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Blood Glucose Variability Measures: Going Beyond Traditional Methods 

 

 

By: Michael Kelleman 

 

BACKGROUND: The establishment of a formal and effective method to characterize 
glucose variability is a crucial step in the advancement of reducing morbidity and 
mortality, especially in critically ill patients in the intensive care unit (ICU). Previous 
studies have used measures that are unable to account for correlation between blood 
glucose measurements. We sought to provide a standardized method of data analysis 
from a glucose management protocol in hospitalized patients that is more appropriate for 
these repeated measures. 

METHODOLOGY: Our study population consisted of 153 pediatric patients from two 
pediatric intensive care units (PICU): Children’s Healthcare of Atlanta (CHOA) in 
Atlanta, GA and James Whitcomb Riley Hospital for Children in Indianapolis, IN. 
Baseline severity of illness scores (PELOD) were calculated at the time of admission and 
on day 6. Blood glucose measurements were collected throughout their hospitalization 
and PICU (length of stay) LOS and hospital LOS were recorded. We performed GEE 
analysis on blood glucose variability measures to determine the association with 
mortality. Additionally, we performed mixed linear model analysis on blood glucose 
variability measures to determine the association with PICU LOS, hospital LOS and 
change in PELOD scores. 

RESULTS: We observed increased hospital and PICU LOS with increasing maximal 
glucose levels and decreased hospital and PICU LOS with increasing minimal glucose 
levels. No glucose variability measures were found to be associated with mortality either 
independently or in a GEE model. Standard deviation (SD) and glucose variability index 
were not found to be significantly associated with PICU or hospital LOS while 
coefficient of variation CV was found to be significantly associated with both PICU of 
hospital LOS. CV and was also significantly associated with change in PELOD after 
controlling for baseline severity of illness while SD and glucose variability index were 
not significantly associated with changed in PELOD. 

DISCUSSION: These results are consistent with previous studies while we introduced a 
novel way to analyze blood glucose measurement from critically ill pediatric patients in 
the PICU. Further research on glucose variability and repeated measure analysis should 
consider incorporating other characteristics of variability measured using area under the 
curves AUC applied to glucose versus time. 
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Chapter I 

Introduction 

Background 

The pediatric intensive care unit (PICU) cares for both surgical and medical (non-

surgical) pediatric patients and, due to the nature of the critical illness, many experience 

episodes of hyperglycemia. Treating the condition of hyperglycemia with insulin to 

return the patient to a state of normoglycemia has an impending side effect of 

hypoglycemia. Potential consequences of these conditions include increased morbidity, 

mortality and length of stay (LOS) in both the hospital and PICU [1]. Increased LOS in 

the hospital and PICU have been associated with increased mortality from such 

conditions as acute renal failure, infection, and sepsis.   

There are two main clinical practices for handling the potentially serious issues of 

hyperglycemia and hypoglycemia:  (1) apply a clinical protocol in blood glucose testing 

and treat via insulin if the glucose levels are greater than the upper limit of a particular 

acceptable range, say 80-140 mg/dL, and (2) having no window and allowing glucose 

levels to vary naturally. The former can be difficult to manage for many reasons such as 

the reliance of such protocol on nursing staff, failure to comply with the clinical 

protocols, and the nature of the critically ill patient. Among the risks of administering 

insulin are seizures, hypoglycemia and death. Additionally, having no clearly defined 

target range of normal values may allow glucose levels to reach such a high level that the 

risks of morbidity and mortality are increased. In terms of public policy, the protocol in 
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adult ICU population is becoming more relaxed to allow for greater glucose variability 

[2], but little research has been conducted in pediatric patients. 

Problem Statement 

It is not known whether it’s better to institute glycemic control within a window 

of normal values therefore restricting the blood glucose variability or having no window 

and let blood glucose levels vary if they need to vary [3]. Previous studies have used 

clinician’s knowledge and previous experience about glucose management of pediatric 

patients in the PICU. Since there are no agreed upon defined ranges for hyperglycemia or 

hypoglycemia in pediatric patients, a standardized plan of action for addressing these 

conditions has mostly been the responsibility of the attending physicians. Many glucose 

management protocols attempt to restrict glucose levels to be within 80-220 mg/dL [4]. 

The critically ill patient’s blood glucose can be tested hundreds of times during 

their ICU stay. There have been previous reports which have studied the variability of 

blood glucose in the ICU. However, since these studies have been treating measurements 

as independent, without accounting for within-patient correlation, they have not been 

properly accounting for previous measurements available across time. The presence of 

within-patient correlation violates the assumptions of most statistical estimates (eg. 

standard deviation) since patients’ glucose levels at one time may be related to previous 

measurements. Ignoring within-patient correlation may lead to incorrect estimates, 

standard errors, hypothesis tests and most importantly, incorrect interpretations and 

conclusions.   
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While there haven’t been many studies investigating glucose variability, there is 

an extensive literature on heart rate variability and recommended practices to measure 

and manage this variability. Heart rate variability calculations are considered an 

informative method in determining glucose variability since there are similarities in the 

cyclical nature of heart rate and glucose as well as the frequency in which these data are 

collected.  

Purpose Statement 

The objective of this paper is to introduce a statistical analysis of glucose 

variability data from pediatric hospitalizations that include the within-patient correlation 

at each measured time point. This paper will show how the results compare to previous 

reports of glucose-induced outcomes that excluded the assumption that each measured 

time point was dependent on previous time points. The approach allows standardization 

of data analysis from glucose management protocol in hospitalized patients. 

Relationships between different measures of blood glucose variability and clinical 

outcome will also be assessed. Due to the rarity of mortality in the patient population, we 

are also interested in examining the association of different measures of glucose 

variability with LOS in the PICU, total (hospital) LOS, change in PELOD score from 

baseline to day 6. 

Significance Statement 

 The aim of this paper may provide clinicians and researchers with support for a 

more standardized approach to analyze data from glucose management protocols for the 

reduction in mortality and morbidity of surgical and medical pediatric patients in the 
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hospital and PICU. These reductions are measured by decreased instances of death and 

decreased LOS in the PICU and/or hospital. 

Assumptions 

In these datasets, some patients experience more than one hospitalization. We 

considered each hospitalization to be independent. We believe that there was little if any 

glucose profile correlation between separate hospitalizations for the same patient. 

Additionally, due to the variety of sources that were used to collect glucose data, such as 

glucose strips, point-of-care devices, and laboratory derived values, we did not account 

for potential differences in these devices. We assumed that each of these sources were 

well-calibrated and comparable with each other. 

Definition of Terms 

AUC = Area under the curve in a chart of measurement time versus blood glucose levels. 

This calculation is used as a relative measure of glycemic control. 

Pediatric = Children aged 0 until 21 years of age 

Glycemic control = Medical term referring to the typical levels of blood glucose in a 

healthy person. 

Hyperglycemia = Condition in which an excessive amount of glucose circulates in the 

blood plasma. In this study > 140 mg/dL plasma glucose is considered mildly 

hyperglycemic, > 180 mg/dL plasma glucose is considered moderately hyperglycemic 

and > 200 mg/dL plasma glucose is considered severely hyperglycemic. 
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Hypoglycemia = Condition in which a diminished amount of glucose circulates in the 

blood plasma. In this study < 80 mg/dL plasma glucose is considered less than 

normoglycemic, < 70 mg/dL plasma glucose is considered moderately hypoglycemic, and 

< 40 mg/dL plasma glucose is considered severely hypoglycemic. 

Length of stay (LOS) = Duration of hospitalization for a patient in hospital; total 

(hospital) LOS includes period of time spent in PICU. 

Normoglycemia = Within range, “normal” glycemic range 
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Chapter II 

Literature Review 

Introduction 

The establishment of a formal and effective method to characterize glucose 

variability is a crucial step in reducing morbidity and mortality, especially in critically ill 

patients in the ICU. This research examines the various methods to measure glucose 

variability and whether a more appropriate method could be substituted for previous 

measures of glucose variability. We will be drawing our experience from studies that 

calculated glucose variability to examine its relationship to mortality as well as studies 

that performed similar variability calculations using heart rate measurement data. 

Many glucose measurements of critically ill patients are performed through the 

use of point-of-care (POC) capillary fingerstick glucose assessments as well as through 

routine central laboratory analysis of venous or arterial samples using standard hospital 

blood collection protocols [4]. There are several methods to calculate glucose variability, 

but there is yet to be an established standard procedure. Two commonly reported and 

easy measures of glucose variability are the standard deviation (SD) of all glucose 

measurements per patient and the coefficient of variation (CV).  Typical calculations of 

the SD assume independent observations; however, repeated blood samples from 

hospitalized patients are likely correlated within patient. Even so, SD is a convenient 

measure to calculate and can be valuable. The CV calculation also can be a useful 

measure since it is a normalized summary of the distribution and illustrates the relative 

extent of the variability as a percentage of the mean. Another measure that was 
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introduced by Schlichtkrull et al in 1964, called the M-Value, is an index attempting to 

indicate the lack of efficacy of the treatment of diabetes in an individual patient [5]. This 

measure has been modified to allow for different “ideal” glucose values between 

investigators and is now referred to the adjusted M-Value [6]. It is a measure of the 

stability of the glucose deviations compared to an ideal glucose value, generally 80-100 

mg/dL.  The adjusted M-Value is zero for healthy controls and increases for patients with 

higher glucose variability and high mean glucose.  As a result, this measure is unable to 

distinguish between patients with either high mean glucose or those with high glucose 

variability/poor glycemic control.  

While many studies use POC protocols or standard laboratory analysis to 

determine plasma glucose levels, there are a number of studies that utilize continuous 

glucose monitoring (CGM) collection devices to provide real-time measurements of 

glucose levels. With these devices, glucose can be sampled from 1 minute to 1 hour 

intervals and data can be stored for up to 72 hours to be downloaded to a computer to 

view and track a patient’s glucose control [7, 8]. For CGM data, there have been 

additional measures for glucose variability that take advantage of the standardized 

intervals between glucose measurements. The mean amplitude of glycemic excursions 

(MAGE) was introduced by Service et al. in 1970 and was developed using hourly blood 

glucose sampling for 48 hours but has been under scrutiny since it ignores glucose values 

less than 1 SD [6, 9]. Lastly, a measure that is calculated as the SD of the summed 

differences between a current observation and an observation n hours previously, called 

continuous overlapping net glycemic action (CONGA-n) was proposed by McDonnell et 

al. [10]. Due to the many possible values of n, it is not yet known which CONGA-n 
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values are preferable [6]. Figure 1 displays the various variability measures, their 

formulas, and a few of the distinguishing features that each possess. 

Glucose Variability 

Proposed methods of measuring glucose variability have led to promising results 

in different studies and populations. Two different groups conducted retrospective 

analyses of glucose variability as a predictor of mortality while hospitalized in the adult 

ICU [1, 11]. Both groups concluded that using the SD of glucose within each patient was 

a significant predictor of mortality in critically ill patients independent of APACHE II 

scores, a measure of severity of illness.  Egi et al. performed a further subgroup analysis 

based on SD of diabetic patients in the ICU and found that the glucose variability and 

mortality relationship was not present [11]. Due to the nature of these studies each had 

differing glucose management protocols. Egi et al. did not define a target window for 

glycemic control while Krinsley’s study began without a window, but then collected data 

for the last four years of their 8-year study within a relatively tight glycemic target 

window of 80 mg dL to 140 mg/dL [1, 11]. In a diabetic subgroup, they may have not 

had sufficient power to detect a difference and it is reasonable to assume that the diabetic 

population is not necessarily like every other critically ill non-diabetic patient. 

In critically ill patients, particularly those admitted to the cardiac ICU, mortality 

may be largely attributable to underlying factors that are difficult to standardize such as 

anatomical defects and/or surgical expertise. Using a two-center, randomized trial of 

critically ill children (n=980), Agus et al. showed that using a tight glycemic control 

protocol of 80 mg/dL to 110 mg/dL did not change the rate of health care-associated 
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infections, LOS in the cardiac ICU, or mortality [3]. Although the authors implemented 

an explicit insulin-dosing algorithm to minimize hypoglycemia, they were unsuccessful 

in showing any significant benefit of a tight glycemic control in critically ill children who 

had undergone cardiac surgery.  As a consequence of using a tight glycemic control 

protocol, the investigators minimized glucose variability within patients but were unable 

to show an association with improved outcome [3]. However, in a retrospective study of 

non-diabetic patients in PICU (n = 1038), glucose variability was found to be associated 

with mortality and increased LOS [12], where. The glucose variability index in this study 

was calculated as the mean of the absolute difference of sequential glucose values 

divided by the difference in collection time [12]. 

The previous glucose variability studies mentioned do not account for within-

patient correlation and instead treat each glucose measurement in a patient as an 

independent event.  In reality, each data set contains repeated differences of subsequent 

glucose measurements that include many intervals. Ignoring this correlation may lead to 

incorrect estimates and, more importantly, incorrect conclusions. With the increasing use 

of CGM devices to monitor and evaluate glucose management of patients, investigators 

have explored alternative methods for measuring glucose variability that account for 

within-patient correlation. Breton and Kovatchev applied classical time-series techniques 

to CGM data in order to propose the use of an autoregressive moving average model to 

account for the time dependence of consecutive sensor errors. These investigators found 

that consecutive sensor errors were highly interdependent and they developed a computer 

simulation of sensor errors that found no significant difference between observed and 

simulated distribution of sensor errors ( p > 0.46) [13].   
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Rodbard published a review of numerous glucose variability measurements from 

CGM data and determined the correlation between each of these various measures of 

variability. The data analyzed was collected over many days and the author focused on 

measures related to SD since there are linear relationships between SD and CV, MAGE 

and CONGA-n. Additionally, total glucose variability was partitioned into two parts: the 

variability within day and the variability between day (mean daily glucose and between 

glucose values obtained at same time of day for sequential days). The author provided the 

range of approaches available for measuring glucose variability and produced a schema 

for researchers to follow for characterizing glucose variability [14]. 

Of the two main methods of glucose measurements, POC assessments are more 

convenient to perform, less expensive and, presumably, as accurate as CGM devices [7].  

As a result, many glucose measurements are routinely collected by POC and the timing 

of these measurements is highly variable since they depend on factors such as scheduling 

of nurses, laboratory personnel and priority of testing procedure. Due to the non-standard 

difference in time between measurements it is difficult to propose a standardized 

procedure to measure glucose variability across all data collection protocols. 

Heart Rate Variability 

When patients are hospitalized, whether on the floor or in the ICU, a very 

commonly collected measurement is heart rate through the use of electrocardiogram 

(ECG) machines.  Similar to blood glucose levels, heart rate is rarely constant throughout 

hospitalization and can fluctuate during a patient’s stay.  Heart rate variability is a 

description of the oscillation in consecutive heart beats and there are also various 
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methods to quantify heart rate variability [15, 16]. Time domain methods are used to 

measure either the heart rate at any point in time or the intervals between successive 

normal heart beats. These methods include statistical measures (e.g. SD) and geometrical 

measures (e.g. patterns of interval durations) that can be used only from recordings of the 

same duration. Frequency domain methods use power spectral analysis from short-term 

recordings (e.g. 2 to 5 minute) and long-term recordings (e.g. entire 24-hour period) to 

examine very low frequency (VLF), low frequency (LF), and high frequency (HF) 

components. Time and frequency domains methods over a 24-hour period have been 

found to be strongly correlated [15].  

Camm et al. and Indic et al.used an autoregressive correlation structure in 

modeling heart rate variability since they believed that heart rate observations were most 

similar for observations closer in time than observations farther apart in time [15, 17]. We 

will use some of these ideas and concepts to address appropriate measures of glucose 

variability in critically ill pediatric patients.  
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Chapter III 

Methodology 

Study Population and Measurements 

This study was conducted in a pediatric patient population from Children’s 

Healthcare of Atlanta (CHOA) in Atlanta, GA and James Whitcomb Riley Hospital for 

Children (Riley) in Indianapolis, IN. Pediatric patients were randomized to either a strict 

or conservative glucose management protocol. At admission to either PICU or CICU, 

baseline characteristics such as weight (kg), age (years), gender, and Pediatric Logistic 

Organ Dysfunction (PELOD) Scores were determined and recorded.  

Two methods for measuring glucose levels were used; whole-blood glucose levels 

were measured with point-of-care devices and plasma glucose levels were measured in 

the hospital clinical laboratory. All glucose values were reported as plasma equivalents. 

For each patient, the mean glucose level was calculated as the mean of all glucose 

measurements; the minimal glucose level was the lowest observed glucose measurement 

and the maximal glucose level was the highest observed glucose measurement for the 

entire PICU admission. The date and time of each blood glucose measurement was also 

recorded. The glucose variability index was calculated for each patient having ≥ 3 

plasma glucose measurements by dividing the absolute difference of sequential glucose 

values by the difference in collection time in hours + 0.01. The mean of these ratios for 

each subject forms the variability index [12]. Glucose variability measures of SD, CV 

and the glucose variability index were calculated for each patient. The median, median 

absolute deviations (MAD), and mean of each glucose variability measure were 
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calculated and stratified by hospital. The glucose variability index was divided into 

quintiles for analysis. 

There is no standard definition of hypoglycemia in clinically ill, non-diabetic 

patients since it can vary by the age and fasting state of the patient. As such, we chose to 

use cutoffs of blood glucose concentrations at < 40 mg/dL to indicate severe 

hypoglycemia, < 70 mg/dL to indicate moderate hypoglycemia, and < 80 mg/dL to 

indicate mild hypoglycemia. Similarly, there are no specific criteria defining 

hyperglycemia in our pediatric population. We chose cutoffs of blood glucose 

concentration at > 140 mg/dL to indicate mild hyperglycemia, > 180 mg/dL to indicate 

moderate hyperglycemia, and > 200 mg/dL to indicate severe hyperglycemia.  

Mean, maximum, and minimum glucose measurements for a patient during their 

entire hospitalization were calculated and tabulated. The maximum and minimum 

glucose values for all patients were divided into quintiles. Analysis of the data according 

to quintiles removed any bias associated with the choice of arbitrary cutoff values 

defining hyperglycemia and hypoglycemia while allowing categorizing of the glucose 

variability index. 

PELOD scores were calculated at the time of admission to the PICU. For the 

PELOD score, six organ systems (neurologic, cardiovascular, renal, respiratory, 

hematologic and hepatic) are considered, each with up to 3 variables (total 12 variables). 

Each component is assigned points (0, 1, 10 or 20) based on the level of severity. For our 

study, we chose to categorize PELOD scores as low (< 10), medium (10 − 19), and high 
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(≥ 20), as in a previous report examining PELOD scores and survival in critically ill 

pediatric patients [18]. 

Analysis 

Data analysis was performed with SAS Software version 9.3 (SAS Institute, Cary, 

NC) and R Software version 2.15.1 (R Foundation for Statistical Computing, Vienna, 

Austria). Since many of the measures were not distributed normally, medians and MAD 

were reported and frequencies were calculated for binary variables. When two variables 

were both ordinal (e.g., LOS versus maximal glucose level quintile), significance was 

calculated with the nonparametric Wilcoxon rank-sum test. When quintiles were 

assessed, all 5 levels were used. The strength of association between two ranked variables 

was calculated with Spearman’s rank-order correlation. For PELOD categories, all 3 

levels were used. When a variable was nominal (e.g., death or glucose level above or 

below a certain cutoff value), significance was calculated with Pearson’s 𝜒2 test or an 

exact test if the expected number of deaths in a category was < 5. Obtaining 𝑝 < 0.05 

was considered a statistically significant result.  

Generalized estimating equations (GEE) were used to assess the association of 

blood glucose variability measures with mortality. PROC GENMOD was used to 

determine the correlation matrix for the first 15 blood glucose variability measures and 

mortality in patients whom had at least 15 measurements, while controlling for baseline 

severity of illness. A model was fit treating PELOD scores as continuous and a model 

was fit treating PELOD scores as categorical (low, medium, high). We assumed an 

autoregressive correlation structure to describe the within patient blood glucose 
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variability. An autoregressive correlation structure indicates that two observations taken 

close in time (or space) within an individual tend to be more highly correlated than two 

observations taken far apart in time from the same individual.  

Since hospital and PICU LOS was skewed to the right, LOS was log-transformed 

to follow a more normal distribution. A mixed linear model (MLM) approach was used to 

account for correlation in blood glucose within patients. PROC MIXED was used to 

examine the association of blood glucose variability measures and patient LOS in 

hospital and PICU. We also examined the association of blood glucose variability 

measures and change in PELOD scores from baseline to day 6. We assumed an 

autoregressive covariance structure to describe the within patient blood glucose 

variability. An autoregressive covariance structure indicates that two observations taken 

close in time (or space) within an individual tend to be more highly correlated than two 

observations taken far apart in time from the same individual.  
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Chapter IV 

Results 

Patient Demographics 

Among the 153 pediatric patients included in the analyses, there were 77 females 

(50.3%) and 76 males (49.7%), ranging in age from 1 days to 20.5 years (median age: 2.7 

years; MAD age: 2.3 years) (Table 1). Most of the pediatric patients (79.1%) were 

admitted to the CICU compared to the PICU (20.9%). For the total study population, the 

median PICU LOS was 2 days (MAD PICU LOS: 1 day), and the median total hospital 

LOS was 5 days (MAD hospital LOS: 2 days). A total of 8 of the 153 pediatric patients 

(5.2%) died during the study period (Table 1).  

Glucose Variability Measures 

During the study period, 153 pediatric patients had 7,036 glucose measurements 

performed (median number of glucose measurements per pediatric patient: 26; MAD of 

glucose measurements per pediatric patient: 7; mean number of glucose measurements 

per pediatric patient: 46.0; SD of glucose measurements per pediatric patient: 63.0). 

Table 2 shows the different glucose variability measures calculated for this study. There 

were no significant differences with regard to either SD or CV between Riley and CHOA 

pediatric patients. The glucose variability index differed significantly in terms of both the 

median glucose variability index (𝑝 < 0.001) and mean glucose variability index 

(𝑝 < 0.001) between Riley (median = 12.0, MAD = 6.2, mean = 16.3) and CHOA 

(median = 29.0, MAD = 9.3, mean = 32.4) pediatric patients. 
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Hyperglycemia and Hypoglycemia 

Table 3 shows the glucose ranges and glucose cutoff values according to PICU 

LOS, hospital LOS and mortality. All subjects included within a glucose range were 

calculated using mean glucose values; all subjects included within a < glucose cutoff 

value were calculated using minimum glucose values; all subjects within a > glucose 

cutoff value were calculated using maximum glucose values. Many patients achieved 

“normal” mean glucose levels (56.9%) between 80 mg/dL to 140 mg/dL and almost all 

patients (92.2%) had mean glucose levels between 70 mg/dL and 180 mg/dL (Table 3). 

Also, many patients (83.7%) experienced at least one episode of moderate hyperglycemia 

(blood glucose value > 180 mg/dL). Additionally, 111 patients experienced at least one 

episode of severe hyperglycemia (blood glucose value > 200 mg/dL). Conversely, the 

majority of patients (53.6%) experienced at least one episode falling below the lower end 

of normoglycemia (blood glucose value < 80 mg/dL). Thirty five patients (22.9%) 

experienced at least one episode of moderate hypoglycemia (blood glucose value < 70 

mg/dL) while only 1 patient experienced severe hypoglycemia (blood glucose value < 40 

mg/dL). All patients (𝑛 = 8) who had died in the ICU experienced at least one episode of 

moderate hyperglycemia (blood glucose value > 180 mg/dL) and at least one episode 

falling below the lower end of normoglycemia (blood glucose value < 80 mg/dL). 

Maximal Glucose, Minimal Glucose, and Glucose Variability Index Quintiles 

The maximum glucose values, minimum glucose values and glucose variability 

index values for all patients were divided into quintiles. Analysis of the data according to 

quintiles removed any bias associated with the arbitrary cutoff values defining 
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hyperglycemia and hypoglycemia while allowing categorization of the glucose variability 

index. There was a significant association between maximal glucose level quintiles and 

LOS in both the PICU (𝑝 = 0.001) and the hospital (𝑝 = 0.028). Spearman rank-order 

correlation test also showed a significant association between maximal glucose level 

quintiles and PICU LOS (𝜌 = 0.315,𝑝 < 0.001) maximal glucose level quintiles and 

hospital LOS (𝜌 = 0.221,𝑝 = 0.006). The median PICU LOS increased from 4 days to 

10 days and the median hospital LOS increased from 2 days to 5.5 days from the lowest 

to the highest maximal glucose levels. There was also a significant association between 

minimal glucose level quintiles and LOS in both the PICU (𝑝 < 0.001) and the hospital 

(𝑝 < 0.001). Spearman rank-order correlation test also showed a significant association 

between minimal glucose level quintiles and PICU LOS (𝜌 = −0.421,𝑝 < 0.001) 

minimal glucose level quintiles and hospital LOS (𝜌 = −0.443,𝑝 < 0.001). The median 

PICU LOS decreased from 10 days to 3 days and the median hospital LOS decreased 

from 6 days to 1 day from the lowest to the highest maximal glucose levels (Table 4). 

Neither the maximum or minimum glucose level quintiles were significantly associated 

with mortality. 

To obtain an estimate of the effects of glucose variability on LOS in PICU or 

hospital and mortality rate, patients were divided into quintiles based on their individual 

glucose variability index (Table 4). While the glucose variability index was not 

significantly associated with increased mortality, it was significantly associated with both 

PICU LOS (𝑝 = 0.012) and hospital LOS (𝑝 = 0.014). Spearman rank-order correlation 

test also showed a significant association between PICU LOS and glucose variability 

index quintiles (𝜌 = −0.184,𝑝 = 0.023) and hospital LOS and glucose variability index 
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quintiles (𝜌 = −0.197,𝑝 = 0.015). The patients with the lowest glucose variability 

indices had the highest PICU LOS and the highest hospital LOS and the patients with the 

highest glucose variability indices had the lowest PICU LOS and lowest hospital LOS. 

The median PICU decreased 7 days to 2 days and the median hospital LOS decreased 

from 9.5 days to 4 days from the lowest to highest glucose variability indices. 

Modeling Results 

Patients with at least 15 glucose measurements were used for GEE modeling (𝑛 = 

147). Blood glucose values were not predictive of mortality while controlling for baseline 

severity of illness (continuous and categorical) suggesting actual blood glucose values are 

not an important indicator of mortality. SD, CV, and the glucose variability index of 

blood glucose were not significant predictors of mortality while controlling for baseline 

severity of illness (continuous and categorical).  

All patients were used for MLM modeling (𝑛 = 153). Glucose variability 

measures were analyzed as single predictors and were adjusted by baseline severity 

illness (continuous and categorical = low, medium, high). SD was not a significant 

predictor of PICU or hospital LOS while controlling for baseline severity of illness 

(continuous and categorical). SD was found to be a significant predictor of change in 

PELOD score (𝑝 =0.0269) and CV was found to be a significant predictor of PICU LOS 

after controlling for baseline severity of illness (continuous, 𝑝 =0.0009; categorical, 𝑝 = 

0.0007). CV was also a significant predictor of hospital LOS after controlling for baseline 

severity of illness (continuous, 𝑝 =0.0071; categorical, 𝑝 = 0.0071). CV was found to be 

a significant predictor of change in PELOD score (𝑝 =0.0376) but not a significant 
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predictor after controlling for baseline severity of illness (continuous and categorical). 

Glucose variability index was not a significant predictor of PICU LOS, hospital LOS or 

change in PELOD score while controlling for baseline severity of illness (continuous and 

categorical). 
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Chapter V 

Discussion 

Summary of Study/Strengths & Limitations 

This study used previously determined measures of glucose variability to examine 

potential associations between: (1) glucose variability measures and mortality, (2) 

glucose variability measures and LOS in both the hospital and PICU, and (3) glucose 

variability measures and change in PELOD scores. Analysis of the data according to 

quintiles reduced bias associated with the arbitrary cutoff values defining hyperglycemia 

and hypoglycemia while allowing categorization of the glucose variability index. We 

observed significantly increased hospital and PICU LOS with increasing maximal 

glucose levels and significantly decreased hospital and PICU LOS with increasing 

minimal glucose levels. No glucose variability measures were found to be associated with 

mortality either independently or in a GEE model. SD and glucose variability index were 

not found to be significantly associated with PICU or hospital LOS while CV was found 

to be significantly associated with both PICU of hospital LOS. CV was also significantly 

associated with change in PELOD after controlling for baseline severity of illness while 

SD and glucose variability index were not significantly associated with changed in 

PELOD. 

There were a number of limitations that were beyond the control of the 

investigators. Since patients were enrolled in the PICU and treated by their needs, the 

number of glucose measurements per pediatric patient during their PICU stay ranged 

from 3 to 565 with a median of 26 and MAD of 7 measurements per pediatric patient 
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(mean = 46.0, SD = 63.0). The number of days each pediatric patient had their glucose 

measured, both in hospital and PICU, ranged from 1 to 236 days with a median of 5 and 

MAD of 2 days of glucose measured per patient (mean = 11.0, SD = 23.4). Additionally, 

the number of measurements per patient per day ranged from 0.6 to 16.3 with a median of 

6.3 and MAD of 1.5 measurement per patient per day (mean = 6.2, SD = 2.5). As a result, 

pediatric patients that had more measurements per day may have been more closely 

supervised by nursing staff than patients who did not have as many measurements per 

day. The time between measurements was not standardized and could contribute to the 

lack of consistent correlation in blood glucose measurements and mortality. 

Glucose measurements were performed using two different sources and the 

validity and calibration control of using both of these methods on the same patients is not 

known. This is typical in critical care centers as blood measurements are usually 

performed with readily available testing methods and recorded [4, 19]. For our outcome 

of mortality, we do not specify a cause of death; it could be directly related to glucose 

variability but may be related to other conditions such as hospital acquired infections or a 

more systemic cause like multiple organ failure. 

Mis-specification of the correlation or covariance structure used in our analyses 

could drastically affect our results. We performed the same analyses using an 

exchangeable correlation structure that assumes every observation within an individual is 

equally correlated with every other observation from that individual. We obtained similar 

results using both exchangeable and autoregressive structures and felt it more appropriate 

to use an autoregressive structure for glucose variability modeling based on previous 

heart rate variability studies [15, 17]. 
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Conclusions 

We observed significantly increased hospital and PICU LOS with increasing 

maximal glucose levels and significantly decreased hospital and PICU LOS with 

increasing minimal glucose levels.  These results are consistent with previous studies 

while we introduced a novel way to analyze blood glucose measurement from critically 

ill pediatric patients in the PICU by including the within-patient correlation at each 

measured time point in our analysis [12, 20].  

Surprisingly, we did not find a significant association between glucose variability 

index and mortality. This is likely due to low statistical power from only 8 deaths in the 

population of 153 patients. Of note is that CHOA patients had higher median, MAD and 

mean glucose variability index values than Riley patients, yet there were a higher 

proportion of deaths in Riley patients than CHOA patients (16.7% mortality vs. 3.1% 

mortality; 𝑝 < 0.001). While a higher proportion of cardiac PICU patients died than 

general PICU patients (18.8% mortality vs. 1.7% mortality; 𝑝 < 0.001), CHOA and 

Riley each had 1 cardiac PICU and 3 general PICU patients. There were no significant 

differences in baseline severity of illness between Riley and CHOA (𝑝 = 0.1750). 

Future Research 

In addition to these glucose variability measures and using appropriate statistical 

methods like GEE and MLM to analyze correlated data, it may worthwhile to incorporate 

aspects of area under the curve (AUC) techniques in developing appropriate methods of 

measuring glucose variability (Figure 2). While AUC is generally used as an indirect 

measure of glucose variability, there may be important characteristics of glucose 
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variability that are not fully captured in the measures used in this study. For example, 

there is software available to calculate not only the AUC of glucose measurements but 

also the percentage of time spent within or outside a target range. While many studies 

focus on the number of measurements that are within or outside a target, incorporating a 

time-dependent measurement may be informative in reducing LOS and mortality in 

patients in the ICU. 
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Figure 1. Formulas Used in Describing Glucose Variability (adapted from [6]) 
Variability 
measure Formula Explanation of symbols Discriminating 

feature 

SD �∑ (𝑥𝑖 − �̅�)2𝑘
𝑖=1
𝑘 − 1

 

𝑥𝑖 = individual observation 
�̅� = mean of observations 
𝑘 = number of 
observations 

Easy to 
determine, 
extensively 
used 

CV 
𝑠
�̅�

 𝑠 = standard deviation 
 

Easy to 
determine, SD 
corrected for 
mean 

Adjusted M-
value 

𝑀𝐺𝑅 + 𝑀𝑊 
 
where 

𝑀𝐺

=
∑ �log10

𝐺𝑅𝑡
𝐼𝐺𝑉
�
3𝑡𝑘

𝑖=𝑡1

𝑘
 

and 

𝑀𝑊 =
𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

20
 

𝑀𝐺𝑅 = M-value for 
glucose readings 
𝑀𝑊 = correction factor for 
𝑘 < 24 
𝐺𝑅𝑡 = glucose reading at 
time 𝑡 
𝐼𝐺𝑉 = ideal glucose value 
𝑡𝑖 = time in minutes after 
start of observations of the 
𝑖𝑡ℎ observation 
𝐺𝑚𝑎𝑥 = maximum glucose 
reading 
𝐺𝑚𝑖𝑛 = minimum glucose 
reading 

Not a pure 
variability 
measure 

MAGE �
𝜆
𝑛

 
if 𝜆 > 𝜈 

 𝜆 = each blood glucose 
increase or decrease (nadir-
peak or peak nadir) 
𝑛 = number of 
observations 
𝜈 = 1 SD of mean glucose 
for 24-hr period 

Used most 
extensively 

CONGA-n 

�∑ (𝐷𝑡 − 𝐷�)2𝑡𝑘∗
𝑖=𝑡1
𝑘∗ − 1

 

where 
𝐷𝑡 = 𝐺𝑅𝑡 − 𝐺𝑅𝑡−𝑚 

and 

𝐷� =
∑ 𝐷𝑡
𝑡𝑘∗
𝑖=𝑡1
𝑘∗

 

𝑘∗ = number of 
observations where there is 
an observation 𝑛 × 60 
minutes ago 
𝑚 = 𝑛 × 60  
𝐷𝑡 = difference between 
glucose reading at time 𝑡 
and 𝑡 minus n hours ago 

Specifically 
developed for 
CGM 

SD = standard deviation; CV = coefficient of variation; MAGE = mean 
amplitude of glycemic excursions; CONGA = continuous overall net glycemic 
action; CGM = continuous glucose monitoring. Units are in mmol/L or mg/dL 
depending on the unit of glucose values measured. To convert glucose values 
from mmol/L to mg/dL divide by 0.0555
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Table 1. Pediatric Demographics 

    No (%) 

Age at 
Admission, 

Median 
(MAD), y 

Weight, 
Median 
(MAD), 

kg 

PICU 
LOS, 

Median 
(MAD), 

d 

Total 
LOS, 

Median 
(MAD), 

d 

Duration of 
Vasopressor 

Drugs, 
Median 

(MAD), d 

Duration of 
Ventilation, 

Median 
(MAD), d 

Deaths, 
n (%) 

All Patients Admissions 153 (100.0) 2.7 (2.3) 12.1 (6.1) 2 (1) 5 (2) 2 (1) 1 (1) 8 (5.2) 
Randomization Group         
 Strict 78 (51.0) 2.9 (2.6) 11.9 (5.8) 2 (1) 6 (3) 1 (0) 1 (1) 5 (6.4) 

 Conservative 75 (49.0) 2.6 (2.2) 12.3 (6.3) 2 (1) 4.5 (2) 2 (1) 1 (1) 3 (4.0) 
Gender         
 Female 77 (50.3) 2.3 (1.9) 11.3 (5.3) 2 (1) 5 (2) 2 (1) 1 (0) 1 (1.3)a 

 Male 76 (49.7) 3.1 (2.8) 13.5 (7.3) 2 (1) 7 (4) 2 (1) 1 (1) 7 (9.2)a 
Hospital         
 Riley 24 (15.7) 1.4 (1.0) 8.2 (2.7) 7 (4)a 9 (4)a 5 (3) 2.5 (2.5) 4 (16.7)a 

 CHOA 129 (84.3) 3.1 (2.8) 12.7 (6.7) 2 (1)a 5 (2)a 1 (0) 1 (0) 4 (3.1)a 
ICU Patient Type         
 Cardiac 121 (79.1) 2.3 (1.9) 11.4 (5.4) 2 (1)a 4.5 (1.5)a 1 (0) 1 (0) 2 (1.7)a 

 General 32 (20.9) 4.6 (3.3) 14.1 (7.4) 9 (5.5)a 14 (9.5)a 7 (3) 2 (2) 6 (18.8)a 
PELOD Score         
 Low (< 10) 54 (35.3) 2.2 (1.8) 12.1 (5.7) 2 (1) 5 (2) 1 (0.5) 1 (0) 1 (1.9) 

 Med (10 - 19) 41 (26.8) 1.9 (1.5) 9.7 (3.7) 2 (1) 6 (3) 2 (1) 1 (1) 1 (2.4) 
  High (≥ 20) 58 (37.9) 5.8 (5.1) 13.1 (8.5) 2 (1) 5 (2) 2 (1) 1 (1) 6 (10.3) 

aIndicates 𝑝 < 0.05
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Table 2. Pediatric Glucose Variability Measures by Hospital  

  

Riley, 
Median 
(MAD) 

Riley, 
Mean 

CHOA, 
Median 
(MAD) 

CHOA, 
Mean 

All Patient 
Admissions, Median 

(MAD) 

All Patient 
Admissions, 

Mean 
Patient Admissions, n (%) 24 (15.7) 24 (15.7) 129 (84.3) 129 (84.3) 153 (100.0) 153 (100.0) 
Variability Measure       

 
SD 40.7 (8.9) 40.6 37.7 (8.6) 43.1 38.6 (9.0) 42.7 

 
CV 0.30 (0.07) 0.31 0.28 (0.05) 0.30 0.29 (0.06) 0.30 

 Glucose Variability Index 12.0 (6.2)a 16.3b 29.0 (9.3)a 32.4b 26.8 (9.2) 29.8 
a,bIndicates 𝑝 < 0.05
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Table 3. LOS and Mortality Rates According to Glucose Ranges and Glucose Cutoff Values 
Glucose 
Range, 
mg/dL 

Glucose 
Cutoff, 
mg/dL 

No. 
PICU LOS, 

Median 
(MAD), d 

Total LOS, 
Median 

(MAD), d 

Duration of 
Vasopressor Drugs, 
Median (MAD), d 

Duration of 
Ventilation, Median 

(MAD), d 

Deaths According 
to Glucose Cutoff 

Value, n (%) 
80-140  87 (56.9) 3 (2) 8 (5) 2 (1) 1 (1) 5 (5.7) 

 < 80 82 (53.6) 4 (3) 8 (4) 2 (1) 1.5 (1) 5 (6.1) 

 > 140 153 (100.0) 2 (1) 5 (2) 2 (1) 1 (1) 8 (5.2) 
80-110  6 (3.9) 5 (2.5) 10 (2.5) 3.5 (2) 2 (1) 1 (16.7) 

 > 110 153 (100.0) 2 (1) 5 (2) 2 (1) 1 (1) 8 (5.2) 
40-200  151 (98.7) 2 (1) 5.5 (2.5) 2 (1) 1 (1) 7 (4.6) 

 < 40 1 (0.7) 60 (0) 60 (0) 13 (0) 7 (0) 0 (0.0) 

 > 200 111 (72.5) 2 (1) 6.5 (3.5) 2 (1) 1 (1) 7 (6.3) 
70-150  116 (75.8) 2 (1) 6 (3) 2 (1) 1 (1) 6 (5.2) 

 < 70 35 (22.9) 6 (5) 9 (5) 4 (3) 2 (1.5) 3 (8.6) 

 > 150 151 (98.7) 2 (1) 5.5 (2.5) 2 (1) 1 (1) 8 (5.3) 
70-180  141 (92.2) 2 (1) 6 (3) 2 (1) 1 (1) 7 (5.0) 

 > 180 128 (83.7) 2 (1) 6 (3) 2 (1) 1 (1) 8 (6.3) 
All ranges were calculated using mean glucose values 
All < cutoffs were calculated using minimum glucose values 
All > cutoffs were calculated using maximum glucose values 
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Table 4. LOS and Mortality Rates According to Glucose and Glucose Variability Index Quintiles 

  

Glucose 
Range, mg/dL No. 

PICU LOS, 
Median 

(MAD), d 

Total LOS, 
Median 

(MAD), d 

Duration of 
Vasopressor 

Drugs, Median 
(MAD), d 

Duration of 
Ventilation, 

Median (MAD), 
d 

Deaths 
According 
to Quintile, 

n (%) 
Maximal glucose level 
quintile 

 
      

1 145-184 30 2 (1)a 4 (1)a 1 (0) 1 (0) 1 (3.3) 
2 185-218 31 1 (0)a 5 (2)a 1 (0) 1 (0) 1 (3.2) 
3 220-247 31 2 (1)a 6 (3)a 1 (1) 1 (1) 1 (3.2) 
4 249-307 29 2 (1)a 4 (2)a 1 (1) 1 (1) 2 (6.9) 
5 309-881 32 5.5 (4.5)a 10 (7)a 4 (3) 3 (2) 3 (9.4) 

Minimal glucose level 
quintile 

       1 29-67 30 6 (4.5)a 10 (4)a 4.5 (3.5) 3 (2) 3 (10.0) 
2 68-75 28 3 (2)a 5 (2)a 2 (1) 1 (1) 1 (3.6) 
3 76-83 34 2 (1)a 6.5 (3)a 1.5 (0.5) 1 (1) 1 (2.9) 
4 84-90 30 1 (0)a 4.5 (1.5)a 1 (0) 1 (0) 2 (6.7) 
5 91-217 31 1 (0)a 3 (1)a 1 (0) 1 (0) 1 (3.2) 

Glucose variability 
index quintile        

1 1.64-15.39 31 7 (6)a 9.5 (5.5)a 5 (3.5) 1 (1) 2 (6.5) 
2 15.88-23.82 30 2 (1)a 4.5 (1.5)a 1 (0)) 1 (0)) 2 (6.7) 
3 23.97-29.75 31 2 (1)a 5 (2)a 1 (0) 1 (0.5) 2 (6.5) 
4 30.63-39.69 30 2 (1)a 5.5 (2.5)a 2 (1) 2 (1) 0 (0.0) 
5 39.94-204.44 31 2 (1)a 4 (1)a 1 (0) 1 (0) 2 (6.5) 

aIndicates 𝑝 < 0.05  Analyses of LOS and individual quintiles were performed with the nonparametric Wilcoxon rank-sum test.
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Figure 2. Example AUC Chart [21] 

 
 

HT = High Threshold of Target Range; LT = Low Threshold of Target Range 
Time Calculations: Total Time (hours), Time above HT (hours and %), Time below LT (hours and %), Time in Range (hours and %) 
Area Calculations: Total Area (mg/dL × hours), Area above HT (mg/dL × hours and %), Area below LT (mg/dL × hours and %), 
Area in Range (mg/dL × hours and %) 


