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Abstract 
 
Dynamic prediction of survival status in patients undergoing cardiac catheterization using a 

joint modeling approach 
 

By Derun Xia 
 
Background: Traditional cardiovascular disease risk factors have a limited ability to precisely predict 
patient survival outcomes. To better stratify the risk of patients with established coronary artery disease 
(CAD), it is useful to develop dynamic prediction tools that can update the prediction by incorporating 
time-varying data to enhance disease management.  
Objective: To dynamically predict myocardial infarction (MI) or cardiovascular death (CV-death) and 
all-cause death among patients undergoing cardiac catheterization using their electronic health records 
(EHR) data over time and evaluate the prediction accuracy of the model.  
Methods: Data from 6119 participants were obtained from Emory Cardiovascular Biobank (EmCAB). 
We constructed the joint model with multiple longitudinal variables to dynamically predict MI/CV-
death and all-cause death. The cumulative effect and slope of longitudinally measured variables were 
considered in the model. The time-dependent area under the receiver operating characteristic (ROC) 
curve (AUC) was used to assess the discriminating capability, and the time-dependent Brier score was 
used to assess prediction error.  
Results: In addition to existing risk factors including disease history, changes in several clinical 
variables that are routinely collected in the EHR showed significant contributions to adverse events. 
For example, the decrease in glomerular filtration rate (GFR), body mass index (BMI), high-density 
lipoprotein (HDL), systolic blood pressure (SBP) and increase in troponin-I increased the hazard of 
MI/CV-death and all-cause death. More rapid decrease in GFR and BMI (corresponding to decrease in 
slope) increased the hazard of MI/CV-death and all-cause death. More rapid increase in diastolic blood 
pressure (DBP) and more rapid decrease in SBP increased the hazard of all-cause death. The time-
dependent AUCs of the traditional Cox proportional model were higher than those of the joint model 
for MI/CV-death and all-cause death. The Brier scores of the joint model were also higher than those 
of the Cox proportional model.    
Conclusion: Joint modeling that incorporates longitudinally measured variables to achieve dynamic 
risk prediction is better than conventional risk assessment models and can be clinically useful. The 
joint model did not appear to perform better than a Cox regression model in our study. Possible reasons 
include data availability, selection bias, and quality uncertainty in the EHR. Future studies should 
address these issues when developing dynamic prediction models.  
Keywords: Dynamic prediction, longitudinal variable, cardiovascular disease, joint model, risk 
prediction 
  



Dynamic prediction of survival status in patients undergoing cardiac catheterization using a 

joint modeling approach 

 

By 

 

Derun Xia 

B.S., Nanjing Medical University, 2016 

 

Thesis Committee Chair: Yi-An Ko, PhD 

 

 

 

 

A thesis submitted to the Faculty of the 

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of 

Master of Public Health 

in Biostatistics 

2022 

  



Table of contents 

1 Introduction ....................................................................................................................... 7 

2 Methods ............................................................................................................................. 9 

2.1  Study design and participants ................................................................................. 9 

2.2  Statistical Analysis .................................................................................................. 10 

3 Results ............................................................................................................................. 15 

4 Discussion ....................................................................................................................... 17 

References .............................................................................................................................. 20 

 

 
  



1 INTRODUCTION 

Globally, cardiovascular disease (CVD) is the major cause of death, accounting for 31% of deaths. 

CVD incidence and prevalence continue to climb in the United States, despite a drop in death rates[1]. 

By 2030, it is expected that 44% of American adults will suffer from at least one form of CVD[2]. 

CVD is associated with significant economic and health costs [3]. The development of precise risk 

assessment tools and cost-effective preventative and treatment strategies is an unmet need. Traditional 

cardiovascular disease risk factors only account for the likelihood of developing coronary artery 

disease (CAD), but they are less effective at predicting patient survival outcomes [4, 5]. To better 

stratify the risk of patients with established CAD, it is essential to develop dynamic diagnostic tools in 

order to enhance disease management. 

Traditional models use baseline information but typically ignore longitudinal changes in risk 

markers, missing potential impact on risk assessment [6, 7]. Ideally, forecasting may be more precise 

if change in marker values over time is also considered. Dynamic prediction utilizes time-dependent 

marker data obtained during a patient's follow-up to provide updated, more precise survival probability 

predictions. Electronic health record (EHR) data provides a rich source of clinical information on a 

large and diverse population, making it cost-effective and ideal for studying rare diseases and 

subpopulations. Meanwhile, EHR data also emphasizes the time-dependent characteristics of health 

events, as it records patient data longitudinally over time. This longitudinal data can provide valuable 

insights into disease progression, treatment response, and long-term outcomes, and can be used to 

identify patterns and trends in health outcomes over time. Therefore, EHR data is essential for 



healthcare professionals and researchers seeking to make accurate and informed dynamic predictions 

about future health outcomes. 

Recently, many new methods have utilized longitudinal variables to dynamically predict the time-

to-event, such as landmarking, joint model, functional principal component analysis (FPCA), and 

random forest[8-12]. However, these methods have their own disadvantages. By restricting the analysis 

to a subset of the data, landmarking can result in a loss of information and decreased statistical power; 

[13] Many machine learning algorithms are black-box models, making it difficult to understand the 

underlying relationships between the predictors and the outcome[14].  

Joint models are suitable for dynamically predicting outcomes using EHR data[15, 16]. EHR data 

is often collected over time, and joint models can handle both time-varying and time-invariant variables, 

making them well suited for modeling these data. Moreover, longitudinal joint models can handle 

missing data frequently occur in the EHR system in a principled way, making it possible to use all 

available information. The results of the joint model are also straightforward and can be represented 

graphically to illustrate the strength of the link between survival outcomes and longitudinal variables, 

such as the hazard ratio[17]. The predictive results of the combined model have the potential to help 

physicians make precise and timely medical decisions.  

Our aim is to develop a joint model to dynamically predict the adverse events including MI/CV-

death and all-cause death among patients undergoing cardiac catheterization using their EHR data over 

time and to evaluate the prediction accuracy of the model. We illustrate a method to develop 

individualized dynamic prediction models based on the the progression of longitudianl variables. In 



addition, we will compare these results with a traditional Cox regression model that uses only baseline 

covariates. 

2 METHODS 

2.1  Study design and participants 

Data used in this analysis were obtained from Emory Cardiovascular Biobank (EmCAB), an ongoing 

prospective registry of patients undergoing cardiac catheterization, which was established to identify 

novel factors associated with the pathobiological process and treatment of cardiovascular disease. 

Detailed information on EmCAB study protocols, including participant inclusion and exclusion criteria 

have been described [18].  

In our study, 6119 participants who underwent cardiac catheterization, enrolled 2004—2021, were 

included. At enrollment, patients are interviewed to collect information on demographic characteristics, 

medical history, detailed family history, medication usage, and health behaviors (alcohol/drug use) 

prior to cardiac catheterization. Each patients had a 1- and 5-year follow-up phone calls for any adverse 

events, including myocardial infarction (MI) and cardiovascular (CV). 

We selected longitudinal variables in the EHR data for which at least 90% of the patients had more 

than one observation, including blood pressure measurements, BMI, and labs (see below). Outliers and 

extreme values were reviewed and removed if necessary. In case of multiple measurements of the same 

variable within a day, we reduced the number of observations by using the median value for analysis. 

The study was approved by the institutional review board (IRB) at Emory University (Atlanta, 

Georgia, USA) and is renewed annually. All participants provided written informed consent at the time 



of enrolment. 

2.2  Statistical Analysis 

Baseline characteristics of the study participants were summarized using mean ± standard deviation 

(SD) or median (interquartile range [IQR]) for continuous variables and frequencies and percentages 

for categorical variables. 

We developed a joint longitudinal-survival modeling framework to focus on dynamic prediction of 

the future risk of MI or CV death and all-cause death. The joint model takes into account multiple 

longitudinal measures and their slopes, and the prediction of future risk can be updated based on 

multiple longitudinal measures as well as other baseline characteristics. The survival time was 

calculated from the enrollment to the time of MI/CV-death, all-cause death or censoring.  

The joint model consists of two sub-models. The survival sub-model takes the form of a Cox 

proportional hazards model with baseline covariates including age, gender, race, education, and history 

of hypertension, smoking, diabetes, hypercholesterolemia, revascularization and heart failure. The 

longitudinal sub-model describes the evolution of the repeated measures over time with the main 

effects from observation time (in years), age, gender, and race. The longitudinal variables included 

estimated glomerular filtration rate (eGFR), body mass index (BMI), high-density lipoprotein (HDL), 

low-density lipoprotein (LDL), cardiac troponin-I, diastolic blood pressure (DBP), systolic blood 

pressure (SBP), and hemoglobin A1c (HbA1c). Random effects were used to capture the between-

subject variation. For all longitudinal variables, the slope coefficients of observation time and 

intercepts vary randomly across individuals.  We expanded the time effect in the longitudinal sub-



model using a spline basis matrix to capture possibly the nonlinear subject-specific trajectories. 

Let yij(t)  denote observation of the j-th measurement (j = 1, …, 𝑛𝑛𝑖𝑖 , where 𝑛𝑛𝑖𝑖  is the number of 

observations for subject i) for the i-th subject (i=1,…, N) at time t. The following linear mixed model 

can be used model a longitudinally measured variable: 

yij(𝑡𝑡) = mij(𝑡𝑡) + εij(𝑡𝑡) = 𝑥𝑥𝑖𝑖𝑖𝑖𝐓𝐓(𝑡𝑡)β + 𝑧𝑧𝑖𝑖𝑖𝑖𝐓𝐓(𝑡𝑡)𝑏𝑏𝑖𝑖 + εij(𝑡𝑡)  (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖𝐓𝐓�𝑡𝑡𝑖𝑖𝑖𝑖�𝛽𝛽 is the fixed-effect and 𝑧𝑧𝑖𝑖𝑖𝑖𝐓𝐓�𝑡𝑡𝑖𝑖𝑖𝑖�𝑏𝑏𝑖𝑖 is the random-effects. 𝜀𝜀𝑖𝑖𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� donates measurement error. 

Given the eGFR as an example: 

 

eGF𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝜇𝜇 + 𝜃𝜃0𝑖𝑖 + (β1 + 𝜃𝜃1𝑖𝑖)𝐵𝐵𝑛𝑛(𝑡𝑡, λ1) + (β2 + 𝜃𝜃2𝑖𝑖)𝐵𝐵𝑛𝑛(𝑡𝑡, λ2) + (β3 + 𝜃𝜃3𝑖𝑖)𝐵𝐵𝑛𝑛(𝑡𝑡, λ3)

+ β4 ∗ agei + β4Genderi + β6Blacki + εi(𝑡𝑡) 

𝜃𝜃𝑖𝑖 ∼ 𝑁𝑁(0, τ2), 

𝜀𝜀𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� ∼ 𝑁𝑁(0,𝜃𝜃2), 

 𝜃𝜃𝑖𝑖 ⊥⊥ 𝜖𝜖𝑖𝑖𝑖𝑖 

mi(𝑡𝑡) = 𝜇𝜇 + 𝜃𝜃0𝑖𝑖 + (𝛽𝛽1 + 𝜃𝜃1𝑖𝑖)𝐵𝐵𝑛𝑛(𝑡𝑡, 𝜆𝜆1) + (𝛽𝛽2 + 𝜃𝜃2𝑖𝑖)𝐵𝐵𝑛𝑛(𝑡𝑡, 𝜆𝜆2) + (𝛽𝛽3 + 𝜃𝜃3𝑖𝑖)𝐵𝐵𝑛𝑛(𝑡𝑡, 𝜆𝜆3) + 𝛽𝛽4

∗ 𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖 + 𝛽𝛽4𝐺𝐺𝑒𝑒𝑛𝑛𝐺𝐺𝑒𝑒𝑟𝑟𝑖𝑖 + 𝛽𝛽6𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵𝑘𝑘𝑖𝑖 

(2) 

 

 

 

 

(3) 

 

 

The 𝜇𝜇 + 𝜃𝜃0𝑖𝑖 is the patient-specific intercept 𝜇𝜇0 is the overall intercept and 𝜃𝜃0𝑖𝑖 is the subject-specific 

difference from 𝜇𝜇.  The matrix represents a spline basis matrix for a natural cubic spline of time that 

has two internal knots, resulting in three degrees of freedom. These knots were placed at the 33.3% 

and 66.7% percentiles of the follow-up time points. The 𝛽𝛽𝑢𝑢 + 𝜃𝜃𝑢𝑢𝑖𝑖 is the subject specific slope for the 



u-th basic function of a spline with knots λ𝑢𝑢 

 

The hazard function is: 

hi(t) = h0(t)exp(γTωi + �αkmik(t)
K

k=1

) 
 

(4) 

 

h0(t) was the baseline hazard function. ωi is the baseline covariate. We have K multiple longitudinal 

variables, the αk  linked the k-th (k=1,…, K) linear mixed model and Cox regression model and 

assuming the hazard at time t was dependent on the longitudinal trajectory, mik(t) , through the 

estimated value at time t. When the αk is significant, it indicated that there is an association between 

the k-th longitudinal variable and the longitudinal measures and time to event. And the exp (α𝑘𝑘) was 

the hazard ratio for one unit increase in the mik(t) at time t for k-th longitudinal variable. We also 

include the time-dependent slopes and the cumulative effects of longitudinal variables in the model. 

The baseline hazard function is represented by h0(t). ωi represents the baseline covariate. The αk 

connects the linear mixed model and Cox regression model and assumes that the hazard at time t is 

dependent on the longitudinal trajectory, represented by mik(t), through the estimated value at that 

time. If the αk is significant, it indicates that there is a correlation between the longitudinal variable 

and time to event. The hazard ratio for a one unit increase in mi(t) at time t can be calculated as exp(α). 

The model also considers the time-varying slopes and cumulative effects of the longitudinal variables. 

The cumulative effects ∫
 𝑡𝑡0 𝑚𝑚𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

 is the  hazard of an event at t is associated with the area under the 



trajectory up to t. 

Joint models for such joint distributions are of the following form. The 𝜃𝜃𝑖𝑖 is a vector of random 

effects that explains the interdependencies. 𝑝𝑝(. )  is the density function and 𝑆𝑆(. )  is the survival 

function. 

𝑝𝑝� 𝑦𝑦𝑖𝑖𝑖𝑖 ∣∣ 𝜃𝜃𝑖𝑖𝑖𝑖 � = �𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘 ∣∣ 𝜃𝜃𝑖𝑖𝑖𝑖 �

𝑛𝑛𝑖𝑖𝑖𝑖

𝑘𝑘=1

= �𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖 ∣∣ 𝜃𝜃𝑖𝑖𝑖𝑖 �
𝑖𝑖

 
 

(5) 

𝑝𝑝(𝑦𝑦𝑖𝑖 ,𝑇𝑇𝑖𝑖, δ𝑖𝑖 ∣∣ 𝜃𝜃𝑖𝑖 ) = �𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖 ∣∣ 𝜃𝜃𝑖𝑖𝑖𝑖 �𝑝𝑝(𝑇𝑇𝑖𝑖, δ𝑖𝑖 ∣∣ 𝜃𝜃𝑖𝑖 )
𝑖𝑖

 (6) 

𝑇𝑇𝑖𝑖 is the observed event time for patient i and δ𝑖𝑖 is the event indicator. The key assumption is that given 

the random effects, the repeated measurements in each outcome are independent, the longitudinal 

variables are independent of each other, and longitudinal outcomes are independent of the time-to-

event outcome. 

The Bayesian approach was adopted for model inference and for dynamic predictions. The key step 

in prediction for a new subject was to obtain samples of subject’s random effects from the posterior 

distribution given the estimated parameters and previous longitudinal observations (at least one 

measure). The samples were then used to calculate the predictions for the longitudinal variables’ future 

trajectories and risk of MI/CVdeath and all-cause death. Based on the general framework of joint 

models presented earlier, we are interested in deriving cumulative risk probabilities for a new subject 

𝑗𝑗∗  that has survived up to time point t and has provided longitudinal measurements 𝒴𝒴𝑘𝑘𝑖𝑖∗(𝑡𝑡) =

�𝑦𝑦𝑘𝑘𝑖𝑖∗�𝑡𝑡𝑖𝑖∗𝑙𝑙�; 0 ≤ 𝑡𝑡𝑖𝑖∗𝑙𝑙 ≤ 𝑡𝑡, 𝐵𝐵 = 1, … ,𝑛𝑛𝑖𝑖∗ ,𝑘𝑘 = 1, … ,𝐾𝐾� , with K denoting the number of longitudinal 

outcomes. The probabilities of interest are: 



𝜋𝜋𝑖𝑖∗(𝑢𝑢 ∣ 𝑡𝑡 ) = Pr� 𝑇𝑇𝑖𝑖∗
∗ ≤ 𝑢𝑢 ∣∣ 𝑇𝑇𝑖𝑖∗

∗ > 𝑡𝑡,𝒴𝒴𝑖𝑖∗(𝑡𝑡),𝒟𝒟𝑛𝑛 �

= 1 −
∬ 𝑆𝑆�𝑢𝑢 ∣∣ 𝑏𝑏𝑖𝑖∗ ,𝜃𝜃 �
𝑆𝑆� 𝑡𝑡 ∣∣ 𝑏𝑏𝑖𝑖∗ ,𝜃𝜃 �

𝑝𝑝� 𝑏𝑏𝑖𝑖∗ ∣∣ 𝑇𝑇𝑖𝑖∗
∗ > 𝑡𝑡,𝒴𝒴𝑖𝑖∗(𝑡𝑡),𝜃𝜃 �𝑝𝑝( 𝜃𝜃 ∣∣ 𝒟𝒟𝑛𝑛 )𝐺𝐺𝑏𝑏𝑖𝑖∗𝐺𝐺𝜃𝜃

 

 

(7) 

where 𝑆𝑆(⋅)  denotes the survival function conditional on the random effects, and 𝒴𝒴𝑖𝑖∗(𝑡𝑡) =

�𝒴𝒴1𝑖𝑖∗(𝑡𝑡), … ,𝒴𝒴𝐾𝐾𝑖𝑖∗(𝑡𝑡)� . Combining the three terms in the integrand we can device a Monte Carlo 

scheme to obtain estimates of these probabilities, namely. 

Firstly, we can sample a value 𝜃𝜃� from the posterior of the parameters [𝜃𝜃 ∣ 𝒟𝒟𝑛𝑛] and sample a value 

𝑏𝑏�𝑖𝑖∗  from the posterior of the random effects �𝑏𝑏𝑖𝑖∗ ∣ 𝑇𝑇𝑖𝑖∗
∗ > 𝑡𝑡,𝒴𝒴𝑖𝑖∗(𝑡𝑡),𝜃𝜃��. We then compute the ratio of 

survival probabilities 𝑆𝑆�𝑢𝑢 ∣ 𝑏𝑏�𝑖𝑖∗ ,𝜃𝜃��/𝑆𝑆�𝑡𝑡 ∣ 𝑏𝑏�𝑖𝑖∗ ,𝜃𝜃��. After replicating these steps L times, we can estimate 

the conditional cumulative risk probabilities by: 

1 −
1
𝐿𝐿
�  
𝐿𝐿

𝑙𝑙=1

𝑆𝑆 �𝑢𝑢 ∣ 𝑏𝑏�𝑖𝑖∗
(𝑙𝑙),𝜃𝜃�(𝑙𝑙)�

𝑆𝑆 �𝑡𝑡 ∣ 𝑏𝑏�𝑖𝑖∗
(𝑙𝑙),𝜃𝜃�(𝑙𝑙)�

 
 

(8) 

and their standard error by calculating the standard deviation across the Monte Carlo samples. 

We calculated time-dependent areas under receiver-operating characteristics (ROC) curves (AUCs) 

and Brier score to assess the performance of the longitudinal marker at different time points over the 

follow-up period. We predicted the probabilities of MI and CV-death and all-cause of death occurring 

in the time frame (t, t+Δt], using all measures collected till time t. Then the AUCs were calculated to 

assess how well the longitudinal marker distinguished the status of patients at time t+Δt. The Brier 

score is a metric used to assess the precision of a predicted survival function at time t+Δt. It calculates 

the average squared difference between the observed survival status and the predicted survival 

probability, with a range of values from 0 to 1. Since the participants were reassessed approximately 



every year, we selected t at 2, 3 ,4 ,5 and 6 years, and Δt = 1, 2 (years). In general, higher AUCs indicate 

higher discrimination of the models and lower Brier score indicates worse precision of prediction. For 

comparison, we also fitted proportional hazards models (Cox model) with baseline measures. We then 

assessed the predictive performance of these models using time-dependent AUCs and Brier scores. 

In addition, we applied the resulting joint models to predict the future longitudinal trajectories and 

risk of MI /CV-death for new participants. We selected 2 patients to demonstrated initialized dynamic 

prediction was updated over time as new clinical information became available. The joint model fitting 

and predictions were achieved using the R Jmbayes2 package[19]. 

3 RESULTS 

Table 1 summarizes the characteristics of the 6119 participants. The median follow-up time was 7.53 

years (SD 4.16; range 0.09 - 13.73). The average age at baseline was 62.9 years (SD 12.7; range 18.7 

- 99.6), 64.9% were women and 19.6% were black. 3984 (65.1%) patients had a smoking history. 

Among 6119 participants the average eGFR at baseline was 72.5 mL/min/1.73m2 (SD 24.4; range 2.3 

- 175.5). 76.9% of patients had a history of hypertension, 2143 (35.0%) patients had a history of 

diabetes mellitus, and 1827 (29.9%) patients had a history of hypercholesterolemia. Meanwhile, 1406 

(23.0%) patients had a history of myocardial infarction, and 2246 (36.7%) have a history of heart 

failure. 2986 (48.8%) patients had a history of revascularization. 

Figure 1 shows Kaplan-Meier survival curves. The patients having the smoking history, history of 

heart failure, myocardial infarction, or a history of revascularization had a lower probability of MI/CV-



death-free survival than the reference group during 12 years of follow-up.   

Table 2 shows estimated hazard ratios from the joint models. Based on the results of the MI/CV-

death joint models, age, gender, race, education, history of hypertension, history of myocardial 

infarction and history of heart failure (measured at baseline), eGFR, BMI, HDL, Troponin-I, and SBP 

(measured longitudinally) were all significant predictors of the hazard of MI/CV-death. For all-cause 

death joint model, age, gender, race, education, history of hypertension, history of diabetes mellitus, 

history of myocardial infarction, history of heart failure, history of revascularization (measured at 

baseline) and eGFR, BMI, HDL, Troponin-I, and SBP (measured longitudinally) were also significant 

predictors all-cause death. Compared with the MI/CV-death joint model, the slope of DBP, SBP and 

HbA1c were new significant predictors of all-cause death.  

Table 3 presents the AUCs and Brier scores of Cox regression and the joint models. It shows that 

the AUCs of the joint models were lower than that of the Cox models. The Brier scores of joint models 

were higher than Cox regression models, which indicates that the prediction error of joint models was 

higher than the Cox regression model. 

Figure 2 shows the dynamic prediction of all-cause death and MI/CV-death for two patients. As 

new longitudinal measurements were incorporated into the model, the linear mixed regression models 

were subsequently updated, and the risk function was simultaneously updated according to cumulative 

effect (the area under the model divided by the follow-up time). Lastly, the updated survival curve from 

the prediction time interval presented the predicted survival (event-free) probability. 



4 DISCUSSION 

In this study, we built a joint model with multiple longitudinal variables to dynamically predict two 

survival outcomes, MI/CV-death and all-cause death, and found baseline and longitudinal variables 

from EHR that were significantly associated with survival outcomes. We also compared the 

discrimination power with the traditional Cox regression model based on time-dependent ROC of AUC. 

Results showed that the cumulative effect of variables such as eGFR, BMI, HDL and the slope over 

time was associated with survival outcomes. Based on AUC and Brier score, we did not find better 

discrimination power and prediction accuracy of joint model compared to Cox regression model. 

Several approaches have been developed to accomplish dynamic prediction of conditional survival 

probabilities based on longitudinal and survival data, including joint models[20], landmark models[21], 

and random forests[10]. The landmark model takes into account only the most recent available 

measurement. For random forests, a limitation of RSF landmarking is that the predictions are not linked 

over time due to the use of independent RSF models at each landmark time result. If the longitudinal 

variables are extracted from EHR, monitoring of longitudinal variables may not always be organized 

as fixed follow-up intervals, so estimation of the model may introduce additional uncertainty and bias. 

The joint model has fewer restrictions on the longitudinal data, which is especially flexible for EHR. 

A rigidly specified follow-up plan is not required for joint modeling. These characteristics significantly 

increase the applicability of this joint model. 

At each timepoint of longitudinal biomarkers measurement from EHR, our model can offer dynamic 

subject-specific predictions of MI/CV-death and all-cause of death. For patients who already have CAD, 



an accurate prediction model for their prognosis that is updated in real-time is crucial. This strategy 

may direct the frequency of tailored assessments and promote earlier diagnosis, hence improving 

prognosis and the timing of disease-modifying drug intervention, once accessible. The previous 

models[8, 22, 23] only considered the biomarkers measured at a few specific time points to the end of 

treatment. If these models are employed to forecast survival probability and stratify risk groups, 

individual variations in response to therapies will be disregarded. Although some joint models[24, 25] 

fulfill the dynamic prediction of cardiovascular risk, they only include one longitudinal biomarker in 

the model. Our model allows for a more comprehensive consideration of multiple factors associated 

with survival outcomes. Future prospective studies should also investigate a customized real-time 

therapy adaptation system to guide the treatment and health care based on the dynamic patterns of the 

longitudinal risk factors from EHR.  

There are some limitations of our study. First, the joint model is computationally intensive, 

particularly for large datasets, leading to longer training and inference times. In our study, we have 

more than 6,000 subjects and 170,000 longitudinal records. More computation power is required for 

consideration of multiple longitudinal variables, their cumulative effects, and the trajectories over time. 

Second, the discrimination ability of the joint model did not show improvement compared with the 

Cox model. There could be several reasons. EHR data are not measured at regular intervals.  Patients 

may have many measurements in a short period of time or no measurements for a very long time. As 

multiple variables are not measured simultaneously, large amount of missing data increases the 

computational effort, which may lead to inaccuracies in the estimation. Lastly, factors that are not 



accounted for by the proposed models may influence prediction and prediction performance. 
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APPENDIX 

Table 1: Baseline characteristics of Emory Biobank participants stratified by gender. 

Baseline variable All (N=6119) Female (N= 2145) Male (N=3974) 
Age (years)     

Mean (SD) 62.892 (12.662) 62.650 (13.522) 63.023 (12.172) 
Range 18.645 - 99.627 18.645 - 98.795 20.879 - 99.627 

Race     
Caucasian White 4661 (76.2%) 1510 (70.4%) 3151 (79.3%) 
African American Black 1202 (19.7%) 563 (26.3%) 639 (16.1%) 
Hispanic 51 (0.8%) 19 (0.9%) 32 (0.8%) 
Asian 101 (1.7%) 23 (1.1%) 78 (2.0%) 
Native American 7 (0.1%) 4 (0.2%) 3 (0.1%) 
Pacific Islander 2 (0.0%) 0 (0.0%) 2 (0.1%) 
Other 93 (1.5%) 25 (1.2%) 68 (1.7%) 

Black    
Yes 1202 (19.6%) 563 (26.2%) 639 (16.1%) 

History of Hypertension     
Yes 4704 (76.9%) 1650 (76.9%) 3054 (76.8%) 

History of Diabetes Mellitus    
Yes 2143 (35.0%) 743 (34.6%) 1400 (35.2%) 

History of hypercholesterolemia     
Yes 4292 (70.1%) 1424 (66.4%) 2868 (72.2%) 

Ever smoker    
Yes 3984 (65.1%) 1231 (57.4%) 2753 (69.3%) 

History of myocardial infarction     
Yes 1406 (23.0%) 396 (18.5%) 1010 (25.4%) 

History of heart failure    
Yes 2246 (36.7%) 797 (37.2%) 1449 (36.5%) 

Highest Level of Education     
Elementary or Middle School 191 (3.1%) 73 (3.4%) 118 (3.0%) 
Some High School 565 (9.2%) 243 (11.3%) 322 (8.1%) 
High School Graduate 1698 (27.7%) 664 (31.0%) 1034 (26.0%) 
Some College 1417 (23.2%) 547 (25.5%) 870 (21.9%) 
College Graduate 1242 (20.3%) 366 (17.1%) 876 (22.0%) 
Graduate Education or Degree 1006 (16.4%) 252 (11.7%) 754 (19.0%) 

Significant CAD    
Yes 3237 (72.9%) 884 (63.1%) 2353 (77.4%) 
N-Miss 1679 744 935 

Normal catheterization    
Yes 691 (14.7%) 300 (19.6%) 391 (12.4%) 
N-Miss 1424 615 809 



eGFR    
Mean (SD) 72.514 (24.388) 72.298 (26.347) 72.630 (23.265) 
Range 2.333 - 175.481 2.333 - 175.481 2.365 - 154.769 

History of revascularization     
Yes 2986 (48.8%) 801 (37.3%) 2185 (55.0%) 

eGFR, estimated glomerular filtration rate; Significant coronary artery disease (CAD) is defined as at 
least one artery with 50% or more stenosis based on angiogram findings.  
 
 



Table 2: Estimation of hazard ratio for joint model of MI/CV-death and all-cause death 

 MI/CV-death All-cause death 
   Coefficient Hazard 

Ratio 
95% CI P-value Coefficient Hazard 

Ratio 
95% CI P-

value 
Baseline variables:         

Age 0.012 1.012 (1.003, 1.021) 0.009 0.027 1.027 (1.019, 1.037) 0.000 
Male -0.440 0.644 (0.542, 0.763) 0.000 -0.366 0.693 (0.589, 0.816) 0.000 
Black 0.289 1.335 (1.128, 1.601) 0.002 0.076 1.079 (0.914, 1.264) 0.353 
Highest Level of 

Education 
(Elementary or Middle 

School  
as the reference group) 

. . . . 
    

Some High School -0.008 0.992 (0.697, 1.434) 0.947 -0.027 0.974 (0.723, 1.335) 0.868 
High School Graduate -0.014 0.986 (0.717, 1.395) 0.904 -0.073 0.929 (0.713, 1.237) 0.585 
Some College 0.011 1.011 (0.728, 1.43) 0.967 -0.169 0.845 (0.644, 1.131) 0.249 
College Graduate -0.352 0.703 (0.504, 1.005) 0.052 -0.287 0.751 (0.561, 1.012) 0.062 
Graduate Education or 

Degree 
-0.365 0.695 (0.487, 1.003) 0.051 -0.464 0.629 (0.469, 0.853) 0.007 

History of Hypertension 0.223 1.250 (1.054, 1.497) 0.009 0.248 1.281 (1.096, 1.508) 0.001 
History of Diabetes 

Mellitus 
0.156 1.169 (0.999, 1.35) 0.052 0.205 1.228 (1.075, 1.408) 0.002 

History of 
hypercholesterolemia 

-0.027 0.973 (0.83, 1.138) 0.756 -0.226 0.798 (0.699, 0.914) 0.001 

Ever smoker 0.128 1.136 (0.988, 1.314) 0.079 0.192 1.211 (1.063, 1.377) 0.005 
History of myocardial 

infarction 
0.220 1.246 (1.072, 1.454) 0.004 0.016 1.016 (0.879, 1.177) 0.818 

History of heart failure 0.436 1.546 (1.349, 1.774) 0.000 0.515 1.673 (1.481, 1.887) 0.000 
History of 

revascularization 
0.202 1.224 (1.057, 1.431) 0.007 0.039 1.039 (0.914, 1.182) 0.550 

Longitudinal variables:         



eGFR (mL/min/1.73 m²) -0.017 0.984 (0.98, 0.987) 0.000 -0.018 0.982 (0.979, 0.986) 0.000 
eGFR (slope) 

(mL/min/1.73 m²/year) 
-0.049 0.952 (0.921, 0.986) 0.013 -0.145 0.865 (0.799, 0.941) 0.000 

log(BMI) (kg/m²) -1.422 0.241 (0.156, 0.371) 0.000 -1.827 0.161 (0.106, 0.243) 0.000 
log(BMI) (slope) 

(kg/m²/year) 
-22.499 exp (-

22.4991) 
(exp(-29.4230),  
exp(-15.6880) 

0.000 -95.336 0.000 (0, 0) 0.000 

HDL (mg/dL) -0.022 0.978 (0.97, 0.987) 0.000 -0.016 0.984 (0.976, 0.992) 0.000 
HDL (slope) 

(mg/dL/year) 
-0.815 0.443 (0.318, 0.618) 0.000 -1.694 0.184 (0.087, 0.417) 0.000 

LDL (mg/dL) 0.000 1.000 (0.997, 1.004) 0.833 0.000 1.000 (0.996, 1.003) 0.932 
LDL (slope) 

(mg/dL/year) 
0.070 1.073 (0.998, 1.149) 0.060 0.187 1.205 (0.942, 1.52) 0.145 

Troponion-I (ng/mL) 0.062 1.064 (1.05, 1.079) 0.000 0.043 1.044 (1.013, 1.076) 0.006 
Troponion-I (slope) 

(ng/mL/year) 
0.013 1.013 (0.975, 1.057) 0.519 0.061 1.063 (0.875, 1.302) 0.551 

DBP (mmHg) -0.005 0.995 (0.979, 1.012) 0.496 0.001 1.001 (0.984, 1.017) 0.934 
DBP (slope) 

(mmHg/year) 
0.003 1.003 (0.877, 1.153) 0.965 0.483 1.620 (1.077, 2.52) 0.015 

SBP (mmHg) -0.014 0.986 (0.978, 0.994) 0.000 -0.019 0.981 (0.974, 0.989) 0.000 
SBP (slope) 

(mmHg/year) 
0.023 1.023 (0.935, 1.115) 0.608 -0.299 0.742 (0.577, 0.949) 0.019 

HbA1c (%)  -0.010 0.990 (0.894, 1.089) 0.860 -0.057 0.944 (0.839, 1.059) 0.337 
HbA1c (slope) (%/year) -0.808 0.446 (0.09, 1.953) 0.343 -9.308 0.000 (0, 0.004) 0.000 

eGFR, estimated glomerular filtration rate; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; DBP, diastolic 
Blood pressure; SBP, systolic blood pressure; HbA1c, hemoglobin A1c 
  



Table3: Time-dependent AUC and Brier score of joint model and Cox model 
   

Using information up to t follow-up (years)    
2 3 4 5 6   

Δt 
(years) 

Cox 
model 

Joint 
model 

Cox 
model 

Joint 
model 

Cox 
model 

Joint 
model 

Cox 
model 

Joint 
model 

Cox 
model 

Joint 
model 

AUC MI/CV-death 2 0.616 0.698 0.628 0.694 0.638 0.670 0.631 0.686 0.635 0.657 
1 0.621 0.666 0.637 0.725 0.661 0.662 0.614 0.669 0.627 0.694 

All-cause 
death 

2 0.641 0.693 0.611 0.701 0.651 0.701 0.648 0.706 0.639 0.703 
1 0.657 0.690 0.630 0.691 0.681 0.704 0.671 0.689 0.661 0.702 

Brier 
Score 

MI/CV-death 2 0.063 0.060 0.066 0.064 0.070 0.069 0.070 0.064 0.067 0.062 
1 0.034 0.033 0.033 0.032 0.037 0.037 0.039 0.037 0.035 0.032 

All-cause 
death 

2 0.064 0.062 0.065 0.062 0.067 0.066 0.063 0.061 0.057 0.054 
1 0.034 0.034 0.034 0.033 0.034 0.034 0.037 0.037 0.030 0.028 

t of the first row means the the dynamic prediction uses the longitudinal measurements up to t years. Δt of he third column means the prediction 
interval of dynamic prediction. The third row represent the model used to dynamically predict the survival outcome. The AUCs were calculated 
to assess how well the longitudinal marker distinguished the status of patients at time t+Δt. The Brier score is a metric used to assess the precision 
of a predicted survival function at time t+Δt. Higher AUCs indicate higher discrimination of the models and lower Brier score indicates worse 
precision of prediction. 
  



 

 
Figure 1: Kaplan Meier plot of MI/CV-death stratified by smoking history, heart failure history, myocardial infarction history, and 

revascularization history 
 

 
 



 

 
Figure 2: The dynamic prediction of MI/CV-death and all-cause death probabilities for 2 different patients during follow-up 

The horizontal axis shows the number of years in follow-up, with a vertical dotted line indicating the time of longitudinal variables. The left-
hand vertical axis displays eGFR, BMI, and HDL, with observed values denoted by stars and a solid line showing the longitudinal trajectory. 
The right-hand vertical axis presents the mean survival probability estimate and 95% confidence interval using dashed lines. 
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