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Abstract

Gradient Descent Methods for Large-Scale Linear Inverse Problems
By Chen (Cool) Cheng

Iterative gradient descent methods are frequently used for ill-posed inverse problems
because they are suitable for large models and they are cheap to work with. In this
thesis, we explore three different types of gradient descent methods: the Landweber
method, method of steepest descent, and the Barzilai-Borwein method. Specifically,
we also compare the efficiency of these methods to the conjugate gradient method.
The thesis begins with an introduction to the history and application of the gradient
descent methods and to the methods tested, and follows with convergence analysis
and numerical experience on real images. Ways to accelerate and smooth the Barzilai-
Borwein method are also included.
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Chapter 1

Introduction

We are interested in the numerical solution of large-scale linear inverse problems.

These problems occur frequently in many scientific and engineering fields, such as

medical and seismic tomography [4] [19], astronomy [1] [17], and many others. A linear

inverse problem can usually be solved by either direct methods or iterative methods.

Even though direct methods deliver the exact solution of the given linear system, they

are not suitable for real-world large-scale problems due to several reasons, which we

discuss in the following section. Iterative methods, such as gradient descent methods,

are often the choice for computing such problems with large number of variables. In

this chapter, we present the background of gradient descent methods, and then show

the mathematical model that is popular to many scientific applications.

1.1 Background

Inverse problems [8] are usually hard to define but easy to recognize. They always

come paired with direct problems, which are easier to describe and work with. A

simple direct problem of multiplication is shown as follows: given two numbers we

find their product. It is obvious that a corresponding inverse problem is, given the

product, find two factors of that given value. In general, we can describe direct

problems as follows,

input→ process→ output,
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where the input represents what is provided such as the two given numbers, the

process represents what action needs to be taken on the input such as multiplication,

and the output is the resulting solution such as the product. On the other hand,

inverse problems can be described by the following,

input← inverse process← output,

where the input is what we are interested in finding. Although this is a simple example

of what we are studying, many other complicated problems often occur in numerous

scientific applications.

Image deblurring is one of the most important and frequently used examples of

large-scale inverse problems. The goal of image deblurring is to recover the original

and clear image, given the blurred image and the mathematical model of the blurring

process [11]. One particular example of image deblurring arises in the technique of

positron emission tomography (PET) for brain imaging [14]. The blurred image is

caused by head movements during long scan times, and the goal is to reconstruct

the desired image by monitoring the head movements, which essentially provides

information about the blurring process. Another important example is in the area

of astronomy [1] [17]. For instance, a telescope takes a blurred satellite image, due

to distortion of the optical wavefront caused by atmospheric turbulence. In order to

reconstruct a clearer picture, solving a large-scale inverse problem is required.

In recent years, the focus on solving these inverse problems in a more accurate

and efficient way has arisen consistently. As we mentioned earlier, iterative methods

are preferred to direct methods. One advantage of using iterative methods is that it

becomes more efficient for large and sparse problems compared to using direct meth-

ods, because the computational cost and storage capacity cause the direct methods
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to slow down enormously with a large amount of variables. Another reason that we

want to use iterative methods rather than direct methods is that computation can

often be done more easily in parallel implementations [16]. In this thesis, we mainly

focus on one specific type of iterative method, which is based on gradient descent,

and will be discuss in detail in the next chapter.

1.2 Mathematical Model

In order to relate real world problems to the mathematical point-of-view, we need an

appropriate mathematical model. We are interested in solving linear systems that

arise from large-scale inverse problems. Such linear systems can typically be written

as

b = Axtrue + ε, (1.1)

where b is known, such as a blurred image, A is an n × n ill-conditioned matrix

representing the data collection operation, such as the blurring process, with singular

values that decay to, and cluster at zero, xtrue represents the true solution, and vector

ε is random noise affecting the problem.

With this mathematical model in mind, the next step is to find a method that

solves this equation. At first sight, it seems simple to find an inverse solution to (1.1),

particular if A−1 exists and the noise ε is small enough to ignore, i.e., ‖ ε ‖ is small.

In this case, we can simply assume that xinv = A−1b ≈ xtrue. However, the naive
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solution,

xinv = A−1b

= A−1(Axtrue + ε)

= xtrue + A−1ε, (1.2)

is usually incorrect. Even the naive approach gives a solution that contains the true

solution xtrue, there is an extra term contains the inverted noise A−1ε. If A is ill-

conditioned and very large, which is typically the case, then A−1ε can be very large.

Therefore, the naive approach may not produce an accurate solution due to these

characteristics such as ill-posedness.

We can see this challenge arises when attempting to solve the naive solution by

using the singular value decomposition (SVD). Specifically, matrix A can be factored

into a product of three matrices

A = UΣV T (1.3)

where U and V are n × n orthogonal matrices (UTU = I and V TV = I) and Σ =

diag(σ1, σ2, σ3, · · · , σn) is a diagonal matrix containing the singular values of A. Using

the singular value decomposition, we can easily see what effect the error term ε has

on the inverse solution:

xinv = xtrue + A−1ε

= xtrue + V Σ−1UT ε

= xtrue +
n∑

i=1

uTi ε

σi
vi. (1.4)
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As we mentioned earlier, the matrix A is ill-conditioned (i.e., σ1/σn is large), and,

morever, the singular values, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, decay to 0. Thus, it follows

that the term (uTi ε)/σi can be highly magnified by division of small singular values.

The inverted noise overwhelms the desired xtrue portion of the solution, so in general

xinv = xtrue+A
−1ε is a very poor approximation of the true solution, xtrue. In addition,

the singular vectors, vi, become increasingly oscillatory when i is large (corresponding

to small singular values). These properties of ill-posed problems using SVD analysis

are well know; see, for example, [10] [19] for more details.

1.3 Iterative Regulizarization

Finding an alternative method to compute an approximation of xtrue is the next step.

We must modify the solution process so that the desired approximation of xtrue is not

horribly corrupted by noise. This process is called regularization [10] [19]. One way

to do this, as is discussed later, is to apply an iterative method to the least-squares

problem:

min
x
‖ b− Ax ‖22, (1.5)

and stop the iteration before division of small singular values magnifies the noise.

Iterative regularization approaches are usually preferred when solving large-scaled

linear systems, but a serious drawback is that they suffer from semi-convergence

behavior. That is, the relative error, ‖ xk − xtrue ‖ / ‖ xtrue ‖, where xk is the

approximate solution at the kth iteration, begins to decrease, but rise after some

optimal iteration. We want to stop the iteration when we reach the bottom of the error

curve, so a regularized approximation of the solution is reached. This phenomenon

is shown because iterative regularization tends to first calculate the parts of the
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solution with large singular values, and then calculate the parts of the solution with

undesired small singular values, which was discussed in the previous section. A clear

representation of the principle of semi-convergence will be illustrated in Chapter 4

for conjugate gradient method.

In Chapter 2, we present the gradient descent methods, including the classic steep-

est descent method, the Landweber method, and the Barzilai-Borwein method, and

we also briefly introduce the conjugate gradient method. Chapter 3 will discuss the

convergence analysis of the methods described in Chapter 2 along with a precondi-

tioner used on the Barzilai-Borwein method. Convergence comparisons of the various

methods are also included. Finally, in Chapter 4, we apply our methods to three image

restoration problems to see the effects on real-world problems. Also, a modification

of the Barzilai-Borwein method is introduced.
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Chapter 2

Methods

This section provides a detailed introduction to the four methods that are im-

plemented for the experiments in this thesis. The first three methods are based on

gradient descent methods; specifically, they share the same negative gradient step

direction, but with different step sizes. The Landweber (LW) method uses a constant

step length at each iteration; method of steepest descent (SD) uses a step length that

changes at each iteration; the Barzilai-Borwein (BB) method uses a modified steepest

descent step length. We expect that each method results in a different convergence

rate. Subsequently, we present an alternative method, the conjugate gradient method

(CG), for comparison purpose. This method has a different way to choose the step

direction, which depends on the previous selection. In the rest of this chapter, we

give a basic introduction to each method and provide a simple algorithm for each

method.

2.1 Gradient Descent Methods

Gradient descent methods are among the most widely used methods for function

optimization. As we mentioned in the last chapter, we want to minimize the least

squares problem such as in equation (1.5). To give a simple definition of the gradient

descent methods, picture that we are on top of a valley and we want to walk down
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to the bottom. In order to reach our goal, we must choose a direction along with the

distance we want to walk. The gradient descent methods choose the direction to be

the negative of the gradient of the function at each step. This makes perfect sense

because this direction is where the function decreases most quickly. Therefore, we

can see the reason why it is called the gradient descent method. Then, it is left to

determine the step length. Different step lengths deliver different gradient descent

methods. In this thesis, we focus on three different types, the Landweber method with

constant step length, method of steepest descent and the Barzilai-Borwein method

both with changing step lengths. An illustration of how general descent methods

work for a simple function is shown in Figure 2.1.

The basic iteration for the gradient descent methods usually takes the form:

x(k+1) = x(k) + αkd
(k) (2.1)

where αk is the step length and d(k) is the step direction. In the case of gradient

descent methods, the step direction associated with the least squares problem

min
x
‖b− Ax‖22

is the normal equations residual; that is, d(k) = AT (b − Ax(k)). Thus, the basic

iteration takes the form:

x(k+1) = x(k) + αkA
T (b− Ax(k)). (2.2)

Because the matrix A in our problem is usually not symmetric, we use implemen-

tations to the normal equations. Throughout our discussion of solving least squares

problems, the normal equations form will be referenced. For example, the steepest
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Figure 2.1: Illustration of gradient descent. The blue curves are the contour lines
and the graph has a bowl shape. The search starts at xo and then moves down the
negative of the gradient with a certain step length, until it reaches close enough to
the desired minimum. Notice that the gradient at each point is orthogonal to the
contour line at that point.
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descent method is actually the residual norm steepest descent method, and the conju-

gate gradient method is actually the the conjugate gradient method for least squares

problems.

2.1.1 The Landweber Method

The Landweber Method, which is often called the Richardson iteration [10] [19], is one

of the simplest gradient descent methods. With the step direction already established,

we only need to determine the step size.

The Landweber method has a fixed step size, α ≡ αk, for each iteration. It is not

hard to show [3] that the step length must satisfy the condition,

0 < α <
2

σ2
max

, (2.3)

where σmax is the largest singular value of matrix A, to guarantee convergence. In

order to calculate σ2
max, it is easier to find a bound [7] instead of an exact value, such

that

σ2
max = ‖ ATA ‖2 ≤ ‖ A ‖1‖ A ‖∞ (2.4)

This is simple to compute because,

‖ A ‖1 = the maximum absolute column sum of the matrix A,

‖ A ‖∞ = the maximum absolute row sum of the matrix A.

In MATLAB, we can use the built-in function, norm, to compute these matrix norms.

An algorithm for the Landweber method can be stated as follows:
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The Landweber Method

given: A, b

choose: initial guess for xo

compute:

ro = b− Axo
do = AT ro

for k = 0,1,2,...

αk = 1
‖A‖1‖A‖∞

xk+1 = xk + αkdk

rk+1 = b− Axk+1

dk+1 = AT rk+1

end

2.1.2 Method of Steepest Descent

The method of steepest descent is another simple gradient descent method, where we

assume the matrix ATA is symmetric positive definite. Here, we try to minimize the

error in the direction of the negative gradient, e(k+1) = x− x(k+1), in order to choose

the step length αk, but we allow the step length to change at each iteration. Using

the Cholesky factorization of ATA and some algebra, it is not hard to show that,

αk =
〈d(k), d(k)〉
〈w(k), w(k)〉

, (2.5)

where d(k) = AT r(k) and w(k) = Ad(k). Before we derive a complete algorithm for this

method, let us take a close look at the computational cost. To compute αk, we need

one matrix-vector multiplication per iteration. We will need another matrix-vector

multiplication when we update the residual because r(k+1) = b − Ax(k+1). Matrix-
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vector multiplications are generally the most expensive computation at each iteration,

and we want to reduce them as much as possible. Therefore, a simple modification

can reduce it to only once per iteration. That is,

rk+1 = b− Axk+1

= b− A(xk + αkrk)

= b− Axk − Aαkrk

= rk − Aαkrk. (2.6)

With equation (2.6) in mind, we can write the algorithm for the method of steepest

descent as follows:

The Method of Steepest Descent

given: A, b

choose: initial guess for xo

compute:

ro = b− Axo
do = AT ro

for k = 0,1,2,...

wk = Adk

α = 〈dk,dk〉
〈wk,wk〉

xk+1 = xk + αdk

rk+1 = rk − αwk

dk+1 = AT rk+1

end
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An interesting fact appears when we apply the steepest descent method. That is,

it approaches the minimum in a zig-zag path, because each gradient is orthogonal to

the previous gradient. This particular feature is shown in Figure 2.2.

Figure 2.2: Illustration of zig-zag manner for the method of steepest descent. Beside
the zig-zag fact, it can also be seen that the step length becomes smaller and smaller
as the iteration proceeds.

As seen from the algorithm, this method is easy and simple to apply and it will

converge whenever ATA is nonsingular [16]. That is, the method is guaranteed to

converge to the minimum. This may not be efficient if we need many iterations to

reach convergence, which is often the case when A is ill-conditioned, because the step
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length becomes extremely small. Although increasing the step length may help, the

ultimate convergence behavior cannot be guaranteed. Most attempts to modify the

method of steepest descent have led to the introduction of the conjugate gradient

method, which we will discuss in Section 2.2. Another modified steepest descent

method will be introduced in the next subsection, which seems to be comparable in

practical efficiency to conjugate gradient methods [6].

2.1.3 The Barzilai-Borwein Method

In 1988, Barzilai and Borwein [2] introduced a new gradient descent method, the

BB method, with a modified step length. It has been shown that the BB method is

significantly better than the method of steepest descent [15], though the difference in

choosing the step length is relatively simple. Barzilai and Borwein presented the step

length in two alternative formulae:

αk =
〈h(k−1), h(k−1)〉
〈h(k−1), y(k−1)〉

, (2.7)

and

αk =
〈y(k−1), h(k−1)〉
〈y(k−1), y(k−1)〉

, (2.8)

where y(k−1) = r(k) − r(k−1), and h(k) = αkr
(k). With some simple algebra, we can

express it in the following form:

αk =
〈d(k−1), d(k−1)〉
〈w(k−1), w(k−1)〉

. (2.9)

At first glance, the step size for the BB method and the steepest descent method

are very similar. In the BB method, we update the step length from the previous

gradient vector. This is in contrast to the method of steepest descent, in which the



15

step length is calculated at the current gradient vector. Therefore, there will be a

slight difference in the algorithm, which we will show as follows:

The Barzilai-Borwein Method

given: A, b

choose: initial guess for xo

compute:

ro = b− Axo
do = AT ro

for k = 0,1,2,...

wk = Adk

if k = 0

α = 〈dk,dk〉
〈wk,wk〉

else

α = 〈dk−1,dk−1〉
〈wk−1,wk−1〉

dk−1 = dk

xk+1 = xk + αdk

rk+1 = rk − αwk

dk+1 = AT rk+1

wk−1 = wk

end

Regardless of how similar the BB method is to the classic steepest descent method,

the difference in convergence behavior is surprisingly large, as we will see later. That

is, BB delivers a much faster convergence rate than SD does.
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2.2 The Conjugate Gradient Method

We have looked at iterative methods with the search direction to be the negative of

the gradient. Now, we briefly explore an alternative iterative method, the conjugate

gradient method, with a more complicated choice of the step direction. It was initially

proposed by Magnus Hestenes and Eduard Stiefel [12] in 1952. Since then, many

researchers have worked on this algorithm. Today, it is still the standard algorithm

for solving symmetric and positive definite (SPD) linear systems involving large and

sparse matrices, because it handles large and ill-conditioned linear systems in a more

efficient way than other iterative methods such as the gradient descent based methods.

In this section, we will simply present the result of the conjugate gradient method.

If you want to learn how and why the conjugate gradient method is a rich and elegant

algorithm, you can read Shewchuk’s paper [18] on this method, and any numbers of

standard textbooks on numerical analysis, such as [16]. He presented this brilliant

method in a way that almost anyone can understand. In the conjugate gradient

method, search directions are constructed by conjugation of the residuals, and step

length is chosen such that the error is minimized. Here is a simple algorithm:
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The Conjugate Gradient Method

given: A, b

choose: initial guess for xo

compute:

do = b

ro = AT b

po = ro

to = Apo

for k = 0,1,2,...

αk = ‖ rk−1 ‖2/‖ tk−1 ‖2

xk = xk−1 + αkpk−1

dk = dk−1 − αktk−1

rk = ATdk

βk = ‖ rk ‖2/‖ rk−1 ‖2

pk = rk + βkpk−1

tk = Apk

end
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Chapter 3

Convergence Analysis

We mentioned in the discussion of the last chapter that the convergence rate

depends on different factors such as the condition of the matrix studied, the step

length and step direction. It is important for us to understand the convergence for

each method in order to compare the efficiency of each method. In this section, we look

at the convergence rate for all the methods studied. In order to test for convergence,

a mathematically rigorous convergence analysis is often performed. Here, we will not

discuss in detail how each proof is done. Rather, we will introduce some background

first and then simply state the result. Subsequently, we will try to accelerate the

convergence rate of the BB method using some preconditioning techniques.

3.1 Original Methods

In this section, we first present some essential mathematical background material

needed to understand the convergence analysis. Then we review what is known

about the convergence of each method of interest. A preconditioned BB method is

also reviewed in the end of this section.
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3.1.1 Some Background

We have established the mathematical model in equation (1.1), b = Axtrue + ε, such

that the matrix A is severely ill-conditioned, with singular values decaying to, and

clustering at 0. Recall that the singular value decomposition from Section 1.2, A =

UΣV T , where U and V are orthogonal matrices and Σ is a diagonal matrix containing

all the singular values of A. In order to compute an accurate approximation of xtrue,

regularization is needed. One class of regularization methods, called filtering, can

be formulated to compute a more accurate solution to the inverse problem. From

equation (1.4), we know that the poor approximation on the inverse solution is caused

by small singular values, thus a good solution would limit or filter out the unwanted

portion of the solution. Specifically, this process can be written as

xfilt =
N∑
i=1

φi
uTi b

σi
vi, (3.1)

where the filter factors, φi, are chosen such that φi ≈ 1 for large singular values and

φi ≈ 0 for small singular values. That is, the small singular value components of the

solution are filtered out, while the large singular value components of the solution

are reconstructed. One popular filtering method is called truncated SVD (TSVD);

we discuss its application to the BB method in Section 3.2.

Another important background on iterative methods we should stress here is pre-

conditioning. It is often used to accelerate the rate of convergence by reducing the

number of iterations needed to compute the optimal solution. To develop any pre-

conditioned method solving Ax = b, we usually construct a matrix P , such that the

singular values of P−1A are clustered around a point away from zero. Faster conver-

gence is often caused by more singular values clustering around one point. A detailed

preconditioned BB method is introduced in Section 3.2.
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3.1.2 Gradient Descent Methods

Let us recall from Section 2.1.1 that the Landweber method is a basic iterative method

with a gradient descent direction and a constant step size. The convergence analysis

of the Landweber method can be done [10] using an SVD filtering method as described

in equation (3.1). If the initial guess for x is equal to zero, then the filter factors, φi,

are given by

φ
(k)
i = 1− (1− ασ2

i )k, i = 1, 2, . . . , n, (3.2)

where k represents the iteration number, and φi is the i-th largest singular value of

A. In order to see how SVD filtering helps us understand convergence properties, let

us assume φ1 = α = 1. With equation (3.2) in mind, it is not hard to show that

0 ≈ φ(k)
n ≤ φ

(k)
n−1 ≤ · · · ≤ φ

(k)
1 ≈ 1,

which is what we expected from the properties of the SVD filtering method such that

φ1 ≈ 1 for large singular values and φn ≈ 0 for small singular values. However, slow

convergence is still expected. This happens when we need to reconstruct a solution

corresponding to intermediate singular values, which may take many iterations. For

example, an intermediate singular value φi = 0.1 makes the filter factors φ
(k)
i =

1 − (0.99)k. In order to obtain φ
(k)
i ≈ 0, we need k to be very large. From this

analysis, we expect the Landweber method to have slow convergence. However, this

method can be accelerated with preconditioning, and some preconditioned Landweber

methods are described in [3].

For the method of steepest descent, as in the case of the Landweber method, we

take a step direction that is the negative gradient of the function, but instead of fixed

step length we use variable step length. As we successfully used the SVD filtering
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method to analyze the convergence rate for the Landweber method, why don’t we

try it for steepest descent. However, it is not easy to provide a theoretical analysis

of the filtering properties of steepest descent because the step length changes at each

iteration. However, we can investigate the convergence behavior of steepest descent.

If A is SPD, it has proven [16] that convergence is guaranteed for any initial guess

xo. This result is a consequence of the Kantorovich inequality, which is presented

in details in [16]. Although this method is guaranteed to find the minimum after at

least an infinite number of iterations, the iteration number may be very large when

A is ill-conditioned, which is exactly the case for our problems. This is because the

step size is extremely small towards the minimum. Therefore, steepest descent tends

to converge slowly as well, just like in the Landweber method. It can also be shown

that the filtering properties of steepest descent are similar to Landweber; see [13].

The previous two gradient descent methods both have slow convergence rates.

Barzilai and Borwein [2] presented a new choice of step length, which requires less

computation and considerably speeds up the convergence rate of the gradient descent

method. In their paper, Barzilai and Borwein [2] have proven that the rate of conver-

gence is R-superlinear when it is a 2-dimensional problem. Also, a global convergence

of the BB method has been shown in [15] for SPD linear systems, and the R-linear

convergence has been shown by Dai and Liao [5]. The convergence analysis of this

method is difficult and non-standard, so we will not present the proof here. It can be

found in both [5] and [15], and the proof is done by contradiction. Here, we make sev-

eral remarks about the convergence of the BB method. First, the non-monotonicity

property of this method is observed, which can be seen in Figure 4.1, and the extent

of such property is closely related to the size of the condition number of matrix A,

which is explained in [6]. Also, for the convergence performance, the BB method

shows significant improvement over the Landweber method and the method of steep-
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est descent. An example from [6] can clearly show the difference: the BB method

converges in around 1000 steps while the steepest descent method does not even have

one significant figure improvement on the gradient norm after 2000 steps (that’s when

it is terminated manually). Lastly, we compare the convergence to that of the conju-

gate gradient method, which is discussed in the next subsection. Although it has been

shown [6] that the BB method is comparable in practical efficiency to CG method,

we must accept the fact that the CG method is necessarily superior in convergence

rate. In conclusion, Barzilai and Borwein [2] successfully speed up the efficiency of

the gradient methods. However, it leaves us to explore that if this method can be

accelerated, and we review a preconditioned BB method in section 3.2.

All the gradient descent methods share something in common. That is, they do not

perform well when the problem is poorly conditioned. Both the Landweber method

and the steepest descent method show relatively slow convergence. Although the

classic BB method gains a much faster convergence rate comparing to other gradient

descent methods and is compatible with CG method in some cases, it is necessarily

inferior to CG method and the property of non-monotonicity is not desired. On the

other hand, bound constraints on x are easier to implement with gradient descent

methods than they are with CG.

3.1.3 Conjugate Gradient Method

Conjugate gradient method is not the one we are focusing in this thesis, so we will not

go into detail on the convergence analysis. Here, we simply present some important

facts about the convergence. A theoretical analysis [18] has shown that, in exact

arithmetic, CG is guaranteed to converge in at most n steps, where n is the size of

the matrix A. However, in pratice, this is not exciting because n is usually very big.
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Therefore, it is not feasible to run the CG algorithm for n iterations. On the other

hand, if A has a favorable eigen-structure, then CG tends to converge much faster.

For example, if A has k distinct eigenvalues, CG terminates in k steps. Moreover,

if eigenvalues of A are clustered around a single point (bounded away from zero),

then CG will converge more quickly. Some preconditioned CG methods have been

introduced over the years, and can be found in [9] [16] and [18].

3.2 Preconditioning

As we discussed in Section 3.1.1, preconditioning is used to accelerate the rate of

convergence while requiering additional work at each iteration with another matrix

P . At each iteration of the preconditioned method, we solve a linear system Pz = w.

If P is a good approximation of the ill-conditioned A, then the matrix P will also

be very ill-conditioned, which will cause us to compute an inaccurate solution in

the first iteration. In general, further iterations do not improve this situation and

it is very difficult to recover the desired solution. Therefore, the standard approach

of preconditioned method cannot be successfully implemented for ill-posed inverse

problems.

Another approach to construct a slightly different matrix P is first proposed in

[9]. Here, matrix P is such that it clusters large singular values at around one, but

it does not alter the small singular values. We let A = UΣV T be the SVD of A,

and P ≈ SVD of A, such that Pk = UΣkV
T , where Σ = diag(σ1, σ2, σ3, · · · , σn),

Σk = diag(σ1, σ2, σ3, · · · , σk, 1, · · · , 1), and k is the truncation index for the TSVD

solution. Then the preconditioned system has the form P−1A = V ΣV T , where Σ =

diag(1, · · · , 1, σk+1, · · · , σn). We can see from the construction of Σ that the larger

singular values are well separated from the small ones, and are perfectly clustered
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at one. It is not practical to compute exactly the SVD of A due to the size of our

problem, but we can try to approximate the SVD in some applications.

Although there are many different approaches to preconditioning, we will only

look at this TSVD preconditioner in this paper. In the following section, we apply

this preconditioning technique to the BB method to see if it can indeed speed up the

convergence rate.
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Chapter 4

Experiments

In this chapter, we observe the results from three different real world examples

from image deblurring. The three images used are a satellite, a grain and a Gaussian

blur image from the image restoration package [3]. Numerical experiments on the

convergence rate of each method discussed in this thesis is performed. We compare

the convergence behavior of various methods. We observe and state different facts

on the rate of the convergence, and attempts to modify the BB method are also

presented. Finally, we apply our methods on the test problems in [3] to see the

effectiveness.

4.1 Satellite Image

The first test problem, satellite image, was developed at the US Air Force Philips

Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base, New Mexico.

The image is simulated by a computer showing a satellite taken from a ground based

telescope. The true and blur images are shown in the end of this section in Figure

4.8. In this section, we discuss what we observe from the implementation of various

methods on the satellite image.

All the methods discussed in Chapter 2 are written in Matlab. Before we test our

methods to deblur the satellite image, we compare the relative error and the iteration
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number to see the general convergence behavior. First, we perform an analysis on LW,

SD and BB methods since they are all in the category of gradient descent method.

The results are shown in Figure 4.1. It is clear from the plot that LW and SD

converge very slowly compared to BB method. BB method reaches the minimum

error at around 120th iteration, and this is when we want to stop the iteration for

the best result. After the error reaches minimum, it starts to move up. That is, the

semi-convergence property is observed for BB method. On the other hand, LW and

SD methods do not show signs of semi-convergence here, and that is because they

converge too slowly (much more than 200 iterations) to see this behavior. Another

interesting fact is the non-monotonicity behavior of the BB method. Two big jumps

are observed at around iteration 30 and 90. We will try to smooth out the undesired

jumps later in this section.

From the analysis above, it is clear that BB method is preferred over LW and

SD methods. Therefore, we want to compare it to the CG method since CG is

the standard algorithm for solving large-scaled linear systems. Again, we plot the

relative error versus iteration curve (see Figure 4.2) and make several observations.

First, CG converges faster than BB, which is expected from the convergence analysis

in Chapter 3. It shows that CG converges in around 55 iterations in this particular

example. Comparing to 120 iterations for BB method, it is a lot faster. Also, we

observe that CG shows a steeper and smoother convergence behavior. Moreover, the

semi-convergence behavior of CG is well-established. Although BB doesn’t converge

as fast as CG, the relative errors of BB don’t bounce back up as quickly as CG, which

is a nice property because finding an optimal stopping iteration is difficult, and so it

becomes a possibility to use BB as an alternative method to CG in some cases.

In order to make BB a comparable method to the CG, we want to get rid of all the

jumps showing in Figure 4.1 and 4.2. Recall from Section 2.1 that SD and BB share
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Figure 4.1: Relative error versus iteration plot for LB, SD and BB methods applied
to satellite image.
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Figure 4.2: Relative error versus iteration plot for BB and CG methodsapplied to
satellite image.
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the same step direction but use different step length. From Figure 4.1, we can clearly

see the smoothness of SD, regardless of the slow convergence. Therefore, it is natural

to think replacing BB step length to SD step length when the relative error is large.

That is, using the current gradient vector instead of the previous one to calculate the

step length when the jump occurs. The problem is that for a realistic problem we

cannot use the relative error because the true solution is not known. We wanted to

see if we could find a different way to recognize when the BB step length was poor.

To do this, we plot step length and relative error at each iteration on the same graph

to see the relation between the two (see Figure 4.3). It shows an interesting result:
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Figure 4.3: Step length and relative error at each iteration for BB method applied to
satellite image.

whenever the jumps occur (large relative errors), the previous corresponding step

lengths of BB method are large as well. This phenomenal fact allows us to think that

changing any large values of the BB step lengths to the SD step lengths may result in

a smooth BB convergence. Then we observe that the values of many step lengths are
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just over 1, with some extremely big values greater than 100. The following plot (see

Figure 4.4) shows the comparison between the original BB method and two stabilized

BB methods with maximum allowed BB step lengths equal to 2 and 5. We have also

tried various values for maximum allowed BB step sizes (not shown), and it occurs

that using SD step length when BB step length is greater than 2 shows the best result

for this particular case.
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Figure 4.4: Relative error versus iteration plot for BB and two other stabilized BB
methods applied to satellite image.

As shown in Figure 4.4, we can clearly see that both of the stabilized methods

are much smoother than the original BB method. It even appears that the stabilized

method (BBstab2) is doing better, in terms of convergence, than the original BB

method at some point, such as between 20th and 30th iteration. Now, let us put BB,

stabilized BB and CG together to compare their convergence behavior. The result is

shown in Figure 4.5. With no surprise, CG still converges the fastest. However, for

the stabilized BB method, the non-monotonicity behavior is gone. Also, the semi-
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Figure 4.5: Relative error versus iteration plot for BB, stabilized BB and CG applied
to satellite image.
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convergence property is much better, as the relative error curve does not bounce

back as quickly as it does for CG. It leaves us to think whether BB method can ever

converge faster than or close to CG. Recall from Section 3.2 that we have developed

a preconditioned BB method. Figure 4.6 shows that preconditioned BB method is

much more efficient than the original BB method and is comparable with CG method.

Although a preconditioned CG method is most likely to perform better than the

original CG, we will not discuss it here because we are interested in improving BB

method. PBB seems to reach the minimum relative error at around 40th iteration,
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Figure 4.6: Relative error versus iteration plot for BB, preconditioned BB and CG
applied to satellite image.

comparing to a much later convergence for BB, around 120th iteration. However, the

non-monotonicity behavior does not disappear. Instead, it seems to have more jumps

than the original BB method.

Therefore, it is natural for us to stabilize PBB, just like the way we did for BB.

Then, we plot relative error versus iteration for CG, stabilized BB and stabilized
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PBB. The result is shown in Figure 4.7. It is clear that both stabilized methods in-
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Figure 4.7: Relative error versus iteration plot for CG, stabilized BB and stabilized
PBB applied to satellite image.

deed removed the undesired jumps, as shown in Figure 4.6. Moreover, the stabilized

BB method does not destroy the property of fast convergence that PBB has. From

PBB, we observed that the minimum error occurs at around the 40th iteration. Sim-

ilarly, the stabilized PBB method converges in about the same time, around the 40th

iteration. Again, the convergence behavior for stabilized PBB is better than that of

that of BB method. This is what we desired.

Having developed a general idea on the convergence analysis for all the methods,

we will test the effectiveness of the methods on simulated problems applying to image

deblurring. The true and blurred images have 256 × 256 pixels, and are shown in

the top of Figure 4.8. The bottom of Figure 4.8 compares the computed stabilized

BB and CG restorations at the iteration where each method shows optimal solution

(i.e., 40 for stabilized BB and 55 for CG). Visually, the two restorations are virtually
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indistinguishable, but semi-convergence behavior for stabilized BB is not as severe

as it is for CG. Therefore, stabilized BB method might be a good alternative choice

in some cases. We remark that preconditioning can be used for CG, but the semi-

convergence behavior is very sensitive to preconditioning. That is, although the error

may decrease more quickly to the optimal solution, further iterations may result in a

rapid increase in relative error.

(a) True image. (b) Blurred image.

(c) Stabilized BB restoration (d) CG restoration

Figure 4.8: Images considered in the first example (satellite): (a) true image; (b)
blurred image; (c) solution obtained at the 40th iteration of stabilized BB method;
(d) solution obtained at the 55th iteration of CG method.
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4.2 Grain Image

In this section, we repeat our experiment using the grain image in [3]. The true and

blurred images are shown in the end of this section in Figure 4.11. First, relative

error versus iteration plot is graphed for LW, SD and BB. The result is shown in

Figure 4.9, and it is similar to the satellite case. LW and SD methods converge too

slowly compared to BB method, and the undesired jumps still occurs for BB, such as

at iteration 20. We also observed an interesting drop at around iteration 120 for SD.

Then, we want to apply the stabilized BB method to this test problem to see if we
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Figure 4.9: Relative error versus iteration plot for LW, SD and BB applied to grain
image
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can still smooth out the jumps. We compare BB, stabilized BB and CG methods to

see their convergence rates. With no surprise, the non-monotonicity behavior is again

removed. However, there are several interesting facts that we observed from Figure

4.10. First, BB and stabilized BB methods do not reach the minimum error as fast as

it does for CG. CG converges in less than 100 iterations; BB and stabilized BB both

reach the minimum errors after 150 iterations. Second, the expected semi-convergence

behavior is observed for CG before 150th iteration, but the relative error starts to

decrease again. This did not occur for the satellite image. The last interesting fact is

that the stabilized BB method seems to perform worse than the original BB method

before 130th iteration, but it looks like to reach the minimum error faster than original

BB between 130th and 200th iteration. Preconditioned BB method is not studied in

this example.

In the end of this section, we will again test our methods on deblurring the grain

image. The true and blurred images have 256 × 256 pixels, and are shown in the

top of Figure 4.11. The bottom of Figure 4.11 compares the computed stabilized

BB and CG restorations at the iteration where each method reached the optimal

solution (i.e., 170 for stabilized BB and 95 for CG). The stabilized BB restoration

and CG restoration do not show a big difference again. However, in this example, it

takes much more iterations for stabilized BB method to compute the optimal solution

comparing to CG method, which only takes about half of what stabilized BB takes.

4.3 Gaussian Blur Image

In this section, we use a Gaussian blur image as our final test problem. The true and

blurred images are shown in the end of this section in Figure 4.14. First, we compare

the convergence behavior of LW, SD and BB. A plot of relative error versus iteration
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Figure 4.10: Relative error versus iteration plot for BB, stabilized BB and CG applied
to grain image
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(a) True image. (b) Blurred image.

(c) Stabilized BB restoration (d) CG restoration

Figure 4.11: Images considered in the second example (grain): (a) true image; (b)
blurred image; (c) solution obtained at the 170th iteration of stabilized BB method;
(d) solution obtained at the 95th iteration of CG method.
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is shown in Figure 4.12. Even though BB still performs the best among these three

methods, LW and SD are not far from BB. In other words, there is not a big difference

in convergence rate between them, unlike the previous two cases. Non-monotonicity

behavior still occurs, at iteration 100 for example, and semi-convergence property is

also observed for BB.
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Figure 4.12: Relative error versus iteration plot for LW, SD and BB applied to Gaus-
sian blur image

Then, we bring in CG and stabilized BB for comparison purpose. A plot of relative

error versus iteration is shown in Figure 4.13. It is clear that stabilized BB method

smoothed out the jumps that original BB had, without slowing down its convergence

rate. Unlike the two previous cases, all three methods reach the minimum really
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Figure 4.13: Relative error versus iteration plot for BB, stabilized BB and CG applied
to Gaussian blur image
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fast this time, less than 50 iterations for all of them. The expected semi-convergence

behavior is observed for all the methods here, and is most obvious for CG. After CG

reaches its minimum, the relative error bounces back more slowly than it reaches its

minimum. However, the relative error curve continues to bounce back and it even

passes the original relative error, which is about 0.4. Since stabilized BB does not

bounce back that quickly, it might be a good alternative choice for solving this kind

of problem. Again, preconditioned BB method is not included in this example.

Figure 4.14 shows four different Gaussian blur images. The top two are the true

and blurred image, and the left one on the bottom is the restoration from stabilized

BB method while the right one is the restoration from CG. All the images again have

256 × 256 pixels. Note that the two restoration images show not much difference

again, and both of them converge in less than 50 steps.
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(a) True image. (b) Blurred image.

(c) Stabilized BB restoration (d) CG restoration

Figure 4.14: Images considered in the third example (Gaussian blur): (a) true im-
age; (b) blurred image; (c) solution obtained at the 50th iteration of stabilized BB
method; (d) solution obtained at the 30th iteration of CG method.
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Chapter 5

Conclusion and Discussion

In this paper, we reviewed several iterative methods to solve large-scale linear in-

verse problems, such as the Landweber, steepest descent, Barzilai-Borwein and con-

jugate gradient method. LW and SD methods are usually not applicable for us since

they always show slow convergence for such large problems. BB method, on the other

hand, is comparable with the well-known CG method in some cases. However, the

non-monotonicity behavior for BB method is not desired and becomes a disadvantage

comparing to CG. Therefore, we explored what happened at the jumps in the relative

error versus iteration plot and found out that it is closely related to the BB step

lengths. Since SD method does not have such undesired property, we figured that us-

ing SD step length when BB step length is large might remove this non-monotonicity

behavior. It turned out that the unfavored jumps were indeed removed, and it did

not slow down the convergence process. We also applied the stabilized BB method

and CG method to three examples of image deblurring. The results were consistent.

That is, the stabilized BB method successfully smoothed out the original BB method

for all three examples and we expect that they will work well for other problems too.

It is a fact that CG reaches a minimum relative error faster than BB and stabilized

BB, but the severe semi-convergence property of CG is a major drawback, as the

relative error gets larger and larger after it reaches the minimum. On the other hand,

stabilized BB shows a much slower bounce-back in semi-convergence, which makes
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it a possible alternative method of CG. The restoration images between stabilized

BB and CG also confirm our suggestion, because visually we can not distinguish the

difference between these two.

Future work on this project could include the following areas. First, finding the

best value for the maximum allowed BB step length needs to be studied more. We

picked a value that we think to work the best for our examples, however, we do not

know if there is a better choice. Developing a formula to calculate the maximum

allowed BB step size depending on each problem is what we want to explore next.

Second, we did not compare the stabilized PBB with pre-condtioned CG method.

This comparison might give us a deeper understanding on the application of the

stabilized PBB method. Lastly, instead of changing large BB step lengths to SD step

lengths, we can try to change to the BB step sizes to SD step sizes when the relative

error is larger than the previous one. This will lead to less modification since not

every large step length corresponds to a jump in relative error, which will reduce the

computational cost.
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