N 2,484,640 NA  

 EHC_C19_7133W_L3 3/1/2024 U U Y 6,387,440 NA  

AGN6723 EHC_C19_7134X 6/6/2023 U U N 3,049,650 Rhinovirus C 9648 

 EHC_C19_7134X_L3 3/1/2024 U U Y 12,790,887 Rhinovirus C 29423 

AGN6725 EHC_C19_7135Y 6/6/2023 U U N 1,438,524 NA  

 EHC_C19_7135Y_L3 3/1/2024 U U Y 1,404,583 NA  

AGN6729 EHC_C19_7136Z 6/6/2023 U U N 3,244,013 Parainfluenza 3 13949 

 EHC_C19_7136Z_L3 3/1/2024 U U Y 2,618,215 Parainfluenza 3 70576 

AGN6734 EHC_C19_7137A 6/6/2023 U 33.0 N 3,496,442 NA  

 EHC_C19_7137A_L3 3/1/2024 U 33.0 Y 1,293,554 Influenza B 5 

AGN6742 EHC_C19_7138B 6/6/2023 U U N 3,290,867 NA  

 EHC_C19_7138B_L3 3/1/2024 U U Y 4,754,229 NA  

AGN6743 EHC_C19_7139C 6/6/2023 U U N 2,664,966 NA  

 EHC_C19_7139C_L3 3/1/2024 U U Y 3,912,338 NA  

AGN6748 EHC_C19_7142F 6/6/2023 U U N 3,753,324 NA  

 EHC_C19_7142F_L3 3/1/2024 U U Y 4,722,446 NA  

AGN6750 EHC_C19_7143G 6/6/2023 U U N 3,250,073 NA  

 EHC_C19_7143G_L3 3/1/2024 U U Y 5,185,105 NA  

AGN6761 EHC_C19_7145I 6/6/2023 U U N 3,119,186 Parainfluenza 3 3177 

 EHC_C19_7145I_L3 3/1/2024 U U Y 9,961,100 Parainfluenza 3 140113 

AGN6768 EHC_C19_7220F 8/4/2023 U U N 1,086,900 NA  

AGN6784 EHC_C19_7223I 8/4/2023 U U N 1,252,493 Influenza B 1416 

AGN6785 EHC_C19_7224J 8/4/2023 U 10.7 N 931,717 

Influenza B, 

Mastadenovirus E 

1742 (Flu), 

54 (Mast) 

AGN6788 EHC_C19_7226L 8/4/2023 U U N 738,478 NA  

AGN6794 EHC_C19_7227M 8/4/2023 U U N 1,111,963 Parainfluenza 3 1248 

AGN6798 EHC_C19_7230P 8/4/2023 U U N 1,434,279 NA  

AGN6805 EHC_C19_7231Q 8/4/2023 U U N 1,371,573 NA  

AMT6523 EHC_C19_7114D 6/6/2023 U U N 3,844,230 NA  

 EHC_C19_7114D_L3 2/9/2024 U U Y 250,355 NA  

 EHC_C19_7114D_L3 3/1/2024 U U Y 1,965,753 NA  

AMT6694 EHC_C19_7122L_L2 6/6/2023 U U N 3,953,898 NA  
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 EHC_C19_7122L_L3 2/9/2024 U U Y 122,273 NA  

 EHC_C19_7122L_L3 3/1/2024 U U Y 539,288 NA  

AMT6781 EHC_C19_7222H_L2 8/4/2023 U U N 79,731 NA  

APD6801 EHC_C19_7229O_L2 8/4/2023 U U N 800,105 NA  

APD6809 EHC_C19_7232R_L2 8/4/2023 U U N 982,100 NA  

APD6810 EHC_C19_7233S_L2 8/4/2023 U U N 1,288,364 NA  

ASJ6519 EHC_C19_7113C 6/6/2023 U U N 3,374,029 NA  

 EHC_C19_7113C_L3 3/1/2024 U U Y 4,032,146 NA  

ASJ6770 EHC_C19_7221G_L2 8/4/2023 U U N 1,850,568 NA  

Table 3: Detection of Viral Sequences in Negative Binax Now COVID-19 Antigen Test 

Swabs. Summary of viral sequences detected using the bioinformatics pipeline on swabs that 

tested negative with the Binax Now COVID-19 Antigen Test. Flu and COVID PCRs were run on 

some samples and compared with the pipeline’s viral identification.  
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ID Date Viruses Detected Positive 
RPM 

Reference Genome UA 
Assembly 
Length 

Assembly 
Length 

Reference 
Genome 
Length 

Assembly 
Depth 

EHC_C19_7224J 8/4/2023 Mastadenovirus E 54 

Mastadenovirus E strain 
HAdV-
E/USA/3477/2015/P4H4F4 
RefSeq (Accession 
KY996446.1) 1550 35131 35949 0.6 

EHC_C19_7115E_
L3 3/1/2024 

Parainfluenza 2 virus 
3052 

Parainfluenza 2 RefSeq 
(Accession NC_003443)  15567 15567 15646 249.3 

EHC_C19_7118H_
L3 3/1/2024 

Parainfluenza 3 virus 
1902 

Parainfluenza 3 RefSeq 
(Accession NC_075446.1) 15327 15327 15462 69.4 

EHC_C19_7136Z_
L3 3/1/2024 Parainfluenza 3 virus 70576 

Parainfluenza 3 RefSeq 
(Accession NC_075446.1) 15367 15367 15462 2719.1 

EHC_C19_7145I_L
3 3/1/2024 Parainfluenza 3 virus 140113 

Parainfluenza 3 RefSeq 
(Accession NC_075446.1) 15360 15361 15462 5377.5 

EHC_C19_7227M 8/4/2023 Parainfluenza 3 virus 1248 
Parainfluenza 3 RefSeq 
(Accession NC_075446.1) 15143 15216 15462 26.1 

EHC_C19_7137A_
L3 3/1/2024 Influenza B virus 5 

Influenza B virus genome 
ASM3108572v1 (Accession 
GCA_031085725.1) 172 242 14623 0.2 

EHC_C19_7223I 8/4/2023 Influenza B virus 1416 

Influenza B virus genome 
ASM3108572v1 (Accession 
GCA_031085725.1) 14553 14555 14623 55.7 

EHC_C19_7224J 8/4/2023 Influenza B virus 1742 
Influenza_B_CA_15_2018_
with_spacers 13569 15098 15098 36.7 

EHC_C19_7125O_
L3 3/1/2024 

Influenza B virus 
131 

Influenza B virus genome 
ASM3108572v1 (Accession 
GCA_031085725.1) 12240 13344 14623 16.9 

EHC_C19_7119I 6/6/2023 Rhinovirus A 420 

Rhinovirus A51 strain ATCC 
VR-1161 (Accession 
FJ445136.1) 6026 6995 7152 34.9 

EHC_C19_7124N_
L3 3/1/2024 Rhinovirus A 28294 

Rhinovirus A RefSeq 
(Accession NC_001617.1) 6617 7122 7152 1540.2 

EHC_C19_7129S_
L3 3/1/2024 Rhinovirus A 393 

Rhinovirus A30 strain ATCC 
VR-1140 (Accession 
FJ445179.1) 4255 6972 7093 22.8 

EHC_C19_7130T_
L3 3/1/2024 

Rhinovirus A 
4952 

Rhinovirus A54 strain 
SC176 (Accession 
KY369875.1) 7103 7103 7104 354.5 

EHC_C19_7134X_
L3 3/1/2024 Rhinovirus C 10543 

Rhinovirus C11 strain CL-
170085 (Accession 
EU840952.2) 7053 6941 7108 279.3 

Table 4: Summary Statistics of Reference-Based Assembly. Summary of assembly statistics 

for individual viruses detected, demonstrated unambiguous (UA) assembly length, assembly 

length, reference genome length, and depth, as well as positive reads per million (positive RPM).  
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Figure 1: Enhanced Metagenomic Pipeline Workflow for Viral Pathogen Identification. In 

the main pipeline (orange), raw paired-end sequencing reads are prepared and quality-controlled, 

including deduplication with BBMap's clumpify.sh and trimming via Trimmomatic. Quality 

checks and merging of reads are conducted with fastp and Seqtk, followed by FASTA 

conversion. KrakenUniq classifies these processed reads against a viral database. Homology-

based validation is performed using BLAST, with top matches filtered for further analysis. The 

pipeline concludes with the integration of Kraken and BLAST classifications, applying a Python 

script to establish consensus classifications by determining the lowest common ancestor (LCA) 

for each read using NCBI Taxonomy data. Outside of the main pipeline (blue), InSilicoSeq 

simulates reads from a range of reference genomes and the pipeline readies the dataset for viral 

pathogen identification. After the core pipeline runs, the Pipeline Classification Assessment uses 
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the generated read library to compare the pipeline's output against reference labels, defining 

Positive Identifications (PID) when matches at the species or family level are confirmed, or 

Negative Identifications (NID) when misclassifications occur, thus evaluating the pipeline's 

accuracy and efficacy in pathogen identification. 
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Figure 2: Comparative Analysis of Pathogen Identification Across Viral Groups and Tools. 

The graphs illustrate the Positive Identification (PID) rates obtained from two analytical tools 

across various viral groups (a) and taxonomic classifications (b). In graph (a), each bar represents 

the average PID rate for a viral group as identified by the Pipeline tool. In graph (b), the PID 

rates are shown at two different taxonomic levels, Species and Family, with the blue bars 

indicating Kraken tool results and the orange bars indicating Pipeline tool results. Error bars 

represent the standard deviation, indicating the variation in PID rates within each group. 
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Figure 3: Viral Frequency. Proportion of 48 total unique samples containing each of the 

classified viruses. 1 sample had human mastadenovirus E, 1 sample had parainfluenza 2, 4 

samples had parainfluenza 3, 4 samples had influenza B, 4 samples had rhinovirus A, 1 sample 

had rhinovirus C, and the other 34 samples had no detected viruses. 
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Figure 4: Coverage Plot for Mastadenovirus E. The self-coverage plot of human 

mastadenovirus E for sample 7224J.  
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Figure 5: Coverage Plots for Parainfluenza Virus 2. The self-coverage plot of human 

parainfluenza virus 2 for sample 711E.  
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Figure 6: Coverage Plots for Parainfluenza Virus 3. The self-coverage plots of human 

parainfluenza virus 3 for samples 7118H (a), 7136Z (b), 7145I (c), and 7227M (d).   
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Figure 7: Coverage Plots for Influenza B Virus. The self-coverage plots of influenza B virus 

for samples 7137A (a), 7223I (b) 7224J (c), and 7125O (d).  
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Figure 8: Coverage Plots for Rhinovirus A. The self-coverage plots of human rhinovirus A for 

samples 7119I (a), 7124N (b), 7129S (c), sample 7130T (d). 
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Figure 9: Coverage Plots for Rhinovirus C. The self-coverage plot of human rhinovirus C for 

sample 7134X.  
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Figure 10: RNA Depletion vs Positive RPM. Candlestick plot demonstrating the difference 

between paired undepleted and depleted samples.  


