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Abstract 
 

Similarity and diversity measures for flow cytometry data 
By Hasan Ahmed 

 
 
This paper examines similarity measures (also known as dissimilarity or statistical distance 
measures) for flow cytometry data. Similarity measures quantify the similarity between two 
objects and could be used for clustering or neighborhood-based predictive modeling. I find that 
earth mover’s distance is the most appropriate tool for creating similarity measures for flow 
cytometry data. I compare this approach to earlier approaches that relied on Kullback-Leibler 
divergence, Pearson correlation or Lp distance. This paper also examines diversity measures for 
flow cytometry data. It identifies two types of diversity measures, “nominal diversity measures” 
and “interval diversity measure”, and it explains the connection between diversity measures 
and similarity measures. 
 
The similarity and diversity measures in this paper were designed for flow cytometry data, but 
they can be used for any dataset that consists of multisets of equal-dimensional points. This 
paper includes R code for implementing many of the methods discussed. The datasets used in 
this paper have been made publicly available. 
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Similarity and diversity measures for flow cytometry data 

 

This paper, its datasets and its supplementary tables may be used and redistributed with or without 

modification.  

 

I. Introduction 

 

I.A. Flow cytometry 

 

Flow cytometry is a technique for examining the characteristics of individual cells. Typically the cells are 

first stained with 1 to 10 fluorescent dyes. After staining the cells are acquired by a flow cytometer (i.e. a 

flow cytometry machine). The flow cytometer creates a stream of fluid which passes the cells one by one 

through one or more beams of light. As the cells pass through the light, detectors measure the scattering 

of the light and the light emitted by the fluorescent dyes. Typically a flow cytometer gives two measures 

of scatter, forward scatter (FSC) and side scatter (SSC), and also measures the amount of fluorescent dye 

in each cell based on the light emitted. FSC measures the size of the cell, and SSC measures the 

granularity. Fluorescent dyes that measure various cell characteristics are available. 

 

Flow cytometry is a powerful tool that is widely used in medicine and biomedical research. Consider an 

HIV+ patient whose blood is stained with 3 dyes: fluorescein isothiocyanate (FITC), phycoerythrin (PE) and 

peridinin chlorophyll protein (PerCP). FITC is conjugated with an antibody for CD3, a protein complex 

found on T-cells. PE is conjugated with an antibody for CD4, and PerCP is conjugated with an antibody for 

CCR5. If 10,000 cells are acquired by a flow cytometer, for each cell the FSC and SSC and the amount of 

FITC CD3, PE CD4 and PerCP CCR5 will be recorded. HIV typically infects CD4+ CCR5+ cells. These cells can 
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be identified as those cells high in PE CD4 and PerCP CCR5. FSC and SSC can be used to identify important 

cell subsets such as lymphocytes. A low ratio of CD4+ cells to CD3+ cells is sign of progression to AIDS. 

Hence flow cytometry can provide a lot of important information. 

 

I.B. Similarity and diversity measures 

 

Similarity measures quantify the similarity of two objects. Euclidean distance is an example of a common 

similarity measure. The smaller the Euclidean distance between two points is, the more similar the two 

points are in terms of location. In this paper all similarity measures will be defined so that a smaller 

similarity score corresponds to greater similarity and 0 indicates perfect similarity. While this usage may 

be confusing, it is helpful when discussing the triangle inequality, and it is necessary for consistency with 

common similarity measures like Euclidean distance and Kullback–Leibler divergence. Similarity measures 

are also called similarity metrics or indices, dissimilarity measures or metrics or indices, divergence 

measures, distance measures or metrics and sometimes just metrics. However the term metric should be 

reserved for the subset of similarity measures that obey the following four properties: S(X,Y)>=0; S(X,Y)=0 

if and only if X=Y; S(X,Y)=S(Y,X); and S(X,Z)<S(X,Y)+S(Y,Z) where S is the similarity measure and X, Y and Z 

are objects being compared. 

 

Table 1: Various similarity measures 
Similarity measure Typically used for comparing… 
Fréchet distance Curves 
Beta diversity Ecosystems 
Google similarity distance Meaning of words and phrases 
Chebyshev distance Points 
Great-circle distance Points on a sphere 
Bhattacharyya distance Probability distributions 
Jensen-Shannon divergence Probability distributions 
Kendall tau distance Rankings 
Levenshtein distance Strings 
Hamming distance Strings of equal length 
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This paper will discuss similarity measures for evaluating the similarity between two multisets of points. 

This is quite different from evaluating the similarity between two points or between two strings. 

 

A multiset is a collection of elements where multiplicity matters but order does not. For example {a,b,c} is 

equivalent to {c,b,a}, but {a,a,a,b,c} is not equivalent to {a,b,c}. Multisets can be contrasted with 

sequences, where both order and multiplicity matter, and sets where neither order or multiplicity matter. 

Union, intersection and subset are defined slightly differently for multisets than for sets. For example 

{1,2,3}U{1,2,3}={1,1,2,2,3,3}, {1,1,2,3}∩{1,1,2,2}={1,1,2} and {1,1} is a subset of {1,1,1} but not of {1,2,3,4}. 

 

Nonetheless it is not convenient to completely ignore the order of a multiset. In this paper order is used 

to reference the elements of a multiset. For example the last two elements of {1,2,3,4} are 3 and 4. Two 

equivalent multisets with different orderings (e.g. {1,2,3} and {3,2,1}) are considered equal but not 

identical. 

 

Diversity measures quantify the diversity of an object, usually a multiset or probability distribution. A 

multiset that contains one value repeated many times (e.g. {Apple,Apple,Apple,Apple} or {1,1,1,1}) is not 

very diverse. Likewise a probability distribution concentrated on a narrow range of values (e.g. 

X~uniform(0.999,1)) is not very diverse. On the other hand the following are more diverse: 

{Apple,Banana,Orange,Pear}, {1,99,-8,72}, Y~uniform(0,101). Shannon entropy and Simpson’s index are 

examples of diversity measures. 

 

Similarity measures for flow cytometry data have many potential uses.  They could be used for clustering 

flow cytometry samples, k-nearest neighbor models or other neighborhood-based predictive models. The 
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uses of flow cytometry diversity measures are less clear. But they may be useful in certain cases where 

diversity is found to correlate with important biological outcomes.  

 

The similarity and diversity measures in this paper are designed for flow cytometry data, but most of 

them can be used to compare any two multisets of points as long as all the points have the same number 

of dimensions. 

 

I.C. Previous work 

 

There is little work on diversity measures for flow cytometry data, but several groups have investigated 

similarity measures for flow cytometry data.  

 

Diaz-Romero et al [1] evaluated similarity measures for clustering tumor samples based on flow cytometry 

data. They stained samples with 11 fluorescent dyes, but the samples were only stained with one 

antibody at a time. Hence they ignored the correlations between the various markers they stained for. 

They represented each sample as a point (x1,…,x11) where xj is the mean fluorescent intensity of the jth 

fluorescent stain after normalization. They used Euclidean (L2) distance, Manhattan (L1) distance and 

Pearson correlation to evaluate the similarity of the points. They found that Pearson correlation 

outperformed L1 and L2 distance. This method has the advantage of being relatively simple, but it ignores 

the multivariate nature of the data. 

 

Kaufman et al [2] created a similarity measure based on data binning. They divided the flow cytometry 

space into N equal-sized hyperrectangles. They represented each sample as a probability mass function P 

where P(x) is the proportion of cells from that sample that fall in bin x. They defined similarity as the L1 
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distance between two probability mass functions, Σ|A(x)-B(x)| where A and B are probability mass 

functions. They also calculated the optimal number of bins based on the number of cell in the samples. 

But this number is likely to change based on the dimensionality of the dataset, and Kaufman et al only 

examined 6-dimensional data (FSC, SSC and 4 fluorescent markers). Kaufman’s method is relatively simple 

and takes into account the multivariate nature of the data, but it is very susceptible to the curse of 

dimensionality. As the number of dimensions increases, either the number of bins will increase greatly 

and the number of cells in each bin will become very sparse or the length of the bins will need to increase 

greatly. 

 

Alfred Hero and colleagues have published several papers [3,4,5] involving a similarity measure. They use 

Gaussian kernels to create a probability density function for each sample. They then use a symmetric 

version of Kullback-Leibler divergence to calculate the similarity between these probability density 

functions. The symmetric version of Kullback-Leibler divergence SKL is defined as SKL(X,Y) = 

KL(X,Y)+KL(Y,X) where KL is the standard version of Kullback-Leibler divergence and X and Y are probability 

distribution functions. This approach takes into account the multivariate nature of flow cytometry data 

and partly avoids the curse of dimensionality, but it is computationally difficult. 

 

Roederer et al [6] do not propose a similarity measure, but they do introduce a data binning method that 

may be useful for flow cytometry similarity measures. Their algorithm picks the highest variance 

dimension and divides that dimension along its median to create two bins. The algorithm then divides the 

highest variance dimension in each bin along its median and repeats this process until a stopping criterion 

(e.g. total number of bins or the number of cells in each bin) is reached. At the end there should be 2^N 

bins, where N is a positive integer, each with an approximately equal number of cells. 
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I.D. Assay variation and Boolean gate data 

 

Flow cytometry data can be susceptible to assay variation. If a sample is stained for longer, at higher 

temperature or in lower volume, the stain will be brighter. Likewise two different vials of FITC CD3 

antibody may stain differently. Consider the two samples in figure 1. 

 

Figure 1: Assay variation between two samples 
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Both samples have been stained with FITC perforin and AmCyan CD8. Perforin is a protein used by CD8+ 

cells to form pores in cell membranes. With rare exception only CD8+ cells should express perforin. The 

cells inside the rectangles can be considered perforin+. Most of these cells express perforin, whereas 

most of the cells outside the rectangles do not. In both samples there is a clear distinction between 

perforin+ and perforin- cells that is obvious to any trained human. But because the perforin- cells in the 

first sample are as bright as many of the perforin+ cells in the second sample, a similarity measure may 
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judge these samples to be very different. This difference in brightness is almost entirely attributable to 

assay variation. Based on the percent of perforin+ cells, the two samples are fairly similar. 

 

One solution to this problem is to use manual gating to distinguish between + and – cells. Cells that are 

positive for an antibody can be given a 1 in the appropriate dimension. A cell that is negative for an 

antibody can be given a 0 in the appropriate dimension. For example a cell that is FITC CCR5-, PE CD3+ 

and PerCP CD4+ would be represented as (0,1,1), and a cell that is FITC CCR5-, PE CD3+ and PerCP CD4- 

would be represented as (0,1,0). I call this type of data “Boolean gate” data because FlowJo, a program 

for analyzing flow cytometry data, has a Boolean gate tool which is useful for creating this data. I call the 

data outputted by the flow cytometer “raw” data, although this is not technically correct since this data 

has been adjusted for spillover [7]. 

 

Table 2 shows an example of raw data. Each row represents a cell. Table 3 shows the same data after it 

has been transformed into Boolean gate data. 
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Table 2: Example of raw data 
FITC CCR7 PE CCR5 PerCP CD4 PE-Cy7 

CD28 
Pacific Blue 
CD95 

AmCyan 
CD8 

Alexa 700 
CD3 

898 1203 897 1069 1742 2823 2293 
1166 625 718 1155 1223 2783 769 
1742 1040 568 1003 1294 2476 774 
1392 263 887 1325 1567 3052 2387 
1353 552 883 1203 1376 1421 912 
1002 110 636 720 1748 2887 2635 
1024 779 473 544 569 2253 935 
1314 1465 969 1370 1801 1784 1361 
 

Table 3: Example of Boolean gate data 
FITC CCR7 PE CCR5 PerCP CD4 PE-Cy7 

CD28 
Pacific Blue 
CD95 

AmCyan 
CD8 

Alexa 700 
CD3 

0 0 0 0 0 1 1 
0 0 0 0 0 1 0 
1 0 0 0 0 1 0 
0 0 0 0 0 1 1 
0 0 0 0 0 0 0 
0 0 0 0 0 1 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
 

Because points in Boolean gate data can have only 2^d locations where d is the number of dimensions, it 

is generally more efficient to express Boolean gate data in the below format (table 4) where weight is the 

proportion of cells from that sample at that location. 

 

Table 4: Example of Boolean gate data in compact form 
PerCP CD4 AmCyan CD8 Alexa 700 CD3 Weight 
0 0 0 0.3722533 
0 0 1 0.0711290 
0 1 0 0.0009839 
0 1 1 0.0000401 
1 0 0 0.0209502 
1 0 1 0.2486399 
1 1 0 0.2629366 
1 1 1 0.0230670 
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II. Similarity measures 

 

II.A. Overview of similarity measures 

 

Most of the similarity measures discussed in this paper have two steps. First the multisets of points are 

approximated by moments or probability distribution functions. Then an established similarity measure - 

namely Lp distance, Pearson correlation, Kullback-Leibler divergence or earth mover's distance - is used to 

compare the moments or probability distribution functions. Earth mover's distance is also used to directly 

measure similarity without calculating moments or probability distribution functions. 

 

Lp distance is a family of similarity measures that includes Euclidean (or L2) distance and Manhattan (or 

L1) distance. The Lp distance between two objects A and B is defined as (Σ|(A(i)-B(i))|^p)^(1/p) or (∫|A(x)-

B(x)|^p dx)^(1/p). 

 

The Pearson correlation between two objects A and B is defined as cov(A,B)/sqrt(var(A)*var(B)). Pearson 

correlation ranges from -1 (least similarity) to 1 (greatest similarity). In order to make Pearson correlation 

consistent with other similarity measures, I use a modified form of Pearson correlation 1-

cov(A,B)/sqrt(var(A)*var(B)), which ranges from 0 (greatest similarity) to 2 (least similarity). This form of 

Pearson correlation is sometimes called Pearson correlation distance. 

 

The Kullback-Leibler divergence between A and B is defined as Σ(A(i)*ln(A(i)/B(i))) or ∫ Α(x)*ln(A(x)/B(x)) 

dx where A and B are probability density functions or probability mass functions. Because Kullback-Leibler 

divergence is not symmetric, I use the symmetric form of Kullback-Leibler divergence that was used by 
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Alfred Hero and colleagues [3,4,5]. Symmetric Kullback-Leibler divergence is equal to KL(A,B)+KL(B,A) 

where KL is the normal form of Kullback-Leibler divergence. 

 

The earth mover's distance [8] between A and B is the minimum cost of making A identical to B. If A and B 

are probability density functions or probability mass functions, cost is the amount of mass moved times 

the distance the mass is moved. In this paper both L1 distance and L2 distance are used to calculate cost. 

If A and B are multisets of points, cost is the sum of the distances that points are moved. For probability 

mass functions finding the minimum cost is equivalent to a transportation problem in linear 

programming. For multisets of points finding the minimum cost is equivalent to an assignment problem in 

linear programming. Earth mover's distance is also known as 1st Mallows distance or 1st Wasserstein 

distance. 

 

II.B. Moment methods 

 

II.B.1. First moment method 

 

The simplest way to compare two multisets of points is to calculate the mean or first moment of each 

multiset. These means are then compared using L1 distance, L2 distance or Pearson correlation distance. 

This method is equivalent to the method that Diaz-Romero et al [1] used. 

 

II.B.2. Second moment method 

 

The second moment of each multiset is calculated. Then the second moments are compared using L1 

distance, L2 distance or Pearson correlation distance. 



11 

 

The second moment of A, a multiset of n-dimensional points, is equal to E(A)*t(E(A))+cov(A) where E(A) is 

the mean of A represented as an n by 1 matrix, t(E(A)) is the transpose of E(A) and cov(A) is the maximum 

likelihood covariance matrix of A. The maximum likelihood covariance matrix is used instead of the 

unbiased covariance matrix so that the “size property” (see section III.A) applies. Unlike the first moment 

the second moment incorporates correlations between variables in the dataset. In practice this method 

gives results very similar to the first moment method, and the cov(A) term is dwarfed by the E(A)*t(E(A)) 

term. 

 

II.C. Probability density function method 

 

Gaussian kernel density estimation is used to create a probability density function for each multiset. Then 

L1 distance, L2 distance, symmetric Kullback-Leibler divergence or earthmover's distance are used to 

compare these probability density functions. This method is very computationally difficult. Kernel density 

estimation involves creating a probability density function for each point in the multiset and then adding 

these probability density functions. Comparing probability density functions using Lp distance or Kullback-

Leibler divergence involves integrating over multidimensional space. In theory two probability density 

functions can also be compared using earth mover's distance, but I am not aware of any method for 

solving this problem except by approximating the probability density functions with probability mass 

functions. Gaussian kernel density estimation with symmetric Kullback-Leibler divergence is the method 

used by Alfred Hero and colleagues [3,4,5]. 
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II.D. Probability mass function methods 

 

All multisets in a dataset are combined to create a reference multiset. A binning method is used to create 

data bins based on the reference multiset. Then a probability mass function P is created for each multiset 

based on the data bins so that P(i) is the proportion of points from that multiset that are in the ith data 

bin. These probability mass functions are compared using L1 distance, L2 distance, Pearson correlation 

distance, symmetric Kullback-Leibler divergence or earth mover's distance. When calculating earth 

mover’s distance, a bin’s mean is treated as its location. Alternatively the bin’s median or centroid could 

be used. 

 

In this paper the reference multiset is created by combining all multisets in a dataset without any 

reweighting. But other approaches may be desirable in certain circumstances. If new multisets are 

constantly being added to a dataset, having a fixed reference multiset may be desirable. If certain 

multisets are much larger than other multisets, it may make sense to reweight the points in the reference 

multiset so that all multisets are equally represented. If the reference multiset does not contain all points 

in a dataset, it is possible some of these points will fall outside any bin. In this case a point should be 

assigned to its nearest bin. 

 

Various data binning methods are described below. 

 

II.D.1. Equal-sized bins method 

 

If n is the dimensionality of the points in the multiset, s^n bins are created by dividing each dimension 

into s equal-length sections (where s is an integer greater than 1). The first of these sections begins at the 
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minimum value observed for that dimension, and the last of these sections ends at the maximum value 

observed for that dimension. Boolean gate data is naturally divided into 2^n bins which makes this 

method especially attractive for Boolean gate data. On the other hand this method is very susceptible to 

the curse of dimensionality. If s is kept constant, the number of bins increases exponentially with the 

number of dimensions. This means that the computational difficulty of this method will increase greatly 

and the number of events in each bin will become very sparse, which could make the method less 

accurate. If s is reduced, the length of each bin will become larger, which could also make the method less 

accurate. Furthermore s cannot be reduced to less than 2. 

 

This method is very similar to the method used by Kaufman et al [2]. 

 

II.D.2. K-means clustering method 

 

K-means clustering [9] is used to create data bins. Unlike most other methods k-means clustering is not 

entirely deterministic. The k-means clustering algorithm begins by guessing k means, and the final binning 

varies depending on these guesses. 

 

II.D.3. Sum of squares method 

 

The dimension with the greatest sum of squares is divided along its mean to create two bins. Then the bin 

with the dimension with the greatest sum of squares is identified, and that dimension in that bin is 

divided along its mean. This process is repeated until the desired number of bins is created. 
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This method is inspired by the binning method described by Roederer et al [6] but differs from it in several 

ways. Roederer's method is designed to create 2^n bins (where n is a positive integer) with an 

approximately equal number of points. This approach is problematic for Boolean gate data or any other 

dataset with a large number of identical points. For example if 25% of the points in the reference multiset 

are (0,0,0,0), then at most four equal-weight bins can be created. Furthermore since Roederer’s method 

divides dimensions along their median, if many points are equal to the median, bins may have very 

unequal number of points. 

 

II.D.4. Trees: a supervised method 

 

Each point in the reference multiset is linked to an outcome based on the multiset it originated from. The 

outcome may be multivariate or univariate. A regression tree [9] that predicts the outcome based on the 

points is fit. The terminal nodes of this tree are used as data bins.   

 

All of the previous data binning methods are unsupervised. They consider only the distribution of the 

points in determining how to create bins. In many cases some dimensions may be more important than 

others and this may not be apparent from the distribution of points. A potential solution to this problem 

is to link each multiset to some outcome. This outcome then acts as a “supervisor”. For example flow 

cytometry samples from HIV+ patients could be linked to the HIV viral load of the patients. A regression 

tree would find regions where there is a preponderance of cells from patients with low viral load or a 

preponderance of cells from patients with high viral loads. By using these regions as data bins, this binning 

strategy may focus on more important dimensions and regions. On the other hand this strategy may 

ignore regions that are not associated with viral load but nonetheless important in some other way. A 

solution to this problem is to use a multivariate outcome (e.g. HIV viral load and self-reported health). 
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A disadvantage to this method is that in some circumstances a tree will only create one data bin. In this 

paper the tree algorithm will only split a dimension if that split increases R^2 (the coefficient of 

determination) by at least 0.01. If no split increases R^2 by 0.01 or more, only one bin will be created. This 

problem could be avoided by allowing splits that increase R^2 by less than 0.01. But this defeats the 

purpose of this method which is to create bins that are meaningfully associated with the supervisor. If the 

tree algorithm creates only one bin, this should be interpreted as evidence that the supervisor is not 

appropriate for the dataset.  

 

II.D.5. Bumped trees 

 

Compared to other predictive models like linear regression, regression trees tend to do a poor job of 

predicting the outcome. (On the other hand there is no obvious way to use linear regression to create 

data bins.) Bumping [9] is one way to improve the performance of regression trees. Bootstrapping and 

random cost [10] can be used to generate many trees. These trees are tested using the original data, and 

the best performing tree is selected. Because trees are created using a greedy algorithm, bumping can 

greatly improve their predictive performance. 

 

For some types of data it may be possible to measure the accuracy of the similarity measure. For example 

if a similarity measure is used to create a neighborhood-based predictive model, the accuracy of this 

predictive model can be considered the accuracy of the similarity measure. In this case trees could also be 

bumped to maximize this accuracy. In other words after bootstrapping and random cost are used to 

generate trees, the tree that gives the most accurate similarity measure could be chosen. From my 
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experience this approach gives similarity measures that are very accurate for the reference multiset, but 

these similarity measures are likely to be overfit. 

 

II.E. Cumulative distribution function method 

 

Empirical cumulative distribution functions are calculated for each multiset. These cumulative distribution 

functions are compared using L1 distance or L2 distance, which involves integrating over multidimensional 

space. For this reason this method is very computationally difficult. 

 

II.F. Pure earth mover's distance 

 

The first N points from each multiset are chosen. This step is necessary to ensure equal cardinality. If A' is 

the first N points from A and B' is the first N points from B, then the similarity between A and B is 

calculated by finding the earth mover’s distance between A’ and B’. This problem is equivalent to an 

assignment problem in linear programming and can be solved using the Hungarian algorithm. If a multiset 

contains less than N points, then the points in the multiset should be repeated until N points are reached. 

 

This method is very computationally intensive if N is large. For small N the first N points may not be 

representative of the multiset, which could make this method inaccurate.  
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III. Comparison of similarity measures 

 

III.A. Desirable properties for similarity measures 

 

If S(X,Y) is the similarity score between two multisets X and Y, then the similarity measure S should have 

the following properties. 

 

1. S(X,Y)=S(X,Y). The similarity measure should not be random. More precisely the similarity measure 

should not vary based on an arbitrary parameter. 

 

2. S(X,Y)>=0. The similarity score should be nonnegative. 

 

3. The “perfect similarity property”: S(X,Y)=0 if X=Y. A multiset should be perfectly similar to an equivalent 

multiset. 

 

4. S(X,Y)=S(Y,X). The similarity measure should be symmetric. 

 

5. The “size property”: S(X,Y)=S(X,YUY...UY}) where YUY is the union of Y with itself. The number of cells in 

a flow cytometry sample depends more on assay variation (the amount of blood or tissue collected, the 

speed of the flow cytometer, etc.) than on biological variation. Therefore the similarity measure should 

only depend on the distribution of the cells and not on the number of cells. 

 

6. S(X,Z)<=S(X,Y)+S(Y,Z). Ideally the similarity measure should obey the triangle inequality, although this 

property is not essential. 
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7. The similarity measure should be resistant to assay variation. 

 

8. Computational difficulty. The similarity measure should be easy to implement and not computationally 

intensive. 

 

9. Resistance to the curse of dimensionality. The performance or computational efficiency of the similarity 

measure should not decrease too much when the number of dimensions increases. 

 

Table 5 shows how the similarity measures described in section II compare based on these properties. 

Note that each of the first nine methods must be paired with one of the next four methods to produce a 

multiset similarity measure. Only pure earth mover’s distance is a multiset similarity measure by itself. 

Property 7, resistance to assay variation, is not included in table. All methods are susceptible to assay 

variation if raw data is used and resistant if Boolean gate data is used. Section III.D discusses this issue 

further. The evaluations for property 9, resistance to the curse to dimensionality, should be taken with a 

grain of salt since they are not based on simulations or rigorous calculation. 
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Table 5: Comparison of similarity measures based on properties 
Method 1. Not 

random 
2. 
Nonnegative 

3. 
Symmetric 

4. Perfect 
similarity 
property 

5. Size 
property 

6. 
Triangle 
inequality 

8. 
Computational 
difficulty 

9. Resistance to 
the curse of 
dimensionality 

First moment Yes    Yes  Low Moderate 
Second moment Yes    Yes  Low/moderate Moderate 
Probability density 
function 

Yes    Yes  High ? 

Equal-sized bins Yes    Yes  Moderate Low 
K-means clustering No    Yes  Moderate Moderate 
Sum of squares Yes    Yes  Moderate Moderate 
Tree method Yes    Yes  Moderate High 
Bumped trees No    Yes  Moderate High 
Cumulative 
distribution function 

Yes    Yes  High ? 

Lp distance (p>=1)  Yes Yes Yes  Yes Low  
Pearson correlation 
distance 

 Yes Yes Yes  No Low  

Symmetric Kullback-
Leibler divergence 

 Yes Yes Yes  No Low  

Earth mover's 
distance 

 Yes Yes Yes  Yes Moderate  

Pure earth mover's 
distance 

Yes Yes Yes No No Yes Moderate Moderate 

 

Similarity measures that obey properties 2, 3, 4 and 6 are pseudometrics. None of the multiset similarity 

measures described in section II are true metrics. In fact the size property contradicts a property (S(X,Y)=0 

if and only if X=Y) that is required for true metrics. Pure earth mover’s distance is the only measure that 

does not obey property 4 (the perfect similarity property). The pure earth mover’s distance between two 

equivalent but not identical multisets is not necessarily zero (although it tends to be close to zero). 

 

Note that Rubner et al [8] provide a simple proof showing that earth mover’s distance obeys the triangle 

inequality. The earth mover’s distance between X and Y is the minimum cost of transforming X into Y. If 

S(X,Z)>S(X,Y)+S(Y,Z), then transforming X into Y and then into Z costs less than the minimum cost of 

transforming X into Z, which is clearly a contradiction. 
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III.B. Other considerations 

 

A major shortcoming of most probability mass function methods is that the results vary depending on 

which reference multiset is used to create data bins. Fortunately the equal-sized bins method with 

Boolean gate data can avoid this shortcoming. Because Boolean gate data is naturally divided into equal-

sized bins, 2^d bins (where d is the number of dimensions in the dataset) can be created without even 

using a reference multiset.  

 

Kullback-Leibler divergence and Pearson correlation have some undesirable qualities that are not 

apparent from table 5. Because the Kullback-Leibler divergence between two objects A and B is defined as 

Σ(A(i)*ln(A(i)/B(i))) or ∫ Α(x)*ln(A(x)/B(x)) dx, Kullback-Leibler divergence will be infinite if there is any z 

where B(z) is equal to zero and A(z) is not. For this reason, even distributions that are intuitively very 

similar (e.g. uniform(0,100) and Uniform(0.001,100.001)) are infinitely dissimilar based on Kullback-Leibler 

divergence. This problem is inherited by the symmetric form of Kullback-Leibler divergence used in this 

paper. Similarly Pearson correlation often contradicts intuitive notions of similarity. For example the 

arrays [0, 1/6, 1/3, 0.5] and [5/23, 11/46, 6/23, 13/46] are intuitively quite different but are perfectly 

similar according to Pearson correlation. 

 

The first moment method has a desirable quality that other methods lack. Because relationships between 

variables are ignored, this method will work even if variables have not been observed together. For 

example imagine that blood from HIV+ patients is stained three different times: once with FITC CCR5, 

once with PE CD3 and once with PerCP CD4. The first moment method will treat this data the same way it 

would treat samples that have been simultaneously stained FITC CCR5, PE CD3 and PerCP CD4: the mean 

fluorescent intensity of FITC CCR5, PE CD3 and PerCP CD4 will be calculated for each patient and these 



21 

means will be combined into 3-dimensional means, which can then be compared using L1 distance, L2 

distance or Pearson correlation distance. 

 

III.C. Testing the accuracy and consistency of similarity measures using dataset 1 

 

Dataset 1 consists of flow cytometry samples from eight SIV (simian immunodeficiency virus) infected 

monkeys. The samples were stained with FITC CCR7, PE CCR5, PerCP CD4, PE-Cy7 CD28, Alexa 700 CD3, 

Pacific Blue CD95 and AmCyan CD8 [11]. FSC and SSC were used to create a gate for lymphocytes. Only 

cells from the lymphocyte gate are included in the dataset. FSC and SSC are not included in the dataset. 

The dataset contains 30,000 cells from each sample. 

 

Both Boolean gate and raw versions of this dataset were used. The raw data was not transformed or 

cleaned in any way, although in many cases transformation or data cleaning may be helpful. For example 

Diaz-Romero et al [1] found that log transformation followed by z-score transformation worked better 

than untransformed data. 

 

Dataset 1 was used to test the accuracy of the methods discussed in section II. First the methods were 

used to calculate similarities. Then for each similarity measure I calculated the correlation between the 

log SIV viral load of the monkeys and the log SIV viral load of their nearest neighbor as determined by the 

similarity measure. Dataset 1 contains information that is highly relevant to SIV pathogenesis (e.g. the 

number of CD4+ cells, CD28 expression and CCR5 expression). If a similarity measure “accurately” 

measures the similarity between samples, we would expect monkeys with similar samples to have similar 

viral loads. The table 6 describes the results of this test. 
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Not all of the methods discussed in section II were tested. The probability density function method and 

the cumulative distribution function method were not tested because they are computationally very 

difficult. The k-means clustering method and the bumped trees method were not tested because they are 

partly random and therefore do not give consistent results. Pure earth mover’s distance was only tested 

using raw data. For Boolean gate data the equal-sized bins method with earth mover’s distance is 

equivalent to pure earth mover’s distance but is more computationally efficient and uses all points in a 

dataset. All other methods were tested. The equal-sized bins method was implemented with 2^7 bins. 

The sum of squares method was implemented with 10 bins and with 50 bins. Pure earth mover’s distance 

was implemented using the first 256 cells from each sample. For the tree method log SIV viral load was 

used as the supervisor. 

 

Table 6: Comparison of similarity measures based on the correlation between log viral load and 
nearest-neighbor log viral load 
Method (first step) Method (second step) Data type Correlation 
First moment L1 distance Raw 0.6813 
First moment L2 distance Raw 0.6485 
First moment Pearson correlation distance Raw 0.5884 
First moment L1 distance Boolean 0.4325 
First moment L2 distance Boolean 0.4027 
First moment Pearson correlation distance Boolean -0.7774 
Second moment L1 distance Raw 0.6485 
Second moment L2 distance Raw 0.6485 
Second moment Pearson correlation distance Raw 0.5538 
Second moment L1 distance Boolean 0.6752 
Second moment L2 distance Boolean 0.5395 
Second moment Pearson correlation distance Boolean -0.7774 
Equal-sized bins L1 distance Raw 0.3290 
Equal-sized bins L2 distance Raw 0.1356 
Equal-sized bins Pearson correlation distance Raw -0.0271 
Equal-sized bins Symmetric Kullback-Leibler divergence Raw NA 
Equal-sized bins L1 earth mover's distance Raw 0.5683 
Equal-sized bins L2 earth mover's distance Raw 0.5683 
Equal-sized bins L1 distance Boolean 0.4671 
Equal-sized bins L2 distance Boolean 0.6817 
Equal-sized bins Pearson correlation distance Boolean 0.2054 
Equal-sized bins Symmetric Kullback-Leibler divergence Boolean NA 
Equal-sized bins L1 earth mover's distance Boolean 0.5683 
Equal-sized bins L2 earth mover's distance Boolean 0.5683 
Sum of squares (10 bins) L1 distance Raw 0.1893 
Sum of squares (10 bins) L2 distance Raw -0.2049 
Sum of squares (10 bins) Pearson correlation distance Raw -0.7513 
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Sum of squares (10 bins) Symmetric Kullback-Leibler divergence Raw -0.1434 
Sum of squares (10 bins) L1 earth mover's distance Raw 0.5395 
Sum of squares (10 bins) L2 earth mover's distance Raw 0.5395 
Sum of squares (10 bins) L1 distance Boolean 0.2839 
Sum of squares (10 bins) L2 distance Boolean 0.6817 
Sum of squares (10 bins) Pearson correlation distance Boolean -0.5920 
Sum of squares (10 bins) Symmetric Kullback-Leibler divergence Boolean 0.1462 
Sum of squares (10 bins) L1 earth mover's distance Boolean 0.5574 
Sum of squares (10 bins) L2 earth mover's distance Boolean 0.4671 
Sum of squares (50 bins) L1 distance Raw 0.6380 
Sum of squares (50 bins) L2 distance Raw 0.0917 
Sum of squares (50 bins) Pearson correlation distance Raw 0.1990 
Sum of squares (50 bins) Symmetric Kullback-Leibler divergence Raw 0.3751 
Sum of squares (50 bins) L1 earth mover's distance Raw 0.5395 
Sum of squares (50 bins) L2 earth mover's distance Raw 0.5490 
Sum of squares (50 bins) L1 distance Boolean 0.4671 
Sum of squares (50 bins) L2 distance Boolean 0.6817 
Sum of squares (50 bins) Pearson correlation distance Boolean 0.2054 
Sum of squares (50 bins) Symmetric Kullback-Leibler divergence Boolean 0.1151 
Sum of squares (50 bins) L1 earth mover's distance Boolean 0.5683 
Sum of squares (50 bins) L2 earth mover's distance Boolean 0.5683 
Tree L1 distance Raw 0.4448 
Tree L2 distance Raw 0.4448 
Tree Pearson correlation distance Raw 0.2666 
Tree Symmetric Kullback-Leibler divergence Raw 0.6782 
Tree L1 earth mover's distance Raw 0.4448 
Tree L2 earth mover's distance Raw 0.4448 
Tree L1 distance Boolean 0.7413 
Tree L2 distance Boolean 0.7413 
Tree Pearson correlation distance Boolean 0.4906 
Tree Symmetric Kullback-Leibler divergence Boolean 0.7392 
Tree L1 earth mover's distance Boolean 0.7413 
Tree L2 earth mover's distance Boolean 0.7413 
Pure L1 earth mover's distance Raw 0.6550 
Pure L2 earth mover's distance Raw 0.7553 
First moment * * 0.3293 
Second moment * * 0.3814 
Equal-sized bins * * 0.4065 
Sum of squares (10 bins) * * 0.1428 
Sum of squares (50 bins) * * 0.4165 
Tree * * 0.5766 
* L1 distance * 0.4999 
* L2 distance * 0.4578 
* Pearson correlation distance * -0.0347 
* Symmetric Kullback-Leibler divergence * 0.3184 
* L1 earth mover's distance† * 0.5659 
* L2 earth mover's distance† * 0.5558 
* * Raw 0.3883 
* * Boolean 0.3907 
* * * 0.3895 
†does not include pure earth mover's distance 
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Overall the tree method outperformed moment methods and other probability mass function methods. 

The tree method with Boolean gate data performed especially well. Pure L2 earth mover’s distance also 

performed well. The sum of squares method with 10 bins performed poorly compared to other 

unsupervised probability mass function methods, which may suggest that 10 bins are too few for an 

unsupervised binning method. In contrast the tree method created only 3 bins and performed well. 

  

Overall L1 earth mover’s distance and L2 earthmover’s distance outperformed competing methods. 

Furthermore they consistently performed well. The nearest-neighbor correlations for L1 earth mover’s 

distance and L2 earth mover’s distance ranged from 0.4448 to 0.7553. Pearson correlation distance 

performed especially poorly. Symmetric Kullback-Leibler divergence also performed relatively poorly. 

Furthermore when combined with the equal-sized bins method, symmetric Kullback-Leibler divergence 

could not identify a nearest neighbor for any sample because all samples were judged to be infinitely 

dissimilar from each other. (When combined with the sum of squares method with 50 bins and Boolean 

gate data, symmetric Kullback-Leibler divergence judged certain samples to be infinitely dissimilar but was 

able to identify a nearest-neighbor for all samples.) This possibility was discussed in section III.B. 

 

Dataset 1 was also used to test the consistency of these methods. In order to do so, each similarity 

measure was represented by a vector of its similarity scores, [S(X1,X2),S(X1,X3),…,S(X2,X1),…,S(X8,X7)] 

where Xi is the ith sample and S is the similarity measure, and the correlations between these vectors 

were calculated. Note that these vectors do not contain the similarity scores between a sample and itself 

(e.g. S(X4,X4)) since these similarity scores are always zero. The entire correlation matrix can be found in 

the supplementary tables file. Table 7 shows the mean correlation between a similarity measure and all 

other similarity measure implementations. All correlation means exclude the necessarily perfect 

correlation between an implementation and itself. 
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Table 7: Mean correlation between a similarity measure and all other similarity measure 
implementations 
Method (first step) Method (second step) Data type Mean correlation 
First moment L1 distance Raw 0.7244 
First moment L2 distance Raw 0.7143 
First moment Pearson correlation distance Raw 0.3955 
First moment L1 distance Boolean 0.7641 
First moment L2 distance Boolean 0.7590 
First moment Pearson correlation distance Boolean 0.5580 
Second moment L1 distance Raw 0.6643 
Second moment L2 distance Raw 0.6642 
Second moment Pearson correlation distance Raw 0.5195 
Second moment L1 distance Boolean 0.7801 
Second moment L2 distance Boolean 0.7778 
Second moment Pearson correlation distance Boolean 0.6509 
Equal-sized bins L1 distance Raw 0.6930 
Equal-sized bins L2 distance Raw 0.6143 
Equal-sized bins Pearson correlation distance Raw 0.5695 
Equal-sized bins Symmetric Kullback-Leibler divergence Raw NA 
Equal-sized bins L1 earth mover's distance Raw 0.7729 
Equal-sized bins L2 earth mover's distance Raw 0.7701 
Equal-sized bins L1 distance Boolean 0.7093 
Equal-sized bins L2 distance Boolean 0.6639 
Equal-sized bins Pearson correlation distance Boolean 0.6874 
Equal-sized bins Symmetric Kullback-Leibler divergence Boolean NA 
Equal-sized bins L1 earth mover's distance Boolean 0.7680 
Equal-sized bins L2 earth mover's distance Boolean 0.7625 
Sum of squares (10 bins) L1 distance Raw 0.6253 
Sum of squares (10 bins) L2 distance Raw 0.6427 
Sum of squares (10 bins) Pearson correlation distance Raw 0.4989 
Sum of squares (10 bins) Symmetric Kullback-Leibler divergence Raw 0.7000 
Sum of squares (10 bins) L1 earth mover's distance Raw 0.7547 
Sum of squares (10 bins) L2 earth mover's distance Raw 0.7397 
Sum of squares (10 bins) L1 distance Boolean 0.6820 
Sum of squares (10 bins) L2 distance Boolean 0.6458 
Sum of squares (10 bins) Pearson correlation distance Boolean 0.5756 
Sum of squares (10 bins) Symmetric Kullback-Leibler divergence Boolean 0.6799 
Sum of squares (10 bins) L1 earth mover's distance Boolean 0.7554 
Sum of squares (10 bins) L2 earth mover's distance Boolean 0.7430 
Sum of squares (50 bins) L1 distance Raw 0.6915 
Sum of squares (50 bins) L2 distance Raw 0.6981 
Sum of squares (50 bins) Pearson correlation distance Raw 0.6670 
Sum of squares (50 bins) Symmetric Kullback-Leibler divergence Raw 0.7523 
Sum of squares (50 bins) L1 earth mover's distance Raw 0.7686 
Sum of squares (50 bins) L2 earth mover's distance Raw 0.7603 
Sum of squares (50 bins) L1 distance Boolean 0.7088 
Sum of squares (50 bins) L2 distance Boolean 0.6639 
Sum of squares (50 bins) Pearson correlation distance Boolean 0.6844 
Sum of squares (50 bins) Symmetric Kullback-Leibler divergence Boolean NA 
Sum of squares (50 bins) L1 earth mover's distance Boolean 0.7681 
Sum of squares (50 bins) L2 earth mover's distance Boolean 0.7625 
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Tree L1 distance Raw 0.4112 
Tree L2 distance Raw 0.4129 
Tree Pearson correlation distance Raw 0.0905 
Tree Symmetric Kullback-Leibler divergence Raw 0.4938 
Tree L1 earth mover's distance Raw 0.4049 
Tree L2 earth mover's distance Raw 0.4087 
Tree L1 distance Boolean 0.6277 
Tree L2 distance Boolean 0.6364 
Tree Pearson correlation distance Boolean 0.5641 
Tree Symmetric Kullback-Leibler divergence Boolean 0.5693 
Tree L1 earth mover's distance Boolean 0.6459 
Tree L2 earth mover's distance Boolean 0.6367 
Pure L1 earth mover's distance Raw 0.7144 
Pure L2 earth mover's distance Raw 0.7296 
First moment * * 0.6525 
Second moment * * 0.6762 
Equal-sized bins * * 0.7011 
Sum of squares (10 bins) * * 0.6703 
Sum of squares (50 bins) * * 0.7205 
Tree * * 0.4918 
* L1 distance * 0.6735 
* L2 distance * 0.6578 
* Pearson correlation distance * 0.5384 
* Symmetric Kullback-Leibler divergence * 0.6391 
* L1 earth mover's distance† * 0.7048 
* L2 earth mover's distance† * 0.6979 
* * Raw 0.6151 
* * Boolean 0.6868 
* * * 0.6491 
†does not include pure earth mover's distance 
 

With some exceptions the similarity measures are moderately to highly correlated with each other. The 

mean correlation between similarity measures is 0.6491. Similarity measures based on the tree method or 

Pearson correlation distance tend to correlate more poorly with other measures. If similarity measures 

based on Pearson correlation distance are excluded, the mean correlation between similarity measures 

rises to 0.7105. If similarity measures based on the tree method are excluded, the mean correlation rises 

to 0.7564. And if both are excluded, the mean correlation rises to 0.8326. 

 

Table 8 shows the mean correlation between similarity measures in a certain family. Because certain 

families disproportionately contain measures based on Pearson correlation or trees, the results excluding 

these similarity measures are also shown. 
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Table 8: Mean correlation within a family of similarity measures 
Family Mean correlation Excluding measures based 

on Pearson correlation 
Excluding measures 
based on trees 

First moment 0.6447 0.8887 NA 
Second moment 0.6910 0.8528 NA 
Equal-sized bins 0.8675 0.8895 NA 
Sum of squares (10 bins) 0.7844 0.8606 NA 
Sum of squares (50 bins) 0.8399 0.8718 NA 
Tree 0.7470 0.8640 NA 
L1 distance 0.6885 NA 0.7853 
L2 distance 0.6617 NA 0.7724 
Pearson correlation distance 0.4872 NA 0.6010 
Symmetric Kullback-Leibler 

 
0.6468 NA 0.8581 

L1 earth mover's distance† 0.7687 NA 0.9579 
L2 earth mover's distance† 0.7314 NA 0.9418 
†does not include pure earth mover's distance 
 

L1 earth mover’s distance and L2 earth mover’s distance are remarkably consistent when the tree method 

is excluded. For this dataset the tree method created only 3 bins, whereas other probability mass function 

methods created between 10 and 128 bins, which may explain why the tree method gives somewhat 

different results.  

 

III.D. Testing resistance to assay variation using dataset 2 

 

Dataset 2 consists of flow cytometry samples from 17 monkeys. The samples were stained with FITC 

perforin, PerCP CD4, PE-Cy7 CD28, Alexa 700 CD3, Pacific Blue CD95 and AmCyan CD8 [12]. FSC and SSC 

were used to create a gate for lymphocytes. Only cells from the lymphocyte gate are included in the 

dataset. FSC and SSC are not included in the dataset. The dataset contains 30,000 cells from each sample. 

 

Dataset 2 was used to test resistance to assay variation. Whereas all the samples in dataset 1 were 

processed together and hence assay variation in that dataset is quite low, the samples in dataset 2 were 

processed in two batches. The first batch (samples 1 through 9) was processed several months before the 
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second batch (samples 10 through 17). Not surprisingly assay variation between the two batches is quite 

substantial. In particular FITC perforin was much brighter in the first batch than in the second batch. 

(Section I.D discusses this problem in more detail.) Other sources of assay variation may also be present. 

 

In order to test the effect of assay variation on a similarity measure, an assay variation score AVS=Σ(C(i)-

D(i)) was devised, where C(i) is the mean similarity rank between sample i and other sample from the 

same batch and D(i) is the mean similarity rank between sample i and samples from the other batch. Here 

the similarity rank SR between two samples, X and Y, means that Y is SR(X,Y)th most similar sample to X. 

Note that SR(X,X)=1 and SR may not be symmetric even if the similarity measure it is based on is 

symmetric. Also note that C excludes the similarity rank between a sample and itself. For this dataset the 

minimum assay variation score is -136. Permutation tests indicate that if assay variation is absent or a 

similarity measure is unaffected by assay variation then the expected value of the assay variation score is 

zero or very close to zero. 

 

In other words if a similarity measure is unaffected by assay variation, we would expect a sample to be as 

similar to other samples in its batch as it is to samples in a different batch. But when raw data was used, 

samples were judged to be much more similar to samples in their own batch. For example table 9 shows 

the similarity rank matrix produced by the first moment method and L1 distance using raw data. The (i,j) 

cell of this matrix contains the similarity rank between sample i and sample j.  According to this matrix, 

every sample is more similar to every sample in its own batch than it is to any sample in the other batch. 

This situation corresponds to the lowest possible assay variation score of -136. Needless to say this 

situation is very unlikely to occur by chance alone (p-value = 9!*8!/17! = 0.00004114). When Boolean gate 

data is used, the situation is greatly improved. Table 10 shows the similarity matrix produced by the first 

moment method and L1 distance using Boolean gate data. 
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Table 9: Similarity matrix produced by first moment method and L1 distance using raw data 
1 6 5 9 8 3 7 4 2 11 10 14 13 15 16 17 12 
3 1 8 4 9 5 7 2 6 15 10 17 12 11 16 13 14 
5 9 1 7 4 3 2 8 6 11 10 13 14 15 16 17 12 
6 7 5 1 9 3 4 2 8 17 14 12 15 13 10 16 11 
6 9 2 7 1 4 3 8 5 11 10 13 14 15 16 17 12 
4 9 3 7 6 1 2 8 5 11 10 13 15 14 16 17 12 
5 9 2 7 4 3 1 8 6 11 10 13 15 14 16 17 12 
4 2 8 3 9 5 7 1 6 12 10 15 17 16 11 14 13 
2 8 5 9 4 3 6 7 1 11 10 13 14 15 16 17 12 
11 17 10 16 13 14 12 15 9 1 2 4 5 6 7 8 3 
9 13 11 17 15 14 12 16 10 2 1 6 3 4 8 7 5 
11 17 10 9 16 13 12 15 14 6 7 1 3 4 5 8 2 
9 14 11 10 17 13 12 15 16 8 5 3 1 2 6 7 4 
10 11 12 9 17 14 13 15 16 8 5 3 2 1 6 7 4 
11 14 16 9 17 12 15 10 13 8 7 3 5 4 1 2 6 
11 12 16 9 17 13 15 10 14 8 7 5 4 3 2 1 6 
9 17 11 10 16 13 12 14 15 5 6 2 3 4 7 8 1 
 

Table 10: Similarity matrix produced by first moment method and L1 distance using Boolean gate data 
1 10 8 15 3 14 2 4 6 9 11 12 16 17 7 13 5 
8 1 3 9 10 15 11 7 12 14 6 5 17 16 13 4 2 
9 3 1 8 11 15 13 7 14 12 4 6 17 16 10 5 2 
14 4 3 1 16 10 17 9 15 13 6 5 12 8 11 2 7 
5 9 11 16 1 12 7 3 2 6 10 13 15 17 4 14 8 
16 13 14 15 11 1 17 9 10 4 5 3 2 7 6 8 12 
2 8 9 15 4 13 1 3 6 10 11 12 16 17 7 14 5 
5 9 10 16 2 13 7 1 3 11 8 12 15 17 4 14 6 
6 11 12 16 2 10 7 3 1 5 9 13 15 17 4 14 8 
9 15 11 17 4 5 13 8 6 1 3 7 12 16 2 14 10 
15 9 6 16 14 8 17 10 11 7 1 2 13 12 3 5 4 
16 5 6 13 15 4 17 12 14 9 2 1 11 10 8 3 7 
16 13 14 12 15 3 17 9 10 8 5 4 1 2 7 6 11 
16 10 12 7 15 4 17 13 14 11 6 3 2 1 9 5 8 
7 15 12 17 5 9 11 6 4 2 3 8 14 16 1 13 10 
15 5 6 2 16 9 17 13 14 12 4 3 10 8 11 1 7 
6 3 2 14 9 15 8 5 11 13 4 7 17 16 12 10 1 
 

Overall similarity measures based on Boolean gate data are much more resistant to assay variation than 

similarity measures based on raw data. Table 11 shows the assay variation score for all similarity 

measures tested in section III.C except similarity measures based on the tree method. These measures 

were excluded because no suitable supervisor is available for this dataset. This exclusion is unfortunate 
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since a supervised method may be more resistant to assay variation as it might ignore regions or 

dimensions like FITC perforin where assay variation is greatest. 

 

The equal-sized bins method was implemented with 2^6 bins. The sum of squares method was 

implemented with 10 bins and with 50 bins. Pure earth mover’s distance was implemented using the first 

256 cells from each sample. 

 

Table 11: Assay variation scores 
Method (first step) Method (second step) Data type Assay variation score 
First moment L1 distance Raw -136 
First moment L2 distance Raw -136 
First moment Pearson correlation distance Raw -136 
First moment L1 distance Boolean -25.8 
First moment L2 distance Boolean -22.8 
First moment Pearson correlation distance Boolean -8 
Second moment L1 distance Raw -136 
Second moment L2 distance Raw -136 
Second moment Pearson correlation distance Raw -136 
Second moment L1 distance Boolean -32.1 
Second moment L2 distance Boolean -25.8 
Second moment Pearson correlation distance Boolean -10.3 
Equal-sized bins L1 distance Raw -132 
Equal-sized bins L2 distance Raw -106.4 
Equal-sized bins Pearson correlation distance Raw -109.1 
Equal-sized bins Symmetric Kullback-Leibler divergence Raw NA 
Equal-sized bins L1 earth mover's distance Raw -98 
Equal-sized bins L2 earth mover's distance Raw -104.1 
Equal-sized bins L1 distance Boolean -38.4 
Equal-sized bins L2 distance Boolean -28.2 
Equal-sized bins Pearson correlation distance Boolean -28.3 
Equal-sized bins Symmetric Kullback-Leibler divergence Boolean NA 
Equal-sized bins L1 earth mover's distance Boolean -28.8 
Equal-sized bins L2 earth mover's distance Boolean -30.1 
Sum of squares (10 bins) L1 distance Raw -136 
Sum of squares (10 bins) L2 distance Raw -136 
Sum of squares (10 bins) Pearson correlation distance Raw -136 
Sum of squares (10 bins) Symmetric Kullback-Leibler divergence Raw -84.6 
Sum of squares (10 bins) L1 earth mover's distance Raw -136 
Sum of squares (10 bins) L2 earth mover's distance Raw -136 
Sum of squares (10 bins) L1 distance Boolean -34.7 
Sum of squares (10 bins) L2 distance Boolean -29.7 
Sum of squares (10 bins) Pearson correlation distance Boolean -21.1 
Sum of squares (10 bins) Symmetric Kullback-Leibler divergence Boolean -29.3 
Sum of squares (10 bins) L1 earth mover's distance Boolean -24.1 
Sum of squares (10 bins) L2 earth mover's distance Boolean -26.4 
Sum of squares (50 bins) L1 distance Raw -136 
Sum of squares (50 bins) L2 distance Raw -136 
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Sum of squares (50 bins) Pearson correlation distance Raw -136 
Sum of squares (50 bins) Symmetric Kullback-Leibler divergence Raw NA 
Sum of squares (50 bins) L1 earth mover's distance Raw -136 
Sum of squares (50 bins) L2 earth mover's distance Raw -136 
Sum of squares (50 bins) L1 distance Boolean -38.4 
Sum of squares (50 bins) L2 distance Boolean -28.3 
Sum of squares (50 bins) Pearson correlation distance Boolean -28.4 
Sum of squares (50 bins) Symmetric Kullback-Leibler divergence Boolean NA 
Sum of squares (50 bins) L1 earth mover's distance Boolean -28.8 
Sum of squares (50 bins) L2 earth mover's distance Boolean -30.1 
Pure L1 earth mover's distance Raw -134.7 
Pure L2 earth mover's distance Raw -136 
* * Raw -128.4 
* * Boolean -27.2 
 

The relatively high assay variation score (-84.6) for the sum of squares method (10 bins) with Kullback-

Leibler divergence using raw data is entirely attributable to infinite divergences between certain samples 

in the same batch. The equal-sized bins method performed slightly better with raw data than other 

methods but was still very biased. 

 

III.E. Conclusions 

 

Overall Boolean gate data is preferable to raw data. Raw data is acceptable only if assay variation appears 

to be low. On the other hand Boolean gate data is just one possible transformation of raw data. There will 

be other transformations of raw data that are resistant to assay variation, and some of these 

transformations may be preferable to Boolean gate data in certain ways. 

 

A probability mass function method with earth mover’s distance is the best similarity measure for most 

situations. Earth mover’s distance outperformed Lp distance, symmetric Kullback-Leibler divergence and 

Pearson correlation in terms of consistency and accuracy. Furthermore if earth mover’s distance is used 

with an unsupervised probability mass function method, a reference multiset is not necessary. Earth 

mover’s distance can compare probability mass functions with different data bins. Therefore an 
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unsupervised binning method can be applied individually to each multiset. This approach removes one of 

the biggest shortcomings of probability mass function methods. 

  

Because earth mover’s distance gives extremely similar results for all unsupervised probability mass 

function methods, the consistency and accuracy of the unsupervised probability mass function methods is 

not very important. For most situations the equal-sized bins method is the best unsupervised method. It is 

conceptually the simplest. It is particularly attractive for Boolean gate data since Boolean gate data is 

naturally divided into equal-sized bins, and it is also adequate for raw data. But if the dimensionality of 

the dataset is very high, it may not be advisable to create s^d bins (where d is the dimensionality of the 

dataset and s is an integer greater than 1). In this case the sum of squares method may be preferable.  

 

If an appropriate supervisor is available, the tree method with earth mover’s distance may be a good 

option. The tree method appears to be more accurate than unsupervised probability mass function 

methods. And for certain types of data, for example very high dimensional data where many of the 

dimensions are unimportant, the tree method or some other supervised method may be the only 

acceptable option. On the other hand a similarity measure based the tree method may ignore regions that 

are not linked to the supervisor but nonetheless important in some way. 

 

If a very simple similarity measure is desired, the first moment method with L1 or L2 distance is a good 

option. This measure outperformed several more complicated measures in terms of accuracy, consistency 

and other properties. Furthermore unlike other methods this method can be used even if certain variables 

are never observed together (see section II.B for more information). 
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Pure earth mover’s distance performed well on the nearest-neighbor test but has some undesirable 

qualities. In particular it does not obey the perfect similarity property or the size property, and it can be 

very computationally intensive. Furthermore since pure earth mover’s distance only compares the first N 

points of each multiset, it is not an appropriate similarity measure if the first N points are not 

representative of the multiset. Such a situation is likely to occur if the points are ordered chronologically 

and there is a chronological trend or if the data has been sorted. In situations like these, it would be 

preferable to randomly selected N points, but this approach would create a random similarity measure.   

 

Pearson correlation distance and symmetric Kullback-Leibler divergence are particularly poor options. 

Pearson correlation distance performed terribly on the nearest-neighbor test, and similarity measures 

based on Pearson correlation correlated relatively poorly with other similarity measures. Symmetric 

Kullback-Leibler often produced infinite similarity scores and has no redeeming feature to compensate for 

this shortcoming. In retrospect the square root of Jensen-Shannon divergence would have been 

preferable to symmetric Kullback-Leibler divergence. The Jensen-Shannon divergence between two 

random variables X and Y is equal to KL(X,(X+Y)/2)+KL(Y,(X+Y)/2) where KL is Kullback-Leibler divergence. 

Jensen-Shannon divergence is guaranteed to be finite, and the square root of Jensen-Shannon divergence 

obeys the triangle inequality. On the other hand I doubt that Jensen-Shannon divergence would match 

the consistency of earth mover’s distance, and unlike earth mover’s distance Jensen-Shannon divergence 

cannot compare probability mass functions with different data bins. 

 

 

 

 

 



34 

IIII. Diversity measures 

 

IIII.A. Two types of diversity measures 

 

Diversity measures quantify the diversity of an object. Consider the following two multisets: 

A={1,2,3,4,5,6,7,8} and B={1,1,1,1,8,8,8,8}. Which of these two multisets is more diverse? At first glance 

the first multiset may appear to be more diverse since it contains eight distinct numbers whereas the 

second multiset contains only 1s and 8s. Now consider these two multisets: 

C={8,8.01,8.02,8.03,8.04,8.05,8.06,8.07} and D={0,0,0,0,1000,1000,1000,1000}. Once again the first 

multiset contains eight distinct numbers and the second multiset has only two values. But since all the 

numbers in the first multiset are very similar to each other and 0 and 1000 are not so similar, the second 

multiset may now seem more diverse. In fact the answer to these questions depends on the type of 

diversity measure that is used.  

 

In this paper I will discuss two types of diversity measures: “nominal diversity measures” and “interval 

diversity measures”. Nominal diversity measures treat any elements that are not identical or in the same 

category as being equally different. If the elements of multiset C are all judged to fall into different 

categories, then according to a nominal diversity measure multiset, C is more diverse than multiset D. 

Interval diversity measures allow multiple (>2) levels of similarity between elements. In this paper all 

interval diversity measures are based on the average similarity score between elements in a multiset. The 

higher the average similarity score the more diverse the multiset is. Hence there is an underlying 

connection between similarity measures and certain diversity measures. 
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IIII.B. Nominal diversity measures 

 

Shannon entropy is one of the most commonly used diversity measures. The Shannon entropy of A is 

Σ(A(i)*log(A(i))) if A is a probability mass function and ∫ A(x)*log(A(x)) dx if A is a probability density 

function. 

 

The Simpson’s index of A is normally defined as Σ(A(i)^2) if A is a probability mass function and as ∫ A(x)^2 

dx if A is a probability density function. Because this form of Simpon’s index decreases as diversity 

increases, two alternate forms of Simpson’s index are commonly used: 1-D and 1/D where D is the normal 

form of Simpson’s index. This paper uses the first of these alternate forms. 

 

In order to use Shannon entropy or Simpon’s index to compare two multisets of points, the multiset must 

first be represented as probability density functions or probability mass functions. Techniques for doing 

this are discussed in section are discussed in section II. Kernel density estimation can be used to create 

probability density functions for each multiset, and the data binning methods from section II.D can be 

used to create probability mass functions.  

 

Note that the Simpson’s index of a multiset A is equivalent to the mean similarity between elements in A 

if similarity S is defined as S(X,Y) = {0 if X and Y are in the same category, 1 otherwise}. 

 

Because nominal diversity measures judge any elements not in the same category to be equally dissimilar, 

they can contradict intuitive notions of diversity. For example if all the elements in the multiset {9.1, 9.3, 

9.4, 9.5, 9.53, 9.6, 9.7, 9.8} are judged to fall in different categories, then this multiset is more diverse 

than {4, 9.8, 11.1, 12.4, 14.6, 14.6, 17.9, 18.5}. 
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IIII.C. Interval diversity measures 

 

Interval diversity measures for multisets of points can be created by calculating the average similarity 

between points in a multiset. In practice any similarity measure that is appropriate for points and has 

more than two output levels could be used, and any central tendency (e.g. mean or median) could be 

used to calculate the average of these similarity measures. (A similarity measure with exactly two output 

levels could also be used, but a nominal diversity measure would be created.) 

 

Calculating the average similarity between all points in a multiset can be computationally intensive. If a 

multiset contains N points, then N*(N-1)/2 similarity scores must be calculated (assuming the similarity 

measure is symmetric and obeys the perfect similarity property). One alternative is to select M points 

from the multiset and calculate the average similarity between these points. If the first M points can 

reasonably be considered a random sample, these points can be used. If not, M points can be randomly 

selected from each multiset, although this would result in a random diversity measure. The mean Lp 

distance between 100-1000 points can be computed fairly quickly on a modern computer, and 100-1000 

randomly selected points are likely to be an accurate representation of the multiset. Another alternative 

is to use a data binning method and approximate each point’s location using the center of its data bin. In 

this case only B*(B-1)/2 similarity scores would need to be calculated where B is the number of bins. 

 

If the mean squared L2 distance is used to measure diversity, then diversity can be calculated quite 

efficiently. In this case diversity is equal to twice the mean squared L2 distance from mean of the multiset. 

Hence only N distances need to be calculated, where N is the number of points in the multiset. (The mean 

squared L2 distance is also equal to the trace of the maximum-likelihood variance matrix for the multiset. 
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The trace is the sum of the diagonal elements of a matrix, and the trace of a variance matrix can be used 

as a single measure of dispersion for multidimensional data.) Unfortunately this diversity measure can 

contradict intuitive notions of diversity. Consider the following multisets: {(-1,-1),(-1,1),(1,-1),(1,1)} and {(-

1,-1),(-1,-1),(1,1),(1,1)}. Intuitively the first dataset is more diverse since it has 4 distinct populations 

instead of two. Furthermore the mean Lp distance between points is greater for the first multiset than for 

the second. But according to mean squared L2 distance, both multisets are equally diverse. 

 

IIII.D. Assessing diversity measures using dataset 1 

 

The diversity of dataset 1 was calculated using the following diversity measures: Shannon entropy, 

Simpson’s index, mean L1 distance, mean L2 distance and mean squared L2 distance. Shannon entropy, 

Simpson’s index, mean L1 distance and mean L2 distance were calculated for each of the probability mass 

function methods tested in section III.C. Mean L1 distance and mean L2 distance were also calculated 

using the first 1024 points from each sample. 

 

Table 12 shows the mean correlation between a diversity measure implementation and all other diversity 

measure implementations and the correlation between that implementation and log SIV viral load. The 

entire correlation matrix can be found in the supplementary tables file. Mean correlations exclude the 

necessarily perfect correlation between an implementation and itself. 

 

Table 12: Comparison of diversity measures 
Diversity measure Binning method or 

subset 
Data type Mean correlation with all 

other diversity measure 
implementations 

Correlation with 
log viral load 

Shannon entropy Equal-sized bins Raw 0.9111 -0.6415 
Shannon entropy Equal-sized bins Boolean 0.8972 -0.5861 
Shannon entropy Sum of squares (10 bins) Raw 0.9176 -0.4650 
Shannon entropy Sum of squares (10 bins) Boolean 0.9096 -0.5598 
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Shannon entropy Sum of squares (50 bins) Raw 0.8305 -0.1869 
Shannon entropy Sum of squares (50 bins) Boolean 0.9008 -0.5908 
Shannon entropy Tree method Raw 0.7792 -0.7080 
Shannon entropy Tree method Boolean 0.8957 -0.6818 
Simpson's index Equal-sized bins Raw 0.8884 -0.6296 
Simpson's index Equal-sized bins Boolean 0.8739 -0.5903 
Simpson's index Sum of squares (10 bins) Raw 0.8937 -0.4171 
Simpson's index Sum of squares (10 bins) Boolean 0.8800 -0.5876 
Simpson's index Sum of squares (50 bins) Raw 0.8233 -0.1791 
Simpson's index Sum of squares (50 bins) Boolean 0.8743 -0.5905 
Simpson's index Tree method Raw 0.7735 -0.7363 
Simpson's index Tree method Boolean 0.9220 -0.6565 
Mean L1 distance First 1024 points Raw 0.9015 -0.4937 
Mean L1 distance First 1024 points Boolean 0.9349 -0.5497 
Mean L1 distance Equal-sized bins Raw 0.9403 -0.6482 
Mean L1 distance Equal-sized bins Boolean 0.9349 -0.5497 
Mean L1 distance Sum of squares (10 bins) Raw 0.9124 -0.6089 
Mean L1 distance Sum of squares (10 bins) Boolean 0.9256 -0.5306 
Mean L1 distance Sum of squares (50 bins) Raw 0.9119 -0.5561 
Mean L1 distance Sum of squares (50 bins) Boolean 0.9350 -0.5502 
Mean L1 distance Tree method Raw 0.7726 -0.7347 
Mean L1 distance Tree method Boolean 0.9280 -0.6162 
Mean L2 distance First 1024 points Raw 0.9084 -0.5592 
Mean L2 distance First 1024 points Boolean 0.9284 -0.5786 
Mean L2 distance Equal-sized bins Raw 0.9434 -0.6405 
Mean L2 distance Equal-sized bins Boolean 0.9284 -0.5786 
Mean L2 distance Sum of squares (10 bins) Raw 0.9120 -0.5914 
Mean L2 distance Sum of squares (10 bins) Boolean 0.9208 -0.5475 
Mean L2 distance Sum of squares (50 bins) Raw 0.8991 -0.5588 
Mean L2 distance Sum of squares (50 bins) Boolean 0.9288 -0.5794 
Mean L2 distance Tree method Raw 0.7744 -0.7294 
Mean L2 distance Tree method Boolean 0.9260 -0.6396 
Mean squared L2 distance All points Raw 0.8978  -0.5868 
Mean squared L2 distance All points Boolean 0.9349 -0.5497 
Shannon entropy * * 0.8802 -0.5525 
Simpson's index * * 0.8661 -0.5484 
Mean L1 distance * * 0.9097 -0.5838 
Mean L2 distance * * 0.9070 -0.6003 
Mean squared L2 distance * * 0.9164 -0.5683 
* Equal-sized bins * 0.9147 -0.6081 
* Sum of squares (10 bins) * 0.9090 -0.5385 
* Sum of squares (50 bins) * 0.8880 -0.4740 
* Tree method * 0.8464 -0.6878 
* First 1024 points * 0.9183 -0.5453  
* * Raw 0.8732 -0.5617 
* * Boolean 0.9147 -0.5849 
* * * 0.8940 -0.5733 
 

Overall the diversity measures are highly correlated with each other. This suggests that, even though 

interval and nominal diversity measures are conceptually quite different, in practice they can give similar 

results. In fact the mean correlation between interval diversity measures and nominal diversity measures 
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is 0.8847, which is almost identical to the overall mean correlation of 0.8940. For most diversity measures 

there is a moderate negative correlation between diversity and log SIV viral load, meaning that monkeys 

with a more diverse lymphocyte population had lowers levels of virus. Diversity measures based on the 

tree method tend to correlate more strongly with log viral load, which suggests that supervised binning 

may result in more meaningful diversity measures. 

 

IIII.E. Conclusions 

 

Overall interval diversity measures are preferable to nominal diversity measures. Nominal diversity 

measures can produce counterintuitive results when applied to multisets of points (see section IIII.B). If a 

nominal diversity measures are used, the data binning strategy must be carefully chosen. For example 

imagine that Roederer’s method [6] is used to create 10 equal-weight bins for each multiset in a dataset 

(without the use of a reference multiset). The Simpsons index of each multiset will equal 1-10*0.1^2=0.9, 

and the Shannon entropy of each multiset will equal 10*-0.1*log(0.1)=2.302585. All multiset will have 

equal diversity regardless of their contents. 

 

Not all interval diversity measures are appropriate. Mean squared L2 distance is computationally efficient. 

But it too can produce counter-intuitive results (see section IIII.C). 

 

Of the methods tested in section IIII.D, mean Lp distance is the best. For smaller multisets (fewer than 

1000 points) the mean Lp distance between all points can be calculated in less than a minute on most 

modern computers. For larger multisets mean Lp distance can be approximated by calculating mean Lp 

distance for a subset of the multiset or by using a data binning method. A supervised data binning 



40 

method, like the tree method, may even increase the meaningfulness of a diversity measure by 

identifying important regions and dimensions. 

 

This paper only examines a few diversity measures, but it also provides a framework for creating new 

diversity measures. Any similarity measure can be combined with an appropriate central tendency to 

create a diversity measure. By identifying an appropriate similarity measure and central tendency, it 

should be possible to create a suitable diversity measure for many types of data. 
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11. The samples were also stained with APC (allophycocyanin) Gag-CM9 tetramer, but this stain was 

ignored. Only Mamu-A*01 monkeys have cells that should be stainable with this dye. Including this dye 

would have caused diversity measures to overestimate the diversity of samples from Mamu-A*01 

monkeys compared to samples from other monkeys. For consistency the APC Gag-CM9 stain was also 

ignored when calculating similarity. 

 

12. The samples were also stained with APC Gag-CM9 tetramer and PE CCR5, but these stains were 

ignored. PE CCR5 was ignored because some samples were stained with a defective PE CCR5 dye. APC 

Gag-CM9 tetramer was ignored for reasons discussed in endnote 11. The decision to exclude these stains 

was made before any similarity or diversity scores were calculated. 

 

VI. R Code 
 
#Setup 
 
library(rpart) 
library(lpSolve) 
library(clue) 
 
#Dataset 1 
 
vl=log(c(113353.40,2634.60,100.00,595.20,104215.60,111000.00,6206.60,5106.60)) 
#vl is the log viral load where vl[1] is the log viral load for the first 
sample, vl[2] is the log viral load for the second sample, etc. 
 
raw=read.csv("dataset1_raw.csv",header=T) 
bg=read.csv("dataset1_Boolean.csv",header=T) 
raw$wt=1 #a uniform weight is added so that the format of raw matches the 
format of bg, the functions below are programmed to expect this format 
 
#Dataset 2 
 
RAW=read.csv("dataset2_raw.csv",header=T) 
BG=read.csv("dataset2_Boolean.csv",header=T) 
RAW$wt=1 
 
#Counts cells in each data bin 
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fcount=function(x){ 
 c=ncol(x) 
 ID=unique(x[,1]) 
 SS=unique(x[,c]) 
 n=length(ID) 
 m=length(SS) 
 y=matrix(0,n,m) 
 for(i in 1:n){ 
  for(j in 1:m){y[i,j]=sum(subset(x,x[,1]==ID[i]&x[,c]==SS[j])[,c-1])} 
 } 
 for(i in 1:n){y[i,]=y[i,]/sum(y[i,])} 
 return(y) 
} 
 
#Calculates the center of each data bin 
 
fcent=function(x){ 
 c=ncol(x) 
 SS=unique(x[,c]) 
 m=length(SS) 
 y=matrix(0,m,c-3) 
 for(i in 1:m){ 
  s=subset(x,x[,c]==SS[i]) 
  y[i,]=cov.wt(s[,-c(1,c-1,c)],s[,c-1])$center 
 } 
 return(y) 
} 
 
#Calculates Lp distance 
 
flp=function(x,exp){ 
 n=nrow(x) 
 y=matrix(1,n,n) 
 for(i in 1:n){ 
  for(j in 1:n){y[i,j]=(sum(abs(x[i,]-x[j,])^exp))^(1/exp)} 
 } 
 return(y) 
} 
 
#Calculates Pearson correlation distance 
 
fpc=function(x){ 
 n=nrow(x) 
 y=matrix(1,n,n) 
 for(i in 1:n){ 
  for(j in 1:n){y[i,j]=1-cov(x[i,],x[j,])/sqrt(var(x[i,])*var(x[j,]))} 
 } 
 return(y) 
} 
 
#Calculates symmetric Kullback-Leibler divergence 
 
fkl=function(x){ 
 n=nrow(x) 
 y=matrix(1,n,n) 
 for(i in 1:n){ 
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  for(j in 1:n){y[i,j]=sum(x[i,]*log(x[i,]/x[j,]),na.rm=T)} 
 } 
 y=y+t(y) 
 return(y) 
} 
 
#Calculates earth mover's distance 
#exp=1 gives L1 earth mover's distance, exp=2 gives L2 earth mover's distance, 
etc.  
 
femd=function(x,centers,exp){ 
 r=nrow(x) 
 c=ncol(x) 
 y=matrix(0,r,r) 
 cost=as.matrix(dist(centers,method="minkowski",diag=T,upper=T,p=exp)) 
 for(i in 1:r){ 
  for(j in 1:r){ 
   a=x[i,]/sum(x[i,]) 
   b=x[j,]/sum(x[j,]) 
   source=pmax(a-b,0) 
   destination=pmax(b-a,0) 
   
y[i,j]=lp.transport(cost,direction="min",row.signs=rep("=",c),row.rhs=source,c
ol.sign=rep("=",c),col.rhs=destination,integers=NULL)$objval 
  } 
 } 
 return(y) 
} 
 
#Tests similarity scores based on dataset 1 
 
ftest=function(l){ 
 ll=l 
 for(i in 1:nrow(l)){ll[i,]=rank(l[i,],ties.method="first")} 
 cor2=cor((ll==2)%*%vl,vl) 
 cor3=cor((ll==3)%*%vl,vl) 
 cor4=cor((ll==4)%*%vl,vl) 
 cor5=cor((ll==5)%*%vl,vl) 
 cor6=cor((ll==6)%*%vl,vl) 
 cor7=cor((ll==7)%*%vl,vl) 
 cor8=cor((ll==8)%*%vl,vl) 
 
return(list(l=l,ll=ll,cor2=cor2,cor3=cor3,cor4=cor4,cor5=cor5,cor6=cor6,cor7=c
or7,cor8=cor8)) 
} 
 
#Tests susceptibility to assay variation using dataset 2 
 
fTest=function(l){ 
 ll=l 
 for(i in 1:nrow(l)){ll[i,]=rank(l[i,])} 
 score=(sum(ll[1:9,1:9])-9)/8+(sum(ll[10:17,10:17])-8)/7-sum(ll[1:9,10:17])/8-
sum(ll[10:17,1:9])/9 
 return(list(l=l,ll=ll,score=score)) 
} 
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#First moment method 
#ffm calculates the first moment for each sample 
 
ffm=function(x){ 
 n1=max(x[,1]) 
 n2=ncol(x) 
 y=matrix(1,n1,n2-2) 
 for(i in 1:n1){ 
  s=subset(x,x[,1]==i) 
  y[i,]=cov.wt(s[,-c(1,n2)],wt=s[,n2])$center 
 } 
 return(y) 
} 
 
fr=ffm(raw) 
fr1=ftest(flp(fr,1)); fr1 
fr2=ftest(flp(fr,2)); fr2 
frp=ftest(fpc(fr)); frp 
 
fb=ffm(bg) 
fb1=ftest(flp(fb,1)); fb1 
fb2=ftest(flp(fb,2)); fb2 
fbp=ftest(fpc(fb)); fbp 
 
#Second moment method 
#fsm calculates the second moment for each sample 
 
fsm=function(x){ 
 n1=max(x[,1]) 
 n2=ncol(x) 
 y=matrix(1,n1,(n2-2)^2) 
 for(i in 1:n1){ 
  s=subset(x,x[,1]==i) 
  cov=cov.wt(s[,-c(1,n2)],wt=s[,n2],method="ML") 
  y[i,]=c(cov$cen%*%t(cov$cen)+cov$cov) 
 } 
 return(y) 
} 
 
sr=fsm(raw) 
sr1=ftest(flp(sr,1)); sr1 
sr2=ftest(flp(sr,2)); sr2 
srp=ftest(fpc(sr)); srp 
 
sb=fsm(bg) 
sb1=ftest(flp(sb,1)); sb1 
sb2=ftest(flp(sb,2)); sb2 
sbp=ftest(fpc(sb)); sbp 
 
#Equal-sized bins method 
#fesb assigns rows of x to data bins based on equal-sized binning, each 
dimension is divided d times 
 
fesb=function(x,d){ 
 n=ncol(x) 
 min1=apply(x[,-c(1,n)],2,min) 
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 max1=apply(x[,-c(1,n)],2,max) 
 vector=d^(0:(n-3)) 
 m=t((t(x[,-c(1,n)])-min1)/(max1-min1)) 
 m=floor(d*m) 
 m=ifelse(m==d,d-1,m) 
 x$subset=m%*%vector 
 return(x) 
} 
 
er0=fesb(raw,2) 
er=fcount(er0[,c(1,9,10)]) 
er.c=fcent(er0) 
er1=ftest(flp(er,1)); er1 
er2=ftest(flp(er,2)); er2 
erp=ftest(fpc(er)); erp 
erk=ftest(fkl(er)); erk 
ere=ftest(femd(er,er.c,1)); ere 
erE=ftest(femd(er,er.c,2)); erE 
 
eb=t(matrix(bg$wt,c(128,8))) #Boolean gate in compact form is already divided 
into equal-sized bins, therefore there is no reason to use fesb, fcount or 
fcent 
eb.c=bg[1:128,-c(1,9)] 
eb1=ftest(flp(eb,1)); eb1 
eb2=ftest(flp(eb,2)); eb2 
ebp=ftest(fpc(eb)); ebp 
ebk=ftest(fkl(eb)); ebk 
ebe=ftest(femd(eb,eb.c,1)); ebe 
ebE=ftest(femd(eb,eb.c,2)); ebE 
 
#Sum of squares method 
#fss assigns rows in x to bins based on sum of squares binning, n is the 
number of bins 
 
fss=function(x,n){ 
 c=ncol(x) 
 x$s=1 
 for(i in 2:n){ 
  v=NULL 
  for(j in 1:(i-1)){ 
   s=subset(x,x$s==j) 
   v=c(v,diag(cov.wt(s[,-c(1,c,c+1)],s[,c],method="ML")$cov)*sum(s[,c])) 
  } 
  w=which(v==max(v))[1] 
  ws=ceiling(w/(c-2)) 
  wd=w-(c-2)*(ws-1) 
  s=subset(x,x$s==ws) 
  mean1=cov.wt(s[,-c(1,c,c+1)],s[,c])$center[wd] 
  x$s=ifelse(x$s==ws&x[,1+wd]>mean1,i,x$s) 
 } 
 return(x) 
} 
 
zr0=fss(raw,10) 
zr=fcount(zr0[,c(1,9,10)]) 
zr.c=fcent(zr0) 
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zr1=ftest(flp(zr,1)); zr1 
zr2=ftest(flp(zr,2)); zr2 
zrp=ftest(fpc(zr)); zrp 
zrk=ftest(fkl(zr)); zrk 
zre=ftest(femd(zr,zr.c,1)); zre 
zrE=ftest(femd(zr,zr.c,2)); zrE 
 
zb0=fss(bg,10) 
zb=fcount(zb0[,c(1,9,10)]) 
zb.c=fcent(zb0) 
zb1=ftest(flp(zb,1)); zb1 
zb2=ftest(flp(zb,2)); zb2 
zbp=ftest(fpc(zb)); zbp 
zbk=ftest(fkl(zb)); zbk 
zbe=ftest(femd(zb,zb.c,1)); zbe 
zbE=ftest(femd(zb,zb.c,2)); zbE 
 
Zr0=fss(raw,50) 
Zr=fcount(Zr0[,c(1,9,10)]) 
Zr.c=fcent(Zr0) 
Zr1=ftest(flp(Zr,1)); Zr1 
Zr2=ftest(flp(Zr,2)); Zr2 
Zrp=ftest(fpc(Zr)); Zrp 
Zrk=ftest(fkl(Zr)); Zrk 
Zre=ftest(femd(Zr,Zr.c,1)); Zre 
ZrE=ftest(femd(Zr,Zr.c,2)); ZrE 
 
Zb0=fss(bg,50) 
Zb=fcount(Zb0[,c(1,9,10)]) 
Zb.c=fcent(Zb0) 
Zb1=ftest(flp(Zb,1)); Zb1 
Zb2=ftest(flp(Zb,2)); Zb2 
Zbp=ftest(fpc(Zb)); Zbp 
Zbk=ftest(fkl(Zb)); Zbk 
Zbe=ftest(femd(Zb,Zb.c,1)); Zbe 
ZbE=ftest(femd(Zb,Zb.c,2)); ZbE 
 
#Tree method 
#ftree links rows of x to a supervisor and calculates the resulting tree; s is 
the supervisor where s[1] is the supervisor for the first sample, s[2] is the 
supervisor for the second sample, etc.; $where can be used to assign rows to 
data bins 
 
ftree=function(x,s){ 
 ts=NULL 
 n=max(x[,1]) 
 m=ncol(x) 
 for(i in 1:n){ts=c(ts,rep(s[i],nrow(subset(x,x[,1]==i))))} 
 y=rpart(ts~.,x[,-c(1,m)],weights=x[,m],method="anova") 
 return(y) 
} 
 
tr0=ftree(raw,vl) 
tr=fcount(cbind(raw$id,raw$wt,tr0$where)) 
tr.c=fcent(cbind(raw,tr0$where)) 
tr1=ftest(flp(tr,1)); tr1 
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tr2=ftest(flp(tr,2)); tr2 
trp=ftest(fpc(tr)); trp 
trk=ftest(fkl(tr)); trk 
tre=ftest(femd(tr,tr.c,1)); tre 
trE=ftest(femd(tr,tr.c,2)); trE 
 
tb0=ftree(bg,vl) 
tb=fcount(cbind(bg$id,bg$wt,tb0$where)) 
tb.c=fcent(cbind(bg,tb0$where)) 
tb1=ftest(flp(tb,1)); tb1 
tb2=ftest(flp(tb,2)); tb2 
tbp=ftest(fpc(tb)); tbp 
tbk=ftest(fkl(tb)); tbk 
tbe=ftest(femd(tb,tb.c,1)); tbe 
tbE=ftest(femd(tb,tb.c,2)); tbE 
 
#Pure earth mover's distance 
#by default the first 256 rows of each sample are used 
 
fpemd=function(x,exp,m=256){ 
 x=x[,-ncol(x)] 
 n=max(x[,1]) 
 y=matrix(0,n,n) 
 for(i in 1:n){ 
  for(j in 1:n){ 
   a=subset(x,x[,1]==i)[1:m,-1] 
   b=subset(x,x[,1]==j)[1:m,-1] 
   
cost=as.matrix(dist(rbind(a,b),method="minkowski",diag=T,upper=T,p=exp))[1:m,(
m+1):(2*m)] 
   sol=solve_LSAP(cost) 
   y[i,j]=sum(cost[cbind(seq_along(sol),sol)])/m 
  } 
 } 
 return(y) 
} 
 
pre=ftest(fpemd(raw,1)); pre 
prE=ftest(fpemd(raw,2)); prE 
 
#Similarity measures comparison 
 
x=-c(1,10,19,28,37,46,55,64) 
sim=cor(cbind(fr1$l[x],fr2$l[x],frp$l[x],fb1$l[x],fb2$l[x],fbp$l[x],sr1$l[x],s
r2$l[x],srp$l[x],sb1$l[x],sb2$l[x],sbp$l[x],er1$l[x],er2$l[x],erp$l[x],erk$l[x
],ere$l[x],erE$l[x],eb1$l[x],eb2$l[x],ebp$l[x],ebk$l[x],ebe$l[x],ebE$l[x],zr1$
l[x],zr2$l[x],zrp$l[x],zrk$l[x],zre$l[x],zrE$l[x],zb1$l[x],zb2$l[x],zbp$l[x],z
bk$l[x],zbe$l[x],zbE$l[x],Zr1$l[x],Zr2$l[x],Zrp$l[x],Zrk$l[x],Zre$l[x],ZrE$l[x
],Zb1$l[x],Zb2$l[x],Zbp$l[x],Zbk$l[x],Zbe$l[x],ZbE$l[x],tr1$l[x],tr2$l[x],trp$
l[x],trk$l[x],tre$l[x],trE$l[x],tb1$l[x],tb2$l[x],tbp$l[x],tbk$l[x],tbe$l[x],t
bE$l[x],pre$l[x],prE$l[x])) 
names1=c("fr1","fr2","frp","fb1","fb2","fbp","sr1","sr2","srp","sb1","sb2","sb
p","er1","er2","erp","erk","ere","erE","eb1","eb2","ebp","ebk","ebe","ebE","zr
1","zr2","zrp","zrk","zre","zrE","zb1","zb2","zbp","zbk","zbe","zbE","Zr1","Zr
2","Zrp","Zrk","Zre","ZrE","Zb1","Zb2","Zbp","Zbk","Zbe","ZbE","tr1","tr2","tr
p","trk","tre","trE","tb1","tb2","tbp","tbk","tbe","tbE","pre","prE") 
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rownames(sim)=names1 
colnames(sim)=names1 
write.csv(sim,"similarityComp.csv") 
 
#Testing sensitivity to assay variation using dataset 2 
 
fR=ffm(RAW) 
fR1=fTest(flp(fR,1)); fR1 
fR2=fTest(flp(fR,2)); fR2 
fRp=fTest(fpc(fR)); fRp 
 
fB=ffm(BG) 
fB1=fTest(flp(fB,1)); fB1 
fB2=fTest(flp(fB,2)); fB2 
fBp=fTest(fpc(fB)); fBp 
 
sR=fsm(RAW) 
sR1=fTest(flp(sR,1)); sR1 
sR2=fTest(flp(sR,2)); sR2 
sRp=fTest(fpc(sR)); sRp 
 
sB=fsm(BG) 
sB1=fTest(flp(sB,1)); sB1 
sB2=fTest(flp(sB,2)); sB2 
sBp=fTest(fpc(sB)); sBp 
 
eR0=fesb(RAW,2) 
eR=fcount(eR0[,c(1,8,9)]) 
eR.c=fcent(eR0) 
eR1=fTest(flp(eR,1)); eR1 
eR2=fTest(flp(eR,2)); eR2 
eRp=fTest(fpc(eR)); eRp 
eRk=fTest(fkl(eR)); eRk 
eRe=fTest(femd(eR,eR.c,1)); eRe 
eRE=fTest(femd(eR,eR.c,2)); eRE 
 
eB=t(matrix(BG$wt,c(64,17))) 
eB.c=BG[1:64,-c(1,8)] 
eB1=fTest(flp(eB,1)); eB1 
eB2=fTest(flp(eB,2)); eB2 
eBp=fTest(fpc(eB)); eBp 
eBk=fTest(fkl(eB)); eBk 
eBe=fTest(femd(eB,eB.c,1)); eBe 
eBE=fTest(femd(eB,eB.c,2)); eBE 
 
zR0=fss(RAW,10) 
zR=fcount(zR0[,c(1,8,9)]) 
zR.c=fcent(zR0) 
zR1=fTest(flp(zR,1)); zR1 
zR2=fTest(flp(zR,2)); zR2 
zRp=fTest(fpc(zR)); zRp 
zRk=fTest(fkl(zR)); zRk 
zRe=fTest(femd(zR,zR.c,1)); zRe 
zRE=fTest(femd(zR,zR.c,2)); zRE 
 
zB0=fss(BG,10) 
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zB=fcount(zB0[,c(1,8,9)]) 
zB.c=fcent(zB0) 
zB1=fTest(flp(zB,1)); zB1 
zB2=fTest(flp(zB,2)); zB2 
zBp=fTest(fpc(zB)); zBp 
zBk=fTest(fkl(zB)); zBk 
zBe=fTest(femd(zB,zB.c,1)); zBe 
zBE=fTest(femd(zB,zB.c,2)); zBE 
 
ZR0=fss(RAW,50) 
ZR=fcount(ZR0[,c(1,8,9)]) 
ZR.c=fcent(ZR0) 
ZR1=fTest(flp(ZR,1)); ZR1 
ZR2=fTest(flp(ZR,2)); ZR2 
ZRp=fTest(fpc(ZR)); ZRp 
ZRk=fTest(fkl(ZR)); ZRk 
ZRe=fTest(femd(ZR,ZR.c,1)); ZRe 
ZRE=fTest(femd(ZR,ZR.c,2)); ZRE 
 
ZB0=fss(BG,50) 
ZB=fcount(ZB0[,c(1,8,9)]) 
ZB.c=fcent(ZB0) 
ZB1=fTest(flp(ZB,1)); ZB1 
ZB2=fTest(flp(ZB,2)); ZB2 
ZBp=fTest(fpc(ZB)); ZBp 
ZBk=fTest(fkl(ZB)); ZBk 
ZBe=fTest(femd(ZB,ZB.c,1)); ZBe 
ZBE=fTest(femd(ZB,ZB.c,2)); ZBE 
 
pRe=fTest(fpemd(RAW,1)); pRe 
pRE=fTest(fpemd(RAW,2)); pRE 
 
#Permutation test for assay variation score 
 
m=fR1$l 
scores=rep(0,10000) 
for(i in 1:10000){ 
 order=sample(1:17) 
 mm=m[order,order] 
 scores[i]=fTest(mm)$score 
} 
summary(scores) 
 
n=fB1$l 
scores2=rep(0,10000) 
for(i in 1:10000){ 
 order=sample(1:17) 
 nn=n[order,order] 
 scores2[i]=fTest(nn)$score 
} 
summary(scores2) 
 
#Shannon entropy 
 
fshan=function(x){ 
 s=-x*log(x) 
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 y=0 
 for(i in 1:nrow(x)){y[i]=sum(s[i,],na.rm=T)} 
 return(y) 
} 
 
her=fshan(er) 
heb=fshan(eb) 
hzr=fshan(zr) 
hzb=fshan(zb) 
hZr=fshan(Zr) 
hZb=fshan(Zb) 
htr=fshan(tr) 
htb=fshan(tb) 
 
#Simpson's index 
 
fsimp=function(x){ 
 s=x^2 
 y=0 
 for(i in 1:nrow(x)){y[i]=1-sum(s[i,])} 
 return(y) 
} 
 
ier=fsimp(er) 
ieb=fsimp(eb) 
izr=fsimp(zr) 
izb=fsimp(zb) 
iZr=fsimp(Zr) 
iZb=fsimp(Zb) 
itr=fsimp(tr) 
itb=fsimp(tb) 
 
#Mean Lp distance 
 
fmld=function(x,exp,n=1024){ 
 c=ncol(x)-1 
 y=0 
 for(i in 1:max(x[,1])){ 
  s=subset(x,x[,1]==i)[,-1] 
  s=s[1:min(nrow(s),n),] 
  m=as.matrix(dist(s[,-c],method="minkowski",diag=T,upper=T,p=exp)) 
  w=as.matrix(s[,c]) 
  y[i]=t(w)%*%m%*%w/sum(w)^2 
 } 
 return(y) 
} 
 
mxr=fmld(raw,1) 
mxb=fmld(bg,1) 
Mxr=fmld(raw,2) 
Mxb=fmld(bg,2) 
 
#Mean Lp distance using data bins 
 
fmld2=function(x,centers,exp){ 
 y=0 
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 distance=as.matrix(dist(centers,method="minkowski",diag=T,upper=T,p=exp)) 
 for(i in 1:nrow(x)){ 
  w=as.matrix(x[i,]) 
  y[i]=t(w)%*%distance%*%w/sum(w)^2 
 } 
 return(y) 
} 
 
mer=fmld2(er,er.c,1) 
meb=fmld2(eb,eb.c,1) 
mzr=fmld2(zr,zr.c,1) 
mzb=fmld2(zb,zb.c,1) 
mZr=fmld2(Zr,Zr.c,1) 
mZb=fmld2(Zb,Zb.c,1) 
mtr=fmld2(tr,tr.c,1) 
mtb=fmld2(tb,tb.c,1) 
 
Mer=fmld2(er,er.c,2) 
Meb=fmld2(eb,eb.c,2) 
Mzr=fmld2(zr,zr.c,2) 
Mzb=fmld2(zb,zb.c,2) 
MZr=fmld2(Zr,Zr.c,2) 
MZb=fmld2(Zb,Zb.c,2) 
Mtr=fmld2(tr,tr.c,2) 
Mtb=fmld2(tb,tb.c,2) 
 
#Mean squared L2 distance 
 
fmsld=function(x){ 
 y=0 
 c=ncol(x)-1 
 for(i in 1:max(x[,1])){ 
  s=subset(x,x[,1]==i)[-1] 
  y[i]=sum(diag(cov.wt(s[,-c],wt=s[,c],method="ML")$cov)) 
 } 
 return(y) 
} 
 
sxr=fmsld(raw) 
sxb=fmsld(bg) 
 
#Diversity measures comparison 
 
div=cor(cbind(her,heb,hzr,hzb,hZr,hZb,htr,htb,ier,ieb,izr,izb,iZr,iZb,itr,itb,
mxr,mxb,mer,meb,mzr,mzb,mZr,mZb,mtr,mtb,Mxr,Mxb,Mer,Meb,Mzr,Mzb,MZr,MZb,Mtr,Mt
b,sxr,sxb,vl)) 
names2=c("her","heb","hzr","hzb","hZr","hZb","htr","htb","ier","ieb","izr","iz
b","iZr","iZb","itr","itb","mxr","mxb","mer","meb","mzr","mzb","mZr","mZb","mt
r","mtb","Mxr","Mxb","Mer","Meb","Mzr","Mzb","MZr","MZb","Mtr","Mtb","sxr","sx
b","vl") 
rownames(div)=names2 
colnames(div)=names2 
write.csv(div,"diversityComp.csv") 
### 


